On a theorem of Baernstein

Enrique Villamor ${ }^{1}$)

Abstract

In the paper [B2], Baernstein constructs a simply connected domain Ω in the plane for which the conformal mapping f of Ω into the unit disc Δ satisfies $$
\int_{\mathbf{R} \cap \Omega}\left|f^{\prime}(z)\right|^{p}|d z|=\infty,
$$ for some $p \in(1,2)$, where \mathbf{R} is the real line. This gives a counterexample to a conjecture stating that for any simply connected domain Ω in the plane, all the above integrals are finite for any $1<p<2$.

In this paper, we give a conceptual proof of the basic estimate of Baernstein.

1. Introduction

Let us consider the following problem. Let Ω be a simply connected domain and f be the conformal mapping from Ω into the unit disc Δ. Assume that L is a straight line which intersects the domain Ω, Hayman and $\mathrm{Wu}[\mathrm{HW}]$ showed that for any configuration as above,

$$
\int_{L \cap \Omega}\left|f^{\prime}(z)\right||d z| \leq C
$$

where C is a universal constant. Later Garnett, Gehring and Jones [GGJ] simplified Hayman and Wu's proof and gave an improved value for the constant C. Fernández, Heinonen and Martio in [FHM] gave another proof of the same result with a better constant $C=4 \pi^{2}$, and a conjecture is offered for the best constant. In the same paper they showed that there exists a positive number p between 1 and 2 , such that

$$
\int_{L \cap \Omega}\left|f^{\prime}(z)\right|^{p}|d z| \leq C
$$

[^0]where C and p are constants independent of the configuration. It is not difficult to see that the line L may be taken to be the real axis \mathbf{R}. The question is then for which exponents p is it true that $f^{\prime}(z) \in L^{p}(\mathbf{R} \cap \Omega)$, for any f and Ω ? Taking Ω to be $\Delta \backslash(-1,0]$ one sees that $f^{\prime}(z) \in L^{2}(\mathbf{R} \cap \Omega)$ can fail. Baernstein [B1] conjectured that $f^{\prime}(z) \in L^{p}(\mathbf{R} \cap \Omega)$ would be true for any $1<p<2$.

Baernstein in [B2] showed that his own conjecture is not true. He constructed a simply connected domain Ω such that if we consider the conformal mapping f from Ω into the unit disc, there exists a positive value p between 1 and 2 , such that,

$$
\int_{\mathbf{R} \cap \Omega}\left|f^{\prime}(z)\right|^{p}|d z|=\infty
$$

We pass to describe briefly the work done by Baernstein in [B2]. His domain Ω is the complement of an infinite tree T clustering to the real line. The fixed aperture at every branching of the tree T is $\frac{1}{3} \pi$.

Let us consider the domain $\Theta=\mathbf{C} \backslash\left((-\infty, 1] \cup\left(0, e^{i \pi / 3}\right]\right)$, where $\left(0, e^{i \pi / 3}\right]$ is the segment joining these two points. We are going to call $a=e^{i \pi / 3}$, and consider the conformal mappings $F_{i}(z), i=1,2$; mapping Θ onto the domain $H=\mathbf{C} \backslash(-\infty, 0]$, such that $F_{1}(1)=0, F_{2}(a)=0$ and $\lim _{z \rightarrow \infty}\left|F_{i}(z) / z\right|=1, i=1,2$.

If we consider,

$$
\gamma=\lim _{z \rightarrow 1}\left|\frac{F_{1}(z)}{z-1}\right|, \quad \beta=\lim _{z \rightarrow a}\left|\frac{F_{2}(z)}{z-a}\right|
$$

then Baernstein's theorem states that,

Theorem.

$$
\gamma^{1 / 2}+\beta^{1 / 2}>\sqrt{2}
$$

In his paper Baernstein proves this result after numerical evidence given to him by Donald Marshall, who computed the values of γ and β using Trefethen's program [T], see also [H, p. 422], for finding parameters for Schwarz-Christoffel transformations. He starts with the 4-place decimal approximation to the parameters given by the computer and confirm by Calculus the validity of the theorem, then mentions that it would be desirable to have a conceptual proof of the theorem.

In this paper, we present such a conceptual proof, in it our main tool is the method of the extremal metric. The idea of how to obtain lower bounds for γ and β using extremal metric was inspired by the paper of Jenkins and Oikawa [JO], in which they obtain a sharp version of Ahlfors' distortion theorem, and then use it to give simpler proofs of some well known results of Hayman.

2. Proof of the theorem

2.1. Estimating $\gamma=\left|F_{1}^{\prime}(\mathbf{1})\right|$

Let ϱ be a small positive number and consider the discs $D_{\varrho}^{(1)}=\{z:|z-1|<\varrho\}$, and $D_{1 / \varrho}^{(1)}=\{z:|z-1|<1 / \varrho\}$. Let $\Theta_{\varrho}^{(1)}$ be the doubly connected domain

$$
\Theta_{\varrho}^{(1)}=\left(\left[\Theta \cap D_{1 / \varrho}^{(1)}\right] \backslash \bar{D}_{\varrho}^{(1)}\right) .
$$

Let $H_{\varrho}^{(1)}$ be the image under $F_{1}(z)$ of $\Theta_{\varrho}^{(1)}$, by the normalization properties of the function $F_{1}(z)$, it is not difficult to show that for any positive ε, there exists a small positive $\varrho(\varepsilon)$ such that,

$$
\{z:|z|<(1-\varepsilon) / \varrho(\varepsilon)\} \cap H \subset F_{1}\left(D_{1 / \varrho(\varepsilon)}^{(1)}\right) \subset\{z:|z|<(1+\varepsilon) / \varrho(\varepsilon)\} \cap H
$$

and

$$
\left\{z:|z|<\left|F_{1}^{\prime}(1)\right|(\varrho(\varepsilon)-\varepsilon)\right\} \cap H \subset F_{1}\left(D_{\varrho(\varepsilon)}^{(1)}\right) \subset\left\{z:|z|<\left|F_{1}^{\prime}(1)\right|(\varrho(\varepsilon)+\varepsilon)\right\} \cap H .
$$

Consider now the module problem for the family of curves Γ joining $\partial D_{\varrho(\varepsilon)}^{(1)}$ with $\partial D_{1 / \varrho(\varepsilon)}^{(1)}$ in $\Theta_{\varrho(\varepsilon)}^{(1)}$. Using the conformal invariance of the module and the comparison property for the modules, we have that

$$
M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)}\right) \leq \frac{2 \pi}{\ln \left((1-\varepsilon) / \varrho(\varepsilon)(\varrho(\varepsilon)+\varepsilon)\left|F_{1}^{\prime}(1)\right|\right)} .
$$

This provides us with an upper bound for the module, our goal is to obtain a lower bound for the same module. For this we consider the conformal mapping $\Phi(z)=\ln (z-1)$,

$$
\Phi(z): \Theta_{\varrho(\varepsilon)}^{(1)} \rightarrow S_{\varrho(\varepsilon)}^{(1)},
$$

where $S_{\varrho(\varepsilon)}^{(1)}$ is the quadrangle in the Figure 2.1a.
Let $\widetilde{\Gamma}$ be the family of curves in $S_{\varrho(\varepsilon)}^{(1)}$ joining the pair of sides opposite to the vertical sides. By the conformal invariance of the module we have the following equality

$$
M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)}\right)=M\left(\bar{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}\right),
$$

where $\bar{\Gamma}$ is the family of curves in $S_{\varrho(\varepsilon)}^{(1)}$ joining the pair of vertical sides. Since the families of curves $\bar{\Gamma}$ and $\widetilde{\Gamma}$ are conjugate in the quadrangle $S_{\varrho(\varepsilon)}^{(1)}$, we have that

$$
M\left(\bar{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}\right)=1 / M\left(\widetilde{\Gamma}, S_{\varrho(\xi)}^{(1)}\right),
$$

Figure 2.1a
therefore, to obtain a lower bound for $M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)}\right)$, we need an upper bound of $M\left(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}\right)$.

The idea of how to obtain the right upper bound for $M\left(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}\right)$ was suggested by [JO]. For any value of x in the interval $\ln \varrho(\varepsilon)<x<-\ln \varrho(\varepsilon)$, let $\sigma(x)$ denote the maximal open subinterval of $\operatorname{Re}\{z\}=x$ in $S_{\varrho(\varepsilon)}^{(1)}$ such that the two components of $\left(S_{\varrho(\varepsilon)}^{(1)} \backslash \sigma(x)\right)$ have the two vertical sides as boundary components. Let $\theta(x)$ denote the length of $\sigma(x), \theta_{1}(x)$ the length of the part of the segment $\sigma(x)$ below the x-axis, and $\theta_{2}(x)$ the length of the part above the x-axis. As it can be easily seen, $\theta_{1}(x)=\pi$ for any x in the interval $\ln \varrho(\varepsilon)<x<-\ln \varrho(\varepsilon)$. For $\theta_{2}(x)$ we have

$$
\theta_{2}(x)= \begin{cases}\pi, & \text { if } \ln \varrho(\varepsilon)<x<\ln \left(\frac{1}{2} \sqrt{3}\right) \\ \theta_{2}(x), & \text { if } \ln \left(\frac{1}{2} \sqrt{3}\right) \leq x<0 \\ \pi, & \text { if } 0 \leq x<-\ln \varrho(\varepsilon)\end{cases}
$$

Let the interval $\left[\ln \left(\frac{1}{2} \sqrt{3}\right), 0\right)$ be divided into n consecutive half closed subintervals $\Delta_{j}=\left[\ln \left(\frac{1}{2} \sqrt{3}\right)(1-j / n), \ln \left(\frac{1}{2} \sqrt{3}\right)(1-(j+1) / n)\right), j=0, \ldots, n-1$ of equal length, and for each $j=0, \ldots, n-1$ let

$$
\theta_{2, j}^{(s)}=\min _{t \in \Delta_{j}} \theta_{2}(t)
$$

and define for any $x \in\left[\ln \left(\frac{1}{2} \sqrt{3}\right), 0\right), \theta_{2}^{(s)}(x)=\theta_{2, j}^{(s)}$ if $x \in \Delta_{j}, j=0, \ldots, n-1$. It is clear

Figure 2.1b. $\quad x_{0}=\ln \left(\frac{1}{2} \sqrt{3}\right)+\Delta_{1}-2 \pi+\theta_{2,2}^{(s)}$.
that such minimum exists and $\theta_{2}^{(s)}$ is a step function on the interval $\left[\ln \left(\frac{1}{2} \sqrt{3}\right), 0\right)$. At the right end point \bar{x} of any interval Δ_{j} the step function $\theta_{2}^{(s)}(x)$ has a negative jump, then we draw the ray given by $\bar{x}-\lambda, \theta_{2}^{(s)}(\bar{x})+\lambda ; \lambda \geq 0 ; j=0 \ldots, n-1$. The lower envelope of these rays and the locus $y=\theta_{2}^{(s)}(x)$ defines on the interval $\left[\ln \left(\frac{1}{2} \sqrt{3}\right), 0\right)$ a piecewise continuously differentiable function $\theta_{2}^{(t)}(x)$, which determines a decomposition of the interval into a finite number of subintervals on which the locus $y=\theta_{2}^{(t)}(x)$ has slope -1 or 0 . We define $\theta_{2}^{(t)}(x)$ in the interval $(\ln \varrho(\varepsilon),-\ln \varrho(\varepsilon))$ by

$$
\theta_{2}^{(t)}= \begin{cases}\pi, & \ln \varrho(\varepsilon)<x \leq \ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right)-\pi+\theta_{2,2}^{(s)} \\ \theta_{2,2}^{(s)}-x+\ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right), \\ & \ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right)-\pi+\theta_{2,2}^{(s)}<x<\ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right), \\ \theta_{2}^{(t)}(x), & \ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right) \leq x<0, \\ \frac{2}{3} \pi+\lambda x^{2}, & 0 \leq x<\sqrt{\pi / 3 \lambda}, \\ \pi, & \sqrt{\pi / 3 \lambda} \leq x<-\ln \varrho(\varepsilon),\end{cases}
$$

where λ is a positive parameter to be determined later. The domain determined by

$$
-\theta_{1}(x)<y<\theta_{2}^{(t)}(x) ; \quad \ln \varrho(\varepsilon)<x<-\ln \varrho(\varepsilon)
$$

becomes a quadrangle $Q_{\varrho(\varepsilon)}^{(1)}$. The part of $Q_{\varrho(\varepsilon)}^{(1)}$ below the x-axis is the same as for $S_{\varrho(\varepsilon)}^{(1)}$ and the part above the x-axis is as in Figure 2.1b.

If we let $\widetilde{\Gamma}^{\prime}$ be the family of curves $Q_{\varrho(\varepsilon)}^{(1)}$ joining the pair of sides complementary to the two vertical sides, we have that

$$
M\left(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}\right) \leq M\left(\widetilde{\Gamma}^{\prime}, Q_{\varrho(\varepsilon)}^{(1)}\right)
$$

Thus it is enough to obtain an upper bound for $M\left(\widetilde{\Gamma}^{\prime}, Q_{\varrho(\varepsilon)}^{(1)}\right)$. It is known that an upper bound for this module is given by the Dirichlet integral of any piecewise continuously differentiable function in $Q_{\varrho(\varepsilon)}^{(1)}$ taking the value 0 on the side given by $y=-\theta_{1}(x)$, and the value 1 on the side given by $y=\theta_{2}^{(t)}(x)$. A function like this is given by

$$
u(x, y)=\frac{y+\theta_{1}(x)}{\theta^{(t)}(x)}
$$

where $\theta^{(t)}(x)=\theta_{1}(x)+\theta_{2}^{(t)}(x)$. To estimate the Dirichlet integral of $u(x, y)$ we subdivide the domain $Q_{\varrho(\varepsilon)}^{(1)}$ into five pieces each corresponding to one of the following intervals in the x-axis:

$$
\begin{aligned}
I & =\left(\ln \varrho(\varepsilon), \ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right)-\pi+\theta_{2,2}^{(s)}\right] \\
I I & =\left(\ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right)-\pi+\theta_{2,2}^{(s)}, \ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right)\right) \\
I I I & =\left[\ln \left(\frac{1}{2} \sqrt{3}\right)\left(1-n^{-1}\right), 0\right) \\
I V & =[0, \sqrt{\pi / 3 \lambda}) \\
V & =[\sqrt{\pi / 3 \lambda}-\ln \varrho(\varepsilon)) .
\end{aligned}
$$

On the two pieces of the Dirichlet integral corresponding to the intervals I and V, the function $u(x, y)=(y+\pi) / 2 \pi$, and since when we take the limit as the number of subdivisions $n \rightarrow \infty$ then $\theta_{2,2}^{(s)} \rightarrow \frac{5}{6} \pi$, we have that

$$
\begin{aligned}
\iint_{I}+\iint_{V}|\nabla u(x, y)|^{2} d x d y= & \frac{1}{2 \pi} \ln \left(\frac{1}{\varrho(\varepsilon)}\right)+\frac{1}{2 \pi}\left[\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right] \\
& +\frac{1}{2 \pi} \ln \left(\frac{1}{\varrho(\varepsilon)}\right)-\frac{1}{2 \pi} \sqrt{\frac{\pi}{3 \lambda}}
\end{aligned}
$$

It is not difficult to see that the Dirichlet integral corresponding to $I I$ after we let $n \rightarrow \infty$ tends to

$$
\begin{aligned}
& \int_{\ln (\sqrt{3} / 2)-\pi / 6}^{\ln (\sqrt{3} / 2)} \int_{-\pi}^{5 \pi / 6-(x-\ln (\sqrt{3} / 2))}\left|\nabla\left(\frac{y+\pi}{11 \pi / 6-(x-\ln (\sqrt{3} / 2))}\right)\right|^{2} d y d x \\
&= \int_{\ln (\sqrt{3} / 2)-\pi / 6}^{\ln (\sqrt{3} / 2)} \int_{-\pi}^{5 \pi / 6-x+\ln (\sqrt{3} / 2)}\left[\frac{1}{(11 \pi / 6-x+\ln (\sqrt{3} / 2))^{2}}\right. \\
&\left.+\frac{(y+\pi)^{2}}{(11 \pi / 6-x+\ln (\sqrt{3} / 2))^{4}}\right] d y d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\ln (\sqrt{3} / 2)-\pi / 6}^{\ln (\sqrt{3} / 2)} \frac{4}{3}\left[\frac{1}{11 \pi / 6-x+\ln (\sqrt{3} / 2)}\right] d x \\
& =\frac{4}{3}\left[-\ln \left(\frac{11 \pi}{6}-x+\ln \frac{\sqrt{3}}{2}\right)\right]_{\ln (\sqrt{3} / 2)-\pi / 6}^{\ln (\sqrt{3} / 2)} \\
& =\frac{4}{3} \ln \frac{12}{11}
\end{aligned}
$$

As for the piece corresponding to $I V$, we have that after some calculations

$$
\iint_{I V}\left|\nabla\left(\frac{y+\pi}{5 \pi / 3+\lambda x^{2}}\right)\right|^{2} d x d y=\left[\sqrt{\frac{3}{5 \pi}} \frac{1}{\sqrt{\lambda}}-\frac{4}{3} \sqrt{\frac{5 \pi}{3}} \sqrt{\lambda}\right] \arctan \frac{1}{5}+\frac{4}{3} \sqrt{\frac{\pi}{3}} \sqrt{\lambda}
$$

The estimate corresponding to $I I I$ is more delicate, and we will treat it carefully.

$$
\begin{aligned}
\iint_{I I I}|\nabla u(x, y)|^{2} d x d y & =\int_{\ln (\sqrt{3} / 2)}^{0} \frac{d x}{\theta^{(t)}(x)}+\frac{1}{3} \int_{\ln (\sqrt{3} / 2)}^{0} \frac{\left(\theta_{1}^{\prime}\right)^{2}-\theta_{2}^{(t) \prime} \theta_{1}^{\prime}+\left(\theta_{2}^{(t) \prime}\right)^{2}}{\theta^{(t)}(x)} d x \\
& =\int_{\ln (\sqrt{3} / 2)}^{0} \frac{d x}{\theta^{(t)}(x)}+\frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_{j}} \frac{1}{\theta^{(t)}(x)} d x \\
& =(\mathrm{i})+(\mathrm{ii})
\end{aligned}
$$

where Ω_{j} is the subinterval of Δ_{j} over which $\theta_{2}^{(t) \prime}(x)$ is equal to -1 . We proceed to estimate these two integrals (i) and (ii).

$$
\text { (i) }=\int_{\ln (\sqrt{3} / 2)}^{0} \frac{d x}{\theta^{(t)}(x)} \leq-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2} \text {. }
$$

We estimate (ii) as follows,

$$
\text { (ii) } \begin{aligned}
\frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_{j}} \frac{d x}{\theta^{(t)}(x)} & =\frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_{j}} \frac{1}{\pi+\theta_{2}^{(s)}(x)+\ln (\sqrt{3} / 2)(1-(j+1) / n)-x} d x \\
& =\frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_{j}} \frac{1}{\pi+\theta_{2, j}^{(s)}+\ln (\sqrt{3} / 2)(1-(j+1) / n)-x} d x \\
& =\sum_{j=0}^{n-1} \frac{-1}{3}\left[\ln \left(\pi+\theta_{2, j}^{(s)}+\ln \left(\frac{\sqrt{3}}{2}\right)\left(1-\frac{j+1}{n}\right)-x\right)\right]_{x_{j}^{(l)}}^{x_{j}^{(r)}}
\end{aligned}
$$

where $x_{j}^{(r)}$ is the right endpoint of the interval Ω_{j} and $x_{j}^{(l)}$ is the left endpoint. Hence, for n large enough,

$$
\theta_{2, j}^{(s)}+\ln \left(\frac{\sqrt{3}}{2}\right)\left(1-\frac{j+1}{n}\right)-x_{j}^{(r)}=\theta_{2, j+1}^{(s)}+\ln \left(\frac{\sqrt{3}}{2}\right)\left(1-\frac{j+2}{n}\right)-x_{j+1}^{(l)}
$$

for any $j=0, \ldots, n-2$, thus

$$
\begin{aligned}
\sum_{j=0}^{n-1} \frac{-1}{3}[\ln (\pi+ & \left.\left.\theta_{2, j}^{(s)}+\ln \left(\frac{\sqrt{3}}{2}\right)\left(1-\frac{j+1}{n}\right)-x\right)\right]_{x_{j}^{(l)}}^{x_{j}^{(r)}} \\
& =\frac{1}{3}\left[\ln \left(\pi+\theta_{2,0}^{(s)}+\ln \left(\frac{\sqrt{3}}{2}\right)\left(1-\frac{1}{n}\right)-x_{0}^{(l)}\right)-\ln \left(\pi+\theta_{2, n}^{(s)}-x_{n}^{(r)}\right)\right]
\end{aligned}
$$

since $x_{0}^{(l)}=\ln \left(\frac{1}{2} \sqrt{3}\right), \lim _{n \rightarrow \infty} \theta_{2,0}^{(s)}=\frac{5}{6} \pi, x_{n}^{(r)}=0$, and $\theta_{2, n}^{(s)}=\frac{2}{3} \pi$, letting n go to ∞, we obtain that

$$
\text { (ii) } \rightarrow \frac{1}{3} \ln \frac{11}{10} \text {. }
$$

This completes all our estimates, putting all of them together, we obtain that

$$
\begin{aligned}
M\left(\widetilde{\Gamma}^{\prime}, Q_{\varrho(\varepsilon)}^{(1)}\right) \leq & \frac{1}{2 \pi} \ln \left(\frac{1}{\varrho^{2}(\varepsilon)}\right)+\frac{1}{2 \pi}\left[\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right]-\frac{1}{2 \pi} \sqrt{\frac{\pi}{3 \lambda}}+\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2} \\
& +\left[\sqrt{\frac{3}{5 \pi}} \frac{1}{\sqrt{\lambda}}-\frac{4}{3} \sqrt{\frac{5 \pi}{3}} \sqrt{\lambda}\right] \arctan \frac{1}{5}+\frac{4}{3} \sqrt{\frac{\pi}{3}} \sqrt{\lambda}+\frac{1}{200}+\frac{1}{3} \ln \frac{11}{10}
\end{aligned}
$$

Let us call $G(\lambda)$ the expression on the right hand side of the above inequality involving the positive parameter λ,

$$
G(\lambda)=\left[\sqrt{\frac{3}{5 \pi}} \frac{1}{\sqrt{\lambda}}-\frac{4}{3} \sqrt{\frac{5 \pi}{3}} \sqrt{\lambda}\right] \arctan \frac{1}{5}+\frac{4}{3} \sqrt{\frac{\pi}{3}} \sqrt{\lambda}-\frac{1}{2 \pi} \sqrt{\frac{\pi}{3}} \frac{1}{\sqrt{\lambda}}
$$

and solve the equation $G(\lambda)=0$, hence

$$
\left[\frac{4}{3} \sqrt{\frac{\pi}{3}}-\frac{4}{3} \sqrt{\frac{5 \pi}{3}} \arctan \frac{1}{5}\right] \sqrt{\lambda}=\left[\frac{1}{2 \pi} \sqrt{\frac{\pi}{3}}-\sqrt{\frac{3}{5 \pi}} \arctan \frac{1}{5}\right] \frac{1}{\sqrt{\lambda}}
$$

thus,

$$
\lambda=\left(\frac{1}{2 \pi} \sqrt{\frac{\pi}{3}}-\sqrt{\frac{3}{5 \pi}} \arctan \frac{1}{5}\right) /\left(\frac{4}{3} \sqrt{\frac{\pi}{3}}-\frac{4}{3} \sqrt{\frac{5 \pi}{3}} \arctan \frac{1}{5}\right)=0.10050259
$$

Choosing λ to be this value the expression on the right hand side of the inequality involving λ is equal to zero, therefore

$$
\begin{aligned}
M\left(\widetilde{\Gamma}^{\prime}, Q_{\varrho(\varepsilon)}^{(1)}\right) \leq & \frac{1}{2 \pi} \ln \left(\frac{1}{\varrho^{2}(\varepsilon)}\right)+\frac{1}{2 \pi}\left(\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \\
& +\frac{1}{200}+\frac{1}{3} \ln \frac{11}{10}+\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2} .
\end{aligned}
$$

Putting together the two estimates of $M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)}\right)$ from above and from below, we obtain

$$
\begin{aligned}
\frac{2 \pi}{\ln \left((1-\varepsilon) / \varrho(\varepsilon)(\varrho(\varepsilon)+\varepsilon)\left|F_{1}^{\prime}(1)\right|\right)} \geq & \left(\frac{1}{2 \pi} \ln \left(\frac{1}{\varrho^{2}(\varepsilon)}\right)+\frac{1}{2 \pi}\left(\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\right. \\
& \left.+\frac{1}{200}+\frac{1}{3} \ln \frac{11}{10}+\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2}\right)^{-1}
\end{aligned}
$$

Taking inverses and exponentiating both sides, we obtain

$$
\begin{aligned}
\frac{1-\varepsilon}{(\varrho(\varepsilon)+\varepsilon) \varrho(\varepsilon)\left|F_{1}^{\prime}(1)\right|} \leq \frac{1}{\varrho^{2}(\varepsilon)} \exp \{ & \left(\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \\
& \left.+2 \pi\left(\frac{1}{200}+\frac{1}{3} \ln \frac{11}{10}+\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2}\right)\right\}
\end{aligned}
$$

It is not difficult to see that choosing ε conveniently and letting $\varepsilon \rightarrow 0$ we get that

$$
\gamma=\left|F_{1}^{\prime}(1)\right| \geq \exp \left\{-\left(\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)-2 \pi\left(\frac{1}{200}+\frac{1}{3} \ln \frac{11}{10}+\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2}\right)\right\}=\alpha
$$

Hence,

$$
\gamma^{1 / 2}=\left|F_{1}^{\prime}(1)\right|^{1 / 2} \geq \alpha^{1 / 2} \geq 0.79249
$$

2.2. Estimating $\beta=\left|F_{2}^{\prime}(a)\right|$

Let ϱ be a small positive number, and consider the $\operatorname{discs} D_{\varrho}^{(2)}=\{z:|z-a|<\varrho\}$, and $D_{1 / \varrho}^{(2)}=\{z:|z-a|<1 / \varrho\}$. Let $\Theta_{\varrho}^{(2)}$ be the doubly connected domain

$$
\Theta_{\varrho}^{(2)}=\left(\left[\Theta \cap D_{1 / \varrho}^{(2)}\right] \backslash \bar{D}_{\varrho}^{(2)}\right)
$$

Let $H_{\varrho}^{(2)}$ be the image under $F_{2}(z)$ of $\Theta_{\varrho}^{(2)}$, by the same reason as in the first estimate 2.1 , for any positive ε, there exists a small $\varrho(\varepsilon)$ positive such that;

$$
\left\{z:|z|<\left|F_{2}^{\prime}(a)\right|(\varrho(\varepsilon)-\varepsilon)\right\} \cap H \subset F_{2}\left(D_{\varrho(\varepsilon)}^{(2)}\right) \subset\left\{z:|z|<\left|F_{2}^{\prime}(a)\right|(\varrho(\varepsilon)+\varepsilon)\right\} \cap H
$$

Figure 2.2a
and

$$
\{z:|z|<(1-\varepsilon) / \varrho(\varepsilon)\} \cap H \subset F_{2}\left(D_{1 / \varrho(\varepsilon)}^{(2)}\right) \subset\{z:|z|<(1+\varepsilon) / \varrho(\varepsilon)\} \cap H
$$

Considering now the module problem for the family of curves Γ joining $\partial D_{\varrho(\varepsilon)}^{(2)}$ with $\partial D_{1 / \varrho(\varepsilon)}^{(2)}$ in $\Theta_{\varrho(\varepsilon)}^{(2)}$, we have that

$$
M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(2)}\right) \leq \frac{2 \pi}{\ln \left((1-\varepsilon) / \varrho(\varepsilon)(\varrho(\varepsilon)+\varepsilon)\left|F_{2}^{\prime}(a)\right|\right)}
$$

Our goal is to obtain a lower bound for the above module. For this we consider the conformal mapping $\Psi(z)=\ln (z-a)$,

$$
\Psi(z): \Theta_{\varrho(\varepsilon)}^{(2)} \rightarrow S_{\varrho(\varepsilon)}^{(2)}
$$

where $S_{\varrho(\varepsilon)}^{(2)}$ is again a quadrangle as in Figure 2.2a above.
Let $\widetilde{\Gamma}$ be the family of curves in $S_{\varrho(\varepsilon)}^{(2)}$ joining the pair of sides opposite to the vertical sides of $S_{\varrho(\varepsilon)}^{(2)}$. By the conformal invariance of the module we have that,

$$
M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(2)}\right)=M\left(\bar{\Gamma}, S_{\varrho(\varepsilon)}^{(2)}\right)
$$

where $\bar{\Gamma}$ is the family of curves in $S_{\varrho(\varepsilon)}^{(2)}$ joining the pair of vertical sides. Since the families of curves $\bar{\Gamma}$ and $\widetilde{\Gamma}$ are conjugate in $S_{\varrho(\varepsilon)}^{(2)}$, we have that

$$
M\left(\bar{\Gamma}, S_{\varrho(\varepsilon)}^{(2)}\right)=1 / M\left(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(2)}\right)
$$

thus, to obtain a lower bound for $M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(2)}\right)$, all we need is an upper bound for the module $M\left(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(2)}\right)$. To obtain this bound we proceed as in case 2.1. Our function $\theta_{2}(x)$ in this case is given by,

$$
\theta_{2}(x)= \begin{cases}\frac{4}{3} \pi, & \text { if } \ln \varrho(\varepsilon)<x \leq 0 \\ \pi+\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}, & \text { if } 0 \leq x<-\ln \varrho(\varepsilon)\end{cases}
$$

We modify the function $\theta_{1}(x)$ in the same way we did with $\theta_{2}(x)$ in case 2.1 for values of x satisfying $\ln \varrho(\varepsilon)<x<0$, and for values of x in the interval $[0,-\ln \varrho(\varepsilon))$ we are going to modify $\theta_{1}(x)$ as follows;

$$
\theta_{1}^{(t)}(x)= \begin{cases}\frac{1}{3} \pi+\delta x, & \text { if } 0 \leq x<\lambda \\ \theta_{1}(x), & \text { if } \lambda \leq x<-\ln \varrho(\varepsilon)\end{cases}
$$

Where $\delta>0$ is a free parameter and λ is implicitely defined by the equation

$$
\delta \lambda+\arctan \sqrt{\frac{3}{4 e^{2 \lambda}-3}}=\frac{2 \pi}{3} .
$$

The domain determined by

$$
-\theta_{1}^{(t)}(x)<y<\theta_{2}(x) ; \quad \ln \varrho(\varepsilon)<x<-\ln \varrho(\varepsilon)
$$

becomes a quadrangle $Q_{\varrho(\varepsilon)}^{(2)}$ on assigning, as a pair of opposite sides, the segments

$$
-\theta_{1}^{(t)}(\ln \varrho(\varepsilon))<y<\theta_{2}(\ln \varrho(\varepsilon))
$$

and

$$
-\theta_{1}^{(t)}(-\ln \varrho(\varepsilon))<y<\theta_{2}(-\ln \varrho(\varepsilon))
$$

The part of $Q_{\varrho(\varepsilon)}^{(2)}$ above the x-axis is the same as for $S_{\varrho(\varepsilon)}^{(2)}$ and the part below the x-axis is as in Figure 2.2b.

As in the case 2.1 we have that

$$
M\left(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(2)}\right) \leq M\left(\widetilde{\Gamma}^{\prime}, Q_{\varrho(\varepsilon)}^{(2)}\right)
$$

Figure 2.2b
where $\widetilde{\Gamma}^{\prime}$ is the family of curves in $Q_{\varrho(\varepsilon)}^{(2)}$ joining the pair of sides complementary to the vertical sides. Thus, it is enough to obtain an upper bound for the module $M\left(\widetilde{\Gamma}^{\prime}, Q_{\varrho(\varepsilon)}^{(2)}\right)$. An upper bound is given by the Dirichlet integral of the piecewise continuously differentiable function in $Q_{\varrho(\varepsilon)}^{(2)}$

$$
u(x, y)=\frac{\theta_{2}(x)-y}{\theta^{(t)}(x)}
$$

where $\theta^{(t)}(x)=\theta_{1}^{(t)}(x)+\theta_{2}(x)$. Hence,

$$
\begin{aligned}
\iint_{Q_{e(\varepsilon)}^{(2)}}|\nabla u(x, y)|^{2} d x d y & =\iint_{Q_{e(\varepsilon)}^{(2)} \cap\{\operatorname{Re}\{z\} \leq 0\}}+\iint_{Q_{e(\varepsilon)}^{(2)} \cap\{\operatorname{Re}\{z\}>0\}}|\nabla u(x, y)|^{2} d x d y \\
& =I+I I
\end{aligned}
$$

The estimate of the integral I is the same as in case 2.1 because if we look at the left hand sides of the domains $Q_{\varrho(\varepsilon)}^{(1)}$ and $Q_{\varrho(\varepsilon)}^{(2)}$, they are the same up to a symmetry and a vertical translation. Thus,

$$
I \leq \frac{1}{2 \pi} \ln \left(\frac{1}{\varrho(\varepsilon)}\right)+\frac{1}{3} \ln \frac{11}{10}+\frac{1}{200}+\frac{1}{2 \pi}\left[\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right]+\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2} .
$$

We pass to estimate the second integral $I I$,

$$
\begin{aligned}
I I & =\iint_{Q_{\varrho(\varepsilon)}^{(2)} \cap\{\operatorname{Re}\{z\}>0\}}|\nabla u(x, y)|^{2} d x d y \\
& =\int_{0}^{-\ln \varrho(\varepsilon)} \frac{d x}{\theta^{(t)}(x)}+\frac{1}{3} \int_{0}^{-\ln \varrho(\varepsilon)} \frac{\theta_{1}^{(t) \prime}(x)^{2}-\theta_{1}^{(t) \prime}(x) \theta_{2}^{\prime}(x)+\theta_{2}^{\prime}(x)^{2}}{\theta^{(t)}(x)} d x
\end{aligned}
$$

where

$$
\theta_{2}(x)=\pi+\arctan \sqrt{\frac{3}{4 e^{2 x}-3}} \quad \text { for } 0<x<-\ln \varrho(\varepsilon)
$$

and

$$
\theta^{(t)}(x)=\theta_{1}^{(t)}(x)+\theta_{2}(x)=2 \pi
$$

for values of x such that $\lambda \leq x<-\ln \varrho(\varepsilon)$. Thus $I I$ is equal to

$$
\begin{aligned}
I I= & \int_{0}^{\lambda} \frac{1}{\theta^{(t)}(x)} d x+\frac{1}{3} \int_{0}^{\lambda} \frac{\theta_{1}^{(t) \prime}(x)^{2}-\theta_{1}^{(t) \prime}(x) \theta_{2}^{\prime}(x)+\theta_{2}^{\prime}(x)^{2}}{\theta^{(t)}(x)} d x \\
& +\frac{1}{2 \pi} \ln \frac{1}{\varrho(\varepsilon)}-\frac{\lambda}{2 \pi}+\frac{1}{6 \pi} \int_{\lambda}^{-\ln \varrho(\varepsilon)} 3\left(\theta_{2}^{\prime}(x)\right)^{2} d x
\end{aligned}
$$

Let us compute the last integral in the above equality,

$$
\int_{\lambda}^{-\ln \varrho(\varepsilon)}\left(\theta_{2}^{\prime}(x)\right)^{2} d x=3 \int_{\lambda}^{-\ln \varrho(\varepsilon)} \frac{d x}{4 e^{2 x}-3}=\frac{1}{2} \ln \left(\frac{4-3 \varrho^{2}(\varepsilon)}{4-3 e^{-2 \lambda}}\right)
$$

It remains to estimate

$$
\begin{aligned}
\int_{0}^{\lambda} \frac{d x}{\theta^{(t)}(x)}+\frac{1}{3} \int_{0}^{\lambda} & \frac{\theta_{1}^{(t) \prime}(x)^{2}-\theta_{1}^{(t) \prime}(x) \theta_{2}^{\prime}(x)+\theta_{2}^{\prime}(x)^{2}}{\theta^{(t)}(x)} d x \\
= & \int_{0}^{\lambda} \frac{1+\frac{1}{3} \delta^{2}+1 /\left(4 e^{2 x}-3\right)+\frac{1}{3} \delta \sqrt{3 /\left(4 e^{2 x}-3\right)}}{\frac{4}{3} \pi+\delta x+\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}} d x \\
= & \int_{0}^{\lambda} \frac{1+\frac{2}{3} \delta^{2}+1 /\left(4 e^{2 x}-3\right)}{\frac{4}{3} \pi+\delta x+\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}} d x \\
& -\frac{1}{3} \delta\left[\ln \left(\delta x+\frac{4}{3} \pi+\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}\right)\right]_{0}^{\lambda}
\end{aligned}
$$

The second term in the formula above is equal to $\frac{1}{3} \delta \ln \frac{6}{5}$. Thus, to complete our estimate, our final goal is to find a suitable bound for the following integral

$$
\int_{0}^{\lambda}\left[\frac{1+\frac{2}{3} \delta^{2}+1 /\left(4 e^{2 x}-3\right)}{\frac{4}{3} \pi+\delta x+\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}}-\frac{1}{2 \pi}\right] d x
$$

where $\delta \lambda+\arctan \sqrt{3 /\left(4 e^{2 \lambda}-3\right)}=\frac{2}{3} \pi$. Our first observation is that

$$
\frac{4 \pi}{3}+\delta x+\arctan \sqrt{\frac{3}{\left(4 e^{2 x}-3\right)}} \geq 2 \pi-\arctan \sqrt{\frac{3}{\left(4 e^{2 x}-3\right)}}
$$

for $0<x<\lambda$. Therefore it is enough to estimate the integral

$$
\begin{aligned}
\int_{0}^{\lambda}\left[\frac{1+1 /\left(4 e^{2 x}-3\right)}{2 \pi-\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}}\right. & \left.-\frac{1}{2 \pi}\right] d x \\
& \leq \int_{0}^{\infty} \frac{2 \pi /\left(4 e^{2 x}-3\right)+\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}}{2 \pi\left(2 \pi-\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}\right)} d x
\end{aligned}
$$

In the above integral we have dropped the term $\frac{2}{3} \delta^{2}$ in the numerator, since when λ goes to ∞ then δ goes to 0 as $2 \pi / 3 \lambda$, thus

$$
\int_{0}^{\lambda} \frac{\frac{2}{3} \delta^{2}}{\frac{4}{3} \pi+\delta x+\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}} d x \leq \frac{\delta^{2} \lambda}{2 \pi},
$$

and this goes to $\frac{1}{3} \delta$ as λ goes to ∞, hence the term in the integral corresponding to $\frac{2}{3} \delta^{2}$ can be made as small as we please. Using the change of variable $u=\arctan \sqrt{3 /\left(4 e^{2 x}-3\right)}$, the above integral becomes

$$
\begin{aligned}
-\int_{\pi / 3}^{0} \frac{\frac{2}{3} \pi(\tan u)^{2}+u}{2 \pi(2 \pi-u)} \frac{d u}{\tan u} & =\frac{1}{2 \pi} \int_{0}^{\pi / 3} \frac{2 \pi}{3} \frac{\tan u}{(2 \pi-u)} d u+\frac{1}{2 \pi} \int_{0}^{\pi / 3} \frac{u}{(2 \pi-u)} \cot u d u \\
& =A+B
\end{aligned}
$$

Standard numerical integration methods give us the following estimates from above for the two integrals A and B :

$$
A \leq \frac{1}{3}(0.126)=0.042
$$

and

$$
B \leq \frac{1}{2 \pi}(0.158) \leq 0.0252 .
$$

Putting all these estimates together and letting δ go to 0 , we obtain that

$$
\begin{aligned}
M\left(\widetilde{\Gamma}^{\prime}, Q_{\varrho(\varepsilon)}^{(2)}\right) \leq & \frac{1}{2 \pi} \ln \frac{1}{\varrho^{2}(\varepsilon)}+\frac{1}{3} \ln \frac{11}{10}+\frac{1}{200}+\frac{1}{2 \pi}\left[\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right] \\
& +\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2}+\frac{1}{4 \pi} \ln \left(\frac{4-3 \varrho^{2}(\varepsilon)}{4}\right)+0.042+0.0252 .
\end{aligned}
$$

Putting together the estimates of $M\left(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)}\right)$ from above and from below, taking inverses and exponentiating, as we did in case 2.1, and letting ε go to 0 , we have that

$$
\begin{aligned}
\beta & =\left|F_{2}^{\prime}(a)\right| \\
& \geq \exp \left(-2 \pi\left\{\frac{1}{3} \ln \frac{11}{10}+\frac{1}{200}+\frac{1}{2 \pi}\left(\ln \frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)+\frac{4}{3} \ln \frac{12}{11}-\frac{3}{5 \pi} \ln \frac{\sqrt{3}}{2}+0.0672\right\}\right) \\
& =\eta .
\end{aligned}
$$

Hence,

$$
\beta^{1 / 2}=\left|F_{2}^{\prime}(a)\right|^{1 / 2} \geq \eta^{1 / 2} \geq 0.6403
$$

Therefore putting together the two estimates 2.1 and 2.2 , we have that

$$
\left|F_{2}^{\prime}(a)\right|^{1 / 2}+\left|F_{1}^{\prime}(1)\right|^{1 / 2}=\beta^{1 / 2}+\gamma^{1 / 2}>0.79249+0.6403=1.43279>\sqrt{2}
$$

and this proves the theorem.

References

[B1] Baernstein II, A., 199 Problems in Linear and Complex Analysis, Lectures Notes in Math. 1043, Springer-Verlag, Berlin-Heidelberg, 1987.
[B2] Baernstein II, A., A counterexample concerning integrability of derivatives of conformal mappings, J. Analyse Math. 53 (1989), 253-269.
[FHM] Fernández, J., Heinonen, J. and Martio, O., Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117-133.
[GGJ] Garnett, J., Gehring, F. and Jones, P., Conformally invariant length sums, Indiana Univ. Math. J. 32 (1983), 809-824.
[HW] Hayman, W. K. and Wu, J.-M. G., Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366-403.
[H] Henrici, P., Applied and Computational Complex Analysis III, Wiley, New York, 1973.
[JO] Jenkins, J. A. and Oikawa, K., On results of Ahlfors and Hayman, Illinois J. Math. 15 (1971), 664-671.
[T] Trefethen, L. N., Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Statist. Comput. 1 (1980), 82-102.

Received December 22, 1992

Enrique Villamor
Department of Mathematics
Florida International University
Miami, FL 33199
U.S.A.

[^0]: ${ }^{(1)}$ I would like to thank Professor Albert Baernstein II for his helpful comments and suggestions concerning this work

