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Wolff type estimates and the H? corona
problem in strictly pseudoconvex domains

Mats Andersson(!) and Hasse Carlsson

Abstract. Let D be a strictly pseudoconvex domain in C™. We prove that Su=¢, ¢ a
F-closed (0,1)-form, admits solutions in LP(8D), 1<p<oo and in BMO, under certain Wolff type
conditions on . Some such results (for 1<p<oo) have previously been obtained by Amar in the
ball, but under slightly stronger hypotheses. As a corollary we obtain a HP-corona result for two
generators.

1. Introduction

This paper deals with Wolff-type estimates for 8, in strictly pseudoconvex
domains in C™. The origin for the study of such estimates is the corona problem in
one variable, and our results lead to an HP-variant of the corona theorem that we
first discuss.

Let D be a strictly pseudoconvex domain in C™ and let gy, go € H™ satisfy

|91 +|g21? > 6% > 0.
Given ¢€ HP the HP-corona problem is to find uy,us € H? such that

(1.1) g1u1+gaua = ¢.

For n=1 this is possible in a large class of domains for p=co (i.e. the true corona
theorem) and any number of generators g;, and hence for all p<oco. It is unknown
for p=o0 in strictly pseudoconvex domains in C”, n>1, but there are smooth
pseudoconvex domains even in C? in which it fails, see [Si] and [FSi]. However, for
0<p<2 the HP-corona problem is solvable in a large class of smooth pseudoconvex
domains, including the ones from [Si] and [FSi], for any number of generators, see
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[An2] and [An3]|. In [Am|, Amar solves the HP-corona problem, 1<p<oo, for two
generators in the ball as a corollary of a certain Wolff-type estimate for 8. In [L],
Lin has obtained a similar result for the polydisc, and for an arbitrary number of
generators.

In this paper we generalize Amar’s result in the ball to strictly pseudoconvex
domains. However, even in the ball we obtain somewhat sharper estimates and we
also obtain results for p=1 and BMO-results.

Theorem 1.1. If D is a bounded strictly pseudoconvexr domain with C?-bound-
ary, then the HP-corona problem is solvable for two generators, 1<p<oo, and if
p=00 there is a solution in H>°-BMO.

The BMO-result above was announced already in [V1], but not elaborated in
details, cf. the remark below.
The theorem is reduced to solving the equation

(1.2) Ou=¢p, ucLP(8D),
where p=wda,
(1.3) w=(§10¢2—520v1)/lg*,

and 1; is some solution to
Q1Y1+g2 =1,

since then v=1¢+ug solves (1.1).
When n=1, (1.2) is equivalent to

1/q
(1.4) ‘/ gw}SC(/ Igl") , g€H? 1/p+1/q=1.
D 8D

This weak formulation was introduced by Hoérmander, [H51], in his simplification of
Carleson’s original proof, [Cal, of the corona therorem. If |w| is a Carleson measure,
then (1.4) immediately follows from the Carleson-H6rmander inequality. However,
with the simplest choice ¢;=g;/|g|?, it is not a Carleson measure in general, so one
still had to use the much more refined choice of ¢; due to Carleson.

Remark. Using such refined ; in the multi-dimensional case, cf. [G] and [V1a],
one can obtain Theorem 1.1 from (the non-Wolff-type) Theorem 1.3 below.

In 1979 Wolff observed, see [G], that even with the simple choice ¥;=g;/|g|?,
w in (1.3) however satisfies (n=1 and D the unit disc)
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(1.5) { (1—|¢D)|w|?® is a Carleson measure,

(1—|¢|)|8w] is a Carleson measure,

and that these two conditions together, by a comparatively simple argument, imply
(1.4) for g=1, i.e. that (1.2) has a solution in L>(dD).

For a strictly pseudoconvex domain D={p<0}, dp##0 on 8D, it is easily seen,
using Proposition 2.1 below, that w satisfies

(1.6) B
{ —o|w]?+|wAdpl? is a Carleson measure,

—0|0w|++/=0(|0wADo|+|wADo|)+|0wABeADp| is a Carleson measure,

if the Carleson measures are defined with respect to the Kordnyi balls, see Section 2.
Thus Theorem 1.1 is a corollary of

Theorem 1.2. Suppose that D={p<0} is a strictly pseudoconvex domain with
C?-boundary, and w a O-closed (0,1)-form such that (1.6) holds. Then for any
peHP, 1<p<co, the equation Ou=w¢ admits a solution in LP(6D), 1<p<sx.

Here and in the sequel we use the notation L*=BMO and 1/+=0. Note that
we must assume that ¢ is in H*® to obtain a solution in BMO.

To be precise; when p=1 Theorem 1.2 will only be proved assuming that 8D
is C3. However, the case with C2-boundary can be derived from the case p=2 by
the factorization theorem of Coifman—Rochberg—Weiss [CRW] (it is true in a strictly
pseudoconvex domain with C?-boundary).

Remark. Theorem 1.2, as well as several other statements below, are to be
interpreted in the & priori sense; i.e. if w is an appropriately smooth 8-closed form
in D, then there is a solution to du=w¢ such that ||u||L»(sp) is bounded by some
uniform constant times the Carleson norm of

—o|w|?+|wAdp|? - 0|0w| ++/—o(|0wABo|+|0wAdg]) +|0w ADa Ao

times the HP-norm of ¢.

We will prove Theorem 1.2 as a corollary of a more general Wolff-type theorem
for the dy-equation.

Let W be the interpolation spaces between the finite measures W and the
Carleson measures W; for exact definitions see Section 2. The following non-Wolff
theorem is classic.
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Theorem 1.3. Suppose that D={p<0} is a strictly pseudoconvex domain with
C?%-boundary, and ¢ a 8-closed (0,1)-form such that

1 _
o+ 7= 1Bengl € Wil 1<p<,

=

Then Oyu=¢ has a solution in LP(0D).

For p=1 this is due to Henkin [He| and Skoda [Sk], and for p=x to Varopou-
los [V1].
We will prove

Theorem 1.4. Suppose that D={p<0} is a strictly pseudoconvez domain with
C?%-boundary (C* if p=1), and ¢ a d-closed (0, 1)-form such that

(ap) —0l8¢|+/=0(18pABp|+|8pADo|) +|8p ADoADg| e W /P
and
(b) /D —olollOgl < Cyllgllme, 1<p<x 1/p+1/g=1,

(g=x if p=1 and vice versa). Then there is a solution u€LP(OD) to Oyu=¢.
When p>2 we can replace (by) by a simpler condition on |¢p|.

Corollary 1.5. Suppose that D={0<0} is a strictly pseudoconver domain
with C2-boundary and ¢ is a O-closed (0,1)-form such that (a,) holds and

—olp|PeW¥P 2<p<x.

Then Oyu=¢ has a solution in LP(8D).

In general, the solutions in Theorem 1.4 and the corollary will not be in L?(D)
(unless p=1). This is seen by taking ¢=0|¢|~* (assuming 0€ D). For appropriately
small >0, ¢ satisfies (a1) and (b1) but there is no solution to du=¢ in L?(D) if p
is large.

We will give two proofs of our main result Theorem 1.4. Since the very essence
in what we call a Wolff-type estimate is that one has a size condition on dyp, it is
natural to first solve 00u=0¢. In our first, and we think most natural approach,
we will apply the approximate solution formula for the 89-equation from [AC3], to
write the solution to du=¢ as

(1.7) u=M(0p)+Tpo+Rp,



Wolff type estimates and the HP corona problem... 259

where M and T are explicit integral operators and Ry is a “nice” error term (that
vanishes in the ball, see below). In fact My is (essentially) a solution to d0v=0p.
Using the (ap)- and the (by)-conditions, it is not hard to verify that u is in L?(9D),
see Section 3. Unfortunately, we need to assume that 8D is C* to obtain (1.7).
We sketch the ball case below, whereas the general case is left to Section 3.
In the ball we have K¢=M08p+T, where M is the L2-minimal solution to
00v=0 and

ntl 5l-12yn—1
—1¢1*)eAd(¢-2) A (901¢]*)
#le)= CZ/ -G |
see [Anl]. From the explicit integral representation of M9y one finds that (a,)
implies that MOpe LP(OD); see Section 3 for details.

Since Ty is anti-holomorphic, to estimate it, we integrate it against ¥ € H? and
get by Fubini’s theorem,

/B Tele)p(z) do(2)
k+1 )

= [a-teietona [ 3 G nedicr

(1/02°=log z), but

jasy z) do(z)
Z/¢93(k 1) 1 ¢-z)k1

is in HY, since for k=n+1, the integral is nothing but the Szegd integral of v, and
the other integrals are weakly singular. Hence by (bp),

<Gyl aa

/ Tp(2)(2) do(2)
8B

which shows that Typ(2)€ HP, 1<p<x*, and hence Theorem 1.4 is proved for the
ball.

In our second proof (which works for p>1) we will rely on previous results of
solutions to the d9-equation; namely that if ¢ satisfy the (a,)-condition then there
is a solution u€ LP(0D) to 0u=0¢p. For p=1 this is the Henkin—Skoda theorem,
[He] and [Sk], and for p=+ it is due to Varopoulos [V2]. (A careful analysis shows
that C? is enough also for p=+. The proof consists of two steps. First one solves
a Poincaré equation. This is the hardest step and is carried out for C2-domains in
[AC1]. Then one solves a J-equation. The solution is represented by an integral
formula and admits a BMO estimate, cf. Section 6 in [AC3]).
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In general, u will not solve du=y, but since d(Ou—p)=0, we can solve (dis-
regarding for the moment possible topological obstructions) dT'=0u—¢, and T is
then a unique (up to an additive constant) anti-holomorphic function. Moreover,
K=u—T solves 0K=¢, since du—0T=0u—(du—p)=¢p. Using that T is anti-
holomorphic and the duality between H? and HY, one can prove that T, and hence
also K, is in LP(9D). The breakdown for p=1 is due to a certain inbalance between
the (a1)- and the (b;)-conditions, see Section 4 where this proof is carried out.

In Section 5 we prove Theorem 1.2 and Corollary 1.5. In Section 2 we have
collected some preliminaries on harmonic analysis and integral representations, some
proofs of which are left to Section 6.

This paper is a thoroughly revised version of [AC2].

2. Preliminaries

In this paragraph we have collected definitions and some results for strictly
pseudoconvex domains which we need further on. They are all well-known, at least
in the ball, but some of them we have not found in the literature in the general
case, and for these we sketch proofs in Section 6.

We start with some remarks about harmonic analysis in a strictly pseudoconvex
domain D={p<0} with C3 boundary (although C? is enough at several instances),
where g is strictly plurisubharmonic in a neighborhood of D and dp#0 on 8D.
A vector v at p€dD is complex tangential if v is a tangent vector, i.e. dgl,v=
0, and furthermore d°g|,v=0. Here d° is the real operator i(9—8). A K-basis
(K'=Koranyi) at p€dD is a basis of neighborhoods B(p) COD, t>0, at p such that
B, (p) has length ~+/t in all complex tangential directions and ~t in the last one.
Then clearly |B:(p)|~t". Sometimes we consider neighborhoods Q:(p)C D which
have also extension ~t into D, so that |Q;(p)|~t"*1. Any two K-bases B;(p) and
Bi(p) are equivalent, i.e. Be; CB{C By, >0, for some constant ¢>0. For instance,
if o, ..., 22, are local coordintes at p€dD such that z(p)=0 and dx|, and d°g|,
are colinear, then B;(p)={z;|zs|+Y_ 22 <t} is a K-basis at p.

If now B;(p) is any continuous choice of a K-basis at each p€dD one can put
o(p, 2)=inf{t;z€B;(p)} and d(z, p)=3(0(z, ¢)+0(p,z)). Then, see e.g. [AC1],

d(z, ) +d(p, () < Cd(z, ().

Since also
| Bat(p)| < C|B:(p)l,

0D is a homogeneous space, so a lot of tools of harmonic analysis are available,

see [CW1].
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For p>0 we put

H”={f€(’)(D);sup/ |f|pd0<oo},
oD,

e>0

where D.={p<—¢} and do is (some) surface measure. It is well-known that any
feHP has admissible (i.e. “non-tangential” with respect to the balls B;(p)) bound-
ary values f* a.e. [do], see [St], and that f is the Poisson integral (or the Bergman—
Poisson dito) of f* if p>1.

An feL} (D) is in BMO if

loc

1

sup —— u—up,(p)| do = ||ull« < oo,
t>0,peaD |Bi(p) B:(p) | @

where up, () is the mean value of u over Bi(p). We also put BMOA=BMONO(D).
Since 8D is a homogeneous space there is also an atomic H'-space on 8D whose
dual is BMO, and singular integral operators such as G defined below, maps H!
boundedly into L}(8D), see [CW2].
A measure p in D is a Carleson measure, pcW?, if

Iw(@Q:(p))| <Ct*, tedD, t>0.

Then the Carleson—-Hormander inequality holds:

/D 9Pdu<CyllglEm, g€ H?, p>0,

see [H62]. We let W0 denote the space of finite measures in D and let W¢, 0<a<1,
be the interpolating spaces between W0 and W'. For our purposes it is convenient
with the following operative definition, see [AmB]:

p€ W if and only if dy = kdr where dr is a positive

Carleson measure and k € LP(7), where 1/p=1-q.

In particular, note that if p€W?/", then

(2.1) [ 18P du <11, 90
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Proposition 2.1. If fc HP, p<oo, then

(22) /D (—0l0f 2+100n0F )| F P2 < 1
and if fEBMOA, then
(2.3) —0|0f|2+|00n0f? €W,

with Carleson norm bounded by | f]|2.

For proofs in the ball, see [CRW] and [CW2]. We sketch proofs in the strictly
pseudoconvex case in Section 6.

Let S:L%(0D)— H? be the Szegd projection, i.e. the L?(8D)-orthogonal pro-
jection with respect to (some) surface measure do on 4D.

Proposition 2.2. S maps BMO boundedly onto BMOA.
For smooth functions f and g we put

(24) (f.9)=| fgdo.
oD

Let HY={f€H?'; f(0)=0} (0 is any point in D). We then have
Proposition 2.3. Via the pairing (2.4), BMOA is the dual space of H}.

We also have to recall same facts about integral representations of holomorphic
functions and solutions of d in strictly pseudoconvex domains. This is based on the
formulas for the dd-equation in [AC3] and we refer to this paper for more details.

Let v(¢, 2):Dx D—C™ satisfy

(2.5) 2Rev > —p(¢)~0(2) +6|¢—2[%,
and
(2.6) d¢v]¢= = —d2v|¢=. = —00(().

Then Q+(p)={¢€D; |v(p,()|<t} is a K-basis at p (take local coordinates x;=—0p,
zo=Imv and zs, ..., T2, arbitrary) and we have the well-known estimate

(27) /aD iv(?ffz(fngm s (—gl<z> ) =0
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From [F] it follows that one can choose such a v that is also holomorphic in z for
fixed (€D, and in wiew of (2.5) one can then define

(2.8) Hu(z)=c/aD%, z€D,

where ¢=> " ¢;d(; and Y ¢;(z;—¢;)=v({, 2) and ¢((, 2) is holomorphic in z. Clearly,
Hu is holomorphic in D if ue L' (D) and, by the Cauchy-Fantappié formula, Hu=
w if u is (the boundary values of) a holomorphic function. In fact, Hu has admissible
boundary values a.e. if u€ L?(8D), p>1, and this operator maps LP(9D) into H?,
and BMO into BMOA, see Section 6.

There are related formulas for solving 8. If ¢ is a d-closed (0,1)-form on D,
the boundary values of a solution to u=¢ is given by a formula of type,

(=0)*eNO(1)+(—0)* T pAJNO(I¢ =)
(¢ 2)mretu((, 2) ’

a>0, z€dD. By (2.9) and (2.7) one easily gets the Henkin—Skoda estimate,

1
ﬁwdas/ o+ |Benl,
/8D| o5 [ tol+—=ldene|

if a> % One also gets the corresponding estimates for L?(9D) in Theorem 1.3. For
the connection between the formulas for Hu and Ly, see e.g. [AC3].

However for our purposes we need formulas with a more specific choice of
v(¢, z). Namely, one such that

(2.9) Lo)= [

1
(2.10) —v((,2) =0+ oim+5 > ok,
ik

(nj=2;—C;, 0;=00/0¢;(¢) etc.) near the diagonal. The crucial property for such a
v(¢, ) is that

(2.11) v(¢,2) =v(z,O)+O(IC—2*),
and
(2.12) dev(¢,2) =0(¢—2[%),

i.e. v((,2) is almost conjugate-symmmetric and anti-holomorphic in . Clearly,
v(¢, #) is holomorphic in z near the diagonal but it will not be globally, so the cor-
responding integral Hu will not have a holomorphic kernel, and the corresponding
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operator Ly will just be an approximate solution for 8. However, one can mod-
ify the kernel for Hu by adding a smooth one and obtain a kernel g(, z) and its
corresponding operator

(2.13) Gu(z) = /6 (62u(Qdo(0), €D,

where g((, z) is holomorphic in z and is ~1/v™ (v from (2.10)) near the diagonal.
There is a solution operator K for Ou=(, whose principal term is the operator
L, with the special choice of v((, z} discussed above. We have

Proposition 2.4. Let D={p<0} be a bounded strictly pseudoconver domain
with C3-boundary and ¢ a O-closed (0,1)-form. Then there is a solution Ky to
Ou=¢ such that

(2.14) Ko=M0p+Tp+Fop,
where
(2.15) Tp(z) = /D —2(O)p(C) A B2 C) AN (BBe(C)™?,

and, for z€dD,

—o(—0l0¢|+/—e(|0pNBo|+|8pNDo|)+|0pAOpAD0l)
[v(¢, 2)|"+1 ’

(216) [ MBo(2)| < /D

and

~ —olpll¢—2| / —p|Oon¢|
2.1 F < .
(2.17) () N/D |v[+t * p vt

Remark. In general one cannot have both T'¢ anti-holomorphic and ﬁzO, since
then (2.14), applied to any d-closed (0,1)-form ¢, would give a solution to du=¢
but this is possible only if H1(D, C)=0.

The formula (2.14) will be derived from the formulas for 89 in [AC3] and
instead of recapitulating them here we only indicate the necessary modifications.
We begin with formula (3.15) from [AC3] (with a=1),

Ko= M8<p+A1,0,n+1<P+ﬁ90a
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where F is as in (2.17) and

—0pAdcTA(0D0) 1
(218) Al,O,n+1W=CL L4 C,l—)n-k(l Q) .

This formula only involves third order derivatives of g.
We may now replace v({, z) by v(z,¢) in (2.18) since, in view of (2.11), the
occurring error term can be incorporated in Fy. The kernel so obtained is

(2.19) — 0PN ———r oGz C)" N (@8e)" .

The kernel g(z, ) for the holomorphic projection G above is defined so that

(5, ONBea(z, )"
oz, Q)do(2) = T

+smooth.

Thus if we choose
do(2) =q(2, )N (0zq(z, C))n_l le=2
then 1 o(lc—z)
—z
o, (——g z,¢ ) =0 ————*+smooth,

oor 929 =% g

and hence we may replace (2.19) by
—0p N3 g(z, ()N (8D)™

again the occurring error term can be incorporated in ﬁ(p. Hence we have obtained
Proposition 2.4. O

If we extend the definition of Gu(z) to 8D as the boundary values of (2.13),

then, see [KSt, Theorem 3.2.1],
Gu(z) = 3u(2)+Gpou(2), 2€08D,
where
Gpyu(z) =lim 9(¢,2)u(¢)do(¢), ze€dD.
e—0 d(¢,z)>e

Thus G and Gp, have the same boundedness properties. By Cotlar’s lemma it
follows that Gpy:L?(0D)—L*(8D), and since |g|<d™™ and |Vg|<Sd™™" 1, Gy is
a singular integral operator that maps LP(9D) into LP(dD), 1<p<oo, for details
see [KSt], and also H! into L}(8D). Thus G: L?(dD)— HP, and G- H! = H'.

This argument works equally well for H in (2.8).

From (2.11) it follows that G is almost self-adjoint and it turns out that

(2.20) S=G+SA=G+A—AS,

where S is the Szegb projection, and A=G*—G has the kernel ¢(¢, z) —g(z, ¢) which
by (2.11) (and (2.7)) is weakly singular. By repeated use of (2.20) it follows that
S:LP(0D)—HP, cf. [KSt]. In Section 6 we also show that G maps BMO onto
BMOA.
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3. Proof of Theorem 1.4

We will rely on Proposition 2.4. To begin with, we note that the term My is
in LY(8D) if Oy satisfies the condition (a1). This immediately follows from (2.16)
and the estimate (2.7). It is proved in [AC2 §6] that MJyp is in BMO(9D) if (a,)
holds for p==+. Then it follows by interpolation that My is in LP(9D) if (a,) holds,
1<p<*. However, these intermediate cases can also be obtained rather easily by a
direct estimation, not relying on the somewhat harder BMO estimate.

Next, we show that the term Ty is in LP(0D) if the condition (b,) holds. To
this end, take 1€ L1(8D), (€BMO if p=1 and €H! if p=+). We then have by (2.13)
and Fubini’s theorem,

[ ootz dote) = [ ~apnoGun(@der,
8D D
and hence by (by),

SIGY e S11¥llze (o),

‘ / YvTpdo
oD

since G: LY(0D)— HY, cf. Section 2. Thus Ty is in LP(9D).

Since the kernel of F is less singular than that of T, the term fgo is in principle
easier to estimate than Ty. In fact, it is straight forward to show that Fcp is
in LP(0D) under the conditions in Theorem 1.2 or Corollary 1.5. However, the
condition (b,) is not so easy to apply directly to the term Fo, and we therefore
rewrite (2.14) further. Unfortunately, we must then assume that o is C*.

We have K =¢, and by Lemma 3.5 in [AC3], the term Fp can be rewritten
as F Ky, where F satisfies

(3.1) Fuo)|S | i #€0D,

Thus, Ko=Mop+Tp+FKyp, and iterating we obtain
(3.2) Ko=MOp+FMOp+..+F" ' MOp+Tp+FTo+..+F" 1 Tp+F" K.

Note that the condition (b,) (taking g=z;) implies that —pl¢| is a finite mea-
sure. Arguing as in (the proof of) Proposition 2.1 in [AC3], one obtains that

P Ko(z)| < /D —olpl < oo,

if m is large enough.



Wolff type estimates and the H? corona problem... 267

The estimate (2.8) in [AC3] for F*Mdy is sharper than (2.16) for M8y, and
hence F¥ M3y is in LP(OD). Note that F¥ My is in L>(6D)C BMO when p=x.
It remains to estimate the terms F*Tp. If f is the kernel of F*, then

1

see Lemma 3.5 in [AC3], and we have

F*To(r) = To(2)f(z,A) = —olp| A (090)" 10,
D ¢eD z

z€
If €L2(0D), (b,) implies,

g(za <)fk(z7 )‘)
D

€

k _
' | P omins|s /C N gm’ac . eDg(z,Ofk(z,A)wu)[
<Kl
where K4/(¢)= [, , k(¢, \)1(A) is holomorphic, and

dA(z) 1
KNI [ e 0n)| s [ S .
MENIR) [ 9@ NGNS e i, NP7 = oG, 2172
For the last inequality, compare Lemma 5.2 in [AC3].

By Schur’s lemma, ||Kt|| e S||[¥| pe(apy and by duality, this implies that
F*TpeL?(8D) and the proof is complete. [

Remark. When p=1 there is an inbalance between the (ap)- and the (bp)-
conditions. In fact, (b;) implies that Ty is in H!, but the (a;)-condition only yields
that M8y is in L}(8D). Tt is therefore natural to look for a somewhat sharpened
(a1)-condition that would imply that also M8y is in H'. However, we have not
found any natural such condition. When n=1 and D is the unit disc, then the
kernel for M is 1—|(|? times the adjoint of the Poisson kernel, so in this case the
condition would be that the balayage of (1—|(|)|0¢| is in H!, or equivalently, that
Pye LY((1—1¢])|0¢]) for all Poisson integrals of BMO-functions.

4. Another proof

Let G be the Green’s function for D with pole at (some) 0€D. Fix xeC*(D)
with x=1 near 8D and x=0 near 0, and put H=xG. Then H S—p and (by,) implies
that

(cp) /DHSD‘ang”g”HQ-

By taking g(z)=2z; in (b,) we see that —p|y]| is a finite measure in D. Thus Theorem
1.4 follows from
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Proposition 4.1. Assume that (a,) holds and that —g|p| is a finite measure.
Then, for 1<p<x there is a solution u€LP(8D) to Qu=¢ if and only if (c,) holds.

As described in the introduction, we solve 89up=0¢ with ug€ LP(0D). Then
we show that

() [ #000-0) < gl

Thus po=p—0ug also satisfies (c,), and we have reduced the problem to the simpler
case where Owo=0.

If 8o =0pu=0, we have dpy=0. If @ is a solution to the Poincaré equation, da=
0, then for bidegree reasons 8@=0, so a is holomorphic, and da=,. However, even
if H'(D, C)#0 there is always a nice d-closed (0,1)-form « that is cohomologous to
©o (e.g. whose sup norm over D only depends on the L* norm of —ggg). Then we
can take a nice solution to Gu=a and obtain (@a—u)=p.

Thus we may assume that there is a holomorphic function a with da=¢y. To
estimate the HP-norm of a we use duality. If g€ H?, Green’s theorem implies (if we
let do=(0H)/(dn)dS),

/ gddaz/g(iAH—HA(gd).
aD D

But by (cp),

S gl

VDHA(ga) :’/DHag-% =I/D Hdg-po

Furthermore, as H is harmonic near 81, we have for some K CCD that

‘ / gaAH\s [ 1sai <l [ lal S lolae
D K K

so a€ HP C LP(OD).
To complete the proof it remains to verify (4.1). If p>1,

/ngo-agz/ H(A(uog)—gAug):/ uogda+/ uogAH—/ HgAuyg.
D D aD D D

‘/ ugg do
8D

By duality,

Sllgllere.
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For the second intergral we have

' / UogAH‘S [ uosl <l [ lU0|S||g||Ha( [ —esul+ [ |U0|>5||9||Hq~
K D D 8D

Finally,

/ HyAuo| < / —olAtollgl < gl are,
D D

since —|00ug|=—pg|0p|eW1—1/P. O

This argument does not work for p=1 since to obtain (4.1}, we would need
up€M?, which however does not follow from the (a;)-condition, cf. the remark in
Section 3.

5. Proofs of Theorem 1.2 and Corollary 1.5

In this section we prove Corollary 1.5 and that Theorem 1.2 follows from The-
orem 1.4 and, if p>2, also from Corollary 1.5.

Proof of Corollary 1.5. Tt is enough to show that if 2<p<x,

/—Qlwllé’gl Slglee,  if —olp> e W27,

If p==x,

([ ~eletionl) < [ o2 [ —aigiof ol

by Proposition 2.1 and the Carleson—-Hormander inequality. If p=2,

(/ _g|<p||ag|>2g/—g|ag|2/—giwlzsllgll?qz-

The general case follows by interpolation. [J

Proof of Theorem 1.2. We have to show that
(5.1)  —old(¢w)|+v/=e(10(¢w) Ao| +|8(¢w) ADol) +18(¢w) NDoNDo| € WP,

and

(5.2) I=/—9I¢wllagl Sléllaellglliae,
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or, if p>2,
(56.3) —o|¢w|? e Wi2/P,

As |¢]2€ LP/?(—g|w|?) by the Carleson—Hoérmander inequality, (5.3) follows.
To prove (5.2), we first assume that 2<p<oo. Then

< / —olg|~2|0g? / —oldlgl? .

By (2.2), the first integral is bounded by ||g||%;,. If p=¢=2 or p=00, ¢=1, the second
integral is bounded by ||¢]|%. and ||¢||% ||g]|zr1, respectively. If 2<p<oo, we note
that p/2 and ¢/(2—q) are dual exponents. Hence Hélder’s inequality implies

2/q (2-q)/q
<l ( / —g|¢>|?|w|2) ( / —g|g|q|w12) <119l 110

as desired. If 1<p<2 we write ¢p0g=0(¢pg) —gO¢, and we can apply the case p>2
of (5.2) to each of these terms.

The estimates for the different terms in (5.1) are very similar and we only give
the details for one of them, namely /—p|0(¢w) Adg|. Now O{¢w)=¢0w+0O0¢pAw and
we handle the two terms separately.

To estimate the first one we note that by assumption u=+/—g|0wAdp| is a
Carleson measure and thus |¢|€LP(y) and

V—=0|¢p0wNBo| € WI1/P,

The estimate for the term dpAw will be obtained by interpolation. If p=1,

2
— o _ |8¢|2 5,12 < 2
( / rmamwagl) <[ - “ /D 6llwAdol? < 16lL2.

If p=x, let Q be a Koranyi-cube in D. Then

—_ 2 —
(/ \/"Q|3¢/\W/\39|) 5/ —9|<9¢I2/ lwAdel?,
Q Q Q

and since both —p|d¢|? and |wAdg|? are Carleson measures, so is /—g|0¢ AwADp|.
The general case, 1<p<oo, follows by interpolation. Note that it is not enough to
prove the cases p=1 and p=o0 since it is not known whether one can interpolate

between H! and H*, cf. [J]. O
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6. Proofs of Propositions 2.1-2.3

Proof of Proposition 2.1, formula (2.2). Since Ae¥=(Avy)e? +|Vi)|%e?,
Green’s identity in R?" yields

/D(—Q)Az/)eM/D(—Q)lVl/)I%’”+/D(A@)€¢:/aD gfb

where 8/9n is the outward normal derivative. Hence

0o
-0 VW@”’S/ ew—N/ e?,
/D( ) | ap On 8D

if ¢ and ¢ are subharmonic and dp#0 on dD. Thuis, if =(p/2) log | f|?,
|
[ aprpirp2s [ 112
D 8D

/D (—)BfPIFP~ ~ /D (—0)0f NBFA(@80)™ | f17~2,

and an integration by parts in the last integral yields

Now,

/ (~0)0f NTF A (880)"|fP=2 = / 8 NTF ADATa| fIP~2(90)"
D D
~ / 105 AP 1P,
D

Thus (2.2) is established. O
Proof of (2.3). The starting point is (2.8},
fan(@g)"*
oD U(Cv Z)n

Recall from Section 2 that H: L2(0D)— H?. Now gA(8q)" '=r((, 2)da(¢) where
r(¢, z) is holomorphic in z and |r(¢, 2)|~1. Thus

_[ J©
11()= | Lo do(0)

fe)=H[f(z)=

To estimate H f, we will use that

(6.1) = s
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if >0 (f3, is the mean value of f over By (p)).
Let us assume (6.1) and complete the proof. Put u(f)=—0l0f|?+|0fAd0|?.
We have to show that

(6.2) /Q (AN IFI B,

where Q, is centered at the arbitrary point 0€8D. On the boundary, we write
f=Fr+fa+fs where f=fon, fo=(f—f1)x, fs=(f—f1)(1—) and x is the char-
acteristic function of Bgp, and C is a suitably large constant (depending on the
constant in the triangle inequality for d). We also put f;(z)=H f;(z) when z€D.

Since fy is constant, it gives no contribution to the left hand side of (6.2). To
estimate [, pn(f2), we use (2.2) with p=2,

| uteirs [ s siusie= [ 11-fol SIS,
Qn D Ben

where the last inequality follows from the John—Nirenberg inequality.
To estimate the contribution from f3, we observe that

_ _ ., [ (8GR 2) | 8ar(C, 2) >
Ofs=0H fs= /( o(C 2 +v(<,z)n)f3<<)d(0'

Hence, since (& Beop, 2€Q implies v((, 2)~d((,0), we obtain

@15 [ Lterl a5 L1

by (6.1). Similarily, as |[GvAde|<S|2—¢|<d(z, ¢)M2,

10f300] < /B c 7(1('{’(“);22’3'/2 -

Since —g(2z)<h if z€Qp, we have

171
alf) S 10

on Qp and

[ umasliloisiszs. o
Qn
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Proof of (6.1). To simplify notations, let Bj=Ba;y(p), Aj=Bj+1\Bj, fi=1Fain

and d(z)=d(0, z). Then
f nro
6.3)  Ja Z / o)~ fol n+a L z)<J2+; (20 )~ (nte) /B |f(2)— fol do(2).
But
/ FE)—fi1 S / £ 15 < IF11B5]
Bj_1 B;

and hence |f;_1— f;|<(|B;|/|Bj+1])l| f|l«, which implies |f;— fol <jll f||«. Thus

/ 1£(2)foldo(2) / 1F(2)— £;ldo(2) +1f; — foll By
<@+ B 17 1 S5

If we use this estimate in (6.3), we obtain

ngy@n e sl o

Jj=0

Remark. In the proof we did not use the fact that feBMOA; if fe€BMO(dD)

and we let f=Hf or f=GJf, then [ satisfies (2.3). O

Proof of Proposition 2.2. We first prove H: BMO—BMOA. With the tools
we have developed, this is accomplished in a few strokes. As above, we write
f=fi+fe+fs. As Hfy is constant, ||H f1]|+=0. For H f> we have, as H is bounded

in L2, that

1 2 1 1
(TBﬂ i, 'Hf""d") IBI o LS gy | Ifaldo
h

= [ 1i-fonPds S I
|Bn| JBon

Hence, ||H fall« S| f |« To estimate | H f3]|. we need

|’U(Z, C)_’U(w7 C)l 5 (hd(c’p))1/2 if Z,we Bh(p)v C ¢ BCh(p)'

This follows immediately if we write

U(Z, §)—v(w, C) = ’U(Z, w)+(‘1(z’ w)_Q(Z’ C))(z—w)+(q(z’ C)—q(w, C))(C—w)
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Using this, we have

. [\t 13(0) = W i)l do(2)
r¢2)  r(Cw)

1Bl
S, o) [ dotw) [ R0E - et (01de (0
< \/_\/d(g |f3 C)|d )<\/—/ |f fCh| ||f||*,

op d(Cp)" (¢, pm72
where the last inequality follows from (6.1).
This proof also applies to G, defined by (2.13), G:BMO—BMOA, as g(¢, 2)
satisfies the same estimate as ((, z)/v(¢, 2)™.
By (2.20), S—G=A—AS and A maps L?— H® if p is large enough, since A is
weakly singular. Since § preserves LP, we obtain S—G: L?— H®> if p is large, and
hence S—G: BMO—BMOA and so Proposition 2.2 is proved. O

Proof of Proposition 2.3. Let do=(0G/0n)dS, where G is the Green’s function
with pole in 0€ D, and let fCO(D) and f(0)=0. Then, by Green’s identity,

dea:/ Gof-B5,
D

oD

/ fbdol|< / — 0|0 F118b]+ 11 £l ..
oD D

since G~—p near 8D. By Schwarz’ inequality, Proposition 2.1 and the Carleson—
Hoérmander inequality,

2
_ lof? 20p1 < || £112 2
(/D 9I8f||5‘6|>§ /D L1 / ol OB S I 812
so that

(6.4) ‘ /a  fbdo| Sl 8.

By approximation now (6.4) follows for arbitrary feH}. Thus BMOAC(H})*.
On the other hand, any functional on H} is given by some u€ L (D), hence by
b=SueBMOA, where S is the Szegb projection with respect to do. This proves
Proposition 2.3 for do.

Now suppose that 1do is another surface measure on &D (we assume €C"?
and ¢¥~1). Then by (6.4)

U fopdo) =11l g ool S 11F 1 erg 1B
oD

Thus (6.4) holds also for the measure ¥do and then the duality with respect to this
measure follows as above. O

and hence
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