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I
A theorem due to L. Fejes-Téth [2] states that if K, ..., K, are n non-overlapping

convex domains each of which arises from a given convex domain K by an area-preserving
affine transformation and H is a convex polygon having at most six sides which contains
them then A4 (H) = nh(K) where 4 (H) denotes the area of H and A (K) is the area of the
smallest polygon having at most six sides which can be circumseribed about K.
Restricting the domains K, ..., K,, to be congruent and similarly situated, C. A.
Rogers [4] obtains a similar result in which H is any convex domain covering Kj, ..., K,
and k(K) is replaced by d(K), the determinant of the closest lattice packing of K. Rogers’s

results depend on the following theorem:

THEOREM (Rogers). Let G be a plane, strictly convex, Jordan curve containing the
origin, O, of a cartesian coordinate system in its interior. Denote by G (P) the translate of G
which results from the translation which takes O into P. Let Py, Py, ..., P, =Py, P 4, ...,
P, ., be points which satisfy

(1) the polygon, Py P, ... P, is a Jordan polygon, 11, bounding a domain, i.e. a closed,
bounded, simply-connected set, T1*;

(2) the domains bounded by G(P,_;) and G(P,) have a common boundary point if
1<r<n;

(3) the points, Puyy, ..., Puom lie in II%;

(4) the domains bounded by G(P,) and G(P,) have no interior points in common if
l1<r<s<n+m. Then

A (I1%) 1

where A (I1*) is the area of 1T* and A(Q) is the critical determinant of G.

(*) This work has been carried out in part during the tenure of a National Research Council (Canada)
Overseas Fellowship. The author is indebted to the referee for his many helpful suggestions.
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Our main object in this paper is the proof of a more general theorem of which the
above is a special case.

We consider the set of points {(} (2, —%,), (¥, —¥,))} where (x;, ¥;) and (z,, y,) are
any two points in the domain bounded by @ and denote by I' the boundary of the set ob-
tained in this way. I is strictly convex, has O as a centre of symmetry and, defining I' (P)
in the same way as G(P) above, if G(P) and G(Q) bound domains which touch so do I' (P)
and I'(@) and conversely (see [4], p. 313).

Let ¢ be the Minkowski distance function defined by I' (see, for example, Bonnesen-
Fenchel [1], p. 21). Thus, for any two points, 4 and B, in the plane, u(4, B)=|A B |/|0R|
where |4 B| denotes the Euclidean distance between 4 and B and R is the point of I'
such that the vector O R has the same direction as 4 B. -

The condition that the domains bounded by I'(P) and I'(€) touch is equivalent to
w(P, Q) =2 while x (P, Q) > 2 is equivalent to their having no points in common. The same
conditions with respect to iI'(P) and 4I'(¢) are characterized by u(P, @) =1 and u(P,
Q) > 1 respectively where I is the set consisting of the mid-points of the segments joining
O to the points of I". It will be simpler to deal with 1I' and its translates. Indeed, if we
replace G by } @ in the above theorem 4 (I1*) and A (G) must each be multiplied by } and

the result is the same.

DEerFINITION 1. Let I1 be a Jordan polygon and E a finite set of points. We shall say
that the pair (11, E) is “weakly admissible” if the following conditions are satisfied.

(i) The vertices of I1 are contained in K.
(ii) E is contained in 11*, the domain whose boundary is 1I.
(iii) For any two points, P and Q, in H, if the segment PQ lies in * then u(P, Q) = 1.
In particular, if E consists merely of the vertices of II we shall say that Il is a “weakly
admissible polygon” when (I1, E) is a weakly admissible pair.
Our main result is the following:

TrEOREM 1. Let u be the Minkowsk: distance function defined by I' a convez, centrally
symmetric, Jordan curve and let (II, E) be a weakly admissible pair then
E 3
Fan-2U, XD oy, (L)
A 2
where 4 (11*) is the area of I1*, M (I1) is the u-length of Y, n is the number of points in E and
A is the critical determinant with respect to L'
The existence of inequalities of the type (I,) was suggested in a remark by H. Zassen-
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haus [6]. For the “star-shaped domain” [xy|<| it has been shown by N. E. Smith [5]
that
A
Vs

where N (II) is the perimeter of II measured by the norm-distance »((xy, ¥y), (%5, ¥,)) =
[(xz —Z1) (Yo — Y1) l &
We shall first prove that Theorem 1 is true for weakly admissible polygons. The

general case will then follow by induction on the number of points of E contained in the

TRILSE

interior of Il. The former case will occupy us for the greater part and it will be convenient

to distinguish it as

TreorEM 2. Let Il =P, P, ... P, P,,, where P, , =P, be a weakly admissible polygon,

then
F(I)= A(H*)+M+1>
A

The method we employ in the proof of Theorem 2 is by induction on » and is based
on the following observation. Let P, P, be a diagonal of II (i.e..P; and P, are not consecutive
and the open segment P;P; — P, — P, is contained in the interior, I1* — 11, of IT). Further
let u(P;, P;) =1. P,P,; divides II into two polygons, I1, and II,, which have, say, n, and
n, vertices respectively. The assumption that Theorem 2 holds for polygons with fewer
vertices than I1 yields F(IlI,) > n, and F(Il,) > n, since n, and n, are each less than .

Adding these inequalities and noting that
A(II}) + A(II3) = A(IT%),
MU, + M(ILy) =M A1) + 2u(P;, Pj) = M (1) + 2

and Ny + 0y =mn+2

+2=2n+2;

we obtain

A(H*)+M(H)+2
A 2
hence #(I1) = n.

Thus we would wish to show that if, in no weakly admissible polygon with n vertices
(n = 4), on which F takes the value F(II), is there a diagonal of u-length equal to 1, then
there exists a w. a. polygon, Il’, with » vertices such that F(II’) < F(II) and IT" does
contain such a diagonal. For it would then suffice to prove the Theorem for #» =3 and

when 7 > 4 for such polygons as contain a diagonal of unit u-length.
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The above objective would be realised if we could show that, (i) in the absence of
a diagonal of unit g-length in any polygon with n vertices on which F takes the value
F(I1) a local variation of the vertices of Il exists under which F(II) is decreased while II
remains weakly admissible; and (ii) F attains a minimum on the set of w. a. polygons
with n vertices.

The second requirement suggests that we adjoin to the class of w. a. polygons certain
limiting ones. Thus, if {P,,... P, P, |r=1,2,...} is a sequence of w. a. polygons and
lim P, =P;(:=1,2,...,n) we adjoin the polygon P, ... P, P; and prove it to be weakly

r—=>00

admissible.
Such a limiting polygon may contain singular vertices, such a vertex being one which is
contained in a side other than those of which it is an end point. In Figures 1a-1d we il-

lustrate examples of these.

A AN A A

Fig. 1.

Certain singular vertices (e.g. Figs. 1a, 1¢) lead to a decomposition of the polygon and
to an application of the inductional assumption in a similar way to that described when
a diagonal has y-length 1. Others (e.g. Figs. 15, 1d), however, present a new difficulty.
The variation of these or of the ends of the sides in which they lie is restricted in so far as
a neighbouring polygon may, in a sense, be self-overlapping (Fig. 2). To overcome this
difficulty we are led to enlarge the class of weakly admissible polygons still further to
include polygons of this type. It will be seen, however, that we are not obliged to allow the
angles, as we shall define them, in these polygons to exceed 2 7.

In the next section we shall give a precise definition of a class of polygons which meets
the requirements we have just outlined. Furthermore we shall show that these polygons
possess such properties as are necessary for the proof of Theorem 2 by the method de-

scribed.

Fig. 2.
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II

In what follows we shall regard the angle at a vertex of a triangle, say B in 4 BC, as
the intersection of the half-plane, p, which is bounded by the line through 4 and B and
which contains C and the half-plane, ¢, bounded by the line through C and B and con-
taining 4. If A" B'C" is the image of 4 BC under a barycentric, orientation-preserving
mapping, the angle at B’ is the intersection of half-planes which correspond to p and g,
i.e. the half-plane which is on the same side of 4’ B’ as p is of A B and that which is on the
same side of B'C" as q is of BC. If, in particular, 4’ B’(" is an improper triangle, i.e. one
in which two angles are zero and the third, say £ B’, is , the angle at B’ is well defined by
the mapping as one of the half-planes bounded by the line through 4’, B’ and ¢'.

By a vertex triangulation of a domain, K*, bounded by a convex Jordan polygon,
K, with » vertices we shall mean a set of n — 2 non-overlapping triangles which cover K*

and whose vertices are the vertices of K.

DEFINITION 2. We shall say that a closed polygon, 11, belongs to the class U, if it is
the image of a convex, Jordan polygon, K, with vertices Py, ..., P,, P, ., = P, under a single-
valued mapping, @, which is defined on K* and has the properties:

1) ® maps the triangles, T, ..., Tn_s, of a vertex triangulation of K* barycentrically
onto triangles which may be tmproper, i.e. with angles 0, 0 and 7;

2) @ is orientation preserving;

3) if Ty and T; (3 j) have a common vertex, say P,, then the angles at OP, in O T, and

c on interior points.
O T, have no comm terior ts

In addifion we define

(i) OP;(t=1,..., n) to be the vertices of II;
(i) LOP,, the angle in I1 at OP,, to be the sum of the angles at O P, in those triangles,
@ T, for which T, has P; as a vertex;
(iii) @P,0P,,, (1 =1, ..., n) to be the sides of I, and the u-perimeter of II to be

n

M(II) =121M(®Pi, OP, ).

(iv) 4 (I1*), the area associated with II, as the sum of the areas of the triangles O T,
(t=1,..,n~2).

We note in connection with (ii) that, as a consequence of the conditions of Defini-
tion 1, 0 < ZOP,<2xn(i =1, ...,n). Regarding (iil) we note that M (I1) depends only on



24 N. OLER

OP, ..., 0P, With (z,y) as coordinates in a cartesian system we can express 4 (II¥)

according to (iv) as

n—2 1
> = fwdy—ydx,
=12

eT;

the sense of each path of integration being such that the integrals are each non-negative.
Accordingly, in the sum, common sides of the triangles ® T, ..., @ T, _, are traversed back
and forth precisely once; thus

A (IT*) =%fxdy—ydx

and A (I1*) depends only on @ P, ..., ®OP,.

DEFINITION 3. We define the straight segment @ P,QP (i — 7| +1) to be a diagonal
of 11 if there exists a path, i, in K* whose end points are P, and P; and whose inner points
are inner points of K* such that © is a sense preserving mapping of A onto ®P,OP;.

We may assume that A is a simple polygonal path whose vertices are contained in the
common sides of those triangles in the vertex triangulation of K* associated with ® which
cover A. For if 4 and B are two points of A contained in the sides of such a triangle, say T,
the straight segment, 4 B, is mapped by @ onto the straight segment ® 4 ® B and we can
replace the section of 4 between 4 and B by 4 B. Indeed, this section is already 4 B if
T, is proper.

DEFINITION 4. 4 polygon in U is defined to be weakly admissible if its sides and dia-
gonals are each of u-length not less than 1. We shall denote the subclass of polygons in W with

this property by A(w).

TEEOREM 3. Let K=P,... P, Py, Pnia =P, be a convex Jordan polygon and © o
mapping of K* such that © K belongs to UAlu).

Let OP,0P; be a diagonal of O®K and K, and K, denote the polygons into which PP,
divides K. :

There exist mappings, ©, of K¥ and O, of K3, such that O, agrees with ©® on K, — P, P;
and @, K, is in Au); similarly for ©,.

Proof. Let n=4 and suppose that ® is barycentric on the triangles P, P,P; and
P,P,P,. If the diagonal ®P,0 P, is O P, O P, the restrictions of & to these triangles are the
mappings ®; and O, of the theorem. If @ P,0 P, is a diagonal, then u(®P,, OP,) =1 and
we may take ©, and @, to be the barycentric mappings of P,P,P, onto @ P,0P,0P, and
P,P,P, onto @P,0P,0 P, respectively.
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Let us assume that the theorem is true for polygons in (u) with m vertices, 4 <m <n.

There is no loss of generality in taking 7 <j and letting K, =P, ... P,P,P;,, ... P, P,
and K, =P,P;.,...P, ,P,P,.

We shall be concerned with those of the diagonals of K which are sides of the triangles
in the triangulation of K* associated with ® and shall refer to these as @-diagonals of K.

Let A be a polygonal path in K* such that @1 =@ P,;0.P;. To prove that O, exists we
examine A in relation to those ®-diagonals of K which have an end point amongst the
vertices of K,. We consider separately the case in which there exists a ®-diagonal both of
whose end points are vertices of K, and that in which there is no such ®-diagonal.

(a) Let PP, be a O-diagonal, i <r <s<7; i.e. P, and P, are both vertices of K,.
Further, let P.P P, be the triangle in the vertex triangulation of K* which has P, P, as a
side and lies in K'* where K'=P,... P, P, ... P,P,, We examine the possibility that 4
contains points in P, P, this is certainly the case if it contains points in K* — K’*, There
is & point, say 4, in P, P P, which is nearest along A to P, and a point, say B, in P,P P,
which is nearest to P,. Since @ maps 4 B onto a straight segment we can replace the sec-
tion of 4 between 4 and B by A B. The resulting path is one which coincides with P, P,
if ¢ =7 and j =s, for then 4 =P, and B =P,, or its interior points lie in the interior of
K'*, If A contains no points of P, P, its interior points lie in the interior of K'*. Thus we
can assume under all circumstances that either 4 coincides with P, P, or its interior points
lie in the interior of K'*. .

Let ® be the restriction of @ to K'*. Clearly ® K’ belongs to ¢. ©' K’ is in fact in U (u).
For a diagonal of &’ K’ is a diagonal of ® K and therefore of u-length not less than 1 while
the sides of ®' K’, being amongst those of ® K and in addition ® P,0 P, which is a diagonal
of ® K, have p-length not less than 1. Furthermore ®'P,0’P; is a diagonal of ®' K’ or a
side of ®’ K'. The latter is certainly the case if K’ has only three vertices for then r =1 and
s=n—1 and we must have i =7 and j=s. If @'P,0'P, is a side of &' K’ then 0" is the
mapping O, which we seek. If @' P,0’P, is a diagonal of @ K’, K’ has more than three
vertices and we apply the inductional assumption to &' K’ to obtain the existence of ©);.

(b) Suppose that there is no ®-diagonal of K both of whose end points are vertices
of K,.

We shall show that all of the points, ®P,,,, ..., ®P,_,, lie in one of the open half-
planes bounded by L, the straight line containing @ P, and @P; or in L itself.

It § —¢ =2 the above assertion is trivial. Let § —¢ > 2 and consider P,P,, where
t <7 <j — 1. The triangle in the vertex triangulation of K* with side P,P,,, is such that
its third vertex, say P,, is not in K,. It follows that, since inner points of 1 are by definition
in the interior of K*, 1 contains an inner point in each of P, P, and P, P;. Hence O P,0P;
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contains an inner point of ®P,0®P; and an inner point of OP, OP, If therefore, @P,
lies in L then ®P,0 P, lies in L and in particular @ P, lies in L and conversely. Similarly,
if ©P, lies in L so also does @ P, ;. Considering each of the sides of K, we see that if one
of the vertices ®P, 4, ..., ®P,_; lies in L so do they all and in addition L contains the
images of the vertices of K, which are end points of the ®-diagonals the other end points of
which are OP,,,, ..., OP, . If, on the other hand, ® P, does not lie in L then ® P, does not
lie in L; indeed @ P, lies in one of the open half-planes bounded by L and ® P, in the other.
Similarly, if L does not contain @ P, then @ P, , does not lie in L but in the openhalf-plane
bounded by L which does not contain ® P, namely the same one as contains ®@P,. Again
considering each of the sides of K, we see that if one of the vertices O P,,,, ..., OP,_, does
not lie in L they all lie in one of the open half-planes bounded by L while the other containg
the images of those vertices of K, which are end points of the @-diagonals with end points
0P, ...0P,,.

What we have just shown implies that amongst ®P,,,, ..., P, ; there is a vertex,
say OP,, at which the angle is not greater than z. For if ®P,,,, ..., ®P,_, all lie in one of
the open half-planes bounded by L it suffices to choose ®P, to be one which is furthest
from L.

Let us suppose that O P, 4, ..., ®P,_, alllie in L, then the angles, ZOP,,, ..., ZOP,
can have the values 0,7, or 277 and and we must show that they are not all 27. We choose
a direction in L according to which ®P; is to the right of @P,. Let @F,,,, be to the left
of @P, If L@P,,, were equal to 25 there would be a ©-diagonal with end point P,
say P,,,P,, such that @P, is to the left of @ P, ;. Thus ®P, 0P, would have no point in
common with @P;®P, which is not possible since P, P, contains points of 1. Hence if
OP,,, is to the left of @P, then ZOP,,, is equal to 0 or z. Let ©P,,, be to the right of
OP;andlet ZOP,,, =2x. Then there is a O-diagonal, say P, P, with P, , as an end point
such that @ P, is to the right of @P,,,. Since, moreover, ®P,,,OP, and O P,0P, have an
interior point in common, @ P, is to the left of ®P; and so OP,,, is distinct from OP,.
If ZOP,,,=2n there would be a @-diagonal, say P,,,P,, with P;,, as an end point such
that O P, is to the left of @ P,,,.Since, however, P, +2Pc contains a point of 1 between P; and
those points of 1in P, P, it follows that ® P, , ® P,cannot lie wholly to the left of @ P, , ® P,.
Hence ®P, is to the right of ®P,,, and ZOP,,, cannot be equal to 27. Thus under all
circumstances there is a vertex amongst OP,,,, ..., OP,_; say ®P,, such that ZOP, <z.

We fix our attention on P, and the union of those triangles in the vertex triangulation
of K* which have P, as a vertex. Let S, denote the polygon bounding the domain defined
in this way. Amongst the vertices of S, other than P,_;, P, and P, there is one, say P,
with the following property. The triangles, say P,P,P, and P,P,P,, in the vertex triangula-
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tion of K* which have P, P, as a common side are mapped by @ onto a quadrilateral no
angle of which exceeds sz. Thus, if ® P, does not lie in L, then no vertex of @S, lies in L
and we can choose ®P; to be that which is furthest from L. For then ® P,0 P,®P,0P,
lies in the strip bounded by the two lines parallel to L one of which contains © P, and the
other @ P,. If @ P, is contained in L then so are all of the vertices of ® S, and from amongst
those of S, other than P,_,, P, and P,,, we choose P, to be such that @ P,®P, is longest.

We shall show that @ P,0@P,0P,0 P, then has the desired property. Let P,P,P, be
on the same side of P,P; as P, and P,P,P, on the same side as P,. It suffices to show that
at least one of the angles at ® P, in OP,0P,0P, and ®P,OP,O P, is 0. Let ®P; be to the
right of ®P; as before and suppose that @ P, is to the right of @P,. We must show that
®P, is to the left of @ P, Were it otherwise then ® P, P, would be longer than ® P,0 P,
hence P, =P, ;. However, P,_, P, contains a point of 4 between P; and the points of 2
which P, P, contains. Hence ®P,_;@P, cannot lie to the right of @P,0P; Thus OP,
cannot be to the right of ® P, and the angle at @ P, in @ P,OP,O P, is 0. Similarly, if @ P,
is to the right of ®P; then the angle at O P, in OP,0P,0 P, is 0.

The angles in the quadrilateral ® P,@P,®P,® P, being each not greater than s, there
is an orientation preserving mapping which takes P,P,P; and P,P,P, barycentrically onto
®OP.0OP,0P, and OP,0P,0P, respectively. Thus we can retriangulate the domain
bounded by P,P,P,P, and modify ® accordingly. As a result the number of vertices of
8, is decreased. Repeating the process sufficiently many times P, ,P,,, becomes a ©-
diagonal and we again have the situation dealt with in (a).

By giving similar consideration to the vertices of K, as we have given to those of K,

we obtain the existence of ®, also.

CoroLLARY. Let K=P, ... P,Ppny1, Py,1=P; be a convex Jordan polygon and
O K a polygon in WU(u). Let A be a path in K* one of whose end points is P; and
the other an interior point, Q, of the side P;P;,1 (i=k4, j+ 1) while the inner points of
A are in the interior of K*. Furthermore, let @ A=Q P,.

There exists a mapping, ©,, which agrees with @ on P;Py.1 ... P;_1 P; such that
Oy (P;Pisy ... Py PPy is in W(u) provided that j+i+1; also a mapping, ©,, exists
which agrees with @ on Pi.1Pi.e ... Pi_1P; such that @y (P;Pj 1 Pris ... Py Py) is in
W (u) provided that j+1==i-1.

Proof. In the vertex triangulation of K* associated with ® let the other sides of the
triangle with one side P,P,,; be P,P, and P, P,. The path, 1, contains a point, say 4,
in one of these two sides. Substituting for the section of A between 4 and @ by 4P, we get
a path with end points P; and P; which is mapped by ® onto @ P,0P;. Thus, if j=+¢ +1,
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®P,0P, is a diagonal and applying the theorem we obtain the existence of ®;. Similarly,
substituting AP, ; for the section of 1 between 4 and @ we find that OP,0P,, is a
diagonal provided § + 1= ¢ — 1. Again applying the theorem we obtain the existence of
©,, which proves the corollary.

We shall say that ® P; is an inner point of @ P,0 P, (¢ % j, § + 1) when, as in the above
corollary, there exists a path, A, whose end points are P; and an inner point of P,P, ,,
whose remaining points are in the interior of K* and which is mapped by ® onto the single
point, @ P,

We next prove that certain sequences of polygons in (x) have a limit which is again

a polygon in A(u). Thus

TEEOREM 4. Let K=P,...P,P, , P,,, =P, be a convex Jordan polygon and C a
vertex triangulation of K*, the domain bounded by K.
Let 0y, Oy, ... be a sequence of mappings of K* such that

(i) O,K isin (u), r=1,2,...;
(i) The vertex iriangulation of K* associated with @, is £, r=1,2,...;
({ii) im O, P, exists fori=1,2, ..., n
T—=>c0

The mapping, @, of K* which takes P, onto im®, P, i =1, ..., n, and is barycentric on

r—>00

the triangles of L is such that p K belongs to A(u). ,
Proof. Let P, P,P,, be a triangle in £ and in a cartesian coordinate system let

Ty Yy 1
!Pu:Pwa[= Ty Yol

Ty Yuw 1

where (2, ¥,), (z,, ¥,) and (x,,y,) are coordinates of P,, P, and P, respectlvely That
O,(r=1, 2, ...) preserves the orientation of P, P, P, is equivalent to

I-Pua PwaI * ]®7Pw ®er> ®1Pw] =0
But
lim |®,P,, ©,P,, ©,P,| =|lim@,P,, lim®,P,, lim®,P,| = 9Py, ¢ P, oP,|.

Hence [Py, Py, Pyl - |@Py, Py 9P, =0

and @ preserves the orientation of P, P, P,,.
We next prove that

wleP, P )21 (1=1,...,n)
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and WP, pP) =1

whenever p.P;¢ P, is a diagonal.
Since
p(@Py, 9Piyy) = p(lim 6,P;, im O,P, ) =lim 4(0,P,, 0P, ;)
T->00 T—>00 T—=>0o0

and u(0,P;, 0P, ;) >1 (r=1,2,...) it follows that u(pP;, pP;,,) = 1.

Suppose that ¢P,pP,; is a diagonal, the image under ¢ of a polygonal path, say
A=Qp@ ... Q:Q,,, where @y =P, @, ., =P;and @,, ..., §, are interior points of g-diagonals,
Py Py ..., Py Py respectively. In order to show that u(pP, ¢P,)>1 we consider the

sequence 0,4, 0,4, ... . Since
1im®,Q, =¢@,(h=0,1,...5 s +1)
T—=>00

it follows that
1im 10(0, Qs ©,@s12) = (P @, PPasa) (b =0, 1, .. 5).

Recalling that, by definition, ¢ preserves the sense of 1 in mapping it onto (pP,-anj we
have that

o P, pPj)= hzo’u (9 @n ¢ @ri1)= hH_ZO rl_l)lg (0, @y, ©,Cn,1)= TI_I)I:: hzo,u (0, Qn O, @rir-

That u(pP, pP,;) > 1 will follow therefore if we can show that, for each r, M (0,4) =

hzoﬂ (®1Qha GrQh.;_l) =1.

In order to do so we consider the set, A, of all the polygonal paths with end points
P; and P; which have vertices which correspond to those of 1 and which lie in the closed
segments P Py, ..., P, P;. Considering the images of these paths under ©,, the set, A,
as defined, being closed, it contains a path, say 1=0,9Q; ... @.Q,,,, such that M (0,]) is
a minimum. It suffices to show that M (0,1) > 1.

Let , 0 <t <s+1, be the smallest index for which @, =P, or @, =Py, say @, =P,
where Q. =Py ,, =P, If t =1 then ©,1 contains @,P,0,P,,. Noting that P,P P, is a
triangle in the vertex triangulation, C, it follows that @,P;0,P; is either a side or a
diagonal of @, K and therefore has u-length not less than 1. Hence M (0, 1) > 1. Suppose
that ¢ > 1. If for some u, 0 <u <t¢, £/0,Q,_,0,9,0,0,,, is different from 7, then @, being
an interior point of P, P; we can vary it along P P, in such a way that 1(©,Q,_,,
0,Q,) +u(0,Q,,0,Q,,,) is decreased. Indeed we obtain thereby a path,say 1’ in A such
that M (©,1') < M (0,7) which is a contradiction. Hence, £0,Q,_,0,0,0,Q,,, =7 (0 <u<t)
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implying that ©,P,0,P,, is a diagonal with P;Q; ... @, P, as antecedent or ©,P,0,P,,
is a side of O, K. In either case u(9,P;, ®,P,) >1. Hence M (0,1) >1.

It follows that, in particular, the sides of the triangles of £ are mapped by ¢ onto
segments of p-length not less than 1. Thus the images under @ of these triangles have
distinct vertices and the angles at these vertices are therefore well defined.

It remains for us to show that if 7' i and 7', are a pair of triangles in £ which have P,
as a common vertex then the angles at ¢ P; in ¢ T; and ¢ T, have no common interior
point. Let us suppose, on the contrary, that 4 is such a common interior point. There
exists r; such that, if r >r;, 4 is an inner point of the angle at ®,P, in O, Ti1 and r, such
that, if » > r,, A is an inner point of the angle at ©,P; in G),Tiz. Thus, if r > max (ry, 7,),
4 is an inner point of the angles at ®,P, in both ©, 7, and ©,T,, which contradicts the
hypothesis that ®, K is in U(u). Hence the angles at ¢ P, in @T, and ¢T,, have no inner
points in common. We have therefore shown that ¢ K satisfies the conditions necessary
for it to belong to A(u). '

In addition to the above we shall have need of

THEOREM 5. Let K=P,...P,P, ,, P, ., =P, be a convex Jordan polygon and @ K
a polygon in WA(w). If no vertex of ® K is an interior point of a side there exists a mapping,
®’, of K* which agrees with @ on K, 0’ K is in A(u) and O maps the triangles in the vertex
triangulation of K* associated with it onto proper triangles.

Proof. If ® maps the triangles in the vertex triangulation of K* associated with it
onto proper triangles the theorem is true with ®’ =® throughout K*.

Let m (@) denote the number of triangles which ® maps onto improper triangles and
suppose m (@) >0. It suffices to show that a mapping, ¢, of K* exists which agrees with
® on K, such that ¢ K is in A (x) and m(p) <m(O).

Let P,P,P, be a triangle which ® maps onto an improper triangle the angle, say at
© P, being equal to . We can assume without loss of generality that r < s. Since, according
to our hypothesis, P, P, cannot be a side of K let P, P, P, be the other triangle with P P,
as a side. We note that » <u <s if we assume, as we may, that ¢t <r or ¢ >s.

The triangle @ (P,P,P,) can be distinguished according to whether

(1) O (P, P, P,) is a proper triangle,
(2) ®(P,P,P,) is improper and the angle at ® P, is 0,
or (3) ©(P,P,P,) is improper and the angle at @ P, is 7.

If (1) is the case we define ¢ as a mapping which agrees with ® on K and on those
triangies associated with ® other than P,P.P, and PP, P, while it maps P,P,P, and
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P,P, P, barycentrically. Indeed ¢ maps these onto proper triangles and we have m(p) =
m () — 1, while p K is clearly in U(u).

If & (PP, P} is as in (2) the angle at either @ P, or @ P, is 0, say at @ P,. Let us write ¢,
for s, r, for r and s, for u. The triangle, P, P, P, , is mapped by O onto an improper triangle
in which the angle at @Pt1 is 7. In particular 0 <s, —r, <s —r. If O (P,P,P,) is as in (3)
we replace ® by 0, where O, is defined in the same way as @ in the preceding paragraph,
although in this case m(0),) = m(0). However, we may replace ® by ©; in the proof of the
theorem. In one of the triangles O, (P, P, P,) and ©,(P,P,P,) the angle at ®,P, is equal
to 7z and in the other 0. We choose the one in which it is 7, say in O, (P, P,P,). Writing ¢,
for ¢, ry for r and s, for w, the triangle P, P, P, is mapped by 6, onto an improper triangle
in which the angle at @, P, is 7. Furthermore, 0 <s; —7, <s —7.

In either of the cases (2) and (3) we apply the same argument to P,lPslPt1 as we have
done to P,P.P,. Either the other triangle with side P,lPS1 is as in (1) and we obtain the
mapping ¢ or we are led to a triangle P,2P32Pt2 which is obtained in the same manner as
P, P, P, . Continuing in this way either we come to the mapping ¢ with m () =m(®) —1
or to a sequence of triangles P’1P51Pt1’ P,zPsthZ, ... each of which is obtained in the
same way as PHP%Pﬁ' But since s; —r; > 8 —ry> -+, for some k, ©P, is the interior

point of a side, namely @ P, OP,

5> Which contradicts the hypothesis.

III

We return now to the proof of Theorem 2 and in order to establish (I;) we first prove

Lemmal. If T, a triangle in U(u) with vertices P, Q, R has a pair of sides of y-length
greater than 1 there exists a triangle T' in UA(u) such that F(T')y < F(T).

Proof. If T is an improper triangle with, say, ZP =m, u(Q, R) > 2 and if, say, u(P,
R)>1 a point R’ in P R such that 1 < u (P, R') <u(P, R) satisfies F(PQR') < F(T).

Suppose that 7' is a proper triangle and let u (P, @) > 1 and u(P, R) > 1. Since P lies
outside I' (@) and I' (R) (see Fig. 3) there exists a neighbourhood of P with the same property
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Fig. 4.

and in particular a point, P’, such that QZ—P7= A@F (0 <A <1). Let 7" be the triangle with
vertices P’, Q, R. We have A (T'*) < A (T*) and since u(P’', B) S u(P’, P) +u(P, R)

(P, B) +u(P', Q) Spu(P', P)+u(P', Q) +u(P, R)
and M(TY< M(T).
Hence F(TY< F(T).

It suffices therefore to prove (I,) for a triangle having at most one side of u-length
greater than 1.

In the triangle, 7', with vertices P, @ and R let u(P, Q) =u(P, R) =1 and u (@, B) > 1.

We choose a coordinate system in the following manner. With P as origin let the y-
axis be the line through P parallel to and having the same sense as R¢). This meets I'(P)
at 8§ and &', say. As z-axis we choose the line through P parallel to the tangent () to
I'(P) at S and having that sense by which the z-coordinate of ¢, hence also of R, is non-
negative.

Since ¢ (@, R) =1, QR >PS and since @ and E lie on I'(P) they lie on opposite sides
of the z-axis.

Let (z,%,) and (z, y,) be the coordinates of @ and R respectively. We have z >0,
¥, >0 and y, <0. Referring to Fig. 4,

in § 1
F(T @) =55 20— 9)+3, 6 -9 +2.

Differentiating twice with respect to x:

" sin 0 v P 1 .. .
F (%)=~§—A—[9€(y1 ~y2 )+ 2y —y2)] + 57‘?(91 —Y2)-

() We shall assume throughout that I' is twice differentiable.
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Since y; >0, 1 <0 and " <0 while y, < 0 implies that g5 > 0 and y," > 0. It follows that
F”(x) <0. Thus, either 4 (@, R) =2, u(Q, R) =1 or there exists 7" such that F(T") < F(T).

It is sufficient therefore to consider the cases: u(Q, R) =2and (@, R) =1.If u(Q, R) =
2 then F(T) =3 and (I,) is satisfied with equality. In the case u(Q, R) =1, (I,) is a conse-
quence of the fact (see Mahler [3], p. 693) that if P, Q and R are such that PQ, PR and QR
each have y-length 1 the lattice generated by ﬁa and éﬁ is admissible. For this implies
that 4 (7') in this case is not less than L A. Hence

1
F(T)>é+g+l:3.

A
This completes the proof of (I,).

We shall complete the proof of Theorem 2 by means of induction on =. This will be
based on

Lemma 2. Let K be a convex Jordan polygon with vertices Py, ..., P, and @K =11 be
a polygon in W(u). Either

(i) II has a vertex which is an interior point of a side,

(i) II has a diagonal of p-length 1
or (iii) there exists a polygon, T1', in W(u) with n vertices such that F(I1') < F(II) or I’
has property (i) or (ii) and F(I1') = F (II).

In proving this lemma we shall repeatedly apply

LevMMmaA 3. Let 1 =OP,0P,...0P,0P, be a polygon in N(u) whose diagonals each
have p-length greater than 1 and which has no vertex an interior point of a side. If it is possible
to vary the vertices of 11 in such a way that I1 remains in A and its sides remain of u-length
not less than 1 then a sufficiently small such variation exists under which I1 remains in UA(p).

Proof. Let us suppose that the lemma, is false. There exists a sequence of polygons with
IT as limit none of which is in a(u). Since, however, each of these, by hypothesis, is in U
and has sides of y-length not less than 1 there must be in each a diagonal of y-length less
than 1. There is therefore a subsequence in which these diagonals are the images of paths
in K* all of which have the same end points, say P, and P,. Let these paths be 4, 4,, ....
Recalling that each such path is polygonal with vertices lying in the diagonals of K there
exists' a subsequence 4;(), 4;(s), ... wWith corresponding vertices which occur in the same
diagonals of K. The limit of the sequence ;) 4;(y), ... is a path, A, which is mapped by

® onto @P,OP,. Furthermore since the images of 4;,, A;(s), --- €ach have p-length less
3 — 60173047, Acta mathematica, 105. Imprimé le 20 mars 1961



34 N. OLER

8Pz Pz

8P 8Piy

than 1 it follows that u(®P,, OP,) < 1. Either the inner points of A lie in the interior of
K* or certain of the vertices of A coincide with vertices of K.

In the former case it follows that OP,®P, is a diagonal. Since, however, (0P,
O P,) <1 this is a contradiction.

In the latter case either there is a section of A which is a path with end points which
are distinet vertices of K and inner points which are in the interior of K* this leading to
the same contradiction as before or 4 lies entirely in K. In this last case since P, and P,
are not consecutive A consists of at least two consecutive sides of K. This implies that two
or more sides of II have y-lengths the sum of which is less than or equal to 1 and hence
there is a side of II whose u-length is less than 1 which is again a contradiction.

Proof of Lemma 2. We shall assume that II has neither property (i) nor (ii) and show
that this implies (iii).

1. In virtue of Theorem 5 the negation of (i) allows us to assume that ® maps the
triangles associated with it onto proper triangles; in particular that ZOP,>0(: =1, ..., n).

2. If ZOP,<m we can assume that ZOP,, <2z and ZOP, ; <2x. For suppose
that ZOP,., =27 (the argument for ZOP,_, is the same). If

M(®Pi+2: OP,,) >M(®Pi: OP;,,)

we may, in virtue of Lemma 3, vary ©®P,, along u(®P,;, OP, )['(®P,) so as to decrease
ZOP,., (see Fig. 5). Since u(@P,, OP, )T (OP) lies inside u(OP,, OP, )T (OP,,,)
this variation decreases u(®P;.,, OP,,), hence also M (II). Since, moreover, A4 (II*)

is decreased this variation results in a decrease in F(II).
Let #(OP 5, 0P, 1) =u(@P;, OP,,).

We may vary QP along u(®P,, OP, )['(OP,) so as to increase LOP, This leaves
F (I1) unchanged but continuing to vary ® P, in this way leads either to a polygon which

satisfies (i) or (ii) or to one in which the number of angles in II which are less than = is
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decreased. Thus, if ZOP,,, <2n — LOP, we can decrease ZOP,,, to 0 if necessary while
Z@P, remains less than 27 and if ZOP,,,>2x— /OP, we can increase ZOP; ton
without ZOP,,, becoming less than 7.

We must observe that in the course of such a continued variation if at some stage II
is no longer in A(y) there is an earlier point at which IT is in (u) and has property (i) or
(ii). To show this we denote the amount by which /@ P, is increased by ¢ and consider IT
as a function II(¢) of ¢. If there are values of ¢, in the range considered, at which II is not
in Au) let ¢, be the g.1.b. of these. Since Lemma 3 is applicable to IT = IT(0) it follows that
ty=+ 0. We can therefore find an increasing sequence {¢;} such that {II(#;)} converges to
IT (). Furthermore, each polygon in this sequence being in A(u), it follows from Theorem 4
that I1(f,) is in U(u). If, however, I (¢,) had neither property (i) nor (ii) we could apply
Lemma 3 to contradict the fact that #, is the g.l.b. of values of ¢ for which II (#) is not in
A(w). Hence T1 (£,) has property (i) or (ii).

Let #(OP, 5, OP, 1) <u(@P, OF,,).

If ZOP;,,<2n we can decrease F(II) by varying @P,, along u(OP,,,, OP, )T (OP,,)
so as to decrease /OP, If LOP,,=2x we can move OP, 0P, along OP,0P, .,
without changing F(I1) until ® P,, coincides with @ P; or (iii) is satisfied. If at some stage
in this variation a polygon is obtained which is not in 9 (u) there must be one which is
obtained earlier which satisfies (i) or (ii). This follows by the argument of the preceding
case in which we now take the parameter, ¢, to be the amount by which u(@P;, ®P,,,)
is decreased. Finally, if @P,,, coincides with @P; then u(@P, ,, OP, ) =u(@OP, QP ;)
and this we have already considered.

Thus, the assumption, ZOP,,; =25 when ZOP,<m, leads either to a decrease in
F (I}, to a polygon satisfying (i) or (ii) or to a decrease in the number of angles in II which
are less than . Hence we can agsume that an angle in II which is less than 7 is preceded and
followed by angles which are each less than 2.

3. There are amongst the triangles in the vertex triangulation of K at least two having
two sides which are sides of K, since there are » sides of K and n — 2 triangles. Let @P,_,
OP,OP;,; be the image of one of these. According to § 1 of this proof we may assume
ZOP,>0.

If both u(®P,_,, ®P,) and u(OP,, OP,,,) are greater than 1 the method of Lemma 1
enables us to decrease F(II) while, according to Lemma 3, IT remains in H(u). We may
assume therefore that at least one of 4 (®P,_,, ®P,) and u(OP,, OP,,,) is equal to 1. Let
u@P, 0P, ;) =1

We distinguish two cases according as ZOP,,, <mor LOP,, >m.
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4. Let /ZQ@P, , <m. According to § 2 we can thus assume that ZOP, , <2x and,
since ZOP, <, that ZOP,_; < 2z. This enables us to vary ®P; and O P, locally while
IT remains in . If, furthermore, the sides of Il remain not less than 1 in gy-length the nega-
tion of (ii) in addition allows us to apply Lemma 3 to ensure that IT remains in U(u).

I u®P, ,0P)>1 and p(OP,,, OP,,) >1 we can decrease F(II) as follows: we
move O P, along @P, 0P, towards @P,_, and @ P, , varies in such a way as to preserve
the vector W:l The change in A4 (IT*) is equal to the change in 4 (®Sf,,) which is
equal to the change in the area of the quadrilateral @P,_ O P,0P, OP, , The change in
M (I1)is equal tothatin u (@P,_;, OP,) +u(@P;.1, OP,,). InFig6a LOP; + LOP,,, >mu;
in Fig. 6b LOP, + ZOP,,, <z. In both cases

u(OP; ,,0'P)+u(@P,,,, ®Pi+2)
<Sp@P,_;,0'P) Tu(OP; 4, OP,,) +u(©P; 4, 0P,
=u(OP, ;,0P)+u(OP,,, OP,,)

That the area of the quadrilateral is decreased is clear in Fig. 6a while in Fig. 6b it is
made evident by placing the new quadrilateral onto the original with ®'P; on ®.P; and
O'P.; on OP;,;.

We shall therefore assume that y (@ P,_;, ®P)), say, is equal to 1 and show next that
if u(®P,,,OP,,,)>1 we can again decrease F(1I).

Let®P, 0P, ,lieoutside " (O P}). By moving ® P, towards ® P, ,along® P, ,OP, .,

we increase u(®P;, ®P, ) which therefore remains not less than 1. However,
p(OPF;, ®Pi+l) Tu@P, 4, 0P,.,)
is decreased. For if X is a point between ®P,,, and OP, , we have
uOP, X)<pu(@OP, 0P, ) +u(@®P,,, X),

hence
n@OP, X)+u(X, OP, ;) <u(®P, OP ) tu(OP,,, OP,,).
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Also, the area of the quadrilateral is decreased. Thus we can decrease F (I1). So we shall
assume that I'(®P)) intersects OP; 0P, , or OP, 0P, , produced beyond ®P,,, and
shall show that F(II) can be decreased by a variation of both @ P, and ® P, ; under which
w(@OP,_ ), 0P) and u(OP;, ®P, ) remain equal to 1.

We choose a coordinate system as follows. With origin at ® P,_, we take as z-axis the
line parallel to W; and as y-axis the line which is parallel to the tangents to
I'(®P,_,) at the points where the z-axis cuts T'(©P,_,). Let 4 and B be points of ['(@P,_,)
such that ®P, ;A = @Pi(DP,-:l and ‘G)Pi_laﬁ =0P,0P,,, (see Fig. 7) and let the coordinates
of OP,,;, A and B be (x, k), (z;, y;) and (z,, y,) respectively. We may so direct the y-axis
that k > 0. We observe that

Xy =X } 1)
Yo~y =k

Under these constraints and requiring also that A4 and B lie on I'(®P,_,) it follows
that 2,, y,, z, and y, are dependent on z so that F(II) is also:
F(II) =« +/3xi+'y(x1y2 — T3Y1)>

where o and f§ are constants and 4 is a positive constant.
Using (1) we find that

dF I ’ z ! ’ y
7z B Tr iz e — i —zyl (i —pe)
L2F 291y | (y1)?ys , (ya)2ys’ .
a’nd Ty . T T T, 7 + 7 7 X, — & — - + — 7= XX 2 -
v da? vi—vs (g — o) (2~ ) y1 — (y1 — ¥2)] (Wi — o) (@2 =) y2— (y2 — ¥1)]

where y; and y;” denote dy,/dx, and d2y;/d a? vespectively (i=1, 2).
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In order to determine the sign of d2F/da? we need to know in particular the signs of
the expressions in square brackets. Since similar expressions will occur again it is con-
venient for us to formulate the following simple rule.

Let P be a point on a centrally symmetric closed convex curve and let  be a point
distinet from P which is either on the curve or in its interior. With a coordinate system as
in Fig. 7 (i.e. with centre the origin and y-axis parallel to the tangents to the curve at its
points of intersection with the z-axis) let P = (&, 9) and @ = (a, b). Write %" = d#/d&. Then

7 >0 implies (§ —a)y —(n —b) <0 } @)

7 <0 implies (£ —a)n’ —(n —0)>0.
To show that this is so let ' = 0 and (&, b) be the point at which the tangent to the
curve at (£, %) intersects the line through (a, ) which is parallel to the z-axis. We have

b—
f=g+—1

’

Let > 0.

If ' >0 then &, <a, hence £ —a + (b —7)/5’ <0 and (§ ~a)y’ — (n —b) <0

If 7' <0 then &, >a, hence £ —a + (b —n)/n" >0 and (¢ —a)y’ — (n —b) <O0.

If ' =0 then % is an absolute maximum and — (n —b) <O0.

Thus if >0 then (£ —a)y’ — (n —b) <0 and by similar argument we find that <0
implies (§ —a)n’ —(n —b) > 0.

Returning to the expression for d2¥/dx? we note that y, >0 since ZOP,,; <z, and
since ' (®P)) intersects O P, O P, , or OP; 0P, , produced beyond P, , it follows that
¥z > 0.

Let y, > 0. Since y; <y, and /OP; <n it follows that y; <0. Thus

yi—y2<0 and —2yiy;/(y1 —y2) <O.
Applying the above rule we find
[, — 25)y1 — (1 —y)1<0 and [(z,—=y) ¥z — (2 — 1)1 <0.

Since furthermore, y;” and ys are each negative it follows that d2F /dx? <0,

Let y, <0. Since ZOP, <z we have y;>y;>0. Thus y; —y2>0 and
—2y19s/ (Y1 — Y2) <0. Also, y; <0 and [(z; —%,)y1 — (1 —¥)] >0 while y;' >0 and
[(@2 — #;)y2 — (%2 — 1)1 < 0. Again d*F/daz? <0.

For y, in the neighbourhood of zero we see that

ar dF

. wr_ l. i _ /.
y:}lgli dx y,lg)l— d x /3 + y (xl xz) y2
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In that F is defined on an open set of values of « we can choose dx with either sign and in
virtue of the above with such sign that F(II) can always be decreased.

Let us assume, therefore, that u (0P, ;, @P, ) =1 also and consider the change in
F(I1) resulting from a variation of ®P; and @P,,, under which u(0@P,_,, OP)), u(®OPF,,
OP,,,) and u(OP,,, OP, ,) each remain equal to 1.

We choose a coordinate system as follows. With origin at ®P,_, we take the z-axis
to have its positive half contain ®P,,, and the y-axis to be parallel to the tangents to
I'(®P;_,) at the points where the x-axis cuts ['(@P,_,). Let 4 and B be points on '(OP,_,)
such that @gP,__lZ =W:1 and @Pi_lﬁ =@P,,0P,,, and let the coordinates of
A, B, OP;and OP, be (x;, y1), (s, ¥s), (@, y) and (r, 0) respectively (see Fig. 8).

We note that ®P; and @P,,; cannot lie on opposite sides of the x-axis. Otherwise
®P,OP,,, would intersect the z-axis to the left of @2, ; or to the right of OP,,,. In the
first case we would find that ®@P,_; lies inside the triangle @ P,0P, ,OP,., hence also
inside I' (O P, ,,) implying that u (®P,,,, OP, ;) <1. Recalling, however, that we chose P;

for which P, ,P,P,,, is a triangle in the vertex triangulation associated with @ it follows
that O P, ;@ P, , is a diagonal and therefore u (P, ,,, @P,_,) = 1. Thus the first possibility
is ruled out. As to the second, we would find in that case that @ P, , lies inside the triangle
®OP, ,0P,0P,, . This is ruled out by condition 3 of Definition 2 when we again recall that
P, PP, is a triangle in the vertex triangulation associated with ®. Under the circum-
stances we can choose the direction of the y-axis to be such that @ P; and ©P,,, both lie

in the upper half-plane. Thus, in particular, ¥ > 0.
We observe that Xy =X —7, 1 3)
Y2~ 4=y |
We can express F (II) as
F(I) = o+ Blir +z)y + (r —2)y,),

where « and f are constants and §, in particular, is positive. Subject to (3) and the restric-
tion of 4, B and ® P, to lie on I'(®P,_,) we can regard F (II) as a function of  only. Using
yi and ;" as before and 3’ and y” to denote dy/dx and d2y/d=? respectively we

. 1dF R gy
find SeT . -
in pz Uty —n -yt —

1d2F s e , N
and f}d—x;=2(y — )@ —y) Wa—y)  H{y+(r+x)ys— @+ 2) yi) (v —y1) 'y
~ [y — ) y2— (o~ )1 (¥ — 4202 (g2 —y1) 0’

-3 77

~ [y — ) y1— (1 — 9] (' —y1)2 (yz—y1) 92
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It suffices to assume that y, > 0, that is that ZOP,+ /OP, ,0P, 0P, > x for other-
wise ZOP, ,+ /0P, 0P, ,0P,,, >x and we can interchange the roles of ®P,_, and
OP,,, taking the latter as origin and so on.

We observe that 4 (®P, ,, OP,,,) > 1. Otherwise ® P, @ P, , would not be a diagonal
and there would necessarily be a ®-diagonal with P, as an end point the image of whose
other end point, say O P,, lies inside the quadrilateral ®P,_ @P,0P, 0P, ,. Recalling
condition 3 of Definition 2 and the fact that P, ; P,P,,, is a triangle in the vertex triangula-
tion associated with ® we observe that @ P must in fact liein the triangle @ P, ,0OP, 0P, ,.
Amongst such vertices as @ P, there is one, say OP,, for which ZOP,0P, 0P, , is a
minimum. It follows that ® P,® P, , is a diagonal but, since O P, ,OP, ,0P,  lies inside
I'OP,,), n(OP, OP,,,) <1 which is a contradiction. Thus u(®P,_,, ®P,,,) > 1, implying

r>max (|z|, |z,], |2s]).

Since, therefore, x, — 2 =z, — 7 <0 we have & > x, from which it follows that y; >y’
Furthermore, since ZOP; <z, we have y’ > y1. Hence (y' — y1) (¥’ — y2)(y2 —y1) "> <O0.

For y, >0 according to the rule stated earlier [(x; — 2,)y1 — (¥; — ¥,)] <O and since
y2' <0 it follows that — [(@, — 2,)y1 — (¥, — ¥2)] (¢ —y1)2(yz — y7) °ys <O0.

Since y,>0 we have [(x, — 2;)ys — (¥, — ;)] <0 and since y; <0 it follows that
—[(@2 = 21)y2 — (W2 — y0)](¥' —y2)* (2 — 1)y’ <0.

Since (2, —@;)Ys — (¥, —4,) <0, y-+(r —x)y2>0; therefore y -+ (r +2)ys — (x +
@)yt > (@ + ;) (Ya —y1) = (r + 2,) (y5 —¥1) >0 and since y” <O it follows that {y + (r +
)Yz — (@ +@)yi} (¥ —y) Ty <0.

Thus, for y, >0 we have shown that d2F/d22 <0. For y, in the neighbourhood of 0

we observe that

. dy . dy ,
lim =2 = lim =2 =y;— 4 >0.
y,—Pli dx zl,gf)l— dx Y27y

Also dF|dx exists:

. dF . dF ,
B S g TR Ty

7
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Fig. 9.

We can therefore adjoin to the values of x for which y, = 0 those corresponding to y, in the
neighbourhood of 0. The result is an open set and from what we have shown it follows that
F(II) can always be decreased by choosing dx with suitable sign.

5. There remains for us to consider the ease in which ZOP; <z, u(OP,, OP, ;) =1
and LOP, >x.

We consider the variation in F(II) which results from varying @P; and OP,, in
such a way that u(OP, ,,0P,), u(OP, ®P,,,) and u (0P, ,, OP, ,) remain constant.

We choose the following coordinate system. With origin at ®P,_; we take the z-axis
to contain @ P, , in its positive half and the y-axis to be parallel to the tangents to ' (@ P,_,)
at the points where the z-axis cuts I'(©@P,;_;). Let A4 and B be points such that G—P:Z =
OP, 0P, , and OP,_,B=0P, 0P, (see Fig. 9) and let the coordinates of O P, 4, B
and OP,,, be (z, y), (%1, ¥1), (s, ¥s) and (r, 0) respectively. Then

xz—,—xl=x——r} 3)
Yo" =Y.

We can write
F(II) =+ {ry — (@52 — %a91)} = o + f{(x ~22)y — (@1 — )91},
where o and § are constants and g, in particular, is positive.

Choosing #, as independent variable we find that

1dF , Y2 — Y1 ,
s =[(x—x)y — (y— = =y —25) y1 — (y, — ¥s) -
Bz [( DY — (Y yz)]y — [(1 2) Y1 — (Y1 — ¥a)]

Since u(@P;_;, ®P,) >1 and x(OP,_,, A) > 1 while u(@P,_,, B) =1 we can determine
the sign of each of the square brackets by applying the rule established earlier to u (©P,_;,

OP)I'(OP,_,) and u(OP,_,, A)T(@OP,_,).
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We observe first that y, > 0, i.e. that ® P, lies above ®P, . This is a consequence of
the conditions that 0 < Z@P; <z and LOP,,, >n. For when OP, lies above the z-axis,
®P,,, must lie in the angle which is the intersection of the half plane containing ®P, ,
and bounded by the line through ®P; and ®P,_, and the half plane containing @P; ,
which is bounded by the line through ®P; and ©P, ,. When ®P, lies on the z-axis
OP;,; must lie below it since 0 < ZO P, <n. When O P; lies below the z-axis the
conditions, 0 < ZOP; <x and Z@OP,,, >x require that ®P,_, lie in the angle which is
the intersection of the half plane not containing ® P, , which is bounded by the line through
®OP,_, and OP,; and the half plane not containing @P,_; which is bounded by the line
through @P; and OP,,.

Let o, 6,, 0,and 7 denote £ OP,0OP;_1 X, L AOP;_1X, /. BOP;_; X and ZOP:BP;..X
respectively where X is any point on the z-axis to the right of ®P; .

(a) Let y, > 0 then [(z; — 2,)y1 — (¥; — ¥2)] <0 and since

6y=0, 1+ 21— LOP,,, >0, >0 it follows that y; > y;.
(i) If y >0 then [(z —x,)y’ — (¥ — ¥,)] <0 and since

0y =0+ ZLOP;>0 >0 therefore y;, >y and (y2 — ¥1)/(y’ — y2) > 0.
(ii) If y <O then [{(z — z,)y" — (¥ — ¥,)] > 0 and since

6,=0+ ZOP, <o +n therefore ¥ >y; and (ys — y1)/(¥’ — y2) <O.

(ili) Aty =0,

. , Yo— Yt . , Yo Y1 P
lim [(z—a,)y — (y— =1 z—x)y ~— (y — 2T (p—u — ).
Jim [(—25)y" — (¥ —y»)] =y [(E—2)y" — (¥~ ¥) Y — (—25) (y2— 11)

In this expression z is a maximum for (z,y) on u(@P,_;, ®P)T'(OP,) and since (x5, ¥,)
lies on the latter or in its interior, x — x, > 0.

Thus for y, >0 we find that d F/dx, >0 and choosing dx; negative we can decrease
F(II). Indeed this is true also for y; = 0 if with dx, <0 we choose dy, > 0.

(b) Let y; <0 then [(x; — 22)y1 — (31 — y2)] > 0.

Since y, >0, y =y, —y,; >0. Hence [(x — )y — (¥ —¥5)] <0. Also o >0 and since
0;=06+/LOP,>0>0 it follows that y;>y'. Furthermore, ¢, =0, + 27 — ZOP;,, <
oy + 7 therefore y; <y, and (y; — y1)/(y —y2) = 0.

Thus for y, <0 we find that d F/dz; < 0. We can therefore decrease F (II) when y, <0
by choosing dx, > 0. We must however ensure that if ZOP, , =z in choosing dz, >0,

Z®P,,, is increased. That this is the case we see as follows. From equations (3)
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which is equal to ;" when yi =y i.e. when / ©P,,, = . But since y, > 0,35 < 0 therefore
if, when Z@P,., =n, we choose dz, > 0, y, decreases i.e. o, decreases. Also for ZOP,,, ==,
% < 0 hence y;” > 0 and choosing dx, > 0, y; increases, i.e. o, increases. Thus 2z — LOP, ;=
oy — 0, decreases and therefore /@ P, increases when dx; > 0.

Summarizing these results we see that F (II) can be decreased in this case by increasing
the angle, oy, which is the same as decreasing ZQP,,.

This completes the proof of Lemma 2.

Proof of Theorem 2. We have shown that (I,) holds and assume now that (I,) holds
for 3 <k <mn.

The values which F takes at polygons in 9((«) which have n vertices are clearly bounded
below; let 1, be their greatest lower bound. There exists a sequence, {&,K|[r=1,2,...},
of polygons in A(u) which have » vertices such that

}il.g FO,K)=41,()
Furthermore, since there are but finitely many vertex triangulations of K* possible,
there is a subsequence each member of which is defined in terms of the same triangula-
tion of K*. Let the limit of this subsequence be o= ®P,...0P, 0P, ,, 0P, =0P,
then according to Theorem 4 il belongs to A(x). In virtue of the continuity of ¥ we have
F(II) =4,

Application of Lemma 2 to ITprovides that I has one of the properties (i) or (ii) of
that lemma or, since F (IT) cannot be decreased, there exists IT" in 2 ( u)such that ¥ (') = A,
II’ has n vertices and (i) or (ii) is true of IT’. We may therefore suppose that II itself has
one of the properties (i) or (ii) of Lemma 2.

Case (i). Let OP; be an interior point of the side ®P,0P; . If j=¢+1, then I, =
OP,OP,, ... 0P,_,0P, is, according to the Corollary to Theorem 3, a polygon in H(u).
Since 11, has n — 1 vertices the inductional assumption is applicable and

A7) | M (1)

——t—+12n-1.
A~|~2-i-1nl

Observing that M (IT) = M (I1,) + 2 (@P;, OP ;) > M (I1,) + 2

and A(I1*) = A (117
it follows that %’Q + J%E +1>=n.

(Y) Since each polygon has n vertices we may assume that K is the same for all of them.
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If j+1=4¢—1 we consider II, =QP,0P,,, ... OP,0P, instead of TI, and the proof
is similar.

When [, =OP,0P,,,...0P, ;0P,and 11,=OP,0P,, ... OP,0P, each have three
or more vertices both II, and II, are in (u) by the corollary to Theorem 3 and by induc-

tional assumption

A, M (1)

—A*H+_2— + 1= (II,)
and é%lz—)+1£(2£2)+1>1}(nz),

where » (II,) and »(Il,) are the number of vertices of II, and I, respectively.
Since A(IT*) = A(I1F) + A(113),

-M(ﬁ) = M(Hl) + M(Hz) - H(®Pi> ®Pj) - /“(QP:': ®Pf+1) + «“(®Pa" ®P1+1) = M(H1) + M(Hz)

and v(I,) +v(Il) =n +1
=, _
it follows that 4 (f ) + %%H—) +1=n.

Case (ii). Let O P,0 P, be a diagonal of IT and (@ P,, ® P;) = 1. According to Theorem 3
©P,0P, divides II into two polygons, say II, and I1,, each of which is in U(u). Again

s

Al M@
(Al) ——(2 1)+1>V(H1)

and A(H§)+M(H2)

A R + 12y (IL,).

In this case we have A(IT*) = A (I1%) + A (11%);

M(IT) = M(IT,) + M (TL,) — 24(OP, OP,;) = M(IT,) + M (IT,) — 2

and v(II,) +2 (1) =n + 2.
= _
Hence A(i'[ )—}—M—SD—}-IZn.

Thus we have shown that (I,) holds for polygons in 9(u). Since a Jordan polygon, II,
admits of a vertex triangulation it may be realised as a polygon in ¥ and if, furthermore,
it is weakly admissible, as a polygon in 9 (u). (I,) therefore holds, in particular, for weakly
admissible Jordan polygons which is Theorem 2.
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v

Proof of Theorem 1. Let (I1, E) be a weakly admissible pair. Let the vertices of Il be
P,, ..., P,_, and the remaining points of & be @, ..., @,,, these being in the interior of II.
We prbceed by induction on m, the number of points of E in the interior of II. We have
proved in Theorem 2 that Theorem 1 holds when m = 0. Let us assume that Theorem 1 is
true for 0 <m’ <m.

We introduce a coordinate system as follows. With any point, 0, as origin and any
straight line as y-axis we choose the z-axis to be parallel to the tangents to I'(0) at the
points where the y-axis cuts I' (0). Let the coordinates of @, ..., @, be (xy, ¥1); .., (@ Yn)s
respectively. We shall say that @, is to the right of @, if x; > z;; to the left if x;, <z, By
moving @; to the right (left) we shall mean moving @, so as to increase (decrease) z; while
holding y, constant. It is clear that if @, is not to the left (right) of @, then by moving @,
to the right (left) we do not decrease u(@;, Q,).

In what follows we shall consider variations of @, ..., @, under which (II, ¥) remains
weakly admissible and, leaving P,, ..., P,_,, fixed, F(II) is unchanged. If in the course of
varying @, ..., ¢, any of these points falls on II we shall have nothing further to prove
since the number of points of £ in the interior of II is thereby decreased and the inductional
assumption is immediately applicable. We may therefore omit this possibility.

Let @, ..., @, be so re-enumerated that x, 2x,>--->z,. If @, is not y-distant 1
from a vertex of II to its right with the segment joining them in II* we move it to the
right until this is so. ¢, is either y-distant 1 from a point amongst P, ..., P,_,, @, to its
right with the segment joining them in IT* or we can move it to the right until this is the
case. We continue in this way with @,, ..., @,_,. As a result each of the points @,, ..., @,_,
can be joined to a vertex of Il to its right by a simple polygonal path in I[1* whose vertices
are amongst @y, ..., @,_, and whose sides are of u-length 1.

We now move @,,, if necessary, to the left so that it is y-distant 1 from a vertex of
I1, say P,, to its left and P,Q,, is in I1*. Either @,, is u-distant 1 from some other vertex
of IT or from one of §,, ..., @,_; and the segment joining them is in I1* or varying @,, along
I"(P;) this becomes so or @,, becomes a point of II.

In this way we obtain a polygonal path of the form P,Q, P, or PiQnQr, @, Py
whose inner points are in the interior of II and whose sides have p-length 1. In the second
case Q,l Q,st is amongst the paths obtained earlier. Hence P, is to the right of €, and
P; is to the left. Therefore P; and P; are distinct and this is certainly so in the first case.

Let us suppose that PiQmer ... @, P; is not simple. Then since QH . @ P is itself

a simple path one of its sides, say @, @, ., intersects P;Q),; let the point of intersection be
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X. P,Q),, ., is contained in II* for otherwise there would be a vertex of II, say P, in the
interior of the triangle P, X @),  such that P,P, is in [1* and u(P;, P) <1. Thus P,Q,,
is in I1* and w(Py, @, ,,) > 1. Similarly u(@,. @) = 1. Noting that

2 :M(Pi: Qm) +M(Qrk’ Qrk+1) >M(Pi’ Qrk+1) +/’¢(Qma Qrk)

it follows that u(P;, @r,,) =1 and we can replace PiQmer i@ Py by PQy .. @ P
which is a simple path. Since P,Q, P; is simple we can obtain under all circumstances a
simple polygonal path, 2 =P,Q, ...@Q; P, whose sides have y-length 1 and whose inner
points lie in the interior of II.

The polygons I, =P.P,y...P; PiQ; ...Q; P, and I, =P.,Q; ...Q:, P,Pj, ...
P,_, P, contain subsets, E; and E; respectively, of £ in their interiors. Let E, denote the
set consisting of Ey and the vertices of I, and E, denote E; together with the vertices of
I1,. The pairs (I1,, E,) and (I1,, E,) are weakly admissible and since E; and E; each contain

fewer than m points we have, by the inductional assumption,

aat), wan) o
2

A
*
and A(EZ)+J”—;@+1>n2,

where n, and n, are the number of points in £, and E, respectively. Noting that
A(TIT) + A(IIZ) = A(T1*),
ML) +MIL)=MI1) +2MA) = MII) +2(w +1),
and N+ g =n-twt2,

addition of the last two inequalities yields

A ML)

mal LIS
A 2 "

v

As an application of the inequality (I,) we prove

THEOREM 6. Let I'(0) be a plane strictly convex Jordan curve having the origin, O, as
centre of symmetry. Let the n translates, I'(Py), ..., I'(P,), of I'(0) be such that the domains
they bound are non-overlapping and let S be the boundary of the smallest convex domain which

contains them. Then
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Tix

Fig. 10.

A(S*) — AT*) = F[M(S) — M{D)](p —A) = (n — DA (4n)

where M (S) and M (I') are the lengths of S and I" measured by the distance function, u, deter-
mined by 21'; A is the critical determinant of 21" and p is the area of the smallest parallelo-
gram which contains T

Proof. Let IT be the boundary of the smallest convex domain which contains Py, ..., P,.
Then

Aur an_ .

We can assume that Py, ..., P, are so enumerated that II is the polygon P;P, ... P, P,.

Referring to Fig. 10, we may describe 8*, the domain bounded by & as the union of
the following non-overlapping sets:

(i) The parallelograms 7P, P;,, U, ,(¢=1,...,m—1)and T, P, P, U, where T',U,,,
is the common tangent to I'(P;) and I' (P,,,) lying outside of II.

(if) The sector of I'(P;) bounded by U,P,, T, P, and the arc of I'(P,) between U, and
T, which lies outside of I1 (¢ =1, ..., m).

(iii) IT*, the domain bounded by II.

Let P,P,,, intersect I'(P,) at C; and T'(P,,,) at A,,4. Let the points at which 17, U,
intersects the tangent to I'(P;) at C; and the tangent to I'(P,,,) at 4,,, be D, and B,
respectively. We note that, since I' is centrally symmetric, C; D, is parallel to 4, B, ;.
Also P, T, is parallel to P, ; U,,,.

Let us translate 4, B,,, U, ,P,,, until P, , coincides with P, and U,,; with T,
We obtain thereby a parallelogram A;,,A4,,, B;,; Bi,1 where A;,, is the reflection of C,
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in P, and Bj,, is the point at which U, ;T; produced intersects the tangent to I'(P,) at
Af,,. Furthermore, the area of P,P;,, U, T, is the same as that of 4,14, B, Bi,1.
The ratio of the latter to the area of A;,;C,D,B;,; is the same as the ratio of 4;,:14,,,
to 47,10, which is precisely u(4is1, 4;yy) and this is equal to u(P;, Py,). Reflecting
A{,10,D,B; 1 in P, we obtain a parallelogram which circumscribes I'(P;) and whose area
is therefore not less than p. Thus A(4:,10;D;Bi,1)>%p hence A(P,P, U, ,T)>
w(Py, Pi+l)p/2-

We next observe that the sum of the areas of the sectors referred to in (ii) is precisely
A (IT'*) (see [4], p. 320).

From these observations we see that
A(S%) > A (%) + M (H)g + A (D% (6)

while M(I) = M(S) — M (T). )

Combining (6) and (7) with (5) we obtain (4n).
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