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On a special class of Diophantine equations 
of the second degree 

By T R Y G V E  N A G E L L  

§ 1. Ambiguous ideals in real quadratic fields and Diophantine equations 

Given the square-free integer D >  1, the determination of the ambiguous ideal 
classes in the real quadratic field K(~/D) depends essentially on the following 
fact : 

Theorem 1. Let ~ be the /undamental unit in K (~/D), and /et 

QI, 02, " " ,  Qs 

be all possible products o~ di[[erent ambiguous prime ideals in K (~L)). 
I /  N (~)= --1, none o/ the ideals a~ is principal, apart ]rom (VD). 
I /  N (s)= + 1, exactly two o/ the ideals at are principal, apart #om (~D). The 

product o/ these principal ideals is --(2 V D) when D is odd and the norms o] 
the ideals are even ; in all other cases the product is = (~i)-). 

See f. ex.  HILBERT [1], § 75 and  ItECKE [2], § 45. I 

This theorem may also be formulated as follows: 

Theorem 2. Let D be a given square-/tee integer > ], and let C be any square- 
/ree divisor o/ 2D, such that C 4  1 and ~ J:D. When D= 1 (mod 4), C shall 
be odd. 

Part 1. I /  the Diophantine equation 

(1) u 2 - D v  ~ -  C 

is solvable in integers u and v /o r  C = - 1, it is not solvable/or any other value o/C.  
I] it is not solvable /or C . . . .  l, it is solvable /or exactly two di//erent values 

el C. The product el these two values o/ C i~ = - 4 D when D is odd and C is 
even; in all other cases the product is = -  D. 

1 Figures in [ ] refer to th(~ Bibliography at the end of this paper. 
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Part 2. SUppose that the Diophantine equation 

(2) u S - ' D r  ~ = 4 C 

is solvable in odd integers u and v /or C = + 1. 
I I  it is solvable ]or C = -  1 in odd integers, it is not solvable /or any other 

value o] C in odd integers. 
I] it is not solvable /or C = -  1 in odd integers, it is solvable ]or exactly two 

di/]erent values o/ C in odd integers. The product o/ these two values o] C 
i s= - D. 

A supplement to this result is 

T h e o r e m  2 a. I] u = u  1 and V=Vl are the least positive solutions o] (1) in 
integers, the number 

(3) (ul + Vl V-D) z u~ + D v~ 2 u 1 v 1 
icl ICl +TOT -V =XI+ Y1V  

is the /undamental solution o/ the equation 

(4) X 2 - D  y 2 =  1. 

I /  u = u  1 and v = v  I are the least positive solutions o] (2) in odd integers, the 
number 

(5) (Ul~-Vl VD)2 u2{-Dv2 UlVl UD = [ (UI+ VIVD ) 
41cl 41e  + 

is the ]undamental solution o] the equation 

(6) U S - D V 2 = 4. 

Remark. When X = X1 and Y =  Y1 are the least positive integers satisfying 
(4) we call the number  

XI + Y1 ~/D 

the fundamental  solution of (4). 
When U =  U1 and V =  V1 are the least positive integers satisfying (6 )we  call 

the number  
½ (U1 + V, VD) 

the fundamental  solution of (6). 
I t  is easy to see tha t  Theorems 2 and 2 a may  be replaced by  the following 

results : 

Theorem 3. Part 1. Let D be a given square-/ree integer > 1, and let E be one 
o/ the /our numbers +_ 1 or +_ 2. Further, let A and B be variable positive 
integers, satis[ying the [ollowing conditions: 
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(7) 

(s) 

and 

(9) 

A B = D ,  

I < A < B  /or E =  + l, 

I <=A < B  /or E =  +_2 or = - 1 .  

When E = _ 2, A B = D shall be odd. 
Under these conditions exactly one o/ the Diophantine equations 

(10) A x ~ -  By~= E 

is solvable in integers x and y. 
I/  x = ~ and y =7 are the least positive solutions o/ (10) in integers, the number 

1 A ~ + B ~  ~ 2 ~ / - D  
(11) IEI + 

is the ]undamental solution o/ (4). 

Part 2. Let D be a given square-]tee integer > 1, such that equation (6) is 
solvable in odd integers U and V. Further, let A and B be variable positive 
integers, satis/ying the /ollowing conditions: 

A B = D  
and 

I < A < B .  

Under these conditions exactly one o/ the Diophantine equations 

(12) A x e - B y  ~= +4 

is solvable in odd integers x and y, apart /tom the equation 

(13) x ~ - D y2 = 4. 

I /  x = ~  and y=77 are the least positive solutions o~ (12) in odd in,gets, the 
number 

( 1 4 )  ¼(tI/A+~VB) ~=¼(A~*+B~2)+½~VD 
is the ]undamental solution o] (13)~ 

Remarks. Denote by ~ the number of positive divisors of D. Then the 
number of pairs A, B satisfying (7) and (8) is = [ T - 1 .  The number of pairs 
A , B  satisfying (7) and (9) is = ~ v  if D is odd and = ½T if D i s  even. Hence 
the number of different equations (10) is 2 T - 1  or T - 1  according as D is odd 
or even. 

It  is evident that,  in Part  2 of Theorem 3, we must have D-~ 5 (mod 8). 
Equation (12) is, however, not solvable in odd integers for all D-=5 (mod 8). 
For example, when D= 37, the solutions x and y are all even. 
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If T is the number of positive divisors of D, the number of different equa- 
tions (12) is clearly = v - 1 .  

The purpose of this paper is to show that Theorem 3 may be proved by 
means of elementary methods without using ideal theory. 

§ 2. Lenunata 

We need the following lemmata: 

Lemma 1. Let x, y, x l ,  Yl, a, b and a I be rational numbers # 0 ,  such that 
V a, Vb and ~ are irrational. Then we can never have a relation of the ]orm 

(15) ~ + y ~ =  ~V~a~ + yl. 

Lemma 2. Let x, y, Xl, Yl, a, b, al and b~ be rational numbers # 0, such 
that V~a, V-b, ~/~, V ~ ,  ~ and Va~ b, are irrational. Then the relation 

(16) ~ a  + y V~= ~,Vg + yl V~ 

holds only in the ]ollowing cases: It  is either x ~aa = x~ ~ or x V~a = yl V ~ .  

Proo] o /Lemma 1. Squaring both sides of (15) we get 

ax~+by~+ 2 x y V ~  = a,x~l + 2xlyl~aal + y}. 
Hence 

~ V ~  - vV~a~ = w, 

where u, v and w are rational numbers, u v # 0. Squaring once more we get 

aV~a~ = a b u~ + al vZ - w2 
2 u v  

Hence l/abaal is rational. Then equation (15) may be written 

~ +  y v % =  ~ V ~  +y~, 

where z is rational and # O. Thus 

= ul+viV~, 

where u 1 and vl are rational, vl =~0. Here the square of the right-hand side is 
rational. Hence u 1 =0. Thus ~/~ is rational. Since l/a-~al is rational, this 
implies that 1/~ is rational. But by hypothesis Vaa~ is irrational. 

Lemma 1 may be proved somewhat shorter by means of algebraic number 
theory. In fact, the right-hand side of (15) is an algebraic number of the second 
degree, while the left-hand is of the fourth degree, except when ~ is rational. 
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Proo/ o~ L e m ~  2. Multiplying both sides of (16) by ~ we get 

But, by Lemma 1, this relation is possible only when either of the numbers 
l/~a~a~ or ~ is rational. If aV~a 1 is rational, it follows from (16) tha t  l / ~  
is also rational. Hence we must have x V~a = xl ]/~ and y Vb = yl ~/~. Similarly 
if al/ab 1 is rational. 

§ 3. Further  l e m m a t a  

We shall establish the following result: 

Lemma 3. Under the conditions o] Theorem 3, Part 1, at m~st one o/ the 
Digphantine equatigns 

(17) Ax  2 - B y  2= E 

is solvable in integers x and y. 

Proo]. Suppose that A, B, E and A1, B~, E~ are two different triplets of 
integers satisfying the conditions of Theorem 3, Part 1. Suppose further that 
the Diophantine equatigns 

(18) A x Z -  By2= E 

and 

(19) AI x2-  B~ y2= E~ 

are both solvable in integers x and y. Let x=~,  y = ~  be the least positive 
solutions of (18) and let x=~l,  Y=~I be the least positive solutions of (19). 

Consider first the case A I = I ,  BI=D, E = - 1 .  Then we get from (18) 

1 
IEI(~ V-A + ~V-B:= U + VVD 
I | 

and from (19) 
(~1 + Vl ~/rD) 2 = X l  + Y1 V-D, 

where U and V are positive integers satisfying the equation 

U 2 -  D V ~= 1. 
Thus we have 

V + V VD = (X1 + I:1 VD) ~ 

where m is a positive integer. Hence we get 

1 
I E I (~ V ]  + ~ VB) ~ = (~1 + ~ VD) ~ ~ 

and so 
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(20) ~ ~-~ + ~ ~ = ( ~ , + ~ I V ~ )  ~. 

But here the right-hand side is of the form 

c,, + d,~ l/ D, 

where cm and dm are positive integers. The numbers IVan- ], V~B~E~ a n d i / D a r e  

irrational. Hence, by Lemma 1, the relation (20) is impossible. Thus we con- 
clude: When the equation 

(21) x ' - D y  2= - 1 

is solvable in integers x, y, no other of the equations (17) is solvable. 
Suppose next  tha t  equation (21) is not solvable. Then we get from (18) 

and from (19) 

1 
i E l (~VA + wV-B)'= U+ V V D  

1 VBll)' = U~ + V~ V-D, 

where U, V, U 1 and V1 are positive integers such that  

U 2 - D V 2 = 1 
and 

U~ - D V1 ~ = 1. 
Thus we have 

v + v V ~  = ( x ,  + Y l W )  m 
and 

Vl + V~ VD = (X1 + Y1 VD) ", 

where m and n are positive integers. Hence 

~ -- n m 

If  m and n are both even, we can take the square root on both sides. Conse- 
quently we may suppose either that  both m and n are odd (_~ 1) or tha t  m is 
odd (_->1) and n even (->_2). 

If m and n are both odd, we obtain from (22) the relation 

U -~V ~ - ] = U  1 -~ Vl [J~l I ' 

where u, v, u I and vl are positive rational numbers. But since the numbers 
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Is~l  and 1/D 

are irrational, it follows, in virtue of Lemma 2, that  either 

o r  

A BI B A1 
] E [ =  ~ and ~ = [El i  

A A1 and B B 1 

In both cases we get, since A B = A1 B1 = D, [ E [ = [El 1. Then, since A < B and 
A1 < B1, we see that  the first case is impossible. Hence we must have 

A=A1,  B=B1,  E =  - E  I. 

Then, from the equations 

and 

we get by multiplication 

A ~ 2 - B ~ 2 = E  

A~-Bv~=  - E  

[ A ~ $ 1 + B z I ~ I ] 2 _ D [ ~ h  + $~ 
E E ~]~= - 1, 

1 1 
where the numbers ~ (A $$1 + B ~ I )  and ~ ($~1 + $1 ~) are integers. But this is 

contrary to our hypothesis that  equation (21) is not solvable. 
If m is odd and n even, we obtain from (22) the relation 

A1 V B1 
l/iNi - - ,  U q- V V.D = u 1 q- vl I E1 I 

where u, v, Ul and vl are positive numbers. But this relation is impossible in 
virtue of Lemma 1, since the numbers 

E11 
are irrational. Thus the proof of Lemma 3 is complete. 

In a similiar way we can prove 

Lemma 4. Under the conditions ol Theorem 3, Part 2, at most one o] the 
Diophantine equations 

(23) A x 2 - B y  ~= ++_4 
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is solvable in odd integers x and y, apart /rom the equation 

(24) x 2 - D y~ = 4. 

In fact, we have only to replace, in the above proof of Lemma 3, E and E1 
by + 4 and further X~ + Y1 ]/D by the fundamental solution ½ (xl + y~ ~/D) of (24). 

§ 4. Proof of Theorem 3 

Let X=X1 and Y = Y1 be the least positive solutions of equation 

(25) 

in integers. 
follows from 

(26) 

tha t  

X2:_D y2= 1 

If i 1 is even, the numbers X,  + 1 and X 1 -  1 are coprime and it 

1 = D 

XI+_I=A~ 2, X I T I = B ~  2, 

where A, B, ¢ and ~ are positive integers, such tha t  A B = D  aud ~ =  Y1- 
Hence by subtraction 

(27) A~2-B~] 2= +__2. 

If  XI is odd, the numbers ½ (X1 + 1) and ½ (X1 - 1) are coprime and it follows 
from (26) that  

X I + _ I = 2 A ~  ~, X 1 T I = 2 B ~  2, 

where A, B, $ and ~ are positive integers, such that  A B= D and 2 ~ = Y1. 
Hence by subtraction 

(27') A ~2- B ~] 2= +1. 

Thus at least one of the equations (10) in Theorem 3, Part 1, is solvable. In 
fact, since X1 and YI are the ]eas~ positive solutions of equation (4), the equa- 
tion (27') can neither have the form ~2 _ D ~2 = + 1 nor the form D ~2 _ ~2 = _ 1. 

According to Lemma 3 at most one of the equations (10) is solvable in 
integers. Thus we have proved the first par~ of Theorem 3, except the assertion 
on the number (11). To complete the proof we consider the solvable one among 
the equations (10), say 

A x ~ - B y ~ = E .  

Then this equation has the solution x= ~, y= ~?, where ~ and ~ are the integers 
uniquely determined in the above part of this proof. ~ and ~ are connected 
with the numbers X1 and Y1 by the relations 

58 



ARKIV FOR MATEMATIK. B d  3 nr 2 

X~ A ~ + B~] z 2 } 
IEI and Yx= IEI" 

Now le~ x = xi ,  y = y~ be any solution of the same equation in positive integers. 
Then we must have 

IEI l e l  ' 

where m is an odd integer ~_ 1. In fact, if m were even and = 2 #, we should have 

V Xl V~ ~- Yl V~ = (xl  -]- Y1 VD) ~* = Xz + Y~ VD, 

where X~ and Y~ are positive integers. But, by Lemma 1, this relation is 
impossible. Hence we get 

and 

½ ( m - 1 ) ( m )  2XlYxl ~ [m-i = ~ (A~2 
k=o 2 k + l  

+ B ~)~-2k-1 (2 ~V)~" k+, 

• ( Ax21 "~- B Y  21) [ j~ irn=l ~ ½ (m-1)k__~0 ( m )  (2mk)216 (A~2-~ 

When m > 1, it follows from these relations that  

B q2)m-2k (2 ~ ~)2~. 

xl y , = ~ l u  and Ax~+By~=(A~2+B~2)v ,  

where u and v are integers ~ 21 Hence 

x, yl > ~ ~ and A x~ + B y~ > A }2 + B ~ ~, 
and since 

A x ~ - B y ~ = A  ~2- B~?2= E 
we get 

x l > ~  and y , > ~ .  

Thus we see that  the least positive values of Xl and Yl are ~ and ~ respectively. 
This proves our assertion on the number (11). 
I t  remains to prove the second par t  of Theorem 3. Le~ x= XI and y= Y1 

be the least positive solutions of equation 

(28) x ~- Dy 2= 4 

in odd integers. Since x 1 is odd, the numbers X1 + 2 and X , -  2 are coprime 
and it follows from 

(29) 

tha t  

2 X 1 - 4 = D  Y~ 

X1+2=A~2,  X I ~ - 2 = B ~ ]  2, 
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where A, B, ~ and ~ are positive integers, such that A B = D  and ~ =  Y1- 
Hence by subtraction 

(30) A ~ - B ~ 2 = ± 4 .  

Thus at least one of the equations (12) in Theorem 3, Part 2, is solvable. 
In fact, since X1 and Y1 are the ]east positive solutions of equation (28), 
the equation (30) can neither have the form ~ - D ~  ~= +4  nor the form 
D ~2- ~] ~= - 4 .  

According to Lcmma 4 at most one of the equations (12) is solvable in odd 
integers x and y. Thus we have proved the second part of Theorem 3, except 
the assertion on the number (14). To complete the proof we consider the solvable 
one among the equations (12), say 

A x e - B y  2 = ++_4. 

The proof proceeds exactly as in the previous case. 
E by ±4  and XI+  YI~/D by ½ (XI+ Y~]/D). 

Thus the proof of Theorem 3 is complete. 

We have on]y to replace 

Remark. LEGENDRE found the following result: Given a positive integer D 
not square, it is always possible to decompose it into two factors A and B, 
such that at least one of the equations Ax 2 - B y 2 =  +_1 and Ax ~ - B y 2 = ± 2  
is solvable in integers x and y when the signs are suitably chosen; see [3], 
p. 64-71. 

§ 5. Proof of Theorem 2 

Consider the equations 

(31) u 2 - D v  ~= C, 

where the numbers C and D satisfy the conditions in Theorem 2, Part 1. If 
D 

] C---J = B is an integer, we put A = I C ]. Then the number u in (31) is divisible 

by A. Putting u = A u l  we get 

(32) A u ~ - B v 2 = ± l .  

D 
If ~ = ½ B is not an integer, B is an integer and so is A = ½ ] C ]. Then the 

number u in (31) is divisible by A, and putting u = A u  1 we get 

(32') A u ~ - B v  ~= ++2. 

Hence, applying Theorem 3 to equations (32) and (32') we obtain Theorem 
2, Part 1. 
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To prove Par t  2 of Theorem 2 we consider the equations 

(33) u ~ - D v  2= 4 C, 

where the numbers C and D satisfy the conditions in Theorem 3, Par t  2. The 
D 

solutions u and v shall be odd integers. C cannot be even. Hence V ~  = B is 

an integer. If  we put  A = [ C ], the number u in (33) is divisible by  A. Putt ing 
u = A u l  we get 

(34) A u~ - B v 2 = ± 4. 

Thus applying Theorem 3 we obtain Theorem 2, Par t  2. 
To prove Theorem 2 a we have only to apply the results on the numbers (11) 

and (14) in Theorem 3. 

§ 6. Numerical  examples 

We shall illustrate Theorem 3 by some numerical examples. 

1. Consider first the  case D = 3 . 5 -  7 = 105. The equations satisfying the con- 
ditions in Theorem 3, Par t  1, are the following: 

(35) x 2 -  105 y~= - 1, 

(36) x 2 - 105 y~ = ± 2, 

(37) 3 x ~ -  35 y2 = + 1, 

(38) 3 x ~ -  35 y~ = ± 2, 

(39) 5 x  2 -  2 1 y 2 = + 1 ,  

(40) 5x  2 -  2 1 y 2 = - 1 ,  

(41) 5x  ~ -  2 1 y ~ = ± 2 ,  

(42) 7x  2 -  1 5 y 2 = + 1 ,  

(43) 7x  2 -  1 5 y ~ = ± 2 .  

Only equation (40) is solvable; its ieast positive solution is x = 2 ,  y =  1. By 
Theorem 3 none of the other equations is solvable. Equation (35)is  impossible 
when taken as a congruence modulo 3. Equations (36), (38), (41) and (43)are  
impossible modulo 8. Equations (37) and (42) a re  impossible modulo 5. Equa- 
t ion (39) is impossible modulo 7 .  

We see that ,  in this example, it is possible to determine the insolvable equa- 
tions by considering the corresponding congruences for suitable moduli. This is, 
however, not always the case, as will be obvious from the following example. 

2. Consider next  the example D = 2 . 3 . 7 3  = 438. The equations satisfying the 
conditions in Theorem 3, Par t  1, are the following: 
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(44) x 2 - 438 y2 = - 1, 

(45) 2x ~ - 2 1 9 y ~ =  + 1 ,  

(46) 2x  2 -  219 y2 = _ 1, 

(47) 3x ~ -  146y ~= + 1, 

(48) 3x ~ -  146y2= _ 1, 

(49) 6x ~ -  73y  2 = + 1 ,  

(50) 6x  ~ -  73y~=  - 1 .  

Only equation (47) is solvable, its least positive solution is x =  7, y =  1. By  
Theorem 3 none of the other equations is solvable. Equations (44) (45), (48) 
and (49) are impossible modulo 8. Equations (46) and (50) are possible as 
congruences for an arbi t rary modulus, as may  easily be verified. 

3. Le t  us take the example D = 21. In  this case the equation 

( 5 1 )  x 2 -  21 y2 = 4 

has the solution x =  5, y =  1. The equations satisfying the conditions in Theo- 
rem 3, Par t  2, are the following: 

(52) x ~ - 21 y~ = - 4, 

(53) 3 x  ~ -  7 y  ~= +4,  

(54) 3 x  2 -  7 y 2 = - 4 .  

Equations (52) and (53) are impossible modulo 3. Equation (54) has the solu- 
t ion x = y =  1. The relation 

i (V~+ V7)2 = ½ (5 + 2V~) 

gives the fundamental  solution of (51). 

4. When we take  D =  5 . 4 1 =  205, the equation 

(55) x ~ - 205 y2 = 4 

has the solution x =  43, y =  3. The equations satisfying the conditions in Theo- 
rem 3, Pa r t  2, are the following: 

(56) x 2 - 205 y2 = _ 4, 

(57) 5 x  2 -  4 1 y 2 = + 4 ,  

(58) 5 x  2 -  4 1 y 2 = - 4 .  
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Here equation (57) has the solution x= 3, y =  1. Thus equations (56)and (58) 
are insolvable in odd integers. The relation 

(3 V5+ 4V~) ~= 1 (43 + 3 /205)  

gives the fundamental solution of (55). 

§ 7. The solvable equations and their solutions 

I t  is obvious from the concluding proof of Theorem 3, Part  1, in § 4, how 
the solvable one among equations (10) may be determined when the fundamen- 
tal solution X = X ~ ,  Y =  Y1 of equation (25) is known. At the same time we 
find the least positive solutions x = ~ and y =U of tha t  equation. 

But:  even if X1 and Y~ are not known, we may obtain the same result by 
trial. ]n fact, when D is given, we may proceed in the following manner. 
We write down all the equations 

A x 2 - B y 2 =  E 

satisfying the conditions in Theorem 3, Part  1. In every one of these equa- 
tions we put successively x= 1, 2, 3, 4 etc. and y= 1, 2, 3, 4~ etc., until one 
of them is satisfied. 

Similarly we may determine the solvable one among equations (12)when the 
fundamental solution I (X1 + Y1 l/D) of equation (28) is known. At the same 
time we get the least positive solution of that  equation. 

In this way wea l so  obtain the two solvable equations among equations (1) 
in Theorem 2, Part  1, together with the corresponding least positive solutions, 
and similarly for equations (2) in Theorem 2, Part  2. 

By means of the following result we may determine the whole set of solu- 
tions of these equations: 

T h e o r e m  4. I[ D is a positive integer which is not a per]ect square, and i] 
C is a square-[tee integer which divides 2 D, the Diophantine equation 

(59)  u 2 -  Dv 2 = C 

has at most one class o] solutions. I /  this class exists, it is ambiguous. 

Remark. This result is contained in a more general result of STOLT; see  [4], 
Theorem 8. For the definition of "class of solutions" see NACELL [5], [6] and 
[7], section 58. 

"~ProoJ. Let  u + v V-D and u'+ v' VD be two different solutions of (59). Then 
the necessary and sufficient condition for these two solutions to be associated 
with each other is that  the two numbers 

uu'  - v v '  D v u ' - u  v' 
(60) C and C 
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be integers. If C is odd, it  follows from (59) tha t  the numbers u and u' must 
be divisible by C. This is also the case when C and D are both even. Hence 
the numbers (60) are integers in these cases. Suppose finally tha t  C is even 
and D odd. Then the numbers u, u', v and v' are all odd;  by (59) u and u' 
are divisible by ½ C. Hence the numbers u u' - vv'  D and vu'  - uv '  are both 
even and divisible by C. Consequently, all the solutions of (59) belong to the 
same class. This class must be ambiguous. Hence all the solutions of (59)are  
given by the formula 

u + v ]/D = + (u~ + vx l/D) (X~ + Y1 ]/~)m, 

where u = ul and v = Vl are the least positive solutions of (59), where X1 + Y1 1/~ 
is the fundamental solution of (25) and where m is an arbitrary integer. 

Remark. A result equivalent to Theorem 4 was found by SCH~VEL, see [9]; 
in his paper SCHEPEr. also gives a proof of the first par t  of Theorem 2 a. 

§ 8. Analogous results on equations of higher degree 

In  a previous paper I have established a result on cubic equa t ions  which is 
analogous to our Theorem 3 on quadratic equations; see :NAGELL [8]. 

The Diophantine equation of the form 

(61) A x a + B y  3 = C, 

where A, B and C are integers # 0 ,  such that  

belong to the class of the (real) cubic field 

3 

3 

is irrational, is said to 

There are always several equations belonging to the same class for a given C. 
For  instance, if we replace A by A S and B by B 2, or A by 1 and B by A2B,  
we get equations belonging to the same class as (61). 

Theorem 5. Consider all the Diophantine equations (61), where the coe/ficients 
A,  B and C satisty the iollowing conditions: C is one o[ the numbers ! or 3; A 
and B are coprime integers, such that 1 <= A < B;  A B is not divisible by 3 when 
C = 3; A B is not divisible by the cube o/ any prime. 

Among all the equations belonging to the same class there is at most one equation 
which is solvable in integers x and y, with x y # O ,  except in the ]ollowing cases. 

3 

I n  the class o/ the field K(] /2 )  the existing equations are: 

x3 + 2y3= l ,  x3 + 2 y3 = 3, x ~ + 4 y 3 = 3 ,  x3 + 4 y3 = l. 

The first three equations are solvable; the last one is not solvable ]or y #  O. 
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3 

In the class of the field K (Y~)  the existing equations are: 

xa+ 2Oya= l, 2xa+5ya=3 ,  xS+20y3=3,  2xa +5y3= l, 

x 3 + 5 0 y 3 = l ,  4 x 3 + 2 5 y a = l ,  xa+50y3=3,  4xa+25ya=3.  

Only the first two equations are solvable; the others are not solvable ]or y #  o. 

In a following paper I shall establish analogous results on Diophantine equa- 
tions of the type 

3 

Axa + By3 + C z a -  3 V A B C x y z = E ,  

where E is = 1 or = 3, and where A, B and C are positive integers satisfying 
3 

the following conditions: The number I/-ABC is rational. Every one of the 
numbers 

3 3 3 

generates the same (real) cubic field. 
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