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N = ( 6 a + 1 ) 2 2 n - ~ - I  a n d  M=(6a-1)22"-1 

By HANs RIESEL 

The purpose of this paper  is to give a direct proof of the following two 
criteria for the pr imal i ty  of the numbers of the above forms. The theorems 
are, except for a slight modification of the conditions, known by  L ~ M E R  [1] 
and BREW]~R [2] who proved a more general theorem of this kind. Then we 
take  up to discussion if the third inequality in the theorems could be removed, 
and show tha t  this is not  the case. Finally we give a numerical example and 
a table of some primes of the discussed forms. 

T h e o r e m  1. Let  a and n be integers satisfying 

a > 0 ,  n ~ 2 ,  22~-1>a.  

Let  a sequence u~ of integers be defined by the recurrence relation 

u~+~=u~-2  ( i=1 ,  2, 3 . . . .  ), 
with 

u~ = (2 + V3) ~°+' + (2 - V3) ~+~. 

(1) 

Then a necessary and sufficient condition tha t  the number  N =  (6a + 1) 2 e~-~ - 1 
should be a prime is tha t  

u2n_2=0 (rood N). (2) 

T h e o r e m  2. Let  a and  n be integers satisfying 

a > l ,  n>=2, 2 2 n - l > a .  (1') 

Let  a sequence v~ of integers be defined by  the recurrence relation 

v~+1=v~-2 ( i = l ,  2, 3 . . . .  ), 
with 

vl = (2 + V~)6°-~ + (2 - VS) °~-~. 

Then a necessary and sufficient condition tha t  the number  M = ( 6 a - 1 ) 2 2 n -  1 
should be a prime is tha t  

v2n-1~0  (mod M). (2') 
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P r e l i m i n a r y  r e m a r k s .  The proofs of the two theorems will follow the 
same lines and are very similar. Here we give the full details of the proof 
only for Theorem 1, and sketch the proof of Theorem 2. The first pa r t  of the 
proof follows a proof by  WESTERN [3] for the special case a = 0 in Theorem 1. 

The proof is based on some results from the theory of the quadratic number  

field K (V3), where K is the field of rational numbers. The field K (V3) has 
the following well-known properties:  

The integers x in the field are of the form x = a + b V3, where a and b are 
rational integers. The units are ± (2+V-3) ~, n a rational integer. The conju- 
gated number  ~ of x = a + b V 3  is ~ = a - b ~ / 3 .  The norm N(x)  of x is defined 
by  N (x) = x ~ = a 2 - 3 b ~. 

There are two kinds of primes in the field (excepting the factors of 2 and 3). 
Firstly, all rational primes q of one of the forms q=12s±5. Secondly, all 
primes g =  a + b V3, whose norm g ~ =  a S -  3 b ~ equals a rational pr ime p of one 
of the forms p = 1 2 s ± l .  

We need the following analogue of Fermat ' s  theorem: Let  q be a prime of 
one of the forms q = 1 2 s _ 5 .  Then, if x is an integer in the field, we have 

xq-~  (mod q). (3) 

Proof:  Let  x = a + b V3. Then we have 

q - I  

z q = (a + b V3) q - a  q + b q (V3) ~ -~ a + b- (3) -V ~/3--a - b ]/3 = • (mod q) 

by  the binomial theorem, Fermat ' s  theorem for rational integers and since 

,~-1 / 3 \  
3 - ' ~ - ~ | - |  = --1 (rood q). 

\q/ 

( ( 3 )  is Legendre 's  symbol,  a n d ( ~ ) = - I  if q=12s+_5). 

We also require the following lemma: Let  x be an integer of the field 
K (V3). Le t  d (if it exists) be the smallest positive exponent for which the  
congruence 

x a-- - 1  (mod q) (q prime) (4) 

holds. Then, if eo is any exponent for which one of the congruences 

x ~ - I  (mod q) or x ~ - I  (mod q) (5) 

holds, 09 is an odd or an even multiple of d, respectively. 
Since the corresponding lemma for the rational integers is well known and 

since the proof in the field K(V3)  is the same, we omit the proof. 

P r o o f  of T h e o r e m  t .  We find N = ( 6 a + l ) 2 2 n - 1 - - 1 - - ~ - I  (mod 8) (since 
n>~2) and N=(6a+l )  4~ -1 .2 -1~- - (6a+l ) . 4 .2 -1~7  (mod 12). 
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First, we prove the necessity of condition (2). Suppose N is a prime. Then 

Legendre's symbols ( )  - ($) and ($1 have the values 

and 
N - 1  N - 1  N - 1  

( - 2 ) = ( + ) ( l - 1  (mod N )  

N - 1  

1 + E 2  2 
-- (1 - fi)N= - 2 (mod N). (-) 1-1/3 

NOW (1 - 6 ) h ' = l  +vg (mod N), according to (a), and cancelling the factor 2, 
we find 

N + l  

1+v3 - 
- - 1 (mod N). 

since --(1+'')2- - ( 2 + E ) ,  we find 
1-1/3 -2  

N + l  N + 1  

N + 1  
(-1)2(2+lh)2= - 1 (mod N), 

or since (-1)2=1, 
Nt-1  

(2+Ih2- -  - 1 (mod N). 

N + l  

Adding 1 and multiplying by (2 - E ) 4 ,  we see that congruence (6) implies 

This, however, is the same as condition (2), since 

This shows the necessity of condition (2), if N is a prime. 



H. RIESEL, Prime numbers of two forms 

We now proceed to prove the sufficiency of the conditions given in Theo- 
rem 1. Suppose tha t  u~n_~--0 (mod N), or, which is the same thing, tha t  con- 
gruence (7) holds. By  multiplying this congruence by  (2 +~)(N+~),, we obtain 
congruence (6). Now, since N has the form 1 2 s + 7 ,  and since the product  of 
primes of the forms 1 2 s ± l  yield a number  of the same form, N mus t  have a 
prime factor q of one of the forms 1 2 s ± 5 .  Since congruence (6) holds for the 
modulus N, it  holds, a /ortiori, for any modulus dividing N, and we obtain 

N + I  

( 2 + V 3 )  ~ = - - 1  (mod q). 

The analogue of Fermat ' s  theorem gives us 

o r  

(2 + V3) q- -2  - ]/3 (mod q), 

(2+] /3)q+1--1  (mod q). 

Suppose now tha t  d is the smallest positive exponent for which 

(2 + V3)a--  - -  - 1 (mod q). 

Using the lemma from the preliminary remarks,  we conclude tha t  

and tha t  

N + I  
2 =(6a+l)2~ '~-e=kd (k an odd number) 

q +  1 = j d (~ an even number). 

Since k is odd, d must  contain the factor 2 ~n-u, 'and since ~ is even, q + l  con- 
tains the factor 22~-I Hence we see tha t  if N were not prime we should find 
a factorisation of the form 

N =  ( 6 a +  1) 2 e ~ - l -  1 = z - q = z ( m . 2 2 " - 1 -  1), 

with a z > l .  I f  we consider this factorisation (mod 22~-1), we find tha t  
z ~ l  (mod 2~n-1), and tha t  N must  have the form 

N = (6a + 1) 22"-1 - 1 = (l- 2 ~" -~ + 1) (m- 2 ~ - ~  - I). (8) 

The ease l = 0, m = 6a  + 1 corresponds to the trivial decomposition N = 1. N. 
Decomposition (8) implies 

6a+ l = l m . 2 2 " - l + m - l = / ( 1 ,  m) say. (9) 

Considering (9) (mod 2) and (mod 3), we obtain 

and  
l-----m- l (mod 2) 

l + l m - - m - I  (rood 3). 
(10) 
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From these congruences it  follows tha t  the values of m and l:  

re=l, / = 1 ,  2, 3, 4, 5 

m = 2 ,  / = 1 ,  2 

m = 3 ,  / = 1  (11) 

m = 4 ,  / = 1 ,  2 

m = 5 , / = 1 ,  2, 3 
are impossible. 

We shall now obtain the smallest possible value of the function it(l, m). 
Since it(l, m) is an increasing function of 1 and of m, and since l >  m implies 
] (l, m) < it (m,/) ,  we find : 

If  r e = l ,  1 must be >=6, and 

/(l ,  1) > / ( 6 ,  1) = 6 . 2 2 = - ~ - 5 .  

In  the same way we find: 

and finally, if m > 6 

/(1,2)>=](3,2)= 6 - 2 2 n - 1 - 1 ,  

/ (/, 3)>=/(2, 3 )=  6 .22n-1+  1, 

/(l ,  4) > / ( 3 ,  4) = 12 .22n-1+ 1, 

/ (l, 5) > ] (4, 5) = 20.22 n - I  _~ 1: 

/(l, m)>](1, 6)>=/(1, 6 ) = 6 - 2 : = - 1 + 5 .  

Since the smallest of these expressions is 6 . 2 2 = - 1 - 5 ,  this shows that  /(l ,  m) 
for those values of l and m which are compatible with the congruences (10), 
satisfies 

](1, m ) = 6 a + l  >=6-22=-1-5.  

Hence, if the opposite inequality 

6 a +  1 <6 .2 ~ '~ -~ -5  

holds, we conclude tha t  the decomposition (8), with any l >  0, is impossible. 
The last inequality reduces to 

a < 2 ~ n - ~ _  1, 

and so we have proved Theorem 1. 
For Theorem 2 we find tha t  M satisfies the same congruence relations (mod 8) 

and (mod 12) as N, and so we have the congruences (6) and (7) in  exactly the 
same manner, but  with M instead of N:  

M + I  M + I  

(2 + V3)-~-+  ( 2 -  V3) ' ~ 0  (mod M). (73 
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Since M = ( 6 a - 1 ) 2 ~ - l ,  we find 
v ~ + l = v ~ - 2  ( i=  1,2, 3 . . . .  ), and 

tha t  (7') implies v2~_1----0 (mod M), if  

v, = (2  + 6° -1  + (2  - ¢ 5 )  

The proof of the sufficiency leads in the same way as for Theorem 1 to the. 
decomposition 

M =  ( 6 a -  1) 2 ~ n -  1 = ( 1 . 2 2 " +  1) ( m - 2 2 " -  1) (8') 
and to 

6 a - l = l m . 2 ~  + m - l = / ' ( l ,  m) say, (9')  

and to the congruences 

and 
1--=l-m (mod 2) 

l + l m - - l - m  (mod 3). 
(]o') 

The impossible values (11) are impossible in this case too, and the smallest  
value of the function / '  (l, m) again occurs for l =  6, m =  1, and finally: the in- 
equali ty 

6 a -  1 < 6 - 2  ~ ' - 5 ,  

which makes (8') impossible with an l >  0 leads to 

tha t  is 

< 0 2n  2 a . - -~,  

a<2~n-1.  

R e m a r k  1. If, in Theorem 1, a=O, we have the following theorem:  The  
number  N = 2 e ' - I - 1  is a prime, if and only if u2~_e~0 (mod N), where: 
u~+l=u~-2 ( i = 1 , 2 , 3  . . . .  ) and u1=4. 

This is the well-known Lucas's  theorem for the primali ty of Mersenne's 
numbers.  See WESTERN [3]. 

R e m a r k  2. I t  is natural  to ask whether Theorem 1 holds if the inequali ty 

2 2 n - 1  > a 

is not fulfilled, or whether this inequality is essential. 1 We are going to prove 
tha t  at  least some kind of extra  condition is needed, if 2 2 n - l > a  is not  fulfilled. 

To prove this, let us in the case n = 2 t ry  to construct a composed number  
N for which congruence (6) holds. Then everything in Theorem 1 will be satis- 
fied except, of course, the inequality 2 z n - l > a .  

Suppose tha t  N = ( 6 a + l ) . 8 - 1 = 4 8 a + 7  is the product  of three different 
primes q~=48ni+7 (i=1,2, 3) of the same form as N. Since 72--1 (mod 48) 

1 T h i s  p r o b l e m  d o e s  n o t  s e e m  t o  h a v e  b e e n  t r e a t e d  b e fo r e .  
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and 7 a ~ 7  (mod 48), this is no contradiction. From the proof of the necessity 
of condition (2) in Theorem 1 it now follows tha t  

q~+l 

(2 + l/3) -V- ~ - 1 (mod q,) (i = 1, 2, 3). 

A sufficient Condition tha t  

hr+l 
( 2 + V 3 )  2 _ _ 1  (mod zr)______l (mod q,) 

evidently is tha t  

N +__~l  
2 is an odd multiple of q~ + 1 

(i = 1, 2 ,  3) 

2 (i = 1, 2, 3). 

Now, suppose tha t  any  two of the numbers (q, + 1)/8 (i = 1, 2, 3) have the same 
greatest  common divisor d and tha t  

q~+l  4 8 n i + 7 +  1 
2 2 

4 ( 6 ~ +  1 )=4dp~  (i = 1, 2, 3). 

We conclude tha t  

N + I  q~q~q3+l_(8dp~- l ) (8dP2-1) (Sdpa-1)+l  
2 2 2 

should be an odd multiple of 4dpl P2P3, or, which is the same thing, tha t  

64 d a Pl P2 P3 - 8 d ~ (Pl P~- ~- P l  J03 -~- P2 P3) ~- d (Pl + P2 + P3) (12) 

should be' an odd multiple of dplp2pa. 
Since d and the pt must  be odd numbers,  the number  (12) is odd, and 

so this number  is an odd multiple of d plp~p3 if 

64 d a Pl P~ Pa - 8 d 2 (Pl P~ + Pl P3 + P2 Pa) + d (Pl + P2 + Pa)-~ 0 (mod d Pl P2 P3), 
or  

8 d (pl P2 + Pl P3 + P2 Pa) ~ Pl + P2 + P3 (rood i01 P2 P3)- (13) 

Since dp~=6n~+l, all the numbers d and p~ must  be of one of the forms 
6 s + 1  or 6 s - 1 .  Now, for the p~ choose 3 numbers, relatively prime in pairs, 
and of one of the forms 6s+__l, e.g. 

Congruence (13) becomes 

with the extra  condition 

P171,  p~=7  and Pa=13- 

8 d . 1 1 1 ~ 2 1  (mod 91) 

d----1 (mod 6). 
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These two  las t  congruences  have  the  solu t ions  

d - - 3 0 1  (mod 5 4 6 ) = 5 4 6 x + 3 0 1 ,  

and  we f ind  
q ~ = 8 d p j - l =  8 d - l =  4 3 6 8 x +  2 4 0 7 ,  

q2=8dp2-1  = 5 6 d - l = 3 0 5 7 6 x + 1 6 8 5 5 ,  
a n d  

q~=8dp3-1= 1 0 4 d -  1 = 5 6 7 8 4 x + 3 1 3 0 3 .  

The  on ly  th ing  t h a t  r emains  is to  de te rmine  an  x for which al l  q~ a re  p r i m e s ;  
the  p r i m e  t ab les  show t h a t  the  va lues  x =  37 and  x = 89 fit ,  and  so we h a v e :  

and  

N I =  1 6 4 0 2 3 .  I 148 1 6 7 . 2  132 311 

N 2=  391 1 5 9 . 2  738 1 1 9 . 5  085 079 

are  composed  number s  for which congruence (6) holds .  
I n  t he  same  w a y  we can cons t ruc t  an  e xa mple  to  show t h a t  t he  i n e q u a l i t y  

2 2 ~ - 1 _ > a  

in Theorem 2 could  no t  s imply  be removed .  W e  have  found  

M =  327 8 2 3 . 2  294 7 6 7 . 4  261 711. 

N u m e r i c a l  e x a m p l e .  F o r  the  n u m b e r  M = 5.214 - 1 = 81 919 the  condi t ions  
of t heo rem 2 a re  fulfi l led,  and  we f ind 

v 1 = 724, v 2 - ~ 3 2 6 6 0 ,  va------- 8 2 9 9 ,  v 4 - - 6 1 4 3 9 ,  v 5 -  5 1 1 8 ,  

v 6 - - 6 1  761, v~ - - 2 6  722, v8 - -59  278, v9- -47  696, v10- - I7  784, 

v n - - 6 3 3 1 4 ,  v12--38 248 and  v13--0, al l  congruences  t a k e n  (mod 81 919) .  

The  las t  congruence shows t h a t  t he  n u m b e r  81 919 is a pr ime.  

P u t t i n g  a =  2, we f ind  u 1= 27 246 964 a n d  v 1=  1 956 244. 

P u t t i n g  a = 3, we f ind  u 1 = 73 621 286 644 a n d  v 1 = 5 285 770 564. 

Theorems  1 and  2 were used  to  f ind  the  pr ime  charac te r  of some n u m b e r s  
( 6 a + l ) 2 e - 1 .  The  ca lcula t ions  were m a d e  on the  Swedish high speed  elec- 
t ronic  c o m p u t e r  B E S K  for al l  va lues  of 6 a + 1 < 5 6  and  e < 1 5 0 ,  excep t  for  
6a___1=5,  7 a n d  11, where  e t a k e s  al l  va lues  < 2 5 0 .  

Those number s  which were found  to  be pr imes  were t e s t ed  once more  b y  
B E S K .  T h e  resul t  was t h a t  the  numbe r s  N and  M were pr ime  for  the  fol- 
lowing va lues  of 6 a 3- 1 and  e, a n d  composi te  o therwise  (the values  of e = 1, 2, 3 
are  t a k e n  f rom the  p r ime  t ab le s ) :  
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6 a ± 1 e ( <= 250) 

5 

7 

11 

13 

17 

19 

23 

25 

29 

31 

35 

37 

41 

43 

47 

49 

53 

55 

2, 4, 8, 10, 12, 14, 18, 32, 48, 54, 72, 1~8, 184, 248 

1, 5, 9, 17, 21, 29, 45, 177 

2, 26, 50, 54, 126, 134, 246 

e (__< 150)  

3~ 

2, 

1, 

4, 

3, 

4, 

1, 

2, 

1 

2, 

7, 

4, 

1, 

2, 

1, 

7, 23 

4, 6, 16, 20, 36, 54, 60, 96, 124, 150 

3, 5, 21, 41, 49, 89, 133, 141 

6, 12, 46, 72 

9, 11, 17, 23, 35, 39, 75, 105, 107 

16, 76, 148 

5, 7, 11, 13, 23, 33, 35, 37, 47, 115 

6, 10, 20, 44, 114, 146 

10, 14, 18, 50, 114, 122 

31, 67 

14, 70, 78 

5, 7, 9, 13, 15, 29, 33, 39, 55, 81, 95 

6, 8, 42, 50, 62 

3, 5, 7, 15, 33, 41, 57, 69, 75, 77, 131, 133 

BESK also verified that the known Mersenne numbers up to 26°~- 1 are 
primes. 

R E F E R E N C E S  

1. D . H .  LEI4MER, A n n a l s  of M a t h .  (2), 31, 446 (1930). 
2. B . W .  B~EWER, D u k e  Math .  J o u r n .  18, 757 (1951). 
3. A . E .  WESTERN, J o u r n .  of  t h e  L o n d o n  Ma th .  Soc. 7, 130 (1932). 

Tryckt  den 7 maj 1955 

Uppsala 1955. Almqvist & Wiksells Boktryckeri AB 

253 


