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1. I n t r o d u c t i o n  

Throughout this paper, f~_CR 3 means a general 3-dimensional domain with uniform 

C2-boundary 0f~#Z,  where the main interest is focussed on domains with noncompact 

boundary Oft. As is well known, the standard approach to the Stokes equations in L q- 
spaces, l < q < o c ,  cannot be extended to general unbounded domains in Lq, q7~2; for 

counterexamples concerning the Helmholtz decomposition, see [7] and [24]. However, to 

develop a complete and analogous theory of the Stokes equations for arbitrary domains, 

we replace the space Lq(f~) by 

Lq(f~)= ~ L2(f~)NLq(f~), 2~<q<ee,  

( L2(f~)+Lq(f~), l < q < 2 .  

First we prove the existence of the Helmholtz projection P for the space Zq(D) yielding 

the decomposition f=fo +Vp,  fo =P f,  with properties corresponding to those in Lq (f~). 
In the next step we consider in Lq(f~) the usual resolvent equation 

A u - A u + V p = f ,  d i v u = 0  i n f ' ,  u[o~=0,  (1.1) 

with A in the sector $~:= { 07 ~ A E C:  [arg A I < �89 + c }, 0 < ~ < �89 We prove an Lq-estimate 

similar to that  in Lq(f~), i.e., 

IAI IlUllLq+llV2U]ILq+[[VPllLq <<.C[IfllLq, l < q < c c ,  (1.2) 

at least when 1~1~>6>0 and C=C(a,q,e,5)>O. 
The Stokes operator A = - P A  is well defined in Lq(f~), l < q < o c ,  and the semi- 

group {e-At: t~>0} is (locally in time) bounded and analytic in some sector { 0 r  

[arg t[ <e'}, 0<e '<  �89 of the complex plane. 
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Further, we prove the maximal regularity estimate of the nonstationary Stokes sys- 

tem 
ut -Au+Vp=f ,  d i v u = 0  i n f t x ( 0 ,  T), 

(1.3) 
ulo  =0, u(0) =u0, 

with 0 < T < o c .  To be more precise, if u0--0 for simplicity, then 

(1.4) 

where Yq=Lq(O,T;Lq(fl)) and C=C(T,q,a,/3, K)>O depends on T, q and the type 

a,/3, K of f~, see w 

As an application of these li~mar results we obtain the existence of a so-called suitable 

weak solution u of the Navier Stokes system 

ut-Au+u.Vu+Vp = f, div u = 0 

ula  =0, u(0) =u0, 

in ~ x (0, T), 
(1.5) 

with special regularity properties which are new up to now for general domains, see the 

conjecture in [8, p. 780]. In particular, we get for general domains the regularity property 

~Tp e L~/~( (O,T) • (1.6) 

which is needed in the partial regularity theory of the Navier-Stokes equations. Moreover, 

u satisfies tile local energy inequality, see (2.26) below and [8, (2.5)], as well as the strong 

energy inequality 

1 1 -~llu(t)ll2+ IIVull2dv<~llu(s)ll~+ (f,u>dT (1.7) 

for a.a. sE[0, T) including s=0  and all t with s<~t<T, see [25]. This result is essen- 

tially known for domains with compact boundaries; see [32, Chapter V, Theorems 3.6.2 

and 3.4.1] for bounded domains, and [14], [26], [29], [33] and [37] for exterior domains. 

2. P r e l i m i n a r i e s  a n d  m a i n  resu l t s  

2.1. S u m  a n d  i n t e r s e c t i o n  s p a c e s  

We recall some properties of sum and intersection spaces known from interpolation theory, 

cf. [4], [5], [27] and [36]. 

Consider two (complex) Banach spaces X1 and X2 with norms [[. Ilxl and I[" [tx~, 

respectively, and assume that  both X1 and X2 are subspaces of a topological vector 
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space V with continuous embeddings XIC_V and )(2_CV. Further, we assume that  the 

intersection X1 n X2 is a dense subspace of both X1 and X2 in the corresponding norms. 

Then the sum space 

X l §  2 : : { U l §  u 2 E X 2 }  C V  

is a well-defined Banach space with the norm 

Ilullxx+x2 := inf{llUllIXl +ll~211x2 : ~ = - 1  + -2 ,  - l e X l ,  ~2 e x 2 } .  

Another formulation of that  norm is given by 

l l ~ l + ~ l l x l + x ~  = inf{ l l~ i -v l lx l  + l l - ~ + v l l ~ :  v E X l n X ~ } .  

The intersection space X1 n X2 is a Banach space with norm 

Ilullx~x~ = max{llullx~, Ilullx~}, 

which is equivalent to Ilullxl+llullx~. Note that  the space XI+Xz can be identi- 

fied isometrically with the quotient space (XI x X2)/D, where D = { ( - v ,  v): v E X1 n X2 }, 

identifying U=Ul+U2EXl+X2 with the equivalence class [(ul,u2)]={(ul-v, u2+v): 
vEX1NX2}. 

Next we consider the dual spaces X[ and X~ of X1 and X2, respectively, with norms 

{ [ (u , f ) [  O~uEXi} i 1,2. [[f][x' = sup []u[[x~ : ' = 

In both cases, (u, f} denotes the value of some functional f at some element u, and ( . , . )  

is called the natural pairing between the space X~ and its dual space X~. Note that  

[[u[[x~=sup{[(u, f}[/[[f[[x~ : O~ f EX~}. 
Since X1 N X~ is dense in XI and in X2, we can identify two elements f l  E X~ and 

f2EX~, writing fl=f2, if and only if (u, fl)=(u, f2} holds for all uEX1NX2. In this 

way the intersection X~NX~ is a well-defined Banach space with norm [[f[[x~nx~= 
max{[[f[[x~, [[f[[x~'}. The dual space (X I§  ~ of XI+X2 is given by X~NX~, and 

we get 

(Xx + X2 ) / = X[ OX; 

with the natural pairing 

(u, f} = {Ul, f} + (u2, f} 

for all u=ul+u2EXl+X2 and fEX~NX~. Thus it holds that  

{ '(ul'fl+(u2'fl' } Ilullx~+x~ = s u p  [~[x-~nxi :Or fEX~NX; 
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and { I<ul, :>+<u2,I>l 
Ilfllx;nx; = s u p  i f f ~  

see [5, p. 321 and [36, p. 691. Therefore, I(u, f)l<~llullxl+x2 Ilfl lx;nx~. 
By analogy, we obtain that  

(Xl h a 2 )  / --~X~-}-X; 

with the natural pairing (u, f l  + k )  = (u, f ,  } + (u, k} .  

Consider closed subspaces L 1 C X 1 a n d  L 2 C X 2 e q u i p p e d  with norms I1" liE1 : II" I lXl 

and I1" IIL2=II " ]IX2, and assume that  L1NL2 is dense in both L1 and L2 in the corre- 

sponding norms. Then IlUl]L~nL2=I]ulIxlnx2, ucL1NL2, and an elementary argument, 

using the Hahn-Banach theorem, shows that  also 

IlUlIL,+L2 = Ilullxl+x2, ueLI+L2. (2.1) 

In particular, we need the following special case. Let BI:D(B1)--+X1 and B2: 

D(B2)--+X2 be closed linear operators with dense domains D(BI)C_X1 and D(B2)C_X2 
equipped with graph norms 

IlUllD(B~) = Ilullx, +llBlUllx~ and ]lullo(B2) = Ilullx= +llB2ullx2 . 

We assume that  D(B1)AD(B2) is dense in both D(B1) and D(B2) in the correspond- 

ing graph norms. Each functional F�9 i=1,  2, is given by some pair f, gEX~ in 

the form (u,F)=(u,f)+{Biu, g}. Using (2.1) with Li={(u, Biu):u�9  
i=1,2 ,  and the equality of norms [l' [[(x~xxx)+(x2xx2) and 11. [[(Xl§247 ) o n  

(X1 x X~ ) + (X2 x X2), we conclude that  for each u �9 D (B1) + D (B2) with decomposition 

?.t=Ulq-U2, Ul�9 u2�9 

II~IID(B1 )+D(B2) = Ilua + ~  IIx, +22 + IIBlul + B 2 u 2  I l x l + x ~  �9 (2.2) 

Suppose that  X1 and X2 are reflexive Banach spaces implying that  each bounded 

sequence in X1 (and X2) has a weakly convergent subsequence. This argument yields 

the following property: Given u � 9  X1 +X2 there exist Ul�9 X1 and u2 �9 X2 with U=Ul +u2 

such that  

Ilullx,+x2 = Ilul IIx, + Ilu21122. (2.3) 

2.2. F u n c t i o n  spaces  

In the following let Dj=O/Oxj, j = l ,  2, 3, x=(xl, x2, x 3 ) c ~ c R  3, V=(D1,  D2, D3) and 

X72=-(DjDk)j,k=l,2,3 . The spaces of smooth functions on f~ are denoted as usual by 

Ck(~), Ck(~) and Cok(~) with k e N o = N U { 0 }  or k=oc.  We set 

C~,o (f~) = {u = (ul, u2, u3) �9 C ~  (~):  div u = 0}. 



AN Lq-APPROACH TO STOKES AND NAVIER-STOKES EQUATIONS 25 

Let l < q < e c  and q '=q/ (q-1)  such that  1 /q+l /q '= l .  Then Lq(~)  with norm 

IluilLq =llullq=llullq,a denotes the usual Lebesgue space for scalar or vector fields. Each 

f = (f i ,  f2, f3) e Lq'(ft) =n  q (ft)' will be identified with the functional ( . ,  f }: u ~  (u, f} = 

( u , f } a = f a u . f d x  on Lq(ft). Let Lq~(f~)=Co,~,(ftiN'llqcLq(ft) denote the subspace of 

divergence-free vector fields u=(ul ,u2,u3)  with normal component N.ulan=O at Oft; 

here N means the outer normal at Oft. The usual Sobolev spaces W k'q (ft) are mainly used 

for k = l ,  2 with norms Ilullwl,q =Hulll,q=llulll,q,f~=liullq+llVull q and Ilullw2,q =llu[12,q= 

NulI2,q,f~ = Ilull 1,q + N V2ullq, respectively. Further, we need the subspaces 

1,q - -  C W l'q(ft),  w~,q(ft) = C~O(ft)II. II1,~ c wl 'q( f t )  and Wd,~ (ft) = C~,~(fl)II-II1,~ 

For simplicity, we will write C k, Lq, W l'q, etc. instead of Ck(ft), Lq(ft), w~,q(ft), 
respectively, when the underlying domain is known from the context. Moreover, we will 

use the same notation for spaces of scalar-, vector- and matrix-valued functions. 

The sum space L2-I-L q is well defined when V in w is the space of distributions 

with the usual topology. We obtain that  

(L2+Lq)  ' =L2 fGL q' and (L2rGLq)t:L2Zr-Lq', 

where llUliL2nLq=max{llull2, ilUllq} and 

II UlIL2+Lq = inf{ Ilu1112 + Ilu2 IIq: u = ul +u2, ul E L 2, u2 E L q } 

{ I<u~+u2,f)l 07LfEL2MLq,}. 
= s u p  IlfllL~Le : 

For the nonstationary problem on some time interval [0, T),  0<T~<oo, we need the 

usual Banach space L~(0, T; X)  of measurable X-valued (classes of) functions u with 

norm 

(/0 I lu l lL~(0,z ;x)  = Ilu(t)ll~xdt), l<<.s<oc, 
where X is a Banach space. For s =  oo let 

II~IIc~(0,T;X) = ess suP{llu(t) l lx: 0 < t < r } .  

If X is reflexive and 1 < s < oc, then the dual space of D s (0, T; X)  is given by D s (0, T; X ) ' =  

L~'(O, T; X ' ) ,  s ' = s l ( s -  1), with the natural pairing (u, I}T = f ?  (u(t), f(t)} tit; see [20]. 

Let x = g q ( f t ) ,  l < q < o c .  Then we use the notation 
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Moreover, the pairing of Ls(O,T;L q) with its dual LQO, T;L q') is given by (u,f}T= 
U, T 

f)a,T= fO fn u.f  dxdt if l < s < e c .  
Let YI=L~(0, T; L 2) and Y2=L~(0, T; L q) with l<q ,  s<oo.  Then we see that  

! ! / / 
(Y1 +]72)' = Yi ClY~ = L s (0, T; L2ML q ) = Ls(O, T; L2 + Lq) ', 

and therefore ]I1 +Y2=L~(O, T; L2+Lq); the pairing between YI+Y2 and Y~AY~ is given 

b y  ( U l - I - ~ t 2 ,  f}T-=(Ul, f)T+(U2, f)T for UleY1, u2eY2 and fEY~MY~. ~r thermore ,  we 

can choose the decomposition u=ul +u2 C L~(O, T; L 2 + L q) in such a way that  

Ilull  § = Ilu  IIY  + IIY . (2 .4)  

We conclude that  

[lUl-~-u2lly1+y2=sup{ [(ul~-u2'f)TI :OCfELQO, T;L2ALq')}. (2.5) 

2.3. Structure  propert ies  of  the  boundary  Of~ 

We recall some well-known technical details on the uniform C2-domain FtC_R 3, see, e.g., 

[1, p. 67], [18, p. 645] and [32, p. 26]. By definition, this means that  there are constants 

a,/3, K > 0  with the following properties: 

For each x0 E OFt we can choose a Cartesian coordinate system with origin x0 and 

coordinates y =  (Yl, Y2, Y3)= (Y', Y3), Y~= (Yl, Y2), obtained by some translation and rota- 

tion, as well as some C2-function h(y'), ]y't<.~, with C~-norm ][h[[c2 ~<K, such that  the 

neighborhood 

U~,z,h(xo) := {(Y',Y3): h(y')-/3<y3 < h(y')+/~, [y'[ < a }  

of Xo satisfies 

U[~,~,h(xo) := {(Y', Y3): h(y')-/3 < Y3 < h(y'), lY'I < a} = aN U~,z,h(xo), 

and 

OaC? U~,~,h(xo) = {(y', Y3): h(y') = Y3, lY'] < a}. 

Without loss of generality we may assume that  the axes of yl=(yl,y2) are con- 

tained in the tangential plane at xo. Thus at y~=(0, 0) we have h (y ' )=0  and V'h(y~)= 

(Oh/Oyl, Oh/Oy2)= (0, 0). Therefore, for any given constant Mo >0, we may choose a >0 

sufficiently small such that  a smallness condition of the form 

]IV'hi]co = max{[V'h(y')l : lY'[ ~< a} ~< M0 
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is satisfied. It is important to note that  the constants c~,/3, K >0 do not depend on x0 E~I. 

We call c~,/3, K the type of t~. 

Let ~ be the closure of fl and let Br(x)={wER3:lw-xl <r}  be the open ball with 

center x E R  3 and radius r>0 .  Then we can choose some fixed rE (0, (~) depending only 

on (~, ~, K,  bails Bj =Br(xj) with centers xj E~,  and C2-functions hj(y'), IY'I <~o~, where 

j = l ,  2, ..., N if fl is bounded and j E N  if ~ is unbounded, such that  

N 
C U Bj and ~ c  ~J Bj, respectively, 

j= l  j= l  (2.6) 

Bj~Uc,,/3,hj(Xj) ifxyEO~, BjC~-~ ifxjE~. 

Moreover, we can construct this covering in such a way that  not more than a fixed finite 

number No =N0(c~,/3, K ) E N  of these balls B1, B2, ... can have a nonempty intersection. 

Thus if we choose any N 0 + l  different balls B1, B2, ..., then their common intersection is 

empty. If ft is bounded, let No=N. 
Concerning {Bj}, there exists a parti t ion of unity ~jEC~(R 3) with 0<~y<~l, 

supp ~j C_ By, j = 1,..., N or j C N, satisfying 

N oc 

~j (x) = 1 and ~ ~j (x) = 1, respectively, for all x E ~, (2.7) 
j = l  j = l  

and the pointwise estimates IV~j(x)l,  I V ~ j ( x ) l  <~C uniformly with respect to x and j ,  

where C=C(a, /3, K). 
If fl is unbounded, we can represent ft as a union of countably many bounded 

C2-subdomains ftj C_m, j E N ,  such that  

~j  _C f/j+1 for all j E N, ~ = U ~j ,  (2.8) 
j = t  

and such that  each ~-~j has some fixed type a',/3', K ' > 0 .  Without loss of generality we 

may assume that  a = a ' , / 3 = / 3  ! and K=K': each subdomain ~ j ,  j E N ,  has the same type 

a,/3, K as Ft, see [18, p. 665]. Obviously each compact subset ~0_Ct2 is contained in 

some Ftj, and therefore in each Qk, k>~j; see [32, p. 56, Remark 1.4.2]. 

Finally we need a technical property in subsequent proofs. Given a ball Br(x)cR 3 

consider some Cartesian coordinate system with origin x and coordinates Y=(Y',Y3). 
Then B;(x):={y=(y',y3): lyl<r, y3<0} is called a half-ball with center x and radius r. 

We may assume without loss of generality that  there are appropriate half-balls B~ = 

B;(xj) of the balls Bj in (2.6) and (2.7) such that  

supp ~j C_ B~ if xj E f~, wherej=l , . . . ,Nor jEN.  (2.9) 
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2.4.  M a i n  resul t s  o n  t h e  S t o k e s  e q u a t i o n s  

We can extend several important  Lq-properties of the Stokes equations known for special 

domains, such as bounded or exterior domains, to general domains i2 if we replace the 

usual Lq-space by the space 

Lq=Lq(f~)=L2(a)ALq(f~)  for 2~<q< oo, 

and by the space 

Lq=L~(ft)=r~(a)+L~(fl) for l < q < 2 .  

Note that  L q is smaller than L q when q>2,  and larger than L q when l < q < 2 ,  but 

that L 2 = L  2. Analogously, we define the subspace Lq=Lq(12)cLq(f~) by setting L q =  

L~(ft)nL~(a) for 2~<q<cxD, and L~=L~(a)+L~(fl) for l < q < 2 .  

In the same way we modify the Lq-Sobolev spaces wk'q(ft)  and the spaces 

Gq(a)={VpGLq:pEL~oc(a)}, [[VpllG~=[IVPlIL~, 

D~(a)=Lg(ft )nW))'~(a)nW2,O(f l ) ,  IlUllD~=ll~llW2,q, 

l < q < o c ,  as follows: For 2~<q<oc let 

~k,0(fl) = wk,~(ft)n wk,~(fl), 

~q(ft) = a~(a)n  m(ft) ,  

Dq(f~) : DZ(ft)F1Dq(ft), 

and for 1 < q < 2 let 

~k,q(f~) = W k , 2 ( f t ) +  Wk,q(f~), 
~ (a) = a 2 (fl) + a~ (a), 

D q (ft) = D 2 (fl) + D q (a) ,  

k = l ,  2. Then the norms [I " II~k.q, II "II~q and II " [[5q are well defined. If f~ is bounded, 

t h e n  Lq=L q, Lq~-Lqo ., a q = G  q, L ) q = D  q and wk 'q=wk 'q  hold with equivalent norms. 

Thus the introduction of "~"-spaces is reasonable only for unbounded domains. 

Our first result yields the existence of the Helmholtz projection in Lq(ft). The 

counterexamples in [7] and [24] show that the usual Lq-theory for special domains cannot 

be extended to f~ for arbitrary qr  It is important to note that  the constants C =  

C(q, a, fl, K ) > 0  below only depend on q and the type a, fl, K of the domain ft. 
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THEOREM 2.1. (Helmholtz decomposition.) Let f~CR 3 be a uniform C2-domain 

of type a , ~ , K > 0  and let l<q<oc ,  q'=q/(q-1).  Then for each f c L  q there exists a 

unique decomposition f = f o + V p  with foEL q and VpEG q satisfying the estimate 

IIf011Lq+llVPllLq ~<CIIfllLq, C=C(q,c~,/3,K)>O. (2.10) 
The Helmholtz projection P=Pq defined by Pqf=fo is a bounded operator from L q onto 

Lg satisfying ~ f = f  if f~L~, and P~(Vp)=0 if Vp~&. Moreover, (~f,g)=(f,~,g) 
for all f E L  q and 9cL  q'. 

Remark 2.2. By Theorem 2.1 we conclude that Pq=-Pq, for the dual operator 

/3q=(~q), of Pq, l<q<oc ,  and (Lq) '=L~ with pairing (-,.}. We also get that the 

norm defined by 

Ilfllz~' 
is equivalent to the norm IlullLa=[lullLq in the sense that Ilull~a ~<llullL~ ~<Cllull}:~ with 
C=C(q, ce,/3, K ) > 0  from (2.10). 

The usual Lq-Stokes operator A=Aq with domain 

D(Aq) = D q = Lq~NW(~'qNW 2,q C L q 

and range R(Aq)C_ L q defined by Aqu=-Pq Au is meaningful if the Helmholtz projection 

Pq:Lq--+L g is well defined. Thus, because of the counterexamples, see [7] and [24], we 

cannot expect that this theory is extendable to general domains ~2 for qr  without 

modification of the Lq-space. 

Next we will show that the usual Stokes estimate, at least for IAI~>5>0, remains 

valid for 12 when we replace the Lq-theory by the ],q-theory. More precisely, let the 

Stokes operator A=fftq be defined as an operator with domain D(~tq)=L)q C L q into Lq, 

by setting 

A q ' l l , : - p q n ' a ,  u e  J~ q . 

Let I be the identity and &={0r largal<a~+~}, 0<~<1~. 
THEOREM 2.3. (Stokes resolvent.) Let ftC_R a be a uniform C2-domain of type 

1 and 5>0. Then c~,~,K>0 and let l<q<oc ,  q'=q/(q-1),  0<e<~Tr 

Aq=-PqA:D(Aq)  > L q, D(Aq)CL q, 

is a densely defined closed operator, the resolvent (AI+.4q)-l:  Lq + Lg is well defined for 

all AES~, and for u=(AI+f lq) - l f ,  fELg ,  the estimate 

IAlllullLa+llull~,~<CllfllLa, IAI>5, (2.12) 
with C =C(q, e, 5, a,/3, K) >0, is satisfied. Further, the following duality relation holds: 

(]tqU, Vi=(u,_Aq, V), uCD(]lq), vED(]tq,). (2.13) 
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Remark 2.4. (a) From (2.12) we conclude that  -Aq generates a C~ 

{e-t2~q:t>~0} which has an analytic extension to some sector {0 r  

0<c r < �89 satisfying the estimate 

~ 

ne-tAqfiiL g <~ Me~t[IfiiL~, f E L  q, t )O,  (2.14) 

with M=M(q, 5, a,/3, K ) > 0 .  Note that  5>0 may be chosen arbitrarily small, but we 

cannot prove up to now whether (2.14) holds with 5=0 for the general domain f~. 

(b) Let fEL  q, l < q < o c ,  AES~ and [A[>5, and set u=(AI-~Aq)-lpqf and V p =  

( I -Pq)( f+Au) .  Then we get a unique solution pair uED(fiq), VpEG q of the equation 

A u - A u + V p = f ,  and by (2.12), 

I~l IlullLq+llV2ullLq+llVpllLq ~< CllfllLq, (2.15) 

where C=C(q, e, (f, a, g, K) >0. 

(c) Due to (2.15) the graph norm Ilullo(~q/----IlullL~ +ll~iqUllL~ on the Banach space 

D(Aq) satisfies the estimate 

Cllull~2,~ ~< IlullD(Aq)~C'llull~2.~, uEO(Aq), (2.16) 

with constants C=C(q, a,/3, K) >0 and C'=C'(q, a, g, K) >0. Hence the norms Ilull~,~ 
and IlUllo(~o) are equivalent. 

Another important property is the maximal regularity estimate of the nonstationary 

Stokes equation (1.3), which can be written, applying the Helmholtz projection, in the 

form 

ut+.4qU=f, u(0) = u0. (2.17) 

For simplicity, we do not use the weakest possible norm for the initial value uo, see 

Remark 2.6 (a). 

THEOREM 2.5. (Nonstationary Stokes system.) Let f~CR 3 be a uniform C2-domain 
of type a , ~ , K > 0 ,  and let 0 < T < e ~ ,  Yq=Lq(O,T;Lq), l < q < o c .  

Then for each f EYq and each uoCD(Aq) there exists a unique solution 

u E Lq(O, T; D(Aq)), ut E Yq, 

of the evolution system (2.17), satisfying the estimate 

Ilu, IIY~ + IlullY~ + IIAqullr~ < C(ll~,o IID(~)+ IlfllYq) (2.18) 

with C=C(q,T,(~,~,K)>O. 
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Remark 2.6. (a) The assumption uo E D(Aq) in this theorem is not optimal and may 

be replaced by the weaker properties u0EL q and foT Il~qe-~;~quoll~ dt<~. Then the 

term Ilu011D(~) in (2.18) may be substituted by the weaker norm 

IIAqe-~Aquoll}~ dt) , 1 < q < oo. (2 .19)  

Furthermore, by (2.16), the estimate (2.18) implies that 

Ilu~ Ilgq + IlullLq(o,r;V/=,q) <<- C(ll~0 IlD(~q) + II fllgq), (2,20) 
where C=C(q,T,a,/3, K)>O. 

(b) Let fEV~=t~(O,T;tq) in Theorem 2.5 be replaced by fE~=L~(O,T;L~), 
l<q<oc .  Then uELq(O,T;D(_Aq)), defined by ut+itqu=.Pqf, and Vp, defined by 

Vp(t)=(I--Pq)(Z+Au)(t), is a unique solution pair of the system 

satisfying 

ut-Au+Vp= f, u(O)=uo, 

Ilu~llY~ +llullY~ +llV2ullL +llVpll~q ~ C(lluollo<~> +llfll~) (2.21) 
with C=C(q, T, a, 3, K) >0. 

Using (2.3) we see that in the case l<q<2 ,  the solution pair u, Vp possesses a 

decomposition u = u  (1) +u(2), Vp=Vp(1) +Vp(2) such that 

u(I) ELq(O,T;W~'2), u~I) ELq(O,T;L~), 

u(2) ELq(O,T;W2,q), u[2) ELq(O,T;Lq), (2.22) 

Vp(1) ELq(O,T;L2), Vp(2) ELq(O,T;Lq), 

and 

Ilu~ IIYq + IlullYq + IIV2ullL + IlVpll~q = I1@ ) 11~(1) + [lu (1) II~l> + IIV2u (1> I1~<1> + IlVp(X)lib<l> 

+llu~2>ll~=) +11u(2) 11~2> 
+ II v 2u<2) II ~ )  + IIVp <2) II ~=), 

where ~'(1)=Lq(O, T; L2) and ~'(2)=Lq(O, T; Lq). 

2 . 5 .  A p p l i c a t i o n s  

As an application we construct a so-called suitable weak solution u of the instationary 

Navier Stokes system 

ut-Au+u.Vu+Vp=f ,  d i v u = 0  in~tx(0, T), 
(2.23) 

ulo~ =o ,  u(O) =uo,  
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for the general domain ~ c R  3 with important additional properties. In particular, we 

_ 5 The reason is that  the energy properties are interested in estimate (2.21) for q - ~ .  

u e L ~ (0, T; L2~) and Vu �9 L 2 (0, T; L 2) imply that  u. Vu �9 L q (0, T; L q) with q = 5. Hence, 

shifting u-Vu in (2.23) to the right-hand side and considering for simplicity u0--0, we get 

from (2.21) that  VpeLq(O,T;L2+L q) and VpeL~oc((O,T)• ). This property is needed 

in the local regularity theory as well as in the proof of the local energy estimate. It was 

conjectured in [8, p. 780], and open up to now for general domains. 

Moreover, we prove that  u satisfies the strong energy inequality, see [14], [26], [32] 

and [33], which was open for general domains as well. A consequence is Leray's structure 

theorem [23] for general domains; note that  the proof in [23] concerns the entire space 

R 3 only. 

We recall some definitions, see, e.g., [32] and [35]. The space C~([0, T); C~,~) con- 

sists of smooth solenoidal vector fields v defined on [0, T ) •  ~ with compact support 

supp v C_ [0, T) • ~. 

Let f �9 L 5/4 (0, T; L 2), 0 < T ~< oc, and u0 �9 L2~. Then a function 

ueL~(O,T;L~)nL2oc([O, T); W0,o)1,2 

is called a weak solution of (2.23) if and only if 

(2.24) 

is satisfied for all vcC~( [0 ,  T); C~,o). We may assume without loss of generality that  u 

is weakly continuous as a function from [0, T) to L 2. 

We know that  for each weak solution u there exists a distribution p in (0, T) • fl such 

that  u t - A u + u . V u + V p = f  holds in the sense of distributions, see [19], [28] and [32]; 

p is called an associated pressure of u. However, for general ~ it is crucial whether p is 

contained in any Lq-type space; the problem in this context is the validity of the maximal 

regularity estimate (2.21) for q-~.-5 

The following result is essentially known for domains with compact boundaries; see 

[32, Chapter V, Theorem 3.6.2] for bounded domains, and [26] and [33] for exterior 

domains. 

THEOREM 2.7. (Suitable weak solution.) Let flC_R 3 be a uniform C2-domain of 

type a,/3, K, and let 0<T~<oe, q=5 ,  fELq(O,T;L 2) and uoCL2~. Then there exists a 

weak solution ueL~(O,T;  n2)nn~oc([0, 1,2 T); Wo,o) (called a suitable weak solution) of the 

system (2.23) and an associated pressure p with the following additional properties: 

(a) Regularity: 
ut, u, Vu, V2u, Vp �9 Lq(c, T'; L 2 + L q) (2.25) 

for all 0 < s < T ' < T .  If  uo�9 then (2.25) holds for ~=0 and all 0<T~<T.  
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(b) Local energy inequality: 

1 I t  1 ~ JJCu(t)Jl~+ JlOVuJJ~dT<<.~UOu(s)JJ~+ (r Ou) dT (2.26) 

I {  t fs t<ljuj2+p,u.Vr 2 (Vlul2' Vr d~-+ 
,/8 

for a.a. se[0, T),  all tE[s,T) and all r  

(c) Strong energy inequality: 

 llu(t)ll +f  tlvull d  < llu(s)ll  (2.27) 

for a.a. sC[0, T) including s=0,  and all tE[s,T). 

Remark 2.8. (a) From (2.25) we obtain the existence of some pressure p satisfying 

pE Lq(c, TI; r - TI Lloc(ft)), 0 < e <  <T,q=-54,  r = ~ ,  (2.28) 

and we get that uEL2(O, T'; L6(t2)), 0 < T ' < T .  This shows that (2.26) is well defined. 

As in (2.22) we obtain decompositions u = u  0) + u  (2) and p=p0)+p(2)  satisfying 

U(1)t, U(1), VU (1), V2u (1), Vp 0) E Lq(e,T';L 2) for 0 < e < T ' <  T (2.29) 

and 

u~2),u(2),~u(2),V2u(2),Vp(2)ELq(c, TI;L q) for 0 < c < T ' < T ,  (2.30) 

which holds with e = 0  if additionally uocD(Aq). Note that we may choose T '=T  in 

(2.25) if T<oc .  

(b) To obtain Leray's structure theorem for f~, see [23] for the case R a, let T = o c  

and assume for simplicity that f = 0 .  Then u in Theorem 2.7, also called a turbulent weak 
solution of (2.23), has the following properties: There exists a countable disjoint family 

I { k}k=0 of intervals in (0, oc) such that 

(1) I1 -- (0, T1 ) and I0 = ITs,  co) with some 0 < T1 ~< T~ < oc; 

(2) J(0, OC)\[_Jk~_0IkJ=0 and Ek~=lJIkll/2<oo, where ]. J denotes the Lebesgue 

measure; 

(3) u(. , t ) ~ C ~ ( a )  for every tEIk, k=0,  1, .... 

These properties imply that the �89 Hausdorff measure of the singular 

set cr={tE(O, oc): u ( . ,  t)~CCC(f~)} is zero, see [8]. 
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3. P r o o f s  

3.1. P r e l i m i n a r y  loca l  r e s u l t s  

Using the structure properties of the given uniform C2-domain ~C_R 3 of type c~,/3, K > 0 ,  

see w we are able to reduce our results by the localization principle to a s tandard 

domain of the form 

H = Ho,,Z,,-,h = {(y ' ,  Y3): h (y ' ) - 13  < Y3 < h (y ' ) ,  ly'l < o~} n B,.; (3.1) 

here h:y'~-+h(y'), ly'l<<.c~, is a C2-function and B~=B~(0) a ball with radius 0 < r =  

r(c~,/3, K ) < a  such that  

B~ c {(y', y3): h ( y ' ) - ~  < y3 < h(y')+9, lY*I < ~}  

Further, we may assume that  h(0)=0,  Wh(0 )= (0 ,  0), h ( y ' ) = 0  for r~< ]y'[ ~<c~, and that  h 

satisfies the smallness condition 

IlWhllc0 = m a ~ { I W h ( y ' ) l  : ly'l < ~} ~< M0, (3.2) 

where M0 >0  is a given constant. Recall that  W-- (D1 ,  D2). 

In the subsequent proofs we can t reat  each problem for the s tandard domain (3.1) 

as a problem in the domain 

gh = {(y', Y3) �9 1~3:Y3 < h(y'), y ' �9  rt 2} 

with hEC~(R2);  Hh is called a bent half-space, see [9]. Then, using the smallness con- 

dition (3.2), an equation in Hh is considered as a per turbat ion of some equation in the 

half-space H0 = { (y', Y3) E R 3 : Y3 < 0}. 

The following estimates in H=H~,~,h,r are well known. However, we have to check 

that  the constants in these estimates depend only on q, c~, /3 and K;  here we need the 

smallness condition (3.2) on h. 

Let 1< q< oc. First we consider the Helmholtz decomposition in H.  Let f r L q (H),  

foELq(H) and pCWl,q(H) satisfy f= fo+Vp and supp foUsupppCBr. Then 

IIfOIILq(H)+HVPllLq(H) ~CIIfllLq(H), C=C(q,a,/3, K) >0 ,  

cf. [30, p. 12 and Lemma 3.8 (a)]. 
Next let fELq(H), uCLq(H)NW~'q(H)NW2,q(H) and pcWl'q(H) satisfy 

(3.3) 

Au-Au+ Vp = f 
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with AE$~, see Theorem 2.3, and with suppuUsupppC_B~. Then there are constants 

Ao =A0(q, a,/3, K)  >0 and C=C(q, ch fl, K) >0 such that  

lal II llc.(-/+ll llw , (m+llVpllL ( ) < cIIfllc.(.) (3.4) 

if ]AI~>A 0. To prove this estimate we use [9, p. 624] and apply [9, Theorem 3.1 (i) and 

(1.2)]. 
The next estimate concerns the nonstationary Stokes equation in H.  As usual the 

Stokes operator is defined by Aq=-PqA with domain 

D (Aq) = L q (H) N W~ 'q (H) N W 2,q (H). 

Let 0 < T < o c ,  uoED(Aq) and fELq(O,T;Lq(H)), and let uELq(O,T,D(Aq)) and p e  

L q (0, T; W 1,q (H)) satisfy supp u0 U supp u(t) U supp p(t) c_ B~ for a.a. t C [0, T]. Moreover, 

assume that  

u t - A u + V p = f ,  u ( 0 ) = u 0  and - u t - A u + V p = f ,  u(T)=uo, 

respectively. Then there is a constant C=C(q, a,/3, K, T)>0 such that  

II ut  IILq(O,T;Lq(H) ) Jr tlltll Lq(O,T;W2'q(H) ) -~- II VPIILqCO,T;Lq (H>) 
(3.5) 

<. C(]]uo ]]W2.q(g) + ]]fIIL~(O,T;Lq(H))). 

In the case u(0)=u0 this estimate follows from [34, Theorem 4.1, (4.2) and (4.21')]. 

The second case - u t - A u + V p = f ,  u(T)=uo, can be reduced to the first ease by the 

transformation ~(t)=u(T-t) ,  f(t)=Z(T-t), ~(t)=p(T-t). The relatively strong as- 

sumption uoED(Aq) is used for simplicity and can be weakened as in Remark 2.6 (a). 

Note that  the conditions u(0)=u0 and u(T)=uo, respectively, are well defined since 

tttCLq(O, T; Lq ). 
Finally, we consider the divergence problem 

d i v u = f  i n H ,  U]oH=O, 

and let Lq(H)={fELq(H):fHfdx=O }. Then from [6] and [12, Ill, Theorem 3.2], we 

obtain the existence of some linear operator R: Lq(H)-+W~'q(H) satisfying div R f = f  
and 

]]Rf]]wl.q(H) <. C]]f]]Lq(H ) if f E Lq(H), 
]]RI]]w2.q(H) <. C]]f]]wl,q(g) if feL~(H)NWI'q(H), (3.6) 

with C=C(q, a,/3, K)>0; moreover, Rfew~'q(H) if feL~(H)Nw~'q(H). 
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The dual operator R' of R maps W-I'q'(H) into Lq'(H). Thus for each pELq'(H) 
# 

we find a unique constant M = M (p) satisfying p - M--  R' (Vp) E L~ (H) and the estimate 

IIP-MIIL~'(H)<~OIIVPlIw-,..'(.>=Csup{ I(p'div~)lllv% :OCv~wl'q(H)} (3.7) 

with C=C(q, c~, 13, K ) > 0 .  

Now let ~ C R  3 be a bounded C2-domain with boundary 0fl. Obviously, such a 

domain is of type a,/7, K.  We collect several results on the Helmholtz projection P=Pq 
and the Stokes operator A=Aq, l < q < o o .  In this case the constant C below may depend 

also on fl except for q=2 where Hilbert space arguments are applicable. 

It is known, see [11], [30] and [34], that  each f E L  q has a unique decomposition 

f = fo+ Vp, foE Lq~, VpEG q, and that  Pq: Lq--+ L q defined by Pqf = fo satisfies the esti- 

mate ]lPqfiiLq + HVpiiLq <~CIIfHLq with C=C(q, ~)>0; however, it is not clear whether 

C depends only on the type a,/3, K.  We obtain that (Pq)'=Pq, and (Pqf, g} =(f, Pq, g} 
for all fELq and gcL q'. If q=2, a Hilbert space argument yields the estimate 

IIP2flIL:+IlVPlIL~ ~<211fllL:, f E L 2, V p e G  2, (3.8) 

with C=C(2, fl)=2 not depending on 12. 

The Stokes operator Aq = i pq A : D ( Aq ) -+ L ~ , where D ( Aq ) = L q~ M w I ' q A w  2'q, sat- 

isfies the resolvent estimate 

I~IllulIL.+II&ulIL.~<CIIflILq , C = C ( ~ , q ,  f l )>O, 

where uED(Aq), Au+Aqu=f, )tCSe and O<e<�89 and the estimate 

Ilullw:,q <. CIIA~ulILo, C=C(q, fl). 

Furthermore, A'q= Aq, implying that  (Aqu, v}--(u, Aq, v) for all u~ D( Aq) and vE D( Aq,); 
see [2], [3], [9], [13], [15I, [16], [17], [21], [22] and [341. If q=2, we obtain by a Hilbert 

space argument that tED(A2), with Au+A2u=fEL2~, AES~, satisfies the estimate 

2 
I)'IllulIL~+II&ulIL~<CII/IIc~, C = 1 + - - ,  (3.9) 

COS C 

with C independent of ft. Moreover, since A2 is selfadjoint, 

(A2u, u) 112 2 =llm2 ullL~ =llVull~, t eD(A2) .  

Let l < q , r < o o ,  0 < T < o c  and f~Lr(O,T;Lq), uoED(Aq). 
operators e -tAq and the operators Jq,~ and fl /  given by q~r 

L 
t 

(,Tq,r)f(t) = e-(t-~)A"f(m) d~- 

(3.1o) 

Then the semigroup 

a r i a  - 
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are well defined for 0 ~< t ~< T, see [9] and [15]. Setting u (t) = e -  tAq uo + (,Tq,T f) (t) we obtain 

the unique solution uEL"(O,T;D(Aq)), utEL~(O,T;Lg), of the nonstationary Stokes 

system ut+Aqu=f, u(O)=u0, satisfying the estimate 

HUtlIL%L,)+IlUlIL,-(L~)+IIAqUlIL~(Lq) <~ C(IlUOIID(A~)+IIflIL%L~)) (3.11) 

with C=C(q, r, T, ~2) >0. For our application it is important that C = C ( 2 ,  r, T, ~2)= 

C(r,T) does not depend on f~ if q=2,  see [31] and [32, IV.1.6]. Analogously, u ( t )=  

e-(Y-t)Aquo+(Jq,~f)(t) is the unique solution of the system -ut+Aqu=f,  u(T)=uo, 
in L~(0, T; D(Aq)) with utEL~(O,T; L q) satisfying the estimate (3.11) with the same 

constant C; this result follows from the transformation ~z(t)=u(T-t), f ( t )=f (T- t ) .  
Further, we obtain the duality relation 

(J,,~) '  = J~, T,. (3.12) 

Finally we mention some well-known embedding estimates for Sobolev spaces on 

bounded C2-domains gt of type c~,/3, K, see [1, IV, Theorem 4.28], [10] and [32, II.1.3]. 

Given l < q < o c  and 0 < M ~ I ,  there exists some C=C(q, M, a,/3, K ) > 0  such that 

tlVullLq < M IIV2ulIL~ + C  IlulIL0 (3.13) 

for all uEW 2,q. If 2~<q<~ and O<M~<I, then there exists some C=C(q, M, a, ~, K)>0 
such that 

IlullL~ ~< MIIViullL 2 +CllullL ~ (3.14) 

for all uEW 2,2. Finally, let l<q,7<cx~ , l<r~<3 and 0~<a~<l such that 

Then 

( 1  ~ )  1 1  
7 -  + ( l - s )  = 7 .  

Ilul]Lq < c IIwll? , It IIL I-  

for all uEW~'TClL~ with C = C ( r ,  q,7)>O. 

(3.15) 

3.2. Helmholtz  projection in Lq; P r o o f  of  Theorem 2.1 

The proofs of the main theorems rest on the localization principle using the structure of 

the domain f~ of the type c~,/~, K > 0 ,  see w and the local estimates in w In the 

first step of each proof we assume that ~ is bounded. In this case cover ~ by domains 
of the form 

Uj=U~,z,hj(Xj)ABj, j = 1, 2, . . . ,N, (3.16) 
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wit h Bj = Br (xj), 0 < r = r (~,/~, K) < ~, xj E ~ and functions hj E C 2, where hj - 0 if xj E ~, 
and use the cut-off functions ~j as in (2.6) and (2.7). We may assume that  each Uj has 
the standard form H=H~,~,r,h, see (3.1) and (2.9). In the second step of each proof we 

consider the sequence of bounded subdomains my C ~  of the same type (~,/3, K,  see (2.8), 

and treat  the limit j--+oc. 

Step 1. ~ bounded. Let fEL  q, 2~<q<(x~, fo=PqfEL q and V p = f - f o E G  q. Then 

fEL  2, and we obtain, see w that  

Ilfol[L2nL~ + IIVPIIL~nLq < C IIfIIL2nL~ (3.17) 

with C=C(q, ~) >0. First we show that  the constant C in (3.17) can be chosen depending 

only on q, (~,/3 and K.  For this purpose consider in Uj the local equation 

Fj f  = ~jfo+ V(~j (p -  Mj)) -  (V~j)(p-Mj)  

with the constant Mj=Mj(p) such that  p-Mj=R'(Vp)ELg(Uj), see (3.7). Further- 

more, we use the solution w=R((V~j).fo)EW~'q(uj) of the equation divw=div(~jfo)= 
(V~j).foEL~(Uj), see (3.6). Then 

~j f  +(V~j) (p-  M j ) - w  = (~jfo-w)+ V(~j (p-Mj)  ) 

is the Helmholtz decomposition of ~gjf~-(V~gj)(p-Mj)-w in Lq(uj), and we may use 

estimate (3.3). 

First let 2 ~ q ~ 6 .  Then (3.6), (3.15) with r=~/=2,  and Poincar~'s inequality imply 

that  IlwllL~(Vj)<CIIfollL2(Vj) with C=C(q, a, ~, g ) > 0 .  Further, considering p-Mj ,  we 

apply (3.7), (3.15) and Poincarh's inequality to obtain with V p = f - f o  that  

IIP- Mj IIL~(Uj) <~ C(llfllL~(Uj) + IlfollL~(U~)), 

where C=C(q, ~,/~, K)>0. Combining these estimates we get the inequality 

II~j No II~q (gj)+ II~JVPllqLq<gj> ~ C( II f II~q<gj)+ lifo I1%(u3>) (3.18) 

with C=C(q, c~,/3, K ) > 0 .  Next we will take the sum for j = l ,  ..., N, and use the num- 

ber No=No(a ,  j3, K ) E N  introduced in w Hhlder's inequality and the reverse Hhlder 
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inequality (}--~N_ 1 lajlq) ~/q <~ ( E L 1  laJl') 1/'' This leads to the crucial estimate 

I I / o l l~ ( a )+ ] lVp l l~ , ( a )=s  ~dlfol dx+ EqojlVpl dx 
- -  " j = l  " 

N 

~<j~ o ~,j=A_~ll~yfolq dx+ X~/q' 
= f2 " j = l  

- o z_.., 11~sIolILq(Uj)+~-~ II~VPlIL~(U,) 
~'j=l j=l  

<CI II/ll~(s~)+ II/ollL=w,)) ) 

~<C2( q IlfllL~(a)+ll/o IIL~(a)) 

(3.19) 

with Ci=Ci(q, c~,/3, K ) > 0 ,  i=1, 2, and 2~<q~<6; this kind of estimate will be used in an 

analogous way also in the subsequent proofs in w and w 

In the case 6 < q < e c  we obtain the estimate (3.19) in the same way as above with 

IIf011q~(a) replaced by q I If011L6(a). Now we use the elementary interpolation estimate 

IlfollL6(a) ~<~7) IIfOHL2(~)+(1--~)el/(1--~)llfOIILq(a)' 

where 0 <'y < 1 is defined by 
1 _ ~ / ~  1 - ~  
6 2 q ' 

and where e > 0  is chosen sumciently small. Then the absorption principle yields the 

estimate 

IIfOIILq(a)+llVpllL~(a) <~C(llfllL~(a)+llfOIIL:(a)) , C--C(q,a ,~ ,K)  >0,  (3.20) 

also for q>6. Therefore, (3.20) holds for all 2 ~ q < c c .  Combining (3.20) with (3.8) we 

get (3.17) with C=C(q,a, fl, K)>O for all 2~q<c~ .  

Next we consider the case fEL2+L q, l < q < 2 .  Choose f lEL 2 and f2cL q with 

f =fl  + f2, []fllL2+Lq=llflllL~+]lf211Lq, and define 

fo=P2fl+Pqf2CL~+L~ and Vp=( I -P2) f I+( I -Pq) f2cG2+G q 
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yielding f = fo + Vp. Then we use the dual representation of the norm I I f0il L2+Lq, see w 

and obtain with (3.17), q '>2,  that  

[[fo,,L2+Lq =Snp{ [(P2fl+Pqf2'g)[ :O#gEL2NL q'} 

{ I(fl+f2'Pq'g}I '} 
=sup  IIglIL~L~' :O#gEL2NLq 

(3.21) 

<~sup{ (IIflIIL2+IIf21IL~)IIPq'gIIL=nLr :O~ gE L2NL q' } 
IlgllL2nLe 

<~ CIIflIL2+Lq 

with the same C=C(q, a,/3, K)>0 as valid for (3.17). It follows that  

IlfollL~+L~ +IlVPlIL~+Lo <. CIIflIL=+L~ 

with C=C(q, a,/3, K ) > 0 .  

Summarizing we obtain for every 1 <q < co and f EL q the estimate 

IIZolIL~+IIVPlIL~ ~CIIfllLq, C=C(q,a,/3, K)>0, (3.22) 

where Pqf=fo is defined by fo=Pqf if fELq=LeNL q, 2<~q<oc, and by fo=P2fl+Pqf2 
if f=f l+feELq=Le+L q, 1<q<2 .  Moreover, Vp=(I--Pq)fEGq=G2NG q if 2<~q<oc, 

and Vp = Vpl + Vp2 = (I - P2 ) fl + (I - Pq) f2 E Gq = G 2 -4- G q when 1 < q < 2. Thus we proved 

(2.10) for bounded domains g/, and we may conclude that  ['qf=Pqf holds for l < q < o c .  

Therefore, the other assertions of Theorem 2.1 are obvious for bounded domains. Note 

that  the choice of C=C(q, a,/3, K) in (2.10) is the only new property in this case. 

Step 2. f~ unbounded. Let fcLq(Ft), l < q < o c ,  and let fj=flajEZq(f~j), j E N ,  

be the restriction to the subdomain 12jC_f~, see (2.8). Our aim is to construct a unique 

solution pair f0 C L q (f~), Vp E Gq (ft) satisfying f = f0 + Vp. For this purpose we use Step 1 

with the decomposition 

fj = fj,o+VPj, where fj,o=Pqfj and VpjEGq(aj), 

and the uniform estimate 

I[fj,olltq(aj) +llVPjllzq(~,) <~ CIIfjllz~(aj) <~ CIIfllL~(a) (3.23) 

with C > 0  as in (3.22). Here consider Lq(F/j) as a subspace of Zq(f~) by extending each 

function on f~j by zero to get a function on ft. Since (La),=Lr and (Lr cf. w 

we may assume, suppressing subsequences, that there exist weak limits 

f0 =w-l imfj ,0  E Lq(f/) and V p = w - l i m V p  3 E Gq(f~) 
3--+00 3--+00 
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satisfying fo+Vp=f. Note that  Vpj treated as an element of Lq(t2) when extended by 

zero need not be a gradient; however, by de Rham's argument, cf. [35, Chapter I, (1.29)] 

or [32, p. 73], we see that  w-limj__+~Vpj is indeed a gradient. From (3.23) we obtain the 

estimate 

IlfollL~(a) +llVpllLq(a) < cllfllL~(a) (3.24) 

with C as in (3.23). To prove the uniqueness of the decomposition f=fo+Vp assume 

that  fo+Vp=O, foELq(i2), VpEGq(n). Then we use the construction above for any g =  

g0+Vhetr g0~t~(a), Vh~U(a) ,  and obtain that (/0,g)=-(Vp, g0)=0. Hence 
f0---Vp=0, and _Pqf=fo~Lq~ is well defined. Now the assertions of Theorem 2.1 and of 

Remark 2.2 are easy consequences. This completes the proof. 

3.3. T h e  S tokes  o p e r a t o r  in Lq; P r o o f  o f  T h e o r e m  2.3 

Step 1. f~ bounded. First we consider the Stokes equation -Au+Vp=f  with fEL q and 
uED(Aq)-rq (~ I/l/" l ' q  ( '/l/I72,q - ~  . . . .  0 . . . .  , l < q < c c ,  which is equivalent to the equation Aqu=f, and 

prove the preliminary estimate 

IIV2UHLq(a) + IIVPllLp(n) ~< C(II filLS(a)+ IlUllL~(a)) (3.25) 

with C=C(q, a, fl, K)>0 depending only on q and the type a,/~, K.  

This estimate has the important implication that  the graph norm liUIID(A~)= 
IlUlILo+IIAN~IILq is equivalent to the norm Ilullw2,0 on D(AN) with constants only de- 

pending on q, a , /~ and K. More precisely, 

ClllUlIw~,~ <<. IluIID(A~) < C2IlUllW~,q, ucD(Aq), (3.26) 

with CI=CI(q, a, t3, K)>0 and C2 =C2(q, a, ~, K)>0. 
To prove (3.25) we use Uj and pj, j=I,...,N, as in w and consider in Uj the 

local equation 

)~o(~ju-w)-A(~ju-w)+ V(~j(p- Mj) ) 

= ~j f+Aw-2V~j .Vu-(A~j)u+(V~j)(p-Mj)+)~o(~ju-w). 

Here A0 means the constant in (3.4), My=My(p) is a constant such that  p-My= 
R'(Vp)eLq(ft), see (3.7), and w=R((V~j).u)eW~'q(uj) is the solution of the equa- 

tion divw=div(~ju)=(V(pj).u, see (3.6). Then we apply (3.4) with A=)~0, and use the 

estimates 

IlwlIwl,q(~j) < CIlull~(~j), 

NWIIw2,q(Uj> ~ CllUIIWI'q(Uj), 
IIp-Mjiic~(uj) <~ C(IIflIL~(Uj) +IIVUIIL%Uh)), 
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with C=C(q,o~,/3, K ) > 0 ,  following from (3.6) and (3.7) applied to Vp=f+Au in Uj. 
Combining these estimates we are led to the local inequalities 

II~jV2uIlqiq(uj) +ll(pjV(p-Mj)tlqLq(U~) <~ C(llfllqio(uj) +ltull~v,,~(uj)) (3.27) 

with C=C(q,c~,I3, K)>O. Taking the sum over j = l ,  . . . ,N in the same way as in (3.19), 

and using the absorption argument to remove [IVullq,(n) with (3.13), we obtain the 

desired inequality (3.25). 
Next we consider the resolvent equation 

.Xu+Aqu=Au-Au+Vp=f inFt 

with fEL q, where l < q < c ~  and AESe, O<e<�89 Our first purpose is to prove for 

uED(Aq) and Vp=(I-Pq)Au, 2~<q<oo, the estimate 

I)q IlUIIL=nLq + IIV2ulIL=nL~ + II~PlIL=~L~ <~ CIIflIL~LO (3.28) 

with I A]/> 5 > 0, where 5 > 0 is given, and C = C(q, e, 5, a,/3, K )  > 0. Note that  this estimate 

is well known for bounded domains with C=C(q,e,5, ft)>O, see w In this case we 

obtain the local equation 

~ ( ~ - ~ ) - ~ ( ~ j ~ - ~ ) + v ( ~ j ( p -  Mj)) 
= ~jf+Aw-2V~j .Vu-(A~j)u-Aw+(V~j)(p-Mj) 

(3.29) 

with p-Mj=R'(Vp) and w=R((V~j).u) as above. 

First let 2~<q~6. Concerning w, we use the estimates above and the inequality 

IIwlIL~<U~> < cx Ilwllw~,~<uj) <~ c2 IlulIL~<U~>, 

Ci=Ci(q, a,/3, K)>0, i=1,  2. For p-Mj we use the above estimate and the inequality 

IIP-- Mj IIL~<Uj) < C( llfllL~<u~>-4-1~l IlulIL=<U3) + IlVUlIL~<U~) ) 

with C=C(q, c~,/3, K)>0. ~ r t h e r ,  to the local resolvent equation (3.29) we apply the 

estimate (3.4) with A replaced by A+A~, where ~ > 0  is sufficiently large such that  

IA+A~]~>A0 for ]A[~>5 , and A0 is as in (3.4). Then we combine these estimates and are 

led to the local inequality 

II~PJV u]]iq(g~) + ]I~JVPl]Lq(UJ) (3.30) 
~< C([[/[]qq(uj) + liull~o<u3)+ IlVullqqcu~)+ II;~ulI ~:(u~)) 
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with C=C(q, 6, e, c~, ~, K) >0. Next we take the sum over j = l ,  ..., N in the same way as 

in (3.19). This leads to the inequality 

Itl IlullLq(a) + llullLq(a) + llV2ullLq(a) + ilVPllLq(a) (3.31) 

<. C(llfllLqta) +llUllL~(a) +llVullLq(a) +lal IlUlIL~(a)) 
with C=C(q, 6, e,a,~,K)>O, I)q>S and 2~<q~6. Applying (3.13) we remove the term 

IlVullL~(a) in (3.31) by the absorption principle. 

If q>6, estimate (3.31) holds in the same way with the term lal bHL~(a) on the 

right-hand side replaced by IAI IlullL6(•). Now use the elementary estimate 

/1 \1 /~  
I)q IlullLa(a) <<. 7~ ~) Ill IlullL2(a)+(1-7Del/(l-~)lll  IlullL,(f~) 

with 0 < 7 < 1  such that  
1 -  7 1 _ 7 t  

6 2 q 

with sufficiently small e>0, and use the absorption principle. This proves (3.31) for all 

q~>2 without the term IlVUlIL~(a). Moreover, due to (3.14), the term IlUlfL~(a) may be 

removed from the right-hand side of (3.31). Now we combine this improved inequality 

(3.31) with estimate (3.9) for I~1~>~, and we apply (3.25) with q=2. This proves the 

desired estimate (3.28) for 2~<q<oc. 

Next let 1<q<2  and consider in f~ the (well-defined) equation A u - A u + V p = f  
with 2 q fEL~+L~, where uED(A2)+D(Aq), Vp=(I-Pq)AU and AE8~, I/~l~>6. Using 

f=Au-_PqAU and (3.28) with q '>2 we first obtain that  

IIfllL~+Lg =sup{ I(/~u-~qAu'v)l :Or q'} 

{ ,/~,~-P~,Av), ~ ~'} =sup ] ~  :Or 

{ ,<u,g>l ,} 
= s u p  II(AI_~q,A)_lgIIL~NLg ' :07/:gEL~NLq (3.32) 

I~_ { I<u,9}' :07&gEL2NLq~} 
i> sup IIglIL~L~' 

: ~ II"llh~ 
with C as in (3.28); see (2.11) concerning II~llh~L~. Hence we also get I)'111~IIL~+L~ ~< 
CIIfIIL~+L~ and even 

IAI IlullL~+Lg+llullL~+Lg+llAqullL~+Lg <~CIIfIIL~+Lg, AES~, IAI >/6. (3.33) 
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From the equivalence of the norms ][-]]D(Aq) and ][. ]]w2.q, cf. (3.26), and from (2.2) with 

BI=A2 and B2=Aq, we conclude that 

C1 ]]U[Iw:,2+w~,~ <. []ulin~+L~ + []AqUI[L~+L~ <~ C2 []U[[w2.:+w:,~, 

where Ci=Ci(q, E, a,/3, K),  i=l, 2. Then (3.33) and the identity Vp----f-Au+Au lead 

to the estimate 

]A[ I]ltiiL~+Lq 4-[IztIIw2.2+W2,q 4-[[VPIIL2+Lq <~ C[[fIIL~+L~ (3.34) 

with C=C(q, 5, e, a,/3, K ) > 0 .  

Since ft is bounded, we easily conclude that ~tqU---ff'qAu=Aqu for uED(Aq)= 
D(Aq), l < q < o c .  The only new result in this case is the validity of the estimate 

IAI I[ullt~ +llu[l~2.q +l[Vplltq <~ CIIII]L~, ue D(Aq), (3.35) 

with C=C(q, 5, c, a, 3, K) >0 when I~1/>5>0. Thus the proof of Theorem 2.3 is complete 

for bounded ft. 

Step 2. f~ unbounded. In principle we use the same arguments as in Step 2 of w 

with the bounded subdomains f~j C [2, j E N, see (2.8). 

1 Our aim is to construct a unique Let fELq(f2),  l < q < c c ,  and ACS~, 0<~<77r.  

solution uEL)q(~) of the equation 

Au-PqAu=Au-Au+Vp= f, Vp= (I-Pq)AU in f2 

satisfying estimate (2.12). For this purpose set fj=Pqf[f~j and consider the solution 

uj EL)q(f2j) of the equation 

)~uj-~"Aquj : )~Uj-AUj +Vpj = fj, Vpj = (I-Pq)AUj in t2j. 

From (3.35) we obtain the uniform estimate 

IA[ ]luJ [ILg(~)+ Iluj 11~2,~(aj)+ IIVPJ IIL~(aj) ~< CIIfllL~(a) (3.36) 

with I~1/>5>0 and C=C(q, 5, c, a, 3, K) >0. The same weak convergence argument as in 

Step 2 of w yields, suppressing subsequences, weak limits 

u=w-limu j in L~(f~) and Vp=w-limVpj in Zq(f~) 
3--+oo 3 ----r r 

satisfying uCDq(~2), Au-Au+Vp=Au-PqAu=f  in ~2 and (2.12). 

To prove the uniqueness of u we assume that there is some vEL)q(f~) and AcS~ 

satisfying Av-pqAv=O. Given f'cLq'(~) let ~Dq'(~) be a solution of ~ - ~ , A u : -  
Pq, f'. Then 

0 =  (Av- ff'qAV, U) = (v, (A-/3q, A ) u ) =  (v, ff'q, f ') = (v, f ')  

for all ffcLq'(ft); hence, v=0.  Thus we get that the equation Au+Aqu=f, AES~, has a 

unique solution u=(AI+Aq)-lf  satisfying (2.12). 
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3.4. Maximal  regularity in L q for the nonstationary Stokes system; P r o o f  of  
Theorem 2.5 

Step 1. Ft bounded. In principle we use the same arguments as in the previous proofs. 

Given 0 < T < o c  and l < s , q < o c  let 

(/0 II - IIL~cX<a)) = I1" IIL~tO,T;Xta)) : II' IlK dr) , 

where X(t2) is a Banach space of functions in t2; furthermore, we use the operators dTq,s 

and ,;Y~,~, see w and define ffq,~ and ,~q,~ for Iet~(O,T;tg) by 

(ffq,sf)(t)= e-(t-T)Aqf(T)dr and - '  = (ffq,J)(t) e-('~-t)Aqf(T) d~', 

0~<t,.<r. Since ~i;=~iq, ,  we obtain for all fEL~(O, T; Lq) and gELQO, T; L•') that  

{ ffq,~f , g}T -= {f , Yq,,~,g}T. 

First consider the case u0--0 and let s=q. Then u=ffq,qf solves the evolution system 

ut +ftqU=f, u(O)=0, and U=Jq,qf is the sotution of the system -ut+fiqU=f, u(T)=O. 
Our aim is to prove in both cases the estimate 

IlutllL~(LS(a))+llUllLq(~,~(a))+llVpllLq(L~(a)) ~< CII/[ILq(LS(a)) (3.37) 

with V p =  (I-Pq)AU and C=C(T, q, a,/3, K) >0. 

Observe that  it is sufficient to prove (3.37) for the case U=Jq,qf only. The other case 

follows using the transformation ~(t )=u(T- t ) ,  f(t)=z(r-t). Further, it is sufficient 

to prove (3.37) when 2<q<oo. For, using (Jq,q)'=ffq, q, and the duality principle in 

the same way as in (3.32), the case l < q < 2  is reduced to the c a s e 2 < q t < o c .  In this 

context we note that it is sufficient to prove instead of (3.37) the estimate [[ut II L~(gg (n>> ~< 

CllfllL~(tg(fl)). Actually, (3.37) follows using Aqumf-ltt, the simple identity u ( t )=  

f~ut(r) dr leading to the e s t i m a t e  [[Ull Lq(Lq (gl)) ~C[[%t[ILq(L~(fl)), C=C(T) )0, and the 

equivalence relation (3.26). 

Thus it remains to prove (3.37) with 2~<q<oo, where U=jq,qf solves 

ut + Aqu = ut - Au + Vp = f e L q (0, T; t q), u(O) = O, 

and V p =( I -P q )A u .  Using the well-known estimate (3.11) for bounded domains we 

know t ha t  U=Jq,qf satisfies (3.37) with C=C(T, q, t2)>0. Thus it remains to prove that  

C in (3.37) can be chosen depending only on T, q, a, ~ and K.  
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To prove this result consider the local equation 

Mj)) 
= ~ y f - w t  + A w - 2 V ~ j  . V u -  (A~y)u+(V~j) (p-Mj)  

in Uj, where w = R((V~j)-  u) e Lq (0, T; W 2 'q (Uj)) solves the equations div w = (V~j).  u 

and div wt = (V~y). ut for a.a. t E (0, T).  Here Uj and ~j, 1 ~<j ~< N, have the same meaning 

as in the previous proofs, and Mj--Mj (p) is a constant depending on t defined by p-My  = 
R'(Vp) eLq(O, T; L~)(Uj)). 

First let 2~<q~<6. Then from (3.6) and (3.7) using V p = f - u t + A u  we obtain the 

estimates 

IIV2WlIL~(L~(U~)) ~ C(IlUlIL~(L~(Uj)) +IIVUlIL~(Lq(Uj))), (3.38) 

IIP- Mj IIL~(L~(U~)) <~ C(NIIIL~(L~(U~)) + IlUt IILq(L2(Uj)) + IIVUlIL~(L~(Uj))), 

with C=C(q, a,/3, K ) > 0 .  Applying the local estimate (3.5) and using (3.38) we are led 

to the inequality 

q q 2 q q 

(3.39) 
q q q q 

<. C(IIIllL~(L~(Uj)) + IlUlILq(L~(U~)) + IIVUHL,(L~(Uj)) + IlUt IIL~(L2(U~))) 

with C--C(T, q, a,/~, K ) > 0 .  Next we argue in principle in the same way as in Step 1 

of w Take the sum over j= l ,  ..., N, remove the term IIVUlILq(L~(a)) with the absorp- 

tion argument using (3.13), then apply the estimate (3.11) to IlUtlIL~(L~(~)) with C--  

C(q, T ) > 0 .  If q>6,  we have to replace the term IlutllL~(L2(n)) by the term IlutllL~(L6(a)), 
and use the interpolation inequality 

Ilu IILq(LO( )) <<. ~ Ilut]lL~(L~(~))+(1--~/)~ ~/(1-~) Ilu IIL (Lo( )) 

with sufficiently small c>0.  This leads to the inequality 

for all 2~<q<oc with C=C(T,q,a,/~,K)>O, and completes the proof of (3.37) for 

l < q < o c .  In particular, this proves inequality (2.18) for the bounded domain ~ when 

u0=0. To prove (2.18) with uo~D(.4q) we solve the system ~tt+Aq~t=], ~(0)=0,  with 

]=f -Aquo .  Then u(t)--~(t)+uo yields the desired solution with uo~D(iiq). This 

proves Theorem 2.5 for bounded 12. 
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Step 2. ~2 unbounded. Using the same arguments as in Step 2 of w let f E  

L q (0, T; L~(a)) ,  1< q<oo, and consider the solution uj eLq(O, T; D(Aq)) of the system 

Uj,t§ Uj(0)  ~---0, 

with fj=-Pqf]aj, j c N ,  following Step 1. Then (3.37) applied to the domains ftj yields 

the uniform estimate 

Iluj,tllLq(Lg(as))-t-llujllLq(V/2.q(aj))+llVpjllLq(Lq(aj)) ~CIIfIILq(Lg(a)) (3.40) 

with Vpj =(I-_Pq)AUj and C=C(T, q, a, fl, K) >0. Suppressing subsequenees we obtain 

by the weak convergence argument the weak limits 

u = w-lira uj ~ Lq(O, T; L q(ft)) and Vp = w-lim Vpj C Lq(O, T; Lq(a)) 
3--+oo 3--+oo 

satisfying uE Lq(O, T; Dq(ft) ), Ut§ fitqU=U t -- /kU§ ~Tp= f , U ( 0 ) = 0 ,  and the estimate 

Ilut[LL~(L~(a))+llUllLo(~,~(a))+lIVplLL~(g~(a)) ~CIIfllLq(L~(a)), (3.41) 

with C as in (3.40), which is equivalent to inequality (2.18). 

The uniqueness of u follows in the same way as in Step 2 of w and the case 

u(O)=uoED(ftq) is treated as above in Step 1. The other properties in Theorem 2.5 are 

obvious. This completes the proof. 

3.5. S u i t a b l e  w e a k  so lu t ions ,  s t r o n g  e n e r g y  i n e q u a l i t y  a n d  L e r a y ' s  s t r u c t u r e  

r e s u l t  for  g e n e r a l  d o m a i n s ;  P r o o f  o f  T h e o r e m  2.7 

To construct a suitable weak solution u for the general uniform C2-domain ~ of type 

~,/3, K,  we use approximate solutions uk and the key estimate (2.18) in the formulation 

(2.21) with the exponent q=5; the reason for this exponent is the structure of the 

nonlinear term. Except for this estimate, all the other approximation arguments axe 

well known in principle; here we follow the construction in [32, Chapter V]. However, it 

is easier first to consider a bounded domain ~ and then to treat the subdomains ~ j  with 

j--~cc as in the previous proofs. Fhrthermore, we may assume without loss of generality 

that  0 < T < o c ,  and consequently that  T~=T in (2.25); if T=oo we consider a sequence 

O<TI<T2 < ... with l imj~oo T~ =oo,  and continue the construction of u step by step. 

Moreover, we may assume that  u0=0 in the following proof. The case u0#0  can be 

reduced to this case in two steps: If uo E D(fdq), we replace u(t) by ~2( t )=u( t ) -  e-A2tuo in 

the linear part  of the equation (2.23). Hence g(0)=0,  and the argument for u0=0 yields 
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(2.25) with E=0 and u replaced by ~. Since uoED(Aq), we conclude that (2.25) holds 

for u with c=0. If uoEL~ only, we choose any 0 < c < T ,  use that e-A2tuo=e-A2(t-e)uo,e 
with Uo,~=e-A~uoED(A2)cD(flq), q=5, and conclude from the validity of (2.25) for 

and ~=0, that (2.25) holds for u in the restricted interval (e, T'). This information is 

sufficient to prove (2.26) and (2.27). 

Thus we may assume that u0=0 and 0 < T ' = T < e o ,  and we prove (2.25) with ~=0. 
5 Further let fELq(O, T; L2(Ft)) and q= ~. 

Step 1. ft bounded. Following [32, V.3.3], we use the Yosida operators 

Jk=(I+k-lA~/2) -1, kEN, 

and find solutions u=ua of the approximate Navier-Stokes system 

ut-Au+(Jku) .Vu+Vp=f,  d i vu=0 ,  ulo~=O, u(0)=0,  (3.42) 

on (0, T). Further, we recall the estimates 

1 U 2 ~ll klIL~(L~(a))+IlWkII~(L~(~)) <- CO 2 [IftlL~(L~(a))' 

IlUkll~(L~(a)) ~< CIIfllc,(L~(a)), 

where 5~>2,'~>2, 2/"/+3/5=3/2, C=C('y, 5)>0, and 

.< 2 I[&Uk'VUkIIL~(L~(a)) ~ ClIfltil(i~(~)), 

Co >0, 
(3.43) 

where 1 <% 5<2, 2/7+3/5=4, C=C(% 5)>0; see [32, V.2.2, (2.2.5), and V.1.2] concern- 

ing these properties. 

Moreover, due to (3.37), 

[lu~,~ It iq<i~(a)> + Iluk IIi~<w~,~<~)> + IlVPk [I L~<iq(a)) (3.44) 
<<C( 2 5 C=C(T,a,13, K)>O. IIfHLq(L2(n))+]IfIILI(L2(n))), q= ~, 

Using these uniform boundedness properties we conclude letting k--+cx~ (and sup- 

pressing subsequences) that there exists a weak solution u of the system (2.23) with the 

following weak ("-~") and strong ( "~" )  convergence properties, respectively: 

Uk - - x U  

Uk --+ U 

Vuk -~ ~uk 

uk(t) -+ ~(t) 

in L2(0, T; W1'2(a)), 

in L2(0, T; L~(ft)) (since f~ is bounded), 

in L2(0, T; L2 (ft)), 

in L~(f~) for a.a. tE[0, T), 
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5 and (uk,t, uk, Vuk, V2uk, Vpk) --~ (ut, u, Vu, V2u, Vp) in Lq(O, T; Lq(~)), where q= ~. 

Moreover, Poincar6's inequality shows that 

H Pk--Mk IlL~(/~(a)) ~ C IlVpk IlLq(Lq(a)), (3.45) 

where q = [ ,  r : ~ ,  Mk:Mk(pk)=(1/If~t) fnPk dx and C:C(T, f~)>0. 

Hence we conclude that the estimates (3.43) and (3.44) also hold with uk and Vpk 

replaced by u and Vp, and that 

pk--Mk~) inLq(0, T;Lr(f~)) 

for some ]3ELq(O, T; Lr(f~)) satisfying V/5=Vp. Choosing M=M(t) such that ~=p-M, 
(3.45) holds with Pk-Mk and Vpk replaced by p - M  and Vp. 

Let CEC~(R3). An elementary calculation yields for all O<<.s<<.t<~T the equality 

1 ~ t  
~llCuk(t)ll~+ IlCVukll~ dT 

-21 f t 21 f f  (Vlukl2, Vr dT (3.46) = IlCuk(s)ll~ +j~ (Of, r d T -  

+ (�89162 (pk,uk.Vr 
, ] 8  

By the convergence properties above and writing the most problematic term in (3.46) 

in the form (Pk, uk-Vr 2) = (Pk-  Mk, uk. Vr we may let k converge to infinity in each 

term, using Lebesgue's dominated convergence theorem. Because of the weak convergence 

property concerning Vuk, equality (3.46) yields (2.26) for a.a. sE [0, T) and all tC Is, T). 
Finally the strong energy inequality (2.27) is a consequence of (2.26) with r  on ~2. 

Recall that the restriction concerning e in (2.25) is needed only for technical reasons if 
OCuoeL2\D(-~q). 

Step 2. f~ unbounded. Consider the bounded subdomains ~jC_f~, jEN,  as in (2.8), 

and let uj be a weak solution in f~j according to Step 1 with associated pressure term Vpj, 
satisfying 

uj,t-Auj+uj.Vuj+Vpj =fj, divuj =0, uj(0)=0,  ujloaj=O, (3.47) 

where fj=flaj. Applying the diagonal principle in the same way as in [32, Chapter V, 

(3.3.17)], we find a subsequence {uJ}j~--a of the sequence {uj}~= 1 and a weak solution u 

with pressure term Vp of the system (2.23) with the following convergence properties as 

j -+ oc (assuming for simplicity gj =uj): 
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(1) uj converges to u weakly in L2(0, T; wl '2 (~ -~ j0 ) )  a n d  strongly in L2(0, T; L2(12j0)) 

for each fixed jo; 

(2) Vuj converges to Vu weakly in L2(0, T; L2(f~jo)); 

(3) uj(t) converges to u(t) strongly in n2(ajo) for a.a. t e I0 ,T ) .  
Furthermore, uniformly in j EN, 

1 2 2 2 IlfllL~(L=(a)), IlVujIIL=(L=(aj)) <~ Co 
Iluj IIz~<z~<a~)) ~< CIIfllz'<z:(a)), 

where 7/>2, 5~>2, 2/7+3/5=3/2, C=C(%5)>O, and 

Co>0, 
(3.48) 

[[Uj .VUj[[L.r(LZ(~j) ) 2 <~ CIIflli,(i=(a)), 

where 1<7,(I<2, 2/7+3/(f=4, C=C(%5)>0 .  

Using the maximal regularity estimate (2.18) in the form (2.21) combined with the 

last estimate we are led to the inequality 

]]Uj,t ]]Lq( L 2(f~j)+ Lq(~j )) "~ ]]Uj I[Lq(W2,2(~j )q-W2,q(~j) ) "~ ]]Vpj ]]Lq( L2(~j )-F Lq(f~j) ) 
~< C( 2 (3.49) 

Ilflliq(i~(a)) +llfllil(i=(a))) 

_5 and C=C(T,a,/3,  K)>O not depending on jEN.  Thus we may conclude with q -  

without loss of generality, see the previous proofs, that 

(uj,t, uj, Vuj, V2uj, Vpj) ~ (ut, u, Vu, V2u, Vp) in L q(O, T, L 2 (s q (ft)) 

as j-+oc, and that (3.49) holds with uj and flj replaced by u and t~. This proves (2.25) 

for u0=0. 

To prove the local energy inequality (2.26) choose j0 such that ~ N supp r _C ~tjo , use 

(2.26) from Step 1 for ~j and uj, j>~jo, and let j--+c~ using the convergence properties 

above. This proves (2.26) for u and ~. 

To prove (2.27) we choose a sequence CjcC~(R3) ,  j e N ,  satisfying 0<r and 

[Vr ~<C0 with some constant Co, and with limj-,oo Cj(x)=l  and limj~ooVr for 
all xCR 3. Setting r162 in (2.26) we obtain the desired inequality (2.27) by letting 

j---~ O0. 

Now the proof of Theorem 2.7 is complete. 
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