SOLUTION OF A MIXED PROBLEM FOR A HYPERBOLIC DIF-
FERENTIAL EQUATION BY RIEMANN’S METHOD

BY

L. LORNE CAMPBELL

Defence Research Telecommunications Establishment, Ottawa, Canada

1. Introduction

This paper deals with a mixed initial and boundary value problem for a linear,
hyperbolic partial differential equation of order » and with two independent variables.
The values of the unknown function and its first n —1 normal derivatives are spe-
cified on an initial curve, and, in addition, the values of an appropriate number of
normal derivatives are given on a boundary curve which intersects the initial curve.
A solution of the differential equation which assumes the given initial and boundary
values will be found by an extension of Riemann’s well known solution of the initial
value problem for a second order hyperbolic equation. The problem considered in
the present paper is a special case of a mixed problem for which another method of
solution has been given by Campbell and Robinson [2].

Hadamard [6, 7] adapted Riemann’s method to deal with mixed problems for
the second order equation. More recently, Bureau [1] and Durand [4] have treated
mixed problems for second order equations by the same method. Rellich [9] has
generalized Riemann’s method to solve the initial value problem for linear, hyperbolic
equations of order greater than two. In the present paper, a mixed problem for an
equation of order greater than two is solved by an extension of the methods of
Rellich and Hadamard. The complete existence proof will not be given here, but a
method of obtaining the associated Riemann function will be outlined. A more com-
plete proof is given in the author’s thesis [3].
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2. Preliminary results

The general linear partial differential equation of order » may be written

n K >u
Lul= 3 2 0 Ay, y)a‘m=ao (z, ¥) (1)
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where ,C; is the binominal coefficient, k!/j! (k—j)!.
We assume that equation (1) is hyperbolic in the region under consideration.

Hence, if £ and % are arbitrary parameters,
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where p’ and ¢' are real and

Pe—p'd+0 (i=)). (3)
We assume further that (1) is normalized so that
PP+ (P=1 (=12, ..,n). (4)

With this normalization, p’ and ¢’ are the direction cosines of the characteristic
curves of (1).

Define the quantity Z° by
n-2 an—z o
Z°= kZO n—aoka_;,.w [p°¢° A+ (¢°)* Ay i — (p°)? An ki1~ 0797 Ay ksl
. (g':l’ 27 -~-,n)) (5)

where w’(z, y) is a function which vanishes, together with all its derivatives of order
n—3 and less, on the characteristic curve with direction cosines p° and ¢°. Rellich [9]
has proved that the following formulas hold on this characteristic curve:
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In (6) and (7) the derivative with respect to arc length on the characteristic curve,
p°3/dx+¢°8/dy, is denoted by 8/8s,. In (8), D, is defined by

Da=kI:II(Paqk~quo) (0=1’ 29 9n) (9)
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Finally, Green’s theorem for the plane shows that
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In (10), G is a closed region in the zy-plane with the boundary I'. The integral on

T’ is to be taken in the counter-clockwise sense.

3. Application of Green’s theorem to the mixed problem

In the mixed problem considered in this paper the initial curve, I, is the seg-
ment 0<y<a of the y-axis, and the boundary curve, B, is the segment 0<z<c¢
of the x-axis. We assume that no characteristic curve is parallel to the y-axis and
that no characteristic curve is tangent to the xz-axis in the region under considera-
tion. That is, we assume that 7°(zx, ¥)+=0 and ¢°(z, 0)=0 for 6=1,2, ..., n.

Let ¢°(z, 0)/p° (x, 0) be negative for o=1,2, ..., n—K and positive for ¢=
n—K+1, ..., n. Thus, there are K characteristics of positive slope and n— K char-
acteristics of negative slope at each point of B. Let 0<K<n.

On I, the values of u, du/dw, ..., 0" 'u/0z™" are given as functions of y.
These functions are to be sufficiently differentiable with respect to y so that all the
derivatives of u of order n or less are continuous functions of ¥ on I. On B, the
values of K of the quantities u, du/0y, ..., 8" 1u/@y™ ! are given functions of z.
These boundary values must also be differentiable often enough so that the derivatives
3—583801. Acta mathematica. 100. Imprimé lo 26 septembre 1958,
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of order = of u which can be formed from them are continuous functions of .
Moreover, we assume that the behavior of the initial values and the boundary values
in the neighborhood of the origin is such that the derivatives of u of order » and
less are continuous in the neighborhood of the origin. The reason for giving K
boundary values is discussed elsewhere by Campbell and Robinson [2]. It is known
from their results that a function u which satisfies the differential equation (1) and
the initial and boundary conditions can be found in a region of the first quadrant
of the zy-plane provided that the coefficients of (1) are sufficiently regular.

We assume that all the derivatives of the coefficients of equation (1) which
appear in Green’s formula, equation (10), possess continuous first derivatives with
respect to x and y in the region under consideration.

Let R be a closed region in the first quadrant of the xy-plane with the following
properties: If the point (x, y) is in R, it shall be possible to draw the n characteristic
curves through (z, y) in the direction of decreasing z until they all intersect either
I or B. The characteristics so drawn must remain in K. If the point is on B or
I some or all of these characteristics may have zero length. Such a region R will
be called a region of determinacy of I+ B.

The application of Rellich’s method to the mixed problem is complicated by the
fact that not all of the derivatives of u which appear in Green’s formula are known
on the boundary. Thus the function v must be made to satisfy certain subsidiary
conditions on the boundary in order to make the unknown terms disappear.

Let u be a solution of the mixed problem in a region, R, of determinacy of
I+B. We wish to obtain an explicit representation of u at the point P (x,, y,) in B

We draw the n characteristic curves '), I'y, ..., I', back from P to meet I or
B at P, P, ..., P, and we suppose, for convenience, that the characteristics are
numbered in order of increasing slope. At most K of the points P, fall on B. From
each of those points P, which do fall on B we draw the n— K characteristic curves
which lead back to I. Let the characteristic curve leading from P; on B to I and
with direction cosines p’, ¢' be denoted by I'\. Let I'} meet I at P; (Fig. 1). These
curves break up the region bounded by I',,I',, I and B into a finite number o
regions. Let v (z, y) by a solution of the adjoint equation,

M [v]=0, (12)
in each of these regioms, with continuous derivatives of order ». On I'y and T,

v (z, y) and its derivatives of order less than n—2 are to vanish. In the interior of
the region bounded by T, I',, B and I, v and its derivatives of order less than n—2
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P(x,.y,)

Fig. 1.

are to be continuous everywhere, but the derivatives of order n—2 and greater will
have discontinuities across each of the characteristic curves I'; and I'.
We now apply Green’s formula (10) to each of the regions formed by the various
characteristics and add the results. The left hand side contributes the integral J,, where
Jo= [[ waydzdy. (13)
PP, OP, P

This is a known quantity when o is known. The various integrals over I contribute
J;, where

n m-1 k m-k-1 Fu a,,,_k._l (A ‘l))
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Let C, represent a segment of one of the characteristic curves drawn from P, P,,
P, ., ete. Let (xy, ;) be a point on C,. Then we define w* (z, y) by
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w (x;, yy)=v (2}, , —0) — v (7y, ¥, + 0), (16)

where v (z;, ¥, —0) and v (z,, y, +0) denote limits of v as (x,, ,) is approached from
below and above respectively. On I'; and T',, w' and w" are defined by w'=v and
w" = —v respectively. Partial derivatives of w* will denote the corresponding differ-
ences of derivatives of the function v on the two sides of C.. According to the

assumptions made about v, w* and all its derivatives of order n —3 or less vanish

on C,.
Then the integral on C, which results from the application of Green’s theorem
is given by
n? du 0" % (A, w") ou o ?(4 wh)
= —1)2 2ZC Mk T T pl n, k41 ™ ]
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tu 2 2 (=) G [q" 5 x,,,_(l_;’,‘"a y,,)—p" axf,,_l_',’:;‘ v )]}ds. amn

m=n-1 k=0

The remainder of the terms disappears because w* and its derivatives of order n—3
and less vanish on C,. The direction of increasing s on C, has been chosen so that
dz/ds=p" and dy/ds=g¢", where p* and ¢" are the direction cosines of C,.

Thus, the application of Green’s formula yields the result
Jy=J 1+ Iz +ZJ,, (18)

where J, and J; are known quantities.

The integrals J, can be evaluated in terms of the values of « at the end-points
of C, provided that v satisfies certain conditions on C,. Let P, and P, be the end-
points of C,, where P, is the point with the larger abscissa. Then Rellich [9] has
shown that .

Ju=(—1)"[Z*(P,)u(P))— 2" (Pi) u (Pu)], (19)
oz "% u " 2
. 0Z" _ et 9
provided that ns . ’Eo n9Cr B% Faarrl (20)

on C,, where
b}
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I
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Equation (19) results from the use of (6) and (7) and an integration by parts. Z* is
defined by (5). Equation (8) shows that (20) is an ordinary linear first-order dif-
ferential equation for Z* on C,.

4. Intersections of characteristics in the interior of the region

Consider a point P, which is in the interior of the region bounded by I, B,
I'; and I', and which is the intersection of N of the characteristic curves which were
drawn through the region. It will now be shown that there is no contribution to
2J, from this point. In fact, it will be shown that the functions Z* associated
with the characteristics which cross at the intersection are continuous across the
intersection.

We demonstrate first that N <n. In view of inequality (3) it is clear that two
different characteristic curves cannot intersect twice. Thus the N characteristic curves
must originate at N different points from among the point P and the points P,
P, ,, etc. on the boundary. There are, at most, K such points on the boundary.
Now K<n by hypothesis. If K<n—1 then there are at most n—1 points from
which characteristics could be drawn to meet at P, and in this case N<n. If
K=n—1 there is only one family of characteristic curves with negative slopes on B.
Since two members of this family drawn from different points can never meet, N
can only have the value 2 in this case. Since we are concerned with the case n>2
we again have N <n. Thus, in all cases, 2< N <n.

Let the segments (), and C, (i=1, 2, ..., N) meet at P, where C,, and C,, are
two segments of the same characteristic curve with direction cosines p*t and ¢".
Let 2", Z"", w* and w"” be the corresponding functions on C,, and C,. The
situation is illustrated in Figure 2.

&

N

G,

G, G

Fig. 2.
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Since w* and w*i” are the differences of the function » across the characteristics

C,, and C,; it is easily seen that, at P,

N( oV e o e i

- = = ey —2). 22
axkayn—z—k 6x]¢ayn—2—k) 0 (k O’ 11 , 2) ( )

i=1
Since the derivatives of w" of order n—3 vanish on C, it follows that

an—2 ,wu an—2 wu

P ogrgpiatd gagmm=0 (k=01 .., n=3) (23)
and hence that
. an—zwu qu k an—2wﬂ
— = -2 — = v, m—2). 24
If we substitute (24) into (22) we obtain, at P,
N k [on—2 ‘ n—2 *
q"i) [6 wht’ vt
= — = k=0,1, ..., n—2). 25
gl(p,‘, oyt~ g |0 ®=0L.n=2) (25)

Equations (25) are a system of n—1 linear homogeneous equations for the N
variables 9" 2wt /oy" > — 0" 2w /oy*%, where N<mn—1. It is easily shown that
when inequality (3) holds these equations have only the solution

IR g
ay"® = ay"® ‘

(26)

It then follows from (8) that ZM (Py)=Z"" (P,). (27)

Thus Z* has no discontinuity at the intersection P,.

Finally, from (19) and (27), the contribution to XJ, from the point P, is zero.
Thus, there is no contribution to X J, from points of intersection of characteristics
in the interior of the region bounded by I, B, I'}, and I',.

There will, however, be a contribution to XJ, from the points P,, P, ;, etc.
on B. If u is given on B, this contribution is a known function and is of no further
concern. However, when = is not given on B, these contributions must be con-

sidered further.

5. Conditions on the boundary

Before considering the contributions to XJ, on B, we consider the boundary
integral Jz. On the boundary, K of the quantities u, 8u/dy, ..., 8" u/oy™ " are
known. The general plan in the treatment of Jz is to integrate by parts on B until
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all the differentiations of » with respect to z are removed. Then the coefficients of
the unknown derivatives of w with respect to y are set equal to zero. This gives
some further conditions on ». Finally, the terms at the points P,, P,_,, ete., which
arise from the integration by parts, are combined with the terms from X.J, on the
boundary. Then the coefficient of u at these points is also set equal to zero if u
is not given on B. This gives the last of the conditions to be applied to ».

Let

P
575 s "S —ym Fu 0" A rayiy )
I= J mz-:l z 120 ( - l)m kkoi m—k—lCI axk—i ay ax”l_k—,;l—l 3;1’ dx, (28)

&
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where P’ and P" are two points on B such that v and its derivatives are continuous
on P'P”. When I is integrated by parts and the order of summation is altered the-

result is

pr
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The identity
m-§-1

kz O} (n-k10) =mCipspn 0<E+j<m—1) (30)

has been used in deriving (29). A proof of this identity is outlined by Feller [5].
Now the integration on B from O to P, may be broken up into a sum of
integrals on a finite number of segments on which v and its derivatives of order up

to » are continuous. Thus, if we integrate by parts on each segment, we obtain

P

n-1 Sy [r-t-t ani-1 A v)
Jp= e R . L Rl R]} S 1
® f {go( ) 6y’[ Zo 1Oy oz gy} TR jdz+ 8, (31)

where R, is a linear combination of derivatives of v of order less than n—:—1 and
8 depends on the values of » and v at the points O, P,, P,_,, etc. on B.

Now K of the values &'u/0y' (i=0,1, ..., n—1) are known functions of = on B.
We require that the coefficients of the other n— K derivatives &'4/@y' vanish on B.
That is, if & u/0y" is not given on B, we require that
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n—ﬁ—l C an—k‘-'l (“1'1“'.””’_x ’U)
k sy
o n f+k41 dx® 4 k*layl

+ R, =0, (32)

where R, is a linear combination of derivatives of v of order less than n—%k—1.

6. Intersections of characteristics with the boundary

Finally, we must consider the remaining terms at the points P,, P,_,, etc. on B.
These terms result from the integrations by parts on the boundary B and on the
characteristics which intersect at the points P,, P, ,, etc. We observe, from (29),
that integration by parts introduces no unknown functions at O because » and all
its derivatives of order up to n—1 are known on the initial segment I.

Let a characteristic curves drawn from P meet the boundary, B. Then the points
at which these curves intersect B are P,_,.;, Py s, ..., P, where a <K (see Fig. 1).
From each of these points P, (m=#n—a+1, ..., n) the n— K characteristics '}
=12, ..., n—K) with direction cosines p’ and ¢’ are drawn. .

Let us now fix our attention on the point P, on B. Since it has been shown
that the function Z“, associated with the segment C, of a characteristic curve, is
continuous across an intersection with another characteristic curve in the interior of
the region, we may denote the functions Z* by Z' and Z]' which are associated with
Iié=12,..,n) and 'V (m=n—a+1, ..., n; j=1,2, ..., n— K) respectively. Then
P, is at the intersection of I',,, the characteristic drawn from P, and the characteristics
I'7 (=12, ..., n—K), the characteristics drawn from P, to I (see Fig. 3).
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Then, from equation (19), the contribution at P, due to integration by parts
along the characteristics is

n-K
(=D)"u(Py) [Z’" (Pm)—I_Z1 A (Pm)]° (33)

From (29), the contribution due to integration by parts on B is

n-1 n-1-2 n-j-1 k—i-1 ~ 1y (P,)
1_20 go k_%l 20 (= )" (00 (nekesOy) Fﬂa;}{ Tipars (34)
where
an—k-H—l (A s ,v) Pn—0
7= [ Bx"_m?::-az’ + U,,k,] o b0 . (35)

In (35), U,y denotes a linear combination of derivatives of » of order less than
n—k+1-1, and P,—0 and P,+0 denote limits as P, is approached from the left
and from the right respectively.

1t follows from (16) that
n-K

V(Pp—0)=v(Pp+0)= —w" (Pp)+ 2 wf (Py). (36)
7j-1

A similar relation holds for the derivatives of »v. But the derivatives of w™ and w}
of order less than n—2 were assumed to vanish on I, and I'. Hence, at Py, only
the derivatives of order n—2 in T, in (35) play any part. Thus Uy, plays no
part and only those derivatives for which n—k+1—1=n—2 need be considered.

Hence, we may simplify the expression (34) considerably. Since I=k—1, we
must have ¢=0. Thus the terms at P, due to integration by parts on the boundary,
which do not drop out, are given by

n-2 1 an—z v P,,-0
n
j?_:.) (—1) n—101+1 u (Pp) 4, i1 (Pn) [3 1 a—y[] P40 ‘ (37)

The identity

n 1

—4—
kzl nte1Cy=n1Cir (G=0,1, ..., 2—2) (38)

has been used in deriving (37). This identity is the special case of equation (30)
with 7=0.

If P, is the point P,, which is the point at which the integration on B ends,
the same result is obtained. In this case we may consider that v is identically zero
outside the region to which Green’s theorem was applied. Then all the statements
made apply to this special case.
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From (36) it is seen that

an—z,v Pm—O_ n-X 611—-2 ,w;n (Pm) —an—2 w™ (Pm) ) (39)
0z oyl [p 0 D1 0270y ea" oy
From (8), we have that
o2y Pm-0 n-K . R/
[m]P +0=121 (=" a (0 (¢) '2j‘+
o z
Zm
+ (=" n (" (™) - (G=0,1,....,n—2). (40)

Then from (33), (37), and (40) it follows that the contribution at P,, F, (Py)u (Py)
say, which is due to integration by parts on the characteristics and the boundary, is

n-2 my { ,myn—4—2
F, (Pm)u(Pm)=u(Pm){[(—1)"+ PRCS Ve Ay g P@ )1()q ) ] gm_

n-K n-2 i\ iH\n—j—2
e [ N A R
If » is given on the boundary then F,(P,)u(P,) is a known quantity when
v is known. If % is not given on the boundary we require that F, (P,) vanish
at P,. )
Finally, we make Z', Z%, ..., Z" satisfy

S 7(B)=(~ 1. 2)

This completes the set of conditions which v must satisfy.

7. Explicit representation of the solution

Let g,=1 if &u/0y* is given on B and let g =0 if & u/0y* is not given on B.
Further, let

Pn
n m-1 aiu m-{-1 am—i—l (A ’l))
—1yrtg, — A ik, L Ch 2 A R
o[ 2, 2= 2(:) nCisisa dxm I gy ¥

m=11=0 2y

2 2 2 2 IZO (_l)m—kﬂkctm_k—lo/x

[ n m-1m-i-2 m—4-1 k-1-1
m=1420 ;=0 k=i+1 I-=

N alrl—lu am—k-H—l (Am, i ’l)) . . (43)
P xlc—l—i—l ] yt ) xm—k—j+l—1 d yj o=y
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It will be seen from (15), (28) and (29) that J5 is what remains of J, after the
integrations by parts are performed and the values at the points P, ,.,, ..., P, are
removed. J5 contains only known functions.

We can now express u(P) explicitly in terms of known functions. Because of
(42) we have, from (18),

W(P)= —J A T Tat S (— 1Y 20 (Payu(P)+eg S Fo(Pa)u(Pr)+
m=1 1

m=n—o+
n—-K n

+ 1»_-21 m_nz_aﬂ(— )" Z7 (PT)u (P7).  (44)

As before, g,=1 if u is given on B and =0 if « is not given on B. The points

P, P, .., P,_, are the intersections with I of characteristic curves drawn from P.

The points P,_.,,, ..., P, are the intersections with B of characteristic curves drawn

from P. The points P7] are the intersections with I of characteristic curves drawn

from P,(m=n—a+1,..,n). J,, J, Jp and F,(P,) are given by (13), (14), (43)
and (41) respectively.

8. Discontinuities of v on the characteristics

The Riemann function, v (2, ¥) may be found by a modification of the method
used by Campbell and Robinson [2] to solve the mixed problem. To see this, we
must examine the conditions which » (x, y) must satisfy on the characteristic curves
and on the boundary.

The first step is to show that the jumps of the derivatives of v of order n—2
are known across all the characteristics Iy and I'j. This means that we must show
that all the functions 2' and Zj, are known on the corresponding characteristics.
According to (8), all the derivatives of w' and w} of order n-—2 are multiples of Z'
and Zj, and the derivatives of «' and w} are just the jumps of the derivatives of
v across the corresponding characteristics. Equation (20) can be written

n%+ K" Z*=0. (45)
where K" is a function of the coefficients of equation (1). Hence each function Z'
and Z! is a solution of an ordinary, first-order, linear differential equation. In order
to specify Z' and Z; completely, the values of these functions must be known at the
points P and P; t=n—a+1, ..., n).
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At P, Rellich [9] has shown that
Z'P)=(-1)"/n (i=1,2, ..., 7). (46)

Equation (46) is a consequence of (42) and the definition of the functions w'. The
functions Z!(i=1, 2, ..., n) are completely specified by (45) and (46).

The functions Zj, which correspond to characteristics leading from points on the
boundary to the initial segment, alsc satisfy the differential equations (45). It will
now be shown that their values of the points P; on the boundary are specified by
the conditions imposed on v.

It is convenient to define new quantities 4’ by the equation

n n-1
[TWE+gdn =23 APy (=12, ..., n). (47)
r r=0 '

We must now derive some identities connecting the functions A{’, and the coefficients,

A,,, of the differential equation. It is clear from (2) that

zo nCr Ane &7 = (p'E+¢' ) ,}j: AP g1y (3=1,2, ..., ). (48)

From (48) we deduce that P AP =A,,, (49)
P AP+ ¢ AP1=,0,4,, r=1,2,...,n-1), (50)

and ¢ AP 1 =A,,. (51)

Also, if we put £=—¢' and n=p' in (47), we have, from the definition of D; in
equation (9),

n-1

D=2 AP (Y (—¢)" (=12, ..., m). (52)
r=0

It is easily shown from these equations that
n-k-1

Zo nCI+k+1 An. Fk41 (— 1)”_’_1 (P')j (ql)"_z_j =(- qi)"_l A(l:)

=

(+=1,2,...,n k=0,1,...,n—1), (63)

and that

n-2

D+ 3 (= 1) 1Oy A gy BV (@) =0 (=) AP (=1,2, ..., n). (54)
J=0

Equation (53) may be verified by using (50) and (51) to substitute for ,C) 1y An, 11r41-
Equation (54) results from the use of the identity



A MIXED PROBLEM FOR A HYPERBOLIC DIFFERENTIAL EQUATION 37

n (n—1CI+1) =(n—j—1) (an+1) (65)

and the use of (50) and (52) to substitute for 4, ,,, and D;,. Equations (53) and (54)
are the identities connecting A% and A, which it will be necessary to use.

Let us consider first the case where u is given on the boundary. Then, at all
points of continuity of v and its derivatives on the boundary, we have n— K con-

ditions of the form

n-k-1 an—k—l (An ‘U)
2:0 2Criieia 6:5"_’_’”"12;‘?7 + R, =0, (32)

where k is an integer between 1 and n—1 inclusive, and R, is a linear combination
of derivatives of v of order less than n—~k—1. Next, differentiate this expression
k—1 times with respect to z to obtain

n—k-1 3"_

Z 0}+k+1 An f+k+41 oz o n——2 ay; + -Rk (56)

where R) contains only derivatives of » of order less than n—2.
We now concentrate our attention on the point P, of Figure 3. Since the de-
rivatives of » of order less than n—2 are continuous everywhere in the region under

consideration, we have, from (56),

n-k-1 a"_ Pp—0
[ -Z Cl+k+1 n,i+k+41 ox 3 n—i— 26:1/] =0. (57)

P40

From (40) it then follows that

n—-K n-k-1
;1 Z 2Criigr An i (=D (¢ 21 /D,

~k-1
Z Oyt An s (— 1) (@™ (@™ 2" /Dy, (58)

or, because of (53),
AS; z Ak 20 gmyet AS‘m)% . (59)

m

Z @) —H—

Since k takes on n— K values of the integers from 1 to n—1, and since Z™ is
a known function, (59) is a system of n— K linear equations for the n — K quantities
Z{" (P,) (1=1,2, ...,n—K). It will be shown presently that the determinant of this
system does not vanish.



38 L. LORNE CAMPBELL

Before showing that (59) possesses a solution we will consider the case when
is not given on the boundary. In this instance one of equations (32) contains de-
rivatives of order n—1. This is the case k=0 which was excluded earlier. Such a
boundary condition is not suitable for determining the discontinuities in the deri-
vatives of order n—2 at P,. Thus, there are only n— K —1 equations in the system
(59) and we need one more to specify the functions Z" uniquely. This is provided
by (41). It was assumed that, if % is not given on the boundary, then the coeffi-

cient of % in (41) vanishes. This yields the equation

n—K ¢ {\n—1 A(m)
3 L apar -y - (60)

Equation (54) was used to simplify (41) and hence (60).
Equation (60) is just what would result if £ were allowed to equal zero in (59).
Thus, whether or not # is given on the boundary, we have the n— K equations
n—-K 4) m (m) 7m
S (qi)n—l M)= (qrn)n-l f‘l"_z_(_P’") , (59)
D, D,

i=1

where k takes on m— K values from 0 to »—1. If we regard these as equations for
the n— K quantities (¢')*™* Z"/D, the determinant of the equation is

A=|4P| G, i=1,2, ..., n—K), (61)

where k;, k,, ..., kn_g are the n— K values which k£ assumes. This determinant may

also be written as

AP AP .. AP 0.0
AP AP . A¢E 0.0
0
1
A=+ 0..0], (62)
1
0
AP, 42, . A8 0...0

where each of the last K columns contains »—1 zeros and a one. There will be a
one in the rth row of one of these columns if the functions A®, AP, ..., A"~ F do

not appear in A, (i.e. if & u/2y" is given on the boundary).
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In order to demonstrate that the determinant A; does not vanish, we pre-
.multiply it by the non-vanishing determinant A,, whose element in the rth row and
jth column is (p") (—¢")** ', where r=1,2,...,n and §=0,1, ..., n—1. Now it
follows from equation (47) that

n

> @V(—g)TTr AP =6,D; (3, 7r=1,2, ..., n), (63)

[

~.
=

where 8,, is the Kronecker delta. Therefore

A Ay=+D, D, ... D, _g|(pV (=g

(r=n—K+1,n—K+2, ..., n j=a, a,, ..., ag), (64)

where q,, a,, ..., ax are K integers between 0 and n—1. The exponents a; are the

orders of the derivatives of % which are given on the boundary. Let

ve=q/p (r=1,2,..,n). (65)
Then y, is the slope of the characteristic curve with direction cosines p” and ¢". Thus
Al Az = iDl Dz Dn—K (pn_K'H- pﬂ—K+2 L pn)n—l l (,yr)n—l—l |

(r=n—K+1, ...,n; j=ay, a,, ..., ag). (66)

Now y, is, by hypothesis, positive on the boundary for r=n—K+1, ..., n and
the exponents n—j—1 are K different integers chosen from among 0, 1, ..., n—1.
Under these conditions, it can be shown that the determinant |(y,)"” ™| does not
vanish. One proof of this has been given by Campbell and Robinson [2] in connec-
tion with their solution of the mixzed problem. The non-vanishing character of the
determinant |(y,)"7'| can also be deduced from a theorem due to Rosenbloom [8,
Theorem 4] on symmetric polynomials.

From the definition of D, in (9) and from inequality (3) it will be seen that
D, does not vanish for r=1, 2, ..., n. Moreover, it was assumed earlier that p’(z, y) =0
for j=1, 2, ..., n. Therefore A; does not vanish and hence (59) has an unique solu-
tion (¢)*"'Z"/D; (i=1,2, ...,n—K). Since ¢' does not vanish on the boundary,
Z{" (P,) is determined by (59).

Since this result holds for all points P, and since the functions Z]' satisfy the
differential equation (45), all the functions Z[" (z, y) are known. Therefore, the jumps
in the derivatives of order n—2 of v are known across every characteristic in the

region.
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9. Determination of the Riemann function

In this section we outline a method by which v (x, y) may be determined. A
more complete existence proof may be found in the author’s thesis [3]. The pro-
cedure is based on Robinson’s [10] solution of the initial value problem and on the
solution by Campbell and Robinson [2] of the mixed problem. The reader is referred
to these papers for many details which are omitted here.

The function v (z, y) must satisfy the adjoint equation, (12}, in the interior of
each region formed by the characteristics which have been drawn. On the char-
acteristics Iy and I',, which form part of the boundary of the region R, » and its
first n—2 derivatives are known. Across the characteristics in the interior of R,
the jumps of the derivatives of order n—2 of v are known. The lower order de-
rivatives are continuous across these characteristics. On the boundary, B, » must
satisfy the n — K conditions (32). .

We define f,(z, y) by

1 n-2 k ak
fm(x ?/)— Z AScM)(x y)a n—1—, kayk+ go lgob“ (x y)axk —1 ?/1 (m 1 2 ”) (67)

In (67), 8% (z, y) is an undetermined function of x and y, while AY® is defined by
(47). Then, if v (z, y) satisfies the adjoint equation (12) and the functions {7 (z, )
are chosen properly, the functions f,(x, y) satisfy the linear system of first-order
equations

3fm+ 3fm

p™ P kz b fr (m=1,2, ..., n). (68)

In (68), b, is a known function of the coefficients of the differential equation and
of the functions 5. The condition which b} must satisfy in order that (68) hold
is that it shall satisfy the first-order equations :

abscm) b(m) o
ax +q ay —-sz. (69)
The function G% is a quadratic function of the coefficients b%}’. Explicit expressions
for G¢P and b, are given by Robinson [10].
The system (68) is a hyperbolic system with the same characteristic curves as
(1) and (12). The quantity

mOfn  mOfm
ax+q Yy
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is the derivative of f, with respect to arc length along & characteristic curve with
direction cosines p™, ¢™.

Now, from (47) it can be seen that

nzlA(m) I . "0 B B
2o AE g (p 3x+q a—y) [};(p a—x—i-q a/) v] +L, (m=2,3,..,n). (70)
where L, is a linear combination of derivatives of v of order »—2 and less. More-
over, the expression in the square brackets on the right hand side of (70) is itself,
a linear combination of derivatives of » of order n—2 and less. Since, on I'}, v and
its derivatives of order n—2 and less are known functions which are differentiable
with respect to arc length, the right hand side of (70) is known on I';. It follows
therefore, from (67), that f,(z, y) is determined on I'; for m=2, 3, ..., n. Similarly,
fn can be calculated on I', for m=1,2, ..., n—1. It also follows, by much the same
reasoning, that we can calculate the jump of f, fo ..., fu_y, fryr» -..s fo across a
characteristic T, or I'J, with direction cosines p™ ¢™. It is not necessary to know
fi on T';, because in determining f, we integrate the equation

oh , 10h _ <
1-71 1771
p ax+q ay kglblhfk

Qlong characteristics with direction cosines p', ¢'. Since none of these curves can
intersect I';, knowledge of f; on I';} is unnecessary. Similar remarks apply to f, on
I, and f, on I', or I',.

Finally, f,, fo ..., fog must be determined on B in terms of f, g, ..., fn. This
is done with the aid of the boundary conditions (32) and a suitable choice of the
boundary conditions for 4{. The method is exactly the same as that used in [2].
It is not difficult to show that the determinant D of that paper [2, equation (7)]
does not vanish for the boundary conditions (32).

The method of determining f,, f,. ..., f, is then as follows: From a point P’ in
the interior of R, the » characteristics are drawn in the direction of increasing x to
meet I, T', or B. Each of the equations (68) is then integrated with respect to
arc length along the corresponding characteristic. This yields the Volterra-type system

of integral equations
»

F (P) = frmp (Pra) + 2 T e+ f zlbmkf,,ds (m=1,2, ..., n). (71)
4

4 — 583801. Acta mathematica. 100. Imprimé le 29 septembre 1958,
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The points P, are the intersections of the characteristics with I';, I, or B. The
values f,,(Pn) are the values of f, which have been calculated on '), ', or B. If
Py i8 on B, fng(Pn) may be given in terms of other functions f,_g.1 (Pn), ..., fn (Pr)
for which similar integral equations may be written. The functions J,, are the jumps
of fn as it crosses the characteristics I', and I';. These jumps are known. The integral
equations (71) can be solved by the method of successive approximation under con-
ditions which are similar to those usually required for Picard’s method to be applied.

The functions &% (z, y) satisfy a similar set of integral equations and may be
found in the same way. In the case of these functions there is no discontinuity
across the interior characteristics and their values on I'; and I", may be chosen more
or less arbitrarily.

The above reasoning follows the discussion of the mixed problem [2] quite closely.
The main differences are that I', and I';, have replaced the initial segment of that
discussion and that discontinuities across characteristics have been introduced.

Finally, once f,(x, ¥) is known, equation (67) is a hyperbolic equation of order
n—1 for ». This equation can be treated in the same way. Because all the deriva-
tives and jumps in derivatives of order m—2 or less are given, the functions cor-
responding to f, can be determined. Thus, the order of the equation is successively
reduced until we have a first-order equation for v which can be solved. Once v is
known, equation (44) gives an explicit representation of the solution to the mixed

problem which was originally posed.
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