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A note on the prime numbers of the forms

N-(6a+1)2?"1-1 and M=(6a-1)22"-1

By Hans RiESEL

The purpose of this paper is to give a direct proof of the following two
criteria for the primality of the numbers of the above forms. The theorems
are, except for a slight modification of the conditions, known by LruMEr [1]
and BREWER [2] who proved a more general theorem of this kind. Then we
take up to discussion if the third inequality in the theorems could be removed,
and show that this is not the case. Finally we give a numerical example and
a table of some primes of the discussed forms.

Theorem 1. Let a and n be integers satisfying
a=0, n=2, 22" 1>q, 1)
Let a sequence u; of integers be defined by the recurrence relation
w=ui—-2  (6=1,2,3,..)),

’fl/1= (2+ V§)6a+l+ (2_ V§)6a+1‘

Then a necessary and sufficient condition that the number N = (6a+1) gzn-1_1
should be a prime is that

with

Ugn_3=0 (mod N). 2)
Theorem 2. Let a and » be integers satisfying
az=l, n=2, 22" -12aq. (1)
Let a sequence v; of integers be defined by the recurrence relation
vi+1=”i2_2 (i=1’273,'-~)>
with
6a—1 o\6a-—-1
v =2+ V3 +(2-V3) "

Then a necessary and sufficient condition that the number M =(6a—1)22"—1
should be a prime is that

Ven_1==0 (mod M). 29
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M. RIESEL, Prime numbers of two forms

Preliminary remarks. The proofs of the two theorems will follow the
same lines and are very similar. Here we give the full details of the proof
only for Theorem 1, and sketch the proof of Theorem 2. The first part of the
proof follows a proof by WEesTERN [3] for the special case a=0 in Theorem 1.

The proof is based on some results from the theory of the quadratic number

field K (V3), where K is the field of rational numbers. The field K (V3) has
the following well-known properties:

The integers z in the field are of the form z=a+bV3, where a and b are
rational integers. The units are +(2+V3)", n a rational integer. The conju-

gated number % of z=a+bV3 is Z=a—bV3. The norm N (z) of z is defined
by N(z)=zF=0a>—3b%

There are two kinds of primes in the field (excepting the factors of 2 and 3).
Firstly, all rational primes ¢ of one of the forms ¢g=12s%5. Secondly, all

primes m=a+bV3, whose norm 77 =a®—3b equals a rational prime p of one
of the forms p=12s+1.

We need the following analogue of Fermat’s theorem: Let ¢ be a prime of
one of the forms ¢=12s+5. Then, if ¥ is an integer in the field, we have

=& (mod g). (3}
Proof: Let z=a+b)3. Then we have
a-1 _
27 =(a+bV3)'=a+b (V3)'=a+b-(3) 2 V3=a—bV/3=% (mod ¢)

by the binomial theorem, Fermat’s theorem for rational integers and since

1 (3
32 E(—)= —1 (mod gq).
q
3\ . , 3 -
((;) is Legendre’s symbol, and (E) =-~1if ¢g= 12si5) .

We also require the following lemma: Let z be an integer of the field
K(V3). Let d (if it exists) be the smallest positive exponent for which the

congruence
z%= -1 (mod ¢) (¢ prime) (4}
holds. Then, if @ is any exponent for which one of the congruences

z’= -1 (mod ¢q) or z=1 (mod g¢) (5)

holds, @ is an odd or an even multiple of d, respectively.
Since the corresponding lemma for the rational integers is well known and

since the proof in the field K (V§) is the same, we omit the proof.

Proof of Theorem 1. We find N=(6a+1)22""'-1=—1 (mod 8) (since
n=2) and N=(6a+1)4"'-2—-1=6a+1)-4-2—1=7 (mod 12).
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First, we prove the necessity of condition (2). Suppose N is a prime. Then

- 2 -
Legendre’s symbols (—J-\%) , (—) and (72) have the values

N

() G- (3

and - .
(%2)5(—2)T=(1+V§)T(1—V§)TE—1 (mod N)
or
1+V3
(I;V) (1— ) =1 (mod N)
or

1+,V§£§_—1 2 N
(1—V§) 1_V§(1—I/§) = —2 (mod N).

Now (1“V§)NEI +V3 (mod N), according to (3), and cancelling the factor 2,
we find
V3 M1
1 2
(j——é) = —1 (mod N).
1-V3

1+V3 _(1+v3)y

Since —(2+V3), we find

1-V3 -2
(—1)%(2“/5)%5 ~1 (mod N),
or since (*1)%=
(2+V§)£;—15 —1 (mod N). (6)

N+l

Adding 1 and multiplying by (2—V3) "%, we see that congruence (6) implies

(2+V§)¥+(2—V§)¥Eo {mod N). (1)

This, however, is the same as condition (2), since

uy = (2+V3) " 1 (2-V3)%*
u2=u%_2:(2+V§)<6a+1)2+(2_1/§)<6a+”2,
Unno=Uln_g—2=(2+V3)6e+0P 2 | (5 _|/3)6arns2n=3
=(2+V8) ¢ +(2-V3) 7.

This shows the necessity of condition (2), if N is a prime.

247



H. RIESEL, Prime numbers of two forms

We now proceed to prove the sufficiency of the conditions given in Theo-
rem 1. Suppose that uy, =0 (mod N), or, which is the same thing, that con-

gruence (7) holds. By multiplying this congruence by (2+V3)"*™ we obtain
congruence (6). Now, since N has the form 12¢+7, and since the product of
primes of the forms 12s+1 yield a number of the same form, N must have a
prime factor ¢ of one of the forms 12s+ 5. Since congruence (6) holds for the
modulus N, it holds, a fortiori, for any modulus dividing N, and we obtain

N4l

(2+V3) 2 =—1 (mod g).
The analogue of Fermat’s theorem gives us

(2+V3)°'=2-V3 (mod g),

or
(2+V3)""'=1 (mod g).

Suppose now that d is the smallest positive exponent for which
(2+ Vg)dE —1 (mod g).

Using the lemma from the preliminary remarks, we conclude that

N+1

> =(6a+1)2>"2=kd (k an odd number)

and that
g+1=4jd (j an even number).

Since k is odd, d must contain the factor 22"~2, and since j is even, ¢+ 1 con-

tains the factor 2°"~!. Hence we see that if N were not prime we should find
a factorisation of the form

N=(6a+ l)22"_1—1=z.q=z(m,22n—1_1)’

with a z>1. If we consider this factorisation (mod 2°"°'), we find that
2z=1 (mod 22"°Y), and that N must have the form

N=(6a+1)}22" 1 —1=(-22""' 4 1) (m-2%2" "1 ~1). (8)

The case I=0, m=6a+1 corresponds to the trivial decomposition N=1-N.
Decomposition (8) implies

6a+1=Im-22""'+m—1=f(, m) say. 9)
Considering (9) (mod 2) and (mod 3), we obtain
1=m—1 (mod 2)
and (10)
l+Iim=m—1 (mod 3).
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From these congruences it follows that the values of m and I:

m=1,1=1,2,3,4,5

m=2, [=1,2

m=3, I=1 (11)
m=4, [=1,2

m=>5,1=1, 2,3

are impossible.
We shall now obtain the smallest possible value of the function f (I, m).

Since f(I, m) is an increasing function of ! and of m, and since I>m implies
1, m)y<f(m,1), we find:
If m=1, I must be =6, and

f(l,1)=f(6,1)=6-22""1—5,
In the same way we find:

f(i’ 2)Zf(3, 2): 6.22"‘1_1’
f0,3)2f(2,3)= 6-22"7141,
fA,4)21(3,4)=12-22"141,

fl,5)=f(4,5)=20-2>""141,
and finally, if m=6
fAm =0 6)2(1,6)=6-2"1+5.

Since the smallest of these expressions is 6-22""'—5, this shows that f(I, m)
for those values of ! and m which are compatible with the congruences (10),
satisfies

fl, my=6a+1=26-22""1—5.
Hence, if the opposite inequality
6a+1<6-22""1_5

holds, we conclude that the decomposition (8), with any 1>0, is impossible.
The last inequality reduces to
a< 21,

and so we have proved Theorem 1.

For Theorem 2 we find that M satisfies the same congruence relations (mod 8)
and (mod 12) as N, and so we have the congruences (6) and (7) in exactly the
same manner, but with M instead of N:

M+1

(2+V§)$+(2—V§) =0 (mod M). (')



H. RIESEL, Prime numbers of two forms

Since M =(6a—1)2?"—~1, we find that (7') implies v3,_,=0 (mod M), if
viga=v—2 (i=1,2,3,...), and

v=(2+V3)* 1 +(2-V3)"* "

The proof of the sufficiency leads in the same way as for Theorem 1 to the
decomposition
M=(6a-1)22"—1=(1-2°"+1)(m-22"—1) (8)
and to
6a—1=Im-2*"+m—1={f(l, m) say, 9')

and to the congruences
1=l—m (mod 2)
and (10"}
l+im=l—m (mod 3).

The impossible values (11) are impossible in this case too, and the smallest
value of the function f (I, m) again occurs for =6, m=1, and finally, the in-
equality

6a—1<6-22"—5,

which makes (8’) impossible with an !>0 leads to

a<2%"—2,
that is
a<2?" 1.

Remark 1. If, in Theorem 1, a=0, we have the following theorem: The
number N=2%""1_1 js 3 prime, if and only if wup,.2=0 (mod N), where
wp=ur—2 (1=1,2,3,...) and u,=4.

This is the well-known Lucas’s theorem for the primality of Mersenne’s
numbers. See WESTERN [3].

Remark 2. It is natural to ask whether Theorem 1 holds if the inequality
22r-lsg

is not fulfilled, or whether this inequality is essential.! We are going to prove
that at least some kind of extra condition is needed, if 22" !> a is not fulfilled.
To prove this, let us in the case n=2 try to construct a composed number
N for which congruence (6) holds. Then everything in Theorem 1 will be satis-
fied except, of course, the inequality 22" '>a.
Suppose that N=(6a+1)-8—-1=48a+7 is the product of three different
primes ¢=48n;+7 (1=1,2,3) of the same form as N. Since 7*=1 (mod 48)

1 This problem does not seem to have been treated before.
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and 7°=7 (mod 48), this is no contradiction. From the proof of the necessity
of condition (2) in Theorem 1 it now follows that

qp+1

(2+V3) % =—1 (mod ¢) (i=1,2,3).

A sufficient condition that

N1
(2+V3) 2 =—1 (mod N)=—-1 (mod ¢;) (i=1,2,3)
evidently is that

N+1
2

1
is an odd multiple of q—’g— (i=1,23).
Now, suppose that any two of the numbers (g; +1)/8 (¢ =1, 2, 3) have the same

greatest common divisor d and that

g+l 48w +7+1
2 2

=4(6n,+1)=4dp;, (i=1,2,3).
We conclude that

N+1_¢iqagstl_(8dp,—1)(8dpy,—1)(8dpy—1)+1
2 2 2

should be an odd multiple of 4dp, p, ps, or, which is the same thing, that
64 d* py py py— 84 (P P+ 1Py + Py 05) + A (Py + Py + P5) (12)

should be an odd multiple of dp,p,ps.

Since d and the p; must be odd numbers, the numhber (12) is odd, and
so this number is an odd multiple of dp,p,p, if

64d3p1p2p3-—8d2 (D1 P2+ P1D3+ Do Pa) + & (py + Py + p3)=0 (mod dp,p,py),
or

84 (py Py + Py P+ P P3) =Py + Py + Py (mod P, Py py). (13)

Since dp,=6n;+1, all the numbers d and p; must be of one of the forms

6s+1 or 6s—1. Now, for the p; choose 3 numbers, relatively prime in pairs,
and of one of the forms 6s+1, e.g.

pr1=1, p,=T7 and p,;=13.
Congruence (13) becomes

8d-111=21 (mod 91)
with the extra condition
d=1 (mod 6).
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These two last congruences have the solutions

d=301 (mod 546) =546z + 301,

and we find
g1 =8dp,—1= 8d—-1= 4368z+ 2407,

9,=8dp,—1= 56d—1=305762+ 16 855,
and
¢s=8dp;—1=104d —1=56 78424 31 303.

The only thing that remains is to determine an x for which all ¢; are primes;
the prime tables show that the values =37 and z =289 fit, and so we have:

N,=164023-1148167-2132311

and
N,=391159-2738119-5085079

are composed numbers for which congruence (6) holds.
In the same way we can construct an example to show that the inequality

2" —1za
in Theorem 2 could not simply be removed. We have found
M=327823-2294767-4 261 711.

Numerical example. For the number M =5-2"—1=81919 the conditions
of theorem 2 are fulfilled, and we find
vy = 724, v, =32660, v,= 8299, v,=61439, v, = 5118,
vs =61761, v, =261722, v,=59 278, v,=47 696, v,;=17784,
v,;=63 314, v,,=38 248 and v,;=0, all congruences taken (mod 81 919).

The last congruence shows that the number 81919 is a prime.

Putting a=2, we find u, = 27 246 964 and v, =1 956 244.
Putting ¢=3, we find u, =73 621 286 644 and v, =5 285770 564.

Theorems 1 and 2 were used to find the prime character of some numbers
{(6a+1)2°—~1. The calculations were made on the Swedish high speed elec-
tronic computer BESK for all values of 6a+1<56 and e¢=<150, except for
6a+1=5, 7 and 11, where e takes all values =< 250.

Those numbers which were found to be primes were tested once more by
BESK. The result was that the numbers N and M were prime for the fol-
lowing values of 6a+1 and e, and composite otherwise (the values of e= 1,2, 3
are taken from the prime tables):
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6a+1 e (< 250)
2, 4, 8, 10, 12, 14, 18, 32, 48, 54, 72, 148, 184, 248
7 1, 5, 9, 17, 21, 29, 45, 177
11 2, 26, 50, 54, 126, 134, 246
e (< 150)
13 3, 7, 23
17 2, 4, 6, 16, 20, 36, 54, 60, 96, 124, 150
19 1, 3, 5, 21, 41, 49, 89, 133, 141
23 4, 6, 12, 46, 72
25 3, 9, 11, 17, 23, 35, 39, 75, 105, 107
29 4, 16, 76, 148
31 1, 5, 7, 11, 13, 23, 33, 35, 37, 47, 115
35 2, 6, 10, 20, 44, 114, 146
37 1
41 2, 10, 14, 18, 50, 114, 122
43 7, 31, 67
47 4, 14, 70, 78
49 1, 5, 7, 9, 13, 15, 29, 33, 39, 55, 81, 95
53 2, 6, 8, 42, 50, 62
55 1, 3, 5, 7, 15, 33, 41, 57, 69, 75, 77, 131, 133

BESK also verified that the known Mersenne numbers up to 2%7—1 are
primes.
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