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On a special class of Diophantine equations

of the second degree

By Tryeve NAGELL

§ 1. Ambiguous ideals in real quadratic fields and Diophantine equations

Given the square-free integer D>1, the determination of the ambiguous ideal

classes in the real quadratic field K (VD) depends essentially on the following
fact:

Theorem 1. Let ¢ be the jundamental unit in K (V D), and let

ay, Gy, ..., s

be all possible products of different ambiguous prime ideals in K (VD).

If N(e)= -1, none of the ideals q; is principal, apart from (Vﬁ). B

If N(e)= +1, exactly two of the ideals a; are principal, apart from (VD). The
product of these principal ideals 1s = (2 Vﬁ) when D is odd and the norms of
the ideals are even; wn all other cases the product s =(VB).

See f.ex. HiLeert [1}, § 75 and Hecke (2], §45.1
This theorem may also be formulated as follows:

Theorem 2. Let D be a given square-free integer > 1, and let C be any square-
free divisor of 2D, such that C+1 and + +D. When D=1 (mod 4), C shall
be odd.

Part 1. If the Diwophantine equalion

(1 w—Dvt=C

s solvable in integers u and v for C= — 1, it is not solvable for any other value of C.

If it 4s mot solvable for C= -1, it is solvable for exactly two different values
of C. The product of these two values of C' is = —4 D when D s odd and C 1s
even; wn all other cases the product is = — D.

1 Figures in [ ] refer to the Bibliography at the end of this paper.
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Part 2. Suppose that the Diophantine egquation
(2) u?—Dv*=4C

s solvable in odd integers w and v for C= +1.

If @t 1s solvable for C= —1 in odd integers, it 1s not solvable for any other
value of C in odd integers.

If it 1is not solvable for C= —1 in odd integers, it is solvable for exactly two
dzf/erent values of C in odd wntegers. The product of these two. values of C
is= —D.

A supplement to this result is

Theorem 2 a. If u=wu, and v=v, are the least positive solutions of (1) in
integers, the number

3) (4 +v, VD) ul+ Do} + 2 uy vy
] |Cl

Vﬁ =X1+ Yl V—B

18 the fundamental solution of the equation
(4) X*—-DY?=

If u=wu, and v=v, are the least positive solutions of (2) in odd integers, the

number
(5) (uy+v, VD)? Ui Dv; Uy vy
4|C| el Tale

VD =31 (U,+V,VD)

is the fundamental solution of the equation
(6) U~DV?=

Remark. When X=X, and Y=Y, are the least positive integers satisfying
(4) we call the number N
X,+Y, VD

the fundamental solution of (4).
When U=U, and V=7V, are the least positive 1ntegers satisfying (6) we call
the number

3 (U + V. VD)

the fundamental solution of (6).
It is easy to see that Theorems 2 and 2a may be replaced by the following
results :

Theorem 3. Part 1. Let D be a given square-free infeger >1, and let E be one
of the four numbers + 1 or =+ 2. Further, le¢ A and B be variable positive
wntegers, satisfying the following conditions:
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(7 AB=D,

(8) 1<A<B for E=+1,
and

9) 1=4<B for E= 12 or = —1.

When E= +2, AB=D shall be odd.
Under these conditions exactly one of the Diophantine equations

(10) Az*—By*=E

s solvable in integers x and y. ]
If £=¢& and y=n are the least positive solutions of (10) tn integers, the number

2 2
(11) I—;;—‘(svzmv—s)u“';f” + 20y

is the fundamental solution of (4).

Part 2. Let D be a given square-free integer >1, such that equation (6) .'is
solvable in odd integers U and V. Further, let A and B be variable positive
wntegers, satisfying the following conditions:

AB=D
and

I£4<B.
Under these conditions exactly one of the Diophantine equations
(12) A7~ By*= +4
s solvable in odd integers x and y, apart from the equation
(13) ' 7’ —Dy’=4.

If z=¢ and y=n are the least positive solutrions of (12) in odd integers, the
number

(14) 1EVA+ VB =148+ Br)+ 359VD
18 the fundamental solution of (13).

Remarks. Denote by v the number of positive divisors of D. Then the
number of pairs 4, B satisfying (7) and (8) is =} 7—1. The number of pairs
A, B satisfying (7) and (9) is =3v if D is odd and = 7 if D is even. Hence
the number of different equations (10) is 27—1 or 7—1 according as D is odd
or even.

It is evident that, in Part 2 of Theorem 3, we must have D=5 (mod 8).
Equation (12) is, however, not solvable in odd integers for all D=5 (mod 8).
For example, when D =37, the solutions z and y are all even.
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If 7 is the number of positive divisors of D, the number of different equa-
tions (12) is clearly =v—1.

The purpose of this paper is to show that Theorem 3 may be proved by
means of elementary methods without using ideal theory.

§ 2. Lemmata

We need the following lemmata:

Lemma 1. Let », y, z,, ¥, @, b and a; be rational numbers +0, such that
Va, Vb and V;z—l are wrational. Then we can mever have a relation of the form

(15) eVa+yVo=zVa, +u,.

Lemma 2. Let x, y, %, 9, & b, a; and by be rational numbers + 0, such
that Va, Vb, Ya,, Vb,, Vab and Va, b, are irrational. Then the relation

(16) aVa+yVb=2Va, +y, Vb,
holds only in the following cases: It is either zVa=2"Va, or eVa=y, VI_J:
Proof of Lemma 1. Squaring both sides of (15) we get
ar?+byt+2zyVab=a,2% + 22,4, Va, + oi.
uVab —vVa, = w,

where u, v and w are rational numbers, uv+0. Squaring once more we get

Vaba abu’®+a; v* —w?
abay = ==

Hence

Hence Vaba, is rational. Then equation (15) may be written
$V;+ ?/V—bz ZV;I;+y1’
where z is rational and 0. Thus

Va = ul-H)lVZ,

where u; and v, are rational, v;+0. Here the square of the right-hand side is
rational. Hence u,=0. Thus Vab is rational. Since Vaba, is rational, this

implies that V(;: is rational. But by hypothesis V&; is irrational.
Lemma 1 may be proved somewhat shorter by means of algebraic number
theory. In fact, the right-hand side of (15) is an algebraic number of the second

degree, while the left-hand is of the fourth degree, except when Vab is rational.
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Proof of Lemma 2. Multiplying both sides of (16) by Va we get

az+yVab= z, Vaa, +y, Vab,.

But, by Lemma 1, this relation is possible only when either of the numbers
Vaal or m is rational. If Va_a—1 is rational, it follows from (16) that Vb by
is also rational. Hence we must have zVa=x,Va, and yVb =y, Vb,. Similarly
if Vab,is rational.

§ 3. Further lemmata

We shall establish the following result:

Lemma 3. Under the conditions of Theorem 3, Part 1, at most one of the
Diophantine equations
(17) Ax*~By*=E
18 solvable in integers x and y.

Proof. Suppose that 4, B, E and 4,, B,, E, are two different triplets of
integers satisfying the conditions of Theorem 3, Part 1. Suppose further that
the Diophantine equations

(18) Az*—~By*=E
and
(19) Alxz”“Bﬂ/z:El

are both solvable in integers = and y. Let x=¢&, y=7 be the least positive
solutions of (18) and let x=¢&,, y=17, be the least positive solutions of (19).
Consider first the case 4,=1, B;=D, E= —1. Then we get from (18)
I}E—l(ém nVBE=U+VVD
and from (19)

&+ VD2=X, + Y,V D,
where U and V are positive integers satisfying the equation

UP—-DV3=1.

Thus we have

U+VVD = (X, +Y,VD)"
where m is a positive integer. Hence we get

Wll (VA + nVBP=(&+n, VD"

and so
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B -
(20) l/iEl“"??l/l_E—I:(fl'*"?lVD) .
But here the right-hand side is of the form

Cm+dn VT),

where ¢, and d, are positive integers. The numbers h%_r l/% and VD are

irrational. Hence, by Lemma 1, the relation (20) is impossible. Thus we con-
clude: When the equation

(21) - Dyt=—1

is solvable in integers x, ¥, no other of the equations (17) is solvable.
Suppose next that equation (21) is not solvable. Then we get from (18)

I—;,I(fSVZ+nV§)2=U+VV§
and from (19)

I (& VA, + 9, VB =U, +V,VD,

where U, V, U, and

. are positive integers such that

U*-DV2=1

and
—-DVi=1.
Thus we have

, U+VVD=(X,+Y,VD)"
and
U,+V,VD= (X, +Y,VD)",

where m and n are positive integers. Hence

(22) [ |m+"VwJ [&|§|+mVE]m

If m and n are both even, we can take the square root on both sides. Conse-
quently we may suppose either that both m and #» are odd (=1) or that m is
odd (=1) and n even (=2).

If m and n are both odd, we obtain from (22) the relation

VA E A B
|E] | & [E,] " VE
where u, v, 4, and v, are positive rational numbers. But since the numbers
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A B ‘Al BI Y
=1 =0 - —— and VD
Bl VBl V1B T IE|

are irrational, it follows, in virtue of Lemma 2, that either

A4 B, B A,

— = and — = ——

|E] | & |E]  |E]
or

4 4, o B _ B

[E| [E] [E| | E]

In both cases we get, since 4 B=4,B,=D, |E|=|E,|. Then, since 4<B and
A,<B;, we see that the first case is impossible. Hence we must have

A=A4,, B=B,, E= —E,.

Then, from the equations

A8—-By*=E
and

AE—-Byi=-E
we get by multiplication

A& +Byn]® me]i_
et -offage]'- o

where the numbers 1%7 (A&& +Bnn,) and %‘, (Emy+ &1 m) are integers. But this is

contrary to our hypothesis that equation (21) is not solvable.
If m is odd and n even, we obtain from (22) the relation

B,

= Al
u+oVD = u, [E,| + vy lEll,

where %, v, 4, and », are positive numbers. But this relation is impossible in
virtue of Lemma 1, since the numbers

— A B
WLV—L and V—L
[2,] ™ VIE]

are irrational. Thus the proof of Lemma 3 is complete.
In a similiar way we can prove

Lemma 4. Under the conditions of Theorem 3, Part 2, at most one of the
Diophantine equations

(23) ' A?—Byt= +4
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18 solvable tn odd integers x and y, apart from the equation

(24) ?—Dy*=4.

In fact, we have only to replace, in the above proof of Lemma 3, E and E,
by + 4 and further X;+ Y, VD by the fundamental solution } (z, +y, VD) of (24).

§ 4. Proof of Theorem 3

Let X=X, and Y=Y, be the least positive solutions of equation
(25) X*-DY*=1

in integers. If X, is even, the numbers X;+1 and X, —1 are coprime and it
follows from

(26) X:—1=DY?

that
X1i1=A£2, X1$1=B7]2’

where A, B, £ and # are positive integers, such that 4 B=D and &n=Y,.
Hence by subtraction

27 AE—By?= 12

If X, is odd, the numbers } (X,+ 1) and } (X, —1) are coprime and it follows
from (26) that

X, +1=248 X,T1=2Bv»

where A, B, £ and 7 are positive integers, such that 4 B=D and 2¢&7=Y,.
Hence by subtraction

(27) A —-By*=+1.

Thus at least one of the equations (10) in Theorem 3, Part 1, is solvable. In
fact, since X; and Y, are the least positive solutions of equation (4), the equa-
tion (27’) can neither have the form & — D #*= + 1 nor the form D & —»*= — 1.

According to Lemma 3 at most one of the equations (10) is solvable in
integers. Thus we have proved the first part of Theorem 3, except the assertion
on the number (11). To complete the proof we consider the solvable one among
the equations (10), say

A?~By?=E.

Then this equation has the solution z=§, y=m, where & and 5 are the integers
uniquely determined in the above part of this proof. £ and 7 are connected
with the numbers X, and Y, by the relations
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269

_ A8+ By 2¢7
| E]

= and Y,=
= :
Now let z=1x,, y=y, be any solution of the same equation in positive integers.
Then we must have

—m_ [AE+By  28n ="
l—;—l(leZ+y1V§)2=(X1+Y1VD)”‘=[ EIFJjI /At E"VD] :

where m is an odd integer =1. In fact, if m were even and = 2 u, we should have
TENTE - -
£a1 m"’?h |-E‘"|=(X1+Y1 DY'=X,+Y, s

where X, and Y, are positive integers. But, by Lemma 1, this relation is
impossible. Hence we get

2k+1

¥(m—1)
2x1yllE[m—l= Z ( m ) (A52+B172)m—2k~1 (2577)““
and
m

2k

- $(m~1) .
U+ BB -"Y ( )(2";) (A8 + B2 (28,

When m>1, it follows from these relations that
zyi=E&nu and Azi+Byi=(A4EE+Bnd)o,
where # and v are integers =2. Hence

Yy >En and Aai+Byi>AE+ By,
and since
Aﬁ—Bﬁ=A§—B#=E
we get _
z;>& and y,>7.

Thus we see that the least positive values of z; and y, are & and 7 respectively.
This proves our assertion on the number ( 11).
It remains to prove the second part of Theorem 3. Let z=X, and y=Y,
be the least positive solutions of equation

(28) 2*—-Dy*=14

in odd integers. Since z, is odd, the numbers X, +2 and X,—2 are coprime
and it follows from

(29) Xi—-4=DY}

that
X, +2=48% X1$2=B172,
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where A, B, £ and 5 are positive integers, such that AB=D and én=Y,.
Hence by subtraction

(30) AE-Bn=+4.

Thus at least one of the equations (12) in Theorem 3, Part 2, is solvable.
In fact, since X; and Y, are the least positive solutions of equation (28),
the2 equzation (30) can neither have the form & —D#n*=+4 nor the form
DE—p=—14.

According to Lemma 4 at most one of the equations (12) is solvable in odd
integers z and y. Thus we have proved the second part of Theorem 3, except
the assertion on the number (14). To complete the proof we consider the solvable
one among the equations (12), say

Az~ By*=t+4.

The proof proceeds exactly as in the previous case. We have only to replace
E by +4 and X,+ Y,VD by }(X,+Y,VD).
Thus the proof of Theorem 3 is complete.

Remark. LEGENDRE found the following result: Given a positive integer D
not square, it is always possible to decompose it into two factors 4 and B,
such that at least one of the equations Az*—By*= +1 and Az>—~ By’*=+2
is solvable In integers z and y when the signs are suitably chosen; see [3],
p. 64-T1.

§ 5. Proof of Theorem 2
Consider the equations
(31) ut*—Dv*=C,

where the numbers C' and D satisfy the conditions in Theorem 2, Part 1. If
D

1c]
by A. Putting u=Au, we get

= B is an integer, we put A=|C]. Then the number % in (31) is divisible

(32) Aui—-Bo*=+1.

H% =1 B is not an integer, B is an integer and sois A=} |C|. Then the

number % in (31) is divisible by 4, and putting v= A4 u, we get

(329 Aul—Bvt= +2.

Hence, applying Theorem 3 to equations (32) and (32") we obtain Theorem
2, Part 1.
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To prove Part 2 of Theorem 2 we consider the equations
(33) u?—Dov*=4C,

where the numbers C and D satisfy the conditions in Theorem 3, Part 2. The

solutions % and v shall be odd integers. C cannot be even. Hence rg—l = Bis
an integer. If we put 4=|C|, the number w in (33) is divisible by 4. Putting
u=Au, we get

(34) Auwi—Bo*= +4.

Thus applying Theorem 3 we obtain Theorem 2, Part 2.

To prove Theorem 2 a we have only to apply the results on the numbers (11)
and (14) in Theorem 3.

§ 6. Numerical examples

We shall illustrate Theorem 3 by some numerical examples.

1. Consider first the case D=3-5-7=105. The equations satisfying the con-
ditions in Theorem 3, Part 1, are the following:

(35) 2 —105 2= —1,
(36) 2~ 105y = +2,
(37) 322 — 3542=+1,
(38) 32— 35y =+2,
(39) ba?— 21y%= +1,
(40) 52°— 2142=—1,
(41) 5a?— 21yf= +9,
(42) Taf— 154%=+1,
(43) To*— 15y= +2.

Only equation (40) is solvable; its least positive solution is z=2, y=1. By
Theorem 3 none of the other equations is solvable. Equation (35) is impossible
when taken as a congruence modulo 3. Equations (36), (38), (41) and (43) are
impossible modulo 8. Equations (37) and (42) are impossible modulo 5. Equa-
tion (39) is impossible modulo 7.

We see that, in this example, it is possible to determine the insolvable equa-
tions by considering the corresponding congruences for suitable moduli. This is,
however, not always the case, as will be obvious from the following example.

2. Consider next the example D=2-3-73=438. The equations satisfying the
conditions in Theorem 3, Part 1, are the following:
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(44) a?—438y%= —1,
(45) 22*—219y%= +1,
(46) 222 —219¢2= —1,
(47) 322146 ¢2= +1,
(48) 32— 146 y>= —1,
(49) 6x’— T34°=+1,
(50) 62— 73¢4°=—1.

Only equation (47} is solvable, its least positive solution is z=7, y=1. By
Theorem 3 none of the other equations is solvable. Equations (44) (45), (48)
and (49) are impossible modulo 8. Equations (46) and (50) are possible as
congruences for an arbitrary modulus, as may easily be verified.

3. Let us take the example D=21. In this case the equation
(51) 21 yt=4

has the solution z=5, y=1. The equations satisfying the conditions in Theo-
rem 3, Part 2, are the following:

(52) 22—21 2= — 14,
(53) 32— Tyl= +4,
(54) 322~ Tyt= —4.

Equations (52) and (53) are impossible modulo 3. Equation (54) has the solu-
tion z=y=1. The relation

HV3+V7 =4 (5+V21)
gives the fundamental solution of (51).
4. When we take D=15-41=205, the equation
(55) 22— 205 y* =4

has the solution =43, y=3. The equations satisfying the conditions in Theo-
rem 3, Part 2, are the following:

(56) 22 —205 2= —4,
(87) bat— 41y%= +4,
(58) 52— 41y®= —4.

62



ARKIV FOR MATEMATIK. Bd 3 nr 2

Here equation (57) has the solution z=3, y=1. Thus equations (56) and (58)
are insolvable in odd integers. The relation

1 (3VB+V41)2=1 (43 + 31 205)

gives the fundamental solution of (55).

§ 7. The solvable equations and their solutions

It is obvious from the concluding proof of Theorem 3, Part 1, in § 4, how
the solvable one among equations (10) may be determined when the fundamen-
tal solution X=X,, Y=1Y, of equation (25) is known. At the same time we
find the least positive solutions z=¢& and y=7% of that equation.

But: even if X; and Y, are not known, we may obtain the same result by
trial. In fact, when D is given, we may proceed in the following manner.
We write down all the equations

Ax*—By*=FE

satisfying the conditions in Theorem 3, Part 1. In every one of these equa-
tions we pub successively z=1, 2, 3, 4 ete. and y=1, 2, 3, 4: etc., until one
of them is satisfied. ‘

Similarly we may determine the solvable one among equations (12) when the
fundamental solution 3 (X, + Y,V D) of equation (28) is known. At the same
time we get the least positive solution of that equation.

In this way we also obtain the two solvable equations among equations (1)
in Theorem 2, Part 1, together with the corresponding least positive solutions,
and similarly for equations (2) in Theorem 2, Part 2.

By means of the following result we may determine the whole set of solu-
tions of these equations:

Theorem 4. If D is a positive wnteger which s not a perfect square, and if
C 18 a square-free integer which divides 2 D, the Diophantine equation

(59) w>—Dv?=C
has at most one class of solutions. If this class exusts, it is ambiguous.
Remark. This result is contained ih a more general result of Stoit; see [4],

Theorem 8. For the definition of “class of solutions” see Nacrry [5], [6] and
[7], section 58.

“Proof. Let w-+vV D and u' ++' VD be two different solutions of (59). Then
the necessary and sufficient condition for these two solutions to be associated
with each other is that the two numbers

uy —vv' D v —uv
60
(60) c and c
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be integers. If C is odd, it follows from (59) that the numbers 4 and »' must
be divisible by C. This is also the case when C and D are both even. Hence
the numbers (60) are integers in these cases. Suppose finally that C is even
and D odd. Then the numbers %, %', » and v' are all odd; by (59) v and «’
are divisible by 4 C. Hence the numbers uu' —vv’ D and vu'—uv’ are both
even and divisible by C. Consequently, all the solutions of (59) belong to the
same class. This class must be ambiguous. Hence all the solutions of (59) are
given by the formula

u+vVD=+ (u; + v, Vﬁ) (X,+7Y, Vﬁ)’",
where u=w, and v=v, are the least positive solutions of (59), where X, + Y, VD
is the fundamental solution of (25) and where m is an arbitrary integer.

Remark. A result equivalent to Theorem 4 was found by ScHEPEL, see [9];
in his paper ScHEPEL also gives a proof of the first part of Theorem 2 a.

§ 8. Analogous results on equations of higher degree

In a previous paper I have established a result on cubic equations which is
analogous to our Theorem 3 on quadratic equations; see NAcGeLL [8].
The Diophantine equation of the form

(61) Az +By*=C,

3
where A, B and C are integers =0, such that V% is irrational, is said to
belong to the class of the (real) cubic field

3 —
A
(12,
( B)
There are always several equations belonging to the same class for a given C.

For instance, if we replace 4 by 4% and B by B? or 4 by 1 and B by 4B,
we get equations belonging to the same class as (61).

Theorem 5. Consider all the Diophantine equations (61), where the coefficients
A, B and C satisfy the following conditions: C' is one of the numbers 1 or 3; A
and B are coprime integers, such that 1< A<B; AB is not divisible by 3 when
C=3; AB s not divisible by the cube of any prime.

Among all the equations belonging to the same class there is at most one equation
which s solvable tn integers wsand y, with y=+0, except in the following cases.

In the class of the field K (V2) the existing equations are:
2+28=1, 22 +24°=3, ®*+4P=3, FF+44°=1.
The first three equations are solvable; the last one s not solvable for y=0.
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In the class of the field K (13/%) the existing egualions are:
+2098=1, 22°84+5¢4°=3, 2°4+204°=3, 223 +54°=1,
BP+50yP=1, 42°+254°=1, 2*+504°=3, 42°+254°=3.
Only the first two egquations are solvable; the others are mot solvable for y=+0.

In a following paper I shall establish analogous results on Diophantine equa-
tions of the type

3
AP +ByP+C2—-3VABCzyz=E,

where E is =1 or =3, and where 4, B and C are positive integers satisfying
3 .

the following conditions: The number VABC is rational. Every one of the

numbers
3_ 3_ 3__
Va. VA vE
B re’ re

generates the same (real) cubic field.
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