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Semigroups of moment functions 

Torben Maack Bisgaard 

1. I n t r o d u c t i o n  

If %v and w are moment functions on a *-semigroup S (see definitions in Sec- 
tion 2) then the pointwise product ~w is again a moment function. It is natural 
to ask for a characterization of families @Pt)t> 0 of moment functions such that  
~gr+t=(tgr~Ot for all r , t > 0 .  Restricting the problem a little bit, we inquire what 
functions r S--+C are such that  e - r e  is a moment function for all t>0.  

Functions r S - + C  such that  e - r e  is a bounded moment function for each t > 0  
were characterized by Berg, Christensen, and Ressel ([2, 4.3.19]), assuming the 
existence of a so-called L~vy function, which was shown by Buchwalter [10]. We 
quote the result of Berg, Christensen, and Ressel in Section 9. 

Buchwalter [8], in the case where S is either (N0 p, +)  with the identical in- 
volution or (N~ • N~, +)  with the involution (m, n)* = (n, m), characterized those 
r S--+C such that  e -t~p is a moment function for all t>0.  In the case S = N ~ ,  
his result (Th@or~me 2) states that  the following conditions are equivalent (with 
notation as in Section 2): 

(i) e - re  is a moment function for all t>0;  
(ii) ( r  for all nc (g0)+;  
(iii) - R e  is a moment function for all RE(g0)+; 
(iv) there exist h E R ,  b E R  p, a nonnegative quadratic form q on R p, and a 

measure A on RP\{1} such that  f [ ~ k ( X k - - 1 ) 2 ] ( 1 + r 2 )  m dA<oc for all m e N 0  (with 
_ _  2 r - -  ) and  

-r189 f (Xn-l-{n,X-1})ax, neNg. 
(Here X n = X ~  1 ... X ~  p and (n, X ) = n l X l + . . . + n p X p  for X = ( X 1 , . . .  , Xp)ERP and 
n =  ( h i , . . . ,  np) ENP.)  

We shall show how this result generalizes to arbitrary *-semigroups. For 
semiperfect semigroups (where every positive definite function is a moment func- 
tion) it turns out that (ii) can be replaced by the condition that  r be negative 
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definite. The corresponding result for perfect semigroups (where each positive deft- 
nite function is the moment  function of a unique measure) will be used in the proof 
of the general case. 

2. P r e l i m i n a r i e s  

A *-semigroup is a commutat ive semigroup with neutral element, equipped 
with an involution writ ten SHS*. In general we write the semigroup operation 
as multiplication and call the neutral element a unit, denoted by 1. Let S be a 

*-semigroup. A function ~: S ~ C  is positive definite if 

• C~ek~(SjS*k) >_ o 
j , k=l  

for every choice of s 1 , . . .  , 8 n E S  and cl ,... , cnEC. The set of all positive definite 
functions on S is denoted by P(S) .  Every positive definite function qo is hermitian 
in the sense that  qo(s*)=~(s) for all sES. A function a: S--~C is a character if 
or(l)=1, a(s*)=a(s), and a(st)=a(s)a(t) for all s, tES. The set of all characters 
on S is denoted by S*. We denote by .4(S*) the smallest sigma field in S* rendering 
the evaluation a~-~a(s): S*--~C measurable for each sES. Let F+(S*) denote the 

set of all measures # on A(S*) such that  f ]a(s)] d # ( a ) < o c  for all sES. Measures 
in F+(S*) are bounded because 1ES. For pEF+(S*)  we define s  S--+C by 

(2.1)  es. 

A function qo: S--~C is a moment function if there is some #EF+(S*)  such that  
s and a moment  function qo is determinate if there is only one such #. Every 
bounded positive definite function is a determinate moment  function ([2, 4.2.5]). 
The set of all moment  functions on S is denoted by 7-/(S). The *-semigroup S is 
perfect if every positive definite function on S is a determinate moment  function. 
A *-semigroup S is perfect if it is *-divisible in the sense that  for each sES there 
exist tES and m, nEN0  with re+n>_2 such that  s=t~t  *n ([7, Theorem 4]). 

Consider S* with the topology of pointwise convergence and let B(S*) denote 
the Borel a-field. A Radon measure on S* is a measure # defined on B(S*), finite on 
compact  sets and such tha t  # ( B ) = s u p { # ( C ) I C  compact,  C c B }  for all BEB(S*) .  
Let E+(S*) be the set of Radon measures # on S* for which #IA(s*) belongs to 
F+(S*). If S is countable then S* is a Polish space, A(S*)=B(S*), every bounded 
measure on B(S*) is a Radon measure, and F+(S*)=E+(S*). The terms Radon 
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moment function, Radon determinate, and Radon perfect are defined in analogy 
with their counterparts without the qualification "Radon", using E+(S*) instead 
of F+(S*). Radon perfect semigroups were called "perfect" in [2] and in [7] where 
perfect semigroups were introduced under the name of "quasi-perfect". 

A *-subsemigroup of S is a subsemigroup T, stable under the involution and 
such that  1cT .  For a *-subsemigroup T of S we define PS,T: S*--*T* by pS,T(a)= 
aIT , acS*. Then 

A(s*)  = )), 

the union extending over all countable *-subsemigroups T of S. If T is a *- 
subsemigroup of S then PS,T is measurable with respect to A(S*) and A(T*), and 
if #CF+(S*) then #ps,r (the image of # under PB,T) is in F+(T*) and E(#ps,T)= 

A function r S---~C is negative definite if r is hermitian and 

n 

cikr _< 0 
j = l  

n for every choice of Sl,  ... , suES and c l ,  ... , cnEC satisfying ~j=l  cj=O. A function 

r S---~C is negative definite if and only if e-tCET'(S) for all t > 0  ([2, 3.2.2]). The 
set of all negative definite functions on S is denoted by Af(S). 

For sES we define a linear operator Es in C z by 

Es~(t) =~(st), t �9 S. 

Since E a E b = E a b  , the complex linear span s of the operators Es, sES, is an algebra 
containing the identity operator I=E1. We consider s with the involution P~--~P* 
defined by E * = E s . ,  scS.  Let s (similarly for every complex 
vector space with involution) and note that  s Define a bilinear form 
( . , . } o n C S •  

( ~ , P } = P ~ ( O ) ,  ~ � 9  s, P � 9 1 6 3  

and note that  if ~ � 9  s is hermitian then (~, P*}=(p ,  P} for all P�9  Write 

g§ = { P e g  (@,P)>_0 for all a �9  

define an ideal go in g by 

go = {P �9 g I <1, P> = 0} = span{E~ - I  I s �9 S}, 

write 
g 2 = span{PqlP, Q �9 go} = s p a n { ( E ~ - I ) ( E t - I )  [ s, t �9 S}, 
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and define 
($2)+ : $~n$+. 

If ~ET-/(S) then (~, P> >0 for all PE$+. A function ~EC s is in P(S) if and only if 
(~, PP*)>_0 for all PE$.  A function CEC s is in Af(S) if and only if r is hermitian 
and (r PP*> <0 for all PESo. The latter condition implies that -PP*r  for 
all PESo. 

L e m m a  2.1. The operators PP*, PESo, span s 

Proof. For Q, RE$ 2 we have QR=�88 ~3=oin(Q+inR*)(Q*+i-nR ). [] 

L e m m a  2.2. We have s163 if and only if S* separates points in S. 

Proof. If S* does not separate points in S, choose a, bES with a~b such that 
c~(a)=a(b) for all aES*. Then z(Ea-Eb)Es163 for zEC\(RUiR) .  

Now suppose that S* does separate points. For sES define x~:S*--+C by 
Xs(a)=a(s) for aES*. By [2, 6.1.8], the functions X~, sES, are linearly independent. 
It follows that if QEg and (a, Q)=0 for all acS* then Q=0. (If Q=y~d= ~n  cjE~j 
then <a, Q> =0 for all aES* if and only if ~ j n  cjX~ =0, which forces cj-=O for all 

j ,  that is, Q=0.) Now if PE$+ then (a,P*)=(a,P)=(a,P>, that is, (a,P*-P>=O, 
for all aES*, whence P * - P = 0 .  [] 

3. Continuity and convolution in F+(S*) 

On the set of bounded Radon measures on S*, the weak topology is defined by 

the condition that a net (#{) converges to a measure # if and only if f h d#i--+ f h d# 
for every bounded continuous function h on S*. The inverse limit topology (also 

called the .:7 topology) on the set of bounded measures on A(S*) is defined by 
the condition that a net (#i) converges to a measure # if and only if n pS'T __+.PS,T 
weakly for every countable *-subsemigroup T of S. 

If #EF+(S*) and PE$+ then ( . ,P>~ (the measure with density <.,P> with 
respect to #, where (-,P> is the function a~-*(cr, P): S*-+C) is again in F+(S*), 
and E(( . ,  P )#)=PE#.  The E-topology on F+(S*) is defined by the condition that 
a net (#i) in F+(S*) converges to pGF+(S*) if and only if (.,  PP*>#i-~(., PP*>~ 
in the inverse limit topology for all PEg.  

L e m m a  3.1. A net (Pi) in F+(S*) converges to #EF+(S*) in the E-topology 
if and only if <., Ess.)#~-~<., Ess.)# in the inverse limit topology for all sES. 

Proof. Assume that the condition holds and let PEg.  Choose Sl , . . . ,  s,~ES 
p n and Cl ,... , Cn EC such that = ~ j = l  cjE~. If T is a countable *-subsemigroup of 
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,E *~ P S ' T " - ~ - ~ n  ! S containing {sl ,... ,s~} then ~-~j=l(" *j~j}#{ ?_.,j=l(.,E~js;}# pS,r in the 
n weak topology on E+(T*), and since (. ,PP*)/~-~j=I(', E,j ,;)  is a bounded con- 

tinuous function on T* it follows that  (. , ps T , P P  )#i ' -+(" ,PP*)I tps'T weakly. This 

being so for all such T, we have ( . ,  PP*)#~-+(., PP*)# in the inverse limit topol- 

ogy. [] 

P r o p o s i t i o n  3.1. / f  (#0 is a net in F+(S*) such that (s converges point- 
wise to some qoEC S then some subnet of (#i) converges in the/:-topology to some 
#CF+(S*) such that/:#=~o. 

Proof. With no restriction, assume that  (#i) is a universal net. For P E $  
we h a v e / : ( ( . ,  PP*)#i)=PP*/:#i--+PP*~o, so by [6, Proposition 3] , ( ( . ,  PP*)Pi) 
converges in the inverse limit topology to some #g  E F+ (S*) such t h a t / : p p  = PP* ~o. 
Hence ( ( . ,  I+PP*)p~) converges in the inverse limit topology to #I+#g.  If P =  

n ~ j= l  cjE, j and if T is a countable *-subsemigroup of S containing {Sl ,... , Sn} 
then ( . ,  I+PP*)pps'T--+(#x+#p)ps'T in the weak topology on E+(T*), and since 
(1+ ( .  , p p . ) ) - 1  is a bounded continuous function on T*, it follows that  #.PST__+ 
( I + ( - , P P * ) ) - I ( # I + # p ) p s , T  weakly. This being so for all such T, we have #i--+ 
( 1 + ( . ,  PP*)) - I (#I+pp)  in the inverse limit topology, so 

#I = ( 1 + ( . ,  PP*))- I (pI+#p) ,  

whence pp - -  ( ' ,  PP* }#x. Now ~i--*#I in the / : - topology  and/ :#I- - - - I I*~=~" [] 

P r o p o s i t i o n  3.2. The mapping s is continuous with respect to the/:-topology 
on F+(S*) and the topology of pointwise convergence on C s. 

Proof. If # i - * #  in the / : - topo logy  on F+(S*) then for all P C E  we have that  
( . ,  PP*)#i--* (. ,  PP*)# in the inverse limit topology, hence 

(/:#,, PP*) = (( . ,  PP*)#i)(S*) -+ ( ( . ,  PP*}#)(S*) = (/:#, PP*). 

T h a t / : # i  (s) = (/:#i, E~ ) -+ (/:p, E~ } = / :# (s )  for s E S now follows from the fact that  
E~ is a linear combination of operators of the form PP*, namely, 

3 

E , =  �88 E i-~(I+inE*)(I+i-~E~*)" 
n=O 

[] 

To define convolution in F+(S*), let m: S* • denote pointwise multi- 
plication, that  is, m(a, r ) = a r  for a, rES* .  Then m is measurable with respect to 
the a-fields A(S*) |  in S * x S *  and A(S*) in S*. To see this, note tha t  by 
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the definition of A(S*) it suffices to show that  (a, T)HaT(S) is measurable for each 
s E S. But this function is the product  of the measurable functions (a, ~-)Ha(s) and 

For any two bounded measures # and ~ on A(S*) we can now define a third, 
#*~, by # * y = ( # |  Commutat iv i ty  and associativity of this convolution fol- 

lows from the corresponding properties of multiplication in S*. There is a neutral  
element, ~1, where 1 is the unit of S*. 

If #,,cF+(S*) then 

/ la(s) ld(p*~)(a)=/,G(s)ldp(a)/ la(s) ,d~(G)<oc,  s ES,  

so #*~EF+(S*). Repeating the computat ion without the absolute signs we get 
s  ( s ) = s  or 

s , ) = Elt. E,. 

Note t h a t / : e l  = 1, and that  this moment  function is determinate since it is bounded. 
If U is another *-semigroup and if f :  S--*U is a *-homomorphism, that  is, a 

homomorphism satisfying f ( 1 ) = l  and f(s*)=f(s)* for all sES, then the mapping 
f*: U*--*S* defined by f*(w)=~of for wEU* is a homomorphism, and it is easily 

seen that  {p/* I#eF+(U*)}cF+(S*) and 

(p:~l/)f* : ~tf*:~l/f* 

for #, ,EF+(U*). If T is a *-subsemigroup of S then (#,,)ps,r =#ps,r ,,ps,r for all 

L e m m a  3.2. Convolution in F+(S*) is continuous in the J topology. 

Proof. Suppose #i--*# and ~i--*~ in the inverse limit topology on F+(S*). If T 
is a countable *-subsemigroup of S then #ps,T __,#ps,r and ~ps,T __,~ps,r weakly in 

E+(T*),  s o  (~ti*l/i) pS,T : ~ t  pS'T *l~ii s'T ----~t pS,T *l/pS,T : ( ~ t * l ] )  pS,T weakly since c o n v o -  

l u t i o n  in E+(T*) is continuous in the weak topology ([2, 2.3.4]). This being so for 
all such T, it follows that  # i , ~ i - - ~ # , ~  in the inverse limit topology. [] 

P r o p o s i t i o n  3.3. Convolution in F+ ( S*) is continuous in the E-topology. 

Proof. Suppose #i--~# and yi---~ in the E-topology on F+(S*); we have to 
show that  #i*~i--~#*~ in the / : - topology.  By Lemma 3.1 it suffices to show that  

(',Ess*)#i*~i-*(',Ess*)#*. in the inverse limit topology for each sES. Since 
(', Ess*)pi*ui=(( �9 , Ess*)pi)*((', E~*)ui) and similarly for # and ~, the result fol- 
lows from Lemma 3.2. [] 

A convolution semigroup in F+(S*) is a family (#t)t>_o in F+(S*) such that  

#0=r and pt+~=#t*pu for all t, u>0 .  
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P r o p o s i t i o n  3.4. A convolution semigroup (#t) in F+(S*) is continuous in 
the C-topology if and only if there is some CEAf(S) such that s  -re for all 
t>_O. 

Proof. First suppose s  -re, t_>0, for some CEAf(S). For t---+0 we have 
/:Ftt--+l pointwise. Since 1 is a determinate moment function and 1=s by Propo- 
sition 3.1 it follows that  #t-+el in the s  as t-~0. By Lemma 3.1 it suffices 
to show that  ({. ,  E~s.}pt) is continuous in the inverse limit topology for each sES. 
Note that  ({. ,E~*}#t)  is again a convolution semigroup, continuous at 0 in the 
inverse limit topology. For any countable *-subsemigroup T of S, containing s, 
we have to show that  ({. ,Es~.}#t~s'T), which is a convolution semigroup, weakly 
continuous at 0, is weakly continuous. But this follows from [4, Remark (5) and 
Corollary]. 

Now assume that  (#t) is continuous. By Proposition 3.2 it follows that  for s E S 
the function t~--+f~#t(s) is a continuous multiplicative function on (R+, +),  mapping 
0 to 1, hence of the form t~-+e -tr for some r  The function r is in Af(S) 
since e-tr163 ) for all t>O. [] 

4. Q u a d r a t i c  f o r m s  

A complex function h on a *-semigroup S is *-additive if h is a *-homomorphism 
of S into C considered with addition and complex conjugation. 

L e m m a  4.1. For PES  we have PE$  3 if and only if (a+h,P}=O for every 
a E R  and every *-additive function h: S-*C. 

Proof. The condition is necessary since s is spanned by operators of the form 
( E s - I ) ( E t - I )  with s, tES, and for those we have, if a E C  and if h: S--~C is addi- 
tive, 

{a+h, ( E s - I ) ( E t - I ) }  = (a+h, E s t - E s - E t + I )  

= a+ h(st) - a -  h(s) - a -  h(t) + a + h(1) = 0. 

Now suppose the condition holds, and write P = ~ ' - I  cjE~j with sj ES and cj EC. 
n 0 P n Since (1, P } = 0  then E j = I  c j =  , so = E j = I  cj(E~j-I)Es Write X=go/g  2 and 

let Q~-~(~: go---~X be the quotient mapping. Since C g is *-stable, there is a unique 
involution on X such that  (Q*)~=(Q)* for QECo. Define ~I,~2:X--+Xs~ by x =  
~l(x)+i~r2(x), x E X ,  and note that  ~ l (x*)=~l(X) ,  ~ '2(x*)=-~2(x)  for xEX.  If 
is a real linear form on Xs~ then h ( s )= [ (~ l  ( [E~- I ]~ ) )  defines a *-additive function 
h on S since h(s*)=h(s)=h(s) and 

h(st) - h(s) -h( t )  = ~(Trl ([(E~ - I ) ( E t  - I)]~)) = 0 
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as ( E s - I ) ( E t - I ) � 9  2. By the assumption it follows that  0=(h,  P)=Ej~__I cyh(sj). 

Writing cj =ay +ibj with ay, by � 9  we thus have 0=~y~__l ajh(sj)=~(rrl (Q))) where 
n n Q = ~ j = l a j E s j = ~ j = I  a j (E~j- I ) .  In the same way we get ~(rq(R))=0 where 

R=}-~.~.=I bjEsr so ~(rrl(/~))=0. This being so for every linear form ~ on Xsa, it 

follows that  rq(/3)=0. It can be shown similarly that  ~(rr2(/3))=0 for every linear 
form ~ on Xsa; in this case, use the fact that  h(s)=i~(re2([Es-I]~)) defines a *-ad- 
ditive function. Thus rr2(P)=0, hence P = 0 ,  that  is, PECk. [] 

A quadratic form on a *-semigroup S is a hermitian function q: S--+C satisfying 
the homogeneity property q(s2)=dq(s), s � 9  and the functional equation 

( E r - I ) ( E s - I ) ( E t - I ) q = O ,  r,s, t e S .  

Note that  this equation is equivalent to PQRq=O for all P, Q, REd0. If q is a qua- 
dratic form, then by [11, Theorem 3], from the functional equation it follows that  
there is a unique triple (a, h, B) such that  aGC, h: S--+C is additive, B: S x S--+C 
is symmetric and biadditive, and q(s)=a+h(s)+B(s,  s) for s ES. From the homo- 
geneity of q it easily follows that  a=0  and h--0, so 

q(s)  = B ( s ,  s ) ,  s �9 S. 

From the fact that  q is hermitian, by the uniqueness statement in [11, Theorem 3] 
it follows that  B(s*, t*)=B(s ,  t) for all s, tES. Quadratic forms as defined here are 
the same as (2-homogeneous) quadratic forms in the sense of [9]. 

P r o p o s i t i o n  4.1. Let S be a *-semigroup, write X=Co/Cg, let P~-+/3: C0--+X 
be the quotient mapping, and define j: S--+X by j ( s ) = ( E s - I )  ~ for sCS. Then j 
is *-additive and 

(i) for each additive function h: S--+C there is a unique linear form ~ on X 
such that h=~oj; 

(ii) for each quadratic form q on S there is a unique sesquilinear form ( . , . )  
on X such that 

q(s)=-( j (s ) , j ( s*)} ,  sES .  

Moreover, (x*,y*)=(y,x)=(x,y)  for all x, yEX.  Finally, q is negative definite if 
and only if (x,x)>O for all x E X .  

Proof. We consider X with the unique involution that  makes the mapping 
P~-+P *-preserving. Then j is *-preserving; and j is additive since 

j ( s t ) - j ( s ) - j ( t )  : ( ( E s - I ) ( E t -  I)) ~ = 0 
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because of (E~-I)(Et-I)EE 2. 
(i): If h: S--+C is additive then P~-+(h, P) is a linear form on go which vanishes 

on gg. Hence there is a unique linear form ~ on X such that  (h, P)=~( /5)  for all 
PEE0, whence h(s)=(h,E~-I}=~(j(s)) for sES. 

(ii): Let B be the unique symmetric biadditive function on S such that  q(s )=  
B(s, 8), 8ES. For tES the function B ( . ,  t) is additive, so by (i) there is a unique 
linear form ~t on X such that  

B(s,t)=~t(j(s)), sES. 

For r, tES the linear form ~r-t-~t on X satisfies (~r+~t)(j(s))=B(s,r)+B(s,t)= 
B(s, rt) for all sES,  and by the uniqueness of ~rt it follows that  ~ t - -~ r+~t .  Thus, 
for xEX the mapping t~-+~t(x): S--+C is additive, so there is a unique linear form 
~x on X such that  

~t(x)=~x(j(t)), tES. 

For x, yEX and a , /3EC,  the linear form a~x+/~y on X satisfies (~W+/~7]y)(j(t))= 
a~t(x)+~t(y)=~t(ax+~y) for all tES, and by the uniqueness of ~x+Zy it follows 
that  ~ x + ~ y = C ~ x + ~ % .  Thus (x, y)H~(y) is a bilinear form on X. Define 

(x,y) = - ~ ( y * ) ,  x,~EX. 

Then ( . , .  ) is a sesquilinear form and 

B(s,t)=~t(j(s))=~j(8)(j(t))=-(j(s),j(t*)), s, tES. 

In particular, q(s)=-(j(s),j(s*)} for sES. Since B(s,t)=B(t,s), and since j(S) 
spans X, then (x*,y*}=(y,x); since B(s*,t*)=B(s,t) then (x*,y*)={x,y}. For 
p n 

= E i = I  Ci(Es l  - I )  EgO, 

{q, PP*) = ~ CiCk(q(siS*k)--q(si)--q(s*k)--q(1)) 
i ,k=l  

= ~ ~k(B(8~4, 8~4)-B(8~, 8~)-B(4, 4)+B(1, 1)) 
i ,k=i  

= 2 ~ c ~ B ( ~ , ,  4 )  = - e  ~,e~<j(8~),j(sk)> = -e<x, ~> 
i , k=l  i ,k=l  

n �9 where x=Y~i= 1 c~3(8~)=P. This shows that  q is negative definite if and only if 
Ix, x>>_O for all xEX. [] 
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P r o p o s i t i o n  4.2. If  q is a negative definite quadratic form on a *-semigroup 
S then e-tqE~-~(S). 

Proof. By Proposition 4.1 there is a nonnegative sesquilinear form ( ' , " )  on 
X=$0/C0 2 such that  (x*,y*)=(y,x) for all x, y E X  and q(s)=-(j(s) , j (s*)) ,  sES, 
with j:  S-+X as in Proposit ion 4.1. Since j is a *-homomorphism, it suffices to 
show that  x H e  {x'~*) ET-/(X). Since X is *-divisible, hence perfect, it suffices to 
show x~-~e(X,~*)ET)(X). It  suffices to show that  this flmction is positive defi- 
nite on each finite-dimensional linear subspace of X,  so we may as well assume 
tha t  X is of finite dimension. Write Z = X / { x E X ]  ix, x)=0}  and consider Z with 
the unique involution rendering the quotient mapping *-preserving. (The space 

{xEXI(x ,  x)=0}  is *-stable because ix*, x*)=(x, x).) Since the quotient mapping 
is a *-homomorphism, it suffices to show tha t  the function zHe(z,z*) is positive 
definite on Z, where ( ' , " )  is the inner product  on Z canonically associated with 
the sesquilinear form on X denoted by the same symbol. Choose a basis (e l ,  ... , en) 

n of Zsa over R.  Then (ei) is basis of Z over C, and for z = ~ k = l  ZkekEZ we 
. n - , n 2 have z = ~ k= l  zkek, hence (z,z)=~-~k=l Zk, SO we have to show that  the func- 

tion (Zl,. . .  , z~)~-*[I~=l e ~ is positive definite on (C n, +).  Since a pointwise prod- 
uct of positive definite functions is again positive definite i[2, 3.1.12]), it suffices 

to show that  z~-~e z~ is positive definite on (C, +).  This amounts to showing 

that  z H - z  2 EAr(C). But if Zl, ... , zm E C and cl ,... , cm E C with ~i=1"~ c i=0  then 
m - 2  m [2 

> 0  [] 

5. The complex L~vy function 

If S is a *-semigroup, define a or-ring A(S*\{1})  in S*\{1} by 

A(S* \  {1})= {A E A(S*) I I C A}. 

A complex Ldvy function for S is a function H:  S • S* ~ C  satisfying 

i i) H i �9 , a )  is *-additive for each aES*;  
(ii) H(s , . )  is A(S*)-measurable for each sES; 
(iii) if # is a measure on A(S*\{1})  satisfying 

/( ~,PP*)d#(~)<oo,  Redo ,  (5.1) 

then 

(5.2) /I i - a ( s )+H(s ,a ) i d# (~ )<oo ,  sES .  
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Since the operators E ~ - I ,  sES, span E0 then (5.1) is equivalent to 

/ I I -a(s) l  2 d~(a) < s E S. (x), 

Propos i t ion  5.1. For every *-semigroup there is a complex L6vy function. 

Proof. Choose a linear complement :D of (C2)s~ in the real vector space C~. 
Then C=7)+i:D is a *-stable linear complement of C0 2 in $. Define ~r:C--~C by 

7r(P+Q)=Q, PE$~ ,  QEC 

~nd note that zr is *-preserving. Now let 

H(s,a)=<~,Tr(E~-I)t ,  sES,  aES*.  

For aES* the function H ( . ,  a) is clearly hermitian, and 

H(st, ~) - U ( s ,  a) - H i t ,  a) = Ca, 7r(Est-Es - E t +  I)) = 0 

since (E~-I)(E~-I)EE~=kerTr. Property (ii) follows from the fact that for all 
QEC the function (. ,  Q> is measurable, being a linear combination of functions of 
the form a~(r(s)  with sES. Finally, if/z satisfies (5.1) and sES  then 

] [1 -a ( s )+  H(s, a)l d # ( a ) :  f l<a, I -  E~ +Tr(E~- I))[ dtt < cc 

since 7r(R)-REE 2 for all RE$, hence in particular for R = E ~ - I .  [] 

6. The  case of  per fec t  semigroups  

T h e o r e m  6.1. Suppose S is a perfect semigroup with a complex Ldvy func- 
tion H. For a function r S-+C, the following conditions are equivalent: 

(i) There is a convolution semigroup (ttt) in F+(S*) such that s  -re for 
all t>0; 

(ii) e- t~p(S)  for all t>0; 
(iii) ~bEAf(S); 
(iv) there exist aER, a *-additive function h: S-+C, a negative definite quad- 

ratic form q on S, and a measure It on A(S* \{1}) such that 

(6.1) r  s e S  
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Assuming that these conditions hold, the convolution semigroup (#t) in (i) is 
uniquely determined by r and is continuous in the C-topology, and the objects a, h, 
q, p in (iv) are uniquely determined by ~. ( We call # the Ldvy measure of r 

Proof. (i) ~ (ii): Trivial. 
(ii) ~ (i): For t>0 ,  since S is perfect, there is a unique #tEF+(S*)  such 

that  ~t~t=e -re. For t,u>_O we have L(#t*p~)=f~pt.Lp~=e-tCe-Ur -(t+u)r 
and by the uniqueness of #t+~ it follows that  # t + ~ = # t . # ~ .  So (#,) is a convolution 
semigroup. The continuity of (#t) follows from Proposition 3.4. 

(ii) r (iii): Already observed. 
(iii) ~ (iv): For PECo we have -PP*r and since S is perfect, there is 

a unique ApEF+(S*) such that  -PP*r163 For P, QECo we have 

~( (. , QQ*)Ap) = QQ*s = -PP*QQ*r = PP*LAQ -- ~ ( ( . ,  PP*).~Q), 

and since S is perfect, it follows that  

(6.2) (., QQ*>Ap = (., PP*}AQ. 

Write Gp={aES*I(a,P}•O } for PE80 and define a measure # p  on A ( G p ) =  

{AEA(S*)IACGp} by 

(6.3) #p = <., PP*}-I(ApIGp). 

By (6.2), 

~PIGpNGQ ~-'[LQIGp~GQ, P, QECo. 

We wish to define a measure # on ~4(S*\{1}) such that  

(6.4) (., PP*}# = ApIA(~.\{1}), P E s 

For AEA(S*\{1}) there is a countable *-subsemigroup T={ti,t2, ...} of S, such 
that  each character on T extends to a character on S ([3, Theorem 3]), and some 
PEP(T*) such that  A=p~,IT(B). Since l e A  then I ~ B ,  so AcUn~__iGP~ where 
P,~=Et.-IEC0. It is now clear t ha t / z  can be defined by 

l$JGp = ~p, P E C 0 .  

We now have #]Gp=pp=(. ,PP*)-I(Ap]cp) for PEE0. To get (6.4), it remains 
to be shown that  Ap(A\Gp)=O for AEA(S*\{1}). Since A is contained in the 
union of countably many GQ, it suffices to show Ap(GQ\Gp)=O for QEC0. But 
this follows from (6.2). 
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Since f<a, PP*> d#(a )<c~  for all PEg0,  we can define Ct,: S--+C by 

r d#(cr), sES. 

For P E go we have 

PP* ( r 1 6 2  - / r dAp(a) + / <a, PP*>a(s) dp(a) = -A'p({ 1 }), 

a constant. Hence PP*R(r162 for all P, REEo, and since {PP* IPEg0} spans 
g2 (Lemma 2.1), it follows that PQR(r162 for all P, Q, REgo. By [11, Theo- 
rem 3] it follows that 

r162 = a+h+q 

where aEC,  h: S ~ C  is additive, and q is the diagonal of a symmetric biadditive 
function on S. Since r  is hermitian then hER,  h is *-additive, and q is a quad- 
ratic form. Since PP*q=PP*(r162 for PEgo then q is negative 
definite. The triple (a, h, q) is uniquely determined according to [11, Theorem 3]. 

(iv) ~ (iii): (~,PP*)=(q, PP*)- f (a ,  PP*)d#(~r)<_O for PEgo. [] 

7. T h e  c a s e  of  a r b i t r a r y  s e m i g r o u p s  

L e m m a  7.1. For each nE{1, 3, 5, 7, ...} there exist constants C1, C2, and C3 
such that for all zEC, 

(i) Ii-zl<Clll-zlzln-ll; 
(ii) In-l-nRez+Rezlzln-ll<c211-zlzln-l]2; 
(iii) IImz-Imzlzln-ll<_C3ll-zlzl'~-ll 2. 

Proof. (i): If C1>1 then the inequality holds for all z with Izl large enough. 
The function 1-zlz l  n-1 has no other zero than 1 since if zlzln-l--1 then z>O, 
hence z n = l ,  so z = l .  It therefore suffices to show 

liminf 1-z lz ln-1  
1 - z  >0.  

With z=l§ we have 

(n-- l ) /2  

1-z,zl~ 
k=O 
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and since y2/ll-zl----~O , it suffices to show 

l iminf 1 - - ( I + x + i y ) ( I + x ) n - 1  
(x,y)--,(o,0) x + iy > O. 

Since ( l + x ) n - l = ~ :  -1  ('~;1)xk and xZ/(x+iy)---+O, it suffices to show 

0 <  l iminf  1 - ( l + x + i y ) ( l + ( n - 1 ) x )  = l iminf  nx+iy+(n-1 ) i xy  
(x,y)--,(0,0) x+iy (x,y)-~(0,o) [ x+iy 

. . . .  I ~ x + i y l  
= l l m  l n I  - -  

(x,y)~(o,o) x+iy 

which is true since n2x 2 +y2 ~ x  2 +y2. 
(ii): For any C2>0,  the inequality holds for all z with ]z[ large enough. It  

therefore suffices to show 

lim sup n -  1 - n  Re z + R e  z H  '~-1 
z-~l ( l _z l z ln_ l )2  <oo .  

By (i) it suffices to show 

lim sup n - l - n R e z + R e z N ' ~ - i  
z-~l ( l - z )  2 < ~ "  

With z = l + x + i y  we have 

n -  1 - n  Re z + R e  zlz I '~-1 = -1  - n x  + (1 + x )  

and since y 2 < i i _ z 1 2  it suffices to show 

lim sup ( l + x ) ~ - l - n x  
(x ,y ) -*(o ,o)  x2+y  2 < cx); 

but  this follows from ( l + x )  n -  1-nx=Ek=~ (~)x k. 
(iii): For any C3>0, the inequality holds for all z with Iz[ large enough. It 

therefore suffices to show 

[Imz-Imz]z[n-1 [ 
lim sup - -  

z _ ~  (1-zLzL--x) 2 < ~ .  

( n - l ) / 2  

k : 0  
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By (i) it suffices to show 

l imsup 

With  z = l + x + i y  we have 

Im zlzl ~ - l - I m  z = y 

Imz- ImzJz]  n-1 
( l _ z ) 2  < c~. 

( n - l ) / 2  

E ((n--kl)/2)(l+x)n-l-2kyUk--Y' 
k=0 

and since y2<_ i i_z12,  it suffices to show 

l y (1Tx)n- l - -y  
lim sup ~-5 ~ < oo. 

(~,y)--+(o,o) x + y  

But  this follows from y(l+x)n-l-y=E~2_~ (n~)xky. [] 

P r o p o s i t i o n  7.1. For every *-semigroup S there are a *-semigroup U and a 
*-homomorphism f: S ~ U  such that, denoting by ~,  ~o, ~2, and (~2)+ the objects 
that are to U what g, go, E~, and (g~)+ are to S, and defining a linear mapping 
F: g--~J z by F(E~)=gf(s) for sES, 

(i) V is perfect; 
(ii) f*: U*--*S* is an isomorphism between the measurable spaces (U*, A(U*))  

and (S*, A(S*));  
(iii) v H  S* : F+ (U* )--~ F+ ( S* ) is a homeomorphism with respect to the s 

pologies; 
(iv) for each *-additive function h: S--+C there is a unique *-additive function 

h: U---~C such that h=[to f; 
(v) for P e k e r F  we have { P , - P } c ( C 3 ) + ;  
(vi) E ((go2) +) = (~-o2) + N F (g); 
(vii) (3Co2) s~ = F (($~) s~) + ($c3) +; 
(viii) ~Co = F(s  +$Co2; 
(ix) ~C=F(g)  +5Co2; 
(x) if H is a complex Ldvy function for S, there is a unique complex Lgvy 

function K for V such that K( f (s ) ,w)=H(s , f*(w))  for all sES and wEU*; 
(xi) for each negative definite quadratic form q on S there is a unique negative 

definite quadratic form ~t on U such that q=(to f . 

Proof. For nE{1 ,3 ,5 ,7 , . . . } ,  define f~:S--~C s* by 

fn(S)(~)=O(S)I~(S)I ~/~-~, seS, ~ S *  
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with OlO[ 1/n-1=0 by definition. It is shown in the proof of [6, Proposition 6], that 
the set 

U =  U Sn(S), 
nC{1,3,5,7 ,...} 

with pointwise multiplication and complex conjugation, is a perfect semigroup, that  
the mapping j:  S*---*U* defined by 

 es*, u e U  

is measurable with respect to .A(S*) and .A(U*), that  #~--~#J maps F+(S*) into 
F+ (U*), that  the mapping f = f l  is a *-homomorphism, and that  f* oj is the identical 
mapping on S*. 

(ii): It remains to be shown that  jof* is the identical mapping on U*, that  is, 

(7.1) u(f*(w))=w(u), w e U * ,  ueU. 

We first note that  for sES and nE{1,3 ,5 ,7 ,  ...}, 

(7.2) if u = fn(S) then a(s) = u(~)lu(a)I ~-1 for a e S*; 

this is an immediate consequence of the definition of f~. Concerning (7.1), choosing 
seS  and h e { l ,  3, 5, 7, ...} such that  u=fn ( s ) ,  we have u(u~)(n-1)/2=f(s) by (7.2), 
hence, using (7.2) again, 

a,,(U) IW(U)I ~-1 ---- w(f(s)) = f* (W)(S) ---- u(f* (w))lu(f* (~'))I "-1, 

and (7.1) follows. 
(iii): Let us show that  #~-~#J: F+(S*)--*F+(U*) is continuous with respect to 

the/:-topologies. Suppose (pi) is a net in F+(S*) converging in the/ :- topology to 
some #EF+(S*); we have to show that  pJ--~#J in the/ : - topology on F+(U*). By 
Lemma 3.1 it suffices to show ( . ,  Eu~)#~---+(', Eu~)# j in the inverse limit topology 
for each uCU, and this amounts to showing 

(7.3) (. ,Eu~}(p~) p~,v --~ (. ,Eua)(#J) p~'v weakly 

for every countable *-subsemigroup V of U containing u. 
Choose sES and hE{l ,  3, 5, 7, ...} such that  u=f~(s), then choose a countable 

*-subsemigroup T of S such that  sET and 

VC U f.~(T) 
mE{1,3,5,7 ,...} 
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and furthermore such that  every character on T extends to a character on S (which is 
possible by [3, Theorem 3]). Since #i--*# in the/ :- topology then (1+(- ,  Es~*))#~---* 
(1 + ( . ,  Ess* ))# in the inverse limit topology, hence 

(7.4) ( I + ( . , E ~ . ) ) #  ps'r --* ( l + ( . , E s ~ . ) ) p  ps,r weakly. 

We wish to define a mapping k: T*--*V* such that  

(7.5) kops,T =PU, VOj, 

that  is, k(aiT)(V)=V(Cr ) for aES* and vEV.  Given TCT*, we can choose aES* 
such that  ~-=alT , and then we must have 

k(~)(v) = v(~), v e V .  

The right-hand side is independent of the choice of a since, choosing t E T  and 
m e { 1 , 3 , 5 , 7 ,  ...} such that  V=fm(t) ,  we have 

v(a) = ~(t)la(t)l 1/n-1 = r(t) l~'(t)l 1/n-1. 

This shows that k is well-defined and also that  k is continuous. Prom (7.4) it now 
follows, using the fact that  ( . ,  g s ~ . ) = ( . ,  E/(~.))ok,  that  

(l+(-,ES(ss*)})(ttPs'T) k-~ ( 1+ ( . ,  Ef(ss.)))(#Ps'T) k weakly, 

which by (7.5) is equivalent to 

(I+(-,Es(~.)>)(#{)Pv,v -+ ( I+< . ,E / (~ . )>) (#J )  pv,v weakly, 

and then (7.3) follows from the fact that  (. , E ~ ) / ( I + ( .  ,Es(~. ) )  ) is a bounded 
continuous function on V*. 

(iv): If uEU has the form u=fn(s)  with sES  and nC{1, 3, 5, 7, ...} then, since 
f ( 8 ) = u ( n + l ) / 2 f l ,  ( n - l ) / 2 ,  w e  m u s t  h a v e  h(s)=�89 l )h(u)+�89  that  is, 

(7.6) Re/t(u) = 1 Re h(s), Im tt(u) = Im h(s). 
n 

We have to show that  this is independent of the choice of s and n. Suppose r C S and 
mE{1,3 ,5 ,7 , . . .}  are another pair such that  U=fm(r).  For t > 0  we have ethcs*, 
so using (7.2), 

et( (m+ l )h(s) /2+(m-1) f t ( s )  /2) : eth(s) leth(s) Ira-1 

= u(e th) lu(e th) r - l l u ( e  th) lu(e th) I n-11 m-1 

= u(e tu(e 

=u(e  h)lu(e *h)lm-ll (e    h)P-e 
= eth(r) leth(r) I n - 1  = et((~+l)U(,)/2+(~-~)h(,)/2). 
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This being so for all t>0,  it follows that  

�89 (m+ 1)h(s)+ l(rn_ 1)h(s) = 1 (n+ 1)h(r)-I- �89 (n-  1)h(r), 

whence m Re h(s) = n  Re h(r) and Im h(s) = I m  h(r), as desired. Thus h is well-de- 
fined. Since u*=fn(s*), then nReh(u*)=Reh(s*)=Reh(s)=nReh(u) and (simi- 
larly) I m t t ( u * ) = - I m  h(u), so h is *-preserving. 

Given u, vEg, choose s, rES and n, mE{l ,  3, 5, 7, ...} such that  u = f n ( s )  and 
V=fm(r). Then uV=fnm(q) where q=sr(ss*)(m-1)/2(rr*) (n-1)/2, so  

Re h(uv) = 1 R e h ( q ) = - - i  (mReh(s)+nReh(r)) =Re(h(u)+h(v) )  
nm nm 

and (similarly) Im h(uv)=Im(tt(u)+h(v)), which shows that  h is additive. 
(v): Suppose P E k e r F .  For wEU* we have (f*(w),P}=Iw, F(P))=O, and 

since f* maps U* onto S*, this shows <G,P)=0 for all crES*, that  is, { P , - P } C s  
If a E R  and if h: S--+C is *-additive, choosing h as in (iv) we have (a+h,P)= 
((a+h)of, P ) = ( a + h ,  F (P ) )=0 .  This being so for all such a and h, by Lemma 4.1 
it follows that  PEgg,  hence also - P E s  

(vi): The left-hand side is clearly contained in the right-hand side. Now suppose 
QE(JC02)+NF($) and choose PEG such that Q=F(P). If a E R  and if h: S--~C is 
*-additive, choosing h as in (iv) we have 

(a+h, P) = ((a+h)of, P) = (a+h, F(P)) = (a+h,  Q> = 0 

since QcgC0 2. This being so for all such a and h, by Lemma 4.1 it follows that PEs 2. 
For cvEU* we have (f*(c~),P)=(cv, F(P)>=(w,Q)>O, and since f* maps U* onto 
S*, it follows that  PEs Thus PE(E2)+, which shows QEF((E~)+). 

(vii): We note that  U* separates points in U. Indeed, if u, vcU are such that 
w(u)=co(v) for all a~EU* then, using the identity (7.1) and the fact that  f* maps 
U* onto S*, we get u(a)=v(e) for all eES*, that  is, u=v. By Lemma 2.2 it follows 
that  .7"+ CScsa, hence (9c2)+ c (Sc02)sa, which shows that  the right-hand side in (vii) is 
contained in the left-hand side. To show the converse inclusion, it suffices to show 
that  for each QE9 c2 there is some PEF((E~)~)  such that  I(w, Q)I<@, P) for all 
wEU*, since for QE (5c02)~ we then have Q=-P+(Q+P)  with - P E F ( ( s  and 
Q+PE(9c2)+. It suffices to consider the case Q=(Eu- I ) (Ev- I )  with u, vEU since 
such Q span 5c02. Since 

1 
_ , Eu-I>12+l( , E v - •  
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it suffices to consider the case v=u*. Choose s E S and nE { 1, 3, 5, 7,...} such that  
u=fn(s). By Lemma 7.1(i) applied to z=a(s)ia(s)] 1/'~-1, for a;EU* and a=f*(w)E 
S* we have 

](w, Eu - I }  12 = [w(u)- 1[ 2 = [u(a) - 1[ 2 = [cr (s)[or (s)[1/n--1 _ 112 

_~ C1 ]o(s) - 1[ 2 = C1 [(0-, E s -Y)[2 = C1 [((M, F ( E  s - I ) ) [2  

which shows that  P = F((E~ - I) (E~. - I)) has the required property. 
(viii): It suffices to show Eu-IEF(Eo)+~3 for uEU, since such operators 

span 5%. Let us show 

(7.7) ( n -  1 ) I+  �89 (n+ 1) Ef(~) - �89 ( n -  1) EI(~.) - nE~ E .T" 3 

if sES, nE{1,3,5 ,7 , . . .} ,  and u=f~(s). Let P be the operator in (7.7). The sum 
of the coefficients is zero, so (a, P) =0 for hER.  If h: U--*C is *-additive then 

<~t, P> = ( n -  1)~t (1) + �89 (n+ 1)h(/(s)) - �89 (n -  1)h(f(s*))-nh(u) 
= Re h(f(s)) +n Im h(f(s)) - nh(u) = 0 

by (7.6). By Lemma 4.1 it follows that P E ~  -3. It thus suffices to show 

l ( n - - 1 ) g f ( s *  ) E F(~O) ; - I+l(n+l)E:(~)-~ 

but this operator is F(Q) where Q=-I+  l ( n + l ) E ~ - I  ~ ( n -  1)E,. EG0. 
(ix): It suffices to show E ~ E F ( $ ) + 9  ~2 for uEU. But this follows from (7.7). 
(x): For aES* let ha be the *-additive function s~--*H(s, o) on S and let h~ be 

the unique *-additive function on U such that  h~=haof. Since K ( .  ,w) has to be 
*-additive for wEU*, we must have 

K(u,a;)=hs.(~ ), uEU, wEU*. 

To see that  w~--~K(u,w) is measurable for uEU, since f* is measurable it suffices 
to show that  a~-*ha(u) is measurable on S*. Choosing sES and n~{1,3, 5, 7, ...} 
such that  U=fn(S), by (7.6) we have 

ha (u) = 1 Re ha (s) + i  Im h~ (s) = 1 Re H(s, a) +i Im H(s, a), 
n n 

so the measurability follows from that  of cr~--~H(s, a). 
Now let ~ be a measure on U* such that  

(7.8) [ (w, PP*) d,(w) < c~, PE9%; 
d 
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we have to show 

I i-co(u)+K(u, co)l dr(w) < cc 

for uEU. Choose scS and nE{1 ,3 ,5 ,7 ,  ...} such that u=f~(s). We then have to 
show 

(7.9) / 1 - o ( s )  Io(s) l 1/~-1+ 1 Re H(s, o) +i Im H(s, o) dt~((~) < c~ 
n 

where # = u  f *  . 

so  

(7.10) 

Since F(g0)c.T0, by (7.8) we have f@,QQ*}d#(o)<oo for QEg0, 

f ll-a(s)+H(s,a)l d#(a) < oo. 

To show that the real part of the integrand in (7.9) is integrable, since the real 
part of the integrand in (7.10) is integrable, it suffices to show 

/ In- l -nReo(s) lo(s) l l /~- l  +Reo(s)l d#(a) < oc. 

Since Es-IEgo, we have 

(7.11) f l l - o ( s ) l  2 d#(o) < oo, 

so it suffices to show In- l -nRewlwl l /n- l -Rewl<Cll -wl  2 for some C > 0  and 
all wEC, which is equivalent to Lemma 7.1(ii). 

To show that the imaginary part of the integrand in (7.9) is integrable, since 
the imaginary part of the integrand in (7.10) is integrable, it suffices to show 

lira o ( s ) - I m  o(s)[o(s) 11/n-11 d/*(o) < oo. 

By (7.11) it suffices to show IImw-ImwlwiUn-lI<_Cll-wl2 for some C > 0  and all 
wEC,  which is equivalent to Lemma 7.1(iii). 

(xi): Write X=go/gg, let P H / 5 :  go~X be the quotient mapping, and define 
j: S ~ X  by j (s)=(E,-I)  ~, sES. By Proposition 4.1 there is a unique nonnegative 
sesquilinear form ( . , . }  on X such that q(s)=-Ij(s),j(s*)} for all sES. Write 
Z=~o/~g, let QHQ:.To~Z be the quotient mapping, and define k:U~Z by 
k (u) = (Eu - I ) ~ ,  u E U. By Proposition 4.1, existence and uniqueness of ~ as claimed 
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is equivalent to the existence and uniqueness of a sesquilinear form ( . , . )  on Z such 
that 

(7.12) (j(s), j(s*)) = (k(f(s)) ,  k(f(s*))).  

Since P ~-+ F (P)~:SO--+ Z vanishes on ~2, there is a unique linear mapping m: X--+ Z 
(clearly *-preserving) such that 

F(P)  ~ =re(P),  P �9 

If (7.12) holds then, because of 

k( f (s ) )  = ( E s ( , ) - I )  ~ = ( F ( E , - I ) )  ~ = m ( ( E 8 - I )  ~) = m(j(s)) ,  

it follows that 
(j(s), j(s*)) = (m(j(s)) ,m(j(s*))) ,  s �9 S. 

Then [x ,y]=(m(x) ,m(y)} - (x ,y )de f ines  a sesquilinear form [., .] on X satisfying 
~(s),j(s*)]=O for all s � 9  and by the uniqueness statement of Proposition 4.1 it 
follows that [ . , .  ] is identically zero, that is, 

( r l a )  (x, y> = x, y �9 X 

Since m ( X ) = Z  (by (viii)), this shows the uniqueness in (7.12). If only we have 
(7.1a) then (7.12) follows. Since the sesquilinear form ( ' ,"  } on X is nonnegative, it 
suffices to show (x ,x )= 0  for xEkerm.  If x E k e r m  then x= ,P  for some PESo with 
F ( P ) ~ = 0 ,  that is, F(P)EF(So)NJ:'3. But this implies PEC~ (so x=0)  since we 
saw in the proof of (vi) that F-I(Y02)CC02. [] 

T h e o r e m  7.1. Suppose S is a *-semigroup with a complex Ldvy function H. 
For a function r S-+C, the following conditions are equivalent: 

(i) There is a convolution semigroup (#t) in F+(S*) such that s  -re for 
all t_>0; 

(ii) e-t*~ eTl(S) for all t_>0; 
(iii) r is hermitian and (~b, P ) < 0  for all PE(302)+; 
(iv) there exist a E R ,  a *-additive function h: S--+C, a negative definite quad- 

ratic form q on S, and a measure p on A(S*\{1})  such that 

(7.14) ~b(s)=a+h(s)+q(s)+ f (1-~r(s)+H(s,  cr))dp(s), sES .  
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The convolution semigroups occurring in (i) are all continuous in the s 
There is a one-to-one correspondence between the convolution semigroups (#t) oc- 
curring in (i) and the measures tt occurring in (iv), each set being in a one-to-one 
correspondence with the set of those ~eAf(U) such that r  where U and f 
are as in Proposition 7.1. 

Proof. (i) ~ (ii): Trivial. 
(ii) ~ (iii): For s e S  and t>O we have e-tr -t6(s) since e -re, being a 

moment function, is hermitian. This being so for all t>O, it follows that r 
~(s). For PC (go2)+ we have (1, P ) = 0  since Pego and (e -re,  P) _>0 since Peg+ and 
e -tCe~-L(S). It follows that  

(~P' P) -- t--,olim ~(1 -e  -t*, P) ~_ O. 

(iii) ~ (iv): Let U, f ,  $-, etc., and F be as in Proposition 7.1. If P E k e r F  
then by Proposition 7.1(v) we have {P,-P}c(C02)+, and by (iii) it follows that  
(~, P )=0 .  Hence there is a unique linear form L0 on F($),  clearly hermitian, such 
that  

( f ,P )=Lo(F(P) ) ,  PGC. 

Evidently Lo_<0 on F((Co2)+). By Proposition 7.1(vi), this means that  Lo_<0 on 

(TO2)+NF(E). 
We wish to extend L01(J:3nF(E)): ~ to a real linear form on (~-02)s~ which is _<0 on 

(~'o2)+. By [2, 1.2.7], this can be done if ($'o2OF(f))s~+(gro2)+=(gro2)~a. The proof 
of Proposition 7.1(vi) shows that  ~'O2OF(g)=F($O2), so the condition follows from 
F((g2)~a)+(Sro2)+=(gr3)~, which is true by Proposition 7.1(vii). 

Thus there is a real linear form L' on (F'o2)sa which extends L0I(J:3nF(E)): ~ and 
is _<0 on (5ro2)+. Let L1 be the unique hermitian complex linear form on $'O2 which 
extends LL Since L0b:gng(E) and LI[J:o2nF(E ) are both hermitian and coincide on 
(Sro2OF(g))sa, they are equal. It follows that  there is a unique linear form L on 
F(g)+$-02 which extends both L0 and L1. Clearly L is hermitian and L_<0 on 
($o2)+. By Proposition 7.1(ix), L is defined on all of 5 r.  Defining kO: U--+C by 
�9 (u)=L(E~), ueV ,  we have ~ = ~ o f ,  ~ is hermitian, and (ko, PP*)=L(PP*)<O 
for PeSt0, that is, ~r  

By Theorem 6.1 it now follows that  there exist unique a, h, ~, and ~ such that  
a e R ,  tt is a *-additive function on U, c~ is a negative definite quadratic form on U, 

is a measure on ,4(U*\{1}), and 

(7.15) �9 (u) = a+tt(u) +(t(u) + / ( 1 - w ( u )  +K(u, w)) d~(a;), u e U 
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where K is the complex L~vy function for U determined in Proposition 7.1ix). From 
the latter equation we get (iv) with h=hof, q=~of ,  and # = u  f*. 

(iv) ~ (iii): For R e  (C02)+ we have (r P)=(q, P)-f(a, P) dp(a), so it suffices 
to show {q,P)<O. Since q is negative definite, e-tqETl(S) for t > 0  by Proposi- 
tion 4.2, so 

l (1-e-tq, P) <0.  <q'P> 7 
(iii) ~ (i): As in the proof of (iii) ~ (iv) there is some ~CA f (a )  such that  

r  By Theorem 6.1 there is a unique convolution semigroup (ut) in F+(U*) 
such that  Eut=e -tv for all t>0.  With #t=u[* we then have #tGF+(S*), (#t) is a 
convolution semigroup, and E#t=e -re for all t>0 .  

The convolution semigroups occurring in (i) are continuous in the E-topology 
by Proposition 3.4. 

To see that  the convolution semigroups (#~) occurring in (i) are in a one-to-one 
correspondence with those q2EAf(U) such that  r  first let such a �9 be given. 
Let (ut) be the unique convolution semigroup in F+(U*) such that  E u t = e  -t~' for 

all t > 0  (cf. Theorem 6.1). Define #t=u[* for t>0 .  Then (#t) is a convolution 
semigroup in F+(S*) and Ept=e-tVof=e -re for all t>0.  

Conversely, let (#t) be a convolution semigroup in F+(S*) such that  E#t=e -re 
for all t>0 .  By Proposition 3.4, (#t) is continuous in the E-topology. With u t=  

# { . - 1  the family (Yt) is a convolution semigroup in F+(U*), continuous in the E- 
topology by Proposition 7.1(iii), so by Proposition 3.4 there is some �9 eAr(U) such 

�9 t that  Eut=e -t~ for all t_>0. Since e-t~'of=(Eut)of=E(~,[ )=E#t=e- r for all t > 0  

then �9 o f = r 
The mappings ~ H ( p t )  and (pt)~-+~ that  we have defined are clearly inverses 

of each other. 
To see that  the measures p occurring in (iv) are in a one-to-one correspondence 

with those koEAf(U) such that  r first consider any such ko. Let ~ be the 
L~vy measure of ~.  By Theorem 6.1, (7.15) holds for some aCR,  some *-additive 
function h: U--*C, and some negative definite quadratic form ~ on U, where K is 
the complex L~vy function on U determined in Proposition 7.1(x). Hence we get 
(iv) with h=ttof, q=~of, and # = u  f*. 

Conversely, suppose (iv) holds and define kg: U--*C by (7.15), where h is the 
unique *-additive function on U such that  h = h o f ,  ~ is the unique negative definite 
quadratic form on U such that  q=~, u = #  , and K is the complex L~vy function 
on U determined by Proposition 7.1(x). It follows that  ~eAf (U)  and that  u is the 
L6vy measure of ~. 

The mappings ~ - * #  and #~-*~ that  we have defined are clearly the inverses 

of each other. [] 
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8. T h e  c a s e  o f  s e m i p e r f e c t  s e m i g r o u p s  

A *-semigroup S is semiperfect if every positive definite function on S is a 
moment function. 

T h e o r e m  8.1. Suppose S is a semiperfect semigroup with a complex Lgvy 
function H. For a function ~: S---*C the following conditions are equivalent: 

(i) There is a convolution semigroup (#t) in F+(S*) such tha t / :# t=e  - tr  for 
all t~0;  

(ii) e - t C E p ( S )  for all t>0;  
(iii) r EN'(S); 
(iv) there exist a E R ,  a *-additive function h: S---*C, a negative definite quad- 

ratic form q on S, and a measure # on A(S*\{1}) such that 

(8.1) r = a+h(s)+q(s)+ f (1-a(s)+H(s, ~)) dp(a), s E S. 

Proof. (i) ~ (iv): By Proposition 3.4, (#t) is continuous in the /:-topology. 

Let U and f be as in Proposition 7.1. With L,t=p{ *-1 for t>0 ,  the family (vt) 
is a convolution semigroup in F+(U*), continuous in the/:-topology, so by Propo- 
sition 3.4 there exists q2EAf(U) such that  /:~t=e - t v  for all t. Since e- t~ 'o f= 
( / : l ] t )o f=s -re for all t > 0  then ~ o f = r  Now use (iv) from Theo- 
rem 6.1, with K the L~vy function for U determined in Proposition 7.1(x), and 
transfer the result to S using ~ =  ~o f .  

(iv) ~ (iii): ( r  P P * ) - f ( a ,  PP*)d#(a)<_O for PEgo. 
(iii) ~ (ii): Already observed. 
(ii) =~ (i): For t>0,  since S is semiperfect, we can choose At EF+(S*) such that  

/:At =e -re.  Let (ti) be a universal subnet of the identical net on (]0, co[, >_). For 
t > 0  we have, denoting by Lt/t~] the largest integer not exceeding t / t i ,  

/:(A~Y td ) = (/:~t~) Lt/td = e-Lt/t~Jt~r ~ e-re 

so by Proposition 3.1, ()~t~ [t/td ) converges in the/:-topology to some #t E F+ (S*) such 
that  /:Itt=e -re. We note that  /:/\ti:--e-tir and since 1=/ :c l  is determinate, 
by Proposition 3.1 it follows that  At~--~cl in the/:-topology. For t, u>0  and each i 
there is some ni E {0, 1} such that  [(t+u)/t iJ  = [t/ti] + [u/tiJ +ni ,  hence 

Pt+~ = lira A* L(t+~)/td = lira A4Lt/td *A*L~/td *n~ t~ t~ * At~ = #t * Pu. [] 
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9. Compar i son  wi th  the  classical  case 

For a *-semigroup S, let S denote the set of all bounded characters on S. Note 
that  la (s ) ]<l  for aES and sCS. A Lgvy function for S is a mapping L: S•  
satisfying the following requirements: 

(i) L(- ,  a) is a *-homomorphism of S into (R, +, - id) for each aES;  
(ii) L(s,.) is B(S)-measurable for each s �9 
(iii) whenever # is a Radon measure on S \{1)  satisfying 

(9.1) s e S  

then 

(9.2) / I i - a ( s ) + i L ( s ,  ~)1 d#(a) < oo, s �9 S. 

(Here (R, +, - id) denotes (R, +) with the involution x* =-x.)  That a L4vy func- 
tion exists for every *-semigroup S was shown in [10]. 

Propos i t i on  9.1. If a complex Lgvy function H for S is constructed as in the 
proof of Proposition 5.1 then L=ImHisx~ is a Ldvy function for S. 

Proof. Condition (i) is clearly fulfilled. To see that  (ii) holds, note that  for 
sCS, with H as in the proof of Proposition 5.1, we have H(s, a)=(a, Q) for some 
Q c E  and all aES*, and this function of c~, being a linear combination of functions 
of the form a~-*a(t) with tES, is in fact continuous on S*. To see that  (iii) holds, 
suppose p satisfies (9.1). For z E C  with Iz]~l  we have 

(Imz) 2 ~ 1 -  (Re z) 2 = ( l + R e  z ) ( 1 - Re  z) < 2 (1 -Re  z) 

and (1 - R e  z) 2 ~ 2 (1 -Re  z), hence I1 -z I  2 <_4(1-Re z). It follows that  

/ ll- (s)12 dp( ) <_4 / ) < c s, 

and since H is a complex L~vy function, 

/ ]l-a(s)q-H(s,a)id#(a)< oo, s eS .  

The integrability of the imaginary part shows that the imaginary part in (9.2) is 
integrable, and the integrability of the real part in (9.2) is equivalent to (9.1). [] 



152 Torben Maack Bisgaard 

Let pb(s) denote the set of all bounded positive definite functions on S, and let 
J~a(S) denote the set of all r  such that  R e r  is bounded below. For fEC  s 
and aES, define F a f E C  s by 

Faf(s)=�89 sES. 

In [2, 4.3.7, 4.3.11, and 4.3.19], it was shown that  for a *-semigroup S with a L~vy 
function L and a function r S--~C, the following conditions are equivalent: 

(i) There is a convolution semigroup (Pt) of Radon measures on S, continuous 
in the weak topology, such that  ~#t=e -re for all t_>0; 

(ii) e-tr for all t>0;  

(iii) ~pEN'Z(S); 
(iv) ~b is hermitian and (Fa--I)r for all aES; 
(v) there exist aER ,  a *-homomorphism l: S--~(R, +, - id), a function q: S-~ 

R+ satisfying 2q(s)+2q(t)=q(s+t)+q(s+t*) for s, tES, and a Radon measure # on 
S\{1},  satisfying (9.1), such that  

r = a+il(s) +q(s)+/(1-a(s)+iL(s ,  a)) dp(a), s E S. 

(Functions q as in (v) are called nonnegative Maserick quadratic forms in the termi- 
nology of [9].) The convolution semigroup (#t) in (i) and the quadruple (a, l, q, #) 
in (v) are uniquely determined by ~; the measure p is called the Ldvy measure of r 

It is not really difficult to see that  if eEAfI(S)  has L6vy measure )~ then the 
measure # on A(S*\{1})  defined by 

(9.3) #(A) = A(ANS), AEA(S*\{1}) 

is the only measure that  can occur in (iv) in Theorem 7.1. In this sense, our use of 
the term "L~vy measure" in Theorem 6.1 is in agreement with the use of that  term 
in the result quoted above. 

Condition (iv) might lead one to wonder whether in Theorem 7.1 condition (iii) 
could be replaced with the condition 

r is hermitian and -PP*r  E T/(S) for all P E go. 

The answer is "no" for the semigroup S = N g  with the identical involution. We omit 
the proof. 
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Proposition 9.2. If r S--~C satisfies the conditions of Theorem 7.1 and if 
some measure # occurring in (iv) satisfies # . ( S * \ S ) = 0  then that is the only meas- 
ure that can occur in (iv). ( We then say that p is the L6vy measure of r 

Proof. If a, h, q, and # are as in Theorem 7.1(iv) then for PEC0, 

- (q ,  P P * ) + / a ( s ) ( a ,  PP*)  d#(G), sE ~ PP~ ~ ~ ~ S, 

that is, - P P * r  where ApEF+(S*) is given by 

ApIA(s.\{1}) = <-, PP*)#,  A)({1}) = - ( q ,  PP*). 

If for one such # we have # . ( S * \ S ) = 0  then each Ap is supported by S, so the 
moment function - P P * r  is bounded and therefore determinate. For an arbitrary 
# occurring in (iv) we thus get the same family ()~P)PEEo, and we saw in the proof 
of Theorem 6.1 (without using the perfectness of S) that the family (Ap) uniquely 
determines #. [] 

We shall see in an example in the next section that it may happen that a 
measure # occurring in (iv) of Theorem 7.1 satisfies # . ( S * \ S ) = 0 ,  yet is not the 
L~vy measure of any CEAfl(S). 

10. E x a m p l e s  

Consider the semigroup S =  (No, +) with its unique involution, n* =n. The dual 
semigroup S* is identified with R by identifying x E R  with the character n,--~x n 
on S. Thus a measure on R is in F+(R)  if and only if it has moments of all orders, 
and for #EF+(R)  we have 

L # ( n ) = / x  ndp(x) ,  h E N 0 .  

The function H: No • R--*R given by H(n, x) = n ( x -  1) is a complex L~vy function, 
and since No is semiperfect ([2, 6.2.2]), it follows that a function r  is 
negative definite if and only if 

(10.1) r h E N 0  

for some a, bER, some c~0,  and some measure # on R \ { 1 }  satisfying 

f ( x -  1) 2 d#(x) < oc. (lO.2) 
J 
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For 0 < a < l  the function s~--*s ~ is negative definite on (R+, +) ([2, 6.5.15]) and 

s ~ _  a (1 e -st" dt 
r ( 1 - ~ )  - )tq77~, s e R +  

by a formula in the proof of [2, 3.2.10]. For nEN0 we thus have 

~01 n~ _ a (1 n dx 
r(1--~)  - x  )x (_ log~) l+  ~ 

which shows that the negative definite function n~-+n a on No has L~vy measure 
d x / x ( -  1+, logx) ]]0,1[. 

For l < a < 2  the function s~-+-s '~ is negative definite on R+ ([2, 6.5.15]) and 

- s "  a ( a - 1 )  ~0~ " - s t  . dt -- r ( 2 - a )  ( 1 - e  - s t ) t~ - j - j ,  s E R +  

by a formula in the proof of [2, 3.2.11]. For nEN0 we thus have 

--n a a (a - -  1) f f  dx 
- r ( 2 - a )  (1-xn+nl~ 

which shows that the negative definite function n~-+-n" on No has L6vy measure 
d x / x ( -  log x)1+~ I]0,1[. Since 

/o ~ dx ( l - x )  x ( -  log x) 1+" = oo, 

the condition (9.1) is not fulfilled, so this measure is not the Ldvy measure of any 
CEA/'I (N0). 

The function s~-+-s log s (with 0 log 0=0  by definition) is negative definite on 
R+ ([2, 6.5.16]). We have 

~01 - s ( 1 - X ) ) x ( l o g  - s l o g  s = ( 1 - x  s dXx)2, s E R+. 

To see this, verify that the two sides coincide at s = 0  and s = l  and have the same 
second derivative. In particular, 

~o 1 dx  - n l o g n =  ( 1 - x n - n ( 1 - X ) )  x ( l ogx )2 ,  n c N 0  
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which shows that  the negative definite function n H - n  log n on No has L6vy meas- 
ure dx/x(logx)21]o,l[. This is another example of a L6vy measure #, satisfying 

# . ( S * \ S ) : 0 ,  which is not the L6vy measure of any CEAfz(S). 

Another example is 

/o 1 (1 dx 
- n  ~ : - x n - n ( 1 - x ) ) - ( l _ x ) 2 ,  

k:2 
n E N 0  

which can be verified by a computat ion that  exploits the fact that  the function 
x~-* ( 1 - x  n - n ( 1  - x ) ) / ( 1  - x )  2 is a polynomial. 

Suppose r N0--*R is such that  - r  If ACF+(R) is such that  s 1 6 2  
then AIR\{1} is one of those measures # that  can occur in (10.1). Hence, if only one 
measure # can occur in (10.1) then - r  is determinate. It  can happen, however, 

that  - r  is determinate,  yet several distinct measures # can occur in (10.1). 
To see this, let a and ~- be distinct Nevanlinna extremal measures (see [1]) with 

s 1 6 3  With no restriction, assume a ( { 1 } ) : 0 .  Write 

~t : (1--X)--20"IR\{I}, V = (I--x)--2TIR\{1}, 

and r 1 6 3  Then # ~ ,  and both can occur in (10.1). For # this is clear, and for 

u it follows from the fact tha t  

( I - E J 2 r 1 6 3  - x)2 u) = - s  - x ) 2 p ) + s  

= - s 1 6 3  = --T({1}), 

a constant <0. Nevertheless, - r  is a determinate moment  function. Indeed, since 
a is Nevanlinna extremal  then ( 1 + x 2 ) - 1 ~  is determinate (by a theorem of Riesz, 
cf. [1]), and so is it, which has a bounded density with respect to ( l + x 2 ) - l a  because 

of 1 ~ supp a. 
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