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The HP? corona theorem in analytic polyhedra

Jérgen Boo(1)

Abstract. The HP corona problem is the following: Let g1, ... , gm be bounded holomorphic
functions with 0<6<5>" |g;|. Can we, for any H? function ¢, find HP functions w1 ,... ,um such
that > g;u;=¢? It is known that the answer is affirmative in the polydisc, and the aim of this
paper is to prove that it is in non-degenerate analytic polyhedra. To prove this, we construct a
solution using a certain integral representation formula. The HP estimate for the solution is then
obtained by localization and some harmonic analysis results in the polydisc.

1. Introduction and statement of the result

The HP corona problem is the following: Given g=(g1, ... , gm) € H ™ such that
0<8<3" |gil, can we for all € H? find u=(u1 ,... ,um)€HP such that giui+...+
ImUm=¢? If p=00, this is the true corona problem; to find bounded functions w;. If
the corona problem is solvable, then the H? corona problem is solvable, too, because
if we solve the corona problem g1v1+...+gmvm=1, then the functions u;=v;¢ will
solve the H? corona problem giu;+...+gmum=¢. In one variable, the converse
is also true—if we can solve the HP corona problem, then the corona problem is
also solvable, see [An3]. Hence the corona problem and the H? corona problem are
equivalent when n=1. This is not true in higher dimensions.

In the unit disc, n=1, the corona problem is solvable; this is the classical result
of Carleson. When n>1, the corona problem is in general not possible to solve, not
even in smooth pseudoconvex domains, see for example [F'S] or [S]. It is not known
if the corona problem is solvable in strictly pseudoconvex domains, or even in the
unit ball of C™. This leads to studying the HP corona problem for p<oo instead,
and this was originally done in [Anl]. For p<co, some positive results are known.
In [Am], [Anl], [An2], [An3], [AC1], [AC2], the HP corona problem is solved under
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different conditions. The problem is solved for 0<p<2 in a large class of weakly
pseudoconvex domains and for all p<oo in strictly pseudoconvex domains. The
subject of this paper is to solve the H? corona problem in non-degenerate analytic
polyhedra when 1<p<oo; this is a generalization of the results in [Li], [L2], where
the problem is solved in the polydisc.

Definition 1. A bounded domain QCC™ is an analytic polyhedron with N
defining functions f; if

Q={zeC":|fi(2)| <1, i=1,.. ,N},

where the defining functions are holomorphic in some neighbourhood of . Its
skeleton o is the part
g = U ar
1< <...<I <N
of 92, where
or={2€Q:fi(2)|=1, i€I}.

That € is a non-degenerate analytic polyhedron means that 0fr, A...Adfr, #0 on
{|f11|::|flk!:1} U

Note that the polydisc D™ in C" is a non-degenerate analytic polyhedron with
n defining functions. Its skeleton is the torus 7.

Near each point on the boundary of a non-degenerate analytic polyhedron, the
non-degeneracy condition assures that we have a holomorphic change of variables,
where the functions defining that part of the boundary are (some of) the new
coordinates. In particular, each point on the skeleton has a neighbourhood that is
biholomorphically equivalent to a neighbourhood of some point on the torus in C™
in such a way that points in the polyhedron correspond to points in the polydisc.

In C™", an analytic polyhedron is degenerate if more than n edges {z:|f;|=1}
intersect. For example, a non-trivial intersection of two discs in the plane is a
degenerate analytic polyhedron. Hence, the only non-degenerate analytic polyhedra
in C are the ones that locally are defined by one single defining function. When
n>1, we have the possibility of non-degenerate analytic polyhedra with more than
n defining functions such that the edges intersect in a more complicated way.

Ezample 1. In C?, consider the following analytic polyhedron:
fi(z) =21,
Q={2€C*:|fi2)|<1, i=1,23}, { fa(2)=2,
fa(z) =42z125—2;
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in other words, Q is the intersection of D? with the set {z€C2:|dz12,—2|<1}.
If | f1(2)|=|f2(2)|=1, then the point z does not belong to €; |f3(z)|>2. Assume
that |f1(z)|=|f3(2)|=1. (Such points z exist, for example (1,3).) Then |fa(z)|=
|22]§%, so z€o. Furthermore, f1 A0 fs=4z1dz1 Adza#0 there. Thus © is non-
degenerate. [

Ezample 2. Of course, it is possible to have non-trivial non-degenerate analytic
polyhedra with more than one defining function in C, as long as any two of those
functions never have modulus 1 at the same time. Consider the annulus

A={z€C:1<z|<2}.

This is a non-degenerate analytic polyhedron defined by the functions fl(z):%z
and fa(z)=1/z, both holomorphic in a neighbourhood of A. [

The spaces HP in analytic polyhedra are defined as follows.

Definition 2. For a non-degenerate analytic polyhedron 2, let
Q.={zeC™:|fi(z)|<1—¢, i=1,.. ,N}

Then €2, are non-degenerate analytic polyhedra for small € >0. Let o, be the skele-
ton of Q.. We define HP(2) to be the set of ¢€O(Q) such that the HP-norm of
®, Pl rr () =sup, [l e (o.), is finite. The space H*°(f) is the space of bounded
holomorphic functions in . O

The main result of this paper is the following.

Theorem 1.1. Let Q be a non-degenerate analytic polyhedron. Assume that
9i€H™(Q), 1<i<m, satisfies 0<6<3 71", |gi| for some 8. Whenever g€ HP(Q),
1<p<oo, there are u; € HP (), 1<i<m, such that o=y .*, g;l;.

The HP corona problem has already been solved in the polydisc. In this paper
we will solve the problem in the more general case of the polyhedron. To do this, we
will use a certain integral representation formula for holomorphic functions (see [B])
generalizing the Weil formula; this will yield an explicit solution. The idea is to
write ¢ as an integral where we can make a factorization in the kernel to obtain
u, and methods related to those in Wolff’s proof of the corona theorem will then
be used to get the H? estimate. The method will be different from that of [L2],
where the problem was solved by studying the Koszul complex and solving certain
D-equations, but the core of the HP estimation, some nontrivial estimates in product
domains, will essentially be the same.
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Remark 1. We think that the theorem probably is true even for the case p=1,
but this is not considered here. The method of proof used in this paper would
not carry over to that case without major modifications. In the proof we use
duality between LP and LY, so to go along the same lines one would have to use
duality between L' and BMO. For instance, a version of Lemma 3.2, saying that
the weighted Cauchy operator maps BMO to BMO, would have to be proved; but
it is not obvious, at least not to the author, that this result is true.

Some words on the case 0<p<1: H? for p<1 is very different from the case
p>1, and to study the problem in that case one would probably have to rely on
some other technique, for instance atomic decompositions.

A major part of the proof of Theorem 1.1 is the localization, and a study of
so called Hefer forms. We will here give an example, where we make considerations
analogous to those in the proof.

Recall Weil's integral representation formula (see, for instance, [A]). Let Q
be a non-degenerate analytic polyhedron, say Q={|f;|<1, i=1,... ,N}. Since the
defining functions are holomorphic across the boundary of €, we can find Hefer
functions, that is holomorphic functions HF satisfying

> HEG2) (G 20) = Fi(O) = fil2):
k=1
Define the Hefer forms h; by h;(¢, 2)=31_, HF (¢, 2) d(x. For any ¢€O(1),
v _hilG2)
=2 Gy / YONFO-7.6r

where the summation is performed over strictly increasing multiindices. Consider
the nx n-matrix Hy(¢, 2)=[HF(C, 2)]I5F=". As N\;e; hi=det Hy dCiA...AdC, Weil’s
formula can also be written

B 1 o(¢)det Hr (¢, 2) dCy A... AdCy
#0=2 iy / Mo GO—fGE)

Let us consider the simplest case, where € is a biholomorphic image of the poly-
disc D™; §) is defined by the n functions f;: Q— D which form a global, holomorphic
change of variables. Introduce the new variables &;=f;({) and z;=f;(z), from this
£eT™ and xe D™, Furthermore, if we by 9¢/9¢ denote the Jacobian matrix of the
change of variables, then

I



The HP corona theorem in analytic polyhedra 229

so the Weil formula transforms to

__1 (&) det H(E, ) det(0/0€)(§) d&y A-.. NdEy,
SO(:L‘) B (27m')n /" (61_1’1) (fn_xn) '
Since 5
det H(z, z) det a—g(x) =1,
this is nothing but Cauchy’s formula applied to the holomorphic function
0
€ (€) det H (€, ) det 5 (€

and evaluated at the point . Hence, in the biholomorphic case, Weil’s formula may
be viewed as a variant of Cauchy’s formula in the other coordinate system.

In the general case, near each p on any oy we have a local change of variables,
and by compactness o can be covered by a finite number of sets, in each of which
we have a change of variables. Introducing a partition of unity and comparing with
the biholomorphic case, we may thus write the Weil formula as a finite sum of
Cauchy-like formulas. Local properties of ¢ may then be studied by looking at the
corresponding properties in polydiscs. Contrary to the biholomorphic case, we get
singularities even if z is so far from the corner where ¢ is located that they do not
lie in the domain of any common change of variables.

Remark 2. By the methods used in the proof of Theorem 1.1, we see that the
integral operator corresponding to Weil’s integral formula,

1 hi (Ca Z)
6—Wo, Wola) =Y e | o
b WO =2 G 1, YO\ 707
is an operator W: L? (o) — HP(2); this is obtained by reducing to the known polydisc
case.

The paper is organized like this: In Section 2 we construct the division formula
for solving the problem. In Section 3 we look at the integral formula in the special
case of the polydisc, and prove the desired estimate. In Section 4 we study the gen-
eral integral formula, and use localization to reduce to the polydisc case. Section 5
contains the definition and estimates of certain Hefer functions needed in Section 4.

2. A division formula in the polyhedron

From now on, assume that € is a non-degenerate analytic polyhedron with
N defining functions f;. To construct the division formula that will solve the H?
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corona problem, as indicated in the introduction, we need some preliminaries. First
some notes on notation. We will often use ¢ as variable in Q and z as variable on
o, and when a function depends only on ¢, we will (mostly) omit the argument. All
differential forms will contain differentials of ¢ only. We let a-b=3_.", a;b;. Thus
the division problem may be formulated by saying that we want to find vwe H? such
that g-u=¢.

Consider the (column) matrix g of functions. Let gHj’-“, j=1,...,m,k=1,....,n
be Hefer functions for g, i.e. holomorphic functions satisfying

H((,2)(¢—2) = 9(¢)—g(2),

where we consider ¢H to be an mxn matrix of functions. We will make explicit
choices of these Hefer functions for g later on. Define the corresponding holomorphic

Hefer forms jh by
Z oH}(¢,2) dGi,

or, in matrix notation, sh=,H d¢. With a similar notation, we will denote the Hefer
functions for the defining functions by H and let fh=;H d(.

We will use the following integral formula of Berndtsson (see [B]):

Consider the kernel

N

(2.1) KoG2)= 3 e \G™QiG2)C-2)0a),

a=(ap,...,an) i=0

|a|]=n
where ¢, are constants, GG;, i=0,... , N, are one-variable holomorphic functions
with G;(0)=1, Qf, i=0,...,N and j=1,... ,n, are mappings from C*xC" to C
and the (1, 0)-forms g; are defined as below.
If these mappings are chosen such that everything make sense, then

(2.2) o(z) = /Q Ko(G, 2)¢

To solve the problem, we must choose the mappings G; and Qg such that we can
factor out g(z) from the kernel so that the remainder still is holomorphic, and in a
way that enables us to get HP-estimates.

First we define the N+1 one-variable functions G;. Let GO( )=(1+4t)", where
v is a sufficiently large integer (>n will do). For i=1 let G;(t)= 1/(1 +t)°,
where £>0. Modulo constants, the k-th derivative w111 be G(k)( t)=(1+t)*~* when

k<v and G\F (t)=c/(1+t)k+< for i, k>1.
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For i=0,... ,N and j=1,... ,n we shall define mappings Qf; that is, we shall
define the (N+1)xn matrix @ of functions. Then we set ¢=Qd(, i.e. ¢;(¢,2)=
25 @i(¢,2)dg;.

Put _
v I
lgI?
and let
Qo(¢, 2) =—¢H((, 2) 7,
whence

Qo((, 2)(C—2) ==, H((, 2)((—2)v=(g9(2) —9) v =g(2) v—1
and therefore
GS Q¢ 2)(C—2)) = (g() )" ",
Since v>n, we can write

G (Qo(¢, 2)(¢—2)) = g(2)-w(C, 2),

which is the desired factorization. Note that w depends on k; this is not indicated
in the notation, since we only consider such properties of w that are independent
of k. For further reference we note that w can be decomposed as a sum of products;

(2.3) w(¢, 2) :Zwi(o&i(z)'

One important property of w;(¢) is that we can estimate it and its derivatives by
derivatives of g;

0w, ’ kg
24 b + lower order derivatives.
(24) ’8le ... 0Gj, ¢, ... 0G5,
Fori=1,... | N, let
- H;
6 2)=JiT 90
Qo) =Fif e
whence B
1-— iJil%
R

and therefore

G(Qi(C, 2)(C—2)) = (1—1_;'}%)
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and

P (Qil¢ z)(c—z))—s<%>]m hen k> 1
i 1\5 - l—ﬁfl(z) whe -~ 1.

From the definition of ¢, we have

Do =gh-0v=>_ ;i ADy;,

S)

@ao) = > N\ ohindv;,

B=(B1,....0r) JEB

where the summation is performed over strictly increasing multiindices 3; 1< <
<P <m. For 121,

df;

dqi = ¢hs /\8 L B—
-/ T=IBE

If g = hih

and in particular (0¢;)*=0 if k>1.
Use the factorization of ng) to rewrite the kernel (2.1) (depending on ¢) as

K(E)(Ca Z) Zg(Z)KE(C, Z)a

where (modulo constants)

N
K*(G2)= 3 w(@g)™ A\ GI(Qi(¢, 2)(¢C—2))(Da)™

|or|=n i=1
n N
=3 Y (@) A\ GQiE (¢ 2)) (g™
k=0 a=(az,..., an) i=1
|a|=n—Fk

=3 X @) \GQiG A=) e

|a|=n—Fk
a;€{0,1}
Y Y 6l N\ GUQC A2 ] GlQil, ) ~2)).
k=0 a=(a1,...,¥n—k) t€a ida

1<) <. . <tpn <N

Let

9= [ K
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then, by (2.2), u® will be a holomorphic solution to g-u*=¢.
Inserting the calculated quantities, we see that (still modulo constants, that
we may include in w)

6= 3 o Ao ) (A5 e dt) (75)

k,a,8 JES i€a it

where the summation is performed over k=0,... ,n, 1< <...<@,_ <N and 1<
B1<...<Br<m. The final step in the construction of the division formula will be to
let e—0. When we do that, we arrive at the following proposition.

Proposition 2.1. Let 2 be a non-degenerate analytic polyhedron with N defin-
ing functions f;. Let g=(g1,... ,gm)EH™ (), 0<6<> " |gs|. Let ¢h be Hefer forms
for the defining functions and jh be Hefer forms for g. Assume that o€ O(Q). With
v and w as defined above the function u given by

(25) @)= Y /{,fi,_l,iea,} Kio5(C, )0,

0<k<n J|<1iga
1< <. .<an— <N il ¢
1<B1<...<Br<m

where

(2.6) Kra,5(¢,2) ( N\ o N%) N\ +—+= 7 fz

J€B i€

s a holomorphic solution to the division problem
g-u=.

Remark 3. Note that we integrate over all possible oy, including o¢g=Q and
the corners constituting the skeleton. It would be nice to be able to construct a
solution formula in which we (as in Weil’s formula) only integrate over the skeleton.

Proof. In view of the above work, we only need to show that u=lim._,q u®.

But since , AP .
1i — — e 1
0 e (- T A)F 1;1(1 o) -

(AP R, _ ~B0-IAP)
1—f,fi(2) fi—=lfil2fi(2)

and
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we will have

lim ©°(z) = lim / wgo( h~/\5’y.)
20 e—0 Z {If:]<1,i=1,...,N} /\ o !

k,o,03 jeB
A=|fil»Ashi ) ( 1-|f;]? j
x</€§ (fi=|fil2 fi(2) (1= fifi(2))e E 1—ﬁ~fi(z)
= | lica h; /\87)
kgﬁ/{{ﬁ{ﬁji;a} <J/e\ﬂ ’ éf f@

as desired. The limiting process is justified by localizing to the polydisc, performing
the corresponding operation there and then going back. The limiting process in the
polydisc is a generalization of the one-variable result

e—0

ti [ 2(¢,2)8(1-I¢) ndc =l [ B(@(¢,2)(1-[¢P)) A de
D e~YJD
~tim [ (1-IcP)08(¢, )0 dc

_ (1310 -/ <I>(§,z)(1—|(|2)5d6> - [ o 2)nd
:Ap@@@

This motivates the above calculation. [

This solves the part of the problem to find a holomorphic u such that g-u=¢;
what we need to do to solve the H? corona problem is to show that u& H? whenever
peH?P.

Remark 4. The term in (2.5) corresponding to k=0 is

> /{ifilzlaiea»} “* N\ 10-10) fz

1S <..<an <N " |f)<1 it i€a

a Well integral.

Example 3. When n=N=1, the solution u from Proposition 2.1 is

U\ ) = w L N 2]
= o T 2 oo
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If we use =2 in the definition of Gy, the factor w in the last integral will simply
be (still modulo constants) w(¢, z)=7(¢), and in the first integral it will be

w((,2) = 291 (€):(¢)

Further, note that we may choose

R e
and
(6,5) = =),
so we have that
u(z):c/u«)l 11%¥ )
+Z of 00O nNEAy g

3. Solution of the HP-corona problem in the polydisec

In this section we will consider the model case, where Q=D". In the solu-
tion (2.5) we make choices of Hefer functions in the polydisc to obtain an explicit
solution. We will then show that this solution is in H?.

Choose Hefer functions for the coordinate functions {;, that is, for the defining
functions, as the Kronecker delta, gHij (¢, z):é{. Then the Hefer forms ¢h just
become the differentials

Then choose Hefer functions for g as

(3 1) Hk — g(zl PRI 7zk—17<k 5 e aCn)_g(Zl PR ’ZkHCk!-l-l PR 7(77,) )
g Ce— 2k

Remark 5. Given the above choice of Hefer functions for ¢, if we go through
the procedure in Section 5 for choosing Hefer functions for g, we will return at (3.1).
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With these choices, the solution (2.5) will be

(32) uz= Y /{QGTJEQ,}Kk,a,mc,z)so,

0<k<n ,€D,i¢a
1< <...<ap_p<n G i
1<6:1<...<Bp<m

where the kernel K o g is

Kka”g C, =w /\ h; A@'yJ /\ dCZ

JEB i€a C %

The remainder of this section contains the proof of the following theorem, that
by a normal families argument will prove Theorem 1.1 when Q=D".

Theorem 3.1. Let u(z) be as in (3.2), where 0<6<>" |g;|<1 and the Hefer
forms gh; are defined by (3.1). If we assume that the functions g; and ¢ are holo-
morphic on D™, then g-u=¢ and ||u||gspry <C|l@|| gr(Dn)-

Define Fg by
i

ac;’
i.e. 9y;=T}d(; +...+Td(,. By a simple calculation,

- (o () 00 (2

that is, I'V is a sum of terms w'8¢/d(;, where ' can be estimated by g in the same
way as w, see (2.4). Thus

Aov= 3 Aw ( )dcg

jep J=(J1,--Jx) JEJ

¥ =

k3

Observe, that we integrate over (;€D when i¢« and over (; €T when i€«, so when
we integrate ;4 07j, the only multiindex that will be relevant is J={1,... ,n}\o.

Further, H7 is a sum of terms
'

g
G=2’
where the crucial property of ¢’ is that it depends on the variables 23 ,... ,2 and
C1 - 5 G only (for some 0<!<n depending on the function g’). Thus

N o N\ d¢= ZH d(l/\ NAdGy.

JjeB jEa g¢o¢
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This means that u is a sum of terms of the type

ua<z)=/wB(<,z)sof[1 — A (2 /\ .

where we let w include the functions w’, and let the function B be the product of
the functions ¢’. Assume, without loss of generality, that a=(k+1,... ,n), so that

n dé; k p)
ua(z)=/DkXTn . B(¢, = SD/\ C—gzz /_\ <8Z>d@

B 09\ dGiAdG A dG
_/DkxTn—k WB(C’Z)wi:/\l <3Cz'> Gi— 2 /\ 1-Ciz;

i=k+1

(3.3)

where we let w include the “missing” factors ; from the last equality.
In order to show that u€ HP, we estimate the HP-norm of the typical term
(3.3). Since ¢ and g are holomorphic on D",

”“HHP(D”) = ||U||LP(Tn),

and we estimate ||uq||gr(pn) by duality; we integrate u, against a function e
L(T™), where ¢ is dual to p, and show that

[

Looking at (3.3) and referring back to (2.3), we are to show that we can estimate

/n /Dk xTm—Fk W(C)Wfll <gg) Hle(ffcz,j)lizziz—sz)

_ . 9 B(G2B((2)
(3.4) —/;kxT""“ (C)‘Pg <8CZ> [ Hz 1(Gi— )H?:kﬂ(l_éizi)

_ (99 B(¢, 2)5(2)¢(2)
—/DkXT”"“w(OSO‘];[l<8C@> rn Hz 1(1=G2) [Ty (1= Gizi)

:/ka k“’*”H<8cz>

(where the second equality includes a modification of &, and where we define the
integral operator 7 in the obvious way) by [l¢|| Lo (zm) |9l La(rn)-

Sl eyl La (-
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Remark 6. The change of order of integration in (3.4) is a formal calculation,
motivated by the following. In the first k variables, the validity of the change of
order of integration is not in doubt since the factors 1/(¢;—z;) are integrable. In
the last n—k variables, though, some extra argument is needed. In one variable, by
definition,

@l e Dy = lrlgl lorll Lo (1)

where ¢,.(2)=¢(rz). In our situation, this means that we can estimate ||uq||z»(pn)
by estimating

(3.5)

/ ua(zl sere 9 2k T 28415 -o- ,TZn)’Iﬁ(Z)

for any r<1. The factors 1/(1—(;r2;) (for i>k) are then integrable, and the change
of order of integration is justified. Now, the only place where the parameter r occurs
is inside the integral operator 7. The LP-estimate for 7 can be done uniformly in 7.
Thus, carrying on as below, we get an estimate for (3.5) that is independent of r,
and from this the HP-estimate for u, follows.

Note that the operator 7 is a weighted Cauchy integral operator, holomorphic
in ¢; for i<k, and in order to perform the estimates we need a certain generalization
of the fact that the Cauchy integral is bounded on LP. Obviously, the factor @ will
do no harm, since it is bounded and only depends on z. What remains to take care
of is the factor B. However, B is constructed as a product of factors g’, where each
¢’ (for some [) only depends on the variables 2y, ... , 2, (41, ,{n- If we split B
into its factors, ordered in a suitable way, and use iteration, we arrive at the desired
result |7 ¢||rs(rn) SH@ll o (). This is a special case of the following lemma.

Lemma 3.2. Let g;(¢,z) for i=1,...,n, be bounded, |g;|<1, and depend
only on the i first zx-variables and the n—i last (x-variables; that is ¢;(¢,z)=
9i{21 4o s %y Git1 5 - Gn). Then the weighted Cauchy operator T given by

[19:(¢, 2)¥(2)

TO= | L G2

is bounded on LP(T"), 1<p< 0.

Proof. Write 7 as an iterated integral:

9= [ 062 / 6:(¢:2) /T 9 (¢ 2)P(2)

er G1— 21 e G2 Cn—2n
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Observe that

/ 9i+1(¢, %) / gn (G, 2)(2)

i1 €T Ci+1—27;+1 Cn—zn

is a function of 23, ... , 2;, (41, ... , (, only; just as g; is. Therefore, with

I

zip1€T Git1 —Zig1 Cn—2n

we have the usual Cauchy integral operator estimate

/ 1,01'(21,... 7Zi7€i+17"' )Cn)
GET

P Gi—2

<)
z; €T

and iteration gives the estimate for 7. O

P
S/ZieTWi(Zh--- s Zis Gik oo 5 Gn) P
/ gi—i—l(C’z) / gn(<7 2)¢(z) P
z zn €T

e GiH1—Zip1 Cn—2n

Remark 7. The need to have the variables separated in this particular way is
the reason for some technical statements (such as Proposition 4.1) to appear.

We do not know whether the lemma is true when one drops the condition on
the order of the variables, i.e. if the Cauchy operator with bounded holomorphic
weight still will map LP to LP.

As a consequence, we get the following result, that we will need later on.

Corollary 3.3. Let C((,2)€C™®(D") and let g;((, z) fori=1,... ,n, be as in
Lemma 3.2. Then the weighted Cauchy operator T given by

[19:(¢,2)C (¢, 2)9(2)

Tl0 = ern T1(¢—2i)

is bounded on LP(T"), 1<p<oco.

Proof. Since we can write

C((,2)=C(C 21, s Zis e 1 20)—=C(C 2150, Ciy e 3 20) FC(G 215 e, Ciy oo 5 20),s

where (C((;21,.0 5 2i5 1 20)—C(¢ 21, oo ,Ciy oo y2n))/(Gi—2:) is a bounded func-
tion, we may assume that for all 4, either C' does not depend on z; or C(¢, 2) /(i —2i)
is bounded. Let I be the set of all ¢ such that C({,2)/(¢;—2;) is bounded; then C
does not depend on z; for i€I¢. Let

C( 2)

B =1 ==y
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where z; denotes the variables z; with i€l. Further, note that

1195 2) =TT 3:(Crer 215 ¢rs 20),
i=1

iele
where the functions §; has the same structure in the variables z;c and (7. as in
the lemma, and depends on the variables z; and {; as parameters. Now, 7 can be

written ) |
Tw(C):/ B(C7z1)/ HiEIcgi(CIC,ZIC,CI,Z[)w(Z)’

HieIC(Ci_ZI)
and an application of the lemma proves the claim. [

After these results, we return to our main track. In the estimation of (3.4),
the last n—k variables will not make matters worse (since there are no singularities
involved, and we just can integrate in these variables); the most difficult term is the
one with k=n, so we focus our attention on that one. Hence, we must estimate

by llellLe¢rny 9]l La¢rny. When this is done, the general result follows.
Let 0;=1—1¢;|* and o=[];_, 0;- Use Green’s formula to obtain (in one variable
at a time)

/D F= /D PR+ /D (1-[¢P)F=— /D cFa%(l—Km /D - IcP)F
- /D <1—|<|2>6%<<F>— /D 6%((1—|<|2><F>+ /D (1-[cP)F

z/DQgZ(CF)Jr/DQF-

This yields that it is sufficient to estimate integrals like

" [ dg 17, 0
3.6 / Q( (—))——w TY).

Recall the estimates (2.4) for derivatives of w(() by derivatives of g. Since
lower-order derivatives will be easier to handle, we will estimate any derivative of
w by the corresponding derivative of g. Letting h=¢T7 % this leads to (just modulo
permutations of indices) estimating integrals like

[ 222 2|2
o 18, a6, |10 8¢ | |8G 0G|

The proof is completed by invoking the following two lemmas. The proof of
Lemma 3.4 uses some standard tent space techniques, see e.g. the proof of Lemma 1
in [L1], and Lemma 3.5 first appeared as Theorem 2 in [C], see also e.g. [F].
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Lemma 3.4. If h is holomorphic, then

[l s
841 8(71 8(1 8Cn Tn

Lemma 3.5. If h is holomorphic, then
0

| o |h|N/Tn .

First note that Lemma 3.5 together with the well-known fact that

‘ o9 99’
aCl aCn

is a Carleson measure yields the estimate

0 0 09 Og </
—_— hl.
N 9‘6@ 8¢, ! ’acl ac, M= [
Then we have
[ IR )
%Noc,| 8¢ | |8 867 |ac: 9,
P T WY 9 0g|| o
o 01 .. 01 3C1 8(; 8{1 ...aclg Q141 -+ On 8Q+1 acn 8Cl+1
09  Og|| 0 3] ‘
< .. On ... —h
N/Tlx...le~/Dl+1><...><Dan+1 ¢ 8C41 " 0Ca||0C1 T On

S [ <ol I Tlercrm S s s

and this completes the proof of Theorem 3.1.

9
I
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)

Remark 8. These lemmas hold even if h is replaced by hy, where x€C(D").

To see this, just observe that, for example,

14] 15)
— .. —xh| < n
o - et <l S

I

0 0
—..—h
8([1 6<Ik ‘

This means in particular that we could get the same LP(T™)-estimate for a function
u given by u= [ Kpx, where K is the kernel of the integral in (3.3) and x€Cg°.

(This observation will be needed when we are to prove the general case.)
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4. Solution of the HP-corona problem in the analytic polyhedron

Now we will work through the scheme in. Section 3 to prove the analogue to
Theorem 3.1 in the case of the polyhedron, that is, we will prove that ||u||g»(o)<
Cllellae(oy if u is the solution given by Proposition 2.1 and we choose Hefer func-
tions for g in a suitable way. The interesting things happen at the “edges” or at
the “corners” of 90}, where some of the defining functions has modulus 1. The idea
of the proof is to fix an edge, perform a suitable change of variables and see that
the polyhedron kernel in the new variables looks like the polydisc kernel. Then we
apply the polydisc proof of the HP-estimate (with some minor modifications) and
arrive at the desired result.

Fix one term Kj, o g in the kernel (2.6); denote this term by K. Let u denote
the corresponding term u(z)=[ K({, 2)¢(¢). (The sum of all such u will then be
our solution (2.5) to g-u=¢.} Look for possible singularities.

Remark 9. For a singularity to occur in the polydisc, we would have (;=z;,
but in the general polyhedron singularities occur whenever f;(¢)=f:(z), which may
happen as soon as ¢ and z are on or near the same edge.

Some possible singularities in K are the n—k factors

L
fi—fi(2)

These are de facto singularities if and only if f;({) is close to f;(z), that is, if  and 2
are near or on the same edge |f;]=1. Thus, we have such singularities just at edges
corresponding to the indices in a. The only way for other, “new”, singularities to
appear is to be a part of some 4h;. To see what singularities may come from there,
we use the definition of Hefer functions (5.3) in Section 5, and we will as a tool
use Lemma 5.1 from there. For easy reference, we collect the needed facts in the
following proposition.

Proposition 4.1. There are functions A’ and a (1,0)-form b such that 4h
defined by

Z 2)hy(C, 2)+b(¢, 2)

is a Hefer form for g. The functions A3((,2)(f;(¢)— f;(2)) and the coefficients of b
are holomorphic and bounded. Furthermore, if we perform local changes of variables
to & and x as below, they can be decomposed as sums of functions

Dyo(é @) [[(6—=0),

i€a
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where 1<k<n+1, aC{l,... ,n}, the function Dy, is holomorphic and bounded
and depends only on the variables &; and x; with i€, x; with i¢a and i<k and &;
with i¢a and i>k.

Remark 10. The properties of the functions Dy, o should be compared to what
happened in the polydisc case, where ;H was a sum of functions ¢’, depending on
some z; and some (; variables in a certain order, combined with singularities.

The remainder of this section is devoted to the proof of the following analogue
to Theorem 3.1:

Theorem 4.2. Let u(z) be as in (2.5), where 0<6<3" |g;|<1 and the Hefer
forms gh; are defined as in Proposition 4.1. If we assume that the functions g; and
¢ are holomorphic on Q, then g-u=¢ and |[ulmr) <C|l¢| rr(0)-

By Proposition 4.1,
N
ohj = A% shi+b;,
k=1

where the forms b; have bounded coefficients. Therefore they will not contribute
with any singularities, and with respect to singularities we will have

N
ghi~ > A¥ghy,
k=1

where each A? will contribute with a singularity 1/(fx({)— fx(2)).

Remark 11. With some modification, this is really the general case, where we
take b into account. The difference is that we will have some factors b; instead of
factors A;? thi, but noting (see below) that any such factor will be replaced by a
bounded holomorphic function divided by fi(¢)— fx(2), we can instead replace b;
by such a construction.

From this (leaving out irrelevant subscripts on A),

N

Aot A st N (i) st S0 A A s

jes i€ Jjep Ni=1 i€a J=(j1 ,er ,d&) 1€J i€o
JNoa=0

In this product, we will have k factors A%, where i¢«, and hence we get k new
possible singularities from there; none of these with respect to any defining function,
with respect to which we already had a possible singularity. We conclude, that as
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a total we will have n possible singularities, and they will all be with respect to
different defining functions.

From now on, we may (without loss of generality) assume that we have the
possible singularities in the defining functions fi to f,, and that a=(1,... ,n—k).
Then we integrate over the set

S={|f1|:1, i=1,... ,n—k, |f7;|<1, i=n—k+1,... ,N}

and the kernel we study looks like this:

n—Fk

41)  K((2)=wC(( 2 Hf@( X H A¥((, 2 /\a%/\dcz,

i=n—k+1 Jj€B =1

where the function C is holomorphic across the boundary of S and is made up from
the coefficients in the forms ¢h;.

To show that we have an HP-solution to the division problem, it suffices to show
that every p€o has a neighbourhood UCC™ such that ueL?(cnNU). Therefore,
fix peo. (We shall let z be on ¢ near p.) By a partition of unity argument, it is
enough to show that any point ¢€ S has a neighbourhood V C C™ such that whenever

xX€C5(V),
(42) - / K(& 2x(0)p(¢) € LP(onD).
S

Therefore, fix g€S; we shall let ¢ be near q. By compactness, it suffices to choose
U and V at the same time, such that (4.2) is valid.

Let J be the set of indices 4 such that i<n, | f;(p)|=1 and f;(p)=f;(g). Choose
Usp and V>¢q so small that the n functions f; such that |f;(p)]=1 constitute a
local change of variables in U and the functions f; such that |f;(¢)|=1 constitute a
local change of variables in V. (Note, in particular, that the functions fy,... , fn_&
are among the functions that constitute the change of variables in V, and that
the functions f; with i€J are involved in the changes of variables both in U and
in V.) In addition, U and V should be so small that the three following conditions
be satisfied. If |f;(p)|<1 and z€U, then |f;(z)|<1. If |f;(¢)|<1 and (€V, then
|f:(Q)|<1. If fi(p)#fi(q), z€U and €V, then f;(z)#f:(¢). With these choices,
the only remaining singularities will be the ones with respect to the functions f;,
i€ J. To see this, first remember that, by our very choice of term in the kernel, the
only possible singularities was with respect to f;, ¢<n. Then, since every singularity
could be expressed in terms of 1/(fi(¢)—fi(2)), we will have no singularity for
functions f; such that f;(p)# fi(¢). Finally, we must see that we have no singularity
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with respect to f; if |fi(p)|<1, but then |f;(2)|<1 for z€U. If 1<i<n—k, we are
integrating over |fi(¢)|=1, so fi(p)#fi(q); this is an excluded case. It remains
to study the case where n—k<i<n. Then the possible singularity is of the type
AY(¢, z). Assuming that f;(p)=fi(g), we have (z,{)€U xV, and for such (z,() the
function A® is bounded; see the definition (5.1) and compare with the proof for
boundedness in Lemma 5.1.

Let  be the new variables in U (corresponding to z), and £ be the new variables
in V (corresponding to ¢). In particular, we will have z;= f;(2) and & =7;(¢) when
i€ J; furthermore &;= f;(¢) for i <n—k. When we perform these changes of variables,
for suitable choices of the remaining functions in the change of variables in V' we will
have QNU~D"NU and QﬁV:D"ﬂf/, where U is a neighbourhood of the point
z(p)eT™ and V is a neighbourhood of the point &(g)eT™ * x D*.

Let us perform the indicated changes of variables, expand the functions A° and
the forms dy. Then a calculation (that we omit) reveals that the kernel is

n—k 3=7ar 37
Ble, ot e A %% 1] s /\dsz,

=1 &—ﬂ% i=n—k+1
where the function B is a product of functions D [](§;—z;) from Proposition 4.1,
and we let C' include all functions (holomorphic across the boundary) coming from
the change of variables, from the “quasisingularities” 1/(f;(¢)— fi(2)) where i¢.J
and from the fact that we (for notational convenience) have introduced factors
1/(&—x;) even for ig¢ J.

The argument for HP in Section 3 may now be repeated to prove that the
solution function in the polyhedron belongs to H? (by showing that (4.2) is valid
for it).

In short, we complete the proof in the following way: We integrate

/ n_kXDka(S,x)C(S,x)X(f)/\6g/6_€;jl& 11 _— A de

i=1 i=n—k+1 Ti

against an L9-function 1, disposing of the singularities by introducing the integral

operator 7 given by
rore— [ B@BEDCE 2)b(@)
P(§) = :
This is holomorphic, furthermore it is bounded on L? as required, which we soon
will see. If we split B into its parts and study each part separately, the integral
operator we must estimate is

[ TI(Dkal& ) TIE —2,)CLE 2)3() ()
o=/ G2 '
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The first thing to notice, is that we can forget about @, since it is bounded and only
depending on the variable of integration. Next, we can forget about all variables
with numbers j such that a factor {;—z; occurs in the product Bj; this factor
will then cancel a corresponding singularity. We may thus assume that the factor
[I(Dk,a(& ) [1(&—2;)) just is a product [] Dy (&;z), where Dy, depends only on

Z1,... sTk—1,&k - ,&n- Since the operator
[ TID(E2)CE ()
v /ac [T(&—=:)

maps L? to L? by Corollary 3.3, this yields the LI-boundedness for our original 7.

Then we integrate by parts and end up with the correspondence to (3.6). Fi-
nally the lemmas from Section 3 in conjunction with Remark 8 yield the desired
estimate; Theorem 4.2 is proved.

Remark 12. To be more precise, we are only studying z in the set U, so the
integral operator 7 would be defined by integration only over UNT™. This will,
however, not cause any trouble, since we may choose a cutoff function x/(z) with

=1 on U and in whose support we still have the change of variables. When we
change the variables, we get the same integral as before with the difference of the
x' occuring in 7; this does not disturb the Li-boundedness. In addition we get an
integral over the set supp x’\{x’=1}. But on that set there will be no singularities,
so the estimate is still valid.

5. Choice of Hefer functions in the polyhedron

We want to choose Hefer functions for g such that the argument in the preceding
section is valid. By Weil’s integral formula (where we ignore the factor (2m)™"),

Cals) = w Di(w, Q) _ Di(w, 2)
=) ;/,,g‘ (T o) T )

where Dy is the determinant of the Hefer matrix ¢, H;

Dl(w, . ) = det[ng(w’ . )]jzl yeor s T2

i€l

To obtain a Hefer decomposition of g, we rewrite the integral:

92)=3 | stwni 0( O @)

Dy(w,{)— DI(w z)
+Z/ M@ =-fn) T8
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To study the integral A, just observe that

1 1
T () = f1.0) TIL (fr.(w) ~f1,(2))

“ 1
_z; 1527 (o (w)— f1,(2)) T (Fr, (w) — £1,(€))

1
T (F (@)= Fr, () T (s () — £1,(O))
< 1.0 Fr,(2) ,
T (e () = fr,(2)) T (e (w0) = 1, (O))
By this,
A=Z AN (O - fi2)),
where
(5_1) Ai(c,2)= Z ( )Dl(w C)

1ot Jor Tl (fry () = Fr, (D T (1, (w) = £1,(Q)

Turn to the integral B. If we do any Hefer decomposition 8 of the determi-
nant Dy; Dr(w,¢)—Dy(w,2)=Y B%(w,(, 2)({k—2k) such that B is holomorphic in
all variables (across the boundary!), then by the calculation

J(@)(Dr(w,Q)-Di(w2) ([ _o@)sw,c.2) N,
[ (= ne) ‘,;( Ry )G

we have a decomposition B=35";_, B¥((, 2)((x —2k), where

(52) =2 ) St

With A and B as in (5.1) and (5.2), we define the Hefer functions like
(5.3) oH((, 2) = A((, 2) ) H (C, 2)+B(C, 2).

To get the right estimates for gh (cf. Section 4), we need the following results
for A* and B*:
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Lemma 5.1. For each i, the functions A (¢, 2)(f:(¢)— fi(z)) and B¥((, z) are
holomorphic and bounded. (Here (€ and z€0.) Furthermore, if we perform any
local change of variables to £(¢) and x(z) as in Section 4, each of these functions is
a sum of functions

Dk,a(g» m) H(fi_xi)7
[1<te
where Dy, o is holomorphic and bounded and depends on the variables & and x; with
i€, x; with id¢a and i<k and & with i¢a and i>k.

The holomorphicity is in no doubt, the thing to prove is the boundedness and
the decomposition after changes of variables.

To prove this lemma, start with the part including A and rewrite the expression
like '

i g(w)Dr(w, () (f1,() = f1,(2))
'A ’ T
(€2 IB;Ik or HJ V(S (W) = fr () T =i (fry (w) = £1,(C))
Z g(w)Dr(w, )

- I34,4=1I, Y 91 H;Z%(flj (w) =/ (2)) H?:k(ij (w) = /1 ©)
~ g(w) Dy (w, ()
or Ty (1, (w) = f1,(2)) T =gy (F1, () — £1,(0))

and look at one of the integrals, say one of the first kind.

Take any r€oy. Let fr=(f1,,..., f1,) be a local change of variables in some
neighbourhood of r. Cover ¢; with a finite number of such neighbourhoods U;. (We
shall let t=fr(w) (that is, t;=fr,(w)) be new variables instead of w there.) Let
{x:i} be a partition of unity subordinate to {U;}.

Consider the integrals J; given by

g(w)Dl(w’C)
or TI=1 (1, (w) = f1, () T (Fr, (w) = f1,(€))
_ 9(w) D (w, O)xa(w) N
; or TI1 (f1, () = f1,(2)) T (fr, (w) — f1, Z '

We want to prove the decomposition for each such J;.
Assume that I=(1, ... ,n) and let us suppress the index 7. This means that we
want to show the decomposition for the integral

_ g(w)x(w)D(w, () _
or Tl (F5(w) = £ () T s (w) = £5(O))
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To achieve this, we will perform changes of variables to convert J into a sum of
Cauchy integrals. The changes of variables will be according to the situation in
Section 4; z is to live near some point p€oy and ¢ is to live near some g€ 0€). Let us
assume that |f;(p)|=1 for i=1,... ,p, |fi(p)| <1 for i=p-+1,... ,k—1, |fi(g)I<1 for
i=k,..,v—1 and |f;(q)|=1 for i=v,... ,n. Then we will have new variables #(w)
near 7, z{z) near p and £{{) near ¢. In particular t;=f;(w) for i=1,... ,n, z;=f;(2)
for i=1,... ,uand &=f;(¢) for i=v,... ,n.
Rewrite J, changing the bounded, holomorphic function D as we go along:
_ g(w)x(w)D(w, {)
ot TI2 (3 (0) = £5(2) T s ()= £50))
_ g(w)x(w)D{w, ¢, z)
or L= (Fi(w) = f;()) [T =, (f5 (w) = £3(0))
9)x (@)D, &, x) 9(O)x(H)D(¢, ¢, z)

oo [Tt —25) [T, 5]) Tn H?;]]:(t]‘_mj)l—[?:k<tj_£j).
The next step is to rewrite D in order to get the properties that we want. We want
to see that J has the properties of the bounded functions of Lemma 3.2; that it is
holomorphic and bounded and only depends on the variables z; and &; in a certain
order. We will not be able to achieve exactly that, but will see that J in fact can be
split into a sum of functions with that ordering property for some of the variables,
while the dependence on the remaining variables will be harmless. Study the first
variable number. We obtain a decomposition

D(t7§ax) ( (t 67 ) (t 5(31,52,... 7§n,x))+D(t,x1,§2, ,fn,l')
of D into two functions, where the first function depends on both & and x; but

remains bounded even after division by & —x1, and the second function depends
on x1 but not on £ . Repeat this decomposition for each of these two functions

(5.4)

(and all their descendants) for variables with numbers 2,... ,n. This yields the
decomposition
D(t:;&2)= > Dralt;&a) [[(G—=),
|a|<n i€

where the function Dy o, depends on all ¢;, on all §; and z; with i€, on all z; with
i¢a and i<k and finally on all £; with ¢¢« and i>k. This induces the corresponding
decomposition of J as a sum of integrals

Dkoé(t 5) )
J, —xy = i—x;)D(§, ),
e / H T —6)  LLE—o0PE)

where the function D is defined by the weighted Cauchy integral; D is holomorphic
and (by Lemma 5.2 below) bounded and depends on all §; and z; with icq, all ;
with i€ and i<k and all & with i¢« and i>k. This proves the assertion.
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Lemma 5.2. If b(w,{)€H®(D"x D") and x(w,{)€C>®(D"x D"), then the
weighted Cauchy integral

_ b(w, O)x(w, {)
1O= /weT" I (wi—G)

is bounded in D™.

That was the part of the lemma involving A*. When we study B?, considera-
tions similar to those above show that the integral

9(w)B(w, ¢, 2)x(w) _/ 9()B(, &, ) B(t, z)x(t)
n H?:l(tj“wj)

is bounded. Also, when we perform changes of variables, it will have a decomposition
as above; this case corresponds to k=n+1.

or 111 (w)—f1,(2))
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