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Some estimates related to fractal 
measures and Laplacians on manifoldsLimin Sun

Abstract. Let Δ be the Laplace—Beltrami operator on an n-dimensional complete Co° manifold Μ. In this paper, we establish an estimate of et^(dμ) valid for all t>0, where dμ is a locally uniformly <a-dimensional measure on M, Q<a<n. The result is used to study the mapping properties of (I —1∆)^^ considered as an operator from Lp(M,dμ) to Lp(M,dx), where dx is the Riemannian measure on M, β>(n-a)∕2p'i l∕p+l∕p, = 1, l≤p≤∞.
1. IntroductionLet M be an n-dimensional complete Cog Riemannian manifold. We will denote by Δ the Laplace-Beltrami operator on M and by ht(x,y) the heat kernel for the heat semi-group A Borel measure μ on M is said to be locally uniformly 

a-dimensional if there exists a constant C such that sup rn~a 
l>r>0
xEM

μ(Br(x∖)
V(Br(x))

<C,

where Br(x) is the geodesic ball with center x and radius r, and V{Br(x}) is the volume of Br(x) with respect to the Riemannian measure dx on Μ. If M is of positive injective radius and the sectional curvature K(M) of M satisfies k>K{M)≥ 
—k for some positive constants k and k, then M is said to be of bounded geometry. Assuming that M is of bounded geometry, R. S. Strichartz in [5] established several results about the asymptotic behavior of et^(fdμ) as i→0, where feLp(M,dμ), l≤p≤∞, and

et∖fdμ)(x) = [ ht(x,y)f(y)dμ(y).
JMLater, A. G. Setti [3] obtained similar results about Lp-weakly ^-dimensional measure with respect to a weighted Laplacian. The results in [3] and [5] are based on estimates of the heat kernel.
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From et^ one can construct a family of operators {(∕—1∆) t>0} (with ∕3>0fixed) by setting

The kernel Jt(x,y) corresponding to (I—1∆)^^ is given by1 r∞Jf (x> y) = ∕ s0~1e~shst(x, y) ds.

It is interesting to know the asymptotic behavior of (l-t∆)~f3(fdμ) as t→0. The aim of this paper is to show that a key to this problem is to get certain estimates of etA(/i) valid for all t>Q rather than to estimate the kernel J%(x,y) directly. Actually, by our reproach, one may find that most of the results in [5] valid for 
et^(fdμ) are essentially valid for (I—t∆)~f3(jdμ). We do not intend to give every detail here, but present the main steps. These are contained in our proof for the Lp- boundedness of (I—^Δ)~^ and the generalization of Wiener’s theorem. Moreover, under the suggestion of R. S. Strichartz, we here also present an estimation for ∣∣(Z-^Δ)~^(z∕)∣∣lp(<‰,) where v is an Zp-weakly ^-dimensional measure (see the next section for its definition).I am especially grateful to Professor R. S. Strichartz. He sent me several of his papers on fractal measures, which brought my attention to this subject, and later gave me many helpful comments and suggestions on my original manuscript, which led to the results in this paper. I also would like to thank Professor Bo Berndtsson who supplied me a copy of A. G. Setti’s paper.

2. Statement of the resultsWe make the convention that all the constants, if not specified, are denoted by C which may be different in different occurences. A simply connected n- dimensional manifold with K{M)--k is denoted by Hn'k and called a hyperbolic space. As usual, pf denotes the adjoint number of p (≥1), i∙θ∙, l∕p÷l∕p, = 1. Following A. G. Setti [3], a locally finite (complex) measure υ on M is said to be 
Lp-weakly a-dimensional, if

sup r<n-a^p'
O<r<l

v(Br(x))
V(Br(x))

<C.
LP(M,dx)The main results of this paper are as follows.
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Theorem 1. Let hβx,y) be the heat kernel on a complete n-dimensional 

Cx Riemannian manifold Μ. Suppose that M is of positive injectivity radius, infx∈Λ∕ V(Bi(a;))>0; and the Ricci curvature Ric(M)≥-(n—l)fc. If μ is a lo
cally uniformly a-dimensional measure on M, (0<a<ri), then there exist constants 
Cβ-CβM, μ) and τ=τ(M) such that

[ hβ(x,y) dμ(y) <Cι(ρ~in~a'l',2+eτβ)
JM

for all χζM and ρ>0. In particular, if M=Hn,k, one can choose τ=τ(Ifn,fc)=0.
Theorem 2. Let M and μ be given as in Theorem 1. Suppose that fe 

Lp(M,dμ) and β>(n-a)∕2p,, l≤p≤∞. Then there exists a constant

C2 = C2(M, μ, β,p)

such that

(1) ≤c72(t-<-«>/2^+i)||/||z,P(dZi)

for all 0<t<l∕2τ. In particular, if M=Hn,k then (1) holds for all t>0.

Theorem 3. Let M be given as in Theorem 1. Suppose that υ is an Lp-weakly 
a-dimensional measure on Μ. Then, for β>(n-a)∕2p', l≤p≤∞, there exists a 
constant C3=C3(M,1^ β,p) such that(2) ||(/-tA)-'3(p)||LP(dx) ≤C3(i-^∕2p'+l)
for 0<t<Λ∕2τ. Moreover, if M=Hn>k, then (2) holds for allt>0.

Theorem 4. Let M be a complete n-dimensional C°o manifold with bounded 
geometry and μ a locally uniformly O-dimensional measure on Μ. Suppose that 
μ=μc+∑Cjμxj is the decomposition of μ into its continuous and discrete parts. 
Then, for f ELp{M,dμ) and β>n∕2p, with l<p<∞,

where 9n∕2+1-∕3(47r)n∕2r^) II l^lz3~n⅝-n∕2(l^l)llrp(a-),
and K1 is the I-th K-Bessel function (cf. [61).Theorem 4 can be viewed as a generalization of Wiener’s theorem (cf. [5]); its proof will be given in the last section. In the next section we will prove Theorem 1 and Theorem 2 and deduce some interesting consequences.
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3. Proof of Theorem 1 and Theorem 2Keep the notations previously used. The following two facts crucial to our discussion are valid under the assumption that Ric(M) ≥-(n — l)k (cf. [2], [3]): (Fi) sup:rEM V{Br(x))<V{n, k, r), V(n, A;, r) = θ(ev^nr) as r→∞, where 

V(n, k, r) is the volume of a ball of radius r contained in Hn,k.(F2) For any 0<ε<l, there exists a constant C4=C4(n, A:, ε) such that
ht(x, y) ≤ C4 [V(Bvt(x))V(B√t(y))]_1/2e(£_ÄMμ exp(-d(x, τ∕)2∕4(l+ε)⅛) for allx,ytM and A>0, where 0<∖m≤(∏-l)2Zc∕4.

Remark 1. It is easy to check that the Riemannian measure dx is a locally uniformly a-dimensional measure for all 0≤α≤n.
Remark 2. Given a locally uniformly ^-dimensional measure μ, a paving argument (cf. [5]) simply yields that μ(Br(rr))≤C'∙ V(Br(x)) for all xeM and r>l. Consequently, one gets from (Fi) that μ(Br(x))<C ∙e^nr. This inequality is obviously valid for all xEM and r>0.
Proof of Theorem 1. For 0< ρ< 1, the assertion has been proved by Setti in [3, p. 1073]. For ρ>l we know from (F2) (choose ε=∣) and the assumption infx∙∈M F^(Bι (x))>0 that≤ C-e^1/2_ÂA/)e-e_^x’^2//6é>, x,yζM, ρ>l.Applying the above inequality and noting Remark 2, we have

f hρ(x,y) dμ(y) <C-e(1∕2~χXe [ e'd^2∣6qdμ(y)
Jm Jm∕*∞= c.e(i/2-AM)e ∕ ∕^eγdr

Jq<C-e(1/2“ÄM)e ∕ e~r2∕6β---e^nrdr
Jo ⅛λ∞
∕ re~r2ev^~βnrdr.
JqBut, Jo°° re~r2ebrdr<eb2∕2 for b>0. Hence, fMhρ(x^y)dμ(y)<C^eτρ for all x^M and ρ>l, where τ=∣ —Am÷3‰π2.Now, consider the special case M=Hn'k. In this case, the heat kernel can be written as ht(r) with r=d(x,y). And ht{r} has the property (cf. [1]): for any £>0 and r>0,

ht(r) ≤ (4πt)-n∕2β-r2∕4t and h,t(r) ≤ 0,
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where the derivative is taken about the variable r. This fact together with Remark 2 yields∕* ∕>∞ /»OO

∕ hρ{x,y)dμ(y) = ∕ hβ(r)dμ(Br(x)) = ∕ -h∖r)μ(Br(x)') dr
JM Jθ Jθ∕ ∕*1 p∞ ∖≤c(ρ"n∕2∕ e-r2∕4e.-.radr+ ∕ -h'β(r)V(Br(x))dr∖

∖ Jo Ji ∕

∕ fc>o ∖<C[ρ~^n~a^2 ∕ r1+αβ-r dr+ ∕ — hfρ(r)V (Br(xf) dr j
∖ Jo Jo ∕≤C(ρ^cn^αv2 + l), xeM, ρ>0.This completes the proof.

Proof of Theorem 2. First note that in the proof of Theorem 1 we have used the identity Jm hρ(x,y) dx≡l. This identity and the conclusion of Theorem 1 together with an interpolation argument shows
for l≤p≤∞ and ρ>0. Then, an application of Minkowski’s inequality yields that, for β>(n-d)∕2p, and l≤p≤∞,∣∣(Z-i∆)~z3∕rfμ)∣∣LP(⅛) ≤ c [ se^'1c^s\\e(st)A(jyJjB\\Li’(dX) ds(3) J°≤C(i-("-α)∕2p+l)∣∣∕∣∣rp(dμ), if Q<t<If M-Hn>k then τ=0, and hence (3) holds for all t>0. The proof is completed.The operator (I—Δ)-z3, usually called a Bessel potential, is of particular interest. A consequence of Theorem 2 is the following

Corollary 1. Let M and μ be given as in Theorem 1. Assume that p>l and 
β>{n-a) ∕2p,. If pf>n2k-λM then the Bessel potential is bounded from
Lp(M,dμ) to Lp(M,dxf In particular, ifRic(M)>Q or K(M) = -k then (I-Δf~f3 
is bounded from Lp(M, dμ) to Lp(M, dx) for all p>l.

Proof In fact, one can deduce from (Fi) and (F2) that, for any 0<ε<l,
hρ(x, y) ≤ c.e(ε-λ^^∙β-^^2∕4<1÷ε^, if ρ > 1.And a simple calculation shows that for any 0>O there exists a constant C(ff) such that

re~r2-ebr dr ≤ C(l9)βα+^2∕4, b > 0. 
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Hence, it is easy to see that (3) (in its proof, we have choosen ε=∣ and 0=1) is still valid for all 0<t<to<p' ∕τ, where τ=(ε-Am)÷(1÷^)(1÷^)^^2∙ Hence, if 
p'>kn2-Xm then one can choose ε>0 and 0>O small enough so that p,>τ. Thus, the first part of the conclusion follows. If K(M) = -k the τ=0 and the conclusion is already contained in Theorem 2. If Ric(M)≥0 then one can choose k>Q arbitrarily small. But p'>l, hence pf>kn2 — Xm- This completes the proof.

Corollary 2. Let μ be a locally uniformly a-dimensional measure on the hy
perbolic space Hn,k, 0<a<n. If Re(z)<(α-n)∕2 then the Riesz potential (—∆)z 
is bounded from Lρ(Hn,k,dμ) to Lρ(Hn,k,dx) for l<p<∞.

Proof Let w and z be complex numbers. Bear in mind that the manifold presently discussed is the hyperbolic space. It follows from Theorem 2 that, for w>0 and z<(a-n)∕2 (the same proof works for Re(w)>0 and R,e(z)<(α-n)∕2), the operator (wl—∆)z is bounded from Loo(dμ) to Loo(dx) and from L1(dμ) to 
L1(dx) as well. On the other hand, it is also a consequence of Theorem 2 thatII^A(/^)||L2(dæ)<C(A("-a)/2+l)||/||L2(dM), λ>0,where Eχ is the spectral projection onto the portion of the spectrum of Δ in the interval [—λ2,0]. This fact implies that (wl—∆)z is bounded from L2(dμ) to L2(dx) provided that Re(w)>-((n-l)∕2)2fc and Re(^)<(α-n)∕4. A complex interpolating argument (cf. [4, p. 69] ) yields the conclusion.

4. Proof of Theorem 3 and Theorem 4

Proof of Theorem 3. It has been shown in [3, p. 1075] that(4) sup ß(”~“)/2p'||eeA(i/)||LJ>(<fe) <C.0<ρ<lMoreover, fixing a paving {Mj} of size ∣, one can define a measure ∕z1∕4 by
so that p=fι∕iμ1∕4 with \\fi/4\\Lp(d^1/i)=C(~)<a~ni/p .For any xeM and r>l, let M7∙∩Br(^)≠0}. Then, one must have[J MjcB2r(x).

jeJ
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Hence, μ1∕4(Sr(x)) ≤ £ μι∕4(Mj∙) = £ V(¼∙) ≤ V(‰(z)).

jeJ jeJArguing as in the proof of Theorem 1, one gets fM hρ(x,y) dμ1∕4(y)<Cerρ, and hence(5) ≤Ceτρ∕p' forρ>l.
The conclusion follows from (4) and (5) immediately.To prove Theorem 4, one can treat all the cases (l<p<∞) using the same approach. But we will use a different method in the case that p=2, which is of particular interest.

Proof of Theorem 4. The special case (p=2). For t>0 and ∕3>0, (I—t∆)-j0 is selfadjoint and has the semigroup property with respect to β. This fact together with Fubini’s theorem yields∣∣(∕-f∆)-z3(∕dμ)∣∣12(d^
= [ Jtβ(χyy)f(χ')f(y)d∣j'(χ)d∣j'(y) 

JM
= ∕ s20~le~s{/M hst<~x,yw(xw(y> dμ^^ dμ(y)} ds

1 ∕∙∞= r(h) ∕0
The last equality follows from the semigroup property of et^. Hence, we have(6) t^∖∖(I-t^Γd{fdμ‰d^

<γ∏∕2 f∞= ⅛a)∕ ∙2,,-"''2-,e-{(i<'
By Theorem 1 (see the proof of Theorem 2), the integrand in (6) is dominated by 
Q^s2β-∏∕2-ιe-s^s2β-ιe-s∕2^ for Q<∕<min(ij ι∕2τ). Thus, the conclusion follows from Theorem 3.2 in [5] and the Lebesgue dominated convergence theorem. In particular, we obtain

C(n,∕3,2) = Γ(2∕3-⅛n)(4π)n∕2Γ(2∕J) 1∕2 for∕3>J.
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The general case (l<p<∞). According to the argument in [5, p. 197], it suffices to verify the following two facts:(I) For any fixed δ>0 and yζM,

lim tn/2p't→0 l/p1 =o.
(∏)

^n,∣clp
1/p

approaches to the constant C(n,β,p) independent of δ and y.By an argument similar to the one used in the proof of Theorem 1, one can show that, for a locally uniformly ^-dimensional measure μ,
∕ r ∖^∕p

<C(e-n/2+a/2p+ere').(7)Recall that dx is a locally uniformly n-dimensional measure. Then (I) follows from the known result about the heat kernel ht(x,y) and the Minkowski inequality together with (7) combining with a dominated convergence argument. Furthermore, a similar argument shows that, for any fixed δ>0 and 77>0,
lim tn''2p'
t→0 d(æ,p)<£ ∙'77A

1(4π)n∕2Γ(∕3)nn∕2+1-β

√3-1
p ∖l∕p

e~shst(xjy) ds dx I =0.
Thus, to show (II) we need only to deal with
(8) ^,n∕2p, >η∕t

√3-1
p ∖l∕p

e~shst(x,y) ds ds∖

Since <5>0 and η>0 can be arbitrarily small, one can replace h8t(x, y) by hst(x, y)- (4πst)-n∕2 exp(-fy—τ∕∣2∕4st) and compute (8) in the Euclidean sense. Finally, we get
∕n∕2p'

^-1
p γ∕p 

e~shst(X)(T) ds dx∖ 
s∕3-n∕2-le-5 p ∖l∕pe-N2∕4^s dx∖
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where dx denotes the Lebesgue measure on Rn. The proof is completed.In general, it is not simple to compute C(n,∕3,p) since the integral involves a Bessel function. But for ∕3=∣(n+l), it is easy to check that

∕ ∖1∕p,

Moreover, looking back to the proof of Theorem 4, one may easily see from Theorem 6.2 in [5] that
C(n,β,p) < (47τ)-n∕2p'p~n>2p.An interesting by-product to Theorem 4 is the following equality

II \x\ß-n/2Kß.n/2(\x\)\\L^Rn) = 2^-"∕2-1(47r)n∕4Γ(∕5)
for ∕3>∣n, n=2,3,....

Remark 3. The assumption that M is of positive injectivity radius is needed to carry out the paving procedure on M globally.
Remark 4. In [2], S. T. Yau gave an example of M with Ric(M)≥0 but infx∈M V(B1{x)')-0. In our approach, we need a uniform control on V{Br(x))~1 for all xeM and r>l. Hence, we posed the condition that infc∈M V(Bι(x))>0, which is valid if K(M)<k.
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