On a theorem of Baernstein

Enrique $Villamor(^1)$

Abstract. In the paper [B2], Baernstein constructs a simply connected domain Ω in the plane for which the conformal mapping f of Ω into the unit disc Δ satisfies

$$\int_{\mathbf{R}\cap\Omega}|f'(z)|^p|dz|=\infty,$$

for some $p \in (1, 2)$, where **R** is the real line.

This gives a counterexample to a conjecture stating that for any simply connected domain Ω in the plane, all the above integrals are finite for any 1 .

In this paper, we give a conceptual proof of the basic estimate of Baernstein.

1. Introduction

Let us consider the following problem. Let Ω be a simply connected domain and f be the conformal mapping from Ω into the unit disc Δ . Assume that L is a straight line which intersects the domain Ω , Hayman and Wu [HW] showed that for any configuration as above,

$$\int_{L\cap\Omega} |f'(z)| \, |dz| \le C,$$

where C is a universal constant. Later Garnett, Gehring and Jones [GGJ] simplified Hayman and Wu's proof and gave an improved value for the constant C. Fernández, Heinonen and Martio in [FHM] gave another proof of the same result with a better constant $C=4\pi^2$, and a conjecture is offered for the best constant. In the same paper they showed that there exists a positive number p between 1 and 2, such that

$$\int_{L\cap\Omega} |f'(z)|^p |dz| \le C,$$

 $^(^1)$ I would like to thank Professor Albert Baernstein II for his helpful comments and suggestions concerning this work

where C and p are constants independent of the configuration. It is not difficult to see that the line L may be taken to be the real axis **R**. The question is then for which exponents p is it true that $f'(z) \in L^p(\mathbf{R} \cap \Omega)$, for any f and Ω ? Taking Ω to be $\Delta \setminus (-1, 0]$ one sees that $f'(z) \in L^2(\mathbf{R} \cap \Omega)$ can fail. Baernstein [B1] conjectured that $f'(z) \in L^p(\mathbf{R} \cap \Omega)$ would be true for any 1 .

Baernstein in [B2] showed that his own conjecture is not true. He constructed a simply connected domain Ω such that if we consider the conformal mapping ffrom Ω into the unit disc, there exists a positive value p between 1 and 2, such that,

$$\int_{\mathbf{R}\cap\Omega} |f'(z)|^p |dz| = \infty.$$

We pass to describe briefly the work done by Baernstein in [B2]. His domain Ω is the complement of an infinite tree T clustering to the real line. The fixed aperture at every branching of the tree T is $\frac{1}{3}\pi$.

Let us consider the domain $\Theta = \mathbb{C} \setminus ((-\infty, 1] \cup (0, e^{i\pi/3}]))$, where $(0, e^{i\pi/3}]$ is the segment joining these two points. We are going to call $a = e^{i\pi/3}$, and consider the conformal mappings $F_i(z)$, i=1, 2; mapping Θ onto the domain $H = \mathbb{C} \setminus (-\infty, 0]$, such that $F_1(1)=0$, $F_2(a)=0$ and $\lim_{z\to\infty} |F_i(z)/z|=1$, i=1, 2.

If we consider,

$$\gamma = \lim_{z \to 1} \left| \frac{F_1(z)}{z - 1} \right|, \quad \beta = \lim_{z \to a} \left| \frac{F_2(z)}{z - a} \right|,$$

then Baernstein's theorem states that,

Theorem.

$$\gamma^{1/2} + \beta^{1/2} > \sqrt{2}.$$

In his paper Baernstein proves this result after numerical evidence given to him by Donald Marshall, who computed the values of γ and β using Trefethen's program [T], see also [H, p. 422], for finding parameters for Schwarz–Christoffel transformations. He starts with the 4-place decimal approximation to the parameters given by the computer and confirm by Calculus the validity of the theorem, then mentions that it would be desirable to have a conceptual proof of the theorem.

In this paper, we present such a conceptual proof, in it our main tool is the method of the extremal metric. The idea of how to obtain lower bounds for γ and β using extremal metric was inspired by the paper of Jenkins and Oikawa [JO], in which they obtain a sharp version of Ahlfors' distortion theorem, and then use it to give simpler proofs of some well known results of Hayman.

2. Proof of the theorem

2.1. Estimating $\gamma = |F_1'(1)|$

Let ϱ be a small positive number and consider the discs $D_{\varrho}^{(1)} = \{z: |z-1| < \varrho\}$, and $D_{1/\varrho}^{(1)} = \{z: |z-1| < 1/\varrho\}$. Let $\Theta_{\varrho}^{(1)}$ be the doubly connected domain

$$\Theta_{\varrho}^{(1)} = ([\Theta \cap D_{1/\varrho}^{(1)}] \setminus \overline{D}_{\varrho}^{(1)}).$$

Let $H_{\varrho}^{(1)}$ be the image under $F_1(z)$ of $\Theta_{\varrho}^{(1)}$, by the normalization properties of the function $F_1(z)$, it is not difficult to show that for any positive ε , there exists a small positive $\varrho(\varepsilon)$ such that,

$$\{z: |z| < (1-\varepsilon)/\varrho(\varepsilon)\} \cap H \subset F_1(D_{1/\varrho(\varepsilon)}^{(1)}) \subset \{z: |z| < (1+\varepsilon)/\varrho(\varepsilon)\} \cap H$$

and

 $\{z: |z| < |F_1'(1)|(\varrho(\varepsilon) - \varepsilon)\} \cap H \subset F_1(D_{\varrho(\varepsilon)}^{(1)}) \subset \{z: |z| < |F_1'(1)|(\varrho(\varepsilon) + \varepsilon)\} \cap H.$

Consider now the module problem for the family of curves Γ joining $\partial D_{\varrho(\varepsilon)}^{(1)}$ with $\partial D_{1/\varrho(\varepsilon)}^{(1)}$ in $\Theta_{\varrho(\varepsilon)}^{(1)}$. Using the conformal invariance of the module and the comparison property for the modules, we have that

$$M(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)}) \leq \frac{2\pi}{\ln((1-\varepsilon)/\varrho(\varepsilon)(\varrho(\varepsilon)+\varepsilon)|F_1'(1)|)}.$$

This provides us with an upper bound for the module, our goal is to obtain a lower bound for the same module. For this we consider the conformal mapping $\Phi(z)=\ln(z-1)$,

$$\Phi(z): \Theta_{\varrho(\varepsilon)}^{(1)} \to S_{\varrho(\varepsilon)}^{(1)},$$

where $S_{\rho(\epsilon)}^{(1)}$ is the quadrangle in the Figure 2.1a.

Let $\widetilde{\Gamma}$ be the family of curves in $S_{\varrho(\varepsilon)}^{(1)}$ joining the pair of sides opposite to the vertical sides. By the conformal invariance of the module we have the following equality

$$M\big(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)}\big) = M\big(\bar{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}\big),$$

where $\overline{\Gamma}$ is the family of curves in $S_{\varrho(\varepsilon)}^{(1)}$ joining the pair of vertical sides. Since the families of curves $\overline{\Gamma}$ and $\widetilde{\Gamma}$ are conjugate in the quadrangle $S_{\varrho(\varepsilon)}^{(1)}$, we have that

$$M(\bar{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}) = 1/M(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}),$$

Figure 2.1a

therefore, to obtain a lower bound for $M(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)})$, we need an upper bound of $M(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(1)})$.

The idea of how to obtain the right upper bound for $M(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(1)})$ was suggested by [JO]. For any value of x in the interval $\ln \varrho(\varepsilon) < x < -\ln \varrho(\varepsilon)$, let $\sigma(x)$ denote the maximal open subinterval of $\operatorname{Re}\{z\} = x$ in $S_{\varrho(\varepsilon)}^{(1)}$ such that the two components of $(S_{\varrho(\varepsilon)}^{(1)} \setminus \sigma(x))$ have the two vertical sides as boundary components. Let $\theta(x)$ denote the length of $\sigma(x), \theta_1(x)$ the length of the part of the segment $\sigma(x)$ below the x-axis, and $\theta_2(x)$ the length of the part above the x-axis. As it can be easily seen, $\theta_1(x) = \pi$ for any x in the interval $\ln \varrho(\varepsilon) < x < -\ln \varrho(\varepsilon)$. For $\theta_2(x)$ we have

$$\theta_2(x) = \begin{cases} \pi, & \text{if } \ln \varrho(\varepsilon) < x < \ln\left(\frac{1}{2}\sqrt{3}\right), \\ \theta_2(x), & \text{if } \ln\left(\frac{1}{2}\sqrt{3}\right) \le x < 0, \\ \pi, & \text{if } 0 \le x < -\ln \varrho(\varepsilon). \end{cases}$$

Let the interval $\left[\ln\left(\frac{1}{2}\sqrt{3}\right),0\right)$ be divided into n consecutive half closed subintervals $\Delta_j = \left[\ln\left(\frac{1}{2}\sqrt{3}\right)(1-j/n), \ln\left(\frac{1}{2}\sqrt{3}\right)(1-(j+1)/n)\right), \ j=0,...,n-1$ of equal length, and for each j=0,...,n-1 let

$$\theta_{2,j}^{(s)} = \min_{t \in \Delta_j} \theta_2(t),$$

and define for any $x \in \left[\ln\left(\frac{1}{2}\sqrt{3}\right), 0\right), \theta_2^{(s)}(x) = \theta_{2,j}^{(s)}$ if $x \in \Delta_j, j = 0, ..., n-1$. It is clear

that such minimum exists and $\theta_2^{(s)}$ is a step function on the interval $\left[\ln\left(\frac{1}{2}\sqrt{3}\right), 0\right)$. At the right end point \bar{x} of any interval Δ_j the step function $\theta_2^{(s)}(x)$ has a negative jump, then we draw the ray given by $\bar{x} - \lambda$, $\theta_2^{(s)}(\bar{x}) + \lambda$; $\lambda \ge 0$; j=0..., n-1. The lower envelope of these rays and the locus $y=\theta_2^{(s)}(x)$ defines on the interval $\left[\ln\left(\frac{1}{2}\sqrt{3}\right), 0\right)$ a piecewise continuously differentiable function $\theta_2^{(t)}(x)$, which determines a decomposition of the interval into a finite number of subintervals on which the locus $y=\theta_2^{(t)}(x)$ has slope -1 or 0. We define $\theta_2^{(t)}(x)$ in the interval $\left(\ln \varrho(\varepsilon), -\ln \varrho(\varepsilon)\right)$ by

$$\theta_{2}^{(t)} = \begin{cases} \pi, & \ln \varrho(\varepsilon) < x \le \ln\left(\frac{1}{2}\sqrt{3}\right)(1-n^{-1}) - \pi + \theta_{2,2}^{(s)}, \\ \theta_{2,2}^{(s)} - x + \ln\left(\frac{1}{2}\sqrt{3}\right)(1-n^{-1}), \\ & \ln\left(\frac{1}{2}\sqrt{3}\right)(1-n^{-1}) - \pi + \theta_{2,2}^{(s)} < x < \ln\left(\frac{1}{2}\sqrt{3}\right)(1-n^{-1}), \\ \theta_{2}^{(t)}(x), & \ln\left(\frac{1}{2}\sqrt{3}\right)(1-n^{-1}) \le x < 0, \\ \frac{2}{3}\pi + \lambda x^{2}, & 0 \le x < \sqrt{\pi/3\lambda}, \\ \pi, & \sqrt{\pi/3\lambda} \le x < -\ln \varrho(\varepsilon), \end{cases}$$

where λ is a positive parameter to be determined later. The domain determined by

$$-\theta_1(x) < y < \theta_2^{(t)}(x); \quad \ln \varrho(\varepsilon) < x < -\ln \varrho(\varepsilon),$$

becomes a quadrangle $Q_{\varrho(\varepsilon)}^{(1)}$. The part of $Q_{\varrho(\varepsilon)}^{(1)}$ below the *x*-axis is the same as for $S_{\rho(\varepsilon)}^{(1)}$ and the part above the *x*-axis is as in Figure 2.1b.

If we let $\tilde{\Gamma}'$ be the family of curves $Q_{\varrho(\varepsilon)}^{(1)}$ joining the pair of sides complementary to the two vertical sides, we have that

$$M\big(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(1)}\big) \le M\big(\widetilde{\Gamma}', Q_{\varrho(\varepsilon)}^{(1)}\big).$$

Thus it is enough to obtain an upper bound for $M(\widetilde{\Gamma}', Q_{\varrho(\varepsilon)}^{(1)})$. It is known that an upper bound for this module is given by the Dirichlet integral of any piecewise continuously differentiable function in $Q_{\varrho(\varepsilon)}^{(1)}$ taking the value 0 on the side given by $y=-\theta_1(x)$, and the value 1 on the side given by $y=\theta_2^{(t)}(x)$. A function like this is given by

$$u(x,y) = \frac{y + \theta_1(x)}{\theta^{(t)}(x)},$$

where $\theta^{(t)}(x) = \theta_1(x) + \theta_2^{(t)}(x)$. To estimate the Dirichlet integral of u(x, y) we subdivide the domain $Q_{\varrho(\varepsilon)}^{(1)}$ into five pieces each corresponding to one of the following intervals in the x-axis:

$$\begin{split} I &= \left(\ln \varrho(\varepsilon), \ln \left(\frac{1}{2}\sqrt{3} \right) (1 - n^{-1}) - \pi + \theta_{2,2}^{(s)} \right];\\ II &= \left(\ln \left(\frac{1}{2}\sqrt{3} \right) (1 - n^{-1}) - \pi + \theta_{2,2}^{(s)}, \ln \left(\frac{1}{2}\sqrt{3} \right) (1 - n^{-1}) \right);\\ III &= \left[\ln \left(\frac{1}{2}\sqrt{3} \right) (1 - n^{-1}), 0 \right);\\ IV &= \left[0, \sqrt{\pi/3\lambda} \right);\\ V &= \left[\sqrt{\pi/3\lambda} - \ln \varrho(\varepsilon) \right). \end{split}$$

On the two pieces of the Dirichlet integral corresponding to the intervals I and V, the function $u(x,y)=(y+\pi)/2\pi$, and since when we take the limit as the number of subdivisions $n\to\infty$ then $\theta_{2,2}^{(s)}\to \frac{5}{6}\pi$, we have that

$$\begin{split} \iint_{I} + \iint_{V} |\nabla u(x,y)|^{2} dx \, dy &= \frac{1}{2\pi} \ln\left(\frac{1}{\varrho(\varepsilon)}\right) + \frac{1}{2\pi} \left[\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right] \\ &+ \frac{1}{2\pi} \ln\left(\frac{1}{\varrho(\varepsilon)}\right) - \frac{1}{2\pi} \sqrt{\frac{\pi}{3\lambda}}. \end{split}$$

It is not difficult to see that the Dirichlet integral corresponding to II after we let $n\!\to\!\infty$ tends to

$$\begin{split} \int_{\ln(\sqrt{3}/2)}^{\ln(\sqrt{3}/2)} & \int_{-\pi}^{5\pi/6 - (x - \ln(\sqrt{3}/2))} \left| \nabla \left(\frac{y + \pi}{11\pi/6 - (x - \ln(\sqrt{3}/2))} \right) \right|^2 dy \, dx \\ &= \int_{\ln(\sqrt{3}/2) - \pi/6}^{\ln(\sqrt{3}/2)} \int_{-\pi}^{5\pi/6 - x + \ln(\sqrt{3}/2)} \left[\frac{1}{\left(11\pi/6 - x + \ln(\sqrt{3}/2) \right)^2} \right. \\ & \left. + \frac{(y + \pi)^2}{\left(11\pi/6 - x + \ln(\sqrt{3}/2) \right)^4} \right] dy \, dx \end{split}$$

$$= \int_{\ln(\sqrt{3}/2)}^{\ln(\sqrt{3}/2)} \frac{4}{3} \left[\frac{1}{11\pi/6 - x + \ln(\sqrt{3}/2)} \right] dx$$
$$= \frac{4}{3} \left[-\ln\left(\frac{11\pi}{6} - x + \ln\frac{\sqrt{3}}{2}\right) \right]_{\ln(\sqrt{3}/2) - \pi/6}^{\ln(\sqrt{3}/2)}$$
$$= \frac{4}{3} \ln\frac{12}{11}.$$

As for the piece corresponding to IV, we have that after some calculations

$$\iint_{IV} \left| \nabla \left(\frac{y+\pi}{5\pi/3 + \lambda x^2} \right) \right|^2 dx \, dy = \left[\sqrt{\frac{3}{5\pi}} \frac{1}{\sqrt{\lambda}} - \frac{4}{3} \sqrt{\frac{5\pi}{3}} \sqrt{\lambda} \right] \arctan \frac{1}{5} + \frac{4}{3} \sqrt{\frac{\pi}{3}} \sqrt{\lambda}.$$

The estimate corresponding to III is more delicate, and we will treat it carefully.

$$\begin{split} \iint_{III} |\nabla u(x,y)|^2 dx \, dy &= \int_{\ln(\sqrt{3}/2)}^0 \frac{dx}{\theta^{(t)}(x)} + \frac{1}{3} \int_{\ln(\sqrt{3}/2)}^0 \frac{(\theta_1')^2 - \theta_2^{(t)'} \theta_1' + (\theta_2^{(t)'})^2}{\theta^{(t)}(x)} \, dx \\ &= \int_{\ln(\sqrt{3}/2)}^0 \frac{dx}{\theta^{(t)}(x)} + \frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_j} \frac{1}{\theta^{(t)}(x)} \, dx \\ &= (\mathbf{i}) + (\mathbf{i}\mathbf{i}), \end{split}$$

where Ω_j is the subinterval of Δ_j over which $\theta_2^{(t)\prime}(x)$ is equal to -1. We proceed to estimate these two integrals (i) and (ii).

(i) =
$$\int_{\ln(\sqrt{3}/2)}^{0} \frac{dx}{\theta^{(t)}(x)} \le -\frac{3}{5\pi} \ln \frac{\sqrt{3}}{2}.$$

We estimate (ii) as follows,

$$\begin{aligned} \text{(ii)} &= \frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_j} \frac{dx}{\theta^{(t)}(x)} = \frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_j} \frac{1}{\pi + \theta_2^{(s)}(x) + \ln\left(\sqrt{3}/2\right)(1 - (j+1)/n) - x} \, dx \\ &= \frac{1}{3} \sum_{j=0}^{n-1} \int_{\Omega_j} \frac{1}{\pi + \theta_{2,j}^{(s)} + \ln\left(\sqrt{3}/2\right)(1 - (j+1)/n) - x} \, dx \\ &= \sum_{j=0}^{n-1} \frac{-1}{3} \left[\ln\left(\pi + \theta_{2,j}^{(s)} + \ln\left(\frac{\sqrt{3}}{2}\right)\left(1 - \frac{j+1}{n}\right) - x\right) \right]_{x_j^{(t)}}^{x_j^{(t)}}, \end{aligned}$$

where $x_j^{(r)}$ is the right endpoint of the interval Ω_j and $x_j^{(l)}$ is the left endpoint. Hence, for *n* large enough,

$$\theta_{2,j}^{(s)} + \ln\left(\frac{\sqrt{3}}{2}\right) \left(1 - \frac{j+1}{n}\right) - x_j^{(r)} = \theta_{2,j+1}^{(s)} + \ln\left(\frac{\sqrt{3}}{2}\right) \left(1 - \frac{j+2}{n}\right) - x_{j+1}^{(l)}$$

for any j=0,...,n-2, thus

$$\begin{split} \sum_{j=0}^{n-1} \frac{-1}{3} \bigg[\ln \bigg(\pi + \theta_{2,j}^{(s)} + \ln \bigg(\frac{\sqrt{3}}{2} \bigg) \bigg(1 - \frac{j+1}{n} \bigg) - x \bigg) \bigg]_{x_j^{(l)}}^{x_j^{(r)}} \\ &= \frac{1}{3} \bigg[\ln \bigg(\pi + \theta_{2,0}^{(s)} + \ln \bigg(\frac{\sqrt{3}}{2} \bigg) \bigg(1 - \frac{1}{n} \bigg) - x_0^{(l)} \bigg) - \ln (\pi + \theta_{2,n}^{(s)} - x_n^{(r)}) \bigg], \end{split}$$

since $x_0^{(l)} = \ln(\frac{1}{2}\sqrt{3})$, $\lim_{n \to \infty} \theta_{2,0}^{(s)} = \frac{5}{6}\pi$, $x_n^{(r)} = 0$, and $\theta_{2,n}^{(s)} = \frac{2}{3}\pi$, letting *n* go to ∞ , we obtain that

$$(ii) \rightarrow \frac{1}{3} \ln \frac{11}{10}$$

This completes all our estimates, putting all of them together, we obtain that

$$\begin{split} M\big(\widetilde{\Gamma}',Q_{\varrho(\varepsilon)}^{(1)}\big) &\leq \frac{1}{2\pi}\ln\bigg(\frac{1}{\varrho^{2}(\varepsilon)}\bigg) + \frac{1}{2\pi}\bigg[\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\bigg] - \frac{1}{2\pi}\sqrt{\frac{\pi}{3\lambda}} + \frac{4}{3}\ln\frac{12}{11} - \frac{3}{5\pi}\ln\frac{\sqrt{3}}{2} \\ &+ \bigg[\sqrt{\frac{3}{5\pi}}\frac{1}{\sqrt{\lambda}} - \frac{4}{3}\sqrt{\frac{5\pi}{3}}\sqrt{\lambda}\bigg] \arctan\frac{1}{5} + \frac{4}{3}\sqrt{\frac{\pi}{3}}\sqrt{\lambda} + \frac{1}{200} + \frac{1}{3}\ln\frac{11}{10}. \end{split}$$

Let us call $G(\lambda)$ the expression on the right hand side of the above inequality involving the positive parameter λ ,

$$G(\lambda) = \left[\sqrt{\frac{3}{5\pi}} \frac{1}{\sqrt{\lambda}} - \frac{4}{3}\sqrt{\frac{5\pi}{3}}\sqrt{\lambda}\right] \arctan\frac{1}{5} + \frac{4}{3}\sqrt{\frac{\pi}{3}}\sqrt{\lambda} - \frac{1}{2\pi}\sqrt{\frac{\pi}{3}}\frac{1}{\sqrt{\lambda}},$$

and solve the equation $G(\lambda)=0$, hence

$$\left[\frac{4}{3}\sqrt{\frac{\pi}{3}} - \frac{4}{3}\sqrt{\frac{5\pi}{3}}\arctan\frac{1}{5}\right]\sqrt{\lambda} = \left[\frac{1}{2\pi}\sqrt{\frac{\pi}{3}} - \sqrt{\frac{3}{5\pi}}\arctan\frac{1}{5}\right]\frac{1}{\sqrt{\lambda}},$$

thus,

$$\lambda = \left(\frac{1}{2\pi}\sqrt{\frac{\pi}{3}} - \sqrt{\frac{3}{5\pi}}\arctan\frac{1}{5}\right) / \left(\frac{4}{3}\sqrt{\frac{\pi}{3}} - \frac{4}{3}\sqrt{\frac{5\pi}{3}}\arctan\frac{1}{5}\right) = 0.10050259.$$

Choosing λ to be this value the expression on the right hand side of the inequality involving λ is equal to zero, therefore

$$\begin{split} M\big(\widetilde{\Gamma}', Q_{\varrho(\varepsilon)}^{(1)}\big) &\leq \frac{1}{2\pi} \ln\left(\frac{1}{\varrho^2(\varepsilon)}\right) + \frac{1}{2\pi} \left(\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right) \\ &+ \frac{1}{200} + \frac{1}{3}\ln\frac{11}{10} + \frac{4}{3}\ln\frac{12}{11} - \frac{3}{5\pi}\ln\frac{\sqrt{3}}{2} \end{split}$$

Putting together the two estimates of $M(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)})$ from above and from below, we obtain

$$\begin{aligned} \frac{2\pi}{\ln\left((1-\varepsilon)/\varrho(\varepsilon)(\varrho(\varepsilon)+\varepsilon)|F_1'(1)|\right)} &\geq \left(\frac{1}{2\pi}\ln\left(\frac{1}{\varrho^2(\varepsilon)}\right) + \frac{1}{2\pi}\left(\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right) \\ &+ \frac{1}{200} + \frac{1}{3}\ln\frac{11}{10} + \frac{4}{3}\ln\frac{12}{11} - \frac{3}{5\pi}\ln\frac{\sqrt{3}}{2}\right)^{-1} \end{aligned}$$

Taking inverses and exponentiating both sides, we obtain

$$\begin{aligned} \frac{1-\varepsilon}{(\varrho(\varepsilon)+\varepsilon)\varrho(\varepsilon)|F_1'(1)|} &\leq \frac{1}{\varrho^2(\varepsilon)} \exp\left\{\left(\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right) \right. \\ &\left. + 2\pi \left(\frac{1}{200} + \frac{1}{3}\ln\frac{11}{10} + \frac{4}{3}\ln\frac{12}{11} - \frac{3}{5\pi}\ln\frac{\sqrt{3}}{2}\right)\right\}. \end{aligned}$$

It is not difficult to see that choosing ε conveniently and letting $\varepsilon \rightarrow 0$ we get that

$$\gamma = |F_1'(1)| \ge \exp\left\{-\left(\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right) - 2\pi\left(\frac{1}{200} + \frac{1}{3}\ln\frac{11}{10} + \frac{4}{3}\ln\frac{12}{11} - \frac{3}{5\pi}\ln\frac{\sqrt{3}}{2}\right)\right\} = \alpha.$$

Hence,

$$\gamma^{1/2} = |F_1'(1)|^{1/2} \ge \alpha^{1/2} \ge 0.79249.$$

2.2. Estimating $\beta = |F'_2(a)|$

Let ρ be a small positive number, and consider the discs $D_{\rho}^{(2)} = \{z: |z-a| < \rho\}$, and $D_{1/\rho}^{(2)} = \{z: |z-a| < 1/\rho\}$. Let $\Theta_{\rho}^{(2)}$ be the doubly connected domain

$$\Theta_{\varrho}^{(2)} = ([\Theta \cap D_{1/\varrho}^{(2)}] \setminus \overline{D}_{\varrho}^{(2)}).$$

Let $H_{\varrho}^{(2)}$ be the image under $F_2(z)$ of $\Theta_{\varrho}^{(2)}$, by the same reason as in the first estimate 2.1, for any positive ε , there exists a small $\varrho(\varepsilon)$ positive such that;

$$\{z: |z| < |F_2'(a)|(\varrho(\varepsilon) - \varepsilon)\} \cap H \subset F_2(D_{\varrho(\varepsilon)}^{(2)}) \subset \{z: |z| < |F_2'(a)|(\varrho(\varepsilon) + \varepsilon)\} \cap H$$

Figure 2.2a

and

$$\{z: |z| < (1-\varepsilon)/\varrho(\varepsilon)\} \cap H \subset F_2(D_{1/\varrho(\varepsilon)}^{(2)}) \subset \{z: |z| < (1+\varepsilon)/\varrho(\varepsilon)\} \cap H$$

Considering now the module problem for the family of curves Γ joining $\partial D_{\varrho(\varepsilon)}^{(2)}$ with $\partial D_{1/\varrho(\varepsilon)}^{(2)}$ in $\Theta_{\varrho(\varepsilon)}^{(2)}$, we have that

$$M\big(\Gamma, \Theta_{\varrho(\varepsilon)}^{(2)}\big) \leq \frac{2\pi}{\ln((1-\varepsilon)/\varrho(\varepsilon)(\varrho(\varepsilon)+\varepsilon)|F_2'(a)|)}$$

Our goal is to obtain a lower bound for the above module. For this we consider the conformal mapping $\Psi(z) = \ln(z-a)$,

$$\Psi(z) \colon \Theta_{\varrho(\varepsilon)}^{(2)} \to S_{\varrho(\varepsilon)}^{(2)},$$

where $S_{\varrho(\varepsilon)}^{(2)}$ is again a quadrangle as in Figure 2.2a above.

Let $\widetilde{\Gamma}$ be the family of curves in $S_{\varrho(\varepsilon)}^{(2)}$ joining the pair of sides opposite to the vertical sides of $S_{\varrho(\varepsilon)}^{(2)}$. By the conformal invariance of the module we have that,

$$M\big(\Gamma,\Theta_{\varrho(\varepsilon)}^{(2)}\big) = M\big(\bar{\Gamma},S_{\varrho(\varepsilon)}^{(2)}\big),$$

where $\overline{\Gamma}$ is the family of curves in $S_{\varrho(\varepsilon)}^{(2)}$ joining the pair of vertical sides. Since the families of curves $\overline{\Gamma}$ and $\widetilde{\Gamma}$ are conjugate in $S_{\varrho(\varepsilon)}^{(2)}$, we have that

$$M\big(\bar{\Gamma},S^{(2)}_{\varrho(\varepsilon)}\big) = 1/M(\widetilde{\Gamma},S^{(2)}_{\varrho(\varepsilon)}),$$

thus, to obtain a lower bound for $M(\Gamma, \Theta_{\varrho(\varepsilon)}^{(2)})$, all we need is an upper bound for the module $M(\widetilde{\Gamma}, S_{\varrho(\varepsilon)}^{(2)})$. To obtain this bound we proceed as in case 2.1. Our function $\theta_2(x)$ in this case is given by,

$$\theta_2(x) = \begin{cases} \frac{4}{3}\pi, & \text{if } \ln \varrho(\varepsilon) < x \le 0, \\ \pi + \arctan \sqrt{3/(4e^{2x} - 3)}, & \text{if } 0 \le x < -\ln \varrho(\varepsilon). \end{cases}$$

We modify the function $\theta_1(x)$ in the same way we did with $\theta_2(x)$ in case 2.1 for values of x satisfying $\ln \varrho(\varepsilon) < x < 0$, and for values of x in the interval $[0, -\ln \varrho(\varepsilon))$ we are going to modify $\theta_1(x)$ as follows;

$$\theta_1^{(t)}(x) = \begin{cases} \frac{1}{3}\pi + \delta x, & \text{if } 0 \le x < \lambda, \\ \theta_1(x), & \text{if } \lambda \le x < -\ln \varrho(\varepsilon). \end{cases}$$

Where $\delta > 0$ is a free parameter and λ is implicitly defined by the equation

$$\delta\lambda + \arctan \sqrt{\frac{3}{4e^{2\lambda}-3}} = \frac{2\pi}{3}.$$

The domain determined by

$$-\theta_1^{(t)}(x) < y < \theta_2(x); \quad \ln \varrho(\varepsilon) < x < -\ln \varrho(\varepsilon),$$

becomes a quadrangle $Q_{\varrho(\varepsilon)}^{(2)}$ on assigning, as a pair of opposite sides, the segments

$$-\theta_1^{(t)}(\ln \varrho(\varepsilon)) < y < \theta_2(\ln \varrho(\varepsilon))$$

and

$$-\theta_1^{(t)}(-\ln \varrho(\varepsilon)) < y < \theta_2(-\ln \varrho(\varepsilon)).$$

The part of $Q_{\varrho(\varepsilon)}^{(2)}$ above the *x*-axis is the same as for $S_{\varrho(\varepsilon)}^{(2)}$ and the part below the *x*-axis is as in Figure 2.2b.

As in the case 2.1 we have that

$$M(\widetilde{\Gamma}, S^{(2)}_{\varrho(\varepsilon)}) \leq M(\widetilde{\Gamma}', Q^{(2)}_{\varrho(\varepsilon)}),$$

Figure 2.2b

where $\tilde{\Gamma}'$ is the family of curves in $Q_{\varrho(\varepsilon)}^{(2)}$ joining the pair of sides complementary to the vertical sides. Thus, it is enough to obtain an upper bound for the module $M(\tilde{\Gamma}', Q_{\varrho(\varepsilon)}^{(2)})$. An upper bound is given by the Dirichlet integral of the piecewise continuously differentiable function in $Q_{\varrho(\varepsilon)}^{(2)}$

$$u(x,y) = \frac{\theta_2(x) - y}{\theta^{(t)}(x)},$$

where $\theta^{(t)}(x) = \theta_1^{(t)}(x) + \theta_2(x)$. Hence,

$$\begin{split} \iint_{Q_{\varrho(\varepsilon)}^{(2)}} |\nabla u(x,y)|^2 dx \, dy &= \iint_{Q_{\varrho(\varepsilon)}^{(2)} \cap \{\operatorname{Re}\{z\} \le 0\}} + \iint_{Q_{\varrho(\varepsilon)}^{(2)} \cap \{\operatorname{Re}\{z\} > 0\}} |\nabla u(x,y)|^2 dx \, dy \\ &= I + II. \end{split}$$

The estimate of the integral I is the same as in case 2.1 because if we look at the left hand sides of the domains $Q_{\varrho(\varepsilon)}^{(1)}$ and $Q_{\varrho(\varepsilon)}^{(2)}$, they are the same up to a symmetry and a vertical translation. Thus,

$$I \leq \frac{1}{2\pi} \ln\left(\frac{1}{\varrho(\varepsilon)}\right) + \frac{1}{3} \ln\frac{11}{10} + \frac{1}{200} + \frac{1}{2\pi} \left[\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right] + \frac{4}{3} \ln\frac{12}{11} - \frac{3}{5\pi} \ln\frac{\sqrt{3}}{2}.$$

We pass to estimate the second integral II,

$$\begin{split} II &= \iint_{Q_{\varrho(\varepsilon)}^{(2)} \cap \{\operatorname{Re}\{z\} > 0\}} |\nabla u(x,y)|^2 dx \, dy \\ &= \int_0^{-\ln \varrho(\varepsilon)} \frac{dx}{\theta^{(t)}(x)} + \frac{1}{3} \int_0^{-\ln \varrho(\varepsilon)} \frac{\theta_1^{(t)\prime}(x)^2 - \theta_1^{(t)\prime}(x)\theta_2^{\prime}(x) + \theta_2^{\prime}(x)^2}{\theta^{(t)}(x)} \, dx, \end{split}$$

where

$$\theta_2(x) = \pi + \arctan \sqrt{\frac{3}{4e^{2x} - 3}} \quad \text{for } 0 < x < -\ln \varrho(\varepsilon),$$

and

$$\theta^{(t)}(x) = \theta_1^{(t)}(x) + \theta_2(x) = 2\pi$$

for values of x such that $\lambda \leq x < -\ln \rho(\varepsilon)$. Thus II is equal to

$$\begin{split} II &= \int_{0}^{\lambda} \frac{1}{\theta^{(t)}(x)} \, dx + \frac{1}{3} \int_{0}^{\lambda} \frac{\theta_{1}^{(t)'}(x)^{2} - \theta_{1}^{(t)'}(x)\theta_{2}'(x) + \theta_{2}'(x)^{2}}{\theta^{(t)}(x)} \, dx \\ &+ \frac{1}{2\pi} \ln \frac{1}{\varrho(\varepsilon)} - \frac{\lambda}{2\pi} + \frac{1}{6\pi} \int_{\lambda}^{-\ln \varrho(\varepsilon)} 3(\theta_{2}'(x))^{2} dx. \end{split}$$

Let us compute the last integral in the above equality,

$$\int_{\lambda}^{-\ln\varrho(\varepsilon)} (\theta_2'(x))^2 dx = 3 \int_{\lambda}^{-\ln\varrho(\varepsilon)} \frac{dx}{4e^{2x} - 3} = \frac{1}{2} \ln\left(\frac{4 - 3\varrho^2(\varepsilon)}{4 - 3e^{-2\lambda}}\right)$$

It remains to estimate

$$\begin{split} \int_{0}^{\lambda} \frac{dx}{\theta^{(t)}(x)} + \frac{1}{3} \int_{0}^{\lambda} \frac{\theta_{1}^{(t)'}(x)^{2} - \theta_{1}^{(t)'}(x)\theta_{2}'(x) + \theta_{2}'(x)^{2}}{\theta^{(t)}(x)} \, dx \\ &= \int_{0}^{\lambda} \frac{1 + \frac{1}{3}\delta^{2} + 1/(4e^{2x} - 3) + \frac{1}{3}\delta\sqrt{3/(4e^{2x} - 3)}}{\frac{4}{3}\pi + \delta x + \arctan\sqrt{3/(4e^{2x} - 3)}} \, dx \\ &= \int_{0}^{\lambda} \frac{1 + \frac{2}{3}\delta^{2} + 1/(4e^{2x} - 3)}{\frac{4}{3}\pi + \delta x + \arctan\sqrt{3/(4e^{2x} - 3)}} \, dx \\ &- \frac{1}{3}\delta \left[\ln \left(\delta x + \frac{4}{3}\pi + \arctan\sqrt{3/(4e^{2x} - 3)} \right) \right]_{0}^{\lambda}. \end{split}$$

The second term in the formula above is equal to $\frac{1}{3}\delta \ln \frac{6}{5}$. Thus, to complete our estimate, our final goal is to find a suitable bound for the following integral

$$\int_0^\lambda \left[\frac{1 + \frac{2}{3}\delta^2 + 1/(4e^{2x} - 3)}{\frac{4}{3}\pi + \delta x + \arctan\sqrt{3/(4e^{2x} - 3)}} - \frac{1}{2\pi} \right] dx,$$

where $\delta \lambda + \arctan \sqrt{3/(4e^{2\lambda}-3)} = \frac{2}{3}\pi$. Our first observation is that

$$\frac{4\pi}{3} + \delta x + \arctan\sqrt{\frac{3}{(4e^{2x} - 3)}} \ge 2\pi - \arctan\sqrt{\frac{3}{(4e^{2x} - 3)}}$$

for $0 < x < \lambda$. Therefore it is enough to estimate the integral

$$\int_0^\lambda \left[\frac{1+1/(4e^{2x}-3)}{2\pi - \arctan\sqrt{3/(4e^{2x}-3)}} - \frac{1}{2\pi} \right] dx$$

$$\leq \int_0^\infty \frac{2\pi/(4e^{2x}-3) + \arctan\sqrt{3/(4e^{2x}-3)}}{2\pi \left(2\pi - \arctan\sqrt{3/(4e^{2x}-3)}\right)} dx.$$

In the above integral we have dropped the term $\frac{2}{3}\delta^2$ in the numerator, since when λ goes to ∞ then δ goes to 0 as $2\pi/3\lambda$, thus

$$\int_0^\lambda \frac{\frac{2}{3}\delta^2}{\frac{4}{3}\pi + \delta x + \arctan\sqrt{3/(4e^{2x} - 3)}} \, dx \le \frac{\delta^2 \lambda}{2\pi},$$

and this goes to $\frac{1}{3}\delta$ as λ goes to ∞ , hence the term in the integral corresponding to $\frac{2}{3}\delta^2$ can be made as small as we please. Using the change of variable $u = \arctan \sqrt{3/(4e^{2x}-3)}$, the above integral becomes

$$-\int_{\pi/3}^{0} \frac{\frac{2}{3}\pi(\tan u)^{2}+u}{2\pi(2\pi-u)} \frac{du}{\tan u} = \frac{1}{2\pi} \int_{0}^{\pi/3} \frac{2\pi}{3} \frac{\tan u}{(2\pi-u)} \, du + \frac{1}{2\pi} \int_{0}^{\pi/3} \frac{u}{(2\pi-u)} \cot u \, du$$
$$= A+B.$$

Standard numerical integration methods give us the following estimates from above for the two integrals A and B:

$$A \le \frac{1}{3}(0.126) = 0.042$$

 and

$$B \le \frac{1}{2\pi} (0.158) \le 0.0252.$$

Putting all these estimates together and letting δ go to 0, we obtain that

$$\begin{split} M(\widetilde{\Gamma}',Q^{(2)}_{\varrho(\varepsilon)}) &\leq \frac{1}{2\pi} \ln \frac{1}{\varrho^2(\varepsilon)} + \frac{1}{3} \ln \frac{11}{10} + \frac{1}{200} + \frac{1}{2\pi} \left[\ln \frac{\sqrt{3}}{2} - \frac{\pi}{6} \right] \\ &+ \frac{4}{3} \ln \frac{12}{11} - \frac{3}{5\pi} \ln \frac{\sqrt{3}}{2} + \frac{1}{4\pi} \ln \left(\frac{4 - 3\varrho^2(\varepsilon)}{4} \right) + 0.042 + 0.0252. \end{split}$$

Putting together the estimates of $M(\Gamma, \Theta_{\varrho(\varepsilon)}^{(1)})$ from above and from below, taking inverses and exponentiating, as we did in case 2.1, and letting ε go to 0, we have that

$$\begin{split} \beta &= |F_2'(a)| \\ &\geq \exp\left(-2\pi \left\{\frac{1}{3}\ln\frac{11}{10} + \frac{1}{200} + \frac{1}{2\pi}\left(\ln\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right) + \frac{4}{3}\ln\frac{12}{11} - \frac{3}{5\pi}\ln\frac{\sqrt{3}}{2} + 0.0672\right\}\right) \\ &= \eta. \end{split}$$

Hence,

$$\beta^{1/2} = |F_2'(a)|^{1/2} \ge \eta^{1/2} \ge 0.6403.$$

Therefore putting together the two estimates 2.1 and 2.2, we have that

$$|F_2'(a)|^{1/2} + |F_1'(1)|^{1/2} = \beta^{1/2} + \gamma^{1/2} > 0.79249 + 0.6403 = 1.43279 > \sqrt{2},$$

and this proves the theorem. \Box

References

- [B1] BAERNSTEIN II, A., 199 Problems in Linear and Complex Analysis, Lectures Notes in Math. 1043, Springer-Verlag, Berlin-Heidelberg, 1987.
- [B2] BAERNSTEIN II, A., A counterexample concerning integrability of derivatives of conformal mappings, J. Analyse Math. 53 (1989), 253–269.
- [FHM] FERNÁNDEZ, J., HEINONEN, J. and MARTIO, O., Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117–133.
- [GGJ] GARNETT, J., GEHRING, F. and JONES, P., Conformally invariant length sums, Indiana Univ. Math. J. 32 (1983), 809–824.
- [HW] HAYMAN, W. K. and WU, J.-M. G., Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366–403.
- [H] HENRICI, P., Applied and Computational Complex Analysis III, Wiley, New York, 1973.
- [JO] JENKINS, J. A. and OIKAWA, K., On results of Ahlfors and Hayman, Illinois J. Math. 15 (1971), 664–671.
- [T] TREFETHEN, L. N., Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Statist. Comput. 1 (1980), 82–102.

Received December 22, 1992

Enrique Villamor Department of Mathematics Florida International University Miami, FL 33199 U.S.A.