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1. Introduction

Throughout this paper, QCR? means a general 3-dimensional domain with uniform
C?-boundary 0Q+#@, where the main interest is focussed on domains with noncompact
boundary 9€2. As is well known, the standard approach to the Stokes equations in L9-
spaces, 1 <g<oo, cannot be extended to general unbounded domains in L?, g£2; for
counterexamples concerning the Helmholtz decomposition, see [7] and [24]. However, to
develop a complete and analogous theory of the Stokes equations for arbitrary domains,
we replace the space LY(Q)) by

- LAQ)NLY(Q), 2<g< oo,
LiQ)=
LA Q)+LI(Q), 1<g<2.
First we prove the existence of the Helmholtz projection P for the space L4(Q) yielding

the decomposition f=fo+Vp, fo=Pf, with properties corresponding to those in LI().
In the next step we consider in L?(€) the usual resolvent equation

A—Au+Vp=f, dive=0 inQ, wu|pa=0, (1.1)

with A in the sector SE::{O;&)\EC :|arg )\|<%7r+s}, O<e< %71'. We prove an Li-estimate
similar to that in L(Q), i.e.,

AHull g HIV2ull o + VP 20 CllFl 2oy 1<g <00, (1.2)

at least when |A|>6>0 and C=C(Q,¢,¢,8)>0.

The Stokes operator A=—PA is well defined in L2(f2), 1<g<oc, and the semi-
group {e~4*:¢>0} is (locally in time) bounded and analytic in some sector {0#£t€C:
larg t|<e’}, 0<e’<im, of the complex plane.
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Further, we prove the maximal regularity estimate of the nonstationary Stokes sys-

tem
w—Au+Vp=f, divu=0 inQx(0,T), (1.3)
U|3Q:0, u(O)ZU‘Oa )
with 0<T <00. To be more precise, if ug=0 for simplicity, then
lelly, Hlully, + 1 V2ully, + 1 Velly, <Cliflly,, (1.4)

where Y,=L9(0,T; I~/‘1(Q)) and C=C(T,q,a,3,K)>0 depends on T, q and the type
a, B, K of Q, see §2.3.
As an application of these linear results we obtain the existence of a so-called suitable
weak solution u of the Navier-Stokes system
us—Au+u-Vu+Vp=f, divu=0 inQx(0,T),

ulon =0, u(0)=1uo, (1.5)

with special regularity properties which are new up to now for general domains, see the
conjecture in [8, p. 780]. In particular, we get for general domains the regularity property

Vpe L¥4((0,T)x0), (1.6)

loc

which is needed in the partial regularity theory of the Navier—Stokes equations. Moreover,
u satisfies the local energy inequality, see (2.26) below and (8, (2.5)], as well as the strong
energy inequality

i t
IO+ [ 19ular < 3@+ [ (rwar (L7)

for a.a. s€[0,T) including s=0 and all ¢ with s<t<T, see [25]. This result is essen-
tially known for domains with compact boundaries; see [32, Chapter V, Theorems 3.6.2
and 3.4.1] for bounded domains, and [14], [26], [29], [33] and [37] for exterior domains.

2. Preliminaries and main results
2.1. Sum and intersection spaces

We recall some properties of sum and intersection spaces known from interpolation theory,
cf. [4], [5], [27] and [36].

Consider two (complex) Banach spaces X; and X3 with norms | - [|x, and || - [|x,,
respectively, and assume that both X; and X5 are subspaces of a topological vector
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space V with continuous embeddings X; CV and X5 CV. Further, we assume that the
intersection X;N X5 is a dense subspace of both X; and X5 in the corresponding norms.
Then the sum space

Xi+Xo:={uitus:u1€ X1, ug€ Xo} CV
is a well-defined Banach space with the norm
lwllx, +x5 = nf{||u1 |} x, +]|uzllx, : =11 +uz, us € X1, ug € Xo}.
Another formulation of that norm is given by
lur +ua |l x, +x, = inf{|ju; —v||x, +|jus+v|x,: v€ X1N X2}
The intersection space X;N X5 is a Banach space with norm
llull s nx, = max{lullx,, lullx,},

which is equivalent to |lulx,+]||u/x,. Note that the space X;+Xs can be identi-
fied isometrically with the quotient space (X x X3)/D, where D={(—v,v):veX1NX>},
identifying u=u;+u2€X;+Xs with the equivalence class [(uy,uz2)]={(u1—v,uzs+v):
veX1NX,}.

Next we consider the dual spaces X and X} of X; and X, respectively, with norms

[{u, f)]

[l x,

“f||X;=SUP{ :075ueXi}, i=1,2.

In both cases, (u, f) denotes the value of some functional f at some element u, and (-, -)
is called the natural pairing between the space X; and its dual space X]. Note that
[[ullx, =sup{[(u, )| /| fllx;: 0# fE X}

Since X;N X5 is dense in X; and in X3, we can identify two elements f;€ X; and
f2€ X5, writing fi=f,, if and only if (u, f;)=(u, fo) holds for all u€ X;NX>. In this
way the intersection X{NX/ is a well-defined Banach space with norm || f|| X|nX,=
ma,x{||f||X{, Ifllx;}. The dual space (X1+X32)" of X1+X, is given by X{NXj5, and
we get

(X1+X2) =X1nX}

with the natural pairing
(U, f> = <u17f>+<u’27f>

for all u=u; +uz€ X1+ X3 and fe X{NXJ,. Thus it holds that

(w1, ) +{uz, )|

:O#fEX{ﬂXé}
Il x1n

lllesxa = sup{
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and
|(u17f>+<u27f>I

Wl = sup{
! 2 ||u||X1+X2

see [5, p. 32] and (36, p. 69]. Therefore, |(u, f)|<|lullx,+x. I fllx;nx;-
By analogy, we obtain that

20¢UZU1+U2€X1+X2};

(X1NXz) = X1 +X;
with the natural pairing (u, f1+ f2) ={(u, f1)+{u, f2).

Consider closed subspaces L1 C X; and Ly C X5 equipped with norms || - |[z,=] - ||x,
and | - |lz,=l - llx,, and assume that L1NLy is dense in both L; and Ly in the corre-
sponding norms. Then |lullz,nr,=|ullx,nx,, “€L1NL2, and an elementary argument,
using the Hahn—Banach theorem, shows that also

lellzyvr, = llullxi+x25  w€Lit+La. (2.1)

In particular, we need the following special case. Let B;:D(B:1)—X; and Bj:
D(B,)— X, be closed linear operators with dense domains D(B;)CX; and D(B;)C X»
equipped with graph norms

lull oesyy = lullx, +|Brullx, and |lulps,) = llullx, +|Baullx,-

We assume that D(B;)ND(Bs) is dense in both D(B;) and D(Bs) in the correspond-
ing graph norms. Each functional FeD(B;), i=1,2, is given by some pair f,g€X] in
the form (u, F)=(u, f)+(B;u,g). Using (2.1) with L;={(u, B;u):u€D(B;)} C X; x X,
i=1,2, and the equality of norms || - ||(x,xx;)+(x2xx2) 304 || [[(x,+X2)x (X1 +X;) 0D
(X1x X1)+(X2x X3), we conclude that for each ue D(B;)+D(Bz) with decomposition
u=uy +uz, m€D(By), ua€ D(By),

lullpBy)+D(B2) = 1w +uzllx, +x, + [ Brut +Bauzl x;, +x,- (2.2)

Suppose that X; and X, are reflexive Banach spaces implying that each bounded
sequence in X; (and X3) has a weakly convergent subsequence. This argument yields
the following property: Given u€X;+ X5 there exist uy€ X1 and up€ Xo with u=u1+us
such that

llll x4+, = llua llx, + [luzllx - (2:3)

2.2. Function spaces

In the following let D;=8/0x;, j=1,2,3, z=(z1, 2, 23) EQCR3, V=(Dy, Do, D3) and
V2=(DjDk)j,k=1,2,3. The spaces of smooth functions on {2 are denoted as usual by
Ck (), C*(Q) and C§(Q) with ke Ny=NU{0} or k=00. We set

C5o, () = {u = (u1, uz,u3) € C5°(2) : divu =0}



AN L9-APPROACH TO STOKES AND NAVIER-STOKES EQUATIONS 25

Let 1<g<oo and ¢'=gq/(g—1) such that 1/q+1/¢’=1. Then L%(?) with norm
l|u)| La ={|u|lq=]|lu|lq,o denotes the usual Lebesgue space for scalar or vector fields. Each
F=(f1, fo, f3)€LT(Q)=L() will be identified with the functional (-, f):u~s(u, f)=
(u, fla=fqu-fdz on LI(Q). Let LI(Q)=Co (0 )” ”qCLq(Q) denote the subspace of
divergence-free vector fields uw=(u1,us2,u3) with normal component N-u|sa=0 at 0€;
here N means the outer normal at §Q2. The usual Sobolev spaces W*4(£) are mainly used
for k=1,2 with norms [|lullw.e=[lull1,¢=llullrq.a=lulls+[Vully and [[ufwzc=|lu]z,q=
[wll2,q,0=|lull1,q+{|V?ull4, respectively. Further, we need the subspaces

Wi @) =T M cwaQ) and WEIQ)=C @) M cwlaq).

For simplicity, we will write C*, LY, W19, etc. instead of C*(Q), LI(Q), Wh(Q),
respectively, when the underlying domain is known from the context. Moreover, we will
use the same notation for spaces of scalar-, vector- and matrix-valued functions.

The sum space L2+ L9 is well defined when V in §2.1 is the space of distributions
with the usual topology. We obtain that

(L*+L9) =I2NLY and (L2NLY) =L*+LY,
where |[ul| 12 o =max{||ull2, lull,} and

el Le = inf{flug l2+ Juzllq : = uy +uz, U1EL2> up € L7}

:sup{wzo#feLzﬂqu}.

1fll oL

For the nonstationary problem on some time interval [0,7), 0<T <00, we need the
usual Banach space L°(0,T; X) of measurable X-valued (classes of) functions v with

T 1/5
Ls(o,T;X>=< / ||u<t>||3<dt) l<s<oo,
0

where X is a Banach space. For s=00 let

norm

e}

XZO<t<T}.

|| oo 0,75 x) = ess sup{]|u(t)

If X is reflexive and 1< s< oo, then the dual space of LS(O T; X)is given by L*(0,T; X ) =
L0, T; X), s'=s/(s—1), with the natural pairing (u, f)r fo u(t), f()) dt; see [20].
Let X=1L9(f2), 1<g<oo. Then we use the notation

lwllLs0,7;00) = el Lo (pay = (/OTHuH; dt)l/s.
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Moreover, the pairing of L*(0,T;L9) with its dual LSI(O, T;L?) is given by (u, f)r=
(u, f>Q,T=fOTfQu-f drdt if 1<s<oo.
Let Y1=L*(0,T; L?) and Yo,=L*(0,T; L9) with 1<gq, s<co. Then we see that

(Y\+Yy) =Y{NY, =L, T; L*nLY )= L5(0, T; L*+ LYY,

and therefore Y +Y>,=L%(0,T; L?+ L9); the pairing between Y;+Y> and Y{NY; is given
by (ui+us, fyr={(u1, f)r+(uz2, f)7 for u1€Y1, up€Y, and f€Y/NY;. Furthermore, we
can choose the decomposition u=u; +uy€ L*(0,T; L?+L9) in such a way that

lullv, +v, =l llv; + w2y, - (2.4)

We conclude that

|(u1+uz, )

lu1+uzlly,+v, = sup{ 7| :0#£feL°(0,T; LzﬂLq')}. (2.5)
[ fllvyny;

2.3. Structure properties of the boundary 99

We recall some well-known technical details on the uniform C?-domain QCR3, see, e.g.,
(1, p. 67], [18, p. 645] and [32, p. 26]. By definition, this means that there are constants
a, 3, K >0 with the following properties:

For each 2, €002 we can choose a Cartesian coordinate system with origin z¢ and
coordinates y=(y1,y2,y3)=(¥,v3), ¥ =(v1,%2), obtained by some translation and rota-
tion, as well as some C2-function h(y'), |y'|<e, with C%-norm ||h|jc2 <K, such that the
neighborhood

Ua,8,n(z0) :i={(¥, y3) : h(y')—B<ys <h(y')+8, l¥| <a}

of xg satisfies

Uapn(@o) ={(¥,y3) 1 A(y') =B <ys <h(¥'), ly'| <o} =QNUa,g,n(0),

and
ONUq, g,1(zo) ={(¥/,y3) : h(¥') = y3, [¥| <}
Without loss of generality we may assume that the axes of y'=(y1,y2) are con-
tained in the tangential plane at zo. Thus at ¢’=(0,0) we have h(y')=0 and V'h(y')=

(Oh/0y1,0h/dy2)=(0,0). Therefore, for any given constant My >0, we may choose a>0
sufficiently small such that a smallness condition of the form

[V'hllco = max{|V'h(y)| : [y/| <o} < Mo
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is satisfied. It is important to note that the constants «, 8, K >0 do not depend on zo €.
We call a, 3, K the type of €.

Let Q be the closure of Q and let B, (z)={w€R?:|w—z|<r} be the open ball with
center z€R3 and radius r>0. Then we can choose some fixed r€(0,«) depending only
on a, 8, K, balls B;=B,(z;) with centers z; €2, and C2-functions h;(y), |y'|<a, where
j=1,2,.., N if Q is bounded and jeN if §2 is unbounded, such that

_ N _ oo
QC |JB; and QC |JBj, respectively,
j=1 5=1 (2.6)

B; CUq gh,(z4) if 3;€09, B;CQ if z;€Q

Moreover, we can construct this covering in such a way that not more than a fixed finite
number No=Ny(a, 8, K)€N of these balls By, Bs,... can have a nonempty intersection.
Thus if we choose any Np+1 different balls By, Bs, ..., then their common intersection is
empty. If Q is bounded, let Ng=N.

Concerning {B;}, there exists a partition of unity ¢;€C5°(R3) with 0<¢;<1,
supp ¢; CBj, j=1,..., N or jeN, satisfying

N o
Z pj(z)=1 and Z @;(x)=1, respectively, for all z€€, (2.7)
j=1 =1

and the pointwise estimates |V, (z)|, |VZp;(z)|<C uniformly with respect to x and j,
where C=C(e, 8, K).

If Q is unbounded, we can represent {) as a union of countably many bounded
C?-subdomains Q;C€), jEN, such that

oo

Qj - Qj-i—l for all jEN, Q= U Qj, (28)

j=1

and such that each 2; has some fixed type o/, 3, K’'>0. Without loss of generality we
may assume that a=a’, 3=0' and K=K': each subdomain €2;, €N, has the same type
a,B,K as Q, see [18, p. 665]. Obviously each compact subset 2, C€ is contained in
some );, and therefore in each Qy, k>j; see [32, p. 56, Remark 1.4.2].

Finally we need a technical property in subsequent proofs. Given a ball B,(z)CR?
consider some Cartesian coordinate system with origin x and coordinates y=(y’,ys).
Then B (z):={y=(v,y3): |y|<r, y3<0} is called a half-ball with center z and radius r.
We may assume without loss of generality that there are appropriate half-balls B; =
B; (z;) of the balls B, in (2.6) and (2.7) such that

suppp; CB;  if z; €0, where j=1,..,N or jEN. (2.9)
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2.4. Main results on the Stokes equations

We can extend several important L?-properties of the Stokes equations known for special
domains, such as bounded or exterior domains, to general domains € if we replace the

usual L9-space by the space

LT=L1(Q)=L*(NLYQ) for 2<q< oo,

and by the space

LI=L9(Q)=L*(Q)+LY(Q) forl<g<2.

Note that L9 is smaller than L9 when g>2, and larger than L? when 1<¢<2, but
that L2=L2. Analogously, we define the subspace L2=_L(Q)CL(2) by setting Ld=
LZ(MNLL(RQ) for 2<g< o0, and LI=L2(Q)+ LI () for 1<g<2.

In the same way we modify the L9-Sobolev spaces W*4(Q) and the spaces

G ={VpeL:pe L, (D}, IVpllge =1IVpl|Le,

loc

DUQ) = LMW (NW>4(Q),  |lullpe = [ullwe.s,
1< g< oo, as follows: For 2<g< oo let

Wha(Q) = W2 Q)nwke(Q),

and for 1<g<2 let

Wha(@) = W)+ Wh(9),
G*(Q)+G(Q),
DY(Q) = D?*(Q)+D(Q),

Q
3
=

I

k=1,2. Then the norms | - |G k., || - l|g. and || - || 5, are well defined. If €2 is bounded,
then LI=L% LI=L%, G9=G9, DI=D? and W*9=W*4 hold with equivalent norms.
Thus the introduction of “~”-gpaces is reasonable only for unbounded domains.

Our first result yields the existence of the Helmholtz projection in L9(Q). The
counterexamples in [7] and [24] show that the usual L?-theory for special domains cannot
be extended to Q for arbitrary ¢#2. It is important to note that the constants C'=
C(q,a, 8, K)>0 below only depend on ¢ and the type o, 3, K of the domain 2.
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THEOREM 2.1. (Helmholtz decomposition.) Let QCR? be a uniform C?-domain
of type o, 3, K>0 and let 1<q<oo, ¢=q/(q—1). Then for each feLd there exists a
unique decomposition f=fo+Vp with foef/g and Vp€& G4 satisfying the estimate

Ifollze +IVPlze <Clfllge, €=C(g,0,8,K)>0. (2.10)

The Helmholtz projection P:ﬁq defined by ]3q f=1fo is a bounded operator from L onto
LY satisfying Isqf:f if feLl, and ﬁq(Vp)zﬂ if VpeGa. Moreover, (Pof,9)=(f,Py9)
for all feL9 and geL9.

Remark 2.2. By Theorem 2.1 we conclude that ﬁé:ﬁq/ for the dual operator
P,=(P,)" of P,, 1<q<oo, and (L3)'=L% with pairing (-,-). We also get that the

norm defined by

fullyy =sow{ {502 pe g}, et (2.11)
7 ”f”ig’

is equivalent to the norm [luf| ;o =l|u|z, in the sense that [|ullt, <[lullze <Cllull}, with
C=C(q,a,8,K)>0 from (2.10).
The usual L?-Stokes operator A=A, with domain
D(Ay)=D'=LINWyinW>IC L2

and range R(A,)C LY defined by A,u=—P,Au is meaningful if the Helmholtz projection
P,: L9— LY is well defined. Thus, because of the counterexamples, see [7] and [24], we
cannot expect that this theory is extendable to general domains € for ¢#2 without
modification of the Li-space.

Next we will show that the usual Stokes estimate, at least for |A|>d>0, remains
valid for Q when we replace the L9-theory by the L?-theory. More precisely, let the
Stokes operator A=A, be defined as an operator with domain D(Aq):f)qgfig into Lg,
by setting

Agju= —ﬁq Au, wueD.
Let I be the identity and S;={0#AC: larg A\|[<im+e}, 0<e<im.

THEOREM 2.3. (Stokes resolvent.) Let QCRS3 be a uniform C*-domain of type
@, B, K>0 and let 1<g<oo, ¢'=q/(q—1), 0<e<jm and §>0. Then

A,=-P,A:D(A,)— L%, D(A,)cL,
is a densely defined closed operator, the resolvent (\[+A,)": L2 — LY is well defined for
all XES., and for u=(AI+A,)"'f, feLY, the estimate
(ANl zg +llwllpe. <ClFlzg, 1A=, (2.12)
with C=C(q,¢,0,«, 3, K)>0, is satisfied. Further, the following duality relation holds:

(Agu,v) = (u, Agv), ueD(A,), veD(Ay). (2.13)
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Remark 2.4. (a) From (2.12) we conclude that —A, generates a C°-semigroup
{e7t4e:t>0} which has an analytic extension to some sector {0#tcC:largt|<e’},
0<e’< m, satisfying the estimate

le~tAf |l ;o < Me® | fllzq, feLf, t>0, (2.14)

with M=M(q,8,«, 3, K)>0. Note that §>0 may be chosen arbitrarily small, but we
cannot prove up to now whether (2.14) holds with 6=0 for the general domain .

(b) Let feld 1<g<oo, AES. and |[A|>0d, and set u=(/\I+Aq)“1]5qf and Vp=
(I-ﬁq)(f+Au). Then we get a unique solution pair u€ D(A,), VpeGY of the equation
M—Au+Vp=f, and by (2.12),

Il o + 1Vl o +1IVPl e < ClFll 2 (2.15)

where C=C{(q,¢,4,a, 3, K)>0.
(c) Due to (2.15) the graph norm [lul|p 5 ,=llullz¢ +||flqu||ig on the Banach space
D(A,) satisfies the estimate

Cllllgpas <lullpia,) <C'llulgae:  weD(Ay), (2.16)
with constants C=C(g, «, 8, K)>0 and C'=C"(q, o, 8, K)>0. Hence the norms ||u||2.,
and |[ull 5 ,) are equivalent.

Another important property is the maximal regularity estimate of the nonstationary
Stokes equation (1.3), which can be written, applying the Helmholtz projection, in the
form

w+Au=f, u0)=uo. (2.17)

For simplicity, we do not use the weakest possible norm for the initial value ug, see
Remark 2.6 (a).

THEOREM 2.5. (Nonstationary Stokes system.) Let QCR3 be a uniform C?-domain
of type a, B, K >0, and let 0<T <00, Y,=L9(0,T; %), 1<g<oo.

Then for each feY, and each uo€ D(A,) there exists a unique solution
ue L90,T; D(4,)), weY,,
of the evolution system (2.17), satisfying the estimate
luelly, + llly, + 1 Agully, < C(lluollpa,y +1£lv) (2.18)

with C=C(¢, T, 0,38, K)>0.



AN L9-APPROACH TO STOKES AND NAVIER-STOKES EQUATIONS 31

Remark 2.6. (a) The assumption ug€ D(A,) in this theorem is not optimal and may
be replaced by the weaker properties upeL? and f0T||Aqe_tA4u0||%g dt<oo. Then the

term ||u0||D(,qq) in (2.18) may be substituted by the weaker norm

T i 1/q
</0 |Age™" ‘1u0||qI:g dt) , l<g<oo. (2.19)
Furthermore, by (2.16), the estimate (2.18) implies that

[welly, +11wll oo 7720y < Clloll pea,y 1 llve ) (2.20)
where C=C(q, T, e, 3, K)>0. ~ )
(b) Let feY,=L4(0,T;L%) in Theorem 2.5 be replaced by fe€Y,=L%0,T;L?),
1<g<oco. Then ue€Li(0,T;D(Ay)), defined by u;+Au=F,f, and Vp, defined by
Vp(t)=(I—P,)(f+Au)(t), is a unique solution pair of the system
u—Au+Vp=f, u(0)=uo,
satisfying
luelly, +llully, +IV?ullp +1Vellg, < Cluollpa, +£lls,) (2.21)
with C=C(q,T, 0,8, K)>0.
Using (2.3) we see that in the case 1<g<2, the solution pair u, Vp possesses a
decomposition u=u +u®, Vp=Vp +Vp® such that ;
uWDeL90,T;w?),  uYeL9(0,T;L2),
u® e L90, T; w29,  uP e L9(0,T; LY), (2.22)
vpW e L90,T;L%), vp® e LI(0,T; LY,
and
el +llully, HIV2ullg, +1Vpllg, = etV oo +uDllpm + 172D lgm + V0D |50
Hu? oo + 1w lge

+[|V2ut® g+ [vp® g,

where }A’q(l)qu(O,T; L?) and ?q(Q)qu(O,T; L?).

2.5. Applications

As an application we construct a so-called suitable weak solution u of the instationary
Navier-Stokes system
u—Au+u-Vu+Vp=f, dive=0 in Qx(0,T),

(2.23)
ulan =0, u(0)=1uym,
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for the general domain QCR? with important additional properties. In particular, we
are interested in estimate (2.21) for g=2. The reason is that the energy properties
ueL*(0,T; L2) and VueL2(0,T; L?) imply that u-Vue L4(0,T; L?) with g=3. Hence,
shifting u-Vu in (2.23) to the right-hand side and considering for simplicity ug=0, we get
from (2.21) that Vpe L9(0,T; L+ L%) and Vpe LY _((0,T)x€2). This property is needed
in the local regularity theory as well as in the proof of the local energy estimate. It was
conjectured in (8, p. 780], and open up to now for general domains.

Moreover, we prove that u satisfies the strong energy inequality, see [14], [26], [32]
and [33], which was open for general domains as well. A consequence is Leray’s structure
theorem [23] for general domains; note that the proof in [23] concerns the entire space
R3 only.

We recall some definitions, see, e.g., [32] and [35]. The space C§°([0,T'); C§S,) con-
sists of smooth solenoidal vector fields v defined on [0,7T")x§2 with compact support
suppvC[0,T) % Q.

Let f€L%4(0,T; L?), 0<T <00, and ug€L2. Then a function

we L®(0,T; L2)NLE([0,T); Wy '2)

loc

is called a weak solution of (2.23) if and only if
—(u, vy, 7+ (Vu, Vo)a,r+(u-Vu,v)a,r = (uo, v(0)o+{f, v)o,r (2.24)

is satisfied for all veCg°([0,T); CgS,). We may assume without loss of generality that u
is weakly continuous as a function from [0,T") to L.

We know that for each weak solution u there exists a distribution p in (0,7) x 2 such
that us —Au+u-Vu+Vp=f holds in the sense of distributions, see [19], [28] and [32];
p is called an associated pressure of u. However, for general 2 it is crucial whether p is
contained in any LI-type space; the problem in this context is the validity of the maximal
regularity estimate (2.21) for q:%.

The following result is essentially known for domains with compact boundaries; see
[32, Chapter V, Theorem 3.6.2] for bounded domains, and [26] and [33] for exterior

domains.

THEOREM 2.7. (Suitable weak solution.) Let QCR? be a uniform C?-domain of
type o, B, K, and let 0<T<oo, ¢g=2, f€L(0,T;L?) and ug€L:. Then there exists a
weak solution u€ L (0, T; L2)N LY ([0,T); Wy'2) (called a suitable weak solution) of the
system (2.23) and an associated pressure p with the following additional properties:

(a) Regularity:

us, u, Vu, V2u, Vp € L9e, T'; L*+ L7) (2.25)

for all 0<e<T'<T. If ug€D(A,), then (2.25) holds for e=0 and all 0<T'<T.
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(b) Local energy inequality:

t t
lou)i+ [ Iovular < gloul+ [ (of,0u) dr (226)

i t 1
—5 [ vy ars [(SuPeuve) i

for a.a. s€[0,T), all t€[s,T) and all e CL(R3).
(c) Strong energy inequality:

1 ¢ 1 ¢
I3+ [ IVl ar <G luE+ [ (o ar (2:27)

for a.a. s€[0,T) including s=0, and all te[s, T).

Remark 2.8. (a) From (2.25) we obtain the existence of some pressure p satisfying
peLlie, T L, (R), 0<e<T'<T, q=% =72, (2.28)

and we get that u€L2(0,T'; L%(Q2)), 0<T’'<T. This shows that (2.26) is well defined.
As in (2.22) we obtain decompositions u=u{") +u® and p=p™ +p? satisfying

uM, u®, vu®, V2@ vp® e L, T/, L?) for 0<e<T'<T (2.29)

and

u® u® vu® v2u® vp® e Lie T/, L) for 0<e<T'<T,  (2.30)

which holds with e=0 if additionally uo€ D(A,). Note that we may choose T'=T in
(2.25) if T<oo.

(b) To obtain Leray’s structure theorem for €2, see [23] for the case R3, let T=00
and assume for simplicity that f=0. Then u in Theorem 2.7, also called a turbulent weak
solution of (2.23), has the following properties: There exists a countable disjoint family
{Ii}32, of intervals in (0, 00) such that

(1) =(0,T1) and Ip=[Tw,o0) with some 0<T} KT <00;

(2) (0,00\Useo Ix| =0 and 33, |Ix|'/?<co, where |-| denotes the Lebesgue
measure;

(3) u(-,t)eC>=(Q) for every tely, k=0,1,....

These properties imply that the %—dimensional Hausdorff measure of the singular
set o={t€(0,00):u(-,t)¢C>®(Q)} is zero, see [8].
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3. Proofs
3.1. Preliminary local results

Using the structure properties of the given uniform C%-domain QCR?3 of type a, 3, K >0,
see §2.3, we are able to reduce our results by the localization principle to a standard

domain of the form

H=H,grn={,y3): h(y)-B<ys<h(y'), | <a}N By; (3.1)

here h:y'—h(y'), |¥'|<a, is a C?-function and B,=B,(0) a ball with radius 0<r=
r{a, 3, K)<a such that

B C{(yy3): h(y ) —B<ys<h(y')+8, ly'| <a}.

Further, we may assume that h(0)=0, V'h(0)=(0,0), h(y’)=0 for r<|y/|<a, and that h

satisfies the smallness condition
IV'hllco = max{|V'h(y")]: |¥/| < @} < Mo, (3.2)

where My >0 is a given constant. Recall that V'=(D,, D5).
In the subsequent proofs we can treat each problem for the standard domain (3.1)

as a problem in the domain
Hy,={(y,y3)eR*:y3<h(y'), y' €R*}

with he C2(R?); Hy, is called a bent half-space, see [9]. Then, using the smallness con-
dition (3.2), an equation in H} is considered as a perturbation of some equation in the
half-space Ho={(y/,y3)€eR3:y3<0}.

The following estimates in H=H, g, are well known. However, we have to check
that the constants in these estimates depend only on ¢, «, 8 and K; here we need the
smallness condition (3.2) on h.

Let 1<g<co. First we consider the Helmholtz decomposition in H. Let feLI(H),
fo€Li(H) and pec WY9(H) satisfy f=fo+Vp and supp foUsupppC B,. Then

I foll ety VPl Loy < Cll fllLacrry, C=C(g,2,6,K)>0, (3.3)

cf. [30, p. 12 and Lemma 3.8 (a)].
Next let f€L¢(H), ue L(H)NWy 9 (H)NW?9(H) and pc W9(H) satisfy

Au—Au+Vp=f
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with A€S,, see Theorem 2.3, and with suppuUsupppC B,.. Then there are constants
Xo=Xo(g, @, 8, K)>0 and C=C{q,a, 3, K)>0 such that

Al ull o ey + lullw2acamy + Vol ey < C N fll Lo (3.4)

if [A\[=Xo. To prove this estimate we use [9, p. 624] and apply [9, Theorem 3.1 (i) and
(1.2)].

The next estimate concerns the nonstationary Stokes equation in H. As usual the
Stokes operator is defined by A;=—P,A with domain

D(Ag) = LL(H)NWHI(H)NW>(H).

Let 0<T <co, ug€D(A,) and fe€L%(0,T;L4(H)), and let u€L4(0,T,D(Aq)) and pe
L9(0,T; Wh4(H)) satisfy supp uoUsupp u(t)Usupp p(t) C B, for a.a. t€[0,T]. Moreover,
assume that

u—Au+Vp=f, uw(0)=uy and -—ui—Au+Vp=7Ff, u(T)=ruo,
respectively. Then there is a constant C=C(q, o, 8, K, T)>0 such that

el Laco,7;pacary) +Hlwll Logo,miw2a () + VPl a0, 750 (1)) (3.5)
< Clluollw2acery+11 fllLe o, msLa(a)))-

In the case u(0)=wuq this estimate follows from [34, Theorem 4.1, (4.2) and (4.21")].
The second case —u;—~Au+Vp=f, u(T)=ug, can be reduced to the first case by the
transformation @(t)=u(T—t), f(t)=f(T—t), p(t)=p(T—t). The relatively strong as-
sumption ug€ D{A,) is used for simplicity and can be weakened as in Remark 2.6 (a).
Note that the conditions u(0)=ug and u(T)=ug, respectively, are well defined since
u €L9(0,T; L2).

Finally, we consider the divergence problem
divu=f in H, ulsg=0,

and let L{(H)={fe€L(H): [, f dz=0}. Then from [6] and [12, III, Theorem 3.2], we
obtain the existence of some linear operator R: L(H)—W,9(H) satisfying div Rf=f

and '
IR fllwracery SO\ fllLaca) if feL{(H),

(3.6)
IRflw2acery <Clfllwracey i f€LYH)NW,(H),

with C=C(q, o, 8, K )>0; moreover, RfeWZ(H) if fe LI(H)NWy*(H).
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The dual operator R’ of R maps W~19(H) into Lg/(H ). Thus for each peLY(H)
we find a unique constant M =M (p) satisfying p—M=R'(Vp)e L{(H) and the estimate

[(p, divv)|

np—Mqum<cuww-wm=08“p{ Vol

:O;éveWOl’q(H)} (3.7)

with C=C{(q, a, 8, K)>0.

Now let 2CR3 be a bounded C?-domain with boundary dQ. Obviously, such a
domain is of type o, 8, K. We collect several results on the Helmholtz projection P=F,
and the Stokes operator A=A4,, 1<g<oo. In this case the constant C below may depend
also on €2 except for g=2 where Hilbert space arguments are applicable.

It is known, see [11], [30] and [34], that each f€L? has a unique decomposition
f=fo+Vp, fo€LL, VpEGY, and that P,: L— LY defined by F,f=fq satisfies the esti-
mate ([P, fllre+||VpllLe <C| f|lze with C=C(g,§)>0; however, it is not clear whether
C depends only on the type a, 3, K. We obtain that (P,)’=P, and (P, f,g)=(f, Pyg)
for all feL9 and geL9. If g=2, a Hilbert space argument yields the estimate

1P2f Nl +IIVPlle <20 fllzz,  f€L?, VPEG?, (3.8)

with C=C(2,92)=2 not depending on Q.
The Stokes operator Ag=—FP,A: D(A,)— L%, where D(A,)=LINWyNW?29, sat-

isfies the resolvent estimate
M Nullze+ [ Aqullze < CllfllLe, C=Cleq,€) >0,
where u€D(A4,), Mu+Aqu=f, A\€S. and 0<e< 3, and the estimate
lullwza <CllAqullzs, C=C(g, ).

Furthermore, A = A, implying that (Agu,v)=(u, Agv) for all ue D(A,) and v€ D(Ay);
see [2], [3], [9], (13], [15], [16], [17], [21], [22] and [34]. If g=2, we obtain by a Hilbert
space argument that u€ D(Ay), with Au+Ayu=f€ L2, A€S;, satisfies the estimate

< =1 3.9
Mlullze +Hl Aol 2 SCI Sz, C=14—, (39)
with C independent of (2. Moreover, since A, is selfadjoint,

(Azu,u) =] Ay *ulfz = |VulF2,  u€D(42). (3.10)

Let 1<g,r<00, 0<T<oo and f€L"(0,T;L%), upe D{A;). Then the semigroup

—tA

operators e~ "¢ and the operators 7, » and jq’!r given by

t T
(Tar) F(t) = / e~ f(rydr and (J),f)(t)= / e DA (1) dr

0 t
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are well defined for 0<¢<T, see [9] and [15]. Setting u(t)=e*4aug+ (T, f)(t) we obtain
the unique solution u€L"(0,T; D(A,)), ut€L"(0,T;L%), of the nonstationary Stokes

system us +Aqu=f, u(0)=ug, satisfying the estimate
luellzreoy+llulir oy +Agull Lrey < Clluoll peay) + I f L (zay) (3.11)

with C=C(q,r,7,9)>0. For our application it is important that C=C(2,r,T,Q)=
C(r,T) does not depend on Q if ¢g=2, see [31] and [32, IV.1.6]. Analogously, u(t)=
e_(T‘t)Aquo%—(Jq"Tf)(t) is the unique solution of the system —u;+A,u=f, u(T)=uo,
in L™(0,T; D(A,)) with u,€L™(0,T; LL) satisfying the estimate (3.11) with the same

constant C'; this result follows from the transformation a(t)=u(T—t), f(t)=Ff(T—t).
Further, we obtain the duality relation

(jq,r)/:;jq//,rl- (312)

Finally we mention some well-known embedding estimates for Sobolev spaces on
bounded C?-domains 2 of type a, 3, K, see [1, IV, Theorem 4.28], [10] and [32, II.1.3].
Given 1<g<oo and 0<M <1, there exists some C=C(q, M, a, 3, K)>0 such that

IVullLe < M||V?ul| o +Clul| Lo (3.13)

for all ue W24, If 2<g< o0 and 0< M <1, then there exists some C=C{¢,M,c,3,K)>0
such that
lulles < M|Vl 2 +C||ul 12 (3.14)

for all ue W22, Finally, let 1<¢,v<o0, 1<r<3 and 0<a<1 such that
1 1 1 1
) 4(1—a)s=-.
a(?‘ 3)+( a)v q

lull e <CIVulgr ffull > (3.15)

Then

for all u€ W, "N LY with C=C(r, q,v)>0.

3.2. Helmbholtz projection in L9; Proof of Theorem 2.1

The proofs of the main theorems rest on the localization principle using the structure of
the domain €2 of the type o, 3, K>0, see §2.3, and the local estimates in §3.1. In the
first step of each proof we assume that 2 is bounded. In this case cover Q by domains
of the form

Uj:U;757hj($j)mBj j=1,2,...,N, (3.16)
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with B;=B,(z;), 0<r=r(a, 8, K)<a, ;€ and functions h; €C?, where h; =0 if z; €9,
and use the cut-off functions ¢, as in (2.6) and (2.7). We may assume that each U; has
the standard form H=H, g, see (3.1) and (2.9). In the second step of each proof we
consider the sequence of bounded subdomains ; CQ of the same type a, 8, K, see (2.8),
and treat the limit j—oo.

Step 1. Q bounded. Let feL9, 2<q<oo, fo=P,fe€Ll and Vp=f—fo€G? Then
f€L? and we obtain, see §3.1, that

Il follLzaza +IVPllL2are KClfllLenre (3.17)

with C=C(q,Q)>0. First we show that the constant C in (3.17) can be chosen depending
only on ¢, a, 3 and K. For this purpose consider in U; the local equation

0if =0 fot+Vip;(p—M;))—(Ve;)(p—M;)
with the constant M;=M;(p) such that p—M;=R'(Vp)eL§(U;), see (3.7). Further-

more, we use the solution w=R((Vy;) .fO)GW(le‘I(Uj) of the equation divw=div(p; fo)=
(V;)-fa€ LE(U;), see (3.6). Then

0if+(V;)(p—M;)—w=(p; fo—w)+V (0;(p—M;))
is the Helmholtz decomposition of ¢; f+(Ve;)(p—M;)~w in L¢(U;), and we may use
estimate (3.3).
First let 2<q<6. Then (3.6), (3.15) with r=vy=2, and Poincaré’s inequality imply

that ||l La(u,) <C |l foll2v,) with C=C(q, e, 8, K)>0. Further, considering p—M;, we
apply (3.7), (3.15) and Poincaré’s inequality to obtain with Vp=f— f, that

lp—M;ll e,y < CUIfllLaqw,y + I follLzwy))s
where C=C(q, a, 3, K)>0. Combining these estimates we get the inequality
105 0200y + 13 VI L0y < CULF S aquyy + 1 ollbacer) (3.18)

with C=C(q,a, 3, K)>0. Next we will take the sum for j=1,...,N, and use the num-
ber No=Ny(a, 3, K)EN introduced in §2.3, Holder’s inequality and the reverse Holder
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inequality (Z;\f:l la, |q)1/q< (Z;vzl la; |2)1/2. This leads to the crucial estimate

N q N q
Il follfa oy HIVDl ooy = wjilfol | dz+ ©;|Vpl ) dz
Q) ()
Q\j=1 8\ j=1
4 N !’ N
< [N (S teusit) o [ (3 1oyl
j=1 j=1

N

N
N (S s hllay + Lo e P0ly) (319
j=1

=1

N

N q/2
< CI(Z ||f||qu(Uj)+ (Z ||f0||%2(Uj)) )
i=1 =1
<Callf gy + 1ol )

with C;=C;(¢, o, 8, K)>0, i=1, 2, and 2<q<6; this kind of estimate will be used in an
analogous way also in the subsequent proofs in §3.3 and §3.4.
In the case 6<g<oco we obtain the estimate (3.19) in the same way as above with

I foH%g(Q) replaced by || fOH%G(Q). Now we use the elementary interpolation estimate

1/~
1 _
ll.follze () <7<g> I foll L2y + (1= 1 foll Lo,

where 0<y<1 is defined by

j— +—,
q

1_ v, 1=
6 2

and where ¢>0 is chosen sufficiently small. Then the absorption principle yields the
estimate

I follza) +IVPliLa) < CUIfllLay+ I follz ), C=C(g,,8,K)>0,  (3.20)

also for ¢>6. Therefore, (3.20) holds for all 2€g<co. Combining (3.20) with (3.8) we
get (3.17) with C=C(q, @, 8, K)>0 for all 2<g<00.

Next we consider the case f€L?+L9, 1<g<2. Choose fi€L? and fo€L? with
f=h+f2 1fllz2ra=|fillpz +| foll Lo, and define

fo=Pafi+Pf2€L2+L% and Vp=({I-P)fi+(I—P,)f2€G*+G4



40 R. FARWIG, H. KOZONO AND H. SOHR

yielding f= fy-+Vp. Then we use the dual representation of the norm || fo|| L2412, see §2.2,
and obtain with (3.17), ¢’>2, that

|(P2f1+Fyfz2, 9
”9”L2nLQ’

Vollzeszo =sup{ :O#geLQHLq'}

—oup{ W 1)

;0¢geL2mLQ’}
lgll L2 e

(3.21)

<o {(||f1||L2+||f2HLa)||Pq’9||Lszq' :OﬂeLszqI}
9] 2L

<O fllz24re

with the same C=C(q, @, 3, K)>0 as valid for {3.17). It follows that

| follL24Le +IVPl L24Le SOl fllz2 410

with C=C(q, ., 8, K)>0.

Summarizing we obtain for every 1<g<oo and f€ L9 the estimate
||f0||[~,q+“v]7”f,q <C||f||f,qv C=C(q,a,ﬂ,K)>0, (322)

where ﬁqf:fo is defined by fo=P,f if f€ Li=L2NL9, 2<q<o00, and by fo=Pafi+F,f2
if f=fi+freLI=L2+L9, 1<q<2. Moreover, Vp=(I—F,)feGI=G?NGY if 2<g< o0,
and Vp=Vp;+Vp=(I-P,)fi +(I—Pq)f2€éq=G2+Gq when 1 <g<2. Thus we proved
(2.10) for bounded domains €2, and we may conclude that f’q f=P,f holds for 1<g<co.
Therefore, the other assertions of Theorem 2.1 are obvious for bounded domains. Note
that the choice of C=C(q,a, 3, K) in (2.10) is the only new property in this case.

Step 2. Q unbounded. Let feL9(Q), 1<g<oo, and let fj:f|Qj€Eq(Qj), jEN,
be the restriction to the subdomain €2,;C€, see (2.8). Our aim is to construct a unique
solution pair foe L2 (£2), Vpeéq(ﬂ) satisfying f = fo+ Vp. For this purpose we use Step 1
with the decomposition

fj = fj,0+vp]‘, where fj,O = ﬁ’qf]’ and ij S éq(Qj),
and the uniform estimate
If50llzaca,) HIVPill i,y S CllSill Loca,) SC N lizaa) (3.23)

with C'>0 as in (3.22). Here consider L9(f);) as a subspace of LI(N) by extending each
function on Q; by zero to get a function on §2. Since (L7)' =LY and (L) =19, cf. §2.2,

we may assume, suppressing subsequences, that there exist weak limits

fo=w-lim f; o€ LI(Q) and Vp=w-limVp;e GY()
]—)w ]—>OO
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satisfying fo+Vp=f. Note that Vp; treated as an element of iq(Q) when extended by
zero need not be a gradient; however, by de Rham’s argument, cf. [35, Chapter I, (1.29)]
or [32, p. 73], we see that w-lim;_,,, Vp; is indeed a gradient. From (3.23) we obtain the
estimate

||f0”£q(9)+HVp||i;q(Q) < C||f||Lq(Q) (3-24)
with C as in (3.23). To prove the uniqueness of the decomposition f=fo+Vp assume
that fo+Vp=0, foe L1(R), VpeG(). Then we use the construction above for any g=
go+Vth/q/(Q), goeig,(Q), Vheéql(ﬂ), and obtain that (fo,g)=—(Vp, go)=0. Hence
fo=Vp=0, and qu f= foeig is well defined. Now the assertions of Theorem 2.1 and of
Remark 2.2 are easy consequences. This completes the proof.

3.3. The Stokes operator in L9; Proof of Theorem 2.3

Step 1. Q bounded. First we consider the Stokes equation —Au+Vp=f with f€LZ and
uED(Aq):LgﬂWg’qﬁWz’q, 1< g< 00, which is equivalent to the equation Aju=f, and
prove the preliminary estimate

IV2ull Lagoy IVl Lo ) < CUI fll Laey + 1wl o) (3.25)

with C=C{(q, o, 8, K)>0 depending only on g and the type «, 5, K.

This estimate has the important implication that the graph norm ||lulpea,)=
fullLa+]|Aqu| L« is equivalent to the norm ||ul|w2. on D(A,) with constants only de-
pending on ¢, «, 8 and K. More precisely,

Cillullw2e <llullpea,) < Collullwze, ueD(Ag), (3.26)

with C1=C4(q, @, 3, K)>0 and Co=C3(q, a, 3, K)>0.
To prove (3.25) we use U; and ¢;, j=1,..., N, as in §3.2, and consider in U; the
local equation
Ao(pju—w)—Alpju—w)+V(p;(p—M;))
=@ f+Aw—2Vp; Vu—(Ap;)ut(Ve;)(p—M;)+do(pju—w).
Here \¢ means the constant in (3.4), M;=M;(p) is a constant such that p—M,;=
R'(Vp)€Li(Q), see (3.7), and w=R((Vy,)-u)eWs9(U;) is the solution of the equa-
tion divw=div(p;u)=(Vy;)-u, see (3.6). Then we apply (3.4) with A=Xg, and use the
estimates
lwllwaw,) < CllullLaw,)s
lwllwe.aw,y < Cllullwiaw,),
Ip=M;l|aqu,) SCUS lLawy +IVullLew,)),
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with C=C(q,, 3, K)>0, following from (3.6) and (3.7) applied to Vp=f+Au in Uj.
Combining these estimates we are led to the local inequalities

H‘Pjvzu”%q(Uj) + “‘Pjv(P*Mj)”%q(Uj) < C(”f”qu(Uj) + ”u”‘[z/vlyq(Uj)) (3.27)

with C=C(q, a, 3, K)>0. Taking the sum over j=1,..., N in the same way as in (3.19),
and using the absorption argument to remove HVUH%,,(Q) with (3.13), we obtain the
desired inequality (3.25).

Next we consider the resolvent equation

MutAgu=du—Au+Vp=f inQ

with feLZ, where 1<g<oo and AE€S,, 0<E<%7l’. Our first purpose is to prove for
u€D(Ay) and Vp=(I—P,) Au, 2<g<o0, the estimate

M ullzznze +IV2ull L2nre +I VPl 2aze S C Nl fllzenra (3.28)

with |A\|>6>0, where § >0 is given, and C=C(q, ¢, 6, a, 3, K} >0. Note that this estimate
is well known for bounded domains with C=C(q,¢,9,)>0, see §3.1. In this case we
obtain the local equation

Myju—w)—Alpju—w)+V(p;(p—M;))

(3.29)
= ¢ f+Aw—2Vp; - Vu—(Ap;)u—Aw+(Ve;)(p—M;)

with p—M;=R'(Vp) and w=R((Vy,)-u) as above.
First let 2<q<6. Concerning w, we use the estimates above and the inequality

wll e,y < Crllwllwrzw,) < CallullL2w;),
Ci=Ci(q, o, 3,K)>0, i=1,2. For p—M; we use the above estimate and the inequality

lp—=MjllLaw,) SCUIflLa,y+ M Nullzz2@w,) HIVulizew;))

with C=C(q,a, 3, K)>0. Further, to the local resolvent equation (3.29) we apply the
estimate (3.4) with A replaced by A+ ), where A{>0 is sufficiently large such that
IA+A5)= Ao for |[A|>4d, and Ag is as in (3.4). Then we combine these estimates and are
led to the local inequality

Ml Ly sl e )+ 05Vl + 105 VP1

(3.30)
<C(”f”%q(uj)+“u||%q(Uj)+“V'u”%q(uj)+||)‘u”qu(Uj))
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with C=C(q,d,¢,, 3, K)>0. Next we take the sum over j=1,..., N in the same way as
in (3.19). This leads to the inequality
|A[ ||UHLQ(Q)+||“||LQ(Q)+||v2u||L‘1(Q)+HVpHLq(Q)
SO fllaqey Hlulla) +I Vel ey Al 1l L2 (o)
with C=C(g,6,¢,0,3,K)>0, |A|=d and 2<g<6. Applying (3.13) we remove the term
Vulls(n) in (3.31) by the absorption principle.

(3.31)

If ¢>6, estimate (3.31) holds in the same way with the term |A|[jul|z2(q) on the
right-hand side replaced by |A||jul|zs(q). Now use the elementary estimate

1 1/v 3
A [l s oy <’Y<g> |Al ||U||L2(Q)+(1—’Y)€1/(1 V1A llull o)

with 0<y<1 such that
1 v 1y

6 2 q ’

with sufficiently small >0, and use the absorption principle. This proves (3.31) for all
g>2 without the term [|Vul|pq(q). Moreover, due to (3.14), the term ||ul|ze(q) may be
removed from the right-hand side of (3.31). Now we combine this improved inequality
(3.31) with estimate (3.9) for |A|>4§, and we apply (3.25) with ¢g=2. This proves the
desired estimate (3.28) for 2<g< 0.

Next let 1<g<2 and consider in © the (well-defined) equation Au—Au+Vp=f
with feL2+L4, where u€D(Az)+D(4,), Vp:(I—];q)Au and A€S., |A|=4d. Using
f :)\u—ﬁun and (3.28) with ¢'>2 we first obtain that

|(Au— P, Au, v)|

||’U||Lgng,

T :sup{ :O#veLiﬂLg/}

:SHP{K_UM_AU_H:(#%L;,W'}
ol 2nze

|(u, 9)| 214
=sup{ — :0£gelinli (3.32)
I =Py A) =gl 1o o

> msup{m : O#gELgﬁLZ,}
¢ P Uall 210

Al
:EHUHEgng

with C as in (3.28); see (2.11) concerning [ull}2~pq- Hence we also get Al ullzz 422 <
C|fllzz+12 and even

Allullzz 423 +llullzz oo+ Aqullpz+rg <Cllfllzarre, AESe, AZ6. (3.33)
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From the equivalence of the norms || - || p(4,) and || - lw2.e, cf. (3.26), and from (2.2) with
B,=A; and By=A,, we conclude that

Crllullwz24wea < ||U||L3+L3+||Aqu||Lg+L3 < Collullw22 4w,
where C;=Cj(q,¢,a,8,K), i=1,2. Then (3.33) and the identity Vp=f—Au+Au lead
to the estimate
IAlullzz 4 2g Hlullwzeywea VPl 24 2a <O fllzz 42 (3.34)
with C=C(q,6,¢,a,8, K)>0.

Since € is bounded, we easily conclude that flqu:—lquu:Aqu for ue D(A,)=
D{A;), 1<g<oo. The only new result in this case is the validity of the estimate

ANl gg +llulle. +IVPl e < Clfllzg,  weD(Ag), (3.35)

with C=C(q,6,¢,, 8, K)>0 when |A\|>8>0. Thus the proof of Theorem 2.3 is complete
for bounded 2.

Step 2. ) unbounded. In principle we use the same arguments as in Step 2 of §3.2
with the bounded subdomains 2;C, j€N, see (2.8).

Let fEE‘},(Q), 1<g<oo, and AES,, 0<6<%7r. Our aim is to construct a unique
solution ueﬁq(ﬂ) of the equation

Au—P,Au=X u—Au+Vp=f, Vp=(I—-F,)Au inQ

satisfying estimate (2.12). For this purpose set fj=13q fla, and consider the solution
u; € DI(Y) of the equation

M+ Aquj = duj— Ay +Vp; = f;,  Vpj=(I-P)Bdu; in Q.
From (3.35) we obtain the uniform estimate
Al ”Uj”Lg(Qj)+||uj“Wz,q(gj)‘F”ij”Lq(Qj) < C“fHLg(Q) (3.36)

with |A|26>0 and C=C(q, 6,¢,a, 3, K)>0. The same weak convergence argument as in
Step 2 of §3.2 yields, suppressing subsequences, weak limits

u=w-limu; in LZ(Q) and Vp=w-limVp; in LY(Q)
j—o0 j—o0
satisfying ue DI(Q), /\u—Au+Vp=)\u—13un:f in  and (2.12).

To prove the uniqueness of © we assume that there is some v€D?(Q2) and A€S,
satisfying Av— P, Av=0. Given f'€L9(Q) let ue DT() be a solution of Mu— Py Au=
ﬁq/f’. Then

0= (=P, Av,u) = (v, A= Py A)u) = (v, Py f') = (v, f')
for all f’efﬂ'(Q); hence, v=0. Thus we get that the equation /\u+fiqu:f, AES,, has a
unique solution u= (A +4,)~1f satisfying (2.12).
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3.4. Maximal regularity in L? for the nonstationary Stokes system; Proof of
Theorem 2.5

Step 1. Q bounded. In principle we use the same arguments as in the previous proofs.
Given 0<T <00 and 1<s,g<oc let

T 1/s
D e ey = | - s mox oy = ( [ dt) |

where X (€2) is a Banach space of functions in Q; furthermore, we use the operators J; s
and J, , see §3.1, and define jq,S and jq”s for feL*(0,T;L%) by

q,8?

t . _ T -
Foahlt)= [ iusyar and (o= [ e piryar,
0 t
0<t<T. Since A=A, we obtain for all f€L*(0,T;L%) and g€L*'(0,T; L) that

(Jastr9)r =, T} w91

First consider the case ug=0 and let s=¢. Then u:jq,q f solves the evolution system
Uy -i—flqu:f, #(0)=0, and u:jé’qf is the solution of the system —u,+Aqu=f, u(T)=0.
Our aim is to prove in both cases the estimate

el o220y + ull Lo 72000y FIVPI Lo Eageyy S O Lacis @) (3.37)

with Vp=(I—P,)Au and C=C(T, q, a, 3, K )>0.

Observe that it is sufficient to prove (3.37) for the case u=J, f only. The other case
follows using the transformation @(t)=u(T—t), f(t)=f(T—t). Further, it is sufficient
to prove (3.37) when 2<g<oc. For, using (jq”q)’:jqz’qr and the duality principle in
the same way as in (3.32), the case 1<g<2 is reduced to the case 2<¢’<co. In this
context we note that it is sufficient to prove instead of (3.37) the estimate [[u| 1q(z2 () <
C||f||Lq(Lg(Q)). Actually, (3.37) follows using flquzf—ut, the simple identity u(t)=
fot u¢(7) dr leading to the estimate lull Loz @y SClluell Lagis )y C=C(T')>0, and the
equivalence relation (3.26).

Thus it remains to prove (3.37) with 2<g< oo, where ?;,zjm f solves
uH—Aqu: w—Au+Vp=fec L0, T; L%), u(0)=0,

and Vp=(I —?Q)Aw Using the well-known estimate (3.11) for bounded domains we
know that u:j{m f satisfles (3.37) with C=C(T,q,Q)>0. Thus it remains to prove that
C in (3.37) can be chosen depending only on T, g, ¢, 8 and K.
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To prove this result consider the local equation

(pju—w)—Alpju—w)+V(p;(p—M;))
= @; f —wi+Aw—2Vp;-Vu—(Ap;)u+(Ve;)(p—M;)

in U;, where w=R((Vy;)-u)eLI(0, T; W2%(U,)) solves the equations divw=(Vy;)-u
and divw;=(Vy;)-u, for a.a. t€(0,T). Here U; and ¢;, 1<j< N, have the same meaning
as in the previous proofs, and M; =M, (p) is a constant depending on ¢ defined by p—M;=
R'(Vp)€L(0,T; L§(Uy)).

First let 2<¢<6. Then from (3.6) and (3.7) using Vp=f—u;+Au we obtain the

estimates
lwellLa(zaqw,y) € ClluellLacz2w,))s
IV2wl|La(zaqu,y) < CUlull acreqw,y) I VullLaczaw,)); (3.38)
lp—M;llLa(rew,y) < CUIf Lo,y +luell Loz, +IVullLaa ;)

with C=C(g, o, 3, K)>0. Applying the local estimate (3.5) and using (3.38) we are led
to the inequality

2
||‘Pjut||%q(Lq(Uj))+ ||<Pj“||(11,q(Lq(Uj)) +lle;V u”%q(Lq(Uj)) +||‘Pij”%q(Lq(Uj)) (3.39)

SO zazowyy HlelZaczaw,y TVl Lo @aqo,y) el Loz, )
with C=C(T,q,, 3, K)>0. Next we argue in principle in the same way as in Step 1
of §3.3: Take the sum over j=1,..., N, remove the term ||Vul||La(ra(q)) with the absorp-
tion argument using (3.13), then apply the estimate (3.11) to ||us||ra(z2(q)) Wwith C=
C(q,T)>0. If g>6, we have to replace the term |t La(z2()) by the term [|lus|l La(Ls())s
and use the interpolation inequality

1/~
1 ~
llwellLazs () <7(g> ||Ut||L<z(L2(n))+(1—7)51/(1 ") l[utll a(ra(e))
with sufficiently small £>0. This leads to the inequality

Nuell Loz @)nre @) +ull Lagwz2 @ nw2a@)) VPl Lo (2 (@)n e @)

<O fllzeczz @nra@))

for all 2<g<o0 with C=C(T,q,a,3,K)>0, and completes the proof of (3.37) for
1<g<oo. In particular, this proves inequality (2.18) for the bounded domain € when
up=0. To prove (2.18) with uOED(fiq) we solve the system @;+ A i=f, 4(0)=0, with
f=f—A,uo. Then u(t)=a(t)+uo yields the desired solution with uo€D(4,). This
proves Theorem 2.5 for bounded €.
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Step 2. © unbounded. Using the same arguments as in Step 2 of §3.3, let fe
L9(0,T; LE(Q)), 1<g<oo, and consider the solution u; € L0, T, D(A,)) of the system

ujetAqui = fj, u;(0)=0,

with fj———ﬁq fla,, j€N, following Step 1. Then (3.37) applied to the domains §2; yields
the uniform estimate

H“J’J“Lq(ig(aj)) + “Lq(VNx/z,q(Qj)) +1Vp; HLq(DZ(Qj)) < C||f“Lq(ig(Q)) (3.40)

with Vp;=(I —“ﬁq)AUj and C=C(T, q,a, 3, K)>0. Suppressing subsequences we obtain
by the weak convergence argument the weak limits

u=w-limu; € L4(0,T; L2()) and Vp=w-lim Vp; € LY(0,T; LY ()
j—oo j—o00
satisfying we L0, T; DU(R)), w, + A u=u;— Au+Vp=f, u(0)=0, and the estimate

“ut“Lq(f,g(Q)) + ““H,;:,(,1(‘7‘72,41(9))"F “vP“Lq(iq(Q)) < G”fHLq(L?,(Q)) ’ (341)

with C as in (3.40), which is equivalent to inequality (2.18).

The uniqueness of u follows in the same way as in Step 2 of §3.3, and the case
#{0)=up€ D(/iq) is treated as above in Step 1. The other properties in Theorem 2.5 are
obvious. This completes the proof.

3.5. Suitable weak solutions, strong energy inequality and Leray’s structure
result for general domains; Proof of Theorem 2.7

To construct a suitable weak solution v for the general uniform C?-domain Q of type
o, 3, K, we use approximate solutions uy and the key estimate (2.18) in the formulation
(2.21) with the exponent q:%; the reason for this exponent is the structure of the
nonlinear term. Except for this estimate, all the other approximation arguments are
well known in principle; here we follow the construction in [32, Chapter V]. However, it
is easier first to consider a bounded domain Q2 and then to treat the subdomains Q; with
Jj—+00 as in the previous proofs. Furthermore, we may assume without loss of generality
that 0<T <00, and consequently that 7"=T in (2.25); if T'=00 we consider a sequence
0<Ti<Ty<... with lim; o T; =00, and continue the construction of u step by step.
Moreover, we may assume that uo=0 in the following proof. The case up#0 can be
reduced to this case in two steps: If ug€ D(A,), we replace u(t) by 4(t) =u(t) —e~42tug in
the linear part of the equation (2.23). Hence 4(0)=0, and the argument for up=0 yields
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(2.25) with £=0 and u replaced by 4. Since up€D(A,), we conclude that (2.25) holds
for u with e=0. If uge L2 only, we choose any 0<e<T, use that e~ A2tug=e =420y,
with ug . =e~42°uge D(A2)C D(A4,), g=2, and conclude from the validity of (2.25) for
@ and €=0, that (2.25) holds for u in the restricted interval (¢,T”). This information is
sufficient to prove (2.26) and (2.27).

Thus we may assume that up=0 and 0<T’=T <00, and we prove (2.25) with ¢=0.
Further let feL%(0,T;L*(2)) and g=3.

Step 1. Q bounded. Following [32, V.3.3], we use the Yosida operators
Je=(I+k71AY%)1 keN,
and find solutions u=ug of the approximate Navier-Stokes system
us—Au+(Jyu)-Vu+Vp=f, divu=0, ulsn=0, u(0)=0, (3.42)
on (0,T). Further, we recall the estimates

$lukll? 22 (o) +IVukllZ2 12 g0)) < Co I£13cz2)y  Co>0, (3.43)

Nkl v Ly < CUFlr 2y,

where 622,722, 2/v+3/6=3/2, C=C(v,6)>0, and

[ Tetr - Vur |l v (2o < CllF I n2 )

where 1<v,0<2, 2/v+3/8=4, C=C(~,8)>0; see [32, V.2.2, (2.2.5), and V.1.2] concern-
ing these properties.
Moreover, due to (3.37),

ek, el Locroay) +uellLaqwzaga)) + I Vor I LaLa )

\ . (3.44)
SO fllLaze@y +IflZ 2y) 9=% C=C(T,a,B8,K)>0.

Using these uniform boundedness properties we conclude letting k— oo (and sup-
pressing subsequences) that there exists a weak solution u of the system (2.23) with the
following weak (“—”) and strong (“—”) convergence properties, respectively:

Up —u in L2(0, T; Wy (),

U U in L?(0,T; L*(R?)) (since Q is bounded),
Vuy, — Vaug  in L2(0,T; L*(Q)),
uk(t) = u(t) in LZ(Q) for a.a. t€[0,T),
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and (uk,ta Uk, vuk7 V2Uk, ka) - (ut7 u, VU, VZU, Vp) in Lq(o’ T7 L4 (Q))7 where q= il
Moreover, Poincaré’s inequality shows that

| P — Ml Loz )) < C I VDE | La(na(e))s (3.45)

where ¢=2, r=18 My =M;(ps)=(1/|Q)) f, px dx and C=C(T,Q)>0.
Hence we conclude that the estimates (3.43) and (3.44) also hold with ui and Vpy
replaced by u and Vp, and that

pk—My—p in L0, T; L"(2))

for some pe L(0,T; L™ (2)) satisfying VH=Vp. Choosing M =M (t) such that p=p—M,
(3.45) holds with px — My and Vpg replaced by p—M and Vp.
Let ¢€C$°(R?). An elementary calculation yields for all 0<s<t<T the equality

1 t
glow Ol + [ I6Vunltdr
t t
= 5loute)te+ [ (6f pu)dr—5 [PVt (340

¢ t
+/<%|uk|2’(‘]k“k)'v¢2>dr+/<Pk,u;c-V¢2>d'r.

By the convergence properties above and writing the most problematic term in (3.46)
in the form (pg,ug-Vé?)=(pp — My, up-V$?), we may let k converge to infinity in each
term, using Lebesgue’s dominated convergence theorem. Because of the weak convergence
property concerning Vuy, equality (3.46) yields (2.26) for a.a. s€{0,T) and all t€[s,T).
Finally the strong energy inequality (2.27) is a consequence of (2.26) with ¢=1 on Q.
Recall that the restriction concerning e in (2.25) is needed only for technical reasons if
0#£ug€L2\D(A4,).

Step 2. Q unbounded. Consider the bounded subdomains ;CQ, j€N, as in (2.8),
and let u; be a weak solution in Q; according to Step 1 with associated pressure term Vp;,
satisfying

uj,t—Auj-kuj-Vuj-i—ij :f]', div Uj =0, UJ(O):O, Ujiagj:—(), (347)

where f;=f|q;. Applying the diagonal principle in the same way as in [32, Chapter V,
(3.3.17)], we find a subsequence {@;}2, of the sequence {u;}32, and a weak solution u
with pressure term Vp of the system (2.23} with the following convergence properties as
J—oo (assuming for simplicity @;=u,):
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(1) u; converges to u weakly in L2(0, T; W2(£,)) and strongly in L(0, T; L*(;,))
for each fixed jg;

(2) Vu; converges to Vu weakly in L2(0,T; L%(Q;,));

(3) w;(t) converges to u(t) strongly in L2(Q;,) for a.a. t€[0,T).
Furthermore, uniformly in j€N,

215l 2 (0, T IV T2 220,y < Coll FlZe a2y Co>0, (3.48)

lusllLvzo ;) < CUFllLr ez

where v22, 622, 2/v+3/6=3/2, C=C(v,6)>0, and

;- Vujll v ersa,y < CUFI L2 @)

where 1<v,8<2, 2/v+3/§=4, C=C(v,6)>0.
Using the maximal regularity estimate (2.18) in the form (2.21) combined with the
last estimate we are led to the inequality

luj,ellLaczz,)+La@,)) +lusll w220y +w2a@,)) TIIVP; | Lar2e,)+La(a;))

: (3.49)
SCIf ez T z20))

with ng and C=C(T,a, 3, K)>0 not depending on jeN. Thus we may conclude
without loss of generality, see the previous proofs, that

(uj,t,nj,Vuj,Vzuj,ij) — {uyg, u, Vu, Viu, Vp) in LY(0,T, LQ(Q)+L4(Q))

as j— o0, and that (3.49) holds with u; and ©; replaced by u and 2. This proves (2.25)
for uo=0.

To prove the local energy inequality (2.26) choose jo such that QNsupp ¢ C€y,, use
(2.26) from Step 1 for ©2; and u;, j>Jjo, and let j—o0 using the convergence properties
above. This proves (2.26) for u and Q.

To prove (2.27) we choose a sequence ¢;€CS(R?), jeN, satisfying 0<¢;<1 and
|V$?|<Cy with some constant Cg, and with lim;_, ¢;(x)=1 and lim; , o, V¢?(x)=0 for
all zeR3. Setting ¢=¢; in (2.26) we obtain the desired inequality (2.27) by letting
j—>o00.

Now the proof of Theorem 2.7 is complete.



(1]
[2]
3]
[4]

5

(15]
(16]
(17]
(18]
[19]
[20]

21]

AN L9-APPROACH TO STOKES AND NAVIER-STOKES EQUATIONS 51

References

ApaMms, R. A, Sobolev Spaces. Pure Appl. Math., 65. Academic Press, New York-London,
1975.

AMANN, H., Linear and Quasilinear Parabolic Problems, Vol. 1. Monographs Math., 89.
Birkhauser Boston, Boston, MA, 1995.

— On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech., 2 (2000},
16-98.

BENNETT, C. & SHARPLEY, R., Interpolation of Operators. Pure Appl. Math., 29. Aca-
demic Press, Boston, MA, 1988.

BERGH, J. & LOFSTROM, J., Interpolation Spaces. Grundlehren Math. Wiss., 223. Springer,
Berlin—New York, 1976.

Bocovskil, M. E., Solution of the first boundary value problem for the equation of con-
tinuity of an incompressible medium. Dokl. Akad. Nauk SSSR, 248 (1979), 1037-1040
(Russian); English translation in Soviet Math. Dokl., 20 (1979), 1094-1098.

— Decomposition of L,(Q2,R") into the direct sum of subspaces of solenoidal and po-
tential vector fields. Dokl. Akad. Nauk SSSR, 286 (1986), 781-786 (Russian); English
translation in Soviet Math. Dokl., 33 (1986), 161-165.

CAFFARELLL, L., KoHN, R. & NIRENBERG, L., Partial regularity of suitable weak solutions
of the Navier-Stokes equations. Comm. Pure Appl. Math., 35 (1982), 771-831.

FArRwIG, R. & SOHR, H., Generalized resolvent estimates for the Stokes system in bounded
and unbounded domains. J. Math. Soc. Japan, 46 (1994), 607-643.

FRIEDMAN, A., Partial Differential Equations. Holt, Rinehart and Winston, New York,
1969.

Fuisiwara, D. & MORIMOTO, H., An L.-theorem of the Helmholtz decomposition of vector
fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.

GALDI, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations,
Vol. 1. Linearized Steady Problems. Springer Tracts Nat. Philos., 38. Springer, New York,
1994.

— An Introduction to the Mathematical Theory of the Navier—Stokes Equations, Vol. IL.
Nonlinear Steady Problems. Springer Tracts Nat. Philos., 39. Springer, New York, 1994.

GALDI, G.P. & MAREMONTI, P., Monotonic decreasing and asymptotic behavior of the
kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains.
Arch. Rational Mech. Anal., 94 (1986), 253-266.

GIGA, Y., Analyticity of the semigroup generated by the Stokes operator in L,-spaces.
Math. Z., 178 (1981), 297-329.

GIGA, Y. & SoHR, H., On the Stokes operator in exterior domains. J. Fac. Sci. Univ.
Tokyo Sect. IA Math., 36 (1989), 103-130.

— Abstract LP-estimates for the Cauchy problem with applications to the Navier—Stokes
equations in exterior domains. J. Funct. Anal., 102 (1991), 72-94.

HEYwooD, J. G., The Navier-Stokes equations: on the existence, regularity and decay of
solutions. Indiana Univ. Math. J., 29 (1980), 639-681.

Heywoob, J.G. & WALsH, O.D., A counterexample concerning the pressure in the
Navier—Stokes equations as t—07. Pacific J. Math., 164 (1994), 351-359.

HiLLE, E. & PuiLLIPS, R.S., Functional Analysis and Semi-Groups. Amer. Math. Soc.
Collog. Publ., 31. Amer. Math. Soc., Providence, RI, 1957.

Kozono, H. & Ocawa, T., Global strong solutions and its decay properties for the Navier—
Stokes equations in three-dimensional domains with noncompact boundaries. Math. Z.,
216 (1994), 1-30.



52 R. FARWIG, H. KOZONO AND H. SOHR

[22] KozoNo, H. & SOHR, H., Remark on uniqueness of weak solutions to the Navier-Stokes
equations. Analysis, 16 (1996), 255-271.

[23] LERAY, J., Sur le mouvement d’un liquide visqueux emplissant ’espace. Acta Math., 63
(1934), 193-248.

[24] MASLENNIKOVA, V.N. & Bogovskii, M. E., Elliptic boundary value problems in un-
bounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis.
Milano, 56 (1986), 125-138.

[25] MAsuDA, K., Weak solutions of Navier-Stokes equations. Téhoku Math. J., 36 (1984),
623-646.

[26] M1ryakawa, T. & SoHR, H., On energy inequality, smoothness and large time behavior
in L? for weak solutions of the Navier-Stokes equations in exterior domains. Math. Z.,
199 (1988), 455-478.

[27] REED, M. & SIMON, B., Methods of Modern Mathematical Physics, Vol. II. Academic
Press, New York-London, 1975.

(28] DE RHAM, G., Variétés différentiables. Hermann, Paris, 1960.

[29] SHINBROT, M. & KANIEL, S., The initial value problem for the Navier-Stokes equations.
Arch. Rational Mech. Anal., 21 (1966), 270-285.

[30] SIMADER, C.G. & SOHR, H., A new approach to the Helmholtz decomposition and the
Neumann problem in L?%-spaces for bounded and exterior domains, in Mathematical
Problems Relating to the Navier—Stokes Equations, pp. 1-35. Ser. Adv. Math. Appl.
Sci., 11. World Sci. Publishing, River Edge, NJ, 1992.

[31] pE S1mON, L., Un’applicazione della teoria degli integrali singolari allo studio delle equazioni
differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova, 34 (1964),
205-223.

[32] SoHR, H., The Navier-Stokes Equations. Birkhiuser, Basel, 2001.

[33] SoHR, H., vON WAHL, W. & WIEGNER, M., Zur Asymptotik der Gleichungen von Navier—
Stokes. Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II, 1986:3 (1986), 45-69.

[34] SoLoNNIKOV, V. A., Estimates for solutions of nonstationary Navier-Stokes equations.
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231
(Russian); English translation in J. Soviet Math., 8 (1977), 467-529.

(35] TEMAM, R., Navier-Stokes Equations. Stud. Math. Appl., 2. North-Holland, Amsterdam—
New York—Oxford, 1977.

[36] TRIEBEL, H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland
Math. Library, 18. North-Holland, Amsterdam-New York, 1978.

[37] WIEGNER, M., The Navier-Stokes equations—a neverending challenge? Jahresber. Deutsch.
Math.-Verein., 101 (1999), 1-25.



AN L9-APPROACH TO STOKES AND NAVIER-STOKES EQUATIONS

REINHARD FARWIG Hipeo Kozono
Fachbereich Mathematik Mathematical Institute
Technische Universitat Darmstadt To6hoku University
DE-64283 Darmstadt Sendai, 980-8578
Germany Japan
farwig@mathematik.tu-darmstadt.de kozono@math.tohoku.ac.jp

HERMANN SOHR

Fakultét fiir Elektrotechnik, Informatik und Mathematik
Universitat Paderborn

DE-33098 Paderborn

Germany

hsohr@math.uni-paderborn.de

Received March 29, 2005

53



