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On polarized 3-folds (X, L) with
g(L)=q(X)+1 and h'(L)>4

Yoshiaki Fukuma

Abstract. Let (X, L) be a polarized 3-fold over the complex number field. In [Fk3|, we
proved that g(L)>¢(X) if A°(L)>2 and moreover we classified (X, L) with h%(L)>3 and g(L)=
q(X), where g(L) is the sectional genus of (X, L) and ¢(X)=dim H!(Ox) the irregularity of X.
In this paper we will classify polarized 3-folds (X, L) with h9(L)>4 and g(L)=¢(X)+1 by the
method of [Fk3].

0. Introduction

Let X be a smooth projective variety over the complex number field C with
dim X=n and L a Cartier divisor on X. Then we call (X, L) a polarized (resp.
quasi-polarized) manifold if L is ample (resp. nef-big). Then the sectional genus
g(L) of (X, L) is defined by

g(L)=1+3(Kx+(n-1) L)L,
where Kx is the canonical divisor of X.

Then there exists the following conjecture which is interesting but difficult.

Conjecture. Let (X,L) be a quasi-polarized manifold. Then g(L)>q(X),
where q(X)=dim H(Ox) is the irregularity of X.

In [Fk3], we proved that g(L)>q(X) if (X, L) is a quasi-polarized 3-fold with
h®(L)>2, and we classified polarized 3-folds (X, L) with g(L)=¢(X) and h°(L)>3.
The method of [Fk3] enables us to classify polarized 3-folds (X, L) for small values
of g(L)—q(X).

In this paper, we will classify polarized 3-folds (X, L) with g(L)=¢(X)+1 and
hY(L)>4. In particular we prove the following theorem.

Theorem 2.1. Let (X, L) be a polarized 3-fold with g(L)=q(X)+1. Assume
that h®(L)>4. Then (X, L) is a Del Pezzo manifold.

We use the customary notation in algebraic geometry.
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1. Preliminaries

Definition 1.1. Let X be a smooth projective variety with dim X >dimY >1.
Then a morphism f: X —Y is a fiber space if f is surjective with connected fibers.
Let L be a Cartier divisor on X. Then (f, X,Y, L) is called a quasi-polarized (resp.
polarized) fiber space if f: X —Y is a fiber space and L is nef and big (resp. ample).

Definition 1.2. Let X be a smooth projective variety with dim X=n and let
L be a line bundle on X. Then we say that (X,L) is a scroll over Y if there
exists a fiber space m: X —Y such that any fiber of 7 is isomorphic to P*™™ and
L|p=0pn-m(1), where 1<m=dimY <dim X.

Definition 1.3. Let (X, L) be a polarized manifold with dim X=n. Then (X, L)
is called a Del Pezzo manifold if g(L)=1 and A(L)=1, where A(L)=n+L"~h°(L).
(We remark that the classification of Del Pezzo manifolds is complete. See Chapter I,
§8 in [Fj9].)

Theorem 1.4. Let (X, L) be a polarized manifold with dim X=n. If Kx+
(n—1)L is not nef, then (X, L) is one of the following types.

(1) A(L)=0. (See [Fj9].)

(2) (X, L) is a scroll over a curve.

Proof. See [Fj4] or [I].

Theorem 1.5. Let (X,L) be a quasi-polarized manifold with n=dim X >2.
Then g(L)>0 if L is ample, or if L is nef-big and n<3.

Proof. See [Fj4] and [Fj6].

Theorem 1.6. Let (X, L) be a polarized manifold with dim X=n>2. Then
the following are true.

(1) g(L)=0 if and only if A(L)=0.

(2) If g(L)=1, then (X,L) is a scroll over an elliptic curve or a Del Pezzo
manifold.

Proof. See [Fj4] or [I].

Definition 1.7.

(1) Let (X, L) and (X’, L") be polarized manifolds and p: X — X’ a birational
morphism. Then p is called a simple blowing up if p is a blowing up at one point
on X’ and L=p*L’'— E, where E is the p-exceptional effective reduced divisor.

(2) Let (X, L) be a polarized manifold. Then (X, L) is called a minimal re-
duction model if (X, L) is not obtained by a finite number of simple blowing ups of
another polarized manifold. If (X, L) is not a minimal reduction model, then there
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exist a smooth projective variety Y, an ample divisor A on Y, and a finite number
of simple blowing ups p: X —Y such that (Y, 4) is a minimal reduction model. We
call (Y, A) a minimal reduction of (X, L).

Remark 1.8. If a polarized manifold (X, L) is obtained by a finite number
of simple blowing ups of another polarized manifold (Y, A), then g(L)=g(A) and
q(X)=q(Y).

Theorem 1.9. Let (X, L) be a polarized manifold with dim X=n>3. Assume
that Kx+(n—1)L is nef. If Kx+(n—2)L is not nef, then (X, L) is one of the
following types.

(a) (X, L) is obtained by a simple blowing up of another polarized manifold.

(b0) (X, L) is a Del Pezzo manifold with by(X)=1, or (P3,O(j)) with j=2 or
3, (P*,0(2)), or a hyperquadric in P* with L=0(2).

(b1) There is a fibration ®: X >W over a curve W with one of the following
properties:

(bl-v) (F, Lp)=(P2%,0(2)) for any fiber F of .

(b1-q) Ewery fiber F of ® s an irreducible hyperquadric in P™ having only
isolated singularities.

(b2) (X, L) is a scroll over a smooth surface W.

Proof. See [Fj4] or [I].

Theorem 1.10. (Fujita) Let (X, L) be a polarized manifold with dim X =n>3
and g(L)=2. Then (X, L) is one of the following types.

(1) Kx=(3—-n)L, d=L"=1, and ¢q(X)=0, where = denotes the numerical
equivalence.

(2) X is a double covering of P™ with branch locus being o smooth hypersurface
of degree 6 and L is the pullback of Op=(1).

(2") X is the blowing up at a point of another polarized manifold (X', L") of
type (2). L=L', —E, where Ly is the pullback of L and E is the exceptional divisor.

(3) (X, L) is a scroll over a smooth surface.

(4) There ezists a fiber space r: X =T such that a general fiber F' of r is hy-
perquadric in P with Lp=0p(1), where T' is a smooth curve.

(5) (X, L) is a scroll over a smooth curve of genus two.

Proof. See [Fib].

Notation 1.11. Let (X, L) be a quasi-polarized manifold with h%(L)>2. Let
AC|L| be alinear pencil such that A=Aps+Z, where Ay is the movable part of A
and Z is the fixed part of |L|. Then there is the rational map ¢a,,: X --+P* defined
by Anr. Let 8: X;— X be an elimination of indeterminacy of ¢y ,, and let t: X; —P?
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be its morphism. By taking Stein factorization, there exist a smooth curve C, a
finite morphism 6: C—P?', and a fiber space f1: X;—C such that t=6cf;. Let
a=deg 8, F; a general fiber of f1, and L'=6*L.

Theorem 1.12. Let (X, L) be a polarized 3-fold with h®(L)>2. We use No-
tation 1.11. Assume that Kx+2L is nef. Then the following are true.

(1) g(L)zag(LE,)>aq(X) if g(C)=0.

(2) 9(L)29(C)+ag(Ly,)2q(X)+(a—1)g(Ly,) if 9(C)>1.

Proof. See the proof of Theorem 2.8 in [Fk3].

Lemma 1.13. Let X be a smooth surface and let C' be a smooth curve. Let
f: X—C be a surjective morphism (not necessary a fiber space). Then g(L)>g(C)
for any nef-big divisor L on X.

Furthermore if g(L)=g¢(C), then »(X)=—o0.

Proof. By taking Stein factorization, there exist a smooth curve B, a fiber space
f:X—B, and a finite morphism §: B—C such that f=6-f'. By Theorem 2.1
and Theorem 5.5 in [Fk1], g(L)>¢(B). On the other hand, ¢(B)>g¢(C). Hence
g(L)>g(C).

If g(L)=g(C), then g(F)<1 by Theorem 5.5 in [Fkl]|, where F is a general
fiber of f'. If g(F)=1, then KxL>2g(B)—2 by the canonical bundle formula.
Hence g(L)>g(B)+1>g(C)+1. So this is a contradiction. Hence g(F)=0 and
#(X)=-00. O

Definition 1.14.

(1) Let (X, L) be a quasi-polarized surface. Then (X, L) is L-minimal if LE >0
for any (-1)-curve E on X.

(2) Let (X, L) be a quasi-polarized surface. Then there exist a quasi-polarized
surface (X’,L') and a birational morphism 7: X—X’ such that (X’ L) is L'-
minimal and L=7*L’. Then we say that (X’, L’) is an L-minimalization of (X, L}.

Lemma 1.15. Let (X, L) be a quasi-polarized surface with »(X)=—occ. If
g(LY=q(X), then s(Kx+L)=—oc0.

Proof. Let (X', L) be an L-minimalization of (X, L). Since g(L)=¢(X) and
#(X)=—o00, then (X', L')=(P2,0(r)) (r=1,2) or (X’,L’) is a scroll over a smooth
curve by Theorem 3.1 in [Fk1]. Hence we obtain »(Kx:+L')=—o00. On the other
hand h®(m(Kx+L))=h%(m(Kx:+L')) for any m>0. Hence »(Kx+L)=—oc0. O

Lemma 1.16. Let (X, L) be a quasi-polarized surface with s(X)=—00, and
(X', L") an L'-minimalization of (X, L). If (X',L’") is not a scroll over a surface,
then g(L)>2q(X).
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Proof. 1f ¢(X)=0, then this is true. Hence we may assume that ¢(X)>0. Then
if (X7, L') is not a scroll over a curve, then K x+L’ is nef by Mori theory (see [Fk1]).
We remark that K%, <8(1—¢(X")) if ¢(X)=¢(X’)>1. On the other hand,

(Kx+L')? =K% +2(Kx/+L) L —(L')?
<8(1—q(X"))+4(9(L)~1)~(L')* =4(g(L') —2¢(X")+1)~ (L')*.

If Kx/+L' is nef, then (Kx/+L')?>0. So we have g(L')>2q(X"). Since g(L)=
g(L’) and g(X)=q(X"), we obtain that g(L)>2¢(X). O

Lemma 1.17. (Biancofiore—Livorni) Let C' be a smooth projective curve with
genus g and £ o normalized vector bundle of rank 2 on C. Let Cy be the minimal
section of f:Pc(€)—C and F be a fiber of f. We put e=—C2. Let DEPic(Pc(€))
such that D=aCy+bF and a>1, where = denotes the numerical equivalence. Then
h'(D)=0 if one of the following conditions is satisfied.

(1) b>ae+2g—2, a=1 and any e.

(2) b>ae+2g—2, a>2 and e>0.

(3) b>1ae+29—2, a>2 and e<0.

Proof. See [BL].

Lemma 1.18. Let £ be an indecomposable vector bundle on an elliptic curve
and d=c1(£).

(1) If d>0, then h®(€)=d and h'(E)=0.

(2) If d<0, then h°(£)=0 and h!(£)=—d.

Proof. See [H].

Lemma 1.19. Let (f,X,Y,L) be a quasi-polarized fiber space. Assume that
Kx/y+tL is f-nef, where t is a positive integer. Then (KX/y+tL)L"_120.
Moreover if dimY =1, then Kx/y+tL is nef.

Proof. See Lemma 0.2 in [Fk2].

Definition 1.20. Let X be a projective variety. Then the Kodaira dimension
#(X) of X is defined by s#(X)=5x(X), where X is a resolution of X. (We remark
that s(X) is independent of the choice of resolutions.)

Lemma 1.21. Let (X, L) be a polarized manifold with dim X >3 such that
(X, L) is a scroll over a smooth surface S and g(L)#q(X), and let m: X —S be the
natural projection. Let £ be an ample vector bundle on S such that X=Pg(E) and
L=0pg£)(1), where Opygy(1) is the tautological line bundle.
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We put m=g(L)—q(X) and n=dim X. If L is spanned, h%(L)>n+m, q¢(X)>
1, and S is a Pl-bundle over a smooth curve C, then
dm—3In+3
2n?2—6n+8’

Proof. Let F be a vector bundle of rank 2 on C such that F is normalized, and
S=P¢(F). Let §: S—C be the natural projection. Let Cy be a minimal section
of 8 and let Fy be a fiber of . We put e:—C’g and det E=A=aCy+bFy. Then
AFy=a>rank(£)=n—1 because £ is an ample vector bundle and Fp=~P’. Since
Kg=—-2Cy+(29(C)—2—e)Fy, we obtain

KsA=2¢(C)—4+(a—1)(29(C)—2)+ae—2b+2.
We remark that g(L)=g(A) and 1<¢(X)=¢(S)=g¢(C). Hence g(A4)=q(S)+m.

(A) The case in which 2b—ae<(a—1)(2¢(C)—2)+2. Then KgA>2¢(C)—4=
2q(S)—4 and A2<2m+2. On the other hand, A?=L"+c3(€). Since & is ample,
C2 (5)21

If cz(£)=1, then S=P? by [LS] because L is spanned. But this is impossible
because ¢(S)=¢(X)>1. Therefore co(£)>2 and L"=A%2—cy(£)<2m. Let L"=
2m~t, where ¢ is a non negative integer. Then A(L)<m—t since h°(L)>m+n by
hypothesis. Therefore L™ >2A(L)+t and g(L)>q¢(X)+A(L)+t.

If t>1, then ¢(X)=0 by Chapter I (3.5) in [Fj9] since L is spanned. If t=0 and
g(L)>A(L), then ¢(X)=0 by Theorems 1.4 and 6.1 in [Fj2] because g(L)#q(X).

If t=0 and g(L)=A(L), then ¢(X)=0 because g(L)>q(X)+A(L)+t, t>0, and
q(X)=0.

Therefore ¢(X)=0 if 2b—ae<(a—1)(2¢g(C)—2)+2. But this is impossible since
q(X)>1.

(B) The case in which 2b—ae>(a—1)(2¢g(C)—2)+3. Then
A? =2ab—a*e > a(a—1)(2g(C)—2)+3a.
On the other hand we obtain
(Ks+A)? =K%+2(Kg+A)A—A® =8(1—q(S))+4(g(A)—1)— A
=4(g(A)—2¢(S)+1)— A% =4(m—q(S)+1)— A%.

Since AFy=a>n—1>2, Kg+A is nef and (Kg+A4)2>0. Hence A?<4m—4q(S)+4.
Therefore since AFy=a>n—1>2 and g(C)=q(S)=¢(X)>1, we have

(n—1)(n—2)(2¢(X)~2)+3(n—1) <4m—4q(X)+4.

q(X) <1+

So we obtain

4m—3n+3
<1+ —-.
9(X) < +2n2—6n+8
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2. The main result

Theorem 2.1. Let (X,L) be a polarized 3-fold with g(L)=¢(X)+1 and
hO(L)>4. Then (X, L) is a Del Pezzo manifold.

Proof. By Theorem 1.4, Kx +2L is nef. We use Notation 1.11.

(1) The case in which g(C)=0 and a>2. Then by Theorem 1.12, ¢(X)+1=
g(L)>2q(X). Hence ¢(X)<1 and g(L)<2.

(2) The case in which g(C)>1. We remark that #=id and ¢>2 in this case.

Then by Theorem 1.12, ¢(X)+1=g(L)>q(X)+g(L ). Therefore g(Lp )<1
and s(F;)=-o00. Since g(L, )>q(F1), we have the following three types:

(2-1) (9(Lg,), q(F1))=(1,1);

(22) (g(Lin, ), q(F2)=(1,0);

(2-3) (9(LR,),q(F1 ))) (0,0).

We remark that (F, L ) is a polarized surface because of 6=id.
Claim 2.1.1. The case (2-2) is impossible.
Proof. 1f (L, )=1 and ¢(F1)=0, then ¢(X)=g(C). Hence by Theorem 1.12,

9(C)+1=q(X)+1=g(L) > g(C)+ag(Ly ) > g(C)+2.

This is a contradiction. This completes the proof of this claim.

Therefore g(L'z )=q(F1). Since »x(F;)=-—o0c, we obtain that sx(Kr, +Lp )=
—oo by Lemma 1.15. Hence h®(m(Kx+L)p,)=0 for any mcN. Hence Kx+L is
not nef.

(3) The case in which a=1. Then Theorem 1.12 gives ¢(F})+1>¢(X)+1=
g(L)>g(L’,). On the other hand h%(L%, )>3 by hypothesis.

(3-1) The case in which »x(F;)>0.

Claim 2.1.2. pyo(F1)=0 and ¢(F1)<1

Proof. By the Riemann-Roch theorem and the vanishing theorem, we obtain
hO(KF1+L/ ) hO(KFl) (LFl) (Fl)

If pg(F1)>0, then h®(Kp, + L}, ) —h®(Kp ) >2 because h®(LY, )>3. But this is im-
possible because g(Lp ) <q(F1)+1. Hence pg(F1)=0. Since s(F;)>0, we obtain
q(F1)<1. This completes the proof of this claim.

By Claim 2.1.2, ¢(X)<1 and g(L)=¢(X)+1<2.
(3-2) The case in which »x(F1)=—00
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(3-2-1) The case in which an Ly -minimalization of (F1, Ly, ) is not a scroll
over a smooth curve. Then by Theorem 1.12 and Lemma 1.16, ¢(F1)+1>¢(X)+1=
9(L)2g(L%,)>2q(Fy). Hence ¢(F1)<1 and g(L)<q(X)+1<q(Fy)+1<2.

(3-2-2) The case in which an L', -minimalization of (F1, LY, ) is a scroll over
a smooth curve. Then s(Kp, + Lk )=—00 by Lemma 1.15. So we obtain that

0= ho(m(KFl +L%’1)) = ho(m(KXl +L/)Fl) = ho(m(e*(KX+L)+E9)F1)

for any positive integer m, where Ejy is an effective 8-exceptional divisor. If Kx +L
is nef, then by the base point free theorem (see [KMM]} Bs |m(K x +L)|=¢ for some
m>>0. Therefore h®(m(0*(Kx+L)+Ey)r, )>0. Therefore Kx +L is not nef.

By the above argument, it is sufficient to study (X, L) which satisfies one of
the following two conditions.

(A) The case in which Kx+L is not nef.

(B) The case in which g(L)<2.

(A) The case in which Kx+L is not nef.

(A-1) The case in which (X, L) is a minimal reduction model. We study (X, L)
by Theorem 1.9. We remark that dim X' =3 and g(L)=¢(X)+1.

(A-1-1) The case in which (X, L) is the type (b0) in Theorem 1.9. By calcula-
tion, (X, L) is a Del Pezzo manifold with bs(X)=1 or (X, L)=(P3, Ops(2)). Then
in both cases g(L)=1 and ¢(X)=0. In particular, (X, L) is a Del Pezzo manifold.

(A-1-2) The case in which (X, L) is the type (bl) in Theorem 1.9. We use the
notation of Theorem 1.9. Let F' be a general fiber of ®.

(A-1-2-1) The case in which (F, Lp)=(P?, Op2(2)). If g(W)<1, then ¢(X)<1
and g(L)=q(X)+1<2. So this case is reduced to the case (B) below.

If g(W)>2, then by Lemma 1.19

9(L) = gW)+3(Kx/w+2L) L+ (L’ F-1)(g(W)—1) = g(W)+3=¢(X)+3

since Kx/w +2L is ®-nef and L?F=4, where Kx/w=Kx—® K.

But this is a contradiction.

(A-1-2-2) The case in which (F, Lr) is hyperquadric and Lp=0p(1). If g(W)<
1, then g(L)=¢(X)+1=g(W)+1<2. So this case is reduced to the case (B) below.

If g(W)>2, then (L?F—1)(g(W)—1)>1 since L?F=2. On the other hand,
K (Kp+2Lp)=1. Therefore (Kxw+2L)L?>0 by Theorem 2.4 and Corollary 2.5
in [EV].

Hence

9(L)=g(W)+3(Kxyw+2L)L>+(L*F-1)(g(W)—1) > g(W)+ 3 +1=¢(X)+3.
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So we obtain g(L)>¢(X)+2 because g(L)€Z. But this is a contradiction.

(A-1-3) The case in which (X, L) is the type (b2) in Theorem 1.9. If g(L)<2,
then this case is reduced to the case (B) below. So we assume g(L)>3. We use the
notation of Theorem 1.9. Let ®: X —W be the natural projection. First we prove
the following claim.

Claim 2.1.3. »(W)=—0c.

Proof. We use Notation 1.11. Let Z=>""" a;Z; be the prime decomposition
of Z. Let f1: X2— X1 be a birational morphism such that Z; » is smooth for each
i, where Z; 5 is the strict transform of Z; ; by 6; and Z; ; is the strict transform of
Z; by 0. Let m=6-6, and F=0(F}).

(a) The case in which g(C)=0. If a>2, then g(L)<2 by the case (1). If a=1
and s(F;)>0, then g(L)<2 by the case (3-1).

So these cases are impossible because we assume g(L)>3. Hence »(F))=—
and a=1.

We remark that |L|3D=F+>"", a;Z;

By the proof of Theorem 1.12, we can prove g(L)>g(L7y, )+> i~ 9((7*L)z, ,)-
Since ¢(X)+1=g(L) and g(L, )>q(F1)>q(X), we obtain that g((n*L)z,,)<1 for
each 4. Therefore »(Z; ):—oo for each .

On the other hand, one of the irreducible components F, Z , ... , Z,, is surjective
to W by @ because L is ample and F+3 .* | a;Z;€|L|. Hence »(W)=—cc.

(b) The case in which g(C)>1. We remark that §=id and s(F})=—oo0 in this
case.

If ®(F;)=W, then »x(W)=—00 since s»(F;)=—00. So we may assume that
O(Fy)#W for any general fiber Fy of f1. Since L is ample, there is a Z; 2 such
that |z, ,: Z;»—C is surjective. Hence g((7*L)z,,)>g(C) by Lemma 1.13 and
g((7*L)z,,)>0 for any j#i by Theorem 1.5.

So by the proof of Theorem 1.12 we obtain that

m m

¢(X)+1=g(L) =Y g((r"L)z,,)+ag( Z ™ L)z, ) +q(F1)+9(L,).

=1 =1

(b-1) The case in which g((7*L)z, ,)>g(C)+1. Then g(L’, )=0 and ¢(F1)=
by the above inequalities and g(F;)+g(C)>¢(X). Since g(C)>1, there exists a
morphism o: W—C such that fi=a-®. Then a general fiber of a is P! because
g(F1)=0. Therefore s(W)=—00.

(b-2) The case in which g((7* L)z, ,)=g¢(C). By Lemma 1.13 5(Z; 2)=—00. On
the other hand g((7*L)z, ,)<1 for any j#i by the above inequalities and q(F})+
g(C)>q(X). Hence 5(Z;2)=—o00 for any j#i. Therefore 3(Z; )=—0o0 for any 4.
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Since 6=id, L is ample. Hence h|z,: Z,—W is surjective for some ¢. Therefore
#(W)=—00. This completes the proof of Claim 2.1.3.

If ¢(W)=0, then ¢(X)=0 and g(L)=1. Then (X, L) is a Del Pezzo manifold
by Theorem 1.6.

So we may assume that ¢(WW)>1. Let 8: W— B be the Albanese map of W.
Let X=Pw(£), L=0x(1), and A=det&, where £ is an ample vector bundle on
W and Ox(1) is the tautological line bundle. Then (W, A) is a polarized surface
with g(A)=g(L) and ¢(W)=¢(X). Hence g(A)=¢(W)+1. Therefore (W, A) is not
a scroll over a smooth curve. By Lemma 1.16, 2¢(W)<g(A)=q(W)+1. Hence
g(W)<1. Therefore q(X)<1 and g(L)<2. So this case is impossible because we
assume g(L)>3.

(A-2) The case in which (X, L) is not a minimal reduction model. Let (Y, A) be
a minimal reduction of (X, L). In this case, g(L)=g(A), ¢(X)=¢(Y), and h°(A4)>4.
Hence g(A)=¢(Y)+1 and (Y, A) is a Del Pezzo manifold or g(A4)<2 by the above
argument.

If (Y, A) is a Del Pezzo manifold, then (X, L) is also a Del Pezzo manifold
because 1=g(A)=g(L) and 0=¢(Y)=¢(X). Hence (X, L) is a Del Pezzo manifold
or g(L)<2.

Therefore in the case (A) we obtain that (X, L) is a Del Pezzo manifold or
g(L)<2.

(B) The case in which g(L)<2.

(B-1) The case in which g(L)=2. By Theorem 1.10, we check each type of
Theorem 1.10.

If (X, L} is the type (1), (2), or (2') of Theorem 1.10, then ¢(X)=0. So this is
impossible. If (X, L) is the type (5) of Theorem 1.10, then this is also impossible
because g(L)=¢(X) in this case.

So it is sufficient to check the type (3) and (4) of Theorem 1.10.

(B-1-1) The case in which (X, L) is the type (3) of Theorem 1.10. Let S be
a smooth surface and £ an ample vector bundle on S such that X=Pg(£) and
L=0pg)(1). Let ¢: XS be the natural projection. We put A=det&. Then
g(LY=g(A) and q(X)=q(S). Hence g(A)=¢(S)+1. So by Theorem 2.25 in [Fj7],
the following cases can occur.

(o) S=P(F) for some stable vector bundle F of rank 2 on an elliptic curve Wy
with ¢ (F)=1, A2=3, and L3=1,2.

(8) SEP(F), E2o*GRQH(F) for some semistable vector bundles F and G of
rank 2 on an elliptic curve Wy, where g: §— W3 is the natural projection. Moreover
(e1(F),c1(6))=(1,0),(0,1), A2=4 and L3=3.

(B-1-1-1) The case in which (S, A) satisfies the case (). But in this case
this is impossible. If L3=1, then A(L)=0 since h’(L)>4. Hence g(L)=0 and this
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cannot occur. If L3=2, then A(L)<1 since hO(L)>4. If A(L)=0, then g(L)=0 and
this case cannot occur. If A(L)=1, then ¢(X)=0 by Fujita’s classification of A(L)
(see [Fjl]). So this case cannot occur.

(B-1-1-2) The case in which (S, A) satisfies the case (8). Since L3<3 and
h%(L)>4, we obtain that A(L)<2.

If A(L)=0, then g(L)=0 by Theorem 1.6. If A(L)=1, then 2<L3<3 and
¢(X)=0 by Fujita’s classification ([Fj1]). Therefore these cases are impossible.

So we assume A(L)=2. Hence L3=3 and h(L)=4. Since A(L)>dimBs|L]|,
we obtain dim Bs|L|<1.

If dimBs|L|=1, then ¢(X)=0 by Theorem 1.14(5), Theorems 2.4, 4.2, and
Proposition 4.6 in [Fj3]. But this is a contradiction because ¢(X)=1 in the case (3).

If dim Bs|L|=0, then since 3=L3=2A(L)~1 and g(L)=2, we obtain ¢(X)=0
by (2.17), (3.15), and (4.15) in [Fj8]. But this is impossible because ¢(X)=1 in the
case ().

So we assume that Bs|L|=¢. Since g(L)=q(X)+1, we obtain ¢(X)=0 by
Lemma 1.21. But this is also impossible.

Therefore case () cannot occur.

(B-1-2) The case in which (X, L) is the type (4) of Theorem 1.10. We use the
notation of Theorem 1.10. Then there exist a vector bundle A of rank 4 on T" and
X is a member of |2H(A)+~*B|, where v: P(A)—T is the natural projection and
BePic(T).

Since 2=¢g(L)=¢(X)+1, we have ¢(X)=1. By the argument from (3.1) to
(3.7) in [Fj5], we obtain (b,e,d)=(1,0,1), (0,1,2), and (—1,2,3), where b=deg B,
e=c1(A), and d=L3.

(B-1-2-1) The case in which (b,e,d)=(1,0,1). This is impossible because
A(L)=0 in this case and so ¢(X)=0.

(B-1-2-2) The case in which (b,e,d)=(0,1,2). This is also impossible because
A(L)=1 and so ¢(X)=0 by Fujita’s classification ([Fj1]).

(B-1-2-3) The case in which (b,e,d)=(—1,2,3). This is also impossible by the
same argument as the case (B-1-1-2).

(B-2) The case in which g(L)=1. By Theorem 1.6, (X,L) is a Del Pezzo
manifold.

Hence we obtain that (X, L) is a Del Pezzo manifold if g(L)<2.

Therefore (X, L) is a Del Pezzo manifold. This completes the proof of Theo-
rem 2.1. O

Theorem 2.2. Let (X, L) be a polarized manifold with dim X=n>3. If L is
spanned and g(L)=q¢(X)+1, then (X, L) is a Del Pezzo manifold.

Proof. If dim X=3, then this theorem is true by Theorem 2.1 because the
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spannedness of L implies h°(L)>4. So we assume that dim X =n>4. By hypothesis,
there exist (n—3) general elements D , ... , D,,_3 of |L| such that V=D;N...ND,,_3
is a smooth projective 3-fold. Since g(L)=g(Ly ) and ¢(X)=¢(V'), we have g(Ly )=
¢(V)+1 and Bs|Ly|=¢. By Theorem 2.1, g(Ly)=1 and ¢(V)=0. Hence g(L)=1
and ¢(X)=0. Therefore we obtain that (X, L) is a Del Pezzo manifold by Theo-
rem 1.6. [

By the above results, we conjecture the following.

Conjecture 2.3. Let (X, L) be a polarized manifold with dim X =n>4, g(L)=
q(X)+1, and h°(L)>n+1. Then (X, L) is a Del Pezzo manifold.

Remark 2.4. We remark that if dim X =2, g(L)=¢(X)+1, and h°(L)>3, then
there exists an example of (X, L) which is not a Del Pezzo surface: Let C be
an elliptic curve and £ an indecomposable vector bundie of rank 2 on C with
c1(€)=1. Then & is normalized. Let X=P¢(€) and H be the tautological line
bundle Op_,g)(1). We put L=2H. Then g(L)=2, ¢(X)=1, and h°(L)=3.
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