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Semigroups of moment functions

Torben Maack Bisgaard

1. Introduction

If v and w are moment functions on a *-semigroup S (see definitions in Sec-
tion 2) then the pointwise product ¢w is again a moment function. It is natural
to ask for a characterization of families (¢);»¢ of moment functions such that
pr+t=@rp¢ for all r,t>0. Restricting the problem a little bit, we inquire what
functions 1: S—C are such that e~*¥ is a moment function for all ¢>0.

Functions ¢: S —C such that e~*¥ is a bounded moment function for each t>0
were characterized by Berg, Christensen, and Ressel ([2, 4.3.19]), assuming the
existence of a so-called Lévy function, which was shown by Buchwalter [10]. We
quote the result of Berg, Christensen, and Ressel in Section 9.

Buchwalter (8], in the case where S is either (N}, +) with the identical in-
volution or (N¥ xINJ +) with the involution (m,n)*=(n,m), characterized those
1:S—C such that e~* is a moment function for all t>0. In the case S=NJ,
his result (Théoréme 2) states that the following conditions are equivalent (with
notation as in Section 2):

(i) e~* is a moment function for all ¢>0;

(ii) (¢, R)<0 for all Re(&y),;

(iii) —R4y is a moment function for all R€(&).;

(iv) there exist a€R, b€RP, a nonnegative quadratic form ¢ on RP?, and a
measure A on RP\ {1} such that 3, (Xx—1)2(1472)™ dA<oo for all meN (with

r=+/_ X7 ) and
—Q/J(n)=a+<b,n)+%q(n)+/(X"-1—(n,X—l)) d\, mneNi.

(Here X"=X7* ... Xp* and (n, X)=n1 X1 +...+n, X, for X=(X1,..., X,)€ER? and
n=(ny,... ,np)ENE.)

We shall show how this result generalizes to arbitrary *-semigroups. For
semiperfect semigroups (where every positive definite function is a moment func-
tion) it turns out that (ii) can be replaced by the condition that i) be negative
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definite. The corresponding result for perfect semigroups (where each positive defi-
nite function is the moment function of a unique measure) will be used in the proof
of the general case.

2. Preliminaries

A *-semigroup is a commutative semigroup with neutral element, equipped
with an involution written s—s*. In general we write the semigroup operation
as multiplication and call the neutral element a unit, denoted by 1. Let S be a
*-semigroup. A function ¢: §—C is positive definite if

Z cjrp(s;sy) >0

,.k=1

for every choice of s1,... ,8,€5 and c1,... ,c, €C. The set of all positive definite
functions on S is denoted by P(S). Every positive definite function ¢ is hermitian
in the sense that p(s*)=@(s) for all s€S. A function ¢: S—C is a character if
o(1)=1, o(s*)=ac(s), and o(st)=0(s)o(¢) for all s,tcS. The set of all characters
on S is denoted by S*. We denote by A(S*) the smallest sigma field in S* rendering
the evaluation o o(s): S*—C measurable for each s€S. Let F, (S*) denote the
set of all measures p on A(S*) such that [ |o(s)|du(o)<oo for all s€S. Measures
in F,(S*) are bounded because 1€ S. For ueF, (S*) we define Lu: S—C by

2.1) Lu(s)= / o(s)du(o), s€S.

A function ¢: S—C is a moment function if there is some p€F,(S*) such that
Lp=¢, and a moment function ¢ is determinate if there is only one such u. Every
bounded positive definite function is a determinate moment function ([2, 4.2.5]).
The set of all moment functions on S is denoted by H(S). The *-semigroup S is
perfect if every positive definite function on S is a determinate moment function.
A *-semigroup S is perfect if it is *-divisible in the sense that for each s€ S there
exist t€ S and m,neNg with m+n>2 such that s=t™¢*" ([7, Theorem 4]).
Consider §* with the topology of pointwise convergence and let B(S*) denote
the Borel o-field. A Radon measure on S* is a measure p defined on B(S*), finite on
compact sets and such that pu(B)=sup{u(C)|C compact, CC B} for all B€B(S*).
Let E,(S*) be the set of Radon measures y on S* for which p|4(s~) belongs to
F(S*). If S is countable then S* is a Polish space, A(S*)=B(S*), every bounded
measure on B(S*) is a Radon measure, and F,(S*)=FE_(S*). The terms Radon
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moment function, Radon determinate, and Radon perfect are defined in ansalogy
with their counterparts without the qualification “Radon”, using F,{S*) instead
of F';(5*). Radon perfect semigroups were called “perfect” in [2] and in [7] where
perfect semigroups were introduced under the name of “quasi-perfect”.

A *-subsemigroup of S is a subsemigroup T, stable under the involution and
such that 1€T. For a *-subsemigroup 7" of S we define ps r: S*—T* by ps r(o)=
olr, c€S*. Then

A" =rsr(BT)),

the union extending over all countable *-subsemigroups 7" of S. If T is a *-

subsemigroup of S then pg 7 is measurable with respect to A(S*) and A(T™*), and
if p€F,(S*) then yPsT (the image of p under pgr) is in F,(T*) and L(uPsT)=
(Lp)lr-

A function v: S—C is negative definite if ¢ is hermitian and

n
Z Cjékw(SjSZ) S 0
i=1
for every choice of s1, ... ,s,€S and ¢y, ... , ¢, €C satisfying 23;1 ¢;=0. A function

¥: S—C is negative definite if and only if e=*¥ €P(S) for all t>0 ([2, 3.2.2]). The
set of all negative definite functions on S is denoted by N (S).
For s€S we define a linear operator E, in C° by

E,po(t)=y(st), teSs.

Since E,Ey=FEg, the complex linear span € of the operators E;, s€.9, is an algebra
containing the identity operator I=FE;. We consider £ with the involution P+ P*
defined by E;=FE;, scS. Let £,={P&&|P*=P} (similarly for every complex
vector space with involution) and note that £=E&,,®is,. Define a bilinear form
(-,-) on CxE& by

(o, P)=Pp(0), peC® PcE

and note that if 9€C? is hermitian then (p, P*)={p, P) for all Pe£. Write
E,={Pe€&|{o,P)>0 for all 0 € 5*},
define an ideal & in £ by
Eo={Pe&|(1,P)=0}=span{E,—I|se€ S},

write
E3 =span{PQ| P,Q € &} =span{(E,—I)(E;~1I)|s,t € S},
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and define
(‘Sg)+ = 53 NE,.

If peH(S) then (p, P)>0 for all P€E,. A function 9€C? is in P(S) if and only if
(¢, PP*)>0 for all P€£. A function ¥ €C? is in N(S) if and only if % is hermitian
and (¢, PP*) <0 for all P€&;. The latter condition implies that —PP*yeP(S) for
all Pe&.

Lemma 2.1. The operators PP*, P&, span 3.
Proof. For Q, Re&] we have QR=1 Zi:o i"(Q+i"R*)(Q*+i""R). O
Lemma 2.2. We have £, C&, if and only if S* separates points in S.

Proof. If S* does not separate points in S, choose a,b€S with a#b such that
o(a)=o(b) for all c€S*. Then z(E,—E;) €&, \Es, for z€C\ (RUIR).

Now suppose that S* does separate points. For s€S§ define x,:S*—C by
xs(o)=0(s) for c€S*. By [2, 6.1.8], the functions x5, s€9, are linearly independent.
It follows that if Q€& and (0, Q)=0 for all c€S* then Q=0. (If Q:Z?zl ¢ Es;
then (g, Q)=0 for all ¢€S* if and only if Z?zl ¢jXs; =0, which forces ¢;=0 for all
j, that is, @=0.) Now if P€£, then (o, P*)=(g, P)=(0, P), that is, (¢, P*— P)=0,
for all 0€S*, whence P*—P=0. O

3. Continuity and convolution in F_(S*)

On the set of bounded Radon measures on S*, the weak topology is defined by
the condition that a net (u;) converges to a measure y if and only if [ hdu;,— [ hdp
for every bounded continuous function h on S*. The inverse limit topology (also
called the J topology) on the set of bounded measures on A(S*) is defined by
the condition that a net (y;) converges to a measure y if and only if p2*” —pPs.T
weakly for every countable *-subsemigroup T of S.

If peF(S*) and Pe&, then (-, P)u (the measure with density (-, P) with
respect to u, where (-, P) is the function o— (g, P): * —C) is again in F,(S*),
and L({-,P)u)=PLu. The L-topology on F,(S*) is defined by the condition that
a net (u;) in F, (S*) converges to p€F, (S*) if and only if (-, PP*)u;— (-, PP*)u
in the inverse limit topology for all Pe£.

Lemma 3.1. A net (y;) in F,(S*) converges to p€F,(S*) in the L-topology
if and only if (-, Egs«)pti— (-, Ess )it in the inverse limit topology for all s€S.

Proof. Assume that the condition holds and let P€£€. Choose sp,... ,5,€S8
and ¢ ,... ,c, €C such that P:Z;;l ¢jEs;. If T is a countable *-subsemigroup of
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S containing {s1,... ,sp} then Z?Zl(-,Esjs;),ufs*TaZ;.‘:l(-,Esjs;)upSvT in the
weak topology on E,(T*), and since (-, PP*)/ Z;;l( *, By, s1) is a bounded con-
tinuous function on T* it follows that (-, PP*)ul>" — (-, PP*)uPs.T weakly. This
being so for all such T, we have (-, PP*)u; —{-, PP*}u in the inverse limit topol-

ogy. [

Proposition 3.1. If (u;) is a net in F,(S*) such that (Ly;) converges point-
wise to some p€CS then some subnet of (u;) converges in the L-topology to some
HEF, (8%) such that Lu=¢.

Proof. With no restriction, assume that (y;) is a universal net. For Pef
we have L({-, PP*)u;)=PP*Lu;—PP*p, so by [6, Proposition 3] , ((-, PP*)u;)
converges in the inverse limit topology to some pp€ F, (S*) such that Lup=PP*p.
Hence ({-,I+PP*)u;) converges in the inverse limit topology to ur+up. If P=
E?zl ¢;jEs; and if T is a countable *-subsemigroup of S containing {s1,... ,sn}
then (-, I+PP*)ut®" —(ur+pp)PST in the weak topology on E, (T*), and since

T

(14-(-,PP*))~! is a bounded continuous function on T*, it follows that u*”" —

(1+(-, PP*))"Y(us+pp)PsT weakly. This being so for all such T, we have p;—
(1+(-,PP*)) " Y(ur+pp) in the inverse limit topology, so

pr=(1+(-, PP*)) N (ur+up),

whence up={(-, PP*}uy. Now u;—py in the L-topology and Lur=II"p=¢. U

Proposition 3.2. The mapping L is continuous with respect to the L-topology
on F,(S*) and the topology of pointwise convergence on CS.

Proof. If p;—p in the L-topology on F (S*) then for all P€£ we have that
(-, PP*)pu;— (-, PP*)p in the inverse limit topology, hence

(Lpi, PP*)=({-, PP")p:)(8*) = ((-, PP*)u)(S8") = (Lp, PP¥).
That Lp;(8)={Lw;, Es)—{(Lu, Es)=Lu(s) for s€S now follows from the fact that
E, is a linear combination of operators of the form PP*, namely,

3
E,=3}Y i"(I+i"E)(I+i"Es). O

n=0

To define convolution in F(S*), let m: §*x §*—S5* denote pointwise multi-
plication, that is, m(o, 7)=0cr for o,7€S*. Then m is measurable with respect to
the o-fields A(S*)®.A(S*) in §*x5* and A(S*) in S*. To see this, note that by
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the definition of A(S*) it suffices to show that (¢, 7)—o7(s) is measurable for each
s€S. But this function is the product of the measurable functions (o, 7)—0c(s) and
(o, 7)—7(s).

For any two bounded measures y and v on .A(S*) we can now define a third,
pxv, by prrv=(u®v)™. Commutativity and associativity of this convolution fol-
lows from the corresponding properties of multiplication in §*. There is a neutral
element, €1, where 1 is the unit of §*.

If p,veF, (S*) then

/ l0(3) | d(wxv) (o) = / lo(s)] dpu(o) / lo(s) dv(0) <00, s€S,

so pxve€F, (S*). Repeating the computation without the absolute signs we get
L(pxv)(s)=Lp(s)Lr(s), or
L(pxv)=Lu-Lv.

Note that Le1=1, and that this moment function is determinate since it is bounded.

If U is another *-semigroup and if f: S—U is a *-homomorphism, that is, a
homomorphism satisfying f(1)=1 and f(s*)=f(s)* for all s€S, then the mapping
f*:U*—8* defined by f*(w)=wof for weU™ is a homomorphism, and it is easily
seen that {u/” |peF,(U*)}CF,(S*) and

()" =TT

for p,veF (U*). If T is a *-subsemigroup of S then (p*y)Ps:T=uPs.T xpPST for all
1y V€F+(S*).

Lemma 3.2. Convolution in F_(S*) is continuous in the J topology.

Proof. Suppose p; —p and v; —v in the inverse limit topology on F, (S*). If T’
is a countable *-subsemigroup of S then p}*" —uPsT and v >" —>VPST weakly in
E (T*), so (p;*1;)Ps:T =plS" s f5" — yPS.T 4 yPS.T =(pxv)PST weakly since convo-
lution in E,(T*) is continuous in the weak topology ([2, 2.3.4]). This being so for

all such T, it follows that p;*v;— p*v in the inverse limit topology. O
Proposition 3.3. Convolution in F,(S*) is continuous in the L-topology.

Proof. Suppose p;—p and v;—v in the L-topology on F,(S*); we have to
show that p;*v;— px*xv in the L-topology. By Lemma 3.1 it suffices to show that
(-, Essx ) tixv;— (-, Esg»)uxv in the inverse limit topology for each s€S. Since
(-, Essx Y pixv;=((, Ege i) *({ -, Ess~ )1} and similarly for 4 and v, the result fol-
lows from Lemma 3.2. O

A convolution semigroup in F(S*) is a family (p¢)s>0 in F(S*) such that
po=c1 and fippq=pe*pty, for all ¢, u>0.
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Proposition 3.4. A convolution semigroup (us) in F_(S*) is continuous in
the L-topology if and only if there is some YEN(S) such that Lus=e™*¥ for all
t>0.

Proof. First suppose Lus=e*¥, >0, for some eN(S). For t—0 we have
Ly —1 pointwise. Since 1 is a determinate moment function and 1=/Le;, by Propo-
sition 3.1 it follows that p;—e€1 in the L-topology as t—0. By Lemma 3.1 it suffices
to show that ((-, Ess«)u:) is continnous in the inverse limit topology for each s€S.
Note that ({-, Ese)pe) is again a convolution semigroup, continuous at 0 in the
inverse limit topology. For any countable *-subsemigroup T' of S, containing s,
we have to show that ((-, Ese+)uy> "), which is a convolution semigroup, weakly
continuous at 0, is weakly continuous. But this follows from [4, Remark (5) and
Corollary].

Now assume that (u.) is continuous. By Proposition 3.2 it follows that for s€S
the function t— Ly, (s) is a continuous multiplicative function on (R, +), mapping
0 to 1, hence of the form t—e~*¥() for some 1(s)€C. The function ¥ is in N'(5)
since e~ =Ly, €P(S) for all t>0. O

4. Quadratic forms

A complex function A on a *-semigroup S is *-additive if h is a *-homomorphism
of § into C considered with addition and complex conjugation.

Lemma 4.1. For Pc€ we have PEEZ if and only if (a+h, P)=0 for every
a€R and every *-additive function h: S—C.

Proof. The condition is necessary since £¢ is spanned by operators of the form
(Es—I)(E;—1I) with s,te S, and for those we have, if a€C and if h: §—C is addi-
tive,

(a—l—h, (ES—I)(Et—I» = (a—i—h, Est—Es—Et+I>
=a+h(st)—a—h(s)—a—h{t)+a+h(1)=0.

Now suppose the condition holds, and write P :Z?zl ¢;Es; with s;€5 and c;€C.
Since (1, P)=0 then Y7, ¢;=0, so P=3""_, ¢;(E,, —I)€&. Write X=&0/£§ and
let Qt—»@: £ — X be the quotient mapping. Since £7 is *-stable, there is a unique
involution on X such that (Q*)”:(@)* for Qe&y. Define 7y, m9: X — X, by z=
m(z)+ime(z), x€X, and note that m (x*)=m1(x), ma(z*)=—m2(z) for zeX. If £
is a real linear form on Xg, then h(s)=¢&(m ([Es—I]™)) defines a *-additive function
h on S since h(s*)=h(s)=h(s) and

h(st)—h(s)—h(t) =&(m([(Es = I E:—1)]7)) =0
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as (E;—I)(E;~I)€£§. By the assumption it follows that 0=(h, P)=)""_, c;h(s;).
Writing ¢;=a;+ib; with a;,b; €R, we thus have 0=3_"_, a;h(s;)=£(m1(Q)) where
Q=Y_10;Es;=3""_  a;j(Es;~I). In the same way we get {(m1(R))=0 where
R=Z?:1 bjE,,; so {(m1(P))=0. This being so for every linear form ¢ on Xi,, it
follows that m;(P)=0. It can be shown similarly that &(m2(P))=0 for every linear
form § on Xia; in this case, use the fact that h(s)=i{(m2([Es—1]™)) defines a *-ad-
ditive function. Thus 72(P)=0, hence P=0, that is, P€£Z. O

A guadratic form on a *-semigroup S is a hermitian function ¢: §— C satisfying
the homogeneity property g(s?)=4q(s), s€9, and the functional equation

(ET‘_I)(ES_I)(Et_I)q:07 ’/‘,S,tES.

Note that this equation is equivalent to PQRq=0 for all P,Q, Re&;. If q is a qua-
dratic form, then by [11, Theorem 3], from the functional equation it follows that
there is a unique triple (a, h, B) such that a€C, h: §—C is additive, B: SxS—C
is symmetric and biadditive, and ¢(s)=a+h(s)+B(s,s) for s€S. From the homo-
geneity of ¢ it easily follows that a=0 and h=0, so

q(s)=B(s,s), seS.

From the fact that ¢ is hermitian, by the uniqueness statement in [11, Theorem 3]

it follows that B(s*,t*)=B(s,t) for all s,t€S. Quadratic forms as defined here are
the same as (2-homogeneous) quadratic forms in the sense of [9].

Proposition 4.1. Let S be a *-semigroup, write X =E&,/EZ, let P—P:E—X
be the quotient mapping, and define j:S—X by j(s)=(E;—I)~ for s€S. Then j
is *-additive and

(i) for each additive function h: S—C there is a unique linear form & on X
such that h=E£-7;

(i) for each quadratic form g on S there is a unique sesquilinear form {-,-)
on X such that

a(s) =—(j(s),j(s%)), s€S.

Moreover, {(x*,y*)={y,z)={(x,y) for all x,yeX. Finally, q is negative definite if
and only if (x,z)>0 for all ze X.

Proof. We consider X with the unique involution that makes the mapping
P+ P *-preserving. Then j is *-preserving; and j is additive since

3(st)—j(s)=3(t) = (B —1)(E,—1))~ =0
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because of (E,—I)(Ey—I)c&Z.

(i): If h: S—C is additive then P— (h, P) is a linear form on & which vanishes
on £2. Hence there is a unique linear form £ on X such that (h, P)=¢ (P) for all
Pe&y, whence h(s)={(h, E;—I)=£(j(s)) for s€8§.

(i): Let B be the unique symmetric biadditive function on § such that ¢(s)=
B(s,s), s€S. For t€S the function B(-,t) is additive, so by (i} there is a unique
linear form & on X such that

B(s,t)=&(j(s)), se€S.

For r,t€S the linear form &,+& on X satisfies (&§.+&)(j(s))=B(s,r)+B(s,t)=
B(s,rt) for all s€S, and by the uniqueness of & it follows that &.;=¢&.+&. Thus,
for z€ X the mapping t—&(z): S—C is additive, so there is a unique linear form
7, on X such that

&(z) =n.(§(t)), teS.

For z,y€ X and «a, B€C, the linear form an, +0n, on X satisfies (an, +0n,)(4(t))=
ay(z)+ B¢ (y) =& (ax+By) for all te S, and by the uniqueness of a4 g, it follows
that nagtsy=0ns+0n,. Thus (z,y)—7,(y) is a bilinear form on X. Define

(1’,11):_%(.@*), xayeX'

Then (-,-) is a sesquilinear form and

B(S t) gt(](s)) 773(3)( (t))_ ((8)7j(t*)>’ 37tGS'

In particular, g(s)=—(j(s),7(s*)) for s€S. Since B(s,t)=B(t,s), and since j(S)
spans X, then (a: ,y*)=(y,x); since B(s*,t*)=B(s,t) then (z*,y*)=(z,y). For
P= Zz— Cl( I)Egg,

(g, PP") cick(q(sisk) —q(s:) —q(sk)—q(1))

1

I
NE

o
Il

i

ciCk(B(sis%, i5k)— B(si, 5:) — B(sf, )+ B(1, 1))
1

o
Il

Il

1‘7

=2 clckB(s,,s,c )=-2 Z citr{j(si),j(sk)) = —2(z, )
=1 i,k=1

??‘

’L

where z=3 ", ¢ij (s;)=P. This shows that g is negative definite if and only if
(x,z)>0 for all ze X. O
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Proposition 4.2. If g is a negative definite quadratic form on a *-semigroup
S then e M eH(S).

Proof. By Proposition 4.1 there is a nonnegative sesquilinear form (-,-) on
X=E/EZ such that (z*,y*)=(y,z) for all z,yeX and g(s)=—(j(s),7(s*)), s€8,
with j: §—X as in Proposition 4.1. Since j is a *-homomorphism, it suffices to
show that z—ef**) €H(X). Since X is *-divisible, hence perfect, it suffices to
show z—el®*)cP(X). Tt suffices to show that this function is positive defi-
nite on each finite-dimensional linear subspace of X, so we may as well assume
that X is of finite dimension. Write Z=X/{z€ X |(z,z)=0} and consider Z with
the unique involution rendering the quotient mapping *-preserving. (The space
{zeX|{z,z)=0} is *-stable because (z*,z*)={(z,z).) Since the quotient mapping
is a *-homomorphism, it suffices to show that the function z—e'**") is positive
definite on Z, where (-,-) is the inner product on Z canonically associated with
the sesquilinear form on X denoted by the same symbol. Choose a basis (eq , ... ,ey)
of Zs, over R. Then (e;) is basis of Z over C, and for z=),_, zkex€Z we
have z*=);_, Zrex, hence (z,2*)=37_, 2%, so we have to show that the func-
tion (21, ... , zn)— 115y e is positive definite on (C™, +). Since a pointwise prod-
uct of positive definite functions is again positive definite ([2, 3.1.12]), it suffices
to show that zi-e® is positive definite on (C,+). This amounts to showing
that z——22cN(C). But if 21, ... ,z,€C and ¢y, ... , ¢, €C with > €;=0 then
Zzlkzl CiEk(Zi+2k)2:EZLk:1 Ciék(ziz—‘rZZiZk +Z£)=2IZ£1 CiZiIQZO. O

5. The complex Lévy function
If S is a *-semigroup, define a o-ring A(S*\{1}) in S*\{1} by
AS™\{1}) ={Ac A(5")|1¢ A}.
A complex Lévy function for S is a function H: Sx5* —C satisfying
(i) H(-,0) is *-additive for each oc€S5*;
(ii) H(s,-) is A(S*)-measurable for each s€S;
(iii) if p is a measure on A(S*\{1}) satisfying
(5.1) / (0, PP*) du(0) <00, P€&,
then

(5.2) / ll—o(s)+ H(s, )| du(c) <00, scS.
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Since the operators E;—I, s€S, span & then (5.1) is equivalent to

/\1—0(s)|2dp(o) <oo, sES.

Proposition 5.1. For every *-semigroup there is a complex Lévy function.

Proof. Choose a linear complement D of (£2)s, in the real vector space &,.
Then C=D+iD is a *-stable linear complement of £7 in £. Define m: £—C by

n(P+Q)=Q, Peé&, QecC
and note that 7 is *-preserving. Now let
H(s,0)={0o,n(E;—-1I)), s€8, oc€S".
For o€ S5* the function H(-,a) is clearly hermitian, and
H(st,0)—H(s,0)—H(t,0)={0,n(Ess—Es—E;+1I))=0

since (Es—I)(E;—I)€E3=kern. Property (ii) follows from the fact that for all
Q€& the function (-, Q) is measurable, being a linear combination of functions of
the form o> o(s) with s€S. Finally, if u satisfies (5.1) and s€S then

/|1—a(s)+H(s,a)|d,u(o):/\(J,I—ES+W(Est))ldp<oo

since m(R)—R€e&Z for all REE, hence in particular for R=E,—1. O

6. The case of perfect semigroups

Theorem 6.1. Suppose S is a perfect semigroup with a complex Lévy func-
tion H. For a function ¥: S—C, the following conditions are equivalent:

(i) There is a convolution semigroup {us) in F,(S*) such that Lus=e ¥ for
all t>0;

(il) e~ eP(S) for all t>0;

(i) HEN(S);

(iv) there ezist a€R, a *-additive function h: S—C, a negative definite quad-
ratic form q on S, and a measure p on A(S*\{1}) such that

(6.1) W(s) = a+h(s)+a(s)+ / (1—o(s)+H(s,0)) du(c), seS.
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Assuming that these conditions hold, the convolution semigroup () in (i) is
uniquely determined by v and is continuous in the L-topology, and the objects a, h,
q, i in (iv) are uniquely determined by . (We call i the Lévy measure of 1.)

Proof. (i) = (ii): Trivial.

(ii) = (i): For t>0, since S is perfect, there is a unique pi€F,(S*) such
that Luz=e . For t,u>0 we have L(us*pty)=Lps-Lpy=e We W=~ (t+1)¥
and by the uniqueness of pi;1,, it follows that piy4y=pe* . So (i:) is a convolution
semigroup. The continuity of (u;) follows from Proposition 3.4.

(ii) & (iii): Already observed.

(iii) = (iv): For Pe&; we have —PP*¢eP(S), and since S is perfect, there is
a unique Ap€F, (§*) such that —PP*y=LAp. For P,Q€&; we have

L, QQ"\p)=QQ*LAp=—PP*QQ*Y=PP*LAg=L({-,PP*))\g),
and since S is perfect, it follows that
(62) <':QQ*>>‘P:<'aPP*>’\Q'

Write Gp={c€5*|(0, P)#0} for P€€; and define a measure pp on A(Gp)=
{A€ A(S*)|ACGp} by

(6.3) up={-,PP*) " (Ap|ap).

By (6.2),
{‘LPIGPOGQ:“QlG‘DﬂGQ5 P)Q€£O~

We wish to define a measure p on A(S*\{1}) such that
(6.4) (s PP")p=Xplas\apy PE&o

For A€ A(S*\{1}) there is a countable *-subsemigroup T'={ty,t2,...} of S, such
that each character on T extends to a character on S ([3, Theorem 3]), and some
BeB(T*) such that A:pg’lT(B), Since 1¢ A then 1¢B, so AClJ.>, Gp, where
P,=E; —I1€&. It is now clear that p can be defined by

plep =pp, Pe&.

We now have p|g,=pp={-,PP*)"1(Ap|gp) for P€&. To get (6.4), it remains
to be shown that Ap(A\Gp)=0 for A€ A(S*\{1}). Since A is contained in the
union of countably many Gq, it suffices to show Ap(Ggo\Gp)=0 for Qc&,. But
this follows from (6.2).
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Since [(o, PP*)du(c)<oo for all P&, we can define ¢,: §—C by
vu(s) = [(A=0(s)+H(5.0) duo), s€5.
For Pe&y we have
PP-)(5) == [ o(s)drn(o)+ [ (0, PP)o(s) dulo) = —Xp (1))

a constant. Hence PP*R(y)—1,)=0 for all P, R€&, and since { PP*|Pc&,} spans
&2 (Lemma 2.1), it follows that PQR(y—1,)=0 for all P,Q, R€&,. By [11, Theo-
rem 3] it follows that

1/1—% =a+h+q

where a€C, h: S—C is additive, and ¢ is the diagonal of a symmetric biadditive

function on S. Since ¥—1),, is hermitian then a€R, h is *-additive, and ¢ is a quad-

ratic form. Since PP*q=PP*(¢—1,)=—Ap({1})<0 for P€&, then g is negative

definite. The triple (a, h, q) is uniquely determined according to [11, Theorem 3].
(iv) = (ifi): (¢, PP*)=(q, PP*}— [ (0, PP*) dpu(cr)<0 for P€&,. O

7. The case of arbitrary semigroups

Lemma 7.1. For each n€{1,3,5,7,...} there exist constants Cy, Cs, and Cs
such that for all zeC,

(i) 1—-2|<Ci|1—z]2|"7Y|;

(ii) |n—1—nRez+Rez|z|"_1|§02|1—z|z|"_1|2;

(iii) |Im z—Im 2|2|"~| <Ca|1—z|z"1)%.

Proof. (i): If C;>1 then the inequality holds for all z with |z| large enough.
The function 1—z|z|"~! has no other zero than 1 since if z|z|"~1=1 then 2>0,
hence 2"=1, so z=1. It therefore suffices to show

1—z|z|* !

—Z

lim inf > 0.

z—1

With z=1+4x+iy we have

(n=1)/2
. —-1)/2
1—z|z|" ' =1—(1+z+iy) E ((n k)/ )(1+x)"‘1_2ky2k,
k=0
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and since y?/|1—z|—0, it suffices to show

1—(1+z+iy)(1+z)" 1

- >0.
T+uy

lim inf
(z,9)—(0,0)

Since (14+2)"'="72s ("7 1)z* and 22/(z+iy)—0, it suffices to show

0< liminf 1—(1+x+zy)(.l+(n—l):c) = liminf n:c—i—zy—l—(?jL—l)zxy
(I»y)_’(()’O) x+ly (E,y)—)(o,o) x+7’y
— liminf |22
(z,9)—(0,0)[ T2y

which is true since n?z?+4y?>x%+y2.
(if): For any Cy>0, the inequality holds for all z with |z| large enough. It
therefore suffices to show

n—1-nRez+Rez|z|"!
(22

lim sup < 00.

z—1

By (i) it suffices to show

n—1—nRez+Rez|z|""!
(1-2)?

lim sup < 0.

z—1

With z=14xz+iy we have

(n-1)/2 (n—1)/2 .
n—1-nRez+Rez|s|"" = —1-na+(1+z) >~ ( k )(1+w)"‘1‘2’“y2,
k=0

and since y?<|1—z|?, it suffices to show

(14z)"—1—nx

lim sup SR

(z,y)—(0,0)

< 00,

but this follows from (1+z)" —1—nz=3_;_, (7)z".
(iii): For any C3>0, the inequality holds for all z with |z| large enough. It
therefore suffices to show

Im z—Im 2|z~ !

(A=A 7

< 00.

lim sup
z—1
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By (i) it suffices to show

Im z—Im z]z|"~}
(1-2)?

lim sup
z—1

< 00Q.

With z=1+4+x+iy we have

(n—1)/2
n—1_ _ (n—1)/2 n—1-2k, 2k _
Im z|2| Imz=y Z k (1+z) Yyt -y,
k=0

and since y?<|1—2|?, it suffices to show

y(1+z)" -y

lim sup o

(z,y)—(0,0)

|<co

But this follows from y(1+z)" ' —y=3"r_1 (" )z*y. O

Proposition 7.1. For every *-semigroup S there are a *-semigroup U and a
*_homomorphism f: S—U such that, denoting by F, Fo, F¢, and (F&), the objects
that are to U what &, &, £F, and (EE), are to S, and defining a linear mapping
F:EF by F(E;)=Ey) for s€S,

(i) U is perfect;

(i) f*:U*—8* is an isomorphism between the measurable spaces (U*, A(U*))
and (S*, A(S*));

(iii) vvf": F (U*)—F,.(5*) is a homeomorphism with respect to the L-to-
pologzes;

(iv) for each *-additive function h: S—C there is a unique *-additive function
h:U—C such that h=ho f;

(v) for Peker F we have {P,—P}C(£2),;

(vi) F((£8)+)=(F8)+NF(E);
(vii) (fz)sa—‘F((go)sa) (‘7:3)+§
(vili) Fo=F(Eo)+FE;

(ix) F ( )+FG;

(x) if H is a complex Lévy function for S, there is a unique complex Lévy
function K for U such that K(f(s),w)=H(s, f*(w)) for all s€S and weU*;

(xi) for each negative definite quadratic form q on S there is a unique negative
definite quadratic form § on U such that g=qdo f.

Proof. For ne{1,3,5,7,...}, define f,: S—C5" by

fu(s)(@)=a(s)lo(s)|Y/"Y, seS, oS
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with 0|0|'/?~1=0 by definition. It is shown in the proof of [6, Proposition 6], that
the set
v=" U 0,

ne{1,3,5,7,...}

with pointwise multiplication and complex conjugation, is a perfect semigroup, that
the mapping j: S*—U* defined by

j(@)(w)=ulo), oc€S*, uelU

is measurable with respect to .A(S*) and A(U*), that g—u’ maps F,(S*) into
F,(U*), that the mapping f=f1 is a *-homomorphism, and that f*-j is the identical
mapping on S*.

(ii): It remains to be shown that jo f* is the identical mapping on U*, that is,

(7.1) w(f*(w))=wu), welU*, uel.
We first note that for s€ S and n€{1,3,5,7, ...},
(7.2) if u= f,(s) then o(s) =u(o)|u(c)|""! for o € S*;

this is an immediate consequence of the definition of f,,. Concerning (7.1), choosing
seS and ne{l1,3,5,7,...} such that u=f,,(s), we have u(ua)™~1/2=f(s) by (7.2),
hence, using (7.2) again,

w()w()|* " =w(f(s) = *W)(s) =u(f*W)lu(f* @)"

and (7.1) follows.

(iii): Let us show that p—p’: F,(S*)—F, (U*) is continuous with respect to
the L-topologies. Suppose (u;) is a net in F, (S*) converging in the L-topology to
some p€F, (5*); we have to show that /,Lg — 7 in the L-topology on F (U*). By
Lemma 3.1 it suffices to show (-, E,a) ,ug —{+, Eyz)i’ in the inverse limit topology
for each u€U, and this amounts to showing

(7.3) (-1 Bug) ()P — (-, Eug) (W?)P"V weakly

(3

for every countable *-subsemigroup V of U containing u.
Choose s€S and n€{1,3,5,7,...} such that u= f,(s), then choose a countable
*-subsemigroup 7' of S such that s€T and

ve U W@

me{1,3,5,7,...}
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and furthermore such that every character on T extends to a character on § (which is
possible by {3, Theorem 3}). Since p;—p in the L-topology then (14~ , Ese ) s —
(1+(-, Ess~))p in the inverse limit topology, hence

(7.4) (L4+(-, Bos= )y — (14, Bgs) P57 weakly.
We wish to define a mapping k: T* — V™ such that
(7.5) kops,T =pu,vej,

that is, k(o|7)(v)=v(o) for c€S5* and veV. Given 7€T*, we can choose 0€S5*
such that r=c|p, and then we must have

k(t)(v)=v(o), veV.
The right-hand side is independent of the choice of o since, choosing t€T and
me{1,3,5,7,...} such that v=7,,(¢), we have
v(o)=o(®)|e @)V =7(®)|r(t)[V" .

This shows that k is well-defined and also that & is continuous. From (7.4) it now
follows, using the fact that (-, Ese)=(-, Ef(ss»)) ok, that

(1+< T Ef(ss*)>)(#fs’T)k - (1+< ] Ef(ss*)))(g“’ps"r)k Wea’kly’
which by (7.5) is equivalent to

A+ (-, Epssry)) )P0V = (14, Ep(ser))) (P2 weakly,

and then (7.3) follows from the fact that (-, Eug)/(1+(:, Ef(ss+))) is a bounded
continuous function on V*.

(iv): If ueU has the form u=f,(s) with s€ S and n€{1,3,5,7, ...} then, since
F(s)=uD/25(=D/2 we must have h(s)=1(n+1)h(u)+ 3 (n—1)h(z), that is,

(7.6) Re h(u) = % Reh(s), Imh(u)=Imh(s).

We have to show that this is independent of the choice of s and n. Suppose r&€5 and
me{1,3,5,7,...} are another pair such that u=f,,(r). For >0 we have e**€S*,
so using (7.2),

et((m+1)h(s)/2+(m—1)71.(3)/2) — eth(s) |eth(s)|m—1
n— _ -1
=u(e™) u(e™)" ule™)u(e™)" ™
:u(eth)lu(eth)‘mn—l

= u(e™)u(e™) ™ u(e™)u(e) ™"

—_ eth(r) \eth(r) ln—l — et((n+1)h(-r)/2+(n—1)ﬁ(r)/2).
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This being so for all £>0, it follows that
L(m+1)h(s)+3(m—1)h(s) = L (n+1)h(r)+ 3 (n—1)h(r),

whence mRe h(s)=nReh(r) and Im h(s)=Im h(r), as desired. Thus h is well-de-
fined. Since u*=f,(s*), then nReh(u*)=Reh(s*)=Reh(s)=nReh(u) and (simi-
larly) Im A(u*)=—Im h(u), so h is *-preserving.

Given u,v€U, choose s,7€S and n,me{1,3,5,7,...} such that u=f,(s) and
v=Fm(r). Then uv=fn,m(q) where g=sr(ss*)(m=1/2(pp*)(n=1/2 5o

Re h(uv) = % Re h(q) = % (mRe h(s)-+n Re h(r)) = Re(h(w) +h(v))

and (similarly) Im A(uv)=Im(h(u)+h(v)), which shows that A is additive.

(v): Suppose Pcker F. For weU* we have (f*(w),P)=(w,F(P))=0, and
since f* maps U* onto S*, this shows (o, P)=0 for all € S*, that is, {P,—P}C¢&..
If acR and if h: S—C is *-additive, choosing A as in (iv) we have (a+h, P)=
((a+h)of, Py=(a+h, F(P))=0. This being so for all such a and k, by Lemma 4.1
it follows that P€£Z, hence also —P€£3.

(vi): The left-hand side is clearly contained in the right-hand side. Now suppose
Qe(F2) . ,NF(E) and choose PEE such that Q=F(P). If a€R and if h: S—C is
*_additive, choosing h as in (iv) we have

{a+h, P)={(a+h)of, P)=(a+h, F(P)) = (a+h,Q)=0

since Q€F2. This being so for all such @ and h, by Lemma 4.1 it follows that P €&l
For welU* we have (f*(w), P)={(w, F(P))=(w,@)>0, and since f* maps U* onto
S* it follows that P€&,. Thus P<(EZ),, which shows Qe F((€2).).

(vii): We note that U™ separates points in U. Indeed, if u,v€U are such that
w(u)=w(v) for all weU* then, using the identity (7.1) and the fact that f* maps
U* onto S*, we get u{o)=v(o) for all c€5*, that is, u=v. By Lemma 2.2 it follows
that F, C Fea, hence (F2), C(F§)sa, which shows that the right-hand side in (vii) is
contained in the left-hand side. To show the converse inclusion, it suffices to show
that for each Q€FZ there is some PEF((E§)sa) such that |{w, Q)|<(w, P) for all
weU*, since for Q€ (FZ)sa we then have Q=—P+(Q+P) with —P€F((£2)sa) and
Q+Pc(F3),. It suffices to consider the case Q=(E, —I)(E,—1I) with u,veU since
such @ span F¢. Since

w, (By=I)(Ey—I))| = [(w, Bu—I){w, Bu —I)| < 3(|{w, Eu —D)*+|(w, B, —I)?),
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it suffices to consider the case v=u*. Choose s€S and ne{1,3,5,7,...} such that
u=fn(s). By Lemma 7.1(i) applied to z=a(s)|o(s)|'/*~1, for weU* and o= f*(w)€
S* we have
|, Bu= D = o)~ 17 = |u(0) 1 = o (s) o ()| /" -1
<Cilo(s) -1 =Cil(o, Bs—1I)|* = Ci [{w, F(E,—D))|*
which shows that P=F((E;—I)(Es—1I)) has the required property.

(viii): Tt suffices to show E,—I€F(£)+F§ for ueU, since such operators
span Fg. Let us show

(7.7) (n—1)I+i(n+1)Ef)— 2 (n—1)Ef(se)—nEy € F§

if s€9, ne{1,3,5,7,...}, and u=f,(s). Let P be the operator in (7.7). The sum
of the coefficients is zero, so {a, P)=0 for a€R. If h:U—C is *-additive then

(h, P) = (n—1)h(1)+ 3 (n+D)A(f(s)) — $ (n—D)A(f () —nh(u)
=Reh(f(s))+nImh(f(s))—nh(u)=0
by (7.6). By Lemma 4.1 it follows that P€FZ. It thus suffices to show
—I+%(7’L+1)Ef(s) — %(n—l)Ef(s*) € F(go);

but this operator is F(Q) where Q=—I+2(n+1)E,—§(n—1)E,- €&.
(ix): It suffices to show E,€F(E)+F¢ for ueU. But this follows from (7.7).
(x): For 0€8* let h, be the *-additive function s—H(s,o) on S and let he be
the unique *-additive function on U such that h,=hyof. Since K(-,w) has to be
*_additive for weU*, we must have

K(u,w) :Ef*(w), uel, welU".

To see that ww K(u,w) is measurable for u€U, since f* is measurable it suffices
to show that o+sh,(u) is measurable on S*. Choosing s€S and ne{1,3,5,7,...}
such that u=f,(s), by (7.6) we have

ho(u) = %Re ho(s)+ilmh,(s) = %ReH(s,a)-I—iImH(s,o),

so the measurability follows from that of o— H (s, o).
Now let v be a measure on U* such that

(7.8) /(w,PP*)dV(w) <oo, PeFy;
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we have to show
/|1—w(u)+K(u,w)|dV(w)<oo

for ueU. Choose s€S and ne{1,3,5,7,...} such that u=f,(s). We then have to
show

(7.9) /’1—0(3)|a(s)|1/n_1+% Re H(s,o)+iIm H(s,0)|du(a) < oo

where pu=v7". Since F(£)CFo, by (7.8) we have [(o, QQ*)du(c)<oo for Qe&y,
$0

(7.10) / =0 (s)+H(s, 0| du(o) < 0.

To show that the real part of the integrand in (7.9) is integrable, since the real
part of the integrand in (7.10) is integrable, it suffices to show

/|n—1—nRe o(s)|o(s)[" 1 +Re o(s)| du(o) < cc.
Since F;—I€&y, we have
(7.11) /|1—0’(8)'2 du(o) < o0,

so it suffices to show [n—1—nRew|w|}/"~! —~Rew|<C|1—w|? for some C>0 and
all weC, which is equivalent to Lemma 7.1(ii).

To show that the imaginary part of the integrand in (7.9) is integrable, since
the imaginary part of the integrand in (7.10) is integrable, it suffices to show

/’Im o(s)—Im a(s)la(s)[l/"_l‘ dp(o) < .

By (7.11) it suffices to show |Im w—Im w|w|}/"~!| <C|1—w|? for some C'>0 and all
weC, which is equivalent to Lemma 7.1(iii).

(xi): Write X=E&/E2, let P—P:E—X be the quotient mapping, and define
j:8—X by j(s)=(E;—I)~, s€S. By Proposition 4.1 there is a unique nonnegative
sesquilinear form (-, ) on X such that g(s)=—(j(s),j(s*)) for all s€S. Write
Z=Fy/F2, let Q—Q: Fo—Z be the quotient mapping, and define k:U—Z by
k(u)=(E,—I)~, ueU. By Proposition 4.1, existence and uniqueness of § as claimed
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is equivalent to the existence and uniqueness of a sesquilinear form (-,-) on Z such
that

(7.12) (4(s),3(5")) = (k(f()), k(£ (5")))-

Since P— F(P)~: Ey— Z vanishes on &2, there is a unique linear mapping m: X —Z
(clearly *-preserving) such that

F(P)~=m(P), Pec&,.
If (7.12) holds then, because of
k(f(s))= (B¢ —1)~ = (F(E,—1))” =m((Es—1)~) =m(j(s)),

it follows that :
(3(8),4(s%)) = (m(j(s)),m(j(s%))), s€S.

Then [z, y]=(m(z),m(y))—(z,y) defines a sesquilinear form [-,-] on X satisfying
[7(s),4(s*)]=0 for all s€S, and by the uniqueness statement of Proposition 4.1 it
follows that [, -] is identically zero, that is,

(7.13) (@,y) = (m(z),m(y)), =zyeX.

Since m(X)=Z (by (viii)), this shows the uniqueness in (7.12). If only we have
(7.13) then (7.12) follows. Since the sesquilinear form (-,-) on X is nonnegative, it
suffices to show (z,z)=0 for x€ker m. If z€kerm then z=P for some P€&, with
F(P)~=0, that is, F(P)€F(&)NJFZ. But this implies P€£Z (so z=0) since we
saw in the proof of (vi) that F~1(F3)c&2. O

Theorem 7.1. Suppose S is a *-semigroup with a complex Lévy function H.
For a function 1: S—C, the following conditions are equivalent:

(i) There is a convolution semigroup (u;) in F.(S*) such that Luz=e~*¥ for
all t>0;

(i) e ¥ eH(S) for all t>0;

(iii) 1 is hermitian and (v, P)<0 for all P€(&3);

(iv) there exist a€R, a *-additive function h: S—C, a negative definite quad-
ratic form q on S, and a measure g on A(S*\{1}) such that

(714)  $(s)=a+h(s)+a(s)+ / (1= (s)+ H(s, o)) du(s), s€S.
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The convolution semigroups occurring in (i) are all continuous in the L-topology.
There is a one-to-one correspondence between the convolution semigroups () oc-
curring in (i) and the measures p occurring in (iv), each set being in a one-to-one
correspondence with the set of those WeN(U) such that v=Uof, where U and f
are as tn Proposition 7.1.

Proof. (i) = (ii): Trivial.

(i) = (iii): For s€S and t>0 we have e~t¥(s") =¢~#¥(s) gince e~¥, being a
moment function, is hermitian. This being so for all >0, it follows that ¥(s*)=
¥(s). For P€(EZ), we have (1, P)=0 since P€&y and (e~*¥, P)>0 since P€£, and
e ™ eH(S). It follows that

1
(¢, P) = lim ;(1—6_“",P> <0.

(iif) = (iv): Let U, f, F, etc., and F be as in Proposition 7.1. If Pcker F
then by Proposition 7.1(v) we have {P,—P}C(&2),, and by (iii) it follows that
(1, Py=0. Hence there is a unique linear form Lg on F(&), clearly hermitian, such
that

(¥, P)=Lo(F(P)), Pek&.

Evidently Lo<0 on F((£2),). By Proposition 7.1(vi), this means that Ly<0 on
(F§)+NF(E).

We wish to extend Lo|(rznr(¢)),, to a real linear form on (F2)sa which is <0 on
(F2),. By [2, 1.2.7], this can be done if (FZNF(E))sa+ (F2).=(F2)sa- The proof
of Proposition 7.1(vi) shows that FZNF(E)=F(E2), so the condition follows from
F((E3)sa) +(F2),=(F2)sa, which is true by Proposition 7.1(vii).

Thus there is a real linear form L’ on (F§)sa which extends Lol FEF(E))ss 20
is <0 on (FZ).. Let L; be the unique hermitian complex linear form on F2 which
extends L’. Since Lg| F2nF(g) and Lq| F2nF(¢) are both hermitian and coincide on
(FENF(E))sa, they are equal. It follows that there is a unique linear form L on
F(£)+F2 which extends both Lo and L;. Clearly L is hermitian and L<0 on
(F&),. By Proposition 7.1(ix), L is defined on all of F. Defining ¥:U—C by
U(u)=L(E,), u€U, we have Y=Tof, ¥ is hermitian, and (¥, PP*)=L(PP*)<0
for PeFy, that is, TeN (V).

By Theorem 6.1 it now follows that there exist unique a, iL, d, and v such that
a€R, h is a *-additive function on U, § is a negative definite quadratic form on U,
v is a measure on A(U*\{1}), and

(7.15) \Il(u):a—!—h(u)—l—(j(u)+/(1—w(u)+K(u,w)) dv(w), welU
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where K is the complex Lévy function for U determined in Proposition 7.1(x). From
the latter equation we get (iv) with h=hof, g=go f, and u=v'".

(iv) = (iil): For P€(£2), we have (v, P)=(q, P)— [ (o, P) du(c), so it suffices
to show (g, P)<0. Since g is negative definite, e~ €H(S) for >0 by Proposi-
tion 4.2, so

i 1 —tq
<q,P>—}£I(1)%-(1—e , P) <0.

(iii) = (i): As in the proof of (iii) = (iv) there is some ¥YeN(U) such that
=Wo f. By Theorem 6.1 there is a unique convolution semigroup (1) in F, (U*)
such that Lv;=e~tY for all £>0. With /J,tzlltf* we then have p, € F, (S*), (u;) is a
convolution semigroup, and Lu;=e~*¥ for all ¢>0.

The convolution semigroups occurring in (i) are continuous in the L-topology
by Proposition 3.4.

To see that the convolution semigroups (p) occurring in (i) are in a one-to-one
correspondence with those ¥ €N (U) such that =W f, first let such a ¥ be given.
Let (1) be the unique convolution semigroup in F, (U*) such that Lyy=e~t¥ for
all t>0 (cf. Theorem 6.1). Define pe=v] " for t>0. Then (i) is a convolution
semigroup in F,(S*) and Lu;=e Yo f=€e~*¥ for all t>0.

Conversely, let (1;) be a convolution semigroup in F, (S*) such that Ly, =e~¥
for all £>0. By Proposition 3.4, (1) is continuous in the L-topology. With 1=
7 *_1, the family (¢;) is a convolution semigroup in F, (U*), continuous in the £-
topology by Proposition 7.1(iii), so by Proposition 3.4 there is some ¥ €N (U) such
that Ly, =e~tY for all t>0. Since e Vo f=(L1y)o f=L(v{ )=Lpz=e* for all >0
then Wo f=1).

The mappings ¥ (u;) and () — ¥ that we have defined are clearly inverses
of each other.

To see that the measures p occurring in (iv) are in a one-to-one correspondence
with those WeN (U) such that ¢y=%o f, first consider any such ¥. Let v be the
Lévy measure of ¥. By Theorem 6.1, (7.15) holds for some a€R, some *-additive
function h:U—C, and some negative definite quadratic form § on U, where K is
the complex Lévy function on U determined in Proposition 7.1(x). Hence we get
(iv) with h=he f, g=gof, and p=v{".

Conversely, suppose (iv) holds and define ¥: U—C by (7.15), where h is the
unique *-additive function on U such that h=he f, § is the unique negative definite
quadratic form on U such that ¢=¢, v=pu' *_1, and K is the complex Lévy function
on U determined by Proposition 7.1(x). It follows that ¥€N(U) and that v is the
Lévy measure of WU,

The mappings ¥+ and p— U that we have defined are clearly the inverses
of each other. O
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8. The case of semiperfect semigroups

A *-semigroup S is semiperfect if every positive definite function on S is a
moment function.

Theorem 8.1. Suppose S is a semiperfect semigroup with a complexr Lévy
function H. For a function v: S—C the following conditions are equivalent:

(i) There is a convolution semigroup (u:) in F.(S*) such that Lyus=e ™ for
all t>0;

(i) e eP(S) for all t>0;

(iii) YeN(S);

(iv) there exist a€R, a *-additive function h: S—C, a negative definite quad-
ratic form q on S, and a measure p on A(S*\{1}) such that

(8.1) ¥(s) = a+h(s)+q(s) + / (1=0(s)+H(s,0)) du(o), s€S.

Proof. (i) = (iv): By Proposition 3.4, (u:) is continuous in the L-topology.
Let U and f be as in Proposition 7.1. With vy=p] " for t>0, the family (1)
is a convolution semigroup in F, (U*), continuous in the L-topology, so by Propo-
sition 3.4 there exists WeN(U) such that Liy,=e~ ¥ for all t. Since e Vo f=
(llut)of:[:(utf*):ﬁut:e_w for all t>0 then ¥of=1¢. Now use (iv) from Theo-
rem 6.1, with K the Lévy function for U determined in Proposition 7.1(x), and
transfer the result to S using yy=Vof.

(iv) = (iii): (¢, PP*)=(q, PP*)— [{(0, PP*)du(c)<0 for P€&,.

(iii) = (ii): Already observed.

(if) = (i): For ¢>0, since S is semiperfect, we can choose A, € F, (S*) such that
LA\=e . Let (¢;) be a universal subnet of the identical net on (]0, oo[, >). For
t>0 we have, denoting by |t/t;] the largest integer not exceeding t/t;,

ﬁ(}\:‘ilt/td) =(LAs,) [t/t:] — g—Lt/taltsp _, e—h/J7

so by Proposition 3.1, ()\Ztt/ t:) ) converges in the £-topology to some y, € F, (S*) such
that Lu;=e *¥. We note that £);, =e *¥—1, and since 1=Le; is determinate,
by Proposition 3.1 it follows that A;, —¢; in the L-topology. For ¢,4>0 and each ¢
there is some n;€{0, 1} such that |(¢+u)/t;|={t/t:|+ |u/t;|+n;, hence

= lim )\:‘ LE+u)/te] lim )\: L¢/t:] *)\: Lw/t:)

Hitu *)\Zm =pe*py. O
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9. Comparison with the classical case

For a *-semigroup 5, let S denote the set of all bounded characters on S. Note
that |o(s)|<1 for oeS and s€S. A Lévy function for S is a mapping L: Sx S—R
satisfying the following requirements:

(1) L(-,0) is a *-homomorphism of S into (R, +, —id) for each oes;

(ii) L(s,-) is B(S)-measurable for each s€S;

(iif) whenever 4 is a Radon measure on S\{1} satisfying

(9.1) /(1—Reo'(s))du(cr)<oo, ses
then
9.2) / ll—0(s)+4L(s,0)| du(c) <00, s€S.

(Here (R, +, —id) denotes (R, +) with the involution 2*=—x.) That a Lévy func-
tion exists for every *-semigroup S was shown in [10].

Proposition 9.1. If a complex Lévy function H for S is constructed as in the
proof of Proposition 5.1 then L=Im H| g, 5 is a Lévy function for S.

Proof. Condition (i) is clearly fulfilled. To see that (ii) holds, note that for
s€S, with H as in the proof of Proposition 5.1, we have H(s,o)={o, Q) for some
Q€& and all 0€5*, and this function of o, being a linear combination of functions
of the form o—o(t) with t€S5, is in fact continuous on S*. To see that (iii) holds,
suppose p satisfies (9.1). For z€C with |z|<1 we have

(Im2)><1—(Rez)?=(1+Rez)(1-Rez) <2(1-Rez)

and (1—Rez)?<2(1-Rez), hence |1—z|2<4(1—Rez). It follows that
/|1—a(s)|2d,u(a) §4/(1—Reo(s))d,u(a) <00, sES,
and since H is a complex Lévy function,
/ ll—o(s)+H(s,o)| du(o) < o0, s€S.

The integrability of the imaginary part shows that the imaginary part in (9.2) is
integrable, and the integrability of the real part in (9.2) is equivalent to (9.1). O
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Let P(S) denote the set of all bounded positive definite functions on S, and let
N*(S) denote the set of all y€N(S) such that Rev is bounded below. For feC*
and a€S, define T', feCS by

Tof(s)=3(f(s+a)+f(s+a*)), s€S.

In [2, 4.3.7, 4.3.11, and 4.3.19)], it was shown that for a *-semigroup S with a Lévy
function L and a function 1: S— C, the following conditions are equivalent:

(i) There is a convolution semigroup (u;) of Radon measures on S, continuous
in the weak topology, such that Lu;=e~*¥ for all >0,

(ii) e~ eP?(9) for all t>0;

(i) peN(S);

(iv) % is hermitian and (T'y—I)y€P?(S) for all a€S;

(v) there exist a€R, a *-homomorphism I: S— (R, +, —id), a function ¢: S—
R, satisfying 2q(s)+2q(¢t)=g(s+¢t)+g(s+t*) for s,£€S, and a Radon measure y on
S\ {1}, satisfying (9.1), such that

w(s):a+il(s)+q(s)+/(1—o(s)+iL(s,a))du(a), seb.

(Functions q as in (v) are called nonnegative Maserick quadratic forms in the termi-
nology of [9].) The convolution semigroup (u:) in (i) and the quadruple (a,l,q, p1)
in (v) are uniquely determined by 1; the measure p is called the Lévy measure of .

It is not really difficult to see that if 1 €N!(9) has Lévy measure X then the
measure 4 on A(S*\{1}) defined by

(9.3) n(A)=X1(ANS), AecA(S*\{1})

is the only measure that can occur in (iv) in Theorem 7.1. In this sense, our use of
the term “Lévy measure” in Theorem 6.1 is in agreement with the use of that term
in the result quoted above.

Condition (iv) might lead one to wonder whether in Theorem 7.1 condition (iii)
could be replaced with the condition

t is hermitian and —PP*ypeH(S) for all P &.

The answer is “no” for the semigroup S=N32 with the identical involution. We omit
the proof.
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Proposition 9.2. If ¢: S—C satisfies the conditions of Theorem 7.1 and if
some measure p occurring in (iv) satisfies . (S*\S)=0 then that is the only meas-
ure that can occur in (iv). (We then say that u is the Lévy measure of v.)

Proof. If a, h, g, and p are as in Theorem 7.1(iv) then for P€&,
—PP*y(s)=—{q, PP*}—I—/ o(s){o, PP*)du(o), s€S,
that is, —PP*y)=LAp where Ap€ F,(S*) is given by

Aplas\iy =(» PP")u, Ap({1})=—{q, PP").

If for one such p we have p, (S*\g)-——O then each Ap is supported by §, so the
moment function —PP*y is bounded and therefore determinate. For an arbitrary
1 occurring in (iv) we thus get the same family (Ap)pecg,, and we saw in the proof
of Theorem 6.1 (without using the perfectness of S) that the family (Ap) uniquely
determines y. O

We shall see in an example in the next section that it may happen that a
measure p occurring in (iv) of Theorem 7.1 satisfies p.(S*\S)=0, yet is not the
Lévy measure of any € N'(S).

10. Examples

Consider the semigroup S=(INg, +) with its unique involution, n*=n. The dual
semigroup S* is identified with R by identifying z€R with the character n—z"
on S. Thus a measure on R is in F, (R) if and only if it has moments of all orders,
and for peF, (R) we have

Lu(n) =/a:" du(z), ne€Ng.
The function H: Ngx R—R given by H(n,z)=n(z—1) is a complex Lévy function,
and since Ny is semiperfect ([2, 6.2.2]), it follows that a function :Ny—R is
negative definite if and only if
(10.1) Y(n)= a+bn—cn2+/(1 —z"+n{zx—1))du(zr), neNp

for some a, bER, some ¢>0, and some measure p on R\{1} satisfying

(10.2) /(ac—l)2 dp(z) < oo.
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For 0<a<1 the function s—s* is negative definite on (R, +) (]2, 6.5.15]) and

o e dt
o« __ 1— —st
s I‘(l—a)/o (1—e )t1+a’ seR,

by a formula in the proof of [2, 3.2.10]. For n€Ng we thus have

o o dx

= I“(l—oz)/o (1_xn)a:(—log:c)1+°‘

which shows that the negative definite function n—n® on Ny has Lévy measure
dx/z(—logz) T¥|j0 1.
For 1<a<2 the function s— —s® is negative definite on R, ([2, 6.5.15]) and

o ola=1) [ st dt
S —-1_‘(2_00\/0 (1 [ St)m, S€R+

by a formula in the proof of [2, 3.2.11]. For n€N, we thus have

ala—1) [? dx
o _ 1—g" 1
T2=a) J, (1—-2"4n og:c)x(_

log z)1+a

which shows that the negative definite function n——n® on Ny has Lévy measure
dz/z(—log z)'*¥|j0 1. Since

1
dx
]_— —_—— —
/o( D g

the condition (9.1) is not fulfilled, so this measure is not the Lévy measure of any
P eN! (No)

The function s——slogs (with 0log0=0 by definition) is negative definite on
R, ([2, 6.5.16]). We have

1
——slogs:/ (1-2°—s(1—1x)) dz seR,.
0 x(

log z)?’

To see this, verify that the two sides coincide at s=0 and s=1 and have the same
second derivative. In particular,

dx

1
—nlogn= | (1-2"-n(l—-2z))——00
nlogn /0( ™ —n(l x))x(loga:)2’ neNy
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which shows that the negative definite function n— —nlogn on Ny has Lévy meas-
ure dz/z(logz)?|jp,1- This is another example of a Lévy measure u, satisfying
11+ (57 \ §)=0, which is not the Lévy measure of any peN(S).

Another example is

dzx

—nkzﬂ%-‘:/o (1—:11”—n(1—56))m, n € Np

which can be verified by a computation that exploits the fact that the function
z—(1—z"—n(l1-2z))/(1-z)? is a polynomial.

Suppose ¥: No— R is such that —¢€P(Np). If A€ F, (R) is such that LA=—1
then A|g\{1} is one of those measures u that can occur in (10.1). Hence, if only one
measure u can occur in (10.1) then —v is determinate. It can happen, however,
that —1 is determinate, yet several distinct measures p can occur in (10.1).

To see this, let o and 7 be distinct Nevanlinna extremal measures (see [1]) with
Lo=Lr. With no restriction, assume o{({1})=0. Write

pz(l—m)_2a|R\{1}, V=(l—.’1?)_27'|R\{1},

and 1=—Lyu. Then p#v, and both can occur in (10.1). For 4 this is clear, and for
v it follows from the fact that

(I-E)*+L((1—2)*v) =-L((1-2)*w)+L((1—z)*)
=—Lo+o({1})+Lr—7({1})=—7({1}),

a constant <0. Nevertheless, —1 is a determinate moment function. Indeed, since
o is Nevanlinna extremal then (14+22)7 1o is determinate (by a theorem of Riesz,
cf. [1]), and so is 4, which has a bounded density with respect to (1+z2) ™o because
of 1¢supp o.
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