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Ergodicity of the hard-core model on 
Z 2 with parity-dependent activities 
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To the memory of my grandparents Ingrid and Arne Broman, 1913-1995. 

1. I n t r o d u c t i o n  

In this paper  we study the hard-core model (short for "hard-core lattice gas 
model") which originally was introduced in statistical mechanics as a crude model 
for a gas whose particles have non-negligible radii and cannot overlap (see [4], [6], 

[7]). Later, it was independently discovered in operations research where it arises 
in the modelling of certain communications networks (see [11], [12], [17]). A third 
field where the model has a t t racted interest is ergodic theory, where it is called 
"the golden mean subshift" (see [16]; the curious name comes for the fact that  
log((1 § v/5 ) /2)  arises as the topological entropy of the model on a one-dimensional 
lattice). 

Suppose first that  G is a finite graph with vertex set V. For v, w C V ,  write v ~ w  

if v and w are adjacent in G, i.e. if there is an edge between them. Let ~ = { 0 ,  1} y be 
the set of all configurations of O's and l ' s  on V, and call w E ~  feasible if no two l ' s  
are adjacent in w, i.e. if wvw~=O whenever v ~ w .  Let av, v E V ,  be strictly positive 
real numbers, and define the hard-core measure on G with activities {av}~ey to be 
the measure # on ~ for which 

Z - 1  1-Ivcv a~ v if w is feasible, 

#(w) = 0 otherwise 

where Z is the appropriate normalizing constant making # a probability measure. Z 

will always denote normalizing constants whose value may change from appearance 

to appearance. 

Our main concern will be with the case when G is infinite. In this case we 

call a probability measure # on {0, i} V a hard-core measure on G with activities 
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for all finite subsets h of V, all ~/E{0, 1} n and #-a.e. ~ ' e{0 ,  1} V\A {a4  v if w e  

have 

~" if r /Ur /  is feasible, 
(1) # ( w = - ~ o n A I w - 7 7 '  o n V \ A ) =  z - 1 H v e v a ~  

0 otherwise 

where ~U~ ~ is the configuration on V which agrees with ~ on A and with ~ on 
V\A.  It  is easily checked that  this set of conditional distributions is consistent 
and also tha t  the hard-core measure on a finite graph satisfies the same type of 
conditional distributions (making this extension to infinite graphs quite natural).  
b-klrthermore, hard-core measures are Markov random fields in the sense that  the 

conditional distribution (1) only depends on ~ through the values of ??t on the set 
{ y E V \ A : 3 x E A  such that  x ~ y }  of sites adjacent to A. A standard compactness 
argument now shows that  for any infinite but locally finite graph G with activities 

{a,}v~y there exists at least one hard-core measure. 
The canonical case of a hard-core model on an infinite graph is when G is the 

nearest-neighbour graph on the integer lattice Z d (i.e. V = Z  d with edges between 
each pair of vertices whose Euclidean distance is 1) with constant activities ax = a  
for all x E Z d. The most important  result on this model is due to Dobrushin [4] 
and says tha t  when d>2  and a is sufficiently large, then there exists more than one 
measure # satisfying (1). This phenomenon is referred to as a phase transition, and 

does not occur for d--1 (see [4] or [17]). Absence of phase transition (i.e. existence 
of only one measure with the prescribed conditional probabilities) is referred to as 
ergodicity. For any d and sufficiently small a we have ergodicity (see e.g. [1]). 

A generalization of this setup was studied by van den Berg and Steif [1]. They 
allowed the activities of the vertices x c Z  d to take two different values ae and ao: 

he i f x  is even, 
(2) ax = 

ao i f x i s o d d  

calling x c Z  d even (odd) if the sum of its coordinates is even (odd). They con- 
jectured tha t  for any d and any ae~ao there is a unique hard-core measure (in 
contrast to the case ae=ao). For d = l  this follows as in the a~=ao case. The main 
achievement of the present paper  is a proof of the conjecture for d=2: 

T h e o r e m  1.1. The hard-core model on Z 2 with activities given by (2) has a 

unique hard-core measure whenever ae~ao. 

One of the motivations for studying the hard-core model with parity-dependent 
activities as in (2) is to obtain a bet ter  understanding of the nature of the phase 
transition in the a~=ao case. We now give a brief explanation of this, referring 



Ergodicity of the hard-core model on Z 2 with parity-dependent activities 173 

to [1] for further discussion. Let d---2 and let ae=ao=a be sufficiently large to get 
a phase transition. Then there exist two particular hard-core measures Ite and Ito 
with the following properties. With  It~-probability 1, "most" of Z 2 forms a checker- 
board pat tern,  with w x = l  when x is even and wx=O when x is odd. Only in small 
regions ("islands") of Z 2 do we see the opposite situation with wx--1 when x is odd 
and w~=0 when x is even. The other measu re / t  ~ has the opposite behaviour, i.e. 
it is concentrated on the event tha t  there is a predominant  checkerboard pat tern  
with w~---1 when x is odd and wx=0 when x is even. There is a strong symmet ry  
between It~ and Ito; if we pick a configuration according to It~ and shift it one step, 
then the induced probabili ty measure (for the shifted configuration) is precisely Ito. 
Intuitively, it is this symmet ry  which makes the phase transit ion possible. The- 
orem 1.1 provides support  for this intuition, in tha t  when a ~ a o  the symmet ry  
between the even lattice {xCZ2:x is even} and the odd lattice {xEZ2:x  is odd} is 
broken, and the phase transition disappears. This is analogous to the ferromagnetic 
Ising model in dimension 2 or higher, where a phase transit ion occurs with zero ex- 
ternal field and sufficiently low temperature ,  while with non-zero external field the 
+1 symmetry  of the model is broken and there is no phase transition. 

We mention tha t  our proof of Theorem 1.1 can be easily adapted to give an 
alternative proof in 2 dimensions to the classical result [14] tha t  non-zero external 
field in the Ising model implies ergodicity; in fact some parts  of the proof become 
slightly easier in tha t  setting than  in the hard-core case. 

A feature of the hard-core model which we shall make use of (and which is 
central to the applications in operations research) is tha t  a hard-core measure on 

a finite graph arises as the unique s tat ionary distribution of a certain continuous 
t ime reversible Markov chain. For a finite graph G with vertex set V, and posi- 
tive numbers {a .}vcv  , define a continuous t ime Markov chain M with state space 
{wE {0, 1} V :w feasible} and transition rates 

J) = { 
av i f w = J  except at v where wv = 0 ,  w.~ = 1, 

! z O ,  1 if w = w ~ except at v where w~ = 1, w~ 

0 otherwise. 

The following result is well known and easily verified by checking irreducibility and 
the detailed equilibria It(w)~/(w, w')=It(w')v(w', w) for all w, w'. 

P r o p o s i t i o n  1.2. The hard-core measure It for G with activities {av}vcv is 
the unique stationary distribution for the Markov chain M. 

The rest of this paper  is organized as follows. In Section 2, we quote and discuss 
some preliminary results from [1]. In Section 3 (resp. 4), we prove results about  
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stochastic domination (resp. percolation) properties of the hard-core model on Z 2. 
Finally, in Section 5, we put all these ingredients together and prove Theorem 1.1. 

We mention that  it is only in the proof of Proposition 4.1 in Section 4 that  we 
use essentially 2-dimensional techniques. This, however, is a key step of the proof 
of Theorem 1.1, so we believe that  different ideas will be needed in order to prove 
the theorem for general d. See [1] for a promising approach. 

2. S o m e  r e su l t s  o f  van  d e n  B e r g  a n d  S t e i f  

In this section, we recall some of the progress that  was made in [1] towards 
proving ergodicity for the hard-core model on Z d with a~ao. All of the results of 
this section are valid for any d, but we will for convenience and concreteness give 

them for d--2 only. 
Let A n = { - n , . . .  ,n} 2 and also write An for the nearest neighbour graph on 

this vertex set. Define the partial order __ on f tn={0,  1} An by 

w' if and only if [ wx_<w~ for all evenx ,  
02 

- ( wx > Jx for all odd x. 

This may seem like a somewhat unusual partial order e.g. to readers used to the 
monotone particle systems in [15]. However, the hard-core model on a bipartite 
lattice possesses a certain "antimonotonicity" between the even and the odd lattice 
which makes __ the most useful choice of partial order. Fix {a~}~eh~, and write p~ 
for the hard-core measure on An with these activities. It is easy to check that  

(3) ~,n (ogAogl)pn(o2Vo,,/:) > ~tn(~d)~tn((.d I) 
! for all w,w E~n,  where TAw' is defined by (wAw')~=min(w~,w~) for even x and 

(wAw')x=max(wx,Jx) for odd x, and wVw' is defined by (~Vw')x=max(wx,w~) 
for even x and (wVw')~=min(w~,w~) for odd x. This is the FKG condition, which 
implies, by the well-known FKG theorem (see e.g. [15]), 

(4) #n(AAB) > #n(A)#n(B) for all increasing events A, B C ~tn 

(an event A is called increasing if TEA, w~w' implies JEA). It is an immediate 
consequence that  #,~(AAB)>_#~(A)pn (B) also in the case when A and B both are 
decreasing events (where decreasing is defined in the obvious way). 

Now define the boundary OA~={yEZd\An:3xEAn such that  x and y are near- 
est neighbours} and let hE{0, 1} 0A~ be a feasible configuration on OAn. Let #,~ be 

the probability measure o n  ~ n  for which 

#~n(W) = { 0Z-i l-L~A~ a~ ~ otherwise.if wU~ is feasible, 
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This is tantamount  to conditioning p on the event that  ~ x = 0  for all xEAn which 
are adjacent to some ycOAn with 5 (y )= l .  The inequalities (3) and (4) hold also 
for #5 n. 

If ~ and ~ are probability measures on fin, we say that  v I dominates ~, and 
write v-4~' if ~ ( A ) G J ( A )  for every increasing event A E ~ n .  The following result is 
a consequence of the FKG condition (3): 

6_ 4 6' L e m m a  2.1. Let 5, 5~ EOAn be such that 5~_5 ~. Then #n--#n �9 

We are interested in two particular boundary configurations 5 r 5~ 1} ~ 
where 5 r is defined by 

_ (  1 i f x i s e v e n ,  

6 x - ~  0 i f x i s o d d  

and 5 ~ is defined analogously. These boundary configurations are extremal in the 
sense that  ~~ for any hE{0, 1} 0A~, whence, by Lemma 2.1, 

0_4 6 e (5) ~tn  __ ~ tn  -4 ~t n 

6 ~ 6 ~ where #o is short for #~ and #~ is short for # ~ .  The corresponding statement 
holds when An is replaced by any finite subset of Z 2. If we define activities ax for 
all x E Z  2 we get, as another consequence of Lemma 2.1 that  the limits l i m n ~  #o 
and l i m n ~  #~ exist and are monotone. Let #o and #~ denote the limiting measures 
on {0, 1} z2. The conditional probabilities in (1) are preserved in the limit, so #o 
and S are hard-core measures. From (5) it is possible to deduce the next result: 

L e m m a  2.2. For any hard-core measure # on Z 2 with activities {a~}xez 2 we 
have 

#~ ~_#~_ S .  

Hence the hard-core model on Z 2 with activities {az}xez 2 is ergodic if and only if  
#o =#~. 

Note also that  the FKG inequality (4) is inherited from #~ and #o to #~ and #o. 
We now specialize to the case with activities a~ and ao as in (2). In a sense, van 

den Berg and Steif came very close to proving Theorem 1.1, in that  they demon- 
strated ergodicity for Lebesgue-a.e. (a~, ao). More precisely, they proved the follow- 
ing. 

P r o p o s i t i o n  2.3. For fixed c, the hard-core model on Z 2 with activities he= 
exp(c§ and ao=exp (c -h )  is ergodic for all but at most countably many h. 

Very briefly, their proof can be described as follows. They considered the so 
called pressure function 

P~(h) = lim Z(n,  h, c) 
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where Z(n,  h, c) is the normalizing constant for the hard-core model on An with 
activities a~=exp(c+h) and ao=exp(c -h ) ,  and IAnl=(2n+l)2  is the cardinality 
of An. They showed that  for any c, P~(h) is a convex function of h, and furthermore 
that  differentiability of Pe(h) at h=ho implies ergodicity of the hard-core model on 
Z 2 with activities a~=exp(c+ho) and ao=exp(c-ho) .  The proposition now follows 
from the fact that  a convex function from R to R is differentiable at all but at most 
countably many points. 

3. Stochastic dominat ion 

The task in this section is to obtain comparison results for hard-core measures 
with different activities. Write #~,(ar (resp. #o,( . . . . .  )) for the hard-core measure 

on An with activities ae and ao (as in (2)) and boundary condition 5 ~ (resp. 5~ 

< * andao>_a*. �9 * in such a way that a~ a~ L e m m a  3.1. Pick a~, a~, ao and a o 
Then 

(6) e _~  e 
~ t  . . #n,( . . . . .  ) -  n,(~o,%) 

and 

(7) o _~ o #n,(a . . . .  ) -- #n,(a~*,~)" 

Our proof of this lemma is based on the following result (or rather its proof) 
due to Holley [10]. 

Proposi t ion 3.2. Suppose # and #~ are two probability measures on {0, 1} An 
which assign strictly positive probability to each wE{0, 1} An. I f  for each w, wPE 
{0, 1} An we have 

(8) A w ' )  _> 

then 
#_<#/. 

Proof of Lemma 3.1. We prove (6) only, as (7) is completely analogous. Note 
first that Proposition 3.2 cannot be applied directly to hard-core measures, because 
the assumption that  each element of {0, 1} An has strictly positive probability is 
obviously violated. This problem is solved as follows. Holley's proof (which also 
appears in [15]) is based on couplings of two Markov chains, both of which in our 
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case become essentially the Markov chain in Proposition 1.2 (with the appropriate  
activities and definitions of ffeasible'). An inspection of tha t  proof shows tha t  the 
strict positivity condition can be replaced by the assumption that  the Markov chains 
are irreducible. Our Markov chains are irreducible, which is easy to see because each 
feasible state communicates with the state of all O's. Hence, all we need in order 

/ e to prove the lemma is to check that  (8) holds with/t=/t~,(~o,ao) a n d / t  -/t~,(~*,a;)" 

Define k~ (resp. k ~ to be the number of l ' s  on the even (resp. odd) lattice in w, 

and define k~, etc. analogously. We have 

e e e e k~A~, -k  ~ k ~ , -  

and 

o o o o k ~ A ~ , - k  ~ = k ~ , - k ~ w , .  

It follows that  

/ t e , ( a ~ , a o )  ( ~  A ~  , a ; ) ( 0 J  V 0 Y )  

e ~ e (Mr /tn,(ao,ao)( ) 

e o e 
, k  ~,~, , k  ^,~,l_.~k - , ( a . l k ~  

__ ~e ~ 0  ~ U , e )  w v w  \ o /  

e o e o 

= ( a ~ l  k~w'-k~'  (ao  I k~176 

k a r l  \ a * /  
> 1  

where the inequality holds because a*~/a, and ao/a* o both  are greater than  1 while 
the exponents (k~w,  - k~,) and (k~ -- k ~ both are nonnegative. Hence 

. . . .  . . . .  

so we are done. [] 

Now write #~(a~,ao) and #~ae,ao) for the limiting measures limn--+oo #~,(a,,ao) 

and limn--+oo/t~ on {0, 1} z2. I t  is clear that  the stochastic domination in 
Lemma 3.1 is preserved in the limit as n--+oo, so we have, similarly as in Lemma 2.2, 

L e m m a  3.3. Pick ae, ae,* ao and a o* in such a way that a~_<a** and ao>a*._ 
Then 

e _< e 
# ( ~ , ~ o )  - -  #(~;,~;) 

and 

o _.< o 
#( . . . . .  ) -- #(~,~*)" 
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4. P e r c o l a t i o n  p r o p e r t i e s  o f  h a r d - c o r e  m e a s u r e s  

An element of {0, 1} z2 chosen at random according to #~ (or #o) has certain 
a.s. geometric properties, and in this section we study some of these. To this end, 
it is convenient to transform w C {0, 1} z2 by "inverting" the odd lattice. Define the 
mapping r {0, 1} z2 --*{0, 1} z~ coordinatewise by 

0 if x is even and wx =0 ,  or if x is odd and wx =1 ,  

(r = 1 if x is even and w~ = 1, or if x is odd and w~ = 0. 

It is clear from the definition that  

(9) (~b(w))~ _< (~b(w'))x for all x E Z 2 if and only if co _ co'. 

We are interested in connected components of the nearest-neighbour graphs on the 
random vertex-sets V0 = {x C Z2: (r (co))~ = 0} and V1 = {x E Z2: (r  (co))~ = 1} (write Go 
and G1 for the corresponding random graphs). In particular, we ask the basic 
percolation-theoretic question of whether Go and G1 contain infinite connected 
components. The main result of this section is the following. 

P r o p o s i t i o n  4.1. For any choice of activity parameters a~ and ao, we have 
that the hard-core measure #~ on Z 2 with these activities satisfies either 

(10) #e(Go contains an infinite connected component) = 0 

o r  

(11) S ( G1 contains an infinite connected component)= 0 

or possibly both. The same thing holds for #% 

Hence, infinite connected components of Go and G1 can a.s. not coexist. Our 
proof of this result is an adaptation of Yu Zhang's elegant proof of the > half of the 
famous Harris-Kesten theorem ([9], [13]) which states that  the critical value p~ for 
standard two-dimensional bond percolation satisfies pc= �89 Zhang never published 
his proof, but it appears in [8, p. 195-196]. 

A result analogous to Proposition 4.1 for the two-dimensional Ising model ap- 
pears in [3], where it was proved using Harris' [9] original approach. More general 
results along these lines appear in [5]. It is possible to adapt the methods of [3] 
and [5] in order to prove Proposition 4.1, but we prefer to stick with Zhang's method. 
This is just a mat ter  of taste. 

In order to prove Proposition 4.1, we first need the following lemma, whose 
proof requires familiarity with the paper [2] by Burton and Keane (this may seem 
annoying, but the paper is only five pages long and very instructive, so we are almost 
inclined to think we are doing the reader a favour in asking for this familiarity). 
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L e m m a  4.2. For any choice of activity parameters a~ and ao, we have that 
the hard-core measure p~ on Z 2 with these activities satisfies 

S ( G o  contains at most one infinite connected component)= 1 

and 

#e(G1 contains at most one infinite connected component)= 1. 

The same things hold with tte replaced by ~o. 

Proof. We prove uniqueness of the infinite connected component for G1 under 
#e, the other three cases being completely analogous. Burton and Keane [2] have a 
quite general uniqueness theorem which, however, we cannot apply directly, because 
the following two assumptions of their theorem are violated for #~: 

(i) translation invariance, and 
(ii) finite energy, i.e. for any n, any ~E{0, 1} A~ and #e-a.e. ~]'E{0, 1} z2\A~ we 

should have p~(~[~)>0. 
Condition (i) fails in the phase transition region of the parameter space, because 

shifting w one step will move the predominant checkerboard pattern from the even 
lattice to the odd lattice. However, standard monotonicity arguments (see e.g. 
Section IV.1 in [15]) show that  

(i p) #c is invariant under translation by arbitrary xE2Z 2 
because translation by xE2Z 2 takes the even lattice to the even lattice and the 
odd to the odd. As to condition (ii), this fails for the simple reason that  certain 
elements of {0, 1} An are disallowed (a 1 must not sit next to a 1 in w, so that  e.g. a 
1 in the even lattice must not sit next to a 0 in the odd lattice in r However, 
#c satisfies 

(ii ~) given any n and (#e-almost) any wE{0, 1} z2 with the property that  two 

or more infinite connected components of Go intersect An, we may modify the 
configuration in An in such a way that  

(a) all the infinite connected components of Go that  intersected As become 
connected to each other, and 

(b) the resulting configuration on As has positive conditional probability given 
the configuration on Z 2 \An. 

To see that  (ii p) holds, consider the following modification of w on An. On 
An-1 we place the "even checkerboard pat tern",  so that  ~(w)-=l on An-1. For 
xEA~\An_I  we keep wx as it is i f x  is even and let wx=0 i f x  is odd. That  (a) holds 
for this modified configuration is immediate while (b) follows from the definition of 



180 Olle Hgggs t rSm 

a hard-core measure together with the observation that  the modified configuration 
is feasible. 

An inspection of the proof of the uniqueness theorem in [2] shows that  it works 
(essentially unchanged) when conditions (i) and (ii) are replaced by (i') and (ii'). 
Hence it can be applied to show that  S-a .s .  G1 has at most one infinite connected 
component. [] 

Proof  of  Proposit ion 4.1. We give the proof for p~; it is exactly the same for p% 
The tail or-field of p~ is trivial (this follows from the fact that  pC is extremal in the set 
of all hard-core measures, which in turn follows from an application of Corollary 2.8 
in Chapter II of [15]) whence events concerning the existence of infinite connected 
components of Go and G1 have probability 0 or 1. Assume, for contradiction, that  
(10) and (11) fail for #~, so that  

(12) pC(Go and G1 both contain infinite connected components) = 1. 

We can then pick n so large that  

S ( A n )  > 0.999 

and 

S ( B n )  > 0.999 

where An (resp. Bn) is the event that  Go (resp. G1) contains an infinite cluster which 
intersects An. Let A L (resp. A~, An T and A B) be the event that  some vertex in the 
left (resp. right, top and bottom) side of the square-shaped vertex set An\An-1 is 
in some infinite path of Go which uses no other vertex of An, and define B L, Bn R, 
B T and B B analogously. Write ~ E  for the complement of an event E.  We have 
that  L R T B A n = A n U A  n UA n UA n and that  all five events are decreasing with respect to 
the partial order ~. Hence, by the FKG inequality (4), 

S ( A n )  ~ L = t A n  t A n  UA n ) # (A  n R T B 

e L R T B = 1 - #  ( = A n N ~ A  n D ~ A  n D ~ A  n ) 
e L e R e T e B < _ 1 - #  ( ~ A n )  # ( ~ A n )  # ( = A n )  # ( ~ A n )  

and since by symmetry A L, A R, A T and A s all have the same #~-probability, we 

have 
I.te(~A L) <_ ( 1 - # e ( A n ) )  1/4 



Ergodicity of the hard-core model on Z 2 with parity-dependent activities 181 

whence 

(13) S ( A  L) ~ R = #  (An) > 1 - ( 1 - # ~ ( A n ) )  1/4 > 1-0.0011/4 >0.82. 

In the same way, we get 

(14) S ( B n  = ,~  > 082.  

Now define the event L R T B E = A  n N A  n N B  n N B  n . From (13) and (14), we obtain 

pC(E) _> 1 - 4 ( 1 - 0 . 8 2 ) = 0 . 2 8 > 0 .  

When E occurs, both  the left-hand side and the right-hand side of An are intersected 
by some infinite connected component  of Go. By Lemma 4.2, they must in fact 
belong to the same infinite connected component. This connected component  now 
separates its complement into (at least) two pieces, thus preventing the infinite 
connected components of G1 intersecting the top and bo t tom sides of An from 
reaching each other (see the picture on p. 196 of [8]). This contradicts Lemma 4.2, 
so the assumption (12) must be false. [] 

5. P r o o f  o f  t h e  m a i n  r e s u l t  

Collecting the results in Sections 2-4, it now takes just a few more steps in 
order to prove Theorem 1.1. 

L e m m a  5.1. Fix  h > 0  and c, and let a * = e x p ( c + h ) ,  a * = e x p ( c - h )  and ae=  

ao=exp(c ) .  Then 
e . ~  o 

#(a~,~o) - #(a~,~)" 

Proof. By Proposition 2.3, we can find h~E (0, h) such that  the hard-core model 
with parameters  a ~ = e x p ( c + h ' )  and a~o=exp(c - h') is ergodic, so that  by Lemma 2.2 
we have 

e o 

# ( a ' ~ , a ' o )  = # ( a ~ , a ' ) "  

Applying Lemma 3.3 twice we get 

e ...4 e _ _  o . .<  o 
#( . . . . .  ) -- #(a'~,a'o) -- #(,~'~,<,) -- #(a:,%) 

as desired. [] 
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L e m m a  5.2. For any choice of activity parameters a* and a* o such that a*~ >a* o 
we have 

#(o ,~$)(G0 contains an infinite connected component)= O. 

Proof. Let c - ~  log(a~ao) and h=�89 log(a~/ao), so that a~=exp(c+h) and a ; =  
e x p ( c - h ) .  For i=0,  1, let Ei denote the event that  Gi contains an infinite connected 
component. E0 is decreasing with respect to _~, whence by Lemma 5.1 it is sufficient 
to show that  

(15) . . . . .  )(E0) = 0  

where a~=ao=exp(c). Symmetry implies 

(Eo)  = 

and 

= 

By tail triviality, one of the following four cases must then be true: 

1. #~a~,ao)(EoNE1)=I and ~t~ . . . .  )(EoNE1)--1, 

2. #~(a~,ao)(EoN-~E1)=l and ,~ ,ao)(~EoAE1)=I,  
3. #~ . . . . .  )(-~EoAE1)=I and #~a~,ao)(EoN~E1)--1, 
4. #~(~,ao)(-~EoN~E1)=I and #~o,~o)(~Eon~E1)=l. 

Case 1 contradicts Proposition 4.1, and case 2 contradicts Lemma 2.2. Hence case 3 
or case 4 holds, and in either case (15) follows. [] 

Proof of Theorem 1.1. By symmetry, it is sufficient to prove the theorem for 

a~>ao. By Lemma 2.2 we have #~ac,ao)-~#~,~o) and need to show #~e,~o)=#~c,~o)' 
whence it is sufficient to show that  #~,~o) -~#(~ ). For this we need to show that 

S(~,~o)(A)<#~,ao)(A ) for any increasing event A, and it is easy to see that  it 
suffices to consider cylinder events (i.e. events that  depend only on the values of w 
at finitely many xEZ2).  Given any z > 0  and any increasing cylinder event A, we 
will now give a proof that 

(16) e < o #(a~,ao)(A) -- #(a~,ao) (A) +c,  

and once this is done, the theorem follows. 
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Pick n so large that  A depends on the values in An only. Then pick N > n  so 
large that  

(17) ~t(~ . . . .  )(Go has a connected component intersecting both An and Z2\AN) < c 

which is possible by Lemma 5.2. We now construct a random configuration X E  
{0, 1} z2 distributed according to po First assign values to X on Z2\AN ac- (~,ao)" 
cording to the correct distribution. Then assign values to X on AN sequentially as 
follows. Let x l ,  ... , X(2N-~-l)2 be an arbitrary ordering of the sites in AN. At each 
step, pick the largest i such that  

(a) the value of X at xi has not yet been decided, and 
(b) for some y'.~xi, X(y) has been decided in such a way that  ( r  

and assign xi a value according to the correct conditional distribution. When no 
such i can be found, the sequential procedure stops. Write D for the event that  this 
happens before any xEAn has been assigned a value. It follows from (17) that  

(18) p(o . . . .  )(D) > 1-~. 

Write L for the random set of sites that  have not yet been assigned values when 
the sequential procedure stops. Note that  r  on the boundary OL={yE 
Z2\L:3xEL such that  x~y} .  By the Markov property of the hard-core model, the 
conditional distribution of the values on L is then given by the hard-core model on 
L with even boundary condition. Hence, by the remark following (5), we have 

#(~ ,ao)(AiD ) >_ #(~,~o)(A) 

for any hard-core measure #(a~,ao), so that  in particular 

it( ~ .... ) (AID)  -~ ~t~ . . . . .  )(A) 

whence, by (18), 
O ~ e (1 --~)~t(ae,ao ) (A) _ #(a~,ao)(A) 

and (16) follows. [] 
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