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Takens' problem for systems of 
first order differential equations 

Juha Pohjanpelto 

1. I n t r o d u c t i o n  

In 1977, F. Takens [6] considered the following novel aspect of the classical 
Noether's theorem of calculus of variations: Let a local Lie group act on the space 
of independent and dependent variables, and let P be the Lie algebra of infinitesimal 
generators of the group action. Suppose that a system of differential equations is 
invariant under F and that each element in F generates a conservation law for the 
system. Does it then follow that the system arises from a variational principle? In 
his original paper Takens answered the question in a number of non-trivial cases. 
Subsequently, Takens' results on second order scalar equations and on systems of 
linear equations were substantially generalized by Anderson and Pohjanpelto [2], [3]. 

In this paper we consider Takens' question for systems of first order equations 
and for the Abelian Lie algebra F= t (n )  of infinitesimal translations acting on the 
space of independent variables. This problem originally arose in connection with 
Takens' problem for vector field theories [4], and the results of this paper, in par- 
ticular Theorem 8, will be directly applicable therein. 

Let T(n) consist of all systems of n first order partial differential equations 
in n independent and n dependent variables which are invariant under t(n) and 
for which every element in t(n) generates a conservation law. Results in ref. [3], 
applied to t(n), imply that a system in T(n) whose components are polynomials in 
the dependent variables u a and their first order derivatives u~ of degree at most n is 
variational. In contrast, here we consider the case when the components are allowed 
to be smooth functions in some open set in the space of the variables (u a, ua). 

We begin by reviewing some basic definitions and results from the calculus of 
variations most relevant to our problem. In Section 3 we give an explicit description 
of systems belonging to T(n) in terms of the minors of the matrix (ua), and we 
proceed in Section 4 to show that the subspace ) ; (n)CT(n) of variational systems 
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is characterized by a simple algebraic condition. Surprisingly, these conditions turn 

out to be exactly the ones that  guarantee a system in T ( n )  to be everywhere smooth 
in the derivative variables u~. This result underscores the fact already apparent  in 
refs. [2] and [3] that  subtle smoothness properties of differential equations play a 
central role in Takens' problem. The algebraic conditions also allow us to construct 
a subspace . A ( n ) C T ( n )  complementary to the space ])(n). Thus, in a sense, the 
subspace .A(n) gives a measure of the degree to which Takens' question fails in the 
present problem. 

Finally, in Section 5 we present some examples. The first two examples par t ly  
motivate our restricting the problem to first order systems in n independent and m =  
n dependent variables. Specifically, these examples show that ,  in general, Takens' 
question for t (n)  fails for everywhere smooth first order systems when m > n ,  and 
for everywhere smooth second order systems when m = n .  When m < n the results of 
refs. [2] and [3] can be applied to solve Takens' problem for t (n)  in several particular 
instances. However, this case still remains to be studied in full generality. 

2. P r e l i m i n a r i e s  

In this section we collect some definitions and results from calculus of variations 
needed in the sequel. For more details and proofs we refer to refs. [1] and [5]. 

Let E = R n •  R r" be the space of the independent and dependent variables 
with coordinates x ', i - -1 ,2 ,  , n  and u ~, a = l , 2 ,  ,m. We write uS u. ~ 
ue . - for the first, second and higher order derivatives of the u% Let I :  

$1  $ 2 "  . , $ k  ' """ 

( i l , i2  ,... , ik)  be a multi-index of integers l<_i j<n of length [II=k , and let I # - -  
(tl,  t2, . . .  , tn) be the transpose of I ,  where tj stands for the number of occurrences 
of the integer j amongst the entries i l ,  i2, ... , ik of I. We write I!=tl! t2[  ... t~!, and 
define the weighted partial derivative operators 0 / by 

O f =  I! 0 Ixl!ou ' IIl_>o, 

and the total  derivative operators Di by 

Di = + uixO~, i = 1 , 2 , . . . , n .  
II1>o 

We associate to a system of kth order differential equations 

Aa(x i ,  ub, u b. ub. . u b 
, ili2...ik)=0, a = l , 2 , . . ,  m, 

$1  ' $ 1 5 2  ' " ' "  
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the source form 
A = A,~du a A u, 

where u = d x l d x  2 ... d x  n is the volume form on R '~. A source form A=A~du~Au is 

said to arise from a variational principle if there is a Lagrangian 

L = L ( x i , u  a u ~. ue . . . .  u ̀ ~ 
' ~i' ' t l ? , 2  ' ' ili2...ik) 

such that  
A~ =E~(L) ,  a = l , 2 , . . . , m ,  

where the Euler-Lagrange operators E~ are 

(1) E~(L)- -  E ( - D ) I O ~ L .  
Ixl>0 

Here the iterated total  derivative ( - D ) I ,  I = ( i l ,  i 2 , . . . ,  ik) ,  is given by 

( - D ) I  = ( - D ) i ~  ( - D ) i ~  ... ( - D ) i ~ .  

One can easily check that  if a source form A - = A a d u a A v  arises from a varia- 
tional principle then the components of the Helmholtz operator of A given by 

(2) H I b ( A ) = O I A a - - ( - - 1 ) I X l E ~ ( A b ) ,  a , b = l , 2 , . . . , n ,  I I l~0 ,  

vanish identically. In (2), the higher Euler operators E / are given explicitly by 

(3) E (f) (Izl /llJI) = ( - D ) j O ~  ( f ) .  
IJl>O 

Conversely, if the Helmholtz conditions ?-//b(A)=0 are satisfied, then it can be 
shown that,  at least locally, the source form A can be writ ten as the Euler-Lagrange 
expression of some Lagrangian. Hence we will call a source form satisfying the 
Helmholtz conditions locally variational. 

Suppose that  the Lagrangian L=L(u%u~. l ,u~. l~2 , . . .  ,ui~i2...ik) is invariant un- 
der the infinitesimal transformation group t (n)  of translations generated by the 
vector fields O/Ox i, i=1 ,  2, . . .  ,n.  Then it is well known that  there are differential 
functions 

V~ = V}i , ugly, u ~.~2. , "'" , u~i~i2...ik), i , j  = 1, 2, ... , n, 

such that  
u ~ E a ( L )  -- D~V~-. 
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Each vector field (V}, V~,... , Vy) is divergence free on the solutions of the system 
Ea(L)=0 and therefore provides a conservation law for the system. Accordingly, 
we say that a source form A = A a d u ~ A v  admits t(n) conservation laws if there are 
differential functions V~. such that 

(4) uaA~ =DiV~j, j = 1, 2,. . .  n. 3 

It is well known that if (4) holds, then necessarily 

(5) Eb(u~Aa)=O, b=1 ,2 , . . .  ,m. 

Conversely, if the Euler-Lagrange expressions in (5) vanish, then it can be shown 
that, at least locally, there exist differential functions V~. such that equations (4) 
are satisfied. 

Suppose that A is locally variational. Then, by the classical Noether's theorem, 
A admits t(n) conservation laws if and only if A is t(n) invariant. In this paper we 
study the question whether the existence of t(n) symmetries and t(n) conservation 
laws implies that a source form is locally variational. 

3. Conservation law condit ions 

Throughout this section and Section 4, E = R  ~ •  n. 
A = A a d u ~ A v ,  we write 

Given a source form 

~ i=u~Aa ,  i = l , 2 , . . . , n .  

Our first task is to transcribe the assumptions of Takens' problem for the infinites- 
imal transformation group t(n) into conditions for the functions ~i. 

The t(n) invariance of A simply means that the components Aa, and thus the 
functions ~i, do not depend on the variables xJ. 

Propos i t ion  1. Let A = A a d u a A v  be a first order source form on E = R  n •  '~ 
invariant under t(n). Then A admits t(n) conservation laws if  and only if the 
functions ~ i=u~  Aa satisfy the following equations: 

(6) oo ,-u Oco    =o, 
(7) n(J ~k),T, - -  a v a v b = i  - -  v ,  

for all a , b , i , j , k = l , 2 ,  ... ,n. 

In (7), the round brackets indicate symmetrization on the enclosed indices. 
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Proof. Assume first that  the source form A admits t (n)  conservation laws. By 
equation (5) and by the definition of the functions ~P~ we have that  

(8)  E a ( k ~ i ) = 0 ,  a , i = l , 2 , . . .  , n .  

Recall that  ~i=~Pi(u a, u~) does not depend upon x j. Thus, when expanded using 
the expression (1) for the Euler-Lagrange operators, equation (8) becomes 

(9) O=Oa~i -Dj (O~Pi )=Oa~i  b " b k "  --ujOb~--ujkOb ~ .  

Now the coefficients of the second order terms ubk m (9) must vanish, which imme- 
diately yields (7). The remaining terms in (9) yield (6). 

Conversely, it is clear from (9) that  equations (6) and (7) imply that  (8) is 
satisfied, that  is, the source form A admits t (n)  conservation laws. [] 

In order to solve equations (6) and (7) we need to establish some notation. 
Let A and I be the multi-indices A = ( a l ,  a2 ,... , ak) and I = ( i l ,  i2, ... , ik) of length 

U a tAl=lI l=k.  If IAl=lIl<n, we define the minor VA x of the matrix ( i)~,i=1,2 ..... ,~ by 

(lO.a) VAt_ 1 ~ i l . . . i k / , k + l  ... '~n ~ ~ a k + l  a n 
( n - k ) !  a l . . . .  ~ a ~ + , .  a . ~ + ~  -.. u i ~ ,  

where ~1~2...~. and e~la~...a, are the permutation symbols. In particular, V stands 
for the determinant 

V = det (u~). 

We also let 

(10.b) V / - - 0 ,  i f [A I = [ I  I>n .  

It is easy to see that  the minors VA x satisfy the identities 

(11) c i l . . . ik-- l ik  ~ k~c  l z i l . . . i k -1  
~ b ' Y / =  Y / ~  a n d  ui~ V~l . . .a~_la  k Via k Val . . . a~_l ] .  

In (11) the square brackets indicate skew-symmetrization on the enclosed indices. 

a L e m m a  2. Let r162 be a function in the variables ui ,  a , i = l , 2 , . . .  ,n,  
and assume that r satisfies the equations 

(12) "~(i~J)~l,-- b , i , j  1,2, . . .  n. v a v b ,~. - -  0, a ,  = , 
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Then r is a constant linear combination of the minors V A ,  [AI=[ I I=0 ,1 , . . .  , n. 

Proof. We first let a=b in (12). Then the function r satisfies 

for all a, i , j = l ,  2, . . .  , n. It immediately follows from this tha t  r is a linear combi- 
�9 . " ' . "  ~ . . . . .  nation of the monomials M~a2...,: k u~:ua: ... u ~ ,  where the indices al ,  a2, , ak 

are all distinct. Write r as a sum 

r I A =(TAM ~ , 

where the constants a~t are invariant under simultaneous permutations of the entries 
in A and I.  Then equations (12) for a # b  show that  the a / must be skew symmetric 
in the indices I.  Now the lemma follows. [] 

T h e o r e m  3. Let A=A~du~A~,  be a first order source form on E = R n •  n. 
Then A is invariant under the infinitesimal group t (n )  of translations and z~ admits 
t (n)  conservation laws if and only if each component Aa of A can be expressed as 
a sum 

(13) _ -1 A i I A~- -  V )ti,i V~V~, a = l , 2 , . . . , n ,  

where, i f  [At=lI]=n , the coefficients A [A]_x A i,[I]--"i,I are constant, and, if IA[=lIl<n,  

the coefficients ~ [A] =)~i,A are functions of the u b, i,[1l 

)k A[ub~ (14) Ai,/A= ~,Ik J, 

and satisfy 

(15) 0cAi,~2"::~ =0 .  

Proof. First suppose that  A is t (n)  invariant and that  A admits t (n)  conserva- 
tion laws. Then the functions ~ =uaA~ satisfy (6) and (7), and thus, by Lemma 2, 
we can write 

(16) _ A X ~i  -- ~'~,I V~, 

where the coefficients A~,A=A~,A(u a) are smooth functions of the dependent vari- 
ables u a only. Note that  equations (6) and (7) are homogeneous in the variables u~. 
Thus we can assume that  the summation in (16) extends only over multi-indices 
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I, A of some fixed length k. In the case k = n  the conclusion of the theorem is clear 
from (6). For k<n ,  we have, by (11), that  

?.tc~l ,~rI c II __ c Q...ik l ua v A = u~ V~a - (k+ 1)5[aV~...a~]. 

Thus equation (6) implies that  

(17) 

A I A c I 0 = (OaAi, 1 )V~-(k-bl ) (OcAi ,  I )5[aVl] 
k 

tD ~ A~I7I  [0  ~ A ~ V I  L V ' ~ O  ~ al . . .a~- la~a~+l . . .akgQ ... i~ 
kVa/~i,I ] " A - - \  a i , I  ] A"-~...~ as i,Q ... ik al . . .as-;aas+l. . .ak 

s=l  

~-- k (  Oal )~i a:~2...i:k ) V~l~22...zakk. 

Hence the coefficient Ai, A satisfy the divergence condition (15). 
Conversely, if (13), (14), and (15) hold, then it is immediate from Proposition 

1 and the calculation leading to (17) that the source form A is t(n) invariant and 
that  A admits t (n)  conservation laws. [] 

f:a,A ca ,A{ ,  b~ Note that  if (15) holds then, at least locally, there are functions ~i,l =~i,x ~ ) 
~:[a,A] ca,A satisfying the skew symmetry condition ~ i,[I] =ui,I such that  

)~ A ~ 0 ca ,A 
i ,I  a~i,I  �9 

4. H e l m h o l t z  c o n d i t i o n s  

P r o p o s i t i o n  4. Let A = A ~ d u a A u  be a first order source form on E=R '~  x R '~ 
invariant under t (n) .  Then A satisfies the Helmholtz conditions if and only if the 
functions qJi=u~ Aa satisfy the following three equations: 

(19) i b i Ob~(jUk) --50gYk) = O, 

(20) ~ ( i ~ j )  ff, . b ~'a ~b ~[k~z] = 0, 

for all a , i , j , k , l = l , 2 ,  ... ,n.  

Proof. Since the source form A is of first order and t(n) invariant the Helmholtz 
conditions (2) are satisfied provided that 

( 2 1 )  c p 20[a Ab] -- UpOcO[aAb] ~- O, 

(22) O~aAb) ~-0 ,  

(23) 
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First assume that A satisfies the Helmholtz conditions (21), (22), (23). 
(21) by u iaujb and sum over a and b. An integration by parts shows that 

(24) ~ b - -  a b p a a p Ui ?~joPamb -- Ui OPa ( u j m b  ) - - ~  Ui ma : Ui ~aa ~ j - - ~  ~i" 

Thus (21) becomes 

Multiply 

_ _  a b  c a b  0 - 2Ui~U~lO~Ab--%Odu[~u~l~Ab) 
= - 

from which (18) follows. Equation (19) can be similarly derived from (22). 
Finally multiply (23) by UkU l b  c and sum over b and c. An integration by parts 

results in 
o ( i ~ ) ~ [  , b - - 2  b x(i~ l) A a b [kt~l] "~ U[ktSl] U(a b) = 0 '  

which, on account of (22), gives (20). 
Now it is also a simple matter to check that (21), (22), (23) imply (18), (19), 

( 2 0 ) .  [ ]  

Remark. Propositions 1 and 4 can also be derived by employing a moving 
frame for the contact bundle of the variational bicomplex (cf. ref. [1]) reflecting the 
transformation ~i-:u~A~. However, for our purposes it is simply more expedient 
to give direct computational proofs of these results. 

P ropos i t i on  5. Let A=A~du~A~ be a first order source form on E = R  '~ • R '~ 
as in Theorem 3. Then A is locally variational if and only if the coe~cient functions 
Ai, A are completely skew symmetric in the lower indices: 

~ A  A 
[i,I] = A i , I  " 

Proof. We first note that by assumption the functions ~ i = u a A a  s a t i s f y  equa- 
tions (6) and (7). Hence the Helmholtz conditions (18) and (20) are identically 
satisfied, and, consequently, A is locally variational if and only if (19) holds. 

Calculations parallel to those leading to equation (17) in the proof of Theorem 
3 yield 

a i __,qil AT/I  t,1 aza2...ak~/ii2...ik 
U l ~ a ~ j - - t J l ~ j , I  VA--r~/~j,li2...ik vala2...a k �9 

Hence (19) holds if and only if 

:? :0, 

that is, the coefficients ,ki, A are completely skew symmetric in the lower indices. [] 
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u ~ .. . .  Suppose L e m m a  6. Let V~ be the minors (10) of the matrix ( ~ )a#=l,2 ,n. 
that there are constants ai, A, where ai, l A],~ --ai,i A, and polynomials Pa in the variables 

such that u i 

A . . I  _ ~ a D  ffi , iV~--t~i.la, i = 1 , 2 , . . .  ,n. (25) 
Then necessarily 

A A (26) a[i,z ] = a~, I �9 

ff A satisfy the skew symmetry condition Conversely, suppose that the constants i,l 
(26). Then (25) holds for the polynomials Pa given by 

1 a AVix 
P a  = , , I  aA" 

Proof. We first note that by expressing each polynomial Pa as a stun of its 
homogeneous components we can assume that in (25) both sides are homogeneous 
polynomials of degree n - k .  

(7 A and for First suppose that equations (25) are satisfied for some constants i,l 
some polynomials Pa of degree n - k - 1 .  Write 

P a  -~- ~ i k + 2 i k + a . . . i n  ?t .ak+2t~ak+3 a n  
v a , a k + 2 a k + 3 . . . a  n w i k + 2  ik+3 "'" U in  

where the coefficients Ca,:~+~++3""~ . are invariant under simultaneous permutations 
of the indices a k + 2 ,  a k + 3 ,  . . .  , a n  and i k + 2 ,  i k + 3 ,  . . .  , i n .  N o w  equations (25) become 

1 sT a l ' " a k ~ ' i l " " i k i k + l " ' i n r  " u a k + l a , a k + 2  ?~a.n 
(27) (n_k)!~i,i~...ik ~ ~ a l . . . a k a k ~ _ l . . . a  n i k + l ~ i k + 2  . . .  zn 

--$ a k + l  ,akT2...an ~ik+l ~ i k + 2  "'" u a ~ "  

Let the indices bk+l, b~:+2,... , b~ be distinct. Equating the coefficients of the mono- 
blr b~+2 bn mial uj~+uj~+2 ... u j ,  on both sides of (27) we obtain the equation 

. 

(7 b l ' " b k ~ J x ' " J k J k + l " " J ~ e  . . . . .  ( n - k - l ) !  ~jp(~ j ~ + l . . . j ~ - . . j n  
i , j z . . . j k  ~ ~ 1 7 6  ~ i  ~ b ~ , b k + l . . . b ~ . . . b  n �9 

p=k+l  

Thus 

1 6 ~JPI~ Jk+l...j~.,.jn 
/_., ~ i  ~ b p , b k + l . . . b ~ . . . b n  

(7 b l . . . b ~  ~ .  . s  

id,...j~ -- ( n - k ) ! ( n - k )  ~"'~3~+~'"3" p=k+l 

n 
1 ~'~ E . . . . .  ~ b l . . . b n g v  j k + l . . . j ~ . . . j n  

-- ( n - k ) T ( n - k )  Z_~ 3,...~-x~3p+l...J, ~ "~bp,bk+l...b~...b, 
p=k+l  

-- n l k  leJl""JkiJ~+2""J" eb~'"bkbk+lbk+2""b~Cbk+l'~:+: Jb:, ( _ ) .  
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which shows that  
(T blb2...bk ___  blb2...bk 

[i,j~j2...jk ] - -  ~ i,J~ J2...Jk " 
A Conversely, suppose that  the constants cri,; are skew symmetric in the lower 

indices. We compute 

a A T z i I  A a*~iI A [i I] 
Uj(Yi, I VaA  = ( Y i , I  ~ZjVaA = (lll+l)~,z 5J Ym = ( l l l + l ) a , , ~ s j Y ~  = (III+I)aj,Av.~. 

Hence (25) holds with 
1 a a y j l  

.A .  [ ]  

T h e o r e m  7. Let A=AaduaAg  be a first order source form on E = R  n x R  n. 
Suppose that A is invariant under the infinitesimal transformation group t (n)  of 
translations acting on the base R n of E and that A admits t (n)  conservation laws. 
Then A is locally variational if  and only if  the components Aa are smooth in the 
first order derivative variables u~. 

Proof. First suppose that  the source form A is locally variational, that  is, A 
satisfies the Helmholtz conditions. By (22) and (23) 

for all i , j ,  a, b, c=l ,  2, . . .  , n. We now proceed as in the proof of Lemma 2 to con- 
clude that  the components Aa are polynomials in the derivative variables u~. In 
particular, each A a is a smooth function in the variables u~. 

Conversely, suppose that  the components A~ are smooth in the variables u~. 
By the assumptions and by Theorem 3, 

A a l ? ' - I  ~ ATTiW-I 
~ v  "~i,I V a V A ,  

where the coefficients Ai, A depend on u ~ only. It follows that  each A~ is smooth in 
the variables u~ only" A i I if Ai, I V d V~ is divisible by V, that  is, only if the components Aa 
are polynomials in the variables u a. But then, an application of Lemma 6 shows that  
the coefficients Ai, A must satisfy the skew symmetry condition ~[i,I]A --)~i,I,-- A which, 
by Proposition 5, implies that  A = A ~ d u a A v  is locally variational, as required. [] 

Let the set A(n)  consist of all source forms A-=A~du ~ Av on E = R  ~ • R n whose 
components Aa can be expressed as a sum 

( 28 )  A a  1/--  1 ~ A~g'iT2"I . . . .  i , I ~ , A ,  [ A ] = [ I [ > I ,  

where, if [A[=lI[=n, the coefficients A [A]----Ai,A are constant, and, if [A[=[I[<n, i,[I] 
the coefficients A [A]_x A A_ A b i,[I] --"i ,I  are functions of the u b, Ai, I - A i j  ( u ) ,  and satisfy 
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T h e o r e m  8. Consider the following three properties of a source form A on 
E = R  '~ x R~': 

(i) A is tOO inwriant,  
(ii) A admits t (n)  conservation laws, 
(iii) A is locally variational. 
Then every A e A ( n )  satisfies (i) and (ii) but not (iii). Moreover, let A be a 

first order source form satisfying (i) and (ii). Then there is a unique source form 
AAE.A(n ) and a unique source form A v  satisfying (i), (ii), and (iii) such that 

(29) A ---- A A + Av.  

Proof. Let A E A ( n ) .  By Theorem 3 the source form A satisfies (i) and (ii). 
However, by Proposition 5, A satisfies (iii) only if A[i,A/] __--)~i,iA, that  is, only if A=0 .  

Next let A be a first order source form satisfying (i) and (ii). By Theorem 3 
the components A= of A are of the form 

(3o) 

Write 

- 1  A i I Aa=V Ai,i Vd V.~. 

A = A o + A 1 ,  

where Ao involves the terms in (30) with IA[=tI[=0 and AI involves the remaining 
terms. Then by Proposition 5 the source form Ao also satisfies (iii). Note that  the 
coefficient functions Ai, A of A1 can be uniquely expressed as a sum 

/~ A A A 
i , I  = 0"i,I + ~ i , I  , 

where the a A A A i,I are completely skew symmetric in the lower indices, a[i,i ] -~ai, I , and 
the ~i, A satisfy 

A A ~i,[l] = ~i,I and ~[i,/~ = O. 

In fact, we simply let 

(31) o . A  ~ A  A A A i,x [ia] and ~i,I = = Ai, I -Aii,x]. 

Let AA and A F be the source forms with the components 

- 1  A i I _ - 1  A i I A A,a Y r V~ V~ and = A,K~,-V ai,i V~V~. 

By Theorem 3 and by equation (31) the divergences 

O~ai,~i~:::~ ~ = 0 and 0 r ~2.. .~ = 0 a ~i,Q i2...ik 
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vanish. Write 

Av = A o + A ~ .  

Then 

A = A A + A V ,  

where AAeA(n) and Av satisfies (i), (ii), and (iii). 
Finally, in order to prove the uniqueness of the decomposition (29) it suffices 

to show that  if 

(32) ~A-b~v = 0  

for some ,~AE.A(n) and some /~v satisfying (i), (ii), and (iii), then both ~A and 
/~y vanish. But equation (32) implies that ~A EA(n) is locally variational. Thus, 
by Proposition 5, ~A, and consequently /ky, must vanish, as required. [] 

5. Examples 

We start with two examples showing that  the various assumptions of Theorem 
7 are also necessary. 

E x a m p l e  1 

In this example we let n<m, i.e., the number of the independent variables 
is strictly less than the number of the dependent variables. Following a general 
construction in ref. [2] we let A=A,~du a A~ be a source form with the components 

A a  =_ ~ b l . . . b m - ~ - i  ~ ~ .Cl  Cn  
A # . a b l . . . b m _ n _ l C l . . . a n ' { s  1 . . .  U n 

where •[bl . . .b  . . . .  1] =~bl ...b . . . .  1 are some functions depending on u a. Clearly A is 
t(n) invariant. Moreover, one can easily check that  

u~Aa = 0, 

that  is, every infinitesimal translation generates a trivial conservation law for A. 
It is a straightforward matter  to check that  A satisfies the first order Helmholtz 
conditions 

=O~Aa+O~Ab=O. 

The zeroth order Helmholtz conditions for A, 

7-~ab( A ) = ObAa --OaAb"b DiO~a Ab ---- 0, 
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reduce to 

~ _  . . . . .  . . ,  Cv* ~ O .  ~.~ab(A) (m_r~) i )b l ,~blb2 bm n leabb2,., b . . . .  lCl . . .cnUl 1 Un 

Consequently, the source form A is locally variational if and only if the divergence 
Oa~A a~'~'''a'~ vanishes. Thus, in general, Theorem 7 fails if the number of indepen- 
dent variables is strictly less than the number of dependent variables. 

E x a m p l e  2 

Let A = A a d u a A v  be a source form on E = R  '~ x R  n with the components 

(33) _ i j b Aa -- P~,V 2 uij +Di(P~V), 

where P~=Pia(ub, u b) are functions in the dependent variables and their first order 
derivatives. Note that ,  in general, A is of second order. Clearly A is t (n)  invariant. 
Also 

a a i j b a i i b a i a i ukaa = ukP~ y~ u,~ + ,~kD,( P:~ Y) = P~ Y,~,k +~kD,( P~ V) = O,(ukP~ Y). 

Thus A admits t (n)  conservation laws. However, in general A fails to be variational. 
For example, for a second order source form the Helmholtz condition 7-/11(A) be- 
c o m e s  

a 0 A 1  ,'~n 0 A 1  D 0 A 1  - D  0 A 1  
uh(A)=~-b-ff-~,lo- G -  2o-Vll~ .-- ,~o,G=0. 

After some long, though straightforward, calculations we find that  for A as in (33), 

Thus, for example, with P~ =u~, Pi a =0 otherwise, A becomes a second order source 
form with polynomial components of degree n +  1. But by (34), ~/~1 (A) =2Vdu2j r 
and A is not locally variational. This shows that  Theorem 7 fails for second order 
source forms. 

Example 3 

Here we explicitly write down all anomalous systems in ,4(2) as given in (28). 
We let u and v stand for the dependent variables. Then 

v?=~, v~=-~, v?=-~, v~=~, and V = ~ - ~ v ~ .  
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First,  in the  simpler  case ] A I = I I I = 2 ,  equat ion (28) gives 

A1 = (alvy-X2v~)/V, 

A2 = ( -Al%+A2u~) /V ,  

where A1, A2 are some constants.  For I A I = I I I = I  equat ion (28) gives 

~1 / x2 2 1 2 1 2 2 A1 = 1,1Ivy}-A~,~u~vy-2Ai,2v~vy+A~,2(uyv~+u~vy)+a2,2(v~)-A2,2v~vy 
y 

1 2 2 1 2 1 2 2 
A2 = -)h, l  %v~ + A1, ~ (%) + ,~1,2 (u~% + %v~) - 2,Xl,~u~uy -)~2,2u~v~ + )~2,2 (u~) 

y 

where A a A a A a a = l ,  2, are functions of u and  v and satisfy the divergence 1,1, 1,2, 2,2, 
condit ion 

Ou + - -~ -v  ' ~ = 0 "  
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