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1. Imtroduction

Suppose that I, is a closed rectangle in Euclidean #-space and that B is the field of Borel
subsets of I,, We confine our attention to those completely additive set functions F,
having a finite value F(E) for each E of B, and left undefined for sets F not in B; we
reserve the name “set function” for such special set functions. Each set function corre-
sponds to a point function @ (x), and an additive interval function ®(I) such that F(E) =
®*(E) for each E € B, where ®* denotes the Lebesgue-Stieltjes measure generated by @.
Thus corresponding to each of our decompositidn theorems about set functions, there is
a decomposition theorem for point functions of bounded variation, and for additive interval
functions of bounded variation. (See Saks [5], Chap. 3, for the exact correspondence.)

Using the classical Lebesgue theory, set functions have been classified as follows.
(i) A set function F is absolutely continuous, if F (E) =0 for every E € B with zero Lebesgue
measure; it is singular, if there is a set B, € B of zero Lebesgue measure such that F(E) =
F(E n B,) for each E € B. (ii) A set function F is said to be diffuse, if F({z}) =0 for each
point x €1; it is said to be atomic, if there is a finite or enumerable set E, =z;, ,, ...
such that F(E)= F(E n E,) for each E€B. Now it is well known that, given any set

function F, there are 3 component set functions F,, F,, F,, such that
F(E) = Fy(E) + Fy(B) + Fy(B)

for all £ of B, and
F, is absolutely continuous,
F, is singular and diffuse,

Fy is atomic.
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Further, this decomposition is unique. In the present paper our object is to analyse the
singular diffuse set functions, endeavouring to break them down into components which
are uniform in some respect.

Recently Dr. H. Kober proved that any singular diffuse set function can be uniquely
expressed as the sum of a continuous set function and a step function. A set function ¥
is continuous at a point x €1, if F(R)—0 as the Lebesgue measure of E tends to zero,
R denoting any rectangle with x € R < I, whose sides are parallel to the sides of I,. The set
function is continuous if it is continuous at all € I,. The set function F is called a step
function, if there is a set E,< I, consisting of a finite or enumerable number of hyper-
planes each parallel to a face of I, such that F (&) = F(E ¢ E,) for all £ of B. Although
Dr. Kober’s decomposition is very interesting, it seems to us to suffer from the following
disadvantages. (1) Only “concentrations” on hyperplanes parallel to a face of the rectangle
1, are picked out; thus a set function concentrated on a straight line not parallel to an
edge of I, would be said to be continuous, provided it was diffuse. (2) Even if the definition
of continuous were altered to allow ‘‘skew’ rectangles, one still would not pick out con-
centrations on hypersurfaces which are “curved” at every point. (3) The step function is
not sub-divided into a part “spread over” the (n — 1)-dimensional hyperplanes and a part
concentrated on sets of lower dimension. Our work is a natural development of Dr. Kober’s
and uses similar methods, it is largely motivated by the desire to overcome these difficul-
ties. We are most grateful to Dr. Kober for telling us of his work before its publication and
for interesting us in.the problem.

Before we describe our results it is convenient to consider set functions “concentrated”
on certain sets. Suppose, for example, that § is an r-dimensional surface (1 <r<n —1)
with an r-dimensional volume element 48, and f(z) is a function defined on 8, but not
taking the value zero there; then provided the integral is defined and completely additive,
there will be a corresponding set function F defined by

F(E)= [ {@d8s.
ENs
This set function is concentrated on § in the sense that F(E) = F(E n 8) for each K € B;
it is spread over 8 in the sense that, if 7' is any measurable subset of S with

[d8>0,
T

there will be a set 7" < T such that

F(T") = [f(x)d8=+0;
>
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and it is continuous relative to S in the sense that, if 7" is a subset of S with

fas=o,
T

then F(1") =0. If we use the concept of an integral with respect to a general Hausdorff
measure (for the appropriate definitions see § 2), it is easy to give a more general example
of a set function which is in appropriate senses concentrated on, spread over and continuous
relative to a sub-set of I, Let h(f) be a Hausdortf measure function. Let § be a Borel
sub-set of I, with positive o-finite k-measure. Write u(E)=h-m(E n8) for all E€B.
Let f(x) be a point function, which does not take the value zero for any point of 8, and
which is (absolutely) u-integrable. Then, in the obvious sense, the set function defined by
F(E)= [ fdu, M
ENS
for all E €B, is concentrated, on 8. Further, using the h-measure to measure the size of
Borel sub-sets of S, the set function is spread over and continuous relative to S. We shall
show later (§ 3) that in a certain sense this example is the most general possible.

Naturally more complicated set functions F can be formed by adding a countable
number of set functions of the type (1) corresponding to different sets 8 (not necessarily
disjoint) associated with different Hausdorff measure functions % (f). This suggests that we
should aim at a general decomposition theorem for arbitrary set functions, which when
applied to such a sum would separate out the different component set functions used to
construct it. We obtain a general decomposition theorem (Theorem 6) for arbitrary set
functions, which will effect this re-decomposition of a sum of such components, provided
the corresponding A-measures are all mutually comparable and provided the maximal
system of h-measure functions, used to effect the decomposition, containsg the particular
h-measures corresponding to the original terms of the sum.

Before we discuss the general decomposition theorem we consider a much simpler
decomposition involving only a single h-measure. In § 3 we show (Theorem 1) that, if
F is a set function and 4 (¢) is a Hausdorff measure function, then there is a unique decom-
position

F=F,+F,+F,

where F, is strongly continuous with respect to the h-measure in the sense that F, (E) =0
for every F with a o-finite h-measure, where F, is both absolutely continuous with respect
to the A-measure and concentrated on a set of g-finite A-measure, and where F, is concen-
trated on a set of zero h-measure. By using the Radon-Nikodym theorem, we show that,
18 — 593802 Acta mathematica. 101. Tmprimé le 25 juin 1959.
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provided it does not vanish, the set function F, will in fact have a representation in the
form (1) and that it will thus be concentrated on, spread over and continuous relative to a
set S of positive o-finite A-measure.

Decomposition theorems of this type are the main tools for obtaining more complete
decompositions. In §4 we confine our attention to the Hausdorff measure functions 4 (¢)
of the form #*, with 0 <& <, corresponding to the fractional dimension measures. We
prove (Theorem 3) that given any finite singular diffuse set function F, there is a finite
or enumerable sequence {«,}, with 0 < a; <, of distinct dimensions and a unique decom-
position

F=F@ 4 FO 4 F&

such that F? is concentrated on a set of dimension «;, but F(E) =0 for each E of B
with dimension less than e, and F® has no component concentrated on a set of definite
dimension. The component F*¥ corresponding to the dimension a; can be decomposed by

using the corresponding k-function ¢ into three components

which will in general be all non-trivial. But, if the component F® with a “diffuse real
dimension spectrum” is decomposed, using any Hausdorff measure function % which is
comparable with the class of functions ¢*, the middle component F§® will automatically
be zero. We describe the structure of this component with a diffuse real dimension spectrum
in § 4; in § 5 we give an example of such a set function.

In § 6 we introduce the concept of a maximal system of mutually comparable Haus-
dorff measure functions. This enables us to prove (Theorem 6) that a set function F can

be decomposed in the form

F=F@ 4 F 4 po) 4

where now each component FtY, i=1, 2, ..., corresponds to a definite section of the
maximal completely ordered system of measure functions used, but the component F®
has no component corresponding to a definite section. In terms of the prescribed maximal
system of measure functions, this decomposition is also unique. Again the component with
a diffuse dimension spectrum has a definite structure, and the discrete components F9
which correspond to sections defined by Hausdorff measure functions of the system can
be decomposed as before into components F{’, F§, F.

The exact relationships between the different components obtained by using the two
decomposition theorems is in general rather complicated. We discuss these relationships in

detail in § 6 and we show that, if a maximal system of mutually comparable Hausdortf



ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE 277

measure functions is used, and if this system includes all the functions ¢* (with 0 < « <#),
the decomposition obtained is a refinement of the decomposition using only the special
a-dimensional measures.

Our analysis raises a number of problems that we have not been able to solve (see § 6).
Until some of these problems have been solved it is difficult to judge whether our decomposi-
tion theorem is really satisfactory or whether some other approach to the subject would be
preferable.

While all our results are expressed in terms of finite set functions defined for Borel
subsets of I, they extend immediately (i) to set functions which are o-finite, and (ii) to

set functions defined for all Borel sets in Euclidean n-space.

2. Definitions and preliminary results

A function 5 (¢) defined for ¢ > 0 will be called a Hausdorff measure function, if % () is

continuous, monotonic increasing and lim A(¢) =0. For any set £ in Euclidean n-space,
t—>0+

the outer h-measure of E, denoted by A-ms (£), is defined by

ecUc
i=1

o, <E>=;g%[ int ;ﬁlh{d(co}], 2(0)<5

where {C} is a sequence of convex sets covering £, and d(C,) denotes the diameter of the
set C; (the value + oo is allowed for the function k-my (£)). Then h-my is an outer Cara-
theodory measure and defines a class of A-measurable sets which, for any 4(t), includes
all Borel sets. When E is h-measurable we write h-m (E) = h-my (E) and call the set func-
tion h-m (E) the h-measure of E.

A special notation is used for the measure functions A (f) =¢% & >0. In this case
h-m(E) is written A*(E). The following properties follow easily from the definition:

if A*(E)>0, then A?(E)=+ oo for f<a,
if A*(E)< +oo, then AP(E)=0 for B> .

For any set E we can therefore define dimp (%) as the infinum of numbers « for which
A%(E) = 0: it is known as the (Besicovitch) dimension of E. We also put A°(E) = + oo, if E
contains an infinite number of points, and A°(E) = g, if E contains ¢ points (¢ =0,1,2,...).

The class F of our set functions forms a linear space over the field of reals, if we define
a set function A; F; + 4, F, by

) (M Fy + 2 Fy)(B) = Fi(E) + 2, Fo(E)
18* — 593802
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for all sets E€B. If F,, F,€F are such that F,(E) > F,(E) for every E €B, we say that
F, > F,. This clearly defines a partial ordering in the class FJ. We say that F, > F, if
F, > F, and in addition F,(I,) > F,(1,).

A lattice structure (we use the notation of Birkoff [1]) exists in the space F if we
define F = F,U F, as the smallest set function in F which satisfies F > F; and F = F;
and F; N F, as the largest element in F satisfying both F < F; and F < F,. Thus

F,UF,>F,>F,n T,
F,UF,>F,>F,n Fy;
but if F(E) <(F,U Fy)(E) for some E € B, then there will be some set E’ € B for which
F(E'Y<max[F,(E"), Fy,(E")];
and if F(Q)>(F,n F,)(G) for some G € B, then there will be some set G' € B for which
F(G') >min[F (G"), Fy(G')].

The proof of the existence of the set functions F, U F, and F, N F, is essentially due to
Riesz [4]. Tt can be shown that F, + F,= F, U F, + F, 0 F,. The structure of F, which
we have already discussed, shows that F is a Riesz space.

Now the Jordan decomposition theorem shows that any F € F can be decomposed uni-
quely into F = F+ — F- where F* and F- are non-negative set functions of J, and the
interval I, can be decomposed (though not uniquely) into Borel sets P and IV such that
I,=PUN and F+(N)=0, F~(P)=0. We denote the sum of the positive and negative
components by |F|=F++ F-. It is clear that |F|=FU (- F).

A subset §< F is said to be bounded above, if there is an element Fy€ F such that
F > F for every F€S§. The space F considered as a lattice is conditionally complete in
the terminology of Birkoff [1] (for a proof see Riesz [4]). That is, every subset S< F,
which is bounded above, has a least upper bound F, such that Fy> F for every F €S,
but, if F,(E) < F,(E) for at least one set K € B, then F, * F for at least one F' € §.

Following Bourbaki, [2], we call a subset § of F, a band, if:

(i) it is a vector subspace of F;
(ii) if G€ S, then F €S for every F € F such that | F| <|G|;
(iii) § is a sublattice of F which is conditionally complete; i.e. every subset J< §

which is bounded above has its least upper bound in F lying in §.

Two set functions F;, F, € F are said to be complementary, if | F, | n | F,|= @, the null
function. For example, the positive and negative components F+ and F- of a set function

F € F are complementary. We need
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THEOREM A. If J< F and § is the class of set functions F € F which are comple-
mentary to every element of T, then § forms a band in F. If T is also a band, then T consists

of all the set functions F € F which are complementary to every element of §.

This theorem follows almost immediately from the definitions; for a proof see N.
Bourbaki [2]. If § and J are bands in F such that J consists of all the set functions com-
plementary to every element of § we say that § and J are complemeniary bands in F.

THEOREM B. Given two complementary bands S, S, tn F each F € F can be expressed
uniquely as
F=F,+F,

where F1€S,, Fo€8,, and |F|=|F|+|F,|.
This is essentially due to Riesz [4].

TaeEoREM C. Suppose u s a measure defined for some Borel field Q> B of subsets of
I, and I, has o-finite u-measure, then F € F is absolutely continuous with respect to u, if,
and only if, there is a y-measurable point function f(x) such that

FE)=[f@du
E

for every E €B.

This is the theorem of Radon-Nikodym expressed in our terminology.

3. Decomposition with respect to a Hausdorff measure

Suppose that & (t) is a fixed Hausdortf measure function. We call a set function F of
F h-continuous, or absolutely continuous with respect to the corresponding h-measure,
if F(E) =0 {or every E of B with h-m(E) =0; and we use C(h) to denote the set of all such
set functions. Similarly we call a set function F of F strongly k-continuous, if F(E)=0
for every set E of B with a ¢-finite h-measure (1); and we use C* (k) to denote the set of all
such set functions. Note that clearly C* (k) < C(h).

We say that a set function F of J is h-singular, or singular with respect to the ~-meas-
ure, if there is a set E, of B with A-m(Z,) =0 such that

F(E)=F(EnE,) (2)

for all E of B; we use §(k) to denote the set of all h-singular set functions. The equation

(1) Note, however, that this condition is automatically satisfied, if F (E)=0, for every set B
of B with a finite A-measure.
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(2) shows that the k-singular set function F is concentrated on the set E, of zero h-measure.
Further we say that a set function F of F is almost h-singular, if there is a set By in B of
o-finite h-measure, such that
F(E) = F(EN By,

for each E in B; and we use $* (%) to denote this set of almost singular set functions, Such
almost singular set functions are concentrated on sets of g-finite h-measure. Note that
clearly S$*(B)> S(&).

Our aim now is to prove that C(k), $(h) and C* (%), $*(h) form pairs of complementary
bands in F. We find it convenient to prove a more general result about bands generated in

this sort of way and obtain the particular bands as a special case.

LeMma 1. Let A be a system of sets of B with the following properties:
(i) if B, €A and E,€ B then B, N E,€ A;

-]
(i) of E,€4,i=1,2,3, ... then .Ul E,cA

Then the set S, of all functions F of F, such that for some Ey € A we have

F(Ey=F(ENE,)
for oll E in B, is a band.
Proof. (i) If the set functions F; and F, are concentrated on sets B, and E, of 4, in
the sense that
FI(E)=F1(EnEi)7 i=1329
for all £ in B, it is clear that for all real numbers A,, 4,, the set function 4, F, + 4, F, is
concentrated on the set E, U E, of 4. Hence §, is a vector subspace of JF.

(ii) Let F be a set function of $, concentrated on a set E, of A4, and let G be a set
function of F satisfying |G| <|F|. Then, using the decomposition

F=F,—-F, I,=PUN,
where F+ and F_ are non-negative set functions of F and P, N are Borel sets such that
F(N)=0, F-(P) =0, we see that, for each £ in B,
| F|(E) = F+(E) + F-(E)
=F(ENnP)y—F(ENN)
=F(ENPNE)—F(ENNNE,)
=|F|(En E,).
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So | F| is concentrated on E,. Further, as |G| <|F|, for each E in B we have
|G(B) - G(E N E)|=|GENIT,— E) | <|F(En{I,— Ey))|=0.

Thus G is also concentrated on E, and so lies in §,. This shows that §, satisfies the second
condition for a band.

{iii) Let J be a subset of S, which has an upper bound in F. Then there is set func-
tion, @ say, of F such that for each F in J we have F <@. Then, if T,, T, ..., T} is any
finite set of elements of J we have

T,UT,U .. YT, <Q.
So we can define a real number %y by the formula
hy=sap(T1U Ty U ... U T)(1,), (3)

the supremum being taken over all finite sets of elements of J. We can now choose a strictly
increasing sequence of positive integers n,, n,, ..., and a sequence of set functions T,
T,, ... of J such that the set function

Hk=T1UT2U...UTnk (4)
satisfies Hy(I)>hy—27% k=12, ... (5)
Now, as |Hy| <|Ty] +|Te| ++++ + | T

it follows from (i) and (ii) above that H, € S,. But, also, as T < G for each T in J, we have
H,=T,uTV...U Ty <G6.
So, for each E of B, we have
H,(E)<SH,(E)<H,(E)<...<G(B).
Hence we can define a set function H by the formula

H (E)= lim H, (B). (6)

k—o0

Since, for each k, the function H, is less than or equal to the least upper bound of 7, this
ensures that H is also less than or equal to this least upper bound. It follows without diffi-
culty from the theory of dominated monotonic convergence that H is a completely additive
set function having a finite value for each set K of B. Thus H € F. Further, there will be sets
E,, E,, ... of A such that H, is concentrated on E,, for k =1, 2, .... Then the set

E0= U E,
k=1
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also belongs to 4. But, for each E of B we have, by (6),

H (B)= lim Hy (E)

k—>00

= lim H, (E n Ey)

ko0

= lim H, (E N E, 0 E,)

k—c0
= lim H, (E N E))=H (E 0 E,).

k—oo

Hence H € §,. Since we have already noted that H is less than or equal to the least upper
bound of the subset T, in order to prove that H is the least upper bound of J, it remains
to show that H > T for every T €.

Now, for each E in B, we have
H (E)—H, (E) = lim {Hy (E)— Hy (E);
= lim {H, (I;) ~ Hy (I} — lim {H, (CE)~ H(CE)}
< H (1) — Hy (1),
since, by (4), H, < H, when k > k. Using (5), it follows that
H(E)-H/(B)<2" (=12,..). (7)

Suppose that there is a set function 7, of J, which does not satisfy 7'y < H. Then there is
a set By of B and a positive integer & such that

To(Ry) — H(Ry) >27".

Hence (To U Hy) (By) > To(Ry) > H(Ry) +27. ®)
But, by (7), H,(CR,) — H(CRy) > —27F,
o that (T U H)(CRy) > H,(CRy) > H(CRy) — 27, )

Adding (8) and (9) we obtain
(To U Hy)(1y) > H(I,) = hy,
or (ToU T U...U Tu) (L) > by

This contradicts (3). Consequently there can be no such function 7'y in J and so H is the
least upper bound for J and lies in §,. Hence §, is a band.
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LeMMA 2. Let 4 be a system of sets of B with the properties:

(i) if B.€ A and E,€ B then E, 0 E, € A;

(i) if B,, E,€4 then E, U E,€A.

The set C, of all F of F satisfying F(E) =0 for each E of A, is a band.

LeMma(l) 3. If A is a system of sets of B satisfying the conditions of Lemma 1 (and, a
fortiori, of Lemma 2) then C, and §, are complementary bands in F.

Lemma 2 can be proved directly by a simpler version of the proof of Lemma 1 (condi-

tional completeness is easier to prove). However, it is easier to deduce Lemma 2 from
Lemma 3.

Proof of Lemma 3. First suppose that F € C,and T € §,. Then for some E, € 4 we have
I7|(&) = | T}(E n E),
for all £ in B. Hence for each £ in B,
(IF]|n|TINE)=(|F|n|T|{ENEy)+(|F|n|T|)En (I, Ey))
S|F{ENEy)+|T|(En (I, — E,))=0.

Thus F€C, is complementary to every element 7' in the band $,.

Suppose now that there is some F in F, not in C,, which is nevertheless complement-
ary to every element of §,. Then there is Ey€ 4 such that | F|(Ey) > 0. Define a set func-
tion 7 by the condition

T(B)=|F|(En By

for all £ in B. Clearly T€ S, as E,€ 4. But, as

|F|=>T,
we have [ FIn|T|=|F|nT=T
and so [|FIN|T| (1) = T(Iy) = | F|(E,) > 0.

This is contrary to the supposition that F is complementary to each element of §,.
Hence each element complementary to each element of §, belongs to C,. By theorem

A it follows that C, is the band complementary to §,.

(*) Note added in Proof. Results which are essentially equivalent to our Lemma 3 have been
recently obtained by somewhat different methods by E. T. Mickle and T. Rado (Rendiconti del
Circolo Mat. di¢ Palermo, Serie 2, 7 (1958), 5~—33). They use their results for a different purpose.
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CorROLLARY 1. The sets C (k) and § (k) are complementary bands of JF.

Proof. The result follows from the lemma on taking 4 to be the system of all sets £ of
B with k-m (E) =0.

CoROLLARY 2. The sets C*(h) and $*(h) are complementary bands of 3.

Proof. The result follows from the lemma on taking 4 to be the system of all sets £ of

B with o-finite %-measure.

Proof of Lemma 2. Let A be a system of sets of B with the properties (i) and (ii). Let
A* be the system of all sets which can be expressed as countable unions of sets of the system
A. Then it is easy to verify that the system 4* satisfies the conditions (i) and (ii) of
Lemma 1. So, by Lemma 3, the set functions of C, form a band. But a set function F of
F satisfies the condition F(E) =0 for each E of A, if, and only if, it satisfies the condition
F(E) =0 for each E of 4*. Hence C, coincides with C . and so is a band.

We can now decompose any F of F with respect to a given Hausdorff measure.

THEOREM 1. Given any set function F € F and a Hausdorff measure function h(t), there
s @ unique decomposition
F=F,+F,+ F,,
where F, is strongly h-continuous, where F, is h-continuous and almost h-singular, and where
F, is h-singular. . ,
1f the component F, does not vanish, it has a representation in the form

FyB)= [ f(@)dh-m (),
ENS

where S is a Borel set of positive o-finite h-measure, and f is a h-measurable point function
not taking the value zero on S.

Proof. By Theorem B, and Corollary 2 to Lemma 3, the set function F has a unique
decomposition of the form F = F,+ F;, where F,€ $*(h) and F,€ C*(h).

Applying Theorem B and corollary 1 of Lemma 3, the set function ¥, has a unique
decomposition of the form F,= F, + F, where F, € C(h), F4€ S(h). Since | Fy| <|F,|, F,
must belong to $*(k) N C(k). Consequently F has a unique decomposition of the required
form.

Since F, € §* (k) there is a set T of o-finite h-measure such that

Fo(B)=F,(EnT)
for all E of B. We define a measure » by the equation

v(E) = h-m(E 0 T)



ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE 285

for all E of B. Then » is a measure over I which is o-finite, since 7' has o-finite h-measure.
Further the class of v-measurable sets contains B. Now, if £ is any set of B with v(&) =0,
then

F.(B)=Fy,(EnT)=0,

since hA-m(ENT)=v»(E)=0, while F,€C(h). Thus F, is absolutely continuous with
respect to ». Hence by the Radon—Nikodym theorem (Theorem C) there is a function
f = f(z) defined for = in I,, which is y-measurable and »-integrable over I,, and which satis-

fies

Fy(B)= [f(z)dv,

for all E of B. Since Fy(E) = Fy(E N T) for all ¥ of B, and v corresponds to h-measure for
Borel subsets of 7', we can write this in the form
Fy(B)= [ f(z)dh-m ().
ENT
Let R be the set of points of 7' for which f(x) =0, and let @ > R be such that h-m(Q) =
h-m(R) and Q € B. Now put § =7 —@. Then f(x)+ 0 for z in S, S€ B, and S has o-finite
h-meaure. Further f f(@)dh-m(z) =0 and so
EnQ
Fy()= | j@)dhm ()
ENS
as required.

It is interesting to note that in the case when k(f) =", every set E contained in I,
has finite h-measure, so that the decomposition reduces to the Lebesgue decomposition
into the absolutely continuous set function F, and the singular function F,. Further, in
the limiting case when the A-measure of a set is taken to be the number of points it con-
tains, the set function F,, being concentrated on a set with no point, is zero and the de-
composition reduces to the decomposition into the diffuse set function F, and the atomic
set function F,.

Theorem 1 is stated as a decomposition of a set function F with respect to a Hausdorff
measure. This is what is relevant in the context of the present paper for we want to analyse
the set funetion into “uniform” components; and Hausdorff measures are invariant under
translations and rotations in Euclidean space. However, the theorem is true for a decom-
position with respect to any measure in Euclidean space which is regular. Thus it forms a
generalisation of (i) the Lebesgue decomposition theorem, and (ii) the Radon-Nikodym

theorem to the case of measures which are non ¢-finite.
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THEOREM 1A. Let u be any measure defined for Borel sets in Euclidean n-space, and
suppose I is a completely additive set function also defined for Borel sets. Then there is a

unigue decomposition

F=F +F,+F,,

where F; vanishes for any set of o-finite u-measure, F, is absolutely continuous with respect
to u-measure and concentrated on a Borel set of o-finite p-measure, and F, is singular with

respect to p-measure. If the component F, does not vanish, it has a representation in the form

F,(B)= [ f(»)dp,
ENS
where S is a Borel set of positive g-finite y-measure and f is a y-measurable point function not

taking the value zero on S.

This theorem can be proved by the same method as was used in the proof of Theorem 1.

4. The decomposition spectrum with respect to measures of fractional dimension

In this section we work only with the fractional dimension measure A* where
0 < a < n; but instead of confining our attention to a single 4-measure at a time we work
with the whole system of these fractional dimension measures, and we need to introduce
some further concepts.

We call a set function F «-dimension-continuous, if ¥ (&) =0 for every E of B which
has dimension less than «; and we use C, to denote the set of all such set functions. Simi-
larly we call a set function F of J strongly a-dimension-continuous, if ¥ () =0 for every
set B of B of dimension less than or equal to «; and we use C} to denote the set of all such
functions. Note that C} < C,.

We say that a set function F of F is «-dimension-singular, if there is a set E; of B,
which can be expressed as the union of a countable number of sets E; of B, each of dimen-

sion less than o, and which is such that
F(E)=F(E N E), (10)

for all E of B. We use §, to denote the set of all x-dimension-singular set functions. Further,
we say that a set function F of F is almost a-dimension-singular, if there is a set B, in B of
dimension less than or equal to «, such that (10) holds for each Z in B; and we use $} to
denote the set of almost x-dimension-singular set functions. Note that we have Sy 3 S..

These concepts are clearly closely related to the corresponding concepts introduced
in the last section. The situation is conveniently summarized by the inclusion relationships:
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Cac C*) < Cl*) = Cos'
$2> $*¥(%)> S(t%)> Sa

LemMa 4. If 0 < a < n the pairs C,, S.and Ck, S¥ are pairs of complementary bands
in F.

Proof. First take A to be the system of all sets E of B which can be expressed as a
countable union of sets &; of B of dimension less than «. It follows without difficulty from
Lemma 3 that C, and §, are complementary bands in F.

Secondly take A4 to be the system of all sets E ‘of 8 which are of dimension less than
or equal to a. It follows without difficulty from Lemma 3 that Cx and S are complemen-
tary bands in F.

Remark. When o =0 we have Cy= F and §, =Z, where Z is the system of set func-
tions containing only the null function. When o =7 we have C; =Z and §r = F.

We also need to introduce the idea of a set function having an exact dimension. We
say that a function F of F has the exact dimension «, if F is «-dimension continuous and
almost o-dimension singular. Such a function F is concentrated on a set of dimension
o and F(E) =0 for each set F of B of dimension less than «.

Notice that if we apply Theorem 1 to F € F with h(f) =%, (0 < « <n) the component
F, obtained will have the exact dimension «. However, the class of set functions of exact
dimension o is wider than the class of components F, arising in this way, because Cj is

a proper subset of C*(t*) and C(t¥) is a proper subset of C,.

THEOREM 2. Given any set function F € F, for each « with 0 < « < n, there is a unique
decomposition

F=F@+ FQ + FP,

where F is strongly o-dimension-continuous, where F$ is of exact dimension «, and
where FS? is a-dimension-singular.
Further for each set E of B the function |F|(E), is monotonic decreasing for

0<a<mn, while the function |F§’|(E), is monotonic increasing for 0<a<n.

Proof. The first part of the theorem follows from Theorem B and Lemma 4, just as
the first part of Theorem 1 follows from Theorem B and the corollaries to Lemma 3. Note

that. the corresponding decomposition for the set function | ¥| is given by the identity:
|F|=|F°|+| F&| +| F5°).

Now suppose that 0<a<pf<n. Then |F{| is strongly «-dimension-continuous.
19 - 593802 Acta mathematica. 101, Imprimé le 18 juin 1959.
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Further | F$|+|F¥| has a decomposition
| FP|+ | FP| =67 + 65 + G,

where Gf” is non-negative and strongly «-dimension-continuous, where G is non-
negative, o-dimension-continuous and almost «-dimension.-singular, and where G{ is
non-negative and «-dimension-singular. Hence by the uniqueness of the decomposi-
tion we have

| F| = | FP|+ 6,

|| =g,

| P9 =6,

Since G{” is a non-negative set function, this shows that
| F | (B)> | FP|(B),

for each! B of B. Hence | F|(E) is a monotonic decreasing function of « for 0< a<n.
A similar proof shows that | F§|(E) is monotonic increasing.

The following lemma gives some further information about the decomposition of
this theorem.

LemMa 5. (i) If FE€F is decomposed by Theorem 2, then |FP|(1,) is continuous
on the right as] a function of a for 0<a<mn, and |F|(I,) is continuous on the left
as a function of a for 0<a<m,

(i) Discontinuities of the two functions |F®|(I,), |F§*|(I,) occur for the same
values of o in the ramge O<a<n and |FQ|(Il,) is the size of the discontinuity of
either function at o=1y.

Proof. (i) |F§°| is a-dimension-singular. Hence, if «>0, there is a set E,€B
such that E,=U E;, dimp (B)<«(i=1,2,3,...), and |F§*|(E)=|F|(EnE,) for

i=1
every E€B. We may assume that the sets E,€B are disjoint, so that

|72 1) = 5 | P50 (B, (11)

Given £>0, we can choose 8>0 such that

| FS | (B <e. (12)

a—ésdlmB (Ep<a
Then, if a>pf>a—4,

| PPl L) | P2 d)> 5 P

mp (Ep)<a-6
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and therefore, by (11) and (12),
| P2\ (L) = | FP| (L) = | FE | (Ig) — e

This proves that |F§?|(I,) is continuous on the left for 0<a<n. A similar proof
shows that | F{®|(I,) is continuous on the right for 0<a<n.

(ii) Now suppose 0<y<n and write

d(y)= Lim {F"|(I)) ~ | FP| (L)} (13)
Now {72 L)+| F2| (T} +| FP| Lo = | F| (L)

is independent of « for 0<a<m, so that |F{|(l,)+|F|(I,) is monotonic decreas-

ing and continuous on the left as a function of «.  Hence

| FP| (L) >d ().

But | F=2| (1) = | FP| (1) + | FP| ()
go that | F| (T)<d ().
This proves that | F$| (Ly) =d (p) for 0<p<m. (14)

Similary it can be proved that, for 0<y <,
| PP (do)= lim {| By | (L) = | FP| (1)}. (15)
-0+

(13), (14) and (15) together show that, for 0<a<mn, the discontinuities of | F{?| (I,),
| F§?| (I,) coincide in position and size.

CoroLLARY. For any E€RB, the real function F(E) is continuous on the right,
and F§(E) is continuous on the left. The discontinuities of these two functions coincide
and have the same magnitude.

Proof. The corollary follows from the Lemma applied to the positive and negative
parts of the function G € F given by G(Q) = F(E N Q) for any Q€ B.

By means of Theorem 2 it is possible to pick out some components of a set function
F€F with an exact real dimension. These are the set functions |F§”| which do not
vanish. To describe what is left when these discrete components have been removed we
need the following.

DEFINITION. 4 set function F € F is said to have o diffuse real dimension spectrum,
if the component F$? of Theorem 2 vanishes identically for each o with 0 < o <n.

The following lemma gives insight into the structure of these set functions.
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LeMMA 6. For a function F € F to have a diffuse real dimension spectrum, either of the
following conditions is both necessary and sufficient.

1. If F®, F are the components defined by Theorem 2, then | F® | (1), | F$?| (1), are
each continuous functions of a for 0< o< mn.

2. There is no function G € F with an exact real dimension such that 0 <G <|F|.

Proof. 1. The necessity and sufficiency of the continuity of | F{®|(I,), | F§*| (I,)
for 0<a<n follows from Lemma 5 (ii). The special case of the end points follows
from (13) and (15).

2. If this condition is satisfied then |F§’| must be null for every «, 0<a<n.
Conversely suppose there is a non-null function G €F with exact real dimension ¥ and
0<@<|F|. Then 0<G@<|FY| and the function F€F has not got a diffuse real di-
mension spectrum.

We can now state the main theorem of this section which gives a decomposition of

F € F into a “discrete’” spectrum and a diffuse spectrum.

THEOREM 3. Given any set function F of F there is a finite or enumerable sequence

oy, 0, ... with 0 <o; <n and o;+ a; when i = j and a decomposition
. F=F(d)+F(ul)+F(ag)+ e,

where F® has a diffuse real dimension spectrum, and F® is a set function of exact
dimension o; fori=1,2, .... The set of numbers a;, and the decomposition (apart from

the order of its terms) are uniquely determined by F.

Proof. Let S be the set of real numbers « such that in the decomposition of
Theorem 2, | F§°|(I,)+0. Then S is finite or enumerable, for

S| I)<|F|(Ty)< + .

Let ay, o, ... be any enumeration of the elements of S such that o;=o; when 4.
Then for each E€RB,

G(E)= 2 F? (B) (16)

is defined, and G€JF, since the series in (16) is absolutely and uniformly convergent.
Let F*=F—@. Then F®€J. Now, if G is decomposed by Theorem 2,

GP =F%, when a=uay,

G¥ =0, when a+a;, any i.

Since the decomposition of Theorem 2 is unique, it follows that:
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(i) f a=ay, 2=1,2, ...

Féd) (@) _ Féazi)_ F§¢1)= 0;

(i) if x=oy, any i,

Féd) @ _ Féu) _ th) =0—-0=0.

Thus the set function F'® has a diffuse real dimension spectrum. This proves that
the decomposition of Theorem 3 is possible.

To prove that the decomposition is unique, let F=G@+ Q% +@% + ..., where
G‘€F and has a diffuse real dimension spectrum, and G%’ € F and has the exact
real dimension §;(i=1,2, ...). Let ¢ (F, )=|F§*| (I,), where 0<a<n, FE€F and F§
is defined by Theorem 2. Then

@ (F, a)=@ (F, a)+ ; @ (F, ) (17)
=9 (G, )+ 2 ¢ (G, «). (18)

The functions ¢ (F®, x) are monotonic functions which are constant except for a

single step at o«;, so that (17) represents a decomposition of the monotonic function

@ (F, &) into a continuous monotonic function ¢ (F®, «) and a step function 2, ¢ (F*?, «).
i

{18) is another such decomposition. Hence
QFDP, a)=¢(G°, a)+E,

where k is a constant. But when a=0, p (F®, a)=0=¢ (G', a) so that k=0. It fol-
lows that the functions ¢ (F®, @), are the same as @ (F%?, «), though the order may
be different. Rename the G% funections G*,

Thus it is sufficient to prove that for each ¢,
Q) = D,

Then we know that F* =F§?. But F§ can be obtained by applying Theorem 2 to
each of the functions G°,G%(j=1,2, ...) and adding. The only one to make a non-
null contribution is G*”. Hence F§? =G“’, and the theorem is proved.

Remark. Fach of the components F? of exact dimension o; of Theorem 3 may
be decomposed by Theorem 1 with respect to the measure function #*; and in some
cases the three components will be non-null.

If F€JF has an absolutely continuous component, then F'™ will be not null and
when F™ is decomposed by Theorem 1 using % (£) = ¢ the first component will be absolutely
continuous in the Lebesgue sense. Similarly if F€ F has an atomic component, F0 will
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be not null and, when decomposed by Theorem 1A with respect to A%-measure, will give

a middle component which is the atomic component of F.

5. A set function which has a diffuse real dimension spectrum.

In Theorem 3 we hawe obtained a decomposition of any set function F€JF into
a function F» with a diffuse real dimension spectrum and a discrete spectrum of at
most enumerably many set functions of exact real dimension. It is easy to see that
the discrete spectrum can exist. For example, given different real numbers o, «,, ...,
oy ... 0<z<m, let B, be a subset of I, such that A% (By=2"" (:=1,2,...), and
define F“’(B)=A%(ENE,) for each E€B. Then i F:é F, wo have F(I,) =1,
and Theorem 3 must decompose F into the components F“¥.

It is not trivial to show that the component F¥ need not be void. The object of the
present section is to exhibit an example of a non zero set function F®. Qur example is in
Euclidean 1-space, but obvious modifications would give an example in n-space. The
method is to carry out suitable modifications to the Cantor ternary function, and define
a Stieltjes measure F with respect to this function, defined for Borel subsets of [0, 1].
Clearly F€J.

To obtain a Cantor type set of dimension «, 0<ax<1, one proceeds as follows.
Let Py be the closed interval [0, 1]. Obtain P, from P, by removing an open inter-
val of length A, from the middle of [0, 1] where 1, satisfies

FA-2)=1%;
1

that is, Ae=1-—21"%" (19)

If P, has been defined and contains 2" intervals of length I, = (})"'*, Pp41 is obtained
by removing from the middle of each interval of P, an open interval of length 4,1l,.
Finally put P=160 P,. Then P is a perfect set and A%(P)=1. {This was first proved
Iby Hausdorff [3].)

A function ¢, () is defined for z in [0, 1]=1, as follows. First put ¢, (x)=% on
(I,—P,). Now (P,—P,) consists of 2 open intervals; define ¢, (x)=3;, @u () =% re-
spectively on the left and right of these. Similarly (P,_;—P,) consist of 2"~! equal
open intervals; order these from left to right and put ¢,(x)=27"(2r—1) in the rth
one. This process will define ¢,(z) for all & in (I,— P). Define it at points of P so
that it is continuous for 0<z<1. For any set 4€B, let C,(x) be the characteristic
function of 4 and define



ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE 293
1
H, (A)= [ C4(x)dgu (@),

0

where the integral on the right is a Lebesgue Stieltjes integral with respect to the
monotonic function ¢, (z). It can be shown that H, is a positive set function in F
of exact real dimension « and that

H,(A)=A*(PnA).
We do not need quite as much but we prove:

LeMMA 7. For 0< <1, the function @, (%) satisfies 0 <@, (25) — 9o () < K, (23— 2,)%,

for all x,, z, such that 0<x, <xz,<1, where K, 18 a suitable finite constant.

Proof. Since @,(x) is constant on each interval of (I, — P) it is sufficient to prove
the lemma when z,, z, are two distinct points of P. Let n be the unique integer
such that 2;, x, are in the same interval of P, but in different intervals of P,.;.
Now if [a,b] is one of the intervals of P, we have ¢, (b) — . (@)= (})" and it follows
that

Pa (%2) — @a (21) < (3)™
Also Xy — & 2 Ao b= Ao (3)7
Thus Pa (%3) — Qu (2) < (3)" < L™ (03— 2,)%,
and the lemma is proved with K,=4;% -

Remark. By taking considerably more care, the above lemma can be proved with
K,=1, and this result is clearly best possible.

LemymaA 8. If A is a Borel subset of I, such that A*(A4)=0, then
1
H (A)= [ Cs(@)dep.(2)=0.
0

Note. This proves that H,€C,. Since P is a set of finite A*-measure for which
H,(E)=H,(EnP) it follows that H, is a set function of exact real dimension «. In
fact more is true: if we apply Theorem 1 to the set function H, we will obtain}

H.(B)= [ 1-dA%,

EnpP

so that H, is in a certain sense “spread very uniformly’” over the set P.
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Proof of lemma. Let A be any set <, such that A*(A4)=0. Then there exists
an open set GoA consisting of intervals (a;, b;) 1=1, 2, ... such that Z (b —a;)*<e.
Now

Ha(A)<Ha(G)=;{(P¢(bi) (pu(a’i} K«Z —ai)a<Ku8-

Since ¢ is arbitrary, H,(A4)=0, and the lemma is proved.

Given any set E in Euclidean n-space, we can define the dimension of E at the
point z, denoted by dim (z, E), by the relation
dim (z, E) = lim dimg (E n S (z, 7)), (20)
r0+
where S(x, r) is the open sphere centre x and radius 7.

The Cantor set P defined above has the same dimension « at each of its points.
Our object now is to modify the definition of P so that it has a different dimension
at each of its points. Note that, by (19), A, is a monotonic decreasing function of o
for 0<a<1 and lim 4,=0, lim 2,=1. The value A,=} corresponds to the Cantor

a—>1— «—>0+

ternary set which has dimension «=1log 2/log 3.

Let @,=[0,1]. Remove from the middle of @, an open interval of length 1,.
For # in this open interval put ¢ (z)=4. The remaining set @, consists of closed in-
tervals I, I of lengths I, I ordered from left to right. Remove from the middle
of the interval I} an open interval of length 2, 1{", and from the middle of I$" an open
interval of length 2415". These open intervals of z correspond to ¢ (x)=%, @(x)=3%
respectively.

Suppose now that @, has been defined and consists of the closed intervals
I, I, ... I{), where the lower suffices agree with the order of the intervals from
left to right; and ¢@(z) is already defined on @,— @, From the middle of I/™

(r=1,2,...,2" of length I remove an open interval of length A,l, where
r 1
Y=g g

and, for x in this open interval, put

r 1
¢@)=y=5s—gari-

The 2"*! closed intervals formed in this way are the components of the set Q...

o0
Finally put @ = N @,, and complete the definition of the function ¢ (x) at points of
N=1
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@ so that it is continuous for 0<x<1. This definition ensures that g(x) is mono-
tonic and non-decreasing.

If A is any Borel subset of I, define
1
H(4)= [ Cs(@)do ().
0

Then H(A) is a positive set function € F with H (Q) = H(I,) = 1. Thus H is a singular set
function in the Lebesgue sense, and it is also diffuse since ¢ (x) is continuous. We now
prove that @ € B and H € F satisfy the conditions of

TueEOREM 4, (i) There exists a perfect set Q < I, =[0, 1] such that the dimension of @
at any two of ils points is different unless the two poinis are end-points of the same interval of
I, —Q.

(i) There is a positive set function H € F concentrated on the set § such that H has a
diffuse real dimension spectrum.

Proof. Let @ be the modified Cantor set defined above and g(x) =y the associated
monotonic continuous function. The inverse function 2 =¢~1(y) is uniquely defined for
0 <y <1 except for the enumerable set of points y =p-27" (p, r integers). Define it uni-
quely for all y with 0 <y <1 by making it continuous on the left. Thus forany y, 0 <y <1,
¢~ (y) will be a point of the set Q.

For 0 <a <1, let z, =¢1(a). If I{” is a closed interval of @, such that I{” < (0,2,)
and m is the right hand end point of I{, then we may write ¢(m) =y < f < a. Now in
defining I N Q, ., for k=1, 2, ..., we removed from I successively open intervals of
length A times the closed interval where always we have 4 > 4,. Thus I{” N @, will consist
of 2% closed intervals each of length less than

BA-2,)1F=@)"".

Hence AS(I™ Q) gkhm 9 (1)+8 — 0.

Now N0, z)= U QnI™,

1M .2y
and we can write Qn(O,z)=UE, (21)
i=1

where each E; is a Borel set of dimension less than «.
Similarly, if I is an interval of @, such that I <(x,, 1), and [ is the left hand

end-point of I, we have @(l)=y>a. In defining I” N Q,.x we remove from I
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successively open intervals of length A times the closed interval where always we have
A<A,. Thus I’ ( Q. will consist of 2* closed intervals each of length at least (3)** i,
where I{” is the length of I{™.

Then if z,, , are in I and
XS << 1,
the method used in the proof of Lemma 7 shows that
0< (%) ~ @ (7)< Ko (5 — )",
It follows, as in the proof of Lemma 8 that if 4 is any set of zero A*-measure, then
H(AnN (z,, 1))=0. (22)
Now, since H is diffuse, for any E€B
H(E)=H(E N (0, z,))+H(E N (24, 1)). (23)

But the set function
H(E N0, 2))=H(ENQn (0, z))

clearly belongs to F, and so by (21) belongs to §,. Further, using (22), we see that
the set function H (E n (x4, 1)) belongs to C,. Since the decomposition

H=H,+H,+H,
of H provided by Theorem 2 is unique, we can make the identification
H,(B)y=H(E N (2., 1)), H,(E)=0, H;(E)=H(En(0,=x.)).

Thus H has a diffuse real dimension spectrum as required. This proves (ii).
Now for any z € § we want to find the limit of the dimension of (I,m) NQ forl <z <m

as [z from below and m—sx from above. Let
d(l,m) = dim; {(I,m) N Q}.
Then @) d,m) <eg(m)
by (21) and also, since the set function
T(E)y=H(¥n(,1)
is in C,q, while
T@n{m)) =H((l,m) =g(m) -l >0,

it follows that (i) d(,m)=ep(l).
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Since @ (x) is continuous, (i) and (ii) show that

lim supd(l, m)< lm ¢ (m)=¢ (@)= lim ¢ (})=1im infd (I, m),
= noveso S

and therefore, by (20), dim (x,Q) = ¢ (x). This completes the proof of (i) since ¢ (z,) < @ (z,)
if #;, z, are points of ), not end-points of the same interval of I, — @ and z, < ,.

6. Decompositions relative to a maximal system of comparable Hausdorff measures

Given two Hausdorff measure functions &, (t), h, () we say

I O>hy() i Jim Z: 8 —o,
h
M O<hy() if Jim h:g;=+oo

In either case two such measure functions are said to be comparable. It is clear that not all
pairs of measure functions are comparable, but the class 3 of all Hausdorff measure func-
tions is given a partial ordering by the relation <.

If b, (t) > by (t) then h;-m (E) = 0 for any set E of finite h, outer measure; and hy-my (E) =
+ oo for any set K of positive &, outer measure.

The class R of measure functions %, for real positive «, forms a completely ordered
subset of #. Using the axiom of choice (or Zorn’s lemma) we can find a maximal completely
ordered set C such that R< C< ¥, and £ has the following properties:

(i) any two elements %, h, €L are comparable;

(ii) there is no element h € ¥ — £ which is comparable with every element in L.

The class H of all Hausdorff measure functions and the set R < ¥ are of power con-
tinuum so the maximal system £ must also have power continuum.

Two subsets L, R < L will be said to form a section in Cif LN R = ¢, LUR=L; and
k€L, hy, € B implies that k< hy, h, € L implies that k€ L for every h €L satisfying h< h,,
while A, € R implies that % € R for every & € L satisfying > h,. The sections can be ordered
using the inclusion relationship, so we can form a completely ordered set T of elements s,
where each s is a section L, B, of L, and we say s, < 8,, if and only if L, is a proper subset
of L;,. For any element ¢ € one can form sections L, R by putting in L all those & € L for
which 2<g, putting in R all those » €L for which 2> ¢, and finally adding ¢ either to
L or to R. Not all sections of C are necessarily formed in this way, however. That is, there
may be a section s such that L, has no greatest member in £ and E; has no least member in
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L. The set J of sections is a well-ordered set and clearly has power at least that of the
continuum. (1)

We now develop decomposition theorems for the class £ similar to those developed in
§ 4 for the class R. The only changes in method will be those necessitated by the existence
of sections s which do not correspond to any element ¢ € . From now on all definitions and
results will be in terms of the particular class L.

Given s€J, let L, R, denote the corresponding decomposition of £ and let L;, R;
denote the sets obtained by removing from L, the greatest element (if it exists) and from
R, the least element (if it exists). Thus the section s corresponding to ¢ €L leads to the
subsets Ly consisting of » € £ with < @ and R; consisting of # €L with /> ¢. Now for any
8 € J define the following classes.

1. C; is the class of set functions F of F which are s-continuous, that is those set func-
tions such that F(E) = 0 for any E € B for which there is at least one & € L; with k-m (E) = 0.

2. Ci is the class of set functions F of J which are strongly s-continuous, that is
those set functions such that -m (E) = 0 for every h € R; implies that F (&) = 0.

3. §; is the class of set functions F of F which are s-singular; that is those set functions
for which there is some E,€ B such that

F(E)=F(ENE,) (24)

and E,= | E, where for each E; there is some h;€ L; for which A;-m(E;)=0.
i=1

4. 87 is the class of set functions F of F which are almost s-singular; that is those
set functions for which there is some E, € B such that (24) is satisfied and k-m(£,) = 0 for
every h€R;.

Clearly, for any s, we have
CieCs and $¢o8S..

The measure function #* is in the set C, and defines a section s(x). It is interesting to notice
the relationships between the classes defined by this section, and the classes previously

obtained in §§ 3, 4. These can be summarized by the relationships
Cic C:(a)c c* () C{t*)< Coy < Cas (25)
$io S?(a)D §* )2 S(E)> Ss@> Se-

Leuma 9. If s€T is a section of the mazximal system L of measure functions, then the

pairs Cs, Ssand C¥, S¥ are pairs of complementary bands in F.

(1) Dr. R. O. Davies has proved that T has in fact power greater than that of the continuum.



ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE 299

Proof. (i) Let A4 be the system of sets E € B which can be expressed as a countable
union of sets £, of B such that for each E, there exists an h;€ L; with h;-m(E,) = 0. Then 4
satisfies the conditions of Lemmas 1, 2, 3. It is immediate that S, = §,. To see that C, = C;
it is sufficient to notice that if £ = | £, isin 4, and F € C,, then

|F|(E)<§1|F|(Ei)=o.

Hence, by Lemma 3, C;, §; are complementary bands.

(ii) Now let A" be the system of sets E €B such that h-m (E)=0 for every h € R;.
This system also satisfies the conditions of Lemma 3, so C,, §, are complementary
bands in F. Since C;=C,, and §5=S§,, this completes the proof of the lemma.

DEFINITION. A set function F € F will be said to have the exact dimension s relative
to C, if F isin C, and SF.

Such a function is concentrated on a set E which has zero measure with respect to
every h €R;, and F(E) =0 for every E for which there is some % € L; with h-m(E) =0.

Remark. Since L is by definition comparable with A (f) =¢* for 0 < ¢ < n, any section
5 €J corresponds to a unique real dimension «. Thus any set function of exact dimension s
relative to £ will also be of exact real dimension « for the relevant «. However, there will

in general be a large number of sections s corresponding to the same real dimension a.

THEOREM 5. Given any set function F € F, for each s€T, the class of sections of the

mazximal system L of measure functions, there is a unique decomposition
F=FP+FP+FY,

where FP is strongly s-continuous, FS has the exact dimension s relative to £, and FS’ is
s-singular.
Further if s, 8, are two sections of € with s, < s,, then for every E€B
| FE2|(B) = | F§2| (B),
and | F$2[(B) < | F$?|(E).

This theorem follows from Lemma 9 in exactly the same way that Theorem 2 followed
from Lemma 4.

DEFINITION. 4 set function F € F is said to have a diffuse L-dimension spectrum if
the component F$ of Theorem 5 vanishes identically for every section s€ .
If for every s€J there is defined a set function F® € J, then we say that F® is a
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continuous function of s at s, if, given £ > 0 there exist sections s,, s, € J such that s, <

8o <8, and for any E € B, s, < s < s, we have]
| PO — Foo| <.
Continuity on the left and right can clearly be defined and the development of § 4 leads to

LemMmA 10. For a set function F € F to have a diffuse L-dimension spectrum, either of the
following conditions is both necessary and sufficient.

1. If FP, F are the components defined by Theorem 5, then |F{|, | F§|, are
each continuous functions of s.

2. For no s€J is there a function GEF with exact dimension s relative to L, and
0<|G|<|F|.

Remark. If a set function F € F has a diffuse real dimension spectrum, then clearly it
has a diffuse £-dimension spectrum for any maximal system C. ‘
This immediately gives the decomposition of any set function F € F relative to £
into a set function with a diffuse £-dimension spectrum and a discrete sum of set functions

each having an exact dimension relative to L.

TrEOREM 6. Given a maximal system L of measure functions and any set function
F€3F, there is a finite or enumerable sequence s,, sy, ... of distinct sections of L and a de-
composition

F=F® 4 o L Fe 4 ...

where F® has a diffuse C-dimension spectrum, and FP is a set function of exact dimension
s;for e =1, 2,.... The set of the sections s,, and the decomposition (apart from the order of its

terms) are uniquely determined by F.
The proof is omitted since only changes of wording are needed in the proof of Theorem 3.

Remark 1. It is natural to compare the decomposition of F € F given by Theorem 6

with that given by Theorem 3. Suppose then, that
F=G9+G*+G+ ...,

where G has a continuous real dimension spectrum, and G is of exact real di-
mension oy, ¢=1,2,.... G° also has a diffuse £-dimension spectrum, so the compo-
nent G*® will form part of the component F® of Theorem 6. Now consider the func-

tion G*?, and suppose it is decomposed by Theorem 1, using A (t)={%, into

G = GFP + GEP + G5,
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The set function G’ will reappear in one of the functions F“? of Theorem 6 where
s; is the section of £ defined by the measure function ¢**. On the other hand, the
components G, G§P will each be decomposed by L£ and may contribute to the
component F® and also give a finite or enumerable number of components F¢¥ of
exact dimension s, where each of the sections s, will correspond to the real dimen-
sion ¢;. Thus two different components GP, G*? will not contribute to the same
F¢® of Theorem 6.

On the other hand, if we regard the decomposition of Theorem 6 as given, it
is easy to reconstruct that of Theorem 3. Each of the components F¢? will form a
contribution to the component G®®, where g, is the real dimension corresponding to
the section s;. The total component G“¥ will be made up as a countable sum of such
contributions F®? together, perhaps, with a contribution from the component F@,
The contribution to G from F® will be of the form!

(@) (@) (d) (s,
PO - PP,

where F{¥®, F®® denote the components in the decomposition of F® using the sec-
tions s and ¢ of J defined as follows. The left class L, denotes all the functions g €L
satisfying ¢<t# for some f<«, and R, consist of all the other p € L. The left class
L, denotes all the functions ¢ €L satisfying p<# for each f with g>a.

Remark 2. Tt is slightly unsatisfactory that the decomposition spectrum obtained in
Theorem 6 may depend on the particular maximal class £ < . However, there are set
functions with an exact dimension corresponding to a measure function ¢, which will not
be decomposed further by any maximal class £. For example the middle component in
Theorem 1 is of this kind. If

FE)= [ [(@)dem@)

ENT

where 7' € B has positive g-finite ¢p-measure, then for any £ which contains ¢, the decom-
position of Theorem 6 will yield the single function F of exact dimension s defined by
@. H, defined in detail in § 5 is an example of such a set function. Whatever maximal class

L is used, the single component H, will remain.

Remark 3. If a set function F € F is formed by adding together an enumerable number
of components of type (1), we might hope that the decomposition of Theorem 6 would
resolve F into these distinet components. This will only be so if (i) the components F', of
type (1) correspond to Hausdorff measure functions @; which are distinct and mutually

comparable, and (ii) the maximal system £ used in Theorem 6 includes sections correspond-
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ing to each of the ¢,. If there are two components ¥, F; corresponding to ¢;, ¢; which are

not comparable, there is no hope of Theorem 6 separating them out.

Remark 4. In the decomposition of Theorem 6 we have used sections of €. We have not
been able to decide whether or not this is necessary. In other words we have not been
able to construct an example of set function F € F which has exact C-dimension‘'s where

s €T, but does not correspond to a measure function ¢ €L.

Remark 5. The decomposition of Theorem 6 is in a certain obvious sense (see Remark
1 above) finer than that of Theorem 3. It would be desirable to produce for any F € F an
ultimate decomposition in the sense that it described completely the detailed structure of F.
We are quite a long way from deciding under what circumstances this is possible. The best
one could hope for would be a decomposition theorem (like Theorems 3, 6) into a set funec-
tion with a diffuse spectrum and an enumerable sum of set functions of exact dimension in
some sense each of which could not be decomposed any further into more uniform com-
ponents. Thus one would like the components of exact dimension ¢ € # to be such that
Theorem 1 would give an integral representation of the whole component.

By using the continuum hypothesis we have been able to make some progress in this

direction. We hope to publish the results in a later paper.
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