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Integrability of Green
potentials in fractal domains

Kaj Nystrom

Abstract. We prove L?-inequalities for the gradient of the Green potential (G f) in bounded,
connected NTA-domains in R", n>2. These domains may have a highly non-rectifiable boundary
and in the plane the set of all bounded simply connected NTA-domains coincides with the set of
all quasidiscs. We get a restriction on the exponent g for which our inequalities are valid in terms
of the validity of a reverse Holder inequality for the Green function close to the boundary.

1. Introduction

In all of the following, let 2 be an open, connected and bounded subset of R,
n>2. Let G(z,y) denote the Green function of Q and define for feL(Q), Gf(x)=
Jo G(z,9) f(y) dy. Then Gf(x) is the Green potential of f. It is a classical fact that
if 0Q is sufficiently smooth then the following inequality is valid for feL?(Q) with
1/g=1/p—1/n, n/(n—1)<g<oo,

1) ([ IVGflqu)l/q <ca( [ Ifl”dw)l/p~

The possibility of extending (1) to Lipschitz domains was investigated by Dahlberg
[6] and he was able to prove the following.

Theorem. [6, Theorem 1] Let QCR™ be a Lipschitz domain and put g2=4,
qn=3 for n>3. Then there exists a number e=c(Q)>0 such that if n/(n—1)<g<
gn+e and 1/g=1/p—1/n, then

( / |VGf|de)1/q <c(@,p) ( s dx)l/p.

If p=1 then, {z€Q:[VGf(x) >N} <C@)(| |1 /N> @D
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Dahlberg also proved that these results are sharp in the following sense. For
every ¢>g, there exists a Lipschitz domain ,CR™ such that VGf¢L%(Q,) for
some feL>®(Qy,).

In this paper we study the possibility of proving similar results on even less
smooth domains. Our results are valid for bounded, connected NTA-domains. We
recall the definition of NTA-domains (see Section 2). Let in the following d( -,99)
denote the Fuclidean distance to the boundary, 91, of €.

Definition. A bounded domain QCR™ is called non-tangentially accessible
(NTA) when there exist constants M and ry such that:

1. Corkscrew condition: For any Q€dQ, r<ry, there exists A=A,(Q)eQ such
that M~ lr<|A—Q|<r and d(A,0Q)>M'r.

2. (CQ)° satisfies the corkscrew condition.

3. Harnack chain condition: If €>0 and P; and P, belong to €, d(P;,00)>¢
and | P, — Ps|<Ce, then there exists a Harnack chain from P; to P, whose length
depends on C and not on .

Let G(z) denote the Green function of Q with fixed pole xg, d(zg,d)~
diam(€2). We make the following definition.

Definition. Let Q be an open, connected and bounded subset of R", n>2.
Then Qe€Domain(n, M, rg,q) if the following two conditions are fulfilled.

1. ©is an NTA-domain with parameters M and rg,

2. there exists a constant C=C(2, ¢) independent of @ and r such that the
following reverse Holder inequality is valid for all Q€0Q, r<rg,

J(Q7 7, Q? To, q) S CJ(Q7 T, Q, Zo, 1)7

where
1

a 1/a
_— de)
|B(Q,7)NQ Jp(@,mne )

for a€[1,00). Here B(Q,r) denotes an open ball, centered at @ and of radius r. By
|B(Q,r)N$| we denote the n-dimensional Lebesgue measure of the set.

G(z)

d(z,00)

J(Q,T,Q,xo,a) = (

1t is important to note that if 2 is an NTA-domain with parameters M, rq,
then Q€Domain(n, M,ry, 1+1/(1—3)) where 3=8(M)>0 is a constant describing
the boundary behaviour of the Green function, G(z) (the constant 3 is the constant
appearing in Lemma 3.5 below). That is, for every bounded NTA-domain ) the
reverse Holder inequality stated above is valid with g=2.

We may now state our main theorem.
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Main Theorem. Let Q€Domain(n, M,rg,q) where g>n/(n—1). Then there
exists a constant C=C(Q, q) such that if 1/q=1/p—1/n, then the following inequal-
ity is valid for all f€ LP(Q2),

(/Q avc;f|qcz:o>1/qgc</Q 77 dx)l/p.

I p=1 then, [{zeQ:[VG(z)| >\ <C@)(|flli/N)™ "D,

There are two questions naturally associated with the statement of this theo-
rem. The first one is the question of estimating ¢ (of course we want ¢ as big as
possible) and the second one is the question of finding the sharp exponent. These
two related questions are addressed in Section 12. Here we just want to give the
reader an idea of the results of Section 12. Let W, denote the Whitney decomposi-
tion of QCR™. Let W;:={QeWq, 1(Q)=277}, where {(Q) denotes the sidelength
of ). For ¢>0 we introduce the number,

L(Q):=>_ 210" N~ G(zq)".

Jj2jo QeW;

Here we choose jo to avoid the pole of G(z)=G(z, z¢). The point z¢ is the center of
the cube Q. As a special case of Corollary 12.1 we may now formulate the following
theorem.

Theorem. Let QCR? be von Koch’s snowflake. Then the following is true. If
I,(Q)<oo then there exists a constant C=C(Q,q) such that if 1/q=1/p—1/2, ¢>2,

feLP(), then
1/q 1/p
(/ |VGf|qdac) gc(/ |f|Pd:v> .
Q Q

Furthermore, if I,(§2)=00, then there exists f€L>®(Q2) such that VGf¢LY(Q).

The difficult part of this paper is the proof of our Main Theorem. Section 3 to
Section 10 all contain essential contributions to the final proof in Section 11. The or-
der in which lemmas and theorems are proved follows Dahlberg [6] and we once and
for all acknowledge our debt to his work. Though the basic philosophy is the same
as in Dahlberg [6] several other ideas are needed and the sources of these ideas are
essentially three: Jerison-Kenig [14], Jones [16] and Nystrém [21]. We will briefly
describe the method used. The methods Dahlberg used are by now classical tools
in harmonic analysis and are presented in Coifman—Fefferman [4], Muckenhoupt—
Wheeden [20], Burkholder—Gundy [3], Stein [22], De Guzman [11]. Dahlberg used
these powerful techniques together with results on harmonic functions and potential
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theory on Lipschitz domains developed by himself [5], [7], [8]. Several of Dahlberg’s
results were generalized in [14] by Jerison—Kenig to NTA-domains. Their paper
supplies us with several lemmas on the boundary behaviour of harmonic functions
which we make frequent use of. The connection to [16] is that our approach con-
tains extensions of harmonic functions and Green potentials to a neighbourhood
of our domain Q. In this way we get rid of the difficult geometry of Q and may
then instead work on cubes centered on the boundary. These extensions are defined
by using both the Whitney decomposition of Q(Wq) and of (CQ)"(W(CQ)O). The
definition on Q€W qy. of a quantity is related to the definition on an associated
reflected cube Q*€Wq. This type of quasiconformal reflection technique is of course
not unique for [16] but our extensions are in the same spirit. The fourth source of
ideas is Nystrom [21] and concerns inequalities for subsets of the Sobolev spaces
defined on €. Their deduction is based on non-linear potential theory and the work
of Maz’ya [18], and the approach involves estimates of capacities.

The plan of the paper is as follows. There are altogether 12 sections of which
Section 1 is this introduction. As several of these sections are quite technical we
usually in the beginning of each such section state the lemmas and theorems that
will be used later on, i.e. the reader may very well just read those for a start. Still
we have enumerated the theorems and lemmas in each section in the sequence they
are proved. That is why we, for instance in Section 5, start off by stating Lemma, 5.1
and Lemma 5.4. This means that these two lemmas are the only ones to be used
in other sections, but that there are still two lemmas in between, Lemma 5.2 and
Lemma 5.3, which are used only in the proof of Lemma 5.4.

In Section 2 we define and explain the geometric notions we are working with
and in Section 3 we present those results of Jerison—Kenig that we will make use
of later on. Section 4 contains the basic facts about the Whitney decomposition of
our domain and the reflection principle which we will make use of is presented. In
Section 5 we define our extensions and prove some lemmas. Section 6 contains the
proof of some reverse Holder inequalities on arbitrary cubes. In Section 7 several
results on the integrability of the Green function as well as Green potentials are
presented. The results of Nystrom [21] used, are contained in this section. In
Section 8 we present some important lemmas which we need in Section 9 where we
prove a.good-A-inequality for an operator T" and a maximal operator K associated to
our problem. Section 10 contains the last preliminary results before we in Section 11
present the proofs of the final results. At this level the proofs become quite short.
In Section 12 we are concerned with the reverse Holder inequality for the Green
function and the question of sharpness.

Acknowledgement. This work is part of my thesis written at the Department
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advisor, Hans Wallin, for his support and advice during this work.

Notation. We here just give the basic notation used in the paper. Note specif-
ically the convention on the denotation of constants stated below.

Q will be an open, connected and bounded subset of R™ with boundary 952.
By B(z,r) we denote an open ball with center z and radius r. If Q€0 then
A(Q,7):=B(Q,r)NoS. w(z, F, ) is the harmonic measure of F COf relative to Q
at zeQ. G(z,y) will denote the positive Green function of Q with pole at yefQ.
If zeR"™ and B is a closed subset of R™ then by d(x, B) we denote the Euclidean
distance from z to B. If feLP(Q), Gf(x) is the Green potential of f. By W™P?()
we mean the Banach space of those functions in LP(Q2), which have distributional
derivatives up to order m in LP(2) normed with the sum of the L? norms of the
derivatives. As usual, Wy "P(€) denotes the closure of C§°(£2) in the same norm.
VEu is the vector of all (weak) partial derivatives of u of order k. By m,,(FE) and
|E|] we mean the n-dimensional Lebesgue measure. All the cubes used are closed
cubes with sides parallel to a fixed system of coordinate axes.

Conventions on constants. Most of our constants will depend on QCR™. Al-
though most constants, appearing in the formulation of lemmas and so on, will
depend on the constant C appearing in the formulation of the reverse Holder in-
equality for the Green function (see the definition above or Definition 2.1), this will
not be explicitly stated. ¢(aj,asz, ... , an) will mean that the constant c only depends
on the parameters a1,as,... ,a,. By an absolute constant we mean a constant that
just depends on characteristic data of £ (i.e. on M and C) and the space dimension
in a non-local way. By A~B we will mean that the quotient of the parameters A
and B is bounded from above and below by absolute constants. By A< B we mean
that A/B is bounded from above by an absolute constant. If we in a sequence of
deductions use the same constant ¢ all the time, this means that the original depen-
dence of c¢ is the same after as before the operations were carried out. Otherwise,
the constants appearing are usually given with the parameters they depend on or
are described at the point they appear.

2. Geometry

Let in the following G(x) denote the Green function of Q with fixed pole xp,
d(zg, 00) ~diam(£?). Here d( -,0Q) denotes the distance to the boundary. We make
the following definition,
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Definition 2.1. Let Q be an open, connected and bounded subset of R", n>2.
Then Qe€Domain(n, M, g, q) if the following two conditions are fulfilled.

1. @ is an NTA-domain with parameters M and rg,

2. there exists a constant C=C(€,¢) independent of @ and r such that the
following reverse Holder inequality is valid for all Q€09 r<rg,

J(Q,T,Q,fco»fl) S C‘](Q7Ta Qawf)v 1)7
a 1/a
dm) ,

In this section we will describe at some length the geometric notions of Condi-
tion 1 in Definition 2.1. Condition 2 is investigated in Section 12.

where
1

|1B(Q,7)NQ Jp@,rna

G(z)

J(Q,r,Q,xp,0) = ( d(z,00)

for acll, 00).

Definition 2.2 [16, p. 73]. QCR™ is an (e, §)-domain if for any pair of points
z,y€Q, |[x—y|<b, there exists a rectifiable arc yCQ joining = and y and satisfying

L i(y)<lz—yl/e,

2. d(z,00)>e(|lz—z| ly—2|)/|z—y| for all z€~.

This condition on €2 has been proved useful in extension theorems for function
spaces defined on Q. See [15], [16]. In [14], Jerison—Kenig defined a class of domains
which they named NTA-domains. These are the domains we will be working with.
Their connection to (e, §)-domains is that an NTA-domain is an (¢, o0c)-domain
with an additional thickness condition on the complement of Q. The definition is
in itself adapted to the study of harmonic functions on 2. Definition 2.3 and 2.4
below are verbally taken from [14, p. 93]. In the following M will be a fixed constant
depending on QCR".

Definition 2.3. An M non-tangential ball in a domain Q is a ball B(A,r)
in Q whose distance from 99 is comparable to its radius: Mr>d(B(4,r), 0Q)>
M~'r. For Py, P,€Q, a Harnack chain from P, to P, in  is a sequence of M
non-tangential balls such that the first ball contains P;, the last contains P», and
such that consecutive balls have non-empty intersection.

Remark 2.1. Suppose u is a positive harmonic function in 2. Then C~1u(P;)<
u(P2) <Cu(P1), where C depends only on the length of the Harnack chain connect-
ing P, and P by the Harnack inequality.

Definition 2.4. A bounded domain QCR™ is called non-tangentially accessible
(NTA) when there exist constants M and rq such that:

1. Corkscrew condition: For any Q€9Q, r<rg , there exists A=A, (Q) € such
that M~1r<|A—Q|<r and d(4,00)>M1r.
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2. (CQ)° satisfies the corkscrew condition.

3. Harnack chain condition: If >0 and P; and P, belong to €2, d(P;,0)>¢
and |P; — Py|<Ce, then there exists a Harnack chain from Py to P, whose length
depends on C and not on ¢.

Condition 1 is named the corkscrew condition because the union of non-tan-
gential balls of radius %M ~lr, as r tends to zero, forms a non-tangential approach
region tending towards @, which is a twisting replacement for the usual conical
approach region for Lipschitz domains. Condition 2 implies that NTA-domains are
regular for the Dirichlet problem. Conditions 1 and 3 may be combined to the
following equivalent condition:

4. If £>0, P;, P, belong to Q, d(P;,00)>¢, and |Py— Py|<2%¢, then there
exists a Harnack chain from P; to P, of length Mk. Moreover, for each ball B in
the chain, radius(B)>M ~! min(d(Py, B), d(P, B)).

If © is an NTA-domain then it is also an (g, §)-domain for all §<oo as mentioned
above. We will sometimes use this description of §2 and we note that the relation
between the crucial parameters M and ¢ is essentially e=1/M.

We will now state three important results.

Lemma 2.1. [16, Lemma 2.3] Suppose QCR™, n>2, is an NTA-domain.
Then m.,(0Q)=0.

The second one is more of an observation and tells us that the important
parameter M is invariant under dilations of R".

Lemma 2.2. Let QCR™, n>2, be an NTA-domain with parameters M and rg.
Define V', z€Q < (x—p)/a€lY, for some a>0 and some peR"™. Then  is an
NTA-domain with parameters M' and ry, where M'=M and ro=ro/a.

The third result is a geometric localization theorem.

Theorem 2.1. [17] Suppose QCR"™, n>2, is a bounded NTA-domain. Then
there exists ro>0 depending only on Q such that for all Q€0Q and all r<ry there
exists an NTA-domain Q¢ » CS such that

B(Q, M 'r\nQC Qg C B(Q, Mr)NQ.

Furthermore, the constant M in the NTA-definition of Qg is independent of Q
and r.

This localization for NTA-domains replaces the local starshapedness explored
on Lipschitz domains.

For a discussion of the geometry of NTA-domains in R, n>2, we refer to [14,
p. 90-94]. We will briefly just describe the geometry of NTA-domains in the plane.
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~This short exposition reveals the close connection between NTA-domains and the

theory of quasiconformal mappings. By a quasicircle is meant the image of a circle
under a quasiconformal mapping. A domain bounded by a quasicircle is called a
quasidisc. For the theory of quasiconformal mappings we refer to Gehring [9] and
Vaisald [23].

Remark 2.2. Gehring and V&isald [10] have proved that while the Hausdorff
dimension of a quasicircle is always less than 2 it can take any value A, 1<A<2.

A simple, closed curve in the plane is said to satisfy the Ahlfors’ three point
condition, if for any points Z;, Z> on the curve and any point Z3 on the arc between
Z1 and Zs of smaller diameter, the quotient between the distance between Z; and
Z3 and the distance between Z; and Z3 is bounded by a fixed constant.

One may prove the following theorem.

Theorem 2.2. Let Q be a bounded and simply connected subset of the plane.
Then the following are equivalent statements.

(1) Q is a quasidisc.

(2) 09 satisfies the Ahlfors’ three point condition.

(3) Q is an NTA-domain.

Proof. (1)&(2) is due to Ahlfors [2]. (1)<(3) is due to Jones [15].

3. Harmonic functions on NTA-domains

In this section we summarize the results of Jerison-Kenig [14] that we will
frequently make use of in the forthcoming sections. QCR™ will all the time denote
a bounded, connected NTA-domain with parameters M, ry. The definition of NTA-
domains was given in Section 2. Recall that for all Q€dQ, r<ry, A.(Q) denotes
a point in Q fulfilling M~1r<|A,.(Q)-Q|<r and d(A.(Q),00)>M1r. All the
constants appearing in the following lemmas only depend on the original value
of M. A(Q,r):=B(Q, r)NanN.

Lemma 3.1. [14, Lemma 4.4] If u is a positive harmonic function in Q which
vanishes continuously on A(Q, 2r), then u(x) <Mu(A.(Q)) for all ze B(Q,r)NQ.

Lemma 3.2. [14, Lemma 4.8] If 2r<rg and z€Q\B(Q, 2r), then

w(z, A(Q,r),Q)

-1
M < =200, 4,(Q))

<M.
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Lemma 3.3. [14, Lemma 4.10] Let v be such that Mr<ry. Suppose that u
and v are positive harmonic functions in Q vanishing continuously on A(Q, Mr)
for some Q€. Then,

w4 Q) _ uw@)
M) =
for all z€ B(Q, M ~1r)NA.

Lemma 3.4. [14, Lemma 4.1] There exists §=03(M)>0 such that for all
QeoN, r<ry, and for every positive harmonic function u in §2, such that uw van-
ishes continuously on A(Q,r), the following is valid. If teQNB(Q,r) then u(z)<
M(|lz—Q|/r)?C(u), where C(u):=sup{u(y):y€dB(Q, r)NN}.

Using these lemmas we may prove the following estimate of the Green function.

Lemma 3.5. Let Qo€0§. Then there exists a constant C=C(n) such that if
Cr<rg and x€Q\B(Qo,Cr), then the following estimate is valid with 3=08(M)>0
for all ye B(Qo, )N,

8
Gev) < 0O m LT (e, AQo, ), )

Proof. From Lemmas 3.4, 3.1 and 3.2 we have,

ly—Qol”
(1) G(z,y) <C(M, ")mw(%ﬁ(Qo,T),Q)-
Fix y€B(Qo, )N Then there exists a Whitney cube Q,=@Q such that ycQ.
Choose pcdQ such that d(p,Q)=d(Q,8). Then |p—Qo|<Cr where C=C(n).
Furthermore, y€QNB(p, Cr) and B(p, Cr)CB(Qo,2Cr). If z€Q\B(Qo,6Cr), we

get by applying (1) to the ball B(p, Cr),

d(y, 0Q)° d(y, Q)P
aw.y) S T (e, A Qv 20m), ) s WOV ua, A (@0, 1), ).

Theorem 3.1. {14, Theorem 7.9] Let Q be an NTA-domain and let V be
an open set. Let K be a compact subset of V. Then there exists a number a>0
such that for all positive harmonic functions u and v in Q that vanish continuously
on ONNV, the function u(x)/v(x) is Holder continuous of order a in KNQ. In
particular, lim,_,q u(z)/v(x) exists for all Q€ KNOK.

The next lemma contains two basic estimates of the Green function. The first
can be found in Wu [25, Lemma 2] and the second part in Widman [24, Lemma 2.1].
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Lemma 3.6. Let QCR"™, n>2, be a bounded and simply connected NTA-
domain. Then the following is valid.
1. If z,y€Q, |[z—y|<d(y, Q) /2 then

1Ogd_(y@§6*(x’y)s5logm7 n=2
|z —y] lz—yl
He—y|™" P <G(z,y) <|z—y|™"*%, n>3

2. G(z,y)<Cn)|z—y| " if z,y€B(z,1) for some z€Q and n>2.

We will also make frequent use of continuity properties of Riesz potentials.
Define for 0<a<n,

1 fw)
I, f(x):=
of(@) y(@) Jpn lz—yln—
Theorem 3.2. [22, p. 119] Let 0<a<n, 1<p<g<oo, 1/qg=1/p—a/n. Then

L Lafllg<Apql fllp,
2. suppose feL'(Q) and 1/qg=1—a/n, then |{z:|Iof(z)|>A} <A, o(| FII/N)2.

4. Whitney cubes and other cubes

In this section we gather the information about the behaviour of the Whitney
decomposition of an NTA-domain with parameters M and ry needed in the ex-
tension procedure carried out in the next section. As pointed out in Section 2, an
NTA-domain QCR" is an (e, §)-domain for all § <oo with e=1/M. We let §=a<rg
be one fixed such §. In the following we work with closed cubes with sides parallel
to a fixed system of coordinate axes. By xg we mean the center of the cube ¢ and
by kQ, where k>0, we mean the cube @ dilated with respect to zg by a factor k.
By l(Q) we mean the sidelength of ). We start with the Whitney decomposition.

Theorem 4.1. [22, p. 16] Let 2 be an open subset of R™. Then

1. Q=UZ, Qx,

2. Q§NQL=0 if j#k,

3. there exists c1,c2>0 so that c1l(Qr)<d(Qk,0Q) <cal(Qr).

We denote by Wg the Whitney decomposition of Q. Define W1:=Wq, Ws:=
Wieq)o, Ws:={Q€eW>:{(Q)<a}. The constant C in the following lemmas depends
at most on n and M.

Lemma 4.1. [16, Lemma 2.4] If Q; W5 then there ezists a cube S, €Wy such

that
I(Sk)

=) =

4, (Qj,8r) <CUQy).

o~
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For each Q;€W3 we fix Sx€W1 according to Lemma 4.1 and define Q}:=Skx. Q
is called the reflected cube associated to ();.

Lemma 4.2. [16, Lemma 2.6] If S, W, then there are at most C cubes Q;,
Q;€Ws3, such that Q% =Sj.

Lemma 4.3. [16, Lemma 2.7] If Q;, Qx€Ws5 and Q;NQx#D, then
d(Q5, Qx) < CUQy)-

We will also make use of the following consequence of the definition of NTA-
domains.

Lemma 4.4. Let Q be a cube such that QNoN£D, [(Q)<ro. Then there exists
a cube Q. CQ such that either Q.CQ or Q.C(CQ)° and such that 1(Q.)>CL(Q).

We always denote by (), the largest such cube. In the forthcoming sections we
will be working with arbitrary cubes @ with sides parallel to the coordinate axes
and lying in a band of the boundary. We will split the class of cubes into several
subclasses depending on whether QC €, QC (CQ)° or QNIN#P. In the first and the
second case we will also distinguish between the two cases Z(Q)<11—0d(Q,8Q) and
l(Q)Zl—lod(Q, O9). The three types of cubes may be referred to as “small” cubes,
“large” cubes and “boundary” cubes. The analysis on “large” and “boundary”
cubes will in general be the same, but the analysis on the “small” cubes will often
be quite different. Lemma 4.5-4.9 below all contain trivial but very important facts
about this splitting and we will refer to these results frequently.

Lemma 4.5. Suppose QCQ or QC(CQ)°. Then the following is valid.
1. Ifl(Q)<%d(Q,8Q), then d{x, 0Q)~d{Q, Q) for all z€Q.
2. If Q) > d(Q,09), then d(xq, ) ~I(Q).

Lemma 4.6. Let I{Q)< 5d(Q,80). Define W1(Q):={Q; €W1:1LQ,;NQ#0}
if QCQ and Wa(Q):={Q;€W2: 22Q;nQ#0} if QC(CQ)°. Then #W1(Q)<C and
#Wo(Q)<C, with C=C(n). Furthermore, if Q;eW1(Q) or Q;eW2(Q), then
Q;)~d(Q, 50).

Lemma 4.7. Let QCQ or QC(CQ)° be such that 1(Q)>5d(Q,09). Then
there ezists a cube @', Q' €Wy or Q' €Ws, such that 1(Q')~1(Q) and m,(Q'NQ)~

Lemma 4.8. Let Q be a cube such that QC(CQ)°, 1(Q)>d(Q,8), or QN

00#0. Then QN(LQ)°C B(p, CU(Q)) for some pdQ and C=—C(n). Suppose Q1€
W3 and $3£Q1NB(p, CLU(Q))#D. Then Q3 CB(p, C*1(Q))NQ where C*=C*(M,n)

and Qj is the reflected cube associated to Q;.
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Lemma 4.9. Let QNIN#£D. Fiz A>1. Then there exists a constant Co=
Co(M,n, A)>0 such that if Q;€Ws, %Q]ﬂ{R"\C’OQ}#@, then Q5NAQ=0. Here
Q7 is the reflected cube associated to Q;.

Proof. Suppose Q;NAQ#®. Then by Lemma 4.1 we have 1(Q;)SAl(Q) and

d(Q;, Q) SAI(Q). But this contradicts the assumption that 12Q,;N{R™\CoQ}#0
if we just choose Cy sufficiently large.

5. Extensions of harmonic functions and potentials

In this section we extend positive harmonic functions u(z) defined on €, the
Green function of € and Green potentials to a band around Q. Of course our
extended function Eu will not be harmonic but the reflection principle, described
in Lemmas 4.1-4.3, which is the crucial technique, will ensure that the Harnack
inequality is preserved in a strong sense. We remind the reader that QCR"™ denotes
an NTA-domain with parameters M and rq. Recall that W1 :=Wq, Wa:=W gy,
W3:={QeW2:{(Q)<a}. This notation was introduced in Section 4. Let {¢g,}
denote a partition of unity associated to W3 such that for all Q;€W5 we have
o, €CEO(R™), supp i, C15Q; and Yoo oy, Yo, (2)=1 for all zelgpeyy, @ Let
in the same way {¢q,} be a partition of unity associated to Wj.

Definition 5.1. Let u(z) be a positive harmonic function defined on Q. We
define an extended function Fu(zx) for all mGQUUQeW3 Q in the following way.

Eu(z) = xa(z)u(@)+x@a)(x) D> ulzg: o, (@),
Q;EWs
where Q; is the reflected cube associated to @); as described in Lemma 4.1.

We will also define an extended “Green function”. To do this in a way that fits
our purpose we introduce for all Q€Wj3 the following sets

B(Q):={Q; e W1:Q;nQ"#0}, A(Q):=W1\B(Q).

The interpretation of the sets B(Q) and A(Q) for a fixed cube Q€Wsj is that B(Q)
denotes the Whitney cubes in Q2 which are close to the reflected cube Q*. A(Q) is
just the complementary set.

Definition 5.2. Let y€Q and QU @ We define the extended “Green
function” as follows,

EG(x?y) =Xa ( )G(:I? Yy +X(CQ)" Z ¢Q1 le? )7
Q1EW;
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where

A(xQuy):: Z @Qz(y)aQ1,Q2(y),

QoW
a’leQz(y) :=G(xQ”{ay) if Q2€A(Ql)7
ag,..(y) :=1/d(y, 6(2)"_2 if Qo€ B(Q1).

The extended potential is defined EGf(x):= [, EG(z,y)f(y) dy for all feL>(),
supp fCQ and 9569UUQ€W3

We note that EGf(z) is continuous on QUUQew3 Q if feC(Q). On Q this
is trivial as EGf(z)=Gf(z) if z€Q and Gf(x) is continuous. See Helms [13, The-
orem 6.22]. If 2€(CQ)° then by definition

EGf(z)= > v (x)EGf(zq,),

QieW3

which of course is a continuous function. What therefore remain in the proof of
the continuity of EGf(z) is to prove that if Q€dQ and z;€(CQ)°, z;—Q, then
EGf(z;)—0. But this follows immediately from the definition.

The definition of the extended “Green function” is such that the properties of
the Green function G(z,y), as z is not situated too close to the pole y, are preserved
under the extension. In the critical case, that is when z€ @€ W3 and y€@Q*, we have
defined EG(z,y) as a truncation of G(-,y) near y at an appropriate level. This
implies that EG(z,y) is bounded on (CQ)° in the following way. The proof is
presented below.

Lemma 5.1. Let yeQ. Then for all wGUQewg Q the following is valid,

EG(z,y) < —C(—n)n:g
d(y, 09)
The definition also implies the following.

Lemma 5.4. Let QeWs. Let Q—Q* by reflection. Then for all f€L*(Q),
>0 and supp fCQ the following is valid,

/ EGf n/n—l
d(z, 89

de<C
for some constant C=C(n,M).

n/n—1

Gf(@) "

o~ | d(z,00)

The rest of this section is devoted to the proof of Lemma 5.1 and Lemma 5.4.
Lemma 5.2 and Lemma 5.3 below, are used in the proof of Lemma 5.4.
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Proof of Lemma 5.1. For all x, y the number of nonzero terms in the definition
of EG(z,y) is bounded by a constant C=C(n) by the underlying properties of the
Whitney decomposition. So what we have to prove is that if y€ Q2 €Wy, Q1 €W3 and
Q2NQ;=0, then G(xQ;,y)SC’(n)/d(y,BQ)"—Q. But this follows from Lemma 3.6
and the maximum principle.

Lemma 5.2. Let y€Q and define S,:={QeWi:90¢(y)#0}. Suppose Q1,Q2€
W3, anQz#@. Then

L G(zq;,y)~G(zq;,y) if SyCA(Q1)NA(Q2),

2. G(zg:,y)=C(M,n)/d(y, o2 if SyNB(Q2)#D and S,NB(Q1)=0.

Proof. We start with the conclusion in 1. The conclusion is trivial if Q3 NQ35#0.
We therefore assume that @3 NQ3={. Let B denote a ball centered at y and of radius
c11(Qz), where ¢; <1 is a constant to be fixed later on. G(z,y) is then a positive
harmonic function on 2\ B as a function of z. As Q is an (¢, §)-domain there exists
a curve y(t) connecting v(0)=xg:, 7(1)=zqy such that by Lemma 4.3,

(1) () £ Mlzg; —zq;| < C(M, n)l(Q2)-
Furthermore for all z€~v we have,

1 |zgs—2l|mg; —2
M |zo; —zq;l

2) d(z,09) >

Define t1:=inf{tq:v(t)¢Q7, Vi>to} and to:=inf{tq:v(t)€Q%, Vt>to}. Then for all
z="(t), with t€[t1, 2], we get from (2), Lemmas 4.1 and 4.3 that

(3) d(z,aﬂ) 2 C(M7 n)l(QZ)

If {y(t):t€[t1,t2]}NB=0 then we leave y(¢t) unchanged. If {vy(¢):t€t1,t2]}NB#
@ then define t3:=inf{tq:y(t)¢ B, Vt<to} and ty:=inf{to:y(t)¢ B, Vt>to}. Then
{~(t):t€[0,t3)U(ts,1]}NB=0. Replace {y(t):t€[ts,t4]} with one of the arcs on OB
defined by the points y(t3) and (¢4) and denote the modified curve by v*(t). Choose
C1=C(M,n)/2 where C(M,n) is the constant in (3). This construction has lead us
to a rectifiable arc y*(t), connecting z¢ox and z¢y, such that I(y*) <C(M, n)l(Q2),
d(z,00Q)>C(M,n)l(Qs2) and d(z,y)>C(M,n)l(Q2) for all ze~y*. Covering v* with
balls of size ~I(Q2) and applying the Harnack inequality completes the proof.

We now prove the conclusion in 2. By assumption there exist cubes Q3€W;
and Q4€W; such that Q3NQu#0, Q3NQ5#0, vo,(y)#0 and S,NB(Q1)=0. It
follows from Lemma 3.6 and the Harnack inequality that

C(n)

(4) inf G(z,y)> Ay 002

z€Q3
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Fix xo€Q% such that |zo—y|>1(Q%)/4. By the same argument as in the proof of 1,
we get that G(xgr,y) ~G(x0,y). The conclusion then follows from (4).

We now define an auxilary mapping Q € W3 —@Q* € W in the following way. Let
x€@. Then
nQr)

vaq(#) =75y (#-Te)+q--

By this map @ is mapped bijectively onto Q*.
Lemma 5.3. Let x€QeWs, yeQ. Then

EG(z,y) <CG(pq,q+(%),v),

for some constant C=C(M,n).

Proof. Define W(Q)={Q;€W3:Q;NQ+#0}. Fix y€Q and define S, ={Q; € W:
©0.(y)#0}. Then by Definition 5.2 we have

(1) EG(z,y)= Z Z '(/)Qj ()eq; (y)a/ijQi (y)-
QEW(Q) Q:€Sy
Suppose
Syc [ AQ)).
Q;EW(Q)

Then (1) reduces to

(2) EG(z,y)= Y vq,@)G(z0;,y)-
Q;EW(Q)

As #W(Q)<C(n) it follows from Lemma 5.2 and (2) that,

(3) EG(z,y) < C(M,n)G(zq~,y)-

But as S, CA(Q) we get by the Harnack inequality that

(4) G(zq-,y) < min G(z,y) SG(pq.q-(2),y).
Combining (3) and (4) completes the proof in this case. Suppose

Sy g n A(Qy’)~

Q;EW(Q)
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This implies that there exists Q;, €W (Q) such that S,NB(Q;,)#0. By Lemma 5.2
we always have EG(z,y)<C(n)/d(y, Q)" 2 so what we have to prove is that

(5) mm G(z,y) > C(M,n)/d(y,oQ)" 2

2€EQ

If S,NB(Q)#0 this is trivial. If S,NB(Q)=0, (5) follows from part 2 of Lemma 5.2.
This completes the proof.

Proof of Lemma 5.4. As l(Q)~1(Q*) by Lemma 4.1, all we have to prove is
that

/MMﬂmw%*ms/ Gf @)/ de.
Q Q*

But EGf(2)SGf(pg.0-(x)) by Lemma 5.4. A simple change of variables then
completes the proof.

6. Reverse Holder inequalities on cubes
In this section we prove Theorem 6.1 and Lemma 6.1 below.

Theorem 6.1. Let QcDomain(n, M, ry,q). Let Qo be a cube centered at xg€
O such that 1(Qo)=4§, where §<Krq is a fized number. Define S:={QCQq, Q cube}.
Then the following inequalities are valid with C=C(M,n,q) for all Q€S and all
positive functions u, u harmonic in QNB(xg,l(Qo)Co) and vanishing continuously
on A(Qo, Col(Qo)). Here Co=Co(M,n)>1.

1. If QCQ then

(i o laom|

2. If Qc(CQ)° then

([

3. If QNOQ#D then

(i flaea

where Q. CQ is the cube existing by Lemma 4.4.

1/q
weg) 1 [ u®
m)gawﬂméﬁaéaamﬂ”

¢ \la Eu(z
< bulze) /
) - d(:EQ,aﬂ |Q| d(x, 89

7 N\ Buxg.) Bu(z)
)Smem %@ d(z,00)




Integrability of Green potentials in fractal domains 351

Remark 6.1. E is the extension operator defined in Definition 5.1.
Define a measure A on Q¢ by

A(4) = /A

The next lemma shows that A is a doubling measure on cubes.

n/(n—1)

Eu(z) dz for ACQo.

d(z,00)

Lemma 6.1. Let QC Qo be a cube such that aQ CQo. Then there exists a
constant C=C(M,n,a) such that A(aQ)<CAQ).

The rest of this section is devoted to the proof of Theorem 6.1. Lemma 6.1 is
a simple consequence of Theorem 6.1.

Proof of Theorem 6.1. We start with the case QC 2 and divide the proof into
two subcases depending on whether or not [(Q) <d(Q, 0€)/10.

In case I(Q)<d(Q,dQ)/10 the proof follows immediately from the Harnack
inequality. Suppose therefore that [(Q)>d(Q,0Q)/10. Take pedQ, d(Q,00)=
d(p, 8Q). Then for some C'=C'(n) we have diam(Q)+d(Q, Q) <CI(Q). Put

Bo=B(p,ClL(Q)),
B1=B(p, M*CU(Q))\B(p, CL(Q)),

where M is the constant appearing in Lemma 3.3. By Definition 2.4 there exists
z1€B1NQ such that d(z1,0Q)~I(Q) . By Lemma 3.3 the following is valid for all
€ ByNL,

u(x) u(z1)
(1) G(z, o) ~ G(z1, o)’

where z¢ denotes the fixed pole used in the statement of the reverse Hélder in-
equality for the Green function (see Definition 2.1). Using (1) and our assumption

on £,
1 (] u=) P, 1 G(z,20) || _u(z) |
|Q|/Q‘d<w,am T E1Q] Jons, |4 09)| |G, z0)
u(xy) q__l_ G(z,z0) |?
® S‘Gm,wo) Ql Jos,| A0 | “
u(zy) q(i G(x, o) >q
S‘Gm,wo) ] /mo dw,00) 7))
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We now examine the integral
I::/ Gz, 20) dz.
QNBo d(x7 69)

Define A;:={Q;€Wq:1(Q;)=2"7, Q;NBy#0}. Then by the Harnack inequality

(3) 1S > 207G zg,, 20)]-

J=jo Qi€A;
By Lemma 3.2 we have
(4) G(zq,, zo) ~w(zg, As, )27 (M=)
where A;:=00NB(pi, c277) for some p;€0Q, c=c(n), d(pi, Qs)=d(Qs,09). Fur-

thermore, for all z€912,

(5) Z XAq, () <e=c(n).
Let A=A(p, Cl(Q)). Using estimate (4) and (5) in (3),

ISY >0 2007 Mu(zg, Ay, Q)22
oy
(6) J=Jjo Qi€ N
,5 w(‘T07 Av Q) Z 2_j 5 w(ﬂﬂo, Aa Q)Z—jo :
J=jo
But 2790 ~[(Q). Using this we can conclude from (6) that

Using (2), (7), Lemma 3.2, the Harnack chain condition on Q and the fact that by
Lemma 4.5, {(Q)~d(zg, 0Q), we get the conclusion.

We now prove the inequality in the opposite direction. By Lemma 4.7 there
exists a cube Q'€W; such that

(8) Q) ~UQ) and mu(QNQ") ~mn(Q).
We get,

[ ) 1 u(z)
=@ /Q 12,00 “ 2 1Q] Jong: Az, 09
>Lmn(QmQ/)u(x /)> U’(‘TQ)

S TIC) % Azg,00)"

dx
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by (8).
We now deal with the case QC (0Q)°, i.e. case 2. Suppose first that [(Q)<
d(Q,09)/10. Let W(Q):={Q; €W3:supp g, NQ#0}. By Lemma 4.5,

) #W(Q) <C, U(Q;)~d(Q,09) for all Q; € W(Q).

Fix one jy such that Q;,eW(Q). By (9), the definition of Fu, Lemma 4.3 and the
Harnack inequality it follows that for all z€@Q we may deduce,

(10) Bu(x) ~u(zq, ), d(z,00)~d(zg,09).

That is, by (10)

/ Eu(z)

which completes the proof in this case.
Now suppose that 1{(Q)>d(Q,05)/10. Take pedf), d(Q,00)=d(Q,p). Let
as above W(Q):={Q;€Ws:supp ¢g,NQ#0}. It follows from Lemma 4.8 that if

Q;EW(Q), then Q5 CB(p, Cl(Q))NS2 for some C=C(M,n). Using Lemma 4.2 and
the Harnack inequality we therefore get

(1) al, ‘ .

In the same way as the case QCQ, I{Q)>d(Q, 00)/10 was analyzed, we may there-
fore conclude that
u(ml)

12 IQ|/ l oo 16}

for some z1€Q, d(z1,00)~1(Q). We have I(Q)~d(zg,0Q) by Lemma 4.5. Let
Sq:i={Q;EWs:9q,(2q)#0}. Fix Qj,€Sq. Then Eu(zg)~u(zq; ). It follows
from the reflection principle and Lemma 4.5 that

q q

Eu( xQ
d(zg,00)

w(zQ,,)
d(zg,00Q)

IQI‘

q

1 u(z) da.

|Q| QﬂB(pCl(Q))‘ d(z, 0N)

(13) d(ag; , 00) ~ d(zqy,, ) ~d(zq, 8Q) ~1(Q)

and |33Q=;0 —21}SH(Q). By the Harnack chain condition we therefore get, Eu(zg)~
u(a:Q;_o )~u(z1) and we are through. The proof of the other inequality is similar to
the proof in the case QCQ, I(Q)>d(Q, 9Q)/10.
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Left is now just case 3, i.e. the case QNON#P. By Lemma 4.4 there exists
Q.CQ such that either Q.CQ or Q.C(CQ)°. Furthermore, [(Q)~I(Q.). Using
this, case 1 and 2 we get

d(z,00)

o> Bulza.)
~ d(zq.,09)

\Q\/‘ xaﬂ) ”%Il IC;*I Q-

Left to prove is the other inequality. But in the same way as in the analysis of the
case QC(CQ)°, 1(Q)>d(Q,09)/10 we have

1l

where pedQ and c=c(M,n). Redoing the deduction made in the case QC(CQ)°,
1(Q)>d(Q,08)/10 then completes the proof.

q
dx,

d(z,00Q)

Rl Jansm.cua)

7. Integrability of the Green function

In this section we prove several results on the integrability of the Green function
and Green potentials on QCR", where Q is a bounded NTA-domain. We start
by stating the results of this section that we will make use of in the forthcoming
sections.

Theorem 7.1. Let QCR™, n>2, be a bounded, connected NTA-domain with
parameters M and rq. Let yeQ, d(y, 00)<ry. Then

J

where C=C(M, g, 6, diam(Q2),n) (6 is the § of Theorem 6.1).

n/(n-1)

G(z,y) de <O

d(z, 090)

Lemma 7.1. Let Qo be a cube centered at xq€d with 1(Qo)=6>0. Put
S:={QCQu:QNN#AD, Q cube}. Then the following is valid for all Q€S if Cy=
Co(M,n) is sufficiently large,

n/(n—1)

Glz.) dx < CO(M, 7o, 6, diam(9), n).

d(z, 0%)

/Q\COQ yeQNQ

The following lemma is needed in Section 8.
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Lemma 7.2. Let Qg and S be defined according to Lemma 7.1. Take Q;€S
and let b;€ LY(Q;), b; >0 and supp b; CQ;NSY. If Co=Co(M,n) is sufficiently large

then
/C;O\COQj d(.’L‘, 89)

where EGb;(x) is the extended potential defined in Definition 5.2 and C=C(M,rg,
8, diam(Q2), n).

Theorem 7.3. Let QCR"™, n>2, be a bounded NTA-domain. Then there
exists a constant C=C(M,ro,diam(€2),n) such that if f€L?(Q) then

/ Gf(z)
Q

d(z,0%)
The rest of this section is devoted to the proofs of these results.

Proof of Theorem T.1. Let y€Q€Wq and define jo by 1(Q)=27%. Choose
pedf, d(p,Q)=d(Q,9). Let for simplicity ro=2"% for some ig. Let k(n)>0 be
the smallest integer such that QC B(p, 2¥2770). Let a(n) be the smallest integer such
that 2°>C(n), where C(n) is the constant appearing in Lemma 3.5. Assume i<
jo—1—a—k. This can always be arranged if we restrict y to be situated closer to 2.
Define I:={ig,i0+1,... ,jo—1—a—k}. Define further for each i€ I, B;:=B(p,27%)\
B(p,2~0+Y). Define also By:=B(p,2~Ue—2=%) Q; =Q\B(p,27%). Then

n/(n—1)

da < Clb 11745,

2
deC/ |f2d(x,00)* da.
Q

0= (BmQ)(U(BmQ)) uQ;.

el
Let 6, Cp be the constants appearing in Theorem 6.1. Put tg=6/4Cj. Define
Qg:= {IL‘ € d(:l?, 89) >tg= 6/400},
Qi :={r € B;NQ:d(x,00Q) > (§/4C,)27*},

for all €. Define
G(z,y)

I(E) :=/E (2,09

We have I{Q)=1(Qo)+1(21\Q). We may cover Q;\Qp by N=N(Cp, diam(Q),
n,8)=N(M,n,diam(Q),8) cubes with sidelength ~ty and apply Theorem 6.1 on
each of these cubes. This gives us,

n/(n—1)
dz for ECAQ.

N
I\ ) < CZ G(zr,y)™ ™V for some z; € Q.
k=1
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But by Lemma 3.5, G(zx, y) <C/ri > ie., I(Q:\Q)<C(M,n, 6, diam(Q), o).

Furthermore, it is trivial that () <C(M,n,§, diam(2),r¢). Left to estimate is

I(Q\Q1). Dilate © in the following way: z'€Q < 27%z'+pe. Now the Green

function on €', G'(z',y’), is related to the Green function of ) in the following way,
G'(a,y) =277 "D G (27 +p, 270y +p).

Using this with =277 we get,

G(a,y) [V
I(E):= _— d
®:= [ | o ’
(1) =/ G(TCIJ/'FP» ’I”y/'Jr'p) n/(n_l),rn—n/(n—-l) dr
E d([L'I,aQI)
G/(:Ul,y') n/(n-1)
= / a0 4z,

i.e., the integral is dilation invariant in the sense described in (1). By Lemma 2.2 we
know that ' is an NTA-domain with the same parameter M as 2. This means that
Theorem 6.1 is valid on €’ with a constant independent of the dilation parameter
r=27Jo, Furthermore, Lemma 3.5 is valid for G’(z’,y’) with the same constants
as for G(z,y). Put E;:=B;NQ\Q,; for iel. Left to estimate is I(E;), I(€2;) and
I(Byn). By Lemma 3.5 we have for all 2’ € EjUS);,
1

2 G Y) S gnm

We may cover E! by N=N(M,n,§) cubes of sidelength (270~ and apply The-
orem 6.1 to each of these cubes as G’'(z’,y’) is a positive harmonic function in
a “Cy-neighbourhood” of these cubes. Applying (1), (2) we therefore get, -as
d(z’, 0Y) >tg2%~" for all 2’ €, and Q| <c2Wo—Dn,

I(E;U,;) < C2lGo—ing—(jo—in/(n=1)9—(jo—i)(n—248)n/(n-1)

®) < C9—(io=i)Bn/(n=1)

where C=C(M,n, §), 3=6(M). Summing the estimates in (3) we get

(4) I(U(Bmﬂ)) <D 27 lemdtn/nm <

i€l el
Left to estimate is I(BoN2). Let y—y’ by the dilation. By (1) and Lemma 3.6 we

have
1

I(B(y,d y,aﬂ)/2))§/ ——— e}
( By d(y, 00 /2) [T/ —y/|"1
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By a covering argument of QN By as above, an application of Theorem 6.1, (1)
and the fact that by the maximum principle and Lemma 3.6, G(z',y") <C=C(n)
for all '€\ B(y/,d(y’,)/2), we may complete the proof.

Proof of Lemma 7.1. Fix zeQ\CoQ. If (Q)<d(Q,05)/10 then it follows
from the Harnack inequality that if Cy=10, then G(z,y)~G(z,yg) for all ye@.
The result then follows from Theorem 7.1. If [(Q)>d(Q,0Q)/10 or QNON#P then
it follows from Lemma 3.1 that if Co=Cy(M, n) is sufficiently large, then G(z,y)<S
G{z,yo) for some yo €2 and for all y€@). An application of Theorem 7.1 completes
the proof.

Proof of Lemma 7.2. Put U;:=Qo\CoQ;. We divide the proof into the cases
Q;C and Q;NONF#D. As by Lemma 2.1, m,,(0§2)=0, we have

/ EGb,(a) [V / Gy (z) [V
v, | d(z, 0%) 0| 4, 0Q)
o] [Eese,
u,n(ee)e | 4z, 002)
But
Gb;(2) |7V n/(n=1)
< .
foltead| eSO
by Lemma 7.1. Left to estimate is
EGb;(z) ™™V
1 I:=/ s dz.
W) u,nCa)e | Az, 00)

Let Q; CQ. We first suppose that I(Q;) <d(Q;,09)/10. Define W(Q;):={Qr€Wa:
supp ¢, NQ;#0}. W(Q;) denotes the Whitney cubes close to or intersecting Q;.
We also define an associated set AW (Q;) by

W(Q;) :={Qm € Wa:3Qr € W(Q;) such that QmNQx #0}.

Then AW(Q;) consists of W(Q;) and all the Whitney cubes that have at least one
neighbour in the set W(Q;). We define two more sets of cubes.

(2) B(Q;):={QeWs3:QnNU; #0, Q* € AW(Q;)},
(3) G(Q;)={QeWs3:QnNU; #£0, Q* ¢ AW(Q;)}.
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Then B(Q;) consists of those Whitney cubes QeWs, QNU;#0, such that their
associated reflected cubes Q* are close to @; in the sense explained above. G(Q;)
is just the complementary set. Using this notation we get

OREEDY /\Eibag

QREB(Q;)

n/(n—l)

e 1) /‘EGb de=I11+1
=L+

d{z,00)

QGG(Q

We first estimate 5 in (4). By Lemma 5.4 and Lemma 4.2 we have

n/(n—1)
WA
) Z * Q(Q;)

QEG(Q )
where (Q;):=Uq,,caw(q,) @m- But if zeQ\QQ;), then by the Harnack inequal-
ity,

n/(n—1)

Gb;(x) dx

d(z, 082)

dgx asz

n/(n—1) n/(n-1

< G(Zl?, yQy)

n/(n—1)
S| qovk e

LYQ;)

(6) ‘ Gb;(z)

d(z,00)

Combining (5), (6) and Theorem 7.1 we get the required estimate of I5. Left
is to estimate I; in (4). As l(Q;)<d(Q,,00)/10 we know by Lemma 4.5 that
#AW(Q;)<C(n) and that all cubes in AW (Q);) have size comparable to d(Q;,0().
Using Lemma 4.2 we may conclude that #B(Q,)<C(M,n) and that if Q€ B(Q;)
then [(Q)~d(Q;,0Q). Using this we get the estimate

n/(n—-1)
/ ’EGb

QeB(Q;)

n/(n—1)
dx.

1

o sl

By Lemma 5.1 the following is valid for all y€@);,

cm) O
d(y,0Q)"—2  d(Q;,002)" >

(8) EG(x,y) <

Combining (7) and (8) we get

©) hsd(Qj,am—"/(”‘”‘("‘”"“”‘”( > |Q|>||b [Etente
QEB(Q;)

But

(10) S 1QISd(Q;,09)" #B(Q;) S d(Q;,00)".

QEB(Q;)
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This completes the proof in the case Q; C and I(Q;)<d(Q;,0€)/10.

We now examine the case [(Q;)>d(Q;,0€)/10. Let us fix a constant A>>1
to be determined later on. By Lemma 4.9 there exists a constant Co=Co(A, M, n)
such that if Q€ W3 and supp Yo N{R"\CoQ; } #0, then Q*NAQ;=0. Using this we
get quite painlessly that

EGb;(z) [V EGb;(x) [V
I:= Z0E) dz = 220E) dz
u,n(ee)e| d(z,0%) {Qo\Co@; N (Ce)e | d(Z,00)

(11) n/(n—1) 4 n/{(n—1)
< ¥ /‘EGb do< / I Gb; (z) N
QeEWs .’I/' 89 Q\AQJ' d((L‘, 89)

QN{Qao\CoQ;}#0

by Lemma 4.2 and Lemma 5.4. Choosing A=A(M,n) sufficiently large we get
by Lemma 3.1 for some yo€Q, G(z,y)SG(x,yq,) for all z€Q\AQ; and yeQ;.
Combining this with Theorem 7.1 completes the proof.

The case Q;NINFD is analyzed similarly to the previous case.
We will close this section with the proof of Theorem 7.3. The material presented
here may be found in Nystrom [21]. We can prove the following.

Theorem 7.2. Let QCR"™, n>2, be a bounded NTA-domain. Then there
exists a constant C=C(M,ry,diam(Q),n) such that for all ue W,*(Q),

2
T < 2 dz.
AFER) d:c_C/ﬂqu] dz

Proof. Using [21] all we have to verify is that  satisfies a uniform capacity
condition in the following sense. Let QeWqn and let d(pg, Q)=d(Q, Q) where
po 0. Define Cg to be the smallest cube centered at pg and containing @ with
gides parallel to the axes. What we then have to prove is that

1) o Cip(Con(69)°) > CUQ™™,

for some po€(2n/(n+2),2) and some C=C(M,rq,diam(Q?),n,po). Here C1 p,(E)
denotes the Bessel capacity. For its definition, see [1], [19]. As Q is'a bounded and
connected NTA-domain we may conclude that for every Q)€ Wq there exists a ball
BocCon(LN)° with radius at least

C(M,ro,n)

) diam(Q)

HQ)=CUQ).
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Using this,
3) Cl.p0(CaN(09)°) > C1 5o (Bg) = CUQ)™ ™,

by the monotonicity of the capacity and the fact that Ci p,(B(z,7))~r""Po. The
conclusion in (1) is therefore established and Theorem 7.2 proved.

Using Green’s formula we have the following consequence of Theorem 7.2.

Corollary. Suppose ueW,*(Q) and AucL?*(Q). Then

Q

2

— d:vSC/ |Au|*d(z, 0Q)? dz,
Q

where C is the constant given in Theorem 7.2.

d(z,00)

Theorem 7.3 is now a simple consequence of this corollary as if f€L?(Q2), then
AGf=—f in the sense of distributions and G f EWol 2 Q).

8. Comparison of potentials and harmonic functions

In this section we present the essential lemmas needed in Section 9 where we
establish a good-A-inequality which is at the heart of the method we are using.
Lemma 8.1 and Lemma 8.2 below could have been formulated in just one lemma,
but we believe that the way these very crucial steps are presented will make it a
bit easier for the reader to follow the ideas. Lemma 8.2 should be considered as
a dilated version of Lemma 8.1. Though the proof of Lemma 8.2 is identical in
spirit to the proof of Lemma 8.1 we present it to be able to point out the dilation
invariances we are using. Furthermore, Lemma 8.1 and 8.2 are proved just to be
able to prove Lemma 8.3. The dilation argument is needed to avoid the constants
in Lemma 8.3 to blow up for small cubes. We start by formulating the lemmas
and then complete the section with the proofs. All the cubes appearing have sides
parallel to a fixed system of coordinate axes.

Lemma 8.1. Let Q€Domain(n, M, rg, q), g>n/(n—1). Let Qo be a cube cen-
tered at xo€0Q with [(Qo)=06. Let u(x) be a positive harmonic function on 2 which
vanishes continuously on A(Qqg, 7o) and is such that u(xi)=1 for some x;€QNQq
fulfilling d(z1,09)>1(Qo)/4. Define My (Qo):={QCQo:1(Q)>1Q0)/100y, QN
Q#0}. Pick QEMi1(Qo) and let feL'(Q), f20, supp fCQNQ and [, f(z)dz<
my, (Q)~8™. Then there exist constants a=a{M,n) and C=C(M,ro, 8, n, diam{S2},

dimloc(0R)) such that
n/(n—1) o
Eu(z) dxr<C (/ f(x) dm) )
Q

d(z,00)

J
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where E:={z€Q:EGf(x)>Eu(z)}.

We now formulate Lemma 8.2 which is a dilated version of Lemma 8.1 and
deals with cubes in M;(Qo):={Q:QCQo, I(Q)<I(Qo)/100/n; QNINF#D or QC
Q, 1(Q)>d(Q,00)/10}. Choose Q€ M(Qq) and associate a cube Ag centered at
po €0 and defined as the smallest cube with sides parallel to the coordinate axes
and containing Q. Here d(pg, Q)=d(Q, 8f) in case 1(Q)>d(Q,05)/10, QCS, and
P eQNQ if QNINAD. Then I(Ag)~I(Q). Associate a dilation factor rg to Q by
ro=I(AqQ)/l(Qo). We now dilate £ with respect to r=rg and p=pg to get .
If G’ is the Green function of €', then G'(z',y')=r""2G(rz’+p,ry +p). Define
E'G'(z',y)=r""2EG(rz’+p,ry'+p). That is, in extending G'(z’,y’) to R" for
fixed 3/ €Y, we just make use of the fact that we have extended G(z,y) to EG(z,y).
We furthermore define, q(z")=Eu(rz’+p)/Eu(zq, ), where Q1 =Q if QNdQ=0 and
Q1=Q. if QNON£D. Here Q. is the cube existing by Lemma 4.4. Put

q(z)
d(z’, o)

n/(n—1)
k(z'):=

Let by the dilation, Ag— Ag. Define for E’ cA,

N(E') = [E k() d.

Lemma 8.2. Let Q, Qo and u(x) be as in the statement of Lemma 8.1. Let Q€

M3(Qo), where Ma(Qg):={Q:QCQo,(Q)<l(Q0)/100y/n; QNINAD or both QC
Q, 1(Q)>d(Q,00)/10}. Let Q—Q' by the dilation described above. Define E':=
{2/ €Q:E'G'F(z')>q(2')} where FEL'(Q'), F>0, supp FCQ'NQY and [, F da'<

mn(Q')~8". Then ]
N(E') < c( / @) dx’) ,

where C and o are the constants described in Lemma 8.1.
Lemma 8.1 and Lemma 8.2 are important in the proof of Lemma 8.3.

Lemma 8.3. Let Q, Qo and u(z) be as in the statement of Lemma 8.1. Then
there exist constants C and a as in Lemma 8.1 and C1=C1(M,n,8) such that the
following is valid. If v€(0,C1) and if fELY(Q), >0, supp fFCQNQ for some
QCQo, QNQFD, fulfills

[, s ”(/‘d(w 59)

n/(n-1) \(n—1)/n
dm) ,
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then
n/(n-1)

E
u(z) iz,

d(z, 08)
where E:={x€Q:EGf(x)> FEu(x)}.

n/(n—1)
< (03
= /Q‘ d(z, o%)

Proof of Lemma 8.1. Put y= | o f dz. There is no loss of generality to assume
that @ is a dyadic cube. Consider ) as our universe and take the Calderén—
Zygmund decomposition of f with threshold A=1 (see [41, pp. 17-19]). That is,
f@)=f1(z)+ fo(x) where,

2) Z 105l 2@, < C, mn(U Qj) <Ch.

Here C=C(n) and {Q;} is a disjoint collection of cubes. As fi<1 a.e. on Q we
have

(3) / f2 d:cg/ fidz=+.
Q Q
Define Jine1)
- Eu(z) |
NE)= [ s dz, EcCQ.

Put E;:={z€Q:EGf;(x)>FEu(z)/2} for i=1,2. Then ECE UE,. To prove the
lemma we intend to prove that

(4) )‘(El) SCﬂ%} i:1527

with C; and «; as in the statement of the lemma. We start to estimate A(E;). We
have that

EGf] n/ n— 1)
A(Er)
1) /’ d(z, 0(2 dx
= Jana| d(z,0Q) an(aye | d(z, %)
But by Lemmas 5.4 and 4.2 we have
/ EGfl(iL‘) n/(n—1) dx</ Gfl(l,') n/(n—1) o
on(ee)e | d(z,09) ~ Jo|d(z,00)
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Therefore by the Holder inequality,

G fi(z)
d(z,00)

2 n/(2n—2)
d;zr) .

A1) < 0at, . i)

As f1€L*(Q) we get from Theorem 7.3 and (3) that
)\(El) S C,yn/(Qn—2)7

which completes the estimate in this case.
We now estimate A(E3). Let Cy be the constant appearing in Lemma 7.2. Put
U:=Q\J CoQj. Using Lemma 7.2 and the Minkowski inequality we get

n/(n=1) \(n—1)/n
oo (f RS )
2
EGb (l‘) n/n—1 (n—=1)/n
< d
Z</E2ﬁU 1’ 89) ?
] n/{n—1) (n—1)/n
(), )
A\Coq, | Az, 00)

<C Y lIbjllzeg, < Cr-
3

By Lemma 6.1 we get

(6) ME2\U) 3 MC0Q) <O I MQ) =AU ;).

as {Q;} is a disjoint collection. There are never any problems connected to the ap-
plication of Lemma 6.1 as we may if necessary just choose a smaller initial cube Q.
Let ACQ and let ¢>n/(n—1) be a ¢ for which the reverse Holder inequalities of
Theorem 6.1 are valid. We then get,

n/(n-1)

b

Eu(zg,)

A) < 1-n/(gn-q) ||/ (gn—q)| @1/
™) A <CI4 Ql oo o0

where Q1=Q or Q;=0Q),, depending on whether or not QNdN#P. By assumption
1(Q)~6. Therefore using (7),

(8) AMA) < C|A|l—n/(qn—q)l(Q)nQ/(qn—q)—n/(n—l)|EU(IQ1)|n/(n—1)'
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But Eu(zg, )~u(x1)=1, so may conclude that there exists a constant C=C(M,n, §)
such that

9) A(A) < C|A|t—/ =),

Combining (2), (6) and (9) completes the proof.

We now present the proof of Lemma 8.2 to help the reader understand how
we use the fact that the results of Section 6 and 7 are valid with uniform constants
for arbitrary small cubes. It turns out that the extra weight in the inequality of
Theorem 7.3 is crucial.

Proof of Lemma 8.2. Put v= fQ, "Ydz'. Choose just as in the proof
of Lemma 8.1 a Calderén—Zygmund decomp031t1on of F=F+F,, F=) Bj,
supp B; CQ;N§Y, ZfQ; |Bj| dz'<cvy, |UQj|<ey, Fi(2')<1 ae. on Q'. Again we
have E'CE{UE}, where E/:={2'€Q":E'G'F;(2’)>q(z')/2}. Again we want to es-
timate N (E1), N (E}). We first estimate X' (E]). Define f; by

E'G'Fi(z'y=EGfi(rz'+p).

Then f,(y)=F1(y—p/r)/r? and we get
1t EGfl(Tml+p)
Vs ([, i |
(/ ’EGfl(rw +p

| @, e

_ p(2-m)n/(2n—2) / EGfi(z)
d(z, BQ

n/(n—1)
dx’)

. n/(2n—2)
da: )

)n/(2n—2)

d(z,00)
de<C / lf1(2))%d(z, 0Q)? dx
QNO

< O(M, n)r(2=mn/(2n=2) (/
Q
as before. But by Theorem 7.3,

Gfi(z) |
d(z,00)

(2)

as supp f1 CQN. As QeMy(Qo) we always have d(z, 00 <C(n)l(Q) for all z€
QnN$. Combining (1) and (2) we may conclude that

n/(2n-2)
3) N(E) < Cr=mn/Gn=2y(Qyn/ (n=1) (/ I dx) _
Q
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But
@) [ 1P de=rt [ R@)Par <ty
Q Q’
Combining (3) and (4) we obtain
(5) )‘,(Ei) < Cr(?—n)n/(2n—2)l(Q)n/(n—1),r(n—4)n/(2n—2),yn/(2n—»2).

But 7~1(Q)/1(Qo)=I(Q)/6. Therefore, N (E,)<C~™?*~2) with C as in the de-
duction of Lemma 8.1.

We now estimate \'(E3). Put U'=Q'\{JCoQ, where Cy is the constant of
Lemma 7.2. Define b;€ L' (Q;) by

E'G'B;(z') = EGb;(rz’ +p).

Then b;(y)=B;{(y—p)/r)/r? by the scaling law for the Green function described
above. We have by Lemma 7.2
n/(n=1)  \(m-1)/n
dm)

B B EGb;(x)
)\/ E/OUI (n 1)/n§7'2 n (/ J
(F2nt) ; Q\Cve; | dlx, )

cr2n Z 165/l 2 (@;)-
J

But [, [b;] dz=r""2 [, |B;ldz’ and 37 [, |B;| dz’ <ey which give us

(6) N(EZNU'y <oy (1),
Again
(7) XE\U) <ox (@)
Let A’CQ’. Then
q n/(qn—Q)
< | A’ 1—n/(gn—q) / q(x .
® N < |4 ([ |72
But
/ q n/(qn—q)
Ad@', 850y
1 n/(n-1) / EU(’I‘.’E +p) dm n/{(gn—q)
Eu(le) | d(x!,00)
n/(n—1) n/(gn—q)
i Pla=nn/(an—g) / Bu(z) |\
Eu(zq,) d(z, Q)
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Using Theorem 6.1 we may continue our estimate,

o ([

But r~{(Q)/6. Combining (7), (8) and (9) we get the required estimate with
the same constant as in Lemma 8.1. This completes the proof.

q(z")

R S 1
P S A < g—n)n/{(gn—q n/lgn—q
(@', o) dm) ~T <l

Q=1

We now apply these lemmas to prove Lemma 8.3. It is necessary to carry out
a dilation argument to get uniform constants.

Proof of Lemma 8.3. We divide the proof into two cases:

1. QC, I(Q)<d(Q,00)/10,

2. QC, HQ)=d(Q,00)/10 or QNINAD.
In each case we will carry out a dilation argument but with different dilation factors.
In case 1 we put r=d(Q,09), p=z¢g. In case 2 we put, if [(Q)<I(Qy)/1004/n,
r=I(Aq)/l(Qo)~1(Q)/1(Qo) and p€dQ as above. If I(Q)>1(Qo)/1004/n we do not
carry out any dilations. In case 1 the dilation implies that Q—@Q’, where Q' is
situated at unit distance from 9€Y. In case 2, Q' will be a cube of the same size
as the initial cube Qo, i.e. I{Q')~é. In case 2 we will only present the proof in the
case 1(Q)<(Qo)/100+/n. The proof in the case [(Q)>1(Qo)/100y/n just differs in
the sense that we then use Lemma 8.1 instead of Lemma 8.2. As before Q—,
Q—Q' under the dilation and g(2’)=FEu(rz’+p)/Eu(zg,). Here Q1=Q if QCQ
and Q1=0Q, if QNON#D. Let

k(z') = 1_ q(z’) /(=)

d(z!,0)

We get

o [

That is, what we have to prove is that

Eu(z) n/(n—1)

d(z,00)

dz = Bu(zg, )" "~ Dpr—n/(n=1) / k(z')dx'.
E/

(2) /,k(x') dx’gc'y“//k(x’)dm’,

where E':={(z—p)/r:z€E}. We now rephrase the assumption in its dilated form.
As before, EG f(ra’+p)=E'G'F(z'), where F(z')=f(rz' +p)r?. By the assumption
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we have

<
Q/Fm /f Ydx yr?= (/‘ x8Q

(
(3) ='yr2_"Eu(;rQ1)r("—”/(”“l))(n—l)/” (/ k(") d:vl)

—Eu(zq,) ( /Q k() dm’)(n_l)/n

by (1). Define h(z')=F(z')/Eu(zg,). We get E':={(z—p)/r:zeE}={z'€Q’:
E'G'F(2y>Eu(zg,)q(x")}={z'€Q :E'G’h(2') >q(z")}. After these changes to the
dilated scale we may formulate our problem as follows. Show that,

n/(n—1) (n=1)/n
dm)

n—1)/n

(4) E'={z' €@ :E'G'h(z')>q(x")},
(n—1)/n
(5) / h(z") dx’ S’y(/ k(:r’)dz’) ,
(6) supp h CQ'NCY,
imply,
) / k') de' <ev® | k(') do’
E Q

We now treat case 1 and case 2 separately. First case 1. In this case Q C2. Therefore
no extension operators are involved. In this case @’ is at unit distance from 6.
By the Harnack inequality, ¢(z’)>C and k(z")<C for all 2'€@Q’, with C=C(n).
This gives us E'C {2’ €Q":G'h(z/)>C}. By Lemma 3.6, G'(z', /) <C(n)|z’' ~y'|' ™
for all 2/,y'€Q’. Therefore, E'C{z'€Q':I1h(z')>C}. Using this together with
Theorem 3.2 and (5) we may deduce

/ k(z') do’ < C|E'| <|{a' € Q' : Lih(a') > O]
n/(n=1)
< ( / h(x’)dx’) <y (b / k(z') da’,

which completes the proof in this case.
We now examine case 2. We just supply the proof when QNaQ#D as this is
the only case when the extension is involved. In this case we get from Theorem 6.1



368 Kaj Nystrom

and (1) that
1 n/(n— 1) n/(n—1) n/(n—1)
(8) /Q/ | Bu(zq,) d(z, 393( |
< 1 Eu(m) /e
Bu(zq,)™ (=1 rr—n/(n=1) | d(zq, , 6Q) C(M,n,8)

by our choice of 7 in this case, i.e., fQ, kdx'<C(M,n,6) in this case. Restrict v to
(0,C1), where Cy=m,(Q')(1/C(M,n,8))"=D/"7(1/C(M,n,8))™= /" Then
using (5) we have

) / hla') da’ < (@)~ ",

(9) in combination with Lemma 8.2 and (5) give us

/ k(') de! gc( / he) dac’)a

a(n—1)/
<Cy* </ k(z") d:c’) SCy*<Cy* | k() dx,
! Q/

as by (8 , k(z")dz' ~C(M,n,8). This completes the proof of Lemma 8.3.
Q

9. Proof of a good-A-inequality

In this section we deduce a good-A-inequality for an operator T'f(x) and an as-
sociated maximal function K f(z). We then integrate this to get norm inequalities.
We ask the reader to refresh his/her knowledge of the extensions made in Defini-
tions 5.1 and 5.2. In the following ()9 will always denote the initial cube centered at
zo €0 with [(Qo)=6 which we have used before. u(x) will be a positive harmonic
function fulfilling the requirements that u vanishes continuously on 8QNB(zo, o)
and u(x1)=1 for some z; €QNQo such that d(z1,0)>1(Qq)/4.

As usual we start by summarizing the results of the section and then supply
the proofs at the end.

Definition 9.1. Let feCg°(Q). Define

Gf(z)

T1(e) =xa(e) Legt +xnp (@) 3 ore)

Fu(zg)

Yo ()
QeWs
if z€(QUUgew, @))N2Q0 and

Ti@)= lm _ Tf(z;)

zj—x,r; EQ

if 2€3QoNaN.
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Lemma 9.1. Let f>0, feCC (). Then Tf is a continuous function on Qq.

This is a crucial lemma, as we will see below, because it implies that the set
Q3N{Tf(x)>A} is an open set for all A>0 to which we may apply the Whitney
decomposition. In the proof of our main results, presented in Section 11, we may
by an approximation argument assume that feC5°(Q), f>0. We may therefore all
the time assume that f has these smooth properties. The proof of Lemma 9.1 relies
on the fact that if feC§°(Q), f>0, then Gf(z) is a positive harmonic function in
a small neighbourhood of 9.

Let Co=Co(M,n)>>1 be the constant defined in Lemma 9.3 below. Let ()1 be
a cube with the same center as Qg but with sidelength 1(Qq)/5Co.

Definition 9.2. Let f>0, fe L*(R™), supp fCQ. Put M,:={Q:2€Q, QCQo}.
Define

Kf(z):= sup fdx/A(Q)("#l)/",
QeEM, JQNQY
where D)
. Eu(z) """
ANQ) = /Q o500 da.

Lemma 9.2. Let >0, feC§(Q), supp f CQ1NQ, where Q1 is defined above.
Then there exist constants a=a(M,n), f=0(M,n) and C=C(M,n, s, rq, diam(2))
such that if QC5Q1 and if Tf(z)<1 for some x€Q, then for all v€(0,C}), C1=
C1(M,n,6), we have the following good-A-inequality

Mz eQ:Tf(x)> 8, Kf(z)<~}<CrAQ).

Integrating this we will prove the following.

Lemma 9.4. For all g such that the reverse Hélder inequalities of Theorem 6.1
are valid, there exists a constant C=C(M, n,é,rg,q,diam(Q)) such that if f>0,
feCF(Q) and supp f CQ1 (Q1 is the cube described above), then

/'\Tdeuax)sC{/ K F19 dpsg(2),
Q1 Q1

with dpg(z)=|Eu(z)/d(z, 0)|9dz.
The important thing is that if z€@; N2 then

q

Gfz) .

|wmwwm{%§§
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The rest of this section is devoted to the proof of these results.

Proof of Lemma 9.1. As feC§°(2) there exists a 7>0 such that Gf(z) is a
positive harmonic function in B,:={z€3QoNN:d(x,IN)<r}. As Q is regular for
the Dirichlet problem we further know that G f(x) vanishes continuously on 9.
See Helms [13, Lemma 6.24]. It therefore follows from Theorem 3.1 that T'f(x) is
well defined on 92N2Qo. By the same theorem it also follows that T'f(z) is Holder
continuous in B,UJ) for some Holder exponent «. That Tf(z) is continuous at
z€QN(Qo\ B;) is trivial as for these points, u(z)7#0 and Gf(z) is continuous on
Q. See Helms [13, Theorem 6.22]. To prove the continuity of T'f(z) on Qo all we
therefore have to do is to prove that if pe QoM then,

1 lim Tf(x;)=T .
(1) Ll Tf) =T60)
We start by proving that the limit in (1) actually exists. Put N, :={zxeQ:d(z, )<

7/10}. Let r; be a sequence of numbers, to be fixed later on, such that r;—0 as
j—oc and ;41 <rj. Define Q;:=(CQ)°NB(p,r;) and

M;:=sup Tf(z), m;:= inf Tf(z),
e x€Q

Aj = {Q S W3 : supp d)QmQJ 7é @}

Let A; —>A;f by the reflection principle described in Section 4. We prove that
M;/m;—1 as j—oo. By Lemma 4.1 there exists a C=C(M, n) such that,

(2) U QC B(p,Cr;)NQ.
QeA;

Choose r1 so that M2Crq <« 7/10. By Theorem 2.1 we know that there exists Q;‘
such that €27 is an NTA-domain with the same parameter M as £ and such that

(3) B(p, Cr;)NQC Q C B(p, CM*r;)NQL.

Take z€€; and put Sy:={Q€A;:¢g(x)#0}. By the definition we get

(4) Tf(z) < max EGflwq)

~QeS. Eu(zg) ’ Tf(z)> min ———==

T QeS. Eu(zg)

Define

M :=sup Tf(z), m}:= inf Tf(x).
o= s TS, mi= i TS@)
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We now exainine the definitions of EG f(z) and Fu(x) a bit closer. Let Q€ A;. Then
Eu(zg)=u(zg+). Furthermore, EGf(xQ):fQ\BT EG(zq,y)f(y)dy. But Q*CN..
By Definition 5.2, EG(zq,y)=G(zg~,y) for all ycQ\B,. Therefore EGf(zg)=
Gf(zg+). (4) may therefore be restated as,

* G *
(5) Tf(x) < max Z2E9) - 1p(5) > i G1EQ)
Qes. u(zo~) QeS. u(zp-)
From (2), (3) and (5) we get that M; <My, m;>mj, i.e., Mj/m;—1<M}/m5—1.
Put rjp =M ‘17"]-, where M is the NTA-constant of Q. Using Theorem 3.1 it follows
that M7 /m*—1—0 as Gf(z) and u(z) are positive harmonic functions in B,. This
proves that the limit in (1) exists. That the limit value is T'f(p) is obvious.

Proof of Lemma 9.2. Recall that Q1=Qy/5Cy, where Cj is the constant ap-
pearing in Lemma 9.3 below, Co=Cy(M,n). By the assumption, CoQCQq for all
QCQ1. Let Q be a fixed cube such that T'f(x¢) <1 for some zo€Q. Put g(z)=f(z)
if 1€Cy@ and g(x)=0 otherwise. Put h(z)=f(x)—g(z). By Lemma 9.3 below we
get

(1) sgg Th(z) < muelg Thiz) <C(M,n)T f(xo) <C(M,n).

Let €>0 be a constant to be fixed below. By (1) it follows that there exists 3=
B(M,n,e) such that

{zeQ:Tf(2)>8, Kf(zx)<v}C{ze€Q:Ty(z)>e, Kf(z)<~}:=FE.
Assume E+#£{ and take z1€E. Then

@ [ gde= [ ae<ACo@) K @) < oM@
Co@ CoQ

We note that if Co@QNQ=0 and if =0(M, n) is sufficiently large, then E={ by (1).
We may therefore assume that CoQNQ#0. By Lemma 8.3 we get

(3) A{z € CoQ: EGy(z) = Eu(z)}) < Cv*NCoQ).
A(CHQ)<CA(Q) by Lemma 6.1. What remains to prove is that EC{z€Q: EGg(x)>

Eu(z)}. That is, what we have to prove is that there exists e=¢(M,n) such that
if z€Q and Tg(z)>e, then EGg(x)>Eu(z). We note that it is enough that this is
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true for all z€Q\Q as |0Q|=0. If z€Q then this is trivial of course. Let z€(CQ)°.
Then

EGg EGy(zq)
Q;faw Eu(zg)
~|Bu(z)|™" Y vo(x)EGy(zq) =|Eu(z)|"  EGy(x),
QeEWs

which completes the proof.

We note that the lemma implies that if >0 and T f(x) <7 for some z€Q, then

MzeQ:Tf(x)>pn, Kf(x)<yn} <Cy*NQ).

Lemma 9.3. Let Qg be our original initial cube centered at xo€ Q. Let QC
Qo. Then there exists a constant Co=Cy(M,n) such that if he C§°(2) and supp hN
C()Q=® then,
sup Th(z) <C(M,n) zlgg Th(x).

z€Q
Proof. We divide the proof into three cases:
1. Qc
2. Qc(C)e;
3. QNoN£D.

In the first case we have Th(z)=Gh(z)/u(z) if z€Q. The result therefore follows
easily from the fact that if yeQ\CyQ, Co=Co(M, n) sufficiently large, then

G(z,y) G(z,y)
D =l S CWMom) nf = o

1)

If 1(Q)<d(Q,092)/10 then (1) follows from the Harnack inequality with Co=10. If
1(Q)>d(Q,d0)/10 then (1) is a consequence of Lemma 3.3.
In the second case

EGhH(
-y ECh(zq,) Bulan ) Pa @)

Q WS Eu( xqj

Put W(Q):={Q;€Ws:Suppypg, NQ#0}. Suppose [(Q)<d(Q,)/10. Then by
Lemma 4.5, #W(Q)<C and l(Q;)~d(Q,09) if Q;eW(Q). Fix jo such that
Qj, €W (Q). Then by the reflection principle and the Harnack inequality we have
for all z€@,

1
(2) Th(z)~ Fulea,) . GXW:(Q) Yo, (z)EGh(zq;,).
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So what we have to prove is that,

3 max FEGh(zp,)< mi EGh(zo,).
(3) . ( QJ)NQjGV‘;l(Q) (zq;)

This follows if we can prove that if y€2 then,

max FEG(zg,,y)< min EG(zg.,y).
o (qQ,,¥) o, in (2Q;+ )

But this is proved in the same way as Lemmas 5.2 and 5.3 were proved.

We now suppose that 1(Q)>d(Q,09)/10. Choose pedf}, d(p, Q) =d(Q, 00).
As before there exists C=C(M,n) such that if Q;€W(Q) then Q;CB(p, Cl(Q))
and Q}CB(p,Cl(Q)). Therefore, by the definition of EGh(z), there exists Co=
Co(M, n) such that if supp hNCoQ=0 and z€Q then

in M <Th(z)< sup M
Q,eW (@ ulzgs) Qew(@) ulTq;)

(4)

The conclusion

) Gh(mQ;) Gh(xQ;)
inf ——2-~ sup -
QEW(@ u(Tgr) gew@ u(TQ:)

(5)
follows in the same way as (1) was proved if we just choose Co=Cy(M, n) sufficiently
large and supp hNCoQ=0.

Left is the proof in the third case, that is when QNdQ#£D. Let peQnoN. By
the same argument as above we get if Co=Co(M,n) is sufficiently large,

(6) supTh{z) <  sup Gh(z) ~ inf Gh(z) < inf Th(x).
z€Q z€B(p,CUQ)) u(m) z€B(p,CLQ)) u(a:) T€EQ

The deduction in (6) completes the proof.

We end this section by proving Lemma 9.4. It is well known that Lemma 9.4

is a consequence of Lemma 9.2 but we supply the proof for completion (see e.g. [4],
[20]).

Proof of Lemma 9.4. As we may assume ; to be a dyadic cube we may
adjust a dyadic net {m;} on R™ to Q; so that Q;€m; for some j=4(Q1). Let
B(zq,,10l(Q1)) be an open ball. By Lemma 9.1, the set

(1) By ={z:Tf(z)>n}NB(zq,,10/(Q1))
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is an open set. Let W, be a Whitney decomposition of B,, such that d(Q;,CB,)/4<
1(Q;) for all Q;€W,,. Put

E,:=Qin{z: T f(z)>n},
Sy :=QiN{z:Tf(z)> Bn},
Ty:={z:Tf(z) > pn, Kf(z)<m}

We have

[ Tt [ oSt an
(2) Q1 0

<H [Tt anCpa) [ KAV dug(o)
We will use Lemma 9.2 to estimate the first integral in (2). We first note the

following. Suppose T, #0 for some 7€ (0, 00). Choose 2o€Q2NI(3Q1) such that
d(zo,02)~1(Q1). Then

(3) me=W%kM“““/f@@

u(zo) u(xg)

by Lemma 3.1, where AcQ;. As T, #0 we get for some peT,,,

G(x(), A)

u(xp)

G({EQ, A)

)\(Ql)(n~1)/an(p) <C(M,n)y )\(Ql)(n—m/n%

But G(zg, A)<1/1(Q1)" 2 by Lemma 3.6 and

Q)™ <1Q1 | M u(x0) /1(Q1)

by Theorem 6.1 and the Harnack inequality, i.e., T f(zo) <C(M, n)yng. If we restrict
v to (0,1/C) we therefore get

(4) T f(xo) <mo-

(4) implies that if Q;NE,#0 and Q; €W, then Q;CQ1, and by properties of the
Whitney cubes, there exists p;€5Q; such that T f(p;)<n. This is valid for all
n€(0,00). As S, CE, we get a covering

Sss< U 5
QieW,,Q;CQ1
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As furthermore, T;, €S, we may deduce that

(5) pq(Ty) < Z 1q(5Q;NTy).

Q; EW,,Q; S

Theorem 6.1 implies that dugs€As(dA). See [4, Lemma 5]. By Lemma 9.2 and
Lemma. 6.1 we therefore get the following for some e=¢£(q)>0,

1q(Ty) < Cv** Z Hq(5Q;)
Q; €Wy, Q;CQ1

<Cy* Z 1q(Qj) = Cv* pg(Ey).
Q; €Wy, Q;CQ1

Using (2),

/ (719 dpy(z) < OBy /Q T 119 ditg () +C () /Q K119 dpg ().

Choosing v <7y, where C’ﬂqq'ygs:%, and taking the restrictions on « into account,
we may complete the proof.

10. An inequality for the maximal function

In this section we present the last two lemmas before we in the next section
prove the final results.

Lemma 10.1. Let the cubes Q1 and Qg be as in Lemma 9.4. Let g>n/(n—1)
and suppose that for all cubes QCQy we have

(ﬁ /Q ’ dm)l/q < N1 Eu(z) g

Y,
Q| Jq dlz,09)
with N=N(M,n,q) as in Theorem 6.1. Then for all f€C§°(Q), supp fCQ1, f>0

we have
/ Gf(z) |*
Q110

——=| dz <C||f|,
where 1/qg=1/p—1/n and C=C(M,n,q,ro,,diam(Q2)).

d(zx,0Q)

d(z,00)

The next lemma is a weak type estimate for p=1.
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Lemma 10.2. Let f and Q1 be as in Lemma 10.1. Let t>0. Then there exists
C=C(M,n,q,rg, 6, diam(Q)) such that

{z € Q1NN: Gf(x) > td(x, dQ)} < C(|| fll1/t)™ Y.

Proof of Lemma 10.1. By Lemma 9.4 we have
Gf(z) |* / /

dz < Tfl?dp,(x) <C K fledug(z).

/leﬂ d(:I:,@Q) 1| | Nq( ) Ql‘ f‘ /’Lq( )

To prove the lemma all we have to prove is that

M) (f 1 IKfI"duq(w))l/q <c( A Ifl”dw>1/p.

The way (1) is proved is a kind of standard deduction for maximal functions in-
volving a Besicovitch type covering and Marcinkiewicz interpolation theorem. The
details are carried out in Dahlberg [6, Lemma 11].

Proof of Lemma 10.2. This proof follows the same lines as the proof in [6,
Lemma 12]. Take the Calderén—Zygmund decomposition of f with threshold z>

Nl /ma(Q1)- Thenf f1+f2, fa=>"b;, suppb,; CQ; CQ1, suppb; CQ;NQ, f1<z

a.e. on Q1, D, fQ )dz<C|fllx and |UQj|<c||fll1/z. Put Ej:={z€QiNQ:
Gfi(x)>td(z,00Q) /2} Usmg Lemma 10.1 with ¢>n/(n—1),

C Gfl(.%‘) Z 9(1-1/p /
@ misg [ G| el s 2 .

Let U=Q1\U CoQj, where Cy is the constant appearing in Lemma 7.2. Then

e
UunQ Uno

d(z,00) d(z,00)
(3)
<C Y lIbsllzr @y <Clfll-
J

(3) implies that

n/(n—1)
(4) |BNU| <c(”f”1> .

We further have

(5) E0(Qu\U) <] J@s| =€l /2.

From (2), (4) and (5) we may therefore conclude that,

- n/(n—1)
|E|SlEﬂ-l-!Ezl§C<I|f||(f/pzqutq1/p)+<”ft”1) ).

Choosing z=t™ (=V| f||] Y"1 completes the proof.
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11. Proof of the main theorem

As |VGf(2)|<C) (I f(z)+G f(x)/d(z,00)) if >0, it follows that our Main
Theorem is a consequence of Theorem 11.1 below and Theorem 3.2.
Theorem 11.1. Let QCR"™, n>2, fulfill the requirements of the Main The-

orem. Then there exist a constant C=C(82,q) such that if, 1/g=1/p—1/n, then the
following inequality is valid for all f€LP(Q),

([t )" sl )

d(z, 082)
If p=1 then |{z€Q:|G f(z)|>td(z, 0N} <C(|| f|l1 /1) =D,

Proof of Theorem 11.1. We note that by an approximation argument we just
have to prove the theorem for f>0 and feC§°(2). Let as before ¢y be our initial
cube and let (); be the cube associated to Qg as described at the beginning of
Section 9. Let @2 be a cube with the same center as @; and sidelength I{Q2)=
1(Q1)/Co, where Co=Cyo (M, n) is such that if v(z) is a harmonic function on QN2
vanishing continuously on 00NQ1, then

v(x) v(x2)

1 / SO oo ] i )
W 20| 42,00 9| 4z, 00)
for some 12€Q2NQ, d(z2, Q) >CIl(Q2). That this always can be arranged follows
from Theorem 6.1. Let Qi be a covering of Q) with cubes centered at z; €952 and

such that each Q is related to a cube @} in the same way as ()2 is related to Q;.
Let Qo:=0Q\J Qx. We may assume that d(Qo,89)>Cl(Q2) Then

2) Gf(z) Gf(z d +Z /QQQ

ol d(z, 00) d(z, BQ
The first integral in (2) is estimated by Lemma 3.6 and Theorem 3.2. Fix k and
let eC8°(Q%) such that p(z)=1 on (1—¢)Q} for some small e. Put gx(z)=(1-

¢(z))f(x) and hi(z)=¢p(x)f(z). Then
+~/90Qk

Gf(z) Cha() |
3) /ka d(,90) S/mk 10z, 0%)

Call the integrals I; and I;. Using Lemma 10.1 we get,

q

q

q
<
dz d(z, 89

q

Gy () dx

d(zx, 00)

(4) I <Cllhl|Ze <CIfNITs
Using (1),
(5) I <C|Ggr(z)|* < Cligllz: < CIfIITs

This completes the proof of the first part. The second part follows from Lemma 10.2
and the weak-type estimate for Riesz potentials stated in Theorem 3.2.
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12. Sharpness and geometry

In this section we try to disentangle the condition imposed on 2 in the sense
that we try to rephrase it in a condition which is more easy to handle. We also
address the question of sharp conditions for the validity of our main theorem. It
is important to note, as mentioned before, that by using Lemma 3.5 and a simple
calculation, it follows that if  is an NTA-domain with parameters M, 7y, then
QeDomain(n, M,ry,1+1/(1—73)) where 8=83(M)>0 is the constant appearing in
Lemma 3.5. That is for any bounded NTA-domain there exist ¢>2, such that the
requirements of our main theorem are fulfilled.

In this section we assume for simplicity that diam(2)=1. If © is a bounded
NTA-domain with Green function G(x)=G(z,x0), d(zo, ) ~diam(l) we define
for all Q€S r<ro,

J(Q) r, Qa X0, Q)
A Q = 7 '
<Q,7", ,1’0,(]) J(Q,?",Q,%Q,IV
where as before,
1 G(z)

a 1/a

dx) ,
for a€[l,00). Let Wq denote the Whitney decomposition of Q. Let W;:={Q¢
Wq:1(Q)=277} where I(Q) denotes the sidelength of Q. For ¢>0 we introduce the

number,
L(Q):=) 2™ 3" G(x).

jz4 QeW;

J(Q7Taan07a)= (

|B(Q7 T)QQ| B(Q,r)N$2 d(.’L‘, aQ)

Take Q€0Q, Mr<rg, where M, vy are the NTA parameters of . According
to Theorem 2.1 there exists an NTA-domain Qg , with the same NTA-constant
as © and such that B(Q,r)NQCQgp . Furthermore, there exists zg »€8g » such
that d(zg,r, Q) ~d(zg,r, ONg,r)~r and zg,NB(Q, Mr)=0. Define O - in the
following way,

"€y, ifandonly if rz*+xg, €00,

Let Go,r(2)=Gg,r(z,zq,) be the Green function of Qg with pole at zg,. Let
furthermore G§, .()=G5 (2,75 ,.) be the Green function of (17, . with pole at
zgy .- Then with the notation introduced above we get using Lemma 3.3 and the
dilation invariance of the quantity A,

A(Q, T, Q, Zo, Q) ~ A(Qv T QQ,?": ZQ,rs q) ~ A(Q*a 1, QZ),T? xa,r, q)'
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Q5. is now an NTA-domain with diameter ~1, having the same NTA-parameter
M as Q. In particular we have,

Gorl(®:75,)

q 1/q Y
< I, (9 9,
d(xy aQ* ,’r) dm) ~ q( QJ‘)

A(Q" 1,2, 1) ~ ( i

(@ 1)NQy, .
‘We now make the following definition.

Definition 12.1. € is said to be selfsimilar of order ¢ if 2 is a bounded NTA-
domain and if there exists a constant C=C'(, ¢) such that for all Q€dQ, Mr<ry,
the following is valid,

Iq( ?2,7‘) S CI(I(Q>7

where QZ),T is defined above. We denote this class of domains by SF(q).

To say that Q€SF(q) is a way of quantifying that the geometry on the small
scale looks like the geometry on the global scale. To be more precise, the condition
is actually a condition on the localization property in the following sense. If we
may choose the localized domains, Qg ., as perfect copies of €2, then the condition
in Definition 12.1 is trivially fulfilled as we then essentially have §2f, .=€2. Through
the deductions made above we have proved the following theorem.

Theorem 12.1. Let QeR™ and QESF(q). Then the following is true. If
I,() <00, g>n/(n—1), then the conclusion of the Main Theorem is valid.

In other words, if Q€ SF(g) we are able to rephrase the reverse Holder inequality
condition in terms of a sum over Whitney cubes. To determine, for different values
of g, the finiteness of that sum you probably need to use a computer, something we
have not spent any time doing.

In the following we will need the following lemma, which may be deduced from
the results in Nystrom [21] in the same way as Theorem 7.2 was deduced.

Lemma 12.1. Let QeR™ be a bounded NTA-domain. Then there exists a
constant C=C(Q, q) such that if ueWy*(Q) then

( /Q uz) qu>1/qgc( /Q |Vu(x)|qu)1/q.

d(z,00)
Theorem 12.2. Let Q€R" be a bounded NTA-domain. Let I;(2)=oc0. Then
there exists f€L>(8Y) such that VG f¢L1(Q).
Proof. Let f be the characteristic function of QoCf, d(Qo,IN)~diam(2).

Suppose that I,(Q?)=oco and that GfeW9(Q2). As Q is regular for the Dirich-
let problem and as Q is an (g,8)-domain (i.e. an extension domain for Sobolev
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spaces [16]) we get by using the Spectral synthesis for Sobolev spaces (see Hed-
berg [12]) that Gf €W, ?(R). Using Lemma 12.1 we have

q
dz>Cly=o00.

Gf(z)
d(z,00)

oo>/ |Vu(z)lqdw20/
Q Q

We have reached a contradiction and the theorem is proved.

We may formulate the following corollary,

Corollary 12.1. Let QeR™, QeSF(q). Then the conclusion of the Main The-

orem is valid if and only if I,(2) < oo.

It is obvious that a domain like the snowflake domain fulfills the requirement

of Corollary 12.1. We may therefore conclude that the theorem for the snowflake
stated in the introduction is true.
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