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Wolff type estimates and the H p corona 
problem in strictly pseudoconvex domains 

Mats Andersson(1) and Hasse Carlsson 

A b s t r a c t .  Let D be a strictly pseudoconvex domain in C n. We prove that  c~u=~, ~ a 
0-closed (0,1)-form, admits solutions in LP(OD), l<_p<c~ and in BMO, under certain Wolff type 
conditions on ~o. Some such results (for l < p < c ~ )  have previously been obtained by Amar in the 
ball, but under slightly stronger hypotheses. As a corollary we obtain a HP-corona result for two 
generators. 

1. I n t r o d u c t i o n  

This paper deals with Wolff-type estimates for 0b in strictly pseudoconvex 
domains in C '~. The origin for the study of such estimates is the corona problem in 
one variable, and our results lead to an HP-variant of the corona theorem that  we 
first discuss. 

Let D be a strictly pseudoconvex domain in C ~ and let gl, g2 E H ~ satisfy 

[gl [2+[g212 > 52 > O. 

Given r  H p the HP-corona problem is to find ul,  u2 E H p such that  

(1.1) glUl +g2u2 = r 

For n--1 this is possible in a large class of domains for p = o c  (i.e. the true corona 
theorem) and any number of generators gj, and hence for all p<c~.  It is unknown 
for p = c e  in strictly pseudoconvex domains in C n, n > l ,  but there are smooth 
pseudoconvex domains even in C 2 in which it fails, see [Si] and [FSi]. However, for 
0<p_<2 the HP-corona problem is solvable in a large class of smooth pseudoconvex 
domains, including the ones from [Si] and [FSi], for any number of generators, see 
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[An2] and [An3]. In [Am], Amar solves the HP-corona problem, l < p < o c ,  for two 
generators in the ball as a corollary of a certain Wolff-type estimate for 0b. In ILl, 
Lin has obtained a similar result for the polydisc, and for an arbitrary number of 
generators. 

In this paper we generMize Amar's result in the ball to strictly pseudoconvex 
domains. However, even in the ball we obtain somewhat sharper estimates and we 
also obtain results for p=  1 and BMO-results. 

T h e o r e m  1.1. If D is a bounded strictly pseudoconvex domain with C2-bound - 
cry, then the HP-corona problem is solvable for two generators, l <p<oo, and if 
p=cc there is a solution in H c~ .BMO. 

The BMO-result above was announced already in IV1], but not elaborated in 
details, cf. the remark below. 

The theorem is reduced to solving the equation 

(1.2) Obu= ~, u E LP(OD), 

where ~=wr 

(1.3) /~d ~--- ( 0 1 ~ 2 2  -02 r 2, 

and Cj is some solution to 

g1r +g2r = 1, 

since then v=r162 solves (1.1). 
When n = l ,  (1.2) is equivalent to 

(1.4) /DgV9 <C(~o D ,g,q)l/q, gE Hq, l / p + l / q =  1. 

This weak formulation was introduced by Hhrmander, [Hhl], in his simplification of 
Carleson's original proof, [Ca], of the corona therorem. If Iwl is a Carleson measure, 
then (1.4) immediately follows from the Carleson-Hhrmander inequality. However, 
with the simplest choice Cj =~j/Ig] 2, it is not a Carleson measure in general, so one 
still had to use the much more refined choice of Cj due to Carleson. 

Remark. Using such refined Cj in the multi-dimensional case, cf. [G] and [Vla], 
one can obtain Theorem 1.1 from (the non-Wolff-type) Theorem 1.3 below. 

In 1979 Wolff observed, see [G], that  even with the simple choice Cj =~j/Igl 2, 
w in (1.3) however satisfies ( n = l  and D the unit disc) 
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/ (1-1r is a Carleson measure, 
(1.5) / (1-1@10w I is a Carleson measure, 

and that  these two conditions together, by a comparatively simple argument, imply 
(1.4) for q = l ,  i.e. that  (1.2) has a solution in L~(OD). 

For a strictly pseudoconvex domain D = { ~ < 0 } ,  dQ#0 on OD, it is easily seen, 
using Proposition 2.1 below, that  w satisfies 

(1.6) 
- 01~12 + I ~ A ~ o I  2 is a C a r l e s o n  m e a s u r e ,  

-olO~ol+V~d(lOwAOel+lcoA6OI)+lO~AOoASOI is a Carleson measure, 

if the Carleson measures are defined with respect to the Kor~nyi balls, see Section 2. 
Thus Theorem 1.1 is a corollary of 

T h e o r e m  1.2. Suppose that D = { 0 < 0 }  is a strictly pseudoconvex domain with 
C2-boundary, and w a O-closed (0, 1)-form such that (1.6) holds. Then for any 
CEH p, l <p<_c~, the equation Ou=wr admits a solution in LP(OD), l < p < * .  

Here and in the sequel we use the notation L*--BMO and 1 /*=0.  Note that  
we must assume that  r is in H ~ to obtain a solution in BMO. 

To be precise; when p--1 Theorem 1.2 will only be proved assuming that  OD 
is C 3. However, the case with C2-boundary can be derived from the case p--2 by 
the factorization theorem of Coifman-Rochberg-Weiss [CRW] (it is true in a strictly 
pseudoconvex domain with C2-boundary). 

Remark. Theorem 1.2, as well as several other statements below, are to be 
interpreted in the ~ priori sense; i.e. if w is an appropriately smooth 0-closed form 
in D, then there is a solution to Ou=wr such tha t  [[U[[LP(OD) is bounded by some 
uniform constant times the Carleson norm of 

- ~,1~12 + Iw A0012 - elao.,I + v ' -~( I  aw A ael + low ABel) + law A00Ao%I 

times the HP-norm of r 

We will prove Theorem 1.2 as a corollary of a more general Wolff-type theorem 
for the 0b-equation. 

Let W ~ be the interpolation spaces between the finite measures W ~ and the 
Carleson measures W1; for exact definitions see Section 2. The following non-Wolff 
theorem is classic. 
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T h e o r e m  1.3. Suppose that D = { ~ < 0 }  is a strictly pseudoconvex domain with 
C2-boundary, and ~ a O-closed (0, 1)-form such that 

1 I~1+~--~ I(3~A~I C W l - 1 / ; ,  l<p_<* .  

Then ObU=~ has a solution in LP(OD). 

For p = l  this is due to Henkin [He] and Skoda [Ski, and for p=* to Varopou- 
los [V1]. 

We will prove 

T h e o r e m  1.4. Suppose that D={Q<0} is a strictly pseudoeonvex domain with 
C2-boundary (C 4 if p=l) ,  and ~ a O-closed (0, 1)-form such that 

-ola I+v (la AaoI+Ia A5 I)+Ia Aa Ab I e w 

and 

(bp) /D--O]~[[Og ] <_Cpllg[[Hq, l < p ~ * ,  1/p+l /q= l, 

(q=* if p=l  and vice versa). Then there is a solution uELP(OD) to ObU=~. 

When p>2 we can replace (bp) by a simpler condition on IPl- 

C o r o l l a r y  1.5. Suppose that D={Q<0} is a strictly pseudoconvex domain 
with C2-boundary and ~ is a O-closed (0, 1)-form such that (ap) holds and 

-O[~[2EW 1-2/p, 2_<p_<*. 

Then ObU=~ has a solution in LP(OD). 

In general, the solutions in Theorem 1.4 and the corollary will not be in LP(D) 
(unless p=l) .  This is seen by taking ~=c~KI -~ (assuming 0ED). For appropriately 
small a > 0 ,  ~ satisfies (al) and (bl) but there is no solution to 0 u = p  in LP(D) i fp  
is large. 

We will give two proofs of our main result Theorem 1.4. Since the very essence 
in what we call a Wolff-type estimate is that one has a size condition on 0~, it is 
natural to first solve 00u=0~ .  In our first, and we think most natural approach, 
we will apply the approximate solution formula for the 0cg-equation from [AC3], to 
write the solution to 0u---p as 

(1.7) u = M(O~) § T~+ R~, 
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where M and T are explicit integral operators and R~ is a "nice" error term (that 
vanishes in the ball, see below). In fact MO~ is (essentially) a solution to 00v=0~. 
Using the (ap)- and the (bp)-conditions, it is not hard to verify that  u is in LP(OD), 
see Section 3. Unfortunately, we need to assume that  OD is C 4 to obtain (1.7). 

We sketch the ball case below, whereas the general case is left to Section 3. 
In the ball we have K~=MO~+T~, where MO is the L2-minimal solution to 

OOv=~ and 
n+l f (1-KI2)~,Ad(~.~)A(O0KI2) n-1 T (z)=cZ JB ' 

k=l  

see [Anl]. From the explicit integral representation of MO~ one finds that  (ap) 
implies that  MO~ELP(OD); see Section 3 for details. 

Since T~  is anti-holomorphic, to estimate it, we integrate it against r  q and 
get by Fubini's theorem, 

OB T~(z)r da(z) 

=/B(I__Izl2)~(()AOC fOB~ _r i ( ~ [ [ . 1 2 ~ n _  1 
( k - 1 ) ( 1 - r  - 1  ~ , ~ , ,  , 

(1/0x ~ =log x), but  
n + l  ~(z) do-(z) 
k = l  B 

is in Hq, since for k = n + l ,  the integral is nothing but  the Szeg5 integral of ~, and 
the other integrals are weakly singular. Hence by (bp), 

~aB T~)(z)~(z) < Cp[[~][Hq, da(z) 

which shows that  T~(z)EH p, l < p < . ,  and hence Theorem 1.4 is proved for the 
ball. 

In our second proof (which works for p>  1) we will rely on previous results of 
solutions to the 00-equation; namely that  if ~ satisfy the (ap)-condition then there 
is a solution uELP(OD) to 00u=OcZ. For p----1 this is the Henkin-Skoda theorem, 
[He] and [Sk], and for p--* it is due to Varopoulos [V2]. (A careful analysis shows 
that  C 2 is enough also for p=* .  The proof consists of two steps. First one solves 
a Poincar6 equation. This is the hardest step and is carried out for C2-domains in 
[AC1]. Then one solves a 0-equation. The solution is represented by an integral 
formula and admits a BMO estimate, cf. Section 6 in [AC3]). 
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In general, u will not solve 0 u = ~ ,  but since d ( 0 u - ~ ) = 0 ,  we can solve (dis- 
regarding for the moment  possible topological obstructions) dT=Ou-~, and T is 
then a unique (up to an additive constant) anti-holomorphic function. Moreover, 
K = u - T  solves OK=~, since Ou-OT=Ou-(Ou-~)=~. Using that  T is anti- 

holomorphic and the duality between H p and Hq, one can prove that  T, and hence 
also K,  is in LP(OD). The breakdown for p =  1 is due to a certain inbalance between 

the (al)- and the (bl)-Conditions, see Section 4 where this proof is carried out. 
In Section 5 we prove Theorem 1.2 and Corollary 1.5. In Section 2 we have 

collected some preliminaries on harmonic analysis and integral representations, some 
proofs of which are left to Section 6. 

This paper  is a thoroughly revised version of [AC2]. 

2. P r e l i m i n a r i e s  

In this paragraph we have collected definitions and some results for strictly 
pseudoconvex domains which we need further on. They are all well-known, at least 
in the ball, but some of them we have not found in the li terature in the general 
case, and for these we sketch proofs in Section 6. 

We start  with some remarks about harmonic analysis in a strictly pseudoconvex 
domain D = { g < 0 }  with C 3 boundary (although C 2 is enough at several instances), 
where Q is strictly plurisubharmonic in a neighborhood of D and d~r  on OD. 
A vector v at pEOD is complex tangential if v is a tangent vector, i.e. dQipV= 
0, and furthermore dCQipv=O. Here d c is the real operator i(O-O). A K-basis 

(K= Kors at pEOD is a basis of neighborhoods Bt(p)cOD, t>0 ,  at p such tha t  
Bt(p) has length ~ v ~  in all complex tangential directions and ~ t  in the last one. 
Then clearly ]Bt (p)] ~ t  n. Sometimes we consider neighborhoods Qt (p) c D which 
have also extension ~ t  into D, so that  ]Qt(p)l,.~tn+l. Any two K-bases  Bt(p) and 
B~(p) are equivalent, i.e. BctcB~cBt/~, t>0 ,  for some constant c>0.  For instance, 
if x2, ...,x2n are local coordintes at pEOD such that  x ( p ) = 0  and dx2ip and d~ip 
are colinear, then Bt(p)={x;ix2i+~x2<t} is a K-basis  at p. 

If now Bt(p) is any continuous choice of a K-basis  at each pEOD one can put  
a(p, z)=inf{t;zEBt(p)} and d(z, ~)= �89  ~ ) + a ( ~ ,  z)). Then, see e.g. [AC1], 

d(z, ~ ) + d ( ~ ,  4) -< Cd(z, 4). 

Since also 

IB2t(p)l < CIBt(p)l,  

0D is a homogeneous space, so a lot of tools of harmonic analysis are available, 
see [CW1]. 
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For p>O we put 

HP={feO(D);sUP fo IflPda<c~} ' 
~ ) 0  De 

where D e = { O < - s }  and da is (some) surface measure. I t  is well-known that  any 
f c H  p has admissible (i.e. "non-tangential" with respect to the balls Bt(p)) bound- 
ary values f* a.e. [&r], see [St], and that  f is the Poisson integral (or the n e r g m a n -  
Poisson dito) of f* i f p > l .  

An feL~oc(OD ) is in BMO if 

1s 
sup [U-UB,(p) l d~ = I1~11. < ~ ,  

where UB~(p) is the mean value of u over Bt(p). We also put B M O A = B M O R O ( D ) .  

Since OD is a homogeneous space there is also an atomic 7-/Lspace on OD whose 
dual is BMO, and singular integral operators such as G defined below, maps 7-[ 1 
boundedly into L I (0D) ,  see [CW2]. 

A measure # in D is a Carleson measure, pEW 1, if 

Iiz(Qt(p))l~Ct n, teOD, t > O .  

Then the Carleson-HSrmander inequality holds: 

/21gl P d l z ~ C p l l g l l P H ~ ,  g e H  p, p > 0 ,  

see [H52]. We let W ~ denote the space of finite measures in D and let W ~, 0<c~<1, 
be the interpolating spaces between W ~ and W 1. For our purposes it is convenient 
with the following operative definition, see lAmB]: 

# E W a if and only if d# = kd'r where d~- is a positive 

Carleson measure and k E LP(T), where 1/p = 1-a. 

In particular, note that  if #EW 1/r, then 

(2.1) / IflPdlz~llfllPm~,, p>O. 
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P r o p o s i t i o n  2.1. If  f EH p, p<oc, then 

(2.2) fD (-o]~ +l~176176 ~ llfllP,, 

and if fEBMOA,  then 

(2.3) -olOfi2 +iOQAOfl 2 e W 1, 

with Carleson norm bounded by ]lfil 2. 

For proofs in the ball, see [CRW] and [CW2]. We sketch proofs in the strictly 
pseudoconvex case in Section 6. 

Let S:L2(OD)--~H 2 be the Szeg6 projection, i.e. the L2(OD)-orthogonal pro- 
jection with respect to (some) surface measure da on OD. 

P r o p o s i t i o n  2.2. S maps BMO boundedly onto BMOA. 

For smooth functions f and 9 we put 

f 
(2.4) (f,g) = [ fg  da. 

J0 D 

Let H~={IeH1;  / ( 0 ) = 0 }  (0 is any point in D). We then have 

P r o p o s i t i o n  2.3. Via the pairing (2.4), BMOA is the dual space of H 1. 

We also have to recall same facts about integral representations of holomorphic 
functions and solutions of 0 in strictly pseudoconvex domains. This is based on the 
formulas for the 0c~-equation in [AC3] and we refer to this paper for more details. 

Let v(~, z ) :D • D--+C n satisfy 

(2.5) 2Re~ _> - e ( r  e(z) + 5 I r  zi 2, 

and 

(2.6) dr162 = - d : i r  = -0~ ( r  

Then Qt(p)={r iv(p, r  is a K-basis at p (take local coordinates Xl---~) , 
x2 = I m  v and Xa, ..., x2n arbitrary) and we have the well-known estimate 

f 1 (~ (2.7) 
. . D  i~(r z)l "+~ 
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Prom [F] it follows that  one can choose such a v that  is also holomorphic in z for 
fixed CED, and in wiew of (2.5) one can then define 

(2.8) Hu(z)=c fo q/\(Oq)n--ltl' D V(r n ' zED, 

where q = E  qjd~d and E qj (zj -~d) =v(r z) and q(r z) is holomorphie in z. Clearly, 
Hu is holomorphic in D if ~tEL 1 ( 0 D )  and, by the Cauchy-Fantappi6 formula, Hu= 
u if u is (the boundary values of) a holomorphie function. In fact, Hu has admissible 
boundary values a.e. if uELP(OD), p > l ,  and this operator maps LP(OD) into H p, 
and BMO into BMOA, see Section 6. 

There are related formulas for solving 0. If ~ is a 0-closed (0,1)-form on D, 
the boundary values of a solution to 0 u = ~  is given by a formula of type, 

(2.9) 
t ( -b,~/xo(1)+(-b~- l~/xOo/xo( iC- zl) 

C~(z) = I V ( r 1 6 2  JD 

a > 0 ,  zEOD. By (2.9) and (2.7) one easily gets the Henkin-Skoda estimate, 

if a >  �89 One also gets the corresponding estimates for LP(OD) in Theorem 1.3. For 
the connection between the formulas for Hu and s  see e.g. [AC3]. 

However for our purposes we need formulas with a more specific choice of 
v(~, z). Namely, one such that  

(2.10) -v(r ~ + E  1 = ~J'~ + ~ Z ~ , , , k ,  
j k  

(rlj=zj-~j, Qj=OQ/O~j(r etc.) near the diagonal. The crucial property for such a 
v(s z) is that  

(2.11) v(r z) = v(z,  0 +O(lr 

and 

(2.12) 0r162 z)=O(lr 

i.e. v(4, z) is almost conjugate-symmmetric and anti-holomorphic in 4. Clearly, 
v(4, z) is holomorphic in z near the diagonal but it will not be globally, so the cor- 
responding integral Hu will not have a holomorphic kernel, and the corresponding 
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operator s will just be an approximate solution for O. However, one can mod- 

ify the kernel for Hu by adding a smooth one and obtain a kernel g(~, z) and its 

corresponding operator 

(2.13) Gu(z) = faD g(~' z)u(r da(~), z e D, 

where g(~, z) is holomorphic in z and is ~ l / v "  (v from (2.10)) near the diagonal. 
There is a solution operator K p  for 0u=~,  whose principal term is the operator 

/:~, with the special choice of v(~, z) discussed above. We have 

P ropos i t ion  2.4. Let D={Q<0} be a bounded strictly pseudoconvex domain 
with C3-boundary and ~ a O-closed (0, 1)-form. Then there is a solution K~o to 
Ou=~o such that 

(2.14) K ~  = MO~+ T~+ F~, 

where 

(2.15) T~(z) = f~ -e(0~(0 Aar 0 A (a8e(0) ~-2, 

and, for zEOD, 

s - ~ ( -  ~1@1 + v~( la~A @1 + la~A0~l)+ la~AaeA a~,l) 
(2.16) IMa~(z)l < iv(~.,z)l,,+, , 

and 

(2.17) I-~(z)l s --el~llr n+l +fD --al0aA~llvl n+l 

Remark. In general one cannot have both Tqo anti-holomorphic and F=0,  since 
then (2.14), applied to any d-closed (0,1)-form ~o, would give a solution to du=~o 
but this is possible only if Hi (D,  C)=0. 

The formula (2.14) will be derived from the formulas for 00 in [AC3] and 
instead of recapitulating them here we only indicate the necessary modifications. 
We begin with formula (3.15) from [AC3] (with ~=1),  

K~o = MoqqO+ Al,o,n+l qO-i-.Fqp, 
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where F is as in (2.17) and 

(2.18) A1,0,~+1~ = c./~ 
~ ~ ~ d~ v A ~ O ~  n~ x 

~ n + l  

This formula only involves third order derivatives of 0. 
We may now replace v(~, z) by v(z, r in (2.18) since, in view of (2.11), the 

occurring error term can be incorporated in F~.  The kernel so obtained is 
1 

(2.19) -0~AOr v(z, r A(OOQ) ~-1" 

The kernel g(z, ~) for the holomorphic projection G above is defined so that 

g(z, ~)da(z) = q(z, r r ~-smooth. 
v(z, 0 n 

Thus if we choose 
de(z) = q(z, ~)A (0zq(z, ~))~-11r 

then 
( 1 ) O(l~-zl)  t-smooth, O~ v(z~r n g(z,r =0~ v(z,r 

and hence we may replace (2.19) by 

-~AOcg(z ,  r 

again the occurring error term can be incorporated in ~'~. Hence we have obtained 
Proposition 2.4. [] 

If we extend the definition of Gu(z) to OD as the boundary values of (2.13), 
then, see [KSt, Theorem 3.2.1], 

Cu(z)=lu(z)+Cpvu(z), zeaD, 
where 

Gp~,U(Z) = lim f g((, z)u(r da((), z e OD. 
~-~0 Jd(r 

Thus G and GB, have the same boundedness properties. By Cotlar's lemma it 
follows that Gpv:n2(OD)---+L2(OD), and since [g[~d -n and [Vg[~<d -n - l ,  Gp~ is 
a singular integral operator that maps LP(OD) into LP(OD), l < p < c %  for details 
see [KSt], and also 7-/~ into L~(OD). Thus G: LB(OD)-+H p, and G:7-t l~H ~. 

This argument works equally well for H in (2.8). 
From (2.11) it follows that G is almost self-adjoint and it turns out that 

(2.20) S = G+SA = G + A - A S ,  

where S is the Szeg5 projection, and A=G* - G  has the kernel g(~, z ) -g(z ,  ~) which 
by (2.11) (and (2.7)) is weakly singular. By repeated use of (2.20) it follows that 
S:LP(OD)---+H p, cf. [KSt]. In Section 6 we also show that G maps BMO onto 
BMOA. 
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3. P r o o f  o f  T h e o r e m  1.4 

We will rely on Proposition 2.4. To begin with, we note that  the term MOW is 
in LI(OD) if 0W satisfies the condition (al). This immediately follows from (2.16) 
and the estimate (2.7). It is proved in [AC2 w that  MOW is in BMO(0D) if (ap) 
holds for p = . .  Then it follows by interpolation that  MOW is in LP(OD) if (ap) holds, 
1 <p<* .  However, these intermediate cases can also be obtained rather easily by a 
direct estimation, not relying on the somewhat harder BMO estimate. 

Next, we show that  the term T w is in LP(OD) if the condition (bp) holds. To 
this end, take CELq(OD), (EBMO if p = l  and E~-~ 1 if p=*) .  We then have by (2.13) 
and Fubini's theorem, 

/OD r da(z) =/D 

and hence by (bp), 

-~wAOGCA (05~) n-1 , 

OD r <~ IIGr % IIr 

since G: Lq(OD)---*Hq, cf. Section 2. Thus T w is in LP(OD). 
Since the kernel of F is less singular than that  of T, the term/~W is in principle 

easier to estimate than TW. In fact, it is straight forward to show that /~W is 
in LP(OD) under the conditions in Theorem 1.2 or Corollary 1.5. However, the 

condition (bp) is not so easy to apply directly to the term FW, and we therefore 
rewrite (2.14) further. Unfortunately, we must then assume that Q is C 4. 

We have cgK=w, and by Lemma 3.5 in [AC3], the term F ~  can be rewritten 
as FKw, where F satisfies 

D lU01 (3.1) IFuo(z)15 jvj~+x/2, zeOD. 

Thus, Kw=MOw+Tw+FKw, and iterating we obtain 

(3.2) K w = M 0 w + F M 0 w + . . . + F ' ~ - I M 0 w + T w + F T w + . . . + F ' ~ - I T w + F m K w  �9 

Note that the condition (bp) (taking g=zj) implies that  -glwl is a finite mea- 
sure. Arguing as in (the proof of) Proposition 2.1 in [AC3], one obtains that 

IF~Kw(z)l 5/D -QIwl <oc, 

if m is large enough. 
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The estimate (2.8) in [AC3] for FkMO~ is sharper than (2.16) for MO~, and 
hence FkMO~ is in LP(OD). Note that  FkMO~ is in L~(OD)cBMO when p=* .  

It remains to estimate the terms FkT~. If fk is the kernel of F k, then 

1 
Ifk(z, ~)l < ivln+l/2, 

see Lemma 3.5 in [AC3], and we have 

FkT~(~ -) = f~e~ T~(z)f(z,  ;~)= fcev -~l~lA(Oa~)n-10~ fzeV g(z, ()fk(z, A). 

If r (bp) implies, 

/09 FkT~(T)r <~ f~cOD--~'~' 0r ~cOD ~eD g(z, 4)fk(z, A)r 

< ll~r 

where ] r162162 k(r A)r is holomorphic, and 

/D ,)fk(z,A) /D dA(z) < 1 Ik(r < g(z, < ]V(r ~ IV(r e. 
For the last inequality, compare Lemma 5.2 in [AC3]. 

By Schur's lemma, II~r ~< IIr and by duality, this implies that  
FkT~ELB(OD) and the proof is complete. [] 

Remark. When p = l  there is an inbalance between the (ap)- and the (bp)- 
conditions. In fact, (hi) implies that  T ~  is in 7-I 1, but the (ai)-condition only yields 
that MO~ is in L i (OD). It is therefore natural to look for a somewhat sharpened 
(ai)-condition that  would imply that  also MO~ is in 7-/1. However, we have not 
found any natural such condition. When n----1 and D is the unit disc, then the 
kernel for M is 1-I~12 times the adjoint of the Poisson kernel, so in this case the 
condition would be that  the balayage of (1-I~1)10~1 is in 7-/i, or equivalently, that  
PEEL1((1  - I~l)10~l) for all Poisson integrals of BMO-functions. 

4. Another  proof  

Let G be the Green's function for D with pole at (some) 0ED. Fix xEC~(D) 
with x = l  near OD and X=0 near 0, and put H=xG. Then H < - ~  and (bp) implies 
that 

(%) /• g~.Og <~ IlgHgq. 

By taking g(z)=zi in (bp) we see that  -e]~]  is a finite measure in D. Thus Theorem 
1.4 follows from 
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P r o p o s i t i o n  4.1. Assume that (ap) holds and that is a finite measure. 
Then, for l < p < *  there is a solution uELP(OD) to Ou=~o if and only if (cp) holds. 

As described in the introduction, we solve OOuo=O~ with uoCLP(OD). Then 

we show that  

/D HOuo.Og < IlgllH~. (4.1) 

Thus ~o =~-CgUo also satisfies (cp), and we have reduced the problem to the simpler 

case where 0~o=0.  
If 0~0 =0~o  =0,  we have d~0 =0.  If ~ is a solution to the Poincard equation, dS= 

Fo, then for bidegree reasons 05=0,  so a is holomorphic, and c~=~o .  However, even 
if H 1 (D, C ) ~ 0  there is always a nice d-closed (0,1)-form a that  is cohomologous to 
~0 (e.g. whose sup norm over D only depends on the L 1 norm of - ~ o ) .  Then we 

can take a nice solution to c~u=a and obtain c~(~-u)=~0 .  
Thus we may assume that  there is a holomorphic function a with d~=~o.  To 

estimate the HP-norm of a we use duality. If gEH q, Green's theorem implies (if we 

let do"= (OH)/(On)dS), 

But by (%), 

~OD ga do" ~- /D gSAH- H A(g~t). 

bll- . 

~ r t h e r m o r e ,  as H is harmonic near OD, we have for some K c c D  that  

/D g~AH < /K 'g~' <- HgHK /K 'a' ~ HgHHq' 

so aeHPcLP(OD). 
To complete the proof it remains to verify (4.1). If p > l ,  

By duality, 

~D UOg dO. 5 IlgllH~. 
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For the second intergral we have 

.f uogAH ~ /K lUogl <-- llgHHq /D [u~ <- llgllHq (/v -~lAu~ [u~ < IlgllHO- 

Finally, 

since-elaSuol=-ola~lEW 1-1/p. [] 
This argument does not work for p = l  since to obtain (4.1), we would need 

u 0 E ~  1, which however does not follow from the (al)-condition, cf. the remark in 
Section 3. 

5. P r o o f s  o f  T h e o r e m  1.2 a n d  C o r o l l a r y  1.5 

In this section we prove Corollary 1.5 and that  Theorem 1.2 follows from The- 
orem 1.4 and, if p~2 ,  also from Corollary 1.5. 

Proof of Corollary 1.5. It is enough to show that  if 2 ~ p ~ * ,  

/-el~llagl ~< IlgllH~, if 1 ~ I ~ I ~ W1-2/p. 

If p--*, 

(/-el~llOgl) 2< _ f - o  10gl2 f-olgll~12 ~< IIgll~l 

by Proposition 2.1 and the Carleson-H6rmander inequality. If p=2, 

The general case follows by interpolation. [] 

Proof of Theorem 1.2. We have to show that  

(5.1) 

and 

(5.2) 

--QIO(O~)I+v~-~(IO(O~)AaeI+IO(O~)A~QI)+Ia(O~)AOeAael ~ W~-~/~, 

I - - / -~l~l l~gl  ~ II~IIH~ IlgllH~, 
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or, if p_>2, 

(5.3) -olO~l 2 ~ W 1-2/p. 

As Ir e Lp/2(-elwl 2) by the Carleson-HSrmander  inequality, (5.3) follows. 
To prove (5.2), we first assume that  2 < p _ < ~ .  Then 

-. r'~ s / -o lg lq-~ lOg' l  '~ f-~o1r ~ q I,.,.,I ~. 

By (2.2), the first integral is bounded by Ilgll~q. I f p = q = 2  or p = c %  q = l ,  the second 

integral is bounded by 11r and 11r IlgLIgl, respectively. If 2 < p < c ~ ,  we note 
that  p/2 and q/(2-q) are dual exponents. Hence H61der's inequality implies 

• < Ilgll%~ (/-elCPI4~)~/~ (/-algFI4Q(~-~)/~ < Ilgll~ I1r 

as desired. If 1_<p<2 we write r162162 and we can apply the case p_>2 

of (5.2) to each of these terms. 
The estimates for the different terms in (5.1) are very similar and we only give 

the details for one of them, namely v/-A-~10(r Now O(r162 and 
we handle the two terms separately. 

To estimate the first one we note tha t  by assumption # = V / ~ ] 0 w A 0 0 ]  is a 
Carleson measure and thus ]r ELP(#) and 

v/~-~lr E W l-lIp. 

The estimate for the te rm OCAw will be obtained by interpolation. If  p = l ,  

(/D X,/-~] C9r Aw A ~o]) 2 -- _o ]~162 " 

If  p = * ,  let Q be a Kors in D. Then 

( 4  X/r'~l~176 2 ~/Q--~o]0r ]wA0u~ 2, 

and since both -~10r and IwA0~l 2 are Carleson measures, so is v / ~ l O r  . 
The general case, l < p < e ~ ,  follows by interpolation. Note that  it is not enough to 
prove the cases p = l  and p = o c  since it is not known whether one can interpolate 
between H 1 and H a ,  cf. [J]. [] 
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6. Proofs  of  Propos i t ions  2 .1 -2 .3  

Proof of Proposition 2.1, formula (2.2). Since Aer162162162  r 
Green's identity in R 2n yields 

e r  
O n  ' 

where O/On is the outward normal derivative. Hence 

f JOD er 

if ~ and r are subharmonic and de~0  on OD. wads, if r  ]fl 2, 
! 

/D(--9)IOf'2'f'P-2<~OD'f'2. 

Now~ 

D ( - ~ )  10fl2 IflP--2 ~/D ( - p ) a f  A~ff A (0@~)n-11 flp-2, 
and an integration by parts in the last integral yields 

~ fD l a f A ~  

Thus (2.2) is established. [ ]  

Proof of (2.3). The starting point is (2.8), 

f(z) = HI(z ) = ~aD 
fqA(Oq) ~-1 

v(~,z)~ 
Recall from Section 2 that  H: L2(OD)---~H 2. Now qA(Oq)n-i=r(~, z)da(() where 
r(( ,  z) is holomorphic in z and Ir((, z ) l~ l .  Thus 

Hf(z) = ~OD f(~) r(~, z) da(~). v(r 
To estimate H f, we will use that  

/~ IIfll, (6.1) Jh = I f ( z ) - f h l  da(z) < h~ 
~(p) d(z,P) '~+~ 
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if a > 0  (fh is the mean value of f over Bh(p)). 
Let us assume (6.1) and complete the proof. Put  #(f)=-olOfl2+lcgfAOol 2. 

We have to show that 

(6.2) fQh #(f)dA ~ Ilfll 2 IBhl, 

where Qh is centered at the arbitrary point OEOD. On the boundary, we write 
f=fl+f2+f3 where fl=fch, f2=(f- f l )x ,  f3=(f- f l ) (1-X)  and X is the char- 
acteristic function of Bch and C is a suitably large constant (depending on the 
constant in the triangle inequality for d). We also put f~(z)=Hf~(z) when zED. 

Since f l  is constant, it gives no contribution to the left hand side of (6.2). To 
estimate fQh #(f2), we use (2.2) with p=2,  

/Qh #(f2)dA ~</D #(f2)dA~HHf2H2H2=/Bch 'f--fCh]2~HfH2*]Bh" 

where the last inequality follows from the John-Nirenberg inequality. 
To estimate the contribution from f3, we observe that 

Of 3 ='Hf3=-'i~(OzV(~'z)r(<'Z)v(<,z) n9-1 + ~?~)f3(<)d'(~). 

Hence, since ;~Bmh, ZCQh implies v(;, z)~d(;, 0), we obtain 

fB If -fchl Ilfll. 10f3(z)l < d(ff,0) ~+1 da(f f )< h 
5h 

by (6.1). Similarily, as IOvAOp]~lz-~l~d(z, ff)1/2 

/~ If - fchl II/11. 
IOf3AO~l < ~ d(~,O)n+l/2 do'(~) ~< v/~ . 

Since -O(z)<h if ZGQh, we have 

#(f3) ~< Ilfll* 
h 

on Qh and 

Qh #(f3) dA~ II~l--*lQh I ~ Ilfll2.1Bh[. [] 
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Proof of (6.1). To simplify notations, let Bj =B2Jh(P), Aj =By+I \Bj, fj =f2Jh 
and d(z)=d(O,z). Then 

O~ OO 

(6.3) Jh=j~o/Aj If(z)--fOl&r(z)<~-~(2Jh)-(n+~) a [f(z)-folda(z). 
= j + l  j + l  

But 

/B 'f(z)--fJ'<~/B [f(z)-fj[<_,,f,[.]Bj, 
j - 1  j 

and hence [fj_l-fj]<(IBjl/]Bj+l[)[[f[[., which implies [fj-fo[<~j[[f]].. Thus 

/Bj [f(z)- foldo'(z) <_ /Bj If (z)- fJlda(z)+lfJ- f~ 

< (x+j)lBylllfl[, <j(2J)nllfl[,. 

If we use this estimate in (6.3), we obtain 

IIfll. & < ~(2Yh)-(n+~)J(2Jh)nllfl[* < h a [] 
5=0 

Remark. In the proof we did not use the fact that  f E B M O A ;  if fEBMO(OD) 
and we let f=H] or f=G], then f satisfies (2.3). [] 

Proof of Proposition 2.2. We first prove H:  BMO--*BMOA. With the tools 
we have developed, this is accomplished in a few strokes. As above, we write 

f=fl+f2+f3. As H fl is constant, I l g f l [ I , = 0 .  For H f2 we have, as H is bounded 
in L 2, that  

( l f B  )~ l fo [H f212 dcr ~ l fo Infold,, <__ ~ ~ If~l~d~ 
h D D 

1/o - IBhl  If--fchl2&r < Ilfl12*" 
C h  

Hence, Ilnf2[[,<llfll,. To est imate Ilnf311. we need 

Iv(z, ~)- v(w, ~)l <~ (hd(~, p))1/2 if z, w E Bh (p), ~ ~ BCh (t9). 

This follows immediately if we write 

v(z, r r =~(z, ~)+(q(z, ~)-q(z, r )(z-~)+(q(z, r r )(r 
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Using this, we have 

1/o iBhl Ig f3(z)--(g f3)hl da(z) h 
1 

~'~ [Bhl 2 /Bh dO'(Z) /Bh do'(w) rOD v(~,r(~'Z)z) n v(~,w) nr(~'w) If3(~)ld(T(~) 

D d(~,P) n+l If3(~)ld~(r <v/-f ~,~ d(~,p)n_t_l/2 <l l f l l , ,  

where the last inequality follows from (6.1). 
This proof also applies to G, defined by (2.13), G: BMO--.BMOA, as g(~, z) 

satisfies the same estimate as r(~, z)/v(~, z) n. 
By (2.20), S-G=A-AS and A maps LP---+H ~176 i fp  is large enough, since A is 

weakly singular. Since S preserves L p, we obtain S-G: LP---*H ~ if p is large, and 
hence S-G: BMO--*BMOA and so Proposition 2.2 is proved. [] 

Proof of Proposition 2.3. Let da= (OG/On)dS, where G is the Green's function 
with pole in 0ED, and let f c O ( D )  and f (0 )=0 .  Then, by Green's identity, 

OD f~ da =/D GO f "~, 
and hence 

rOD f~)d~ <~ /D-~]OfllObl+llfllH~libll*' 
since G ~ - Q  near OD. By Schwarz' inequality, Proposition 2.1 and the Carleson- 
HSrmander inequality, 

(/D --~IOf"Ob'~ <-- /D --~ 'Ofi2If, f --QlObl21fl <~ IlfN~l]lbll2., 
JD 

so that  

(6.4) -v.s fDda < Ilflfgl Ilbll* �9 

By approximation now (6.4) follows for arbitrary fEH 1. Thus BMOAc(H01) *. 
On the other hand, any functional on H I is given by some uEL~(OD), hence by 
b=SuEBMOA, where S is the Szeg6 projection with respect to da. This proves 
Proposition 2.3 for &r. 

Now suppose that r  is another surface measure on OD (we assume CEC 1 
and ~ 1 ) .  Then by (6.4) 

rOD f~)~ do- - - - - I I b C l l .  < IlbiI. �9 IlfllH01 IIfllH0 ~ 

Thus (6.4) holds also for the measure ~da  and then the duality with respect to this 
measure follows as above. [] 
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