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Differentiability properties of solutions of systems of 
differential equations 

By LAns HSRI~IANDER 

Introduction 

Various algebraic characterizations of the differential equations with constant 
coefficients which only possess infinitely differentiable solutions have been given by  
H6rmander  [4]. One of them is the following. The differential equation can be writ ten 

P(1))u =0, (1) 

where P(~) = P ( ~ I  . . . . .  ~,,) is a polynomial and P(D) is obtained by  replacing ~j by  
- i ~ / ~ x  j, and u is a function of x = (x 1 . . . .  , x~). Then, according to Theorem 3.7 in 
HSrmander  [4], all (square integrable) solutions of (1) in a bounded domain ~ are 
infinitely differentiable functions (after correction on a null set) if and only if the set 
V = {~; P(~) = 0} satisfies the condition 

I m  ~-->oo when Vg~-->c~. (2) 

An equivalent form of this condition is evidently tha t  the distance from a real point 
to V tends to infinity when ~--> c~. I f  (2) is fulfilled, it follows tha t  every distribution 

u satisfying a differential equation 

P ( D ) u = /  in ~ ,  (3) 

where ~ is an open set and ] C C ~ (~),is itself in C a (~). This theorem is not explicitly 
s ta ted in the quoted paper  except when / =  0 (cf. the end of section 3.5) but is an 
immediate consequence of formula (3.5.3) and the well-known properties of convolu- 
tions. 

With a terminology, which has recently become generally accepted, the differential 
operator P(D) and the polynomial P(~) are called hypoelliptic if the solutions of 
(3) are infinitely differentiable where this is true for / ,  or, which is equivalent, if (2) is 
fulfilled. 

We shall here extend these results to systems of differential equations with con- 
s tant  coefficients. This extension is straightforward unless the system is overdeter- 
mined, tha t  is, contains more equations than unknowns. I n  this case our proof is a 
simple consequence of the following theorem of Lech [5]: 

Let I be an ideal o/polynomials in ~ E C, with complex coe//icients and VI the alge- 
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braic set defined by I, that is, the set where all Q E I vanish. Then there is a polynomial 
R E I such that 

d(~,V,)/d(~,V~) <C, ~ER,, (4) 

where C is a constant, d (~, V~) is the distance/rom ~ to VI and d (~, VR) the distance 
/ro.~ ~ to the set V .  = {$; R ($) = 0}. 

For the solutions of a hypoelliptic differential equation (1), estimates of the deriva- 
tives of high order were also given by H6rmander [4, Theorem 3.8]. We shall prove 
here that  these estimates cannot be improved. Using the theorem of Lech we also 
extend them to arbitrary hypoelliptic systems of differential equations at  the same 
time. 

Conditions for hypoellipticity 

Any system of differential equations with constant coefficients can be written 

O(D)u =/, (5) 

where u = (u 1 . . . . .  u~) and / = (/1 . . . .  ,]m) are vectors whose components are functions 
or distributions of x E ~ ,  an open set in R ", and ~(D)  is a matrix with m rows and n 
columns, whose elements Pjk(D) are differential operators with constant coefficients. 
Both m and n are finite, but  it would cause no difficulty to permit m to be infinite. 

Definition. I] the distribution vector u is in C~(~) in every open set ~ where / = 
O(D)u is in C~¢(~), the system O(D) is called hypoeUiptic. 

A necessary condition for hypoellipticity is contained in the following theorem. 

Theorem 1. Assume that there exists a domain ~ and an integer N such that all: 
solutions o/ the homogeneous system o/di//erential equations 

O(D)u = 0 (6) 

in CN (~) are in /act in CN+I(~). Then, given any number A, there is a number B such. 
that the rank o/the matrix 0(~) is n i /[Im~[<~A and [Re~[>~ B. 

Proo/. The theorem may be proved by a slight modification of the proof of Theorem. 
3.7 in H6rmander [4]. Thus we define a Banaeh space of N times continuously dif- 
ferentiable solutions of (6) in ~ which is large enough to contain all exponential 
solutions of (6). More precisely, we let U be the set of all solutions of (6) in CN(~), 
such that  

I Iu l I=sup  e -'~'' Y~ D~u(x)I< oo 

(if a is ho~ded ,  the exponential factor could be omitted). With II ~ II as norm, U 
is obviously complete and hence a Banach space. Nex t  let t l '  be a domain w i th  
compact closure in ~. Let B be the space of functions in cN+I(~ ') with the norm 

Illu Ill = sup y. ID,,u(x) l < c o .  
XG~' I~[~N+I 
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Clearly, B is also a Banach space. Now note tha t  by  assumption every function in 
U is in C N+I (~) and since ~ '  is relatively compact in ~ ,  the derivatives of order up 
to N + 1 must  he bounded in ~ ' .  Therefore, the restriction of u to ~ '  is in B, so tha t  
the restriction defines a linear mapping T of U into B, whose domain is the whole of 
U. Since T is obviously closed, i t  follows from the theorem on the  closed graph 
(cf. Bourbaki  [2]) that  T is continuous, hence if uE U we have 

Illulll < Cllull, (7) 

where C is a constant. 
Now let V be the set of all complex vectors $ such tha t  the rank of 0(~) is < n. 

I f  $ E V, one can find a non trivial solution of (6) of the form 

u (x) = e ~<~'~>a, 

where a is a constant vector. Indeed, this function satisfies (6) if (and only if) 

0 (~ )a  = 0 ,  

and this system of equations has a solution a ¢  0 since the rank of ~($) is < n .  
Introducing this function in (7), we obtain after calculating the two sides 

(1 + sup < c  eV. 
gl '  t l  

Assuming as we may tha t  0 C ~ ' ,  the supremum on the left is >/1. Since 

Ira  ~) < - I ~ 1  + I llIm¢l IIm lV4, 
we obtain I~, ] + " "  + [•[ <~ C e gruel'4, ~ E V. 

This proves Theorem 1. 
The algebraic condition of, Theorem I may  also be formulated as follows: The 

distance from the real point ~ to V tends to infinity with ~. (If V is empty,  we interpret 
the distance as co.) Tha t  this condition is also sufficient for hypoellipticity is proved 
by  the following theorem. 

Theorem 2. Assume that the distance/rom the real point ~ to the set V where the rank 
o/ 0 (~) is < n tends to in/inity with ~. Then, i/ the distribution u satis/ies theequation 
(5) in an open set ~ where/EC :¢ (~), it/ollows that uEC ¢¢ (~). 

Pro@ Let Q(~) be a determinant  formed with n rows in ~(~). (The assumption 
means in particular tha t  there are at  least n rows.) Then we have 

Q(D)ujEC~¢ (~), l <~ j <~ n. 

Indeed, assuming for simplicity in notations tha t  Q is formed with the first n rows 
in ~ and denoting by Cj~(~) the algebraic complement of the element P~k(~) in Q(~), 
we obtain 

q(D)uj= ~ ~. (Ckj(D)Pk~(D))u,= ~ Ckj(D)/kEC¢¢(~). 
i = l  k = l  k = l  
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Let  I be the ideal generated by  the determinants  Q(~) formed with n rows in ~(~),  
t h a t  is, I is the set of all finite sums of such determinants  multiplied with polynomials  
of $. I t  is obvious tha t  

R(D)ujeC°¢(~), R e I .  (8) 

(All differentiations are to be unders tood in the sense of the theory  of distributions,  
so t h a t  t hey  are certainly possible to  perform.) 

Now V is precisely the set where all polynomials  in the ideal I vanish, for the  
rank  of ~(~) is < n  if and only ff all determinants  formed with n rows in ~($)  vanish. 
We can thus apply  the theorem of Lech [5] s ta ted in the  introduction.  I f  we choose 
a polynomial  R E I  so tha t  (4) holds, it follows t h a t  d($ ,Va)-+oo.  As recalled in 
the  introduct ion,  this means t h a t  the differential operator  R(D) is hypoelliptic, 
hence it  follows f rom (8) t h a t  ujeC~°(~). This completes the  proof. 

Combining Theorems 1 and 2 we have proved:  

Corollary. A necessary and su//icient condition/or the system (5) o/di/]erential equa- 
tions with constant coe//icients to be hypoelliptic is that the distance/rom the real point 

to the set where the rank o/ ~(~) is <n tends to in/inity with ~. 

Remark. If V is empty,  the proof of Theorem 2 given above is no t  formally correct  
bu t  should be read as follows. The theorem of Lech degenerates into Hflber t ' s  Null- 
stellensatz, t h a t  is, the polynomial  R = 1 is in I .  The rest  of the proof is as before 
and even shows tha t  one can find polynomials R m so t h a t  O(D)u =[ implies u t = 
rn 

~Rjk(D)/k. Thus  there is no s o l u t i o n # 0  of the homogeneous system (6). 
1 

Estimates of high order derivatives of solutions of hypoelliptic systems of 
differential equations 

We shall here ex tend Theorem 3.8 of t t6 rmander  [4] to  a rb i t ra ry  systems and  also 
show t h a t  it is the best possible result. We  s tar t  by  introducing some notat ions  
similar to those employed in [4]. ~ will always denote a hypoelliptic system o/di//erential 
operators. 

As before, we denote  by  V the algebraic set where the  rank of ~ (~) is < n. Since 
we shall s tudy  the  solutions of (6) only, we may assume that V is not empty, for the 
only solution of (6) is otherwise u = 0 (cf. the remark above). Le t  y be a fixed real 
vector  * 0 and set 

M (7:) = inf [ ~ - ~[ (9) 

with the inf imum taken  over all ~E V and  real ~ satisfying [(Y,~)I = v. Then there 
is a number  b > 0 such tha t  

M(T) = aTb(1 + o(1)) when v - + o %  (10) 

where a ~ 0. To prove this we first note t h a t  ff the matr ix  ~ (~) is scalar, t h a t  is, 
m = n = 1, the definition (9) of M (3) is identical to (3.4.9) in HSrmander  [4], so t h a t  
our  assertion is precisely tha t  of Lemma 3.9 in the quoted paper. I n  the  general case 
the  result  follows if we note as in the  proof of Theorem 2 tha t  V consists of the zeros 
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of all polynomials in the ideal I .  I f  R I . . . . .  R k is a basis for I ,  for instance all deter- 
minants formed with n rows of ~, the set V is thus defined by the equations 

n l ( 0  = 0 . . . . .  nk(~) = 0. (11) 

But then one can repeat the proof of Lemma 3.9 in HSrmander [4] with the only 
modification that  in formula (3.4.10) the equation P($) = 0 has to be replaced by 
the equations (11). 

The inverse of the number b in (10) will be denoted by Q, sometimes also by ~(y) 
or 0~(Y) when we want to emphasize the dependance on P and y. 

Theorem 3. Let ~ be an open set and K a compact subset o /~ .  Then, i / u  is a solution 
o/ the hypoelliptic system (6) in ~,  there is a constant C so that 

[<y ,D}"u(x ) [<C~+IF(e , (y )#  ), x e K ,  # = 0 , 1  . . . . .  (12) 

where F is the gamma/unction. 

Proo]. The theorem is a trivial consequence of the theorem of Lech [5] stated in 
the introduction and Theorem 3.8 in HSrmander [4]. Indeed, (9) can be written 

M (~) = inf d (~, Vz), ] (Y, ~) I = ~, (9)' 

and if we choose R E I so that  

1 <d(~, Vz)/d(~, V•) <~ C, 

it follows that  0n (Y) = ~ (Y), with a natural notation. Now each component uj of u 
satisfies the differential equation R(D)u j  = 0  (cf. (8)). Hence in virtue of Theorem 
3.8 in H6rmander [4] we have with suitable constants Cj 

[(y,D)'uj(z)l<CT+~r(OR(y)be),  x E K ,  # = 0 ,  1 . . . .  

Since ~n = ~ ,  inequality (12) now follows with C = C~ +---  + Ca. 
Remarks. 1. The validity of this theorem is not restricted to hypoelliptic systems 

only but can easily be extended with slight modifications to any case where the num- 
ber ~ (y) exists. The present case seems, however, to be the most interesting one. 

2. A method given by Schwartz [6] can be applied to give results of the same kind 
for the solutions of the inhomogeneous system (4). Thus, if we have an estimate similar 
to (12) for the derivatives o f / ,  we still get the same result for u. However, we shall 
not repeat the argument of Schwartz here. 

Our next task is to show that  the estimate (12) cannot be improved. 

Theorem 4. Let f2 be a bounded open set and x o a point in f~. I/M~, is a sequence such 
that every solution o/ (6) satisfies the inequality 

I(Y, D~'U(Xo) l<~K~'+l Mt,, b e =0,  1 . . . . .  (13) 

/or some constant K, then there is a constant c such that 

r (e, (Y)/~) ~< cUM~ • (14) 

Thus (13) is a consequence of (12) if we disregard the size of the constants C and K. 
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The proof requires the following lemma, which gives a definition of ~ (y) where the  
real vector  £ in (9) has been eliminated and  therefore is easier to handle.  

L e m m a  1. Let M '  (v) = inf I Im$]  (15) 

with the in] imum taken over all ~ fi V such that ] <y, Re ~> ] = ~. Then we have, i] b = 
1/Q (y), with a positive a' 

M'(v)v-b--->a ' when T-~oo.  (16) 

Proo[. Arguing as in the  proof of Lemma 3.9 in H6rmander  [4], with the  modifica- 
t ions indicated above, i t  is easy to show tha t  there is a number  b' such t h a t  

M'  ('¢) T-b'-->a ' ~ O. 

We do no t  repeat  this a rgument  bu t  shall prove tha t  b = b'. 
Firs t  note  t h a t  we always have M@)~< M '  (v), if M(v)  is defined by  (9). For  if 

~ e V  satisfies the equat ion I<Y, ge~>]  = ~  as required in (15}, we can set ~ = Re~ 
in (9). Hence we have b 4 b'. Since we always have 0 < b 4 1, 0 < b' <~ 1, i t  thus  follows 
t h a t  b' = 1 if b = l ,  so t h a t  the lemma is t rue  in this case. Now assume t h a t  b < 1, 
hence M (v) = o @). The definition {9) of M (~) shows t h a t  when ~ > 0 there are vectors  

and  ~ such t h a t  ~ e V and  

I<y,~>l =~, I ~ - g e ¢ [ <  M(~) + 1, IIm$1 <M(~) + 1. 

I f  we set ~' =l<y,~e¢>l, it thus  follows tha t  M ' @ ' ) ~ < M @ ) + 1  and  I v ' - T ]  ~< 
lY] (M(v)  + 1). W h e n  v - > c o  we get  

V'/T--->I, M '  (~')~'-b'-->a ' when ~-->oo, 

hence M '  (v') T-b ' -~a  ' # 0. 

Since M '  (v') < M (T) + 1 and M (v) v -  b _+ a, we can conclude tha t  b' ~ b. This completes 
the proof of the  lemma. 

P~'oo] o[ Theorem 4. The proof is parallel to  t ha t  of Theorem 1. Thus  we s tar t  with 
proving b y  means of functional  analysis t h a t  certain inequalities mus t  be fulfilled, 
and  then  we app ly  these inequalities to the exponential  solutions. 

Le t  U be the  set of all solutions of (6) in ~ such tha t  

i i . l l= sup 

I t  is clear t ha t  U is a Banaeh  space with this norm. Denote  by  FT the  set of those 
u e U such t h a t  

[<y,D>Ju(xo)[ < - / + I M j ,  j = 0, 1, 2 . . . .  (17) 

The  sets FT are closed. For  if we have a sequence of elements un in F~ such t h a t  
[] u= - u [[-+0, it follows t h a t  u~ and all its derivatives are uniformly convergent  on 
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every  compact  subset K of ~.1 Indeed,  applying the theorem of the closed graph  as 
in the  proof of Theorem 1, using the hypoell ipt ici ty of ~ ,  we can for a rb i t rary  e prove 
an  inequali ty 

sup ID=,~(x)l<C(~,K)llull, ueV.  
x e K  

B u t  then it follows tha t  (17) mus t  be valid for the limit u since it holds for each u, .  
oo 

B y  assmnpt ion we have U F~ = U. Since all the  sets F~ are closed, i t  follows f rom 
x 

the  category theorem (Bourbaki  [1]) t h a t  some of them mus t  contain an  interior 
point .  Le t  E8 have an interior point. Since F~ is convex and  symmetric ,  the origin 0 
mus t  be an interior point. (This is also pa r t  of the a rgument  in the proof of the  theorem 
on the  closed graph.) Hence there is a number  8 > 0 such t h a t  Fs contains all u with 
II  11-< 8 But then we have for all e V 

I <Y, D)  ju (%)1 < sj+~ Mj II 11/8, (is) 

for this inequal i ty  is homogeneous with respect to u and holds when It II = a. 
i f  ~ E v we can, as in the  proof of Theorem 1, f ind an exponential  solution 

u = d<~'C>a of (6), where a is a constant  vector  # 0. Then  (18) yields 

](y,  ~ ) ] ' e  -<~''xm~> <.si+IMs8 -1 sup e -<z'Im¢>. (19) 
x e f ~  

I f  A is the diameter  of f2, (19) gives the following est imate of M s 

Ms>-s-J-181<y,~>lSe-AlIm¢l, ~E V. (20) 

Replacing here I<y,¢>l by I<y, Re¢>l = • and using the definition of M'(~),  we get  

M s >/s -s -18 ~Se- AM" (V. (21) 

According to L e m m a  1 we can find to any  number  ~ > a '  a number  v0 so t h a t  M '  (v) < 
~z  b when v > ~0. Hence 

Mj>~s -s-1 t3TJe -=A~, z > T  0. (22) 

The  right hand  side of this inequali ty has a max imum when  v b = ]/c~A b. This value 
of v is > T O provided t h a t  j > J0. Thus 

Mj  1> ctj j/~, j > J0, (23) 

and  taking if necessary a smaller value of c we can make (23) hold also for j = 1 . . . . .  Jo- 
Bu t  Stirling's formula  shows tha t  this is equivalent  to (14). The proof is complete.  

Remark. I f  f2 is no t  bounded,  it is still easy to  prove t h a t  (14) mus t  be valid if 
Qv (y) is replaced by  any  larger number.  This can be done b y  modifying the norm in 

1 In fact, it is true that convergence in the topology of distributions of solutions u n of a hypo- 
elliptic homogeneous system of differential equations implies uniform convergence of Daun on 
every compact set for all z¢. This follows easily from formula (3.5.3) in tt6rmander [4]. 
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U as in the  proof of Theorem 1 with an exponential  factor  e -I*1., where c can be chosen 
arbi trar i ly large. 

We shall finally give some remarks on ~ (y) = ~ (y) as a funct ion of y. We first p rove  

Q (fly 1 + t2y2) <-< max (~ (Yl),Q (Y,)). (24) 

Since we always have 0 (Y)/> 1, and  we define 0 (0) = 1, it is sufficient to  prove (24) 
when the three vectors  Yl, Y2 and t ly  1 + t2y2 are all different f rom 0. Wri te  Q~ = ~  (y~) 
and  bi = 1/Q~. 

The definition of Q~ means t h a t  there is a constant  A t such tha t  

I(y,,Re¢>] <- A,(~ + I Im¢[)° ' ,  Ce  V. (25) 

For  writing I (y,,Re¢>l = ~, we have I Im~]>~ M; (z) = a~z b' (1 + 0(1)) with a modi- 
f ication of the nota t ions  of Lemma 1. Furthermore,  (25) does not hold i / t he  exponent 
Q, is replaced by a smaller number. Now we get, if q = max  (Q1, qg.) 

2 

[ (tl y~ + t, y~, Re ~ I < (~ A, It, [) (1 + I Im ~ [)', ~ e V, 

and  since Q(tly 1 + t ,y ,)  is the smallest exponent  on the  r ight for which such an  in- 
equal i ty  can hold, (24) follows. 

Our result  m a y  also be formulated as follows: The set 

G , = { y ; Q ( y ) < a }  (26) 

is a l inear subspace of R" for every fixed a. I f  we denote  its dimension b y  v (a), the  
funct ion ~ (a) is increasing and only assumes integer values between 0 and  r. Hence 
there are only a finite number  of points al  < a~ < . - -  < qk, where the dimension of G, 
increases. We have 

{0} = Go. c G~,=.--  ~ G~ = ~v, 

and Q (y) = aj if Goj is the first of these spaces containing y. Changing the  no ta t ion  

slightly, we have thus  proved the  following result. 

Theorem 5. There exists a strictly increasing /amily o~ subspaces of R ~, 

{0} = a0 = ~1 c - - -  = ok  = R ~, 

and a strictly increasing sequence o/rational numbers ffl, g2 . . . . .  (7 k all >1 1 so that ~ (y) = 
aj i / j  is the smallest integer such that y E G r 

Theorem 5 generalizes the classical results for the equat ion of heat  (cf. Gevrey [3]). 
I t  is ve ry  easy to  get  estimates also for the mixed derivatives such as are known 
for the  equat ion of heat ,  bu t  we are no t  going to do so here. 

A system (5) of differential equations is called elliptic if all solutions are analyt ic  
when / is analytic.  As a special case of our previous results we note t ha t  the  condi t ion 
for ellipticity is t h a t  ~ (y) = 1 for all y. I n  this case the ideal I contains a polynomial  
R with the same proper ty ,  Qa (Y) = 1; such a polynomial  is elliptic in the usual sense 
tha t  the  principal pa r t  does no t  vanish for any  real ~ ~ 0. 
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