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On polarized 3-folds (X, L) with 
g(L)=q(X)+l and h~ 

Yoshiaki Fukuma 

Abstract. Let (X, L) be a polarized 3-fold over the complex number field. In [Fk3], we 
proved that g(L)>q(X) if h~ and moreover we classified (X, L) with h~ and g(L)= 
q(X), where g(L) is the sectional genus of (X, L) and q(X)=dimHl(Ox) the irregularity of X. 
In this paper we will classify polarized 3-folds (X,L) with h~ and g(L)=q(X)+l by the 
method of [Fk3]. 

0. I n t r o d u c t i o n  

Let X be a smooth projective variety over the complex number field C with 
d i m X = n  and L a Cartier divisor on X.  Then we call (X ,L)  a polarized (resp. 
quasi-polarized) manifold if L is ample (resp. nef-big). Then the sectional genus 

g ( i )  of (X, L) is defined by 

g(L) = I + �89 +(n-1)L)L '~-1, 

where Kx is the canonical divisor of X. 
Then there exists the following conjecture which is interesting but difficult. 

C o n j e c t u r e .  Let (X,L) be a quasi-polarized manifold. Then g(L)>_q(X), 
where q( X)=dim H l ( O x )  is the irregularity of X.  

In [Fk3], we proved that  g(L)>_q(X) if (X, L) is a quasi-polarized 3-fold with 
h ~ (L)>-2, and we classified polarized 3-folds (X, L) with g(L):q(X) and h~ 
The method of [Fk3] enables us to classify polarized 3-folds (X, L) for small values 

of g(L)-q(X). 
In this paper, we will classify polarized 3-folds (X, L) with g(L)=q(X)+l and 

h~ >-4. In particular we prove the following theorem. 

T h e o r e m  2.1. Let (X,L)  be a polarized 3-fold with g(L)=q(X)+l. Assume 
that h~  Then (X, L) is a Del Pezzo manifold. 

We use the customary notation in algebraic geometry. 
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1. P r e l i m i n a r i e s  

Definition 1.1. Let X be a smooth projective variety with dim X > dim Y > 1. 
Then a morphism f :  X--+Y is a fiber space if f is surjective with connected fibers. 
Let L be a Cartier divisor on X. Then (f ,  X ,  Y, L) is called a quasi-polarized (resp. 
polarized) fiber space if f :  X--+Y is a fiber space and L is nef and big (resp. ample). 

Definition 1.2. Let X be a smooth projective variety with d i m X = n  and let 
L be a line bundle on X. Then we say that  (X,L)  is a scroll over Y if there 
exists a fiber space r~: X--+Y such that  any fiber of 7r is isomorphic to p n - m  and 
L]F-~-Op ..... (1), where l < m = d i m Y < d i m X .  

Definition 1.3. Let (X, L) be a polarized manifold with d i m X = n .  Then (X, L) 
is called a Del Pezzo manifold if g(L)= 1 and A ( L ) =  1, where A ( L ) = n + L  n -  h ~ (L). 
(We remark that  the classification of Del Pezzo manifolds is complete. See Chapter I, 
w in [Fj9].) 

T h e o r e m  1.4. Let ( X , L )  be a polarized manifold with d i m X = n .  I f  K x +  
( n -  1)L is not nef, then (X, L) is one of the following types. 

(1) A(L)=0 .  (See [Fj9].) 
(2) (X, L) is a scroll over a curve. 

Proof. See [Fj4] or [I]. 

T h e o r e m  1.5. Let ( X , L )  be a quasi-polarized manifold with n = d i m X > 2 .  
Then g(L)>O if L is ample, or if L is her-big and n<3.  

Proof. See [Fj4] and [Fj6]. 

T h e o r e m  1.6. Let ( X , L )  be a polarized manifold with dimX=n_>2.  Then 
the following are true. 

(1) g(L) =0 if and only if A(L)=0 .  
(2) I f  g ( L ) = l ,  then (X, L) is a scroll over an elliptic curve or a Del Pezzo 

manifold. 

Proof. See [Fj4] or [I]. 

Definition 1.7. 
(1) Let (X, L) and (X',  n ' )  be polarized manifolds and #: X - + X '  a birational 

morphism. Then p is called a simple blowing up if p is a blowing up at one point 
on X '  and L = p * L ' - E ,  where E is the p-exceptional effective reduced divisor. 

(2) Let (X, L) be a polarized manifold. Then (X, L) is called a minimal re- 
duction model if (X, L) is not obtained by a finite number of simple blowing ups of 
another polarized manifold. If (X, L) is not a minimal reduction model, then there 
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exist a smooth projective variety Y, an ample divisor A on Y, and a finite number 
of simple blowing ups p: X ~ Y  such that (Y, A) is a minimal reduction model. We 
call (Y, A) a minimal reduction of (X, L). 

Remark 1.8. If a polarized manifold (X, L) is obtained by a finite number 
of simple blowing ups of another polarized manifold (Y, A), then g(L)=g(A)  and 
q(Z) =q(Y). 

T h e o r e m  1.9. Let (X, L) be a polarized manifold with dimX=n_>3. Assume 
that K x + ( n - 1 ) L  is nef. If  K x + ( n - 2 ) L  is not nef, then (X ,L )  is one of the 
following types. 

(a) (X, L) is obtained by a simple blowing up of another polarized manifold. 
(b0) ( X , L )  is a Del Pezzo manifold with b2(X)=l, or (p3, o( j ) )  with j = 2  or 

3, (p4, 0(2)), or a hyperquadric in p4 with L=O(2). 
(bl) There is a fibration ~: X ~ W  over a curve W with one of the following 

properties: 
(bl-v) (F, L F ) ~ ( P  2, 0(2)) for any fiber F of ~. 
(bl-q) Every fiber F of q~ is an irreducible hyperquadric in pn  having only 

isolated singularities. 
(b2) (X, L) is a scroll over a smooth surface W.  

Proof. See [Fj4] or [I]. 

T h e o r e m  1.10. (Fujita) Let (X, L) be a polarized manifold with dim X = n > 3  
and g(L)=2. Then (X, L) is one of the following types. 

(1) K x = - ( 3 - n ) L ,  d = L n = l ,  and q(X)=0, where - denotes the numerical 
equivalence. 

(2) X is a double covering of pn  with branch locus being a smooth hypersurface 
of degree 6 and L is the pullback of Op** (1). 

(2') X is the blowing up at a point of another polarized manifold (X' ,  L p) of 
type (2). L = L ~ x - E ,  where L~x is the pullback of L and E is the exceptional divisor. 

(3) (X, L) is a scroll over a smooth surface. 
(4) There exists a fiber space r: X--+T such that a general fiber F of r is hy- 

perquadric in pn with LF=OF(1), where T is a smooth curve. 
(5) (X, L) is a scroll over a smooth curve of genus two. 

Proof. See [Fj5]. 

Notation 1.11. Let (X,L) be a quasi-polarized manifold with h~ Let 
AcILI  be a linear pencil such that A=AMq-Z, where AM is the movable part of A 
and Z is the fixed part of ILl. Then there is the rational map ~AM: X--*P1  defined 
by AM. Let 0:X1 --~X be an elimination of indeterminacy of 9)AM and let t: X1 __~p1 
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be its morphism. By taking Stein factorization, there exist a smooth curve C, a 
finite morphism 6:C--+P 1, and a fiber space f l : X I - + C  such that  t=6ofl .  Let 
a=deg  6, F1 a general fiber of f l ,  and L'=O*L. 

T h e o r e m  1.12. Let (X,L)  be a polarized 3-fold with h~ We use No- 
tation 1.11. Assume that K x + 2 L  is nef. Then the following are true. 

(1) g(L)>>ag(L'F1)>aq(X ) if g(C)=O. 
(2) g(L)>g(C)+ag(L~l)>>q(X)+(a-1)g(L~l ) if g(C)>l.  

Proof. See the proof of Theorem 2.8 in [Fk3]. 

L e m m a  1.13. Let X be a smooth surface and let C be a smooth curve. Let 
f: X--+C be a surjective morphism (not necessary a fiber space). Then g(L)>_g(C) 
for any nef-big divisor L on X .  

Furthermore if g(L) =g(C),  then x (X)  =-oc .  

Proof. By taking Stein factorization, there exist a smooth curve/3, a fiber space 
f ' : X - + B ,  and a finite morphism 6:B--+C such that  f=6o f ' .  By Theorem 2.1 
and Theorem 5.5 in [Fkl], g(L)>>_g(B). On the other hand, g(B)>g(C). Hence 
g(n)>g(C). 

If g(L)=g(C), then g(F)_<l by Theorem 5.5 in [Fkl], where F is a general 
fiber of f ' .  If g ( F ) = l ,  then K x L > 2 g ( B ) - 2  by the canonical bundle formula. 
Hence g(n)>g(B)+l>g(C)+l .  So this is a contradiction. Hence g ( F ) = 0  and 
x(X)=-oc. [] 

Definition 1.14. 
(1) Let (X, L) be a quasi-polarized surface. Then (X, L) is L-minimal if LE>O 

for any (-1)-curve E on X. 
(2) Let (X, L) be a quasi-polarized surface. Then there exist a quasi-polarized 

surface (X' ,L ')  and a birational morphism rc:X-+X' such that  (X' ,L')  is L'- 
minimal and L=~r*L'. Then we say that  (X', L') is an L-minimalization of (X, L). 

L e m m a  1.15. Let (X, L) be a quasi-polarized surface with g ( X ) = - o c .  If  
g(L)=q(X),  then x ( K x + L ) = - o c .  

Proof. Let (X', L') be an L-minimalization of (X,L). Since g(L)=q(X) and 
x ( X ) = - c c ,  then (X', L ' ) = ( P  2, (9(r)) ( r = l ,  2) or (X', i ' ) i s  a scroll over a smooth 
curve by Theorem 3.1 in [Fkl]. Hence we obtain x ( K x , + L ' ) = - o c .  On the other 
hand h~176  for any m>0.  Hence x ( K x + L ) = - o c .  [] 

L e m m a  1.16. Let (X,L) be a quasi-polarized surface with x ( X ) = - o c ,  and 
(X', L') an L'-minimalization of (X, L). If  (X', L') is not a scroll over a surface, 
then g(L)>_2q(X). 



On polarized 3-folds (X, L) with g(L)=q(X)+l and h~ 303 

Proof. If q(X)=0, then this is true. Hence we may assume that  q(X) >0. Then 
if (X', L') is not a scroll over a curve, then Kx,  +L' is nef by Mori theory (see [Fkl]). 
We remark that  K} ,  <8(1 -q (X ' ) )  if q ( X ) = q ( X ' ) > l .  On the other hand, 

(Kx,  +L ' )  2 = K~:, +2(Kx ,  + L ' ) L ' - ( L ' )  2 

E 8(1 -- q(X')) + 4 (g(L') - 1) - (L') 2 = 4(g (L') - 2q(X') + 1) - (L') 2. 

If Kx,  +L' is nef, then (Kx,  +L') 2 >0. So we have g(U) _>2q(X'). Since g (L)=  
g(L') and q(X)=q(X' ) ,  we obtain that  g(L)>2q(X).  [] 

L e m m a  1.17. (Biancofiore-Livorni) Let C be a smooth projective curve with 
genus g and $ a normalized vector bundle of rank 2 on C. Let Co be the minimal 
section of f: P c ( g ) ~ C  and F be a fiber of f .  We put e = - C  2. Let DEPic(Pc($) )  
such that D=-aCo+bF and a>_l, where - denotes the numerical equivalence. Then 
h 1 (D)=0 if one of the following conditions is satisfied. 

(1) b>ae+2g-2,  a = l  and any e. 
(2) b>ae+2g-2,  a>_2 and e>_O. 
(3) b> l a e + 2 g - 2 ,  a>2 and e<0. 

Proof. See [BL]. 

L e m m a  1.18. Let g be an indeeomposable vector bundle on an elliptic curve 
and d=cl (g). 

(1) If d>O, then h~  and hi (g)=0 .  
(2) If d<O, then h~ and h l ( g ) = - d .  

Proof. See [H]. 

L e m m a  1.19. Let ( f , X , Y , L )  be a quasi-polarized fiber space. Assume that 
K x / y + t L  is f-nef, where t is a positive integer. Then ( K x / y + t L ) L n - l > O .  

Moreover if d i m Y = l ,  then K x / g + t L  is nef. 

Proof. See Lemma 0.2 in [Fk2]. 

Definition 1.20. Let X be a projective variety. Then the Kodaira dimension 
z ( X )  of X is defined by >c(X)=z()() ,  where )( is a resolution of X. (We remark 
that  x(X) is independent of the choice of resolutions.) 

L e m m a  1.21. Let (X ,L)  be a polarized manifold with dimX_>3 such that 
(X, L) is a scroll over a smooth surface S and g(L)•q(X),  and let ~r: X--+S be the 
natural projection. Let g be an ample vector bundle on S such that X = P s ( E )  and 
L=Ops(8 ) (1), where Ops(s )(1) is the tautological line bundle. 



304 YoshiakiFukuma 

We put m=g(L)-q(X)  and n=dimX. If L is spanned, h~ q(X)> 
1, and S is a Pl-bundle over a smooth curve C, then 

4 m - 3 n + 3  
q(X) < 1-~ 

2n 2 - 6 n + 8 "  

Proof. Let 5 c be a vector bundle of rank 2 on C such that  9 c is normalized, and 
S=Pc(hC) .  Let 0: S--*C be the natural projection. Let Co be a minimal section 
of 0 and let Fe be a fiber of 0. We put e=-C~ and dets Then 
AFe=a>>_rank(g)=n-1 because $ is an ample vector bundle and F e ~ P  1. Since 

Ks=_-2Co+(2g(C)-2-e)Fo, we obtain 

KsA = 2g(C) - 4 +  ( a -  1)(2g(C) - 2 )  + a e - 2 b + 2 .  

We remark that g(L)=g(A) and l<q(X)=q(S)=g(C). Hence g(A)=q(S)+m. 

(A) The case in which 2b-ae<(a-1)(2g(C)-2)+2. Then KsA>_2g(C)-4= 
2 q ( S ) - 4  and A2_<2m+2. On the other hand, A2=L~+c~(g). Since $ is ample, 

c2 ($) _> 1. 
If c2(g)=1,  then S ~ P  2 by [LS] because L is spanned. But this is impossible 

because q(S)=q(X)>_l. Therefore c2(s and Ln=A2-c2(s Let L~=  
2m-t ,  where t is a non negative integer. Then A ( L ) < m - t  since h~ by 
hypothesis. Therefore L n >_ 2 A ( L ) + t  and g(L) >_ q(X) + A ( L ) + t .  

If t> 1, then q(X)=0 by Chapter I (3.5) in [Fjg] since L is spam ed. If t=0 and 
g(L)>A(L), then q ( X ) = 0  by Theorems 1.4 and 6.1 in [Fj2] because 9(L)7~q(X ). 

If t = 0  and g(L)=A(L), then q ( X ) = 0  because g(L)>q(X)+A(L)+t, t>_O, and 
q(x)>_o. 

Therefore q ( X ) = 0  if 2b-ae< (a-1)(2g(C)-2)+2. But this is impossible since 

q(X)_>l. 

(B) The case in which 2b-ae>_(a-1)(2g(C)-2)+3. Then 

A s = 2ab-a2e >_ a(a-1)(2g(C)-2)+3a. 

On the other hand we obtain 

(Ks+A) 2 = K~+2(Ks+ A ) A - A  2 = 8(1-q(S))+4(g(A)- 1 ) - A  2 

= 4(g(A) - 2q(S) + 1) - A 2 = 4 ( m -  q(S) + 1) - A 2. 

Since AFo=a>_n-l>2, K s + A  is nef and (Ks+A)220. Hence A2<4m-4q(S)+4. 
Therefore since AFo = a > n -  1 >2 and g(C)=q(S) =q(X)  > 1, we have 

( n -  1 ) ( n -  2)(2q(X) - 2) + 3 ( n -  1) < 4 m -  4q(X) +4. 

So we obtain 
4 m - 3 n + 3  

q(X) < 1~ 2 n 2 _ 6 n + 8 .  [] 
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2. T h e  m a i n  resul t  

T h e o r e m  2.1. Let (X,L) be a polarized 3-fold with g (L)=q(X)+l  and 
h~ Then (X,L)  is a Del Pezzo manifold. 

Proof. By Theorem 1.4, K x + 2 L  is nef. We use Notation 1.11. 
(1) The case in which g(C)=0 and a>2. Then by Theorem 1.12, q ( X ) + l =  

g(L)>_2q(X). Hence q ( X ) < l  and g(L)<2. 
(2) The case in which g(C)_>l. We remark that 0=id and a>2 in this case. 
Then by Theorem 1.12, q(X)+I=g(L)>q(X)+g(UF~ ). Therefore g(L'F~)<I 

and x (F1)=-e~ .  Since 9(UF~)>_q(F1), we have the following three types: 
(2-]-) (g(LF1),q(F1))~-(I,1); 
(2-2) (g(L'FI), q(F1))----(1, 0); 
(2-3) (g(n%1), q(F1))=(0, 0). 

We remark that (F1 ' , LFz ) is a polarized surface because of 0=id. 

C l a i m  2.1.1. The case (2-2) is impossible. 

Proof. If g ( L ~ ) = l  and q(F1)=0, then q(X)=g(C). Hence by Theorem 1.12, 

g(C) + 1 = q(X) + 1 = g(L) > g(C) +ag(L~)  > g(C)+2. 

This is a contradiction. This completes the proof of this claim. 

Therefore g(L'yl)=q(F1 ). Since x (F1 )= -oc ,  we obtain that x ( K F ~ + L ~ ) =  
-c~  by Lemma 1.15. Hence h~ for any mEN. Hence K x + L  is 
not nef. 

(3) The case in which a = l .  Then Theorem 1.12 gives q(F1)+l>q(X)+l= 
g(L) >g(UF1). On the other hand h ~ ( L ~ ) > 3  by hypothesis. 

(3-1) The case in which x(F1)>O. 

C l a i m  2.1.2. pg(F1)=O and q(F1)<l.  

Proof. By the Riemann-Roch theorem and the vanishing theorem, we obtain 

h~ +L~I)-h~ = g(L'F~)-q(F1 ). 

If pg (F1) > 0, then h ~ (KF1 + L~I ) - h ~ (KF~) _> 2 because h ~ (L~I) > 3. But this is im- 
possible because g(L~)<q(F1)+I.  Hence pg(F1)=O. Since x(F1)>0, we obtain 
q(F1)_< 1. This completes the proof of this claim. 

By Claim 2.1.2, q(X)_<l and g(L)=q(X)+l<<_2. 
(3-2) The case in which x(F1)=-oc .  
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! (3-2-1) The case in which an L'F,-minimalization of (F1,LF1) is not a scroll 
over a smooth curve. Then by Theorem 1.12 and Lemma 1.16, q(F~)+l>_q(X)+l= 

Hence q(F )<l and g(L)<_q(X)+l<_q(F1)+l<<_2. 
I (3-2-2) The case in which an LrF~-minimalization of ([11, Lr.,) is a scroll over 

a smooth curve. Then z(KF~ + L ~ , ) = - o o  by Lemma 1.15. So we obtain that 

0 = h ~ (m(KF1 + L ~  )) = h~ +L')~h) = h ~ (rn(O* (Kx  +L)+Ee)F~) 

for any positive integer rn, where Ee is an effective 0-exceptional divisor. If K x  +L  
is nef, then by the base point free theorem (see [KMM]) Bs [rn(Kx +L) ]= r  for some 
m>>0. Therefore h~ * (Kx +L) +Ee)F1) >0. Therefore K x  +L is not nef. 

By the above argument, it is sufficient to study (X, L) which satisfies one of 
the following two conditions. 

(A) The case in which K x  +L is not nef. 
(B) The case in which g(L)G2. 

(A) The case in which K x + L  is not nef. 
(A-l) The case in which ( X, L) is a minimal reduction model. We study (X, L) 

by Theorem 1.9. We remark that d i m X = 3  and g(L)=q(X)+l .  
(A-1-1) The case in which (X, L) is the type (b0) Theorem 1.9. By calcnla- 

tion, (X, L) is a Del Pezzo manifold with b2(X)=l  or (X, L ) = ( P  3, C9p3(2)). Then 
in both cases g (L)= l  and q(X)=0. In particular, (X, L) is a Del Pezzo manifold. 

(A-1-2) The case in which (X, L) is the type (bl) in Theorem 1.9. We use the 
notation of Theorem 1.9. Let F be a general fiber of (P. 

(A-1-2-1) The case in which (F, LF) = (p2, Op2 (2)). If g(W) < 1, then q(X) < 1 
and g(L)=q(X)+lG2.  So this case is reduced to the case (B) below. 

If g(W)>2, then by Lemma 1.19 

g(L) = g (W)+ �89 ( K x / w  + 2L)L 2 + (L2F-  1)(g(W) - 1) > g (W)+ 3 = q(X)+ 3 

since K x / w + 2 L  is ~-nef and L2F=4, where K x / w = K x - q ) * K w  . 
But this is a contradiction. 
(A-1-2-2) The case in which (F, L~) is hyperquadric and LF=OF(1).  If g(Vr 

1, then g(L)=q(X)+l=g(W)+l<2 .  So this case is reduced to the case (B) below. 
If g(W)>2, then (L2F-1)(g(W)-I )>_I  since L2F=2.  On the other hand, 

h~ Therefore (Kx/w+2L)L2>O by Theorem 2.4 and Corollary 2.5 
in lEVI. 

Hence 

g(L) = g(W) + �89 ( K x / w  + 2L)L 2 + (L2F-  1)(g(W) - 1) _ g(W)+ �89 + 1 = q(X)+ 3 
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So we obtain g(L) > q(X) +2 because g(L) E Z. But this is a contradiction. 
(A-1-3) The case in which (X, L) is the type (52) in Theorem 1.9. If g(L)<2,  

then this case is reduced to the case (B) below. So we assume g(L)>3.  We use the 
notation of Theorem 1.9. Let ~: X--~W be the natural projection. First we prove 
the following claim. 

Claim 2.1.3. x ( W ) = - o o .  

Z "~ Proof. We use Notation 1.11. Let = ~ i = 1  aiZi be the prime decomposition 
of Z. Let 01:X2-~X1 be a birational morphism such that  Zi,2 is smooth for each 
i, where Zi,2 is the strict transform of Zi,1 by 01 and Zi,1 is the strict transform of 
Zi by 0. Let 7r=0o01 and F=O(F1). 

(a) The case in which g(C)=0.  If a>__2, then 9(L)<_2 by the case (1). If a = l  
and x(Fa)>0,  then g(L)_<2 by the case (3-1). 

So these cases are impossible because we assume g(L)>3.  Hence x ( F 1 ) = - o c  
and a = l .  

We remark that  ILI~D=F+}--]~=I aiZi. 
By the proof of Theorem 1.12, we can prove g(L)>g(L~I)+Ei~=I g((Tc*L)z~,~). 

Since q(X)+l=g(L) and g(L~)>q(F1)>_q(X), we obtain that  g((Tc*L)z~,~)<_l for 
each i. Therefore z(Zi)=-ec  for each i. 

On the other hand, one of the irreducible components F, Z1, ... , Zm is surjective 
F "~ to W by r because L is ample and + ~ i = 1  aiZiEILI �9 Hence x ( W ) = - o c .  

(b) The case in which g(C)_>I. We remark that  0=id  and z ( F 1 ) = - o c  in this 
case. 

If (P(F1)=W, then ,~ (W)=-oc  since x ( F 1 ) = - e c .  So we may assume that  
i~(F~)r for any general fiber F1 of f l .  Since L is ample, there is a Zi,2 such 
that  7Clz~,~:Zi,2----~C is surjective. Hence g((Tr*L)z~,~)>g(C) by Lemma 1.13 and 
g((Tr*L)zr for any j r  by Theorem 1.5. 

So by the proof of Theorem 1.12 we obtain that  

q ( X ) + l  =g(L)  _> Eg((Tr*L)z,,2)+ag(L~l) -> E g((Tc*L)z~. 2)+q(F1) +g(L~,l). 
i = 1  i = l  

(b-1) The case in which g((Tc*L)z~,2)>g(C)+ l. Then g(L~l)=0 and q(F1)=0 
by the above inequalities and q(F1)+g(C)>>_q(X). Since g (C)>I ,  there exists a 
morphism c~: W--~C such that  fl=c~off). Then a general fiber of a is p1 because 
q(Fx)=0. Therefore x ( W ) = - o c .  

(5-2) The case in which g((Tr*L)z,,2)=g(C). By Lemma 1.13 x (Zi ,2 )=-oc .  On 
the other hand g((Tr*L)zj,2)<l for any jT~i by the above inequalities and q(F1)+ 
g(C)>>_q(X). Hence z(Zj,2)=-oo for any j~i .  Therefore x (Z i , 2 )= -oc  for any i. 
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Since 0=id, L is ample. Hence hlzi:Zi--+W is surjective for some i. Therefore 
x ( W ) = - e c .  This completes the proof of Claim 2.1.3. 

If q(W)=0, then q(X)=0 and g (L)=I .  Then (X,L) is a Del Pezzo manifold 
by Theorem 1.6. 

So we may assume that q(W)>-l. Let/3: W---~B be the Albanese map of W. 
Let X = P w ( $ ) ,  L=Ox(1), and A=de t  g, where g is an ample vector bundle on 
W and Ox(1) is the tautological line bundle. Then (W, A) is a polarized surface 
with 9(A)=g(L ) and q(W)=q(X). Hence g(A)=q(W)+l. Therefore (I/V, A) is not 
a scroll over a smooth curve. By Lemma 1.16, 2q(W)<_g(A)=q(W)+I. Hence 
q(W)_<l. Therefore q(X)_<l and g(L)_<2. So this case is impossible because we 
assume g( L ) >3. 

(1-2) The case in which (X, L) is not a minimal reduction model. Let (Y, A) be 
a minimal reduction of (X, L). In this case, g(L)=g(A), q(X)=q(Y), and h~ 
Hence g(A)=q(Y)+I and (Y, A) is a Del Pezzo manifold or g(A)_<2 by the above 
argument. 

If (Y, A) is a Del Pezzo manifold, then (X, L) is also a Del Pezzo manifold 
because I=g(A)=9(L) and O=q(Y)=q(X). Hence (X, L) is a Del Pezzo manifold 
or g(L) < 2. 

Therefore in the case (A) we obtain that (X, L) is a Del Pezzo manifold or 
g(L)_<2. 

(B) The case in which g(L)<2.  
(B-l) The case in which 9(L)=2.  By Theorem 1.10, we check each type of 

Theorem 1.10. 
If (Z, L) is the type (1), (2), or (2') of Theorem 1.10, then q(Z)=0 .  So this is 

impossible. If (X, L) is the type (5) of Theorem 1.10, then this is also impossible 
because g(L)=q(X) in this case. 

So it is sufficient to check the type (3) and (4) of Theorem 1.10. 
(B-l-l) The case in, which (X, L) is the type (3) of Theorem 1.10. Let S be 

a smooth surface and g an ample vector bundle on S such that  X=Ps(g)  and 
L=(gps(E)(1 ). Let r  be the natural projection. We put A = d e t / .  Then 
g(L)=g(A ) and q(X)=q(S). Hence g(A)=q(S)+I. So by Theorem 2.25 in [Fj7], 
the following cases can occur. 

(a) S ~ P ( 5  c) for some stable vector bundle 5 c of rank 2 on an elliptic curve W1 
with c1(5c)=1, A2=3, and L3=1, 2. 

(~) S-~P(SC), $~-~*g| for some semistable vector bundles 5 c and g of 
rank 2 on an elliptic curve W2, where ~): S~W2 is the natural projection. Moreover 
(Cl (5c), cl(G))=(1, 0), (0, 1), A2=4 and L3=3. 

(B-l-l-l)  The case in which (S,A) satisfies the case (a). But in this case 
this is impossible. If L3= l ,  then A(L)=0  since h~ Hence g(L)=0  and this 



On polarized 3-folds (X, L) with g(L)=q(X)+l and h~ 309 

cannot occur. If L3=2,  then A ( L ) < I  since h~ If A(L)=0 ,  then g (L)=0  and 
this case cannot occur. If A ( L ) = I ,  then q ( X ) = 0  by Fujita's classification of A(L) 
(see [Fjl]). So this case cannot occur. 

(B-l-l-2) The case in which (S,A) satisfies the case (/3). Since L3<3 and 
h~ we obtain that A(L)<2 .  

If A(L)=0 ,  then g (L)=0  by Theorem 1.6. If A ( L ) = I ,  then 2<L3<3 and 
q ( X ) = 0  by Fujita's classification ([Fjl]). Therefore these cases are impossible. 

So we assume A(L)=2 .  Hence L3=3 and h~ Since A ( L ) > d i m B s  ILl, 
we obtain dim Bs ILl < 1. 

If d imBs ILl=l ,  then q(X)--0 by Theorem 1.14(5), Theorems 2.4, 4.2, and 
Proposition 4.6 in [Fj3]. But this is a contradiction because q ( X ) = l  in the case (/3). 

If dimBs ILl=0 , then since 3 = L 3 = 2 A ( L ) - 1  and g(L)=2,  we obtain q ( X ) = 0  
by (2.17), (3.15), and (4.15) in [Fj8]. But this is impossible because q ( X ) = l  in the 
c a s e  (/3).  

So we assume that Bs ILI=r Since g(L)=q(X)+l ,  we obtain q ( X ) = 0  by 
Lemma 1.21. But this is also impossible. 

Therefore case (/3) cannot occur. 
(B-1-2) The ease in which (X, L) is the type (4) of Theorem 1.10. We use the 

notation of Theorem 1.10. Then there exist a vector bundle A of rank 4 on T and 
X is a member of 12H(A)+~*BI, where 3': P(A)~T is the natural projection and 
BEPic(T) .  

Since 2=g(L)=q(X)+I ,  we have q ( X ) = l .  By the argument from (3.1) to 
(3.7) in [Fj5], we obtain (b, e, d)=(1,  0, 1), (0, 1, 2), and ( -1 ,  2, 3), where b=deg B, 
e=ea(A), and d=L 3. 

(B-1-2-1) The case in which (b,e,d)=(1,0, 1). This is impossible because 
A ( L ) = 0  in this case and so q(X)=0.  

(B-1-2-2) The case in which (b, e, d)=(0,  1, 2). This is also impossible because 
A ( L ) = I  and so q ( X ) = 0  by Fujita's classification ([Fjl]). 

(B-1-2-3) The case in which (b, e, d ) = ( - 1 ,  2, 3). This is also impossible by the 
same argument as the case (B-1-1-2). 

(B-2) The case in which 9 ( L ) = l .  By Theorem 1.6, (X,L)  is a Del Pezzo 
manifold. 

Hence we obtain that (X, L) is a Del Pezzo manifold if g(L)<2. 
Therefore (X, L) is a Del Pezzo manifold. This completes the proof of Theo- 

rem 2.1. [] 

T h e o r e m  2.2. Let (X ,L)  be a polarized manifold with dimX=n_>3.  I l L  is 
spanned and g (L)=q(X)+ l, then (X, L) is a Del Pezzo manifold. 

Proof. If d i m X = 3 ,  then this theorem is true by Theorem 2.1 because the 
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spannedness of L implies h ~ (L) _> 4. So we assume that  dim X = n >_ 4. By hypothesis, 

there exist ( n - 3 )  general elements D I , . . . ,  Dn-3 of ILl such that  V=DIA.. .ADn-3 
is a smooth projective 3-fold. Since g(L)=g(Lv) and q(X)=q(V), we have g ( L v ) =  
q ( V ) + l  and Bs ILvI=r By Theorem 2.1, g ( L v ) = l  and q(V)=0.  Hence g ( L ) = l  
and q (X)=0 .  Therefore we obtain that  (X, L) is a Del Pezzo manifold by Theo- 
rein 1.6. [] 

By the above results, we conjecture the following. 

C o n j e c t u r e  2.3. Let ( X, L) be a polarized manifold with dim X=n>_4, g ( L ) =  
q ( X ) + l ,  and h~ Then (X,L)  is a Del Pezzo manifold. 

Remark 2.4. We remark that  if d i m X = 2 ,  g(L)=q(X)+l ,  and h~ then 
there exists an example of (X, L) which is not a Del Pezzo surface: Let C be 
an elliptic curve and g an indecomposable vector bundle of rank 2 on C with 
e l ( g ) = l .  Then g is normalized. Let X = P c ( E )  and H be the tautological line 
bundle (gpc(E)(1). We put L=2H. Then g (L)=2 ,  q ( X ) = l ,  and h~  
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