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A theorem due to  L. Fe j e s -Td th  [2] s ta tes  t h a t  if K1, . . . ,  K~ are  n non-over lapp ing  

convex domains  each of which arises f rom a given convex  d o m a i n  K b y  an  a rea-preserv ing  

affine t r ans fo rmat ion  and  H is a convex po lygon  hav ing  a t  mos t  six sides which  conta ins  

t h e m  then  A (H) >1 nh(K)  where A (H) denotes  the  area  of H and  h(K) is the  area  of the  

smal les t  po lygon  having  a t  mos t  six sides which can be c i rcumscr ibed  a b o u t  K .  

Res t r i c t ing  the  domains  K 1 . . . . .  K~ to  be congruent  a n d  s imi la r ly  s i tua ted ,  C. A. 

Rogers  [4] ob ta ins  a s imilar  resul t  in which H is any  convex domain  covering K 1 . . . . .  K~ 

and  h (K) is rep laced  b y  d (K), the  d e t e r m i n a n t  of the  closest l a t t i ce  pack ing  of K .  Rogers ' s  

resul ts  depend  on the  following theorem:  

THEORV.~ (Rogers).  Let G be a plane, strictly convex, Jordan curve containing the 

origin, O, o] a cartesian coordinate system in its interior. Denote by G (P) the translate o / G  

which results/tom the translation which takes 0 into P. .Let P0, P1 . . . .  , P~ = P 0 ,  P~+I . . . . .  

Pn+m be points which satis[y 

(1) the polygon, POP1... P~ is a Jordan polygon, H, bounding a domain, i.e. a closed, 

bounded, simply-connected set, II * ; 

(2) the domains bounded by G(Pr-1) and G(P,) have a common boundary point i[ 

l <~r<~n; 

(3) the points, Pn+l . . . . .  Pn+m lie in l-I*; 

(4) the domains bounded by G(Pr) and G(P~) have no interior points in common i~ 

l <~r <s  <~n +m.  Then 

A (II*) 1 
4A(~ ~>m+~n-1 

where A (H*) is the area o/ II* and A (G) is the critical determinant o/G. 

(1) This work has been carried out in part during t~he tenure of a National Research Council (Canada) 
Overseas :Fellowship. The author is indebted to the referee for his many helpful suggestions. 
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Our main object in this paper is the proof of a more general theorem of which the 

above is a special case. 

We consider the set of points {(l(x 1 -x2) ,  �89 Y2))} where @1, Yl) and @2, Y2) are 

any two points in the domain bounded b y G  and denote by F the boundary of the set ob- 

tained in this way. F is strictly convex, has 0 as a centre of symmetry and, defining F (P) 

in the same way as G(P) above, if G(P) and G(Q) bound domains which touch so do F (P) 

and F (Q) and conversely (see [4], p. 313). 

Let/~ be the Minkowski distance function defined by F (see, for example, Bonnesen- 

Fenchel [1], p. 21). Thus, for any two points, A and B, in the plane, # (A, B) = I A B I/I 0 R I 

where I A B I denotes the Euclidean distance between A and B and R is the point of F 

such that  the vector 0 R has the same direction as A B. 

The condition that  the domains bounded by F (P) and F (Q) touch is equivalent to 

# (P, Q) = 2 while # (P, Q) > 2 is equivalent to their haviIlg no points in common. The same 

conditions with respect to �89 (P) and �89 (Q) are characterized by # (P, Q) = 1 and # (P, 

Q) > 1 respectively where �89 is the set consisting of the mid-points of the segments joining 

O to the points of F. I t  will be simpler to deal with �89 and its translates. Indeed, if we 

replace G by �89 G in the above theorem A (H*) and A (G) must each be multiplied by  ~ and 

the result is the same. 

DEFINITION 1. Let II be a Jordan polygon and E a/ in i te  set el points. We shall say 

that the pair ([[, E) is "weakly admissible" i/ the/ollowing conditions are saris/led. 

(i) The vertices o / H  are contained in E. 

(ii) E is contained in II*, the domain whose boundary is H. 

(iii) For any two points, P and Q, in E, i/ the segment PQ lies in H* then #(P,  Q) >~ 1. 

In particular, if E consists merely of the vertices of II we shall say that  II is a "weakly 

admissible polygon" when (II, E) is a weakly admissible pair. 

Our main result is the following: 

THEO~E~ 1. Let # be the Minkowski distance/unction de/ined by F a convex, centrally 

symmetric, Jordan curve and let (H, E) be a weakly admissible pair then 

F( I I )  A(II*) , M(I I )  
A r - ~ - - +  1 ~>n (In) 

where A (1I*) is the area o/H*,  M(n) is the #-length o /H,  n is the number o/points in E and 

A is the critical determinant with respect to F. 

The existence of inequalities of the type (In) was suggested in a remark by t{. Zassen- 
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haas [6]. For the "star-shaped domain" ]xy] ~<] it has been shown by N. E. Smith [5] 

that  

A (II*) N( I I )  

where N(I I )  is the perimeter of II measured by the norm-distance ~((Xl, Yl), (x2, Y2))= 

[(x2 - xl)(y~ - y 0 1 t  

We shall first prove that  Theorem 1 is true for weakly admissible polygons. The 

general case will then follow by induction on the number of points of E contained in the 

interior of II. The former case will occupy us for the greater part and it will be convenient 

to distinguish it as 

T ~ E o ~ E M 2. Let II  = P1P~ . . .  PnP~+I where P~+I = P1 be a weakly admissible polygon, 

then 

F ( I I )  = A (II*) M ( n )  - - +  ~ - + l ~ > n .  
A 

The method we employ in the proof of Theorem 2 is by induction on n and is based 

on the following observation. Let P~Ps be a diagonal of II  (i.e._P~ and Pj  are not consecutive 

and the open segment P~Pj - P ~  - P j  is contained in the interior, II* - I I ,  of II). Further 

let #(P~, Pj) = 1. l: ' iP j divides II  into two polygons, II 1 and II2, which have, say, n 1 and 

n 2 vertices respectively. The assumption that  Theorem 2 holds for polygons with fewer 

vertices than H yields F([[1)~> n 1 and F(H2)/> n2 since n~ and n 2 are each less than n. 

Adding these inequalities and noting that  

A (117) + A (II~) = A (II*), 

M(111) + M(II2) = M(II )  + 2#(P~, Pj) = M(II )  + 2 

and n 1 +n2 = n  + 2  

we obtain -4(II*) ~ M ( I ] ) + 2 + 2 ~ > n + 2 ;  
A 2 

hence F ( I I )  >~n. 

Thus we would wish to show that  if, in no weakly admissible polygon with n vertices 

(n >~ 4), on which F takes the value F(I I ) ,  is there a diagonal of/t-length equal to 1, then 

there exists a w. a. polygon, II ' ,  with n vertices such that  F ( I I ' )  < F ( I I )  and I I '  does 

contain such a diagonal. For it would then suffice to prove the Theorem for n = 3 and 

when n ~> 4 for such polygons as contain a diagonal of unit #-length. 
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The above objective would be realised if we could show that,  (i) in the absence of 

a diagonal of unit/~-length in any polygon with n vertices on which 2' takes the value 

F( [ [ )  a local variation of the vertices of H exists under which 2"{H) is decreased while II  

remains weakly admissible; and (ii) 2" attains a mirSmum on the set of w. a. polygons 

with n vertices. 

The second requirement suggests that  we adjoin to the class of w. a. polygons certain 

limiting ones. Thus, if ( P r l . . .  PrnPrll r = 1, 2 . . . .  } is a sequence of w. a. polygons and 

lim Pr~ =P~(i  = 1, 2 . . . . .  n) we adjoin the polygon P1 . . .  P~P~ and prove it to be weakly 
r - - ) c ~  

admissible. 

Such a limiting polygon may contain singular vertices, such a vertex being one which is 

contained in a side other than those of which it is an end point. In  Figures 1 a-1 d we il- 

lustrate examples of these. 

a b c d 
Fig. 1. 

Certain singular vertices (e.g. Figs. 1 a, 1 c) lead to a decomposition of the polygon and 

to an application of the inductional assumption in a similar way to that  described when 

a diagonal has #-length 1. Others (e.g. Figs. lb, ld),  however, present a new difficulty. 

The variation of these or of the ends of the sides in which they lie is restricted in so far as 

a neighbouring polygon may, in a sense, be self-overlapping (Fig. 2). To overcome this 

difficulty we are led to enlarge the class of weakly admissible polygons still further to 

include polygons of this type. I t  will be seen, however, that  we are not obliged to allow the 

angles, as we shall define them, in these polygons to exceed 2 7e. 

In  the next section we shall give a precise definition of a class of polygons which meets 

the requirements we have just outlined. Furthermore we shall show that  these polygons 

possess such properties as are necessary for the proof of Theorem 2 by the method de- 

scribed. 

Fig. 2. 
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I I  

I n  what  follows we shall regard the angle at  a vertex of a triangle, say B in A B C, as 

the intersection of the half-plane, p, which is hounded  by  the line th rough  A and  B and  

which contains C and the half-plane, q, bounded by  the line th rough  C and B and con- 

ta ining A. I f  A '  B '  C' is the image of A B C  under  a barycentric,  orientation-preserving 

mapping,  the angle at  B '  is the intersection of half-planes which correspond to p and q, 

i.e. the  half-plane which is on the same side of A '  B '  as p is of A B and tha t  which is on the 

same side of B'C'  as q is of BC. If, in particular,  A '  B ' C '  is an  improper  triangle, i.e. one 

in which two angles are zero and the third, s a y / _ B ' ,  is ~, the angle at  B '  is well defined b y  

the  mapping  as one of the  half-planes bounded  by  the  line th rough  A' ,  B '  and  C'.  

By  a vertex t r iangulat ion of a domain,  K*, bounded by  a convex J o r d a n  polygon,  

K,  with n vertices we shall mean  a set of n - 2 non-overlapping triangles which cover K* 

and whose vertices are the vertices of K.  

Dv, F I ~ I T I O ~  2. We shall say that a closed polygon, H, belongs to the class ~, if it is 

the image o /a  convex, Jordan polygon, K, with vertices P1 . . . . .  P , ,  P~+I = P1, under a single- 

valued mapping, ~,  which is de/ined on K* and has the properties: 

1) ~) maps the triangles, T 1 . . . . .  T~_ 2, o/ a vertex trianqulation o / K *  barycentrieaUy 

onto triangles which may be improper, i.e. with angles O, 0 and ~r; 

2) ~) is  orientation preserving; 

3) i /T~ and Tj (i ~= ~) have a common vertex, say Pr, then the angles at @Pr in 6) T~ and 

T~ have no common interior points. 

I n  addit ion we define 

(i) OP~(i = 1 . . . . .  n) to be the vertices o/ l-I; 

(ii) / O P ~ ,  the angle in II at OP~, to be the sum o~ the angles at @P~ in those triangles, 

6) Tj, /or which Tj has P~ as a vertex; 

(iii) OP~)P~+I (i = 1 . . . . .  n) to be the sides o/ H, and the #-perimeter o / H  to be 

M (II) = l~ltt (OPt, 0P~+I). 

(iv) A (H*), the area associated with II ,  as the sum o/ the  areas o/ the  triangles @ T~ 

(i = 1 . . . . .  n - 2). 

We note  in connection with (ii) that ,  as a consequence of the conditions of Defini- 

t ion 1, 0 ~ ~@P~ ~ 27~(i --- 1 . . . . .  n). Regarding (iii) we note t h a t  M ( I I )  depends only on 
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OP1 . . . . .  0P~.  With (x, y) as coordinates in a cartesian system we can express A (II*) 

according to (iv) as 

~-21 f ~ x d y - y d x ,  
~=1 

OT~ 

the sense of each pa th  of integration being such that  the integrals are each non-negative. 

Accordingly, in the sum, common sides of the triangles 0 T 1 . . . . .  0 Tn-2 are traversed back 

and forth precisely once; thus 

A(H*) =�89 f x d y - y d x  
I I  

and A (II*) depends only on 0P1  . . . . .  0P~.  

DEFINITION 3. We de/ine the straight segment O P i O P j ( [ i -  ]] =~1) to be a diagonal 

o/ II i/there exists a path, ~, in K* whose end points are P~ and Pj and whose inner points 

are inner points o/ K* such that 0 is a sense preserving mapping o/,~ onto OP~OPj. 

We m a y  assume tha t  ~ is a simple polygonal pa th  whose vertices are contained in the 

common sides of those triangles in the vertex triangulation of K* associated with 0 which 

cover ~. For if A and B are two points of ~ contained in the sides of such a triangle, say Tk, 

the straight segment, A B, is mapped by 0 onto the straight segment 0 A 0 B and we can 

replace the section of ~ between A and B by A B. Indeed, this section is already A B if 

0 Tg is proper. 

DEFINITION 4. A polygon in ~ is de/ined to be weakly admissible i / i ts  sides and dia- 

gonals are each o/~-length not less than 1. We shall denote the subclass o] polygons in ~ with 

this property by 9~(#). 

T H E O ~ E ~  3. Let K =P1 ...P~P~+I,P~+I =P1 be a convex Jordan polygon and | a 

mapping o/K* such that O K  belongs to 9~(/~). 

Let OP~@Pj be a diagonal o/ O K  and K 1 and K 2 denote the polygons into which P~P~ 

divides K. 

There exist mappings, 01 o] K~ and 02 o/ K~, such that @2 agrees with @ on K 1 -P~Pj  

and O1K1 is in ~(#); similarly/or 02. 

Proo]. Let n = 4 and suppose tha t  0 is barycentrie on the triangles PIP2P3 and 

P1PaPa. I f  the diagonal @P~OPj is OPIOPa the restrictions of ~) to these triangles arc the 

mappings 01 and 02 of the theorem. I f  OP2@P4 is a diagonal, then #(OP2, OP4)/> 1 and 

we may  take 01 and 02 to be the barycentric mappings of P1P2P4 onto @PI@P2@P4 and 

P2PaP4 onto (~P2OPa@Pa respectively. 
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Le t  us assume t h a t  the  theorem is t rue  for  po lygons  in ~( / t )  wi th  m vert ices,  4 < m < n. 

There  is no loss of genera l i ty  in t ak ing  i < ] a n d  l e t t ing  K, = P, ... -P~PJPs+*... P~P, 

and  K 2 = P~P~+I ... Pj-IPjP~ �9 

W e  shal l  be concerned wi th  those  of t he  diagonals  of K which are  sides of the  t r iangles  

in the  t r i angu la t ion  of K *  associa ted  wi th  O a n d  shal l  refer to  these as  O-diagonals  of K .  

Le t  1 be a po lygona l  p a t h  in K *  such t h a t  O t  = OP~OP r To prove  t h a t  02 exists  we 

examine  i in re la t ion  to  those 0 -d i agona l s  of K which have  an  end po in t  amongs t  the  

ver t ices  of K s. W e  consider  s epa ra t e ly  the  case in which the re  exis ts  a 0 - d i a g o n a l  bo th  of 

whose end poin ts  are  ver t ices  of K 2 and  t h a t  in which there  is no such 0 -d iagona l .  

(a) Le t  PrPs be a O-diagonal ,  i ~< r < s ~< j; i.e. Pr and  P8 are  bo th  vert ices  of K 2. 

F u r t h e r ,  le t  PrP~P t be the  t r iangle  in the  ve r t ex  t r i angu la t ion  of K*  which has  P~.P~ as a 

side and  lies in K ' *  where K ' =  Ps. . .  PnP1... PrP~. W e  examine  the  poss ib i l i ty  t h a t  

conta ins  po in ts  in P~P~; th is  is ce r ta in ly  the  case if i t  contains  poin ts  in K*  - K '* .  There  

is a point ,  s ay  A,  in P~.P~P~ which is neares t  a long ~ to  P~ and  a point ,  s ay  B, in P~.P~Pt 

which is neares t  to  P j .  Since 0 maps  A B on to  a s t ra igh t  segment  we can replace  the  sec- 

t ion  of )t be tween  A and  B b y  A B. The resul t ing  p a t h  is one which coincides wi th  PTP~ 

if i = r and  ?" = s, for t hen  A ~- P~ and  B - P j ,  or i t s  in ter ior  po in ts  lie in  the  in ter ior  of 

K '* .  I f  1 contains  no po in ts  of PrP~ i ts  in ter ior  po in ts  lie in the  in ter ior  of K '* .  Thus  we 

can assume under  al l  c i rcumstances  t h a t  e i ther  1 coincides wi th  P~,Ps or i ts  in ter ior  po in ts  

lie in t he  in ter ior  of K '* .  

Le t  0 '  be the  res t r ic t ion  of 0 to  K '* .  Clear ly  O'K" belongs to  a. 0 ' K '  is in fact  in ~ ( # ) .  

F o r  a d iagonal  of O'.K" is a d iagonal  of 0 K  and  therefore  o f / t - l eng th  no t  less t han  1 while 

the  sides of O'K', being amongs t  those  of O K  a n d  in add i t ion  OPrOP~ which is a d iagonal  

of OK, h a v e / t - l e n g t h  no t  less t h a n  1. F u r t h e r m o r e  O'P~O'Pj is a d iagonal  of 0 ' K '  or a 

side of O'.K'. The l a t t e r  is ce r ta in ly  the  case if K' has  only  th ree  ver t ices  for then  r = 1 and  

s = n  - 1 and  we m u s t  have  i = r  and  j = s .  I f  O'P~O'Pj is a side of 0 ' K '  then  0 '  is the  

mapp ing  01 which we seek. I f  O'.PiO'Pj is ~ d iagonal  of O'K', K" has more  t h a n  three  

ver t ices  and  we a p p l y  the  induc t iona l  a s sumpt ion  to  0 ' K '  to  ob ta in  the  exis tence of 01. 

(b) Suppose  t h a t  there  is no 0 - d i a g o n a l  of K bo th  of whose end poin ts  a re  ver t ices  

of K~. 

W e  shal l  show t h a t  al l  of the  points ,  0 P , + I ,  -.-, 0Pj_~,  lie in one of the  open half- 

p lanes  bounded  b y  L,  t he  s t r a igh t  l ine conta in ing 0 P ~  and  0 P j  or in L itself. 

H j -  i = 2 t he  above  asser t ion  is t r iv ia l .  L e t  ] -  i > 2 and  consider  -P~P~,+I where  

i < r < ] - 1. The  t r iangle  in the  ve r t ex  t r i angu la t ion  of K*  wi th  side P~.Pr+I is such t h a t  

i t s  t h i rd  ver tex ,  say  P ,  is no t  in K~. I t  follows tha t ,  since inner  po in ts  of i are  b y  def ini t ion 

in t he  in ter ior  of K*,  t conta ins  ~n inner  po in t  in each of PrPz and  P~.+IPz. Hence  OP~OP~ 
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contains an inner point of 19Pr19P~ and an inner point of 19Pr+119Pl. I f  therefore, 19Pr 

lies in L then 19Pr19Pl lies in L and in particular 19Pt lies in 15 and conversely. Similarly, 

if 19Pl lies in L so also does 19Pr+1- Considering each of the sides of K s we see tha t  if one 

of the vertices 19P~+1 . . . . .  19Pj_1 lies in L so do they all and in addi t ion/5 contains the 

images of the vertices of K1, which are end points of the 19-diagonals the other end points of 

which are 19Pi+1 . . . .  ,19PJ-1. If, on the other hand, 19Pr does not lie in L then 19Pl does not 

lie in L; indeed 19Pr lies in one of the open half-planes bounded by  L and 19Pz in the other. 

Similarly, if L does not contain 19Pt then 19P~+1 does not lie in L but  in the openhalf-plane 

bounded by L which does not contain 19Pz namely the same one as contains 19P~. Again 

considering each of the sides of K~ we see tha t  if one of the vertices 19P~+1 . . . . .  19Pj_l does 

not lie in L they all lie in one of the open half-planes bounded by  L while the other contains 

the images of those vertices of K 1 which are end points of the 19-diagonals with end points 

19Pi+1 ..... 19P~_ 1. 
What  we have lust shown implies tha t  amongst 19P~+1 . . . .  ,19Pj_ 1 there is a vertex, 

say 19P~, at  which the angle is not  greater than  ~. For if 19P~+1 . . . . .  19Pj_l all lie in one of 

the open half-planes bounded by  L it suffices to choose 19P~ to be one which is furthest  

from L. 

Let  us suppose tha t  19Pi+1 . . . . .  19Pj_x all lie inL,  then the angles,/-19P~+1 . . . . .  L19Ps-1 

can have the values 0, ~, or 2 ~ and and we must  show tha t  they are not all 2 ~. We choose 

a direction in L according to which 19Pj is to the right of 19P~. Let  19P~+1, be to the left 

of OPt.  I f  /-19P~+1 were equal to 2 rc there would be a 19-diagonal with end point P~+I, 

say Pi+IP,, such tha t  |  is to the left of 19P~+1. Thus 19P~+lOP,~ would have no point in 

common with 19Pi19Pj which is not possible since Pf+IP,~ contains points of 2. Hence if 

19Pt+1 is to the left of 19Pt then Z-OPt+l is equal to 0 or z.  Let  OP~+I be to the right of 

19Pt and let/-19P~+1 = 2~. Then there is a 19-diagonal, sayP~+~P~, with P~+~ as an end point 

such tha t  19Pb is to the right of 19P~+~. Since, moreover, 19P~+I19Pb and 19P~19P~ have an 

interior point in common, 19P~+~ is to the left of 19P~ and so 19P~+~ is distinct from 19Pr 

H ~19P~+z = 2 ~ there would be a 19-diagonal, say P~+~Pc, with P~+~ as an end point such 

tha t  19Pc is to the left of 19P~+~. Since, however,P~+~Pe contains a point of ~ betweenP~ and 

those points of 2 in P~+I P~ it follows tha t  19 P~+~ 19P~ cannot lie wholly to the left of 19 P~+119 P~. 

Hence OPr is to the right of 19P~+z and /-19P~+~ cannot be equal to 2 zr. Thus under all 

circumstances there is a vertex amongst  19P~+~, ..., 19P~_~ say 19Pr, such tha t  A19Pr <:~. 
We fix our attention on Pr and the union of those triangles in the vertex triangulation 

of K* which have Pr as a vertex. Let  8r denote the polygon bounding the domain defined 

in this way. Amongst  the vertices of S~ other than  P~_~, P~ and P~+I there is one, say P~, 

with the following property.  The triangles, say P~P~P,~ and PrPtP~, in the vertex triangula- 
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tion of K* which have PrPt as a common side are mapped by  0 onto a quadrilateral no 

angle of which exceeds ~. Thus, if OP~ does not lie in L, then no vertex of OS~ lies in L 

and we can choose OPz to be tha t  which is furthest from L. For then OPrOP~OPzOPb 

lies in the strip hounded by  the two lines parallel to L one of which contains OP~ and the 

other 0P~. I f  OP~ is contained in L then so are all of the vertices of OS~ and from amongst  

those of S~ other than  P~-I, P~ and P~+I we choose P~ to be such tha t  OP~OPI is longest. 

We shall show tha t  OPrOP~OPIOPb then has the desired property.  Let  P~PtP~ be 

on the same side of P~Pz as P,  and P~PtPo on the same side as Pj. I t  suffices to show tha t  

at  least one of the angles at  OPz in OP~OPtOPa and OP~OPtOP~ is 0. Let  OPj  be to the 

right of OP~ as before and suppose tha t  0 P t  is to the right of OPt.  We must  show tha t  

O P ,  is to the left of OPt. Were it otherwise then OP~OPa would be longer than OP~OP~ 

hence P a -  P~-I" However, P~IPI contains a point of i between Pt  and the points of 

which P~Pt contains. Hence OP~_IOPI cannot lie to t h e  right of OP~OPt. Thus OPa 

cannot be to the right of OPt and the angle a t  OPt  in OPrOP~OP,~ is 0. Similarly, if OP~ 

is to the r ight  of OPt  then the angle at  OPz in OPrOPtOP~ is 0. 

The angles in the quadrilateral OP~OPaOP~OPo being each not greater than ~, there 

is an orientation preserving mapping which takes P~PaPt and P~P~P~ barycentrically onto 

OP~OPaOPt and OP~OPbOPz respectively. Thus we can retriangulate the domain 

bounded by  P~PaPzPo and modify 0 accordingly. As a result the number  of vertices of 

S~ is decreased. Repeating the process sufficiently many  times P~-~Pr+I becomes a O- 

diagonal and we again have the situation dealt with in (a). 

By  giving similar consideration to the vertices of K~ as we have given to those of K~ 

we obtain the existence of 0~ also. 

COROLLARY. Let K = P  1 . . .  P~Pn+I, Pn+I=P1 be a convex Jordan polygon and 

OK a polygon in 9~(~t). Let ,~ be a path in K* one o/ whose end points is Pt and 

the other an interior point, Q, o/ the side PjPj+I (i~-], ] + 1 )  while the inner points o/ 

are in the interior o/ K*. Furthermore, let 0 ~ = 0 P~. 

There exists a mapping, 01, which agrees with 0 on PtPt+l . . .  Pj-IPj such that 

01(PtPi+l  . . .  Pj-IPjPt) is in 9~(#) provided that ]+ i+  l; also a mapping, 02, exists 

which agrees with 0 on Pj+IPj+2 . . .  Pt-lPt such that 02(PiPj+IPJ+2 .. .  P~-,Pt) is in 

9~ (#) provided that ] + 1:4: i - 1. 

Proo/. In  the vertex triangulation of K* associated with 0 let the other sides of the 

triangle with one side PJPJ+I be PjPk and Pj+IPk. The path, i ,  contains a point, say A, 

in one of these two sides. Substituting for the section of 1 between A and Q by APj we get 

a pa th  with end points Pt  and Pj  which is mapped by  0 onto OPtOPj. Thus, if ]~: i + 1, 
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O P , O P j  is a diagonal and applying the theorem we obtain the existence of Oz. Similarly, 

substituting APj+ 1 for the section of ~t between A and Q we find that  OP~OPj+I is a 

diagonal provided ] + 1 4= i - 1. Again applying the theorem we obtain the existence of 

02, which proves the corollary. 

We shall say that  OP,  is an inner point of OPjOPj+ z (i 4= ?', ] + 1) when, as in the above 

corollary, there exists a path, 2, whose end points are P ,  and an inner point of PJPJ+I, 

whose remaining points are in the interior of K* and which is mapped by 0 onto the single 

point, 0P , .  

We next  prove that  certain sequences of polygons in ~(#)  have a limit which is again 

a polygon in ~ (#). Thus 

T ~ O R E ~  4. Let K = P 1 . . .  PnP~+I, P~+I =P~ be a convex Jordan polygon and F~ a 

vertex triangulation o /K* ,  the domain bounded by K.  

Let 01, 02 . . . .  be a sequence o/mappings o] K* such that 

(i) O~K is in ~(tt), r = 1, 2 . . . .  ; 

(ii) The vertex triangulation o / K *  associated with Or is C, r = 1, 2 . . . .  ; 

(iii) lim O~P~ exists/or i = 1, 2 . . . . .  n. 
r....~oo 

The mapping, % of K* which takes P~ onto lim O~Pi, i = ] . . . . .  n, and is barycentric on 
r,.-~ oo  

the triangles o/F~ is such that q)K belongs to 92[(re ). 

Proo]. Let PuP~P,o be a triangle i n / :  and in a cartesian coordinate system let 

x~ y~ 1 

x~, Yw 1 

where (x~, Yu), (xv, Yv) and (xw, Yw) are coordinates of P~, P~ and Pw respectively. That  

Or(r = I, 2 . . . .  ) preserves the orientation of P~PvPw is equivalent to 

IP , Po, Pwl" I orP , ORB,, 1>0. 
But 

lira lOrRy, O~P,, O~P~[ = IlimQrP~, limO~P~, limOrP~[ = [~P~, ~P~, ~P~I" 

Hence IPu, Pv, Pwl " 15~ vPv, cflPwl >10 

and ~v preserves the orientation of PuP~Pw. 

We next prove that  

#(TP~, ~vP~+l) >/1 (i = 1, ..., n) 
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and ke (~P~, ~P~) ~> 1 

whenever cfP~cfP~ is a diagonal. 

Since 

# (~Pi, ~P~+~) =/~ (lira | lim | = lim # (| | 
r - ->  r  r - ->  o| ~--~oo 

and/~ (@rP~, 0rP~+~) >~ 1 (r = l ,  2, . . . )  it  follows that  # (cfP,, q~P~+I) >~ 1. 

Suppose that  cfP~cfP~ is a diagonal, the image under ~ of a polygonal path, say 

= QoQ~ .. .  Q~Q~+~ where Q0 = P,, Q~+~ = P~ and Q~ . . . . .  ~ are interior points of ~-diagonals, 

P ~  Pz~ .. . .  P~P,~ respectively. In  order to show tha t  ~t(~P,, ~P~) ~> 1 we consider the 

sequence 01,t , ~ t  . . . . .  Since 

it follows that  

lim | =cfQ~(h =0 ,  1, ... s, s + 1) 
r - - ~  o| 

lim # (@rQh, @rQh+l) = # (cfQh, ~Qh+l) (h = O, 1 . . . .  s). 
T.--> or 

Recalling that,  by definition, ~ preserves the sense of 2 in mapping it onto cfP~cfPj we 

have that  
s 

/~ (~vP,, ~vP,) = h=~0/~ (~ Qh, ~0 Q;z+I) = h-0 ~ r->cclim [~(OrQh, OrQh+l) = r-->qzlim h~-0/~ (@~ Q ' ~ ' -  | Q~+I. 

That  /~(~0P~, ~Pj)~> 1 will follow therefore if we can show that,  for each r, M(@r). ) = 

I~ (OrQh, OrQh+i) ~ 1. h=0 

In order to do so we consider the set, A, of all the polygonal paths with end points 

P~ and P~ which have vertices which correspond to those of 2 and which lie in the closed 

segments P~IPh . . . .  , PksPl .  Considering the images of these paths under Or, the set, A, 

as defined, being closed, it  contains a path, say i =QoQ1 . . .  -O~Q~+x, such that  M (Or).) is 

a minimum. I t  suffices to show that  M(@~t) ~ 1. 

Let  t, 0 < t ~< s + 1, be the smallest index for which i~ t =Pkt or ~t =Pit, say Qt =Pkt, 

where Q~+I =Pk,+l = PJ. I f  t = 1 then @r~ con ta ins  0rP~OrP/r  1. Noting that  P~PkxPzl is a 

triangle in the vertex triangulation, s it follows that  @rP~@rPkl is either a side or a 

diagonal of @~K and therefore has/~-length not Iess than 1. Hence M(@~)/> 1. Suppose 

that  t > 1. If  for some u, 0 < u < t,/@~u-x@~-Q~@~-Q=+l is different from z, then Q= being 

an interior point of Pk=Pl= we can vary  it along Pk=Pl~ in such a way that  #(@~u-1,  

O~Q=) + # (O~Qu, @~Q~+I) is decreased. Indeed we obtain thereby a path, say ~' in A such 

that  M (@~t') < M (| which is a contradiction. Hence , /@~ Q=-I | Q~| = z (0 < u < t) 
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implying that OrP~OrPkt is a diagonal with PiQ1 . . .  Qt-lPkt as antecedent or OrP~OrP~t 

is a side of 0rK.  In  either case #(OrP~, O~P~ t) >--1. Hence M(Or~) ~>1. 

I t  follows that, in particular, the sides of the triangles of s are mapped by ~0 onto 

segments of #-length not less than 1. Thus the images under ~ of these triangles have 

distinct vertices and the angles at these vertices are therefore well defined. 

I t  remains for us to show that  if Tq  and T~2 are a pair of triangles in ~ which have P~ 

as a common vertex then the angles at  ~0P~ in ~ Tq  and ~ T~2 have no common interior 

point. Let us suppose, on the contrary, that  A is such a common interior point. There 

exists r 1 such that, if r > rl, A is an inner point of the angle at OrP~ in Or Tq  and r 2 such 

that, if r > r2, A is an inner point of the angle at OrP~ in Or T~ 2. Thus, if r > max (rl, r~), 

A is an inner point of the angles at OrP~ in both Or Tq  and Or T~ 2 which contradicts the 

hypothesis that  0 r K  is in 9~(#). Hence the angles at ~vP~ in ~0 T h and ~v Tt~ have no inner 

points in common. We have therefore shown that  ~0K satisfies the conditions necessary 

for it to belong to 9~(/~). 

In  addition to the above we shall have need of 

THEO~WM 5. Let K =P1 ""PnPn+l, -Pn+l =-P1 be a convex Jordan polygon and O K  

a polygon in ~ (#). I] no vertex o] 0 K is an interior point o /a  side there exists a mapping, 

0',  o] K* which agrees with ~) on K, O' K is in 9~(1~ ) and O' maps the triangles in the vertex 

triangulation o /K* associated with it onto proper triangles. 

Proo/. If E) maps the triangles in the vertex triangulation of K* associated with it 

onto proper triangles the theorem is true with @' = | throughout K*. 

Let re(O) denote the number of triangles which ~) maps onto improper triangles and 

suppose re(O)>0. I t  suffices to show that  a mapping, ~0, of K* exists which agrees with 

0 on K, such that  ~0K is in 9~(#) and m(~) < m(0).  

Let PrPsPt be a triangle which 0 maps onto an improper triangle the angle, say at 

OPt,  being equal to ~. We can assume without loss of generality that  r < s. Since, according 

to our hypothesis, PrP s cannot be a side of K let PrP~P 8 be the other triangle with PrPs 

as a side. We note that  r < u < s if we assume, as we may, that  t < r or t > s. 

The triangle 0 (PrPuPs) can be distinguished according to whether 

(1) 0 (PrPuP~) is a proper triangle, 

(2) 0 (PrP,,P~) is improper and the angle at 0P~  is 0, 

or (3) O (PrP~P~) is improper and the angle at OPu is ~. 

If  (1) is the case we define ~ as a mapping which agrees with 0 on K and on those 

triangles associated with 0 other than PrP~P~ and PrPuPs while it maps PtPrP~ and 
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P~PuP~ barycen t r i ea l ly .  I ndeed  ~ maps  these onto p rope r  t r iangles  and  we have  m(~)  = 

m(@) - 1, while ~ K  is clear ly in 9~(#). 

I f  @ (PrP~Ps) is as in (2) the  angle  a t  e i ther  OP~ or  @P~ is 0, say  a t  OP t .  L e t  us wr i te  t 1 

for s, r 1 for r and  s 1 for u. The t r iangle ,  P~IP~IPh, is m a p p e d  b y  6) onto  an imprope r  t r iangle  

in which the  angle a t  6 )Ph  is H. I n  pa r t i cu l a r  0 < s 1 -- r I < s -- r. I f  6) (PrPuPs) is as in (3) 

we replace  6) b y  6)1 where  6)1 is def ined in the  same w a y  as ~ in the  preceding  pa rag raph ,  

a l though  in this  case m(6)1) = ~n(6)). However ,  we m a y  replace  6) b y  6)~ in the  proof  of the  

theorem.  I n  one of the  t r iangles  6)1 (P~PrP~) and  6)1 (PtPuPs) the  angle  a t  @IP~ is equa l  

to  H and  in the  o ther  0. W e  choose the  one in which i t  is H, say  in 6)1 (PtPrP~). Wri t i ng  t 1 

for  t, r 1 for  r and  s 1 for  u, the  t r i angle  PhPsiPtl is m a p p e d  b y  @1 onto  an  i m p r o p e r  t r iangle  

in which  the  angle a t  6)lPtl is yr. Fu r the rmore ,  0 < 81 - r l  < 8 - -  r. 

I n  e i ther  of the  cases (2) and  (3) we a p p l y  the  same a r g u m e n t  to  PhP~tPtl as we have  

done to PresPt. E i t h e r  the  o ther  t r iangle  wi th  side PhP~I is as in (1) and  we obta in  the  

mapp ing  ~0 or we are  led to  a t r iangle  P~2PsPt2 which is o b t a i n e d  in the  same manne r  as 

PhP~lPtf Cont inuing in th is  w a y  e i ther  we come to the  m a p p i n g  ~0 wi th  m (~) = m (6)) - I 

or to  a sequence of t r iangles  P r l P s l P t l  , Pr2Ps2Pt2  . . . .  each of which is ob ta ined  in the  

same w a y  as PhP~tPtf B u t  since sz - r I > s2 - r e > �9 �9 ", for  some k, OPte  is t he  in te r io r  

po in t  of a side, n a m e l y  6)P~k6)P~k, which con t rad ic t s  the  hypothes is .  

I I I  

W e  r e tu rn  now to the  proof  of Theorem 2 and  in order  to  es tabl ish  (In) we first  p rove  

LEMMA 1. I] T, a triangle in ~(#) with vertices P, Q, R has a pair o/sides o//z-length 
greater than 1 there exists a triangle T' in 9~(#) such that 2'(T') < 2'(T). 

Pro@ I f  T is an  imprope r  t r iangle  with,  say,  A P  = H,/~ (Q, R) > 2 and  if, say,  # (P, 

R) > 1 a po in t  R '  in PR such t h a t  1 ~<#(P, R ' )  < # ( P ,  R) satisfies F(PQR') < F(T). 
Suppose  t h a t  T is a p roper  t r iangle  and  le t  # (P, Q) > 1 and  # (P, R) > 1. Since P lies 

outs ide  F (Q) and  F (R) (see Fig .  3) there  exists  a ne ighbourhood  of P wi th  the  same p r o p e r t y  

P 

Fig. 3. 
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R= (x,Y2) 

Fig. 4. 

and in particular a point, P ' ,  such tha t  QP;~= 2QP(0 < 2 < 1). Let  T '  be the triangle with 

vertices P', Q, R. We have A (T'*) < A (T*) and since # (P', R) ~< # (P', P)  + # (P, R) 

# (P ' ,  R) + # ( P ' ,  Q) < # ( P ' ,  P) +/~(P ' ,  Q) +/~(P, R) 

and M ( T') < M ( T). 

Hence P ( T ' )  < F(T). 

I t  suffices therefore to prove (I3) for a triangle having at  most  one side of #-length 

greater than 1. 

In  the triangle, T, with vertices P,  Q and R let # (P, Q) =/~ (P, R) = 1 and # (Q, R) >1 1. 

We choose a coordinate system in the following manner.  With P as origin let the y- 

axis be the line through P parallel to and having the same sense as RQ. This meets F (P) 

a t  S and S', say. As x-axis we choose the line through P parallel to the tangent (1) to 

F (P) a t  S and having tha t  sense by  which the x-coordinate of Q, hence also of R, is non- 

negative. 

Since #(Q, R) >1 1, QR >~PS and since Q and R lie on F(P)  they lie on opposite sides 

of the x-axis. 

Let  (x, Yl) and (x, y~) be the coordinates of Q and R respectively. We have x >/0, 

Yl > 0 and y~ < 0. Referring to Fig. 4, 

sin 0 + 1 
F (T (x)) = ~ x (Yl - Y~) 2 ~ (Yl - Y2) + 2. 

Differentiating twice with respect to x: 

sin 0 . ,, , . . . . .  I ,, 
F " ( x ) = ~  [x(y~ - y ~ ) + 2 ( y l - - y ~ ) ] +  ~=(yl  --y~).  

(1) We shall assume throughout that F is twice differentiable. 
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Since Yl > 0, y~ ~< 0 and y~' < 0 while y~ < 0 implies that  y~ ~> 0 and y~' > 0. I t  follows tha t  

F"(x) < O. Thus, either #(Q, R) = 2, #(Q, R) = 1 or there exists T '  such tha t  F(T ' )  < F(T) .  

I t  is sufficient therefore to consider the cases: # (Q, R) = 2 and # (Q, R) = 1. I f / t  (Q, R) = 

2 then F ( T )  = 3 and (I3) is satisfied with equality. In  the case #(Q, R) = 1, (I3) is a conse- 

quence of the fact (see Mahler [3], p. 693) tha t  if P, Q and R are such tha t  PQ, P R  and Q R  

each have re-length 1 the lattice generated by  PQ and Q R is admissible. For this implies 

tha t  A (T) in this case is not less than  �89 Hence 

F(T)~�89 3 ~ + ~ + 1 = 3 .  

This completes the proof of (I3). 

We shall complete the proof of Theorem 2 by  means of induction on n. This will be 

based on 

LE~MA 2. Let K be a convex Jordan polygon with vertices P1 . . . . .  Pn and O K  = II be 

a polygon in 9~ (tt). Either 

(i) II has a vertex which is an interior point o / a  side, 

(ii) II  has a diagonal o/#-length 1 

or (iii) there exists a polygon, I I ' ,  in 9.1(#) with n vertices such that F ( I I ' )  < F ( I I )  or II '  

has property (i) or (ii) and F ( I I ' )  = F( I I ) .  

In  proving this lemma we shall repeatedly apply 

LEMMA 3. Let II  = 0 P L O P 2  . . -OPnOP1  be a polygon in ~(tt) whose diagonals each 

have tt-length greater than 1 and which has no vertex an interior point o] a side. I / i t  is possible 

to vary the vertices o / I I  in such a way that II remains in 9~ and its sides remain o/#-length 

not less than 1 then a su//iciently small such variation exists under which II remains in ~(lt). 

Proo[. Let us suppose tha t  the lemma is false. There exists a sequence of polygons with 

II  as limit none of which is in a (#). Since, however, each of these, by  hypothesis, is in 9~ 

and has sides of/t- length not less than 1 there must  be in each a diagonal of ~-length less 

than 1. There is therefore a subsequence in which these diagonals are the images of paths 

in K* all of which have the same end points, say Pr and Ps. Let  these paths be hi, 2~ . . . . .  

Recalling tha t  each such pa th  is polygonal with vertices lying in the diagonals of K there 

exists a subsequence 2~(1), ~(2~, ... with corresponding vertices which occur in the same 

diagonals of K. The limit of the sequence ~,1), ki~2) . . . .  is a path, 4, which is mapped by  

O onto OPrOPs. Furthermore since the images of a~{1), 2~ r . . . .  each have/~-length less 

3 -- 60173047. Acta mathematica, 105. I m p r i m 6  le 20 m a r s  1961 
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OPi§ OPi+3 

OPi_ I OPi+l 

Fig. 5. 

than 1 it follows that  #(OPT, OPt) ~< 1. Either the inner points of 2 lie in the interior of 

K* or certain of the vertices of 2 coincide with vertices of K. 

In  the former case it follows that  OPTOP~ is a diagonal. Since, however, #(OPt ,  

OPs) ~ 1 this is a contradiction. 

In the latter case either there is a section of 2 which is a path with end points which 

are distinct vertices of K and inner points which are in the interior of K* this leading to 

the same contradiction as before or 2 lies entirely in K. In  this last case since PT and P~ 

are not consecutive 2 consists of at least two consecutive sides of K. This implies that  two 

or more sides of II have/~-lengths the sum of which is less than or equal to 1 and hence 

there is a side of II  whose #-length is less than 1 which is again a contradiction. 

Proo/o/Lemma 2. We shall assume that  II  has neither property (i) nor (ii) and show 

that  this implies (iii). 

1. In  virtue of Theorem 5 the negation of (i) allows us to assume that  O maps the 

triangles associated with it onto proper triangles; in particular that  / O P i  > 0 (i = 1 . . . . .  n). 

2. If  L O P , < ~  we can assume that L O P , + I < 2 z  and /_OPi_1<2~ .  For suppose 

that  LOP,+  1 = 2~ (the argument for / O P , - 1  is the same). If  

/~ (@P~+~, OP~+~) > # (@P~, OP~+~) 

we may, in virtue of Lemma 3, vary  OPi+ 1 along p (OPi, OP,+I)F (OPi) so as to decrease 

/ -OPt+ 1 (see Fig. 5). Since #(OPi,  OPi+I)F(OP,) lies inside /~(OPi+2, OP,+I)F(OPi+~) 

this variation decreases #(OPi+~,OP,+I) , hence also M(II) .  Since, moreover, A(II*)  

is decreased this variation results in a decrease in F(II ) .  

Let tt (OPt+e, OPt+l) = # (OPi, OPi+l). 

We may vary OPf+ 1 along #(OPi,  OP~+I)I'(OP,) so as to increase / O P i .  This leaves 

F (II) unchanged but continuing to vary OPi+l in this way leads either to a polygon which 

satisfies (i) or (ii) or to one in which the number of angles in II which are less than ~ is 
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decreased. Thus, if fl-OP~+2 ~< 2 z  - AOP~ we can decrease AOPi§ to 0 if necessary while 

~ O P ~  remains less t han  2 ~  and  if LOP~+~ > 2 z - / - O P ~  we can increase / -OP~ to  

wi thout  LOP,+~ becoming less than  zz. 

We mus t  observe tha t  in the course of such a continued var iat ion if at  some stage II  

is no longer in ~l(#) there is an earlier point  at  which II  is in 9~(#) and has proper ty  (i) or 

(ii). To show this we denote the amoun t  by  which / - O P ,  is increased by  t and consider I I  

as a funct ion YI (t) of t. I f  there are values of t, in the range considered, a t  which H is not  

in ~(/~) let t o be the  g.l.b, of these. Since Lemma 3 is applicable to  tq ~ [[ (0) it follows t h a t  

4 4 0 .  We can therefore find an increasing sequence {t~} such tha t  {II (t~)} converges to 

I I  (to). Fur thermore ,  each polygon in this sequence being in 9~ (/z), i t  follows f rom Theorem 4 

tha t  I I  (to) is in ~l(#). If, however, H (to) had  neither proper ty  (i) nor (ii) we could apply  

Lemma 3 to contradict  the  fact  t ha t  t o is the g.l.b, of values of t for which II  (t) is no t  in 

9~(#). Hence II  (to) has p roper ty  (i) or (ii). 

Le t  # (OPt+2, OP~+l) < # (@P~, OP~+l). 

I f  / -OPt+2 < 2 z we can decrease F ( I I )  by  vary ing  OP~+I along # (OPt+2, OP~+I)F (OPt+2) 

so as to  decrease / O P i .  I f  ~ 0 P 1 + 2 = 2 ~  we can move OP~+2OPi+I along OP~OPi+a 

without  changing F ( H )  until  OPt+2 coincides with OP~ or (iii) is satisfied. I f  at  some stage 

in this variat ion a polygon is obtained which is not  in ~ (# )  there mus t  be one which is 

obtained earlier which satisfies (i) or (ii). This follows by  the  a rgument  of the preceding 

case in which we now take the parameter ,  t, to  be the amoun t  by  which # (OPt, OPt+l)  

is decreased. Finally,  if OPt+2 coincides with OP~ then #(OPi+2, OPt+l) =#(OPi, OPi+l) 
and this we have already considered. 

Thus, the assumption, ~OP~+I  = 2 ~r when / -OP~ < ~r, leads either to a decrease in 

F ( I I ) ,  to  a polygon satisfying (i) or (ii) or to a decrease in the number  of angles in II  which 

are less than  ~. Hence we can assume tha t  an angle in I I  which is less than  ~ is preceded and 

followed by  angles which are each less thau  2 ~r. 

3. There are amongst  the triangles in the ver tex t r iangulat ion of K at  least two having 

two sides which are sides of K, since there are n sides of K and n - 2 triangles. Let  OP~_~ 

OP~OP~+~ be the  image of one of these. According to  w 1 of this proof we m a y  assume 

Z_OP~ > 0. 

I f  b o t h / t  (OP~_i, OPt)  and # (OPi, OP~+i) are greater t han  1 the method  of Lemma 1 

enables us to  decrease 2 ' ( I I )  while, according to Lemma 3, I I  remains in 9d(ft). We m a y  

assume therefore tha t  at  least one of/~ (OPt_x, OP,)  and # (OPt, OP~+~) is equal to 1. Le t  

tt (OPt, OPi+~) = 1. 

We distinguish two cases according as ~OP~+~ < ;~ or /-OP~+I ~> ~. 
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4. Let  /@P~+I < ~- According to w 2 we can thus assume that  ~@P~+2 < 2 z  and, 

since / O P l  < ~r, that  L@Pt_I < 2 Jr. This enables us to vary OP~ and OPt+l locally while 

H remains in 9~. If, furthermore, the sides of II remain not  less than 1 in #-length the nega- 

tion of (ii) in addition allows us to apply Lemma 3 to ensure that  H remains in 9~(#). 

If #(OPt_ D OPt) > 1 and/~(@Pi+l, @P~+2) > 1 we can decrease F (H )  as follows: we 

move | along @P~-IOP~ towards @P~-I and | varies in such a way as to preserve 

the vector @Pt@Pt+ 1. The change in A (II*) is equal to the change in A (@S~+I) which is 

equal to the change in the area of the quadrilateral @Pt_IOP,| The change in 

M (H) is equal to that  in ju (@P~-I, @Pt) + # (OP~+I, | In Fig.6a ~_@P~ + / O P ~ + I  >~r; 

in Fig. 6b /@P~ + / O P , +  1 <~r. In both cases 

# (| @'Pt) + I~ (| @P~+2) 

~</~ (OPt-~, O'Pt) + / t  (OP,+~, OPt+2) + # (OPt+~, O'Pt+l) 

# (OPt-~, OPt) + # (OPt+~, OPt+2). 

That  the area of the quadrilateral is decreased is clear in Fig. 6a while in Fig. 6b it is 

made evident by  placing the new quadrilateral onto the original with O'P~ on OP~ and 

O'P~+I on OPt+l- 

We shall therefore assume that  # (OPt-l,  OPt), say, is equal to 1 and show next that  

if/~(@Pi+l, OP~+~) > 1 we can again decrease F(II ) .  

Let OP~+~OP,+2 lie outside P (OP,). By moving OPt+ 1 towards OP,+2 Mong OPt+~OPt+2 
we increase /~(OP,, OP,+~) which therefore remains not less than 1. However, 

# (OPt, OPi+l) q- # (OP~+~, OPt+2) 

is decreased. For if X is a point  between OP~+~ and OPt+2 we have 

/t(OP~, X) < # ( O P t ,  OP~+I) +#(OPt+D X), 
henc (~  

#(OPt ,  X) + # ( X ,  OPt+2) < # ( O P t ,  OPt+l) q-# (OPt+l, OPt+2). 
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Also, the area of the quadrilateral  is decreased. Thus we can decrease F ( I I ) .  So we shall 

assume tha t  F(|  intersects |174 2 or |174 produced beyond  | and 

shall show tha t  F ( H )  can be decreased by  a variat ion of bo th  | and | under  which 

# (| OPt)  and/~ ( |  | remain equal to 1. 

We choose a coordinate system as follows. Wi th  origin at  |  we take as x-axis the 

line parallel to  |174 and as y-axis the  line which is parallel to  the tangents  to  

l~ (| at  the points where the x-axis cuts F (| Let  A and B be points of F (@P~-I) 

such tha t  O P ~ - I A  = |  and | = |174  (see Fig. 7) and let the coordinates 

of | A and B be (x, k), @i, Yl) and @2, Y2) respectively. We m a y  so direct the y-axis 

t ha t  k > 0. We observe tha t  

x ~ - x l = x  } (1) 

Y2 - Yl = k. 

Under  these constraints and requiring als0 t h a t  A and B lie on F (|  it follows 

t h a t  xl, Yl, x2 and Y2 are dependent  on x so tha t  F ( H )  is also: 

F (Y[) = ~ -t- f ix ~- ~ (xly 2 - x2yl) ,  

where ~ and fl are constants  and ~ i s a positive constant .  

Using (1) we find tha t  

d F  
d x - fl + y {(y~ - x2 y'~) y~ - (y~ - x l  Y~)Y'I} (Y'~ - Y~)-I 

and l d e F  2 y ; y ~  + (y;)2y~' , (y~)~y;" , 
r d x 2 - Y, - Y2 (y; - y~)a [(x~ - x2) yl - -  ( Y l  - -  Y2)] + (y~ _ y~)a [(x2 - x,) y.z - (y~ - Yl)] 

where y[ and y~' denote d y d d x  ~ and d2y~/dx~ respectively (i = 1, 2). 
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I n  order  to  de te rmine  the  sign of d ~ F / d x  ~ we need to  know in pa r t i cu l a r  the  signs of 

the  expressions in square  bracke ts .  Since s imilar  expressions will  occur again  i t  is con- 

ven ien t  for  us to  fo rmula te  t he  following s imple rule. 

Le t  P be a po in t  on a cen t ra l ly  symmet r i c  closed convex curve and  le t  Q be a po in t  

d i s t inc t  f rom P which is e i ther  on the  curve or in i ts  inter ior .  W i t h  a coordina te  sys tem as 

in Fig.  7 (i.e. wi th  centre  the  origin and  y-axis  para l le l  to  the  t angen t s  to  the  curve a t  i ts  

po in ts  of in tersec t ion  wi th  the  x-axis) le t  P ~ (~, ~) and  Q ~ (a, b). W r i t e  9 '  = d ~ / d ~ .  Then  

9 > 0  implies  ( ~ - a ) v  I ' - ( ~ - b ) < O  / (2) 

< 0  impl ies  ( ~ - a ) ~ '  (~ b ) > 0 .  J 

To show t h a t  th is  is so le t  ~ '  ~= 0 and  (~t, b) be the  po in t  a t  which the  t a nge n t  to  t he  

curve a t  (~, ~) in tersects  the  line t h rough  (a, b) which is para l le l  to  the  x-axis.  W e  have  

Le t  ~] > 0. 

I f  ~]' > 0 then  ~t < a, hence ~ - a § (b -~])/~]' < 0 and  (~ - a )9 '  - (~ - b) < 0 

I f  ~ '  < 0 then  ~t > a, hence ~ - a § (b - ~ ) /~ '  > 0 and  (~ - a )~ '  - (~ - b) < 0. 

I f  ~ '  = 0 then  ~] is an  absolu te  m a x i m u m  and  - (~ - b) < 0. 

Thus  if ~ > 0 then  ( ~ -  a ) ~ ' - ( ~ -  b ) <  0 and  b y  s imilar  a r g u m e n t  we f ind t h a t  ~ < 0 

implies  (~ - a )9 '  - (9 - b) > 0. 

Re tu rn ing  to  the  express ion for d 2 F / d x  ~ we note  t h a t  y~ > 0 since / -@Pi+ l  < ~, and  

since F (@Pi) in tersec ts  @Pi+IOP~+2 or @P~+I@Pt+2 produced  beyond  @Pi+2 i t  follows t h a t  

y ~ > 0 .  

Le t  Yl > 0. Since YI < Y2 a n d  L O P ~  < ~ i t  follows t h a t  y~ < 0. Thus  

y ~ - y ~ < 0  and  

App ly ing  the  above  rule we f ind  

[(x 1 - x~)y~ - (Yl - -  Y2)] < 0 

- 2 y i y ~ / ( y ;  - y~) < O. 

and  [(x 2 - xl)y~ - (y~ - Yl)] < 0. 

Since fur thermore ,  y~' and  y~' are  each nega t ive  i t  follows t h a t  d 2 F / d x  2 < O. 
r p �9 t 

Le t  Yl < 0 .  Since / @ P ~ < T e  we have  Y l > y 2 > 0 .  Thus  Y l - Y 2 > 0  and  

- 2y ;y~ / (y~  - y~) < 0. Also,  y~' < 0 and  [(x 1 - x~)y; - (yl - Y2)] > 0 while y ; '  > 0 and  

[(X2 - -  X l ) y 2  - -  (Y~ - Yl)] < 0. Aga in  d Z F / d x  2 < O. 

F o r  Yl in the  ne ighbourhood  of zero we see t h a t  

d F  d F  
l im - -  = l ira dxx = f l  + ? ( x l  - x2) y2. 

y~--~0 + d x y ~ - - ~ 0 -  
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I n  tha t  F is defined on an open set of values of x we can choose dx with either sign and in 

vir tue of the  above with such sign t h a t  F (II) can always be decreased. 

Let  us assume, therefore, t h a t / t ( 0 P i + l ,  OPi+e) - 1  also and consider the change in 

F ( I ] )  resulting f rom a variat ion of 0P~ and OPt+ 1 under  which ~u (OPi-1, OPt), # (OPt, 

O P ~ + i )  and # (0P~+I, OPi+2) each remain equal to  1. 

We choose a coordinate system as follows. Wi th  origin at  0 P i - 1  we take the x-axis 

to  have its positive half contain 0P~+e and the y-axis to be parallel to  the tangents  to 

P (0P,-1)  at  the points where the x-axis cuts F (OPi-1). Let  A and B be points on F (OPt-l) 

such tha t  @P~_IA = ~ P ~ O P ~  and  OP~_lJ~=@P~+2OP~ and let the  coordinates of 

A, B, @P~ and OPt+2 be (xl, Yl), (x2, Y2), (x, y) and (r, 0) respectively (see Fig. 8). 

We note t ha t  ~P~ and @P~+I cannot  lie on opposite sides of the x-axis. Otherwise 

@P~@P~+~ would intersect the x-axis to the left of @P~_~ or to the r ight  of @P~+~. In  the 

first case we would find tha t  OP~_~ lies inside the triangle @P~@P~+~@P~+~ hence also 

inside F (~P~+~) implying tha t  ~u (OP~+~, @P~-I) < 1. Recalling, however, t ha t  we chose P~ 

for which P~_~P~P~+~ is a triangle in the ver tex tr iangulat ion associated with O it follows 

t h a t  @P~+~@P~_~ is a diagonal and  therefore f~ (~P~+I, @P~_I) >~ 1. Thus the first possibility 

is ruled out.  As to the second, we would find in t ha t  case tha t  @P~+~ lies inside the triangle 

@P~_~@P~@P~+~. This is ruled out  by  condition 3 of Definition 2 when we again recall t ha t  

P~_IP~P~+I is a triangle in the vertex tr iangulat ion associated with @. Under  the circum- 

stances we can choose the direction of the y-axis to be such tha t  @P~ and @P~+I bo th  lie 

in the upper  half-plane. Thus, in particular,  y > 0. 

We observe tha t  x~ - x~ = x - r, ] (3) 
Y~ - Yl = Y. J 

( 

We can express F ( I ] )  as 

F ( I I )  = u § fl[(r + xI)y + (r - x)yl] , 

where ~ and fl are constants  and fi, in particular,  is positive. Subject  t o  (3) and the restric- 

t ion of A, B and OP~ to lie on F (0Pi-1)  we can regard F ( I I )  as a funct ion of x only. Using 

y[ and y[ '  as before and  y '  and y" to  denote d y / d x  and d2y/dx ~ respectively we 

r �9 

f ind ~1 d-~d2' = ( r + x l ) y ' - y ~ + { ( r - x ) y ~ + y } y _ y ~ "  Y~ - 

and  
1 d~F 

[3 dx2 
~ 2  t �9 p t �9 t �9 �9 - - -  (y - yl) (y _ y ~ ) ( y ~ _ y ~ ) - l + { y + ( r §  2 _ y~),,-1 y,, 

- [(x~ - xl) y~ - (y~ - y~)] (y' - ys (ys _ y~)-Sy~�9 

- [(% - x2) Y~ - (Yl - Y2)] (Y' - Yl) 2 (Y~ - y;)-3y~,. 
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B l 8Pi§ 

] 0Pi-t 8Pi+2 
I 

Fig. s. 

I t  suffices to  assume t h a t  Yl >~ 0, t h a t  is t h a t  / O P ~  §  >1 ~ for other-  

wise /OP~+I  §  >~ z and  we can in t e rchange  the  roles of OPt_  1 and  

OPi+2 t ak ing  the  l a t t e r  as origin a n d  so on. 

W e  observe t h a t  # (OPt_l ,  OPt+e) > 1. Otherwise OP~-IOP~+2 would  no t  be a d iagonal  

and  there  would necessar i ly  be a O-diagonal  wi th  P~+I as an  end po in t  the  image  of whose 

o ther  end  point ,  s ay  OPs,  lies inside the  quadr i l a t e ra l  OPi-IOP~OPi+IOP~+2. Recal l ing  

condi t ion  3 of Def in i t ion  2 and  the  fac t  t h a t  P~_IP~P~+ 1 is a t r i angle  in the  ve r t ex  t r iangula-  

t ion  associa ted  wi th  0 we observe t h a t  OP~ mus t  in fact  lie in the  t r iangle  OP~_IOP~+IOP~+2. 

Amongs t  such vert ices  as OP~ there  is one, say  O P t ,  for which /_OPtOP~+IOP~+ 2 is a 

min imum.  I t  follows t h a t  OPtOP~+2 is a d iagonal  but ,  since OP~-IOPi+2OPi+I lies inside 

F (OPt+z), # (OPt,  OPi+~) < 1 which is a contradic t ion .  Thus  # (OPt - l ,  OPt+2) > 1, imply ing  

Since, therefore,  xe - x = x 1 - r < 0 we have  x > x2 f rom which i t  follows t h a t  y~ > y ' .  

Fu r the rmore ,  since •  < ~, we have  y '  > y~. Hence (y' - y~) (y' - y~) (y~ - y~)-i  < 0. 

F o r  Yl > 0 according to  the  rule s t a t ed  ear l ier  [(x I - x e ) y ~ -  ( Y l -  Y2)] < 0  and  since 

y~ < 0 i t f o l l o w s t h a t  - [ ( x l - x 2 ) y ~ - ( y l - y ~ ) ] ( y ' - y l ) 2 ( y ~ - ~ )  Y2 o. 

Since y~ > 0  we have  [ ( x ~ - x l ) y ~ -  (y~-y~)]  < 0  and  since y l '  < 0  i t  follows t h a t  

- [ ( x  2 - x ~ ) y ~  - ( y~  - y ~ ) ]  ( y '  - y ~ ) ~ ( y ~  - y'~)-~y'~" < O. 

Since (x~ - x l ) y ~ -  (y~ - y ~ )  < O, y + (r - x)y~ > O; therefore  y + (r + x l )y  ~ - (x + 

x~)y~ > (x + x~)(y~ - y~) = (r + x~)(y~ - y~) > 0 and  since y" < 0 i t  follows t h a t  {y + (r + 

Xl) Y2 --  (X + Xl) y~} (y~ - y i ) - l y "  < 0. 

Thus, for y~ > 0 we have  shown t h a t  d ~ F / d x  ~ < 0. F o r  y~ in the  ne ighbourhood  of 0 

we observe t h a t  

l im d Yl l im d-ff -yl = y~ - y '  > 0. 
y~.-).O+ ~ ~ y~--~0- ~ X  

Also d F / d x  exists:  

l im d F  d F  , l im ~ = (r - x) y2 + (r + x~) y ' .  
y~o+ d x  = yl.-.o- d x 



AN INEQUALITY IN  THE GEOMETRY OF NUI~[BERS 41 

:Fig. 9. 

We can therefore adjoin to the values of x for which Yl >~ 0 those corresponding to YI in the 

neighbourhood of 0. The result is an open set and from what  we have shown it follows that  

F ( I I )  can always be decreased by  choosing dx with suitable sign. 

5. There remains for us to consider the case in which / O P ~  < ~ ,  #(OPt ,  OPi+l) = 1 

and J_OP~+ 1 ~> ~. 

We consider the variation in F ( I ] )  which results from varying @Pi and @Pi+l in 

such a way tha t  # (OPt_l, OPi), # (OPt, OPt+l) and # (OPt+l, OPt+2) remain constant. 

We choose the following coordinate system. With origin at  OP~-I we take the x-axis 

to contain OPt+2 in its positive half and the y-axis to be parallel to the tangents to F (OPt-l)  

at  the points where the x-axis cuts F(OP~_~). Let  A and B be points such tha t  OP~_~A = 

OP~+IOPi+2 and OP~_I B = O P t + l O P  ~ (see Fig. 9) and let the coordinates of OPi, A,  B 

and OPt+2 be (x, y), (xl, Yl), (x2, Y2) and (r, 0) respectively. Then 

x 2 - v x l = x - r  } (3) 

Y~ - Yl = Y. 
We can write 

F ( I I )  = ~ + fl {ry - (x 1 Y2 - - x 2 y ~ ) }  = o~ + fi {(x - x 2 ) y  - (x~ -x2)Yl }, 

where ~ and fl are constants and fi, in particular, is positive. 

Choosing x 1 as independent variable we find tha t  

t 
1 d F Y~ - Y~ [(x~ - x2) y ;  - ( y l  - y~)] .  

d x---1 = [ ( x  - - ( y  - _-- 

Since # (OPi-1, OPt) /> 1 and # (OP~_I, A) ~> 1 while # (OPi_l, B) = 1 we can determine 

the sign of each of the square brackets by applying the rule established ear]ier to/~ (OPi-1, 

OP~)F (OP~_~) and/~ (OP~_~, A)F (OPt-l).  
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W e  observe f irst  t h a t  Y2 > 0, i.e. t h a t  O P t  lies above  OP~+I. This  is a consequence of 

the  condi t ions  t h a t  0 < / O P t  < 7~ and  f-OP~+l  ~> ~. F o r  when OP~ lies above  the  x-axis,  

OP~+I mus t  lie in  t he  angle which  is t he  in tersec t ion  of the  half  p lane  conta in ing  OPt+2 

a n d  bounded  b y  the  l ine t h rough  OP~ and  OPt -1  and  the  half  p lane  conta in ing OPt -1  

which is bounded  b y  the  line t h rough  O P t  and  OPt+2. When  O P t  lies on the  x-axis  

O P t + l  m u s t  lie below i t  since 0 < / O P i < z .  W h e n  OP~ lies below the  x-axis  the  

condi t ions,  0 < Z-OPt  < ~ and  ~OPt+l ~ 7g require  t h a t  OPt+ 1 lie in the  angle which is 

the  in tersec t ion  of the  half  p lane  no t  conta in ing OP,+2 which is bounded  b y  the  line t h rough  

OPi_ 1 and  O P t  and  the  half  p lane  no t  conta ining @ P , - I  which is bounded  b y  the  line 

t h rough  @ P t  and  @Pt+e .  

L e t a ,  o'1, a 2 a n d ~  d e n o t e / @ P t @ P t - I X ,  / A @ P ~ _ I X , / - B @ P t _ I X  and  / - O P / ~ ) P t + 2 X  

respec t ive ly  where X is a n y  po in t  on the  x-axis  to the  r igh t  of OPt+2. 

(a) Le t  Yl > 0 then  [(x 1 - x 2 ) y l  - (Y l  - Yz)] < 0 and  since 

G 2 : G 1 + 2:7g - -  ~ _ O P i +  1 > G 1 > 0 i t  follows t h a t  y~ > y~. 

(i) I f  y > 0 t hen  [(x - x 2 ) y '  - ( y  - Y2)] < 0 and  since 
t �9 �9 ! �9 

~ = a § A O P t  > a > 0 therefore  Y2 > y '  and  (y~, - Y l ) / ( Y  - Y2) > O. 

(ii) I f  y < 0 then  [(x - x 2 ) y '  - ( y  - Y2)] > 0 and  since 

a2 = a §  ~ < a + ~ therefore  y '  > Y2' and  (ys' - Y l ) / (Y"  ' - Y2)" < O. 

(iii) A t  y = 0, 

t t , , 
,~ y~ - y ,  _ ,~ y2 - yl  , 

l im [(x - x~) y '  - ( y  - Ye)J y ; -  ~ l im [(x - x~) y '  - ( y  - Y2)J y ,  y_y~ - ( x  - x2) (y~ - yl)- 
y - > 0 +  - -  y - > 0 - -  - -  

I n  th is  express ion x is a m a x i m u m  for (x, y) on/~(OPt_l, |  a n d  since (x2, y~) 

lies on the  l a t t e r  or  in i ts  inter ior ,  x - x2 > 0. 

Thus  for yt  > 0 we f ind  t h a t  d F / d x  1 > 0 and  choosing d x  1 nega t ive  we can decrease 

F ( H ) .  I n d e e d  th is  is t rue  also for  Yl = 0 if wi th  d x  1 < 0 we choose d y  1 > O. 

(b) Le t  Yl < 0 then  [(x 1 - x 2 ) y  ~ - ( Y l  - Y 2 ) ]  > 0. 

Since Y2 > 0, y = Y2 - Yl > 0. Hence  [(x - x 2 ) y '  - ( y  - Ye)] < 0. Also a > 0 and  since 

a 2 = a + / O P t  > a > 0 i t  follows t h a t  y~ > y ' .  Fu r the rmore ;  a2 = (71 -~ 2 ze - ~ O P t + l  ~< 

a l  + z~ therefore  y~ ~< y; and  (y~ - Y l ) / ( Y '  - Y~) >10. 

Thus  for Yx < 0 we f ind t h a t  d F / d x  x < 0. W e  can therefore  decrease F ( I I )  when Yl < 0 

b y  choosing d x  I > 0. W e  m u s t  however  ensure t h a t  if ~-OP~+I =ze in choosing d x  I > 0, 

/ O P i + l  is increased.  Tha t  th is  is the  case we see as follows. F r o m  equat ions  (3) 

d , y ' - y l  ,, 
d x~ (y2) = y, _ y~ yu 
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t t  t t t t  

which is equal  to  ye when y l  = y2 i.e. w h e n / 0 P ~ + I  = ~r. B u t  since ye > 0, Y2 < 0 therefore  

if, when Z-0P i+I  = 7e, we choose dx  I > O, y'9 decreases i.e. as decreases.  Also for LOP~+I  = ~r, 

Yl < 0 hence y~' > 0 and  choosing dx  1 > 0, y~ increases,  i.e. a l  increases.  Thus  2 z - / - O P ~ + I  = 

a 2  - (rl decreases and  therefore  ~ 0 P ~ +  1 increases when dx  I > O. 

Summar iz ing  these resul ts  we see t h a t  F (II)  can be decreased in th is  case b y  increasing 

the  angle,  al ,  which is the  same as decreas ing / 0 P ~ + 2 .  

This completes  the  proof  of L e m m a  2. 

Proo /o /  Theorem 2. W e  have  shown t h a t  (I3) holds and  assume now t h a t  (Ik) holds 

for 3 < k < n. 

The values  which F takes  a t  polygons  in 9~ (#) which have  n ver t ices  are  c lear ly  bounded  

below; le t  2~ be the i r  g rea tes t  lower bound.  There  exists  a sequence, {O~K[r  = l ,  2 . . . .  }, 

of po lygons  in 9~(#) which have  n ver t ices  such t h a t  

l im F ( 0 r K )  = 2~.(1) 
r - - >  o o  

F u r t h e r m o r e ,  since there  are b u t  f in i te ly  m a n y  ve r t ex  t r i angu la t ions  of K*  possible,  

the re  is a subsequence each m e m b e r  of which is def ined in t e rms  of the  same t r i angula -  

t ion of K*.  Le t  the  l imi t  of th is  subsequence be II = O P 1 . . .  OPnOPn+l, OP~+I = OP1, 

t h e n  according to  Theorem 4 II  belongs to  9I(/z). I n v i r t u e  of the  con t inu i ty  of F we have  

Appl i ca t ion  of L e m m a  2 to  II  p rovides  t h a t  I I  has  one of the  proper t ies  (i) or (ii) of 

t h a t  l emma  or, since F ( [ [ )  cannot  be decreased,  the re  exists  [ [ ' i n  91 (#) such t h a t  F ( I I ' )  = ~n, 

] / '  has  n ver t ices  and  (i) or (ii) is t rue  of l ] ' .  W e  m a y  therefore  suppose t h a t  I I  i tself  has  

one of the  proper t ies  (i) or (ii) of L e m m a  2. 

Case (i). Le t  0 P i  be an in ter ior  po in t  of the  side OPjOPj+I .  If  2" i + 1, t hen  I I  1 = 

OP~OPj+I .. .  OP~_IOP~ is, according  to  the  Corol lary  to  Theorem 3, a po lygon  in 9.I(#). 

Since 1] 1 has  n - 1 ver t ices  the  induc t iona l  a s sumpt ion  is app l icab le  and  

A (II7) M (1~1) + 
A ~ l ~ > n - 1 .  

Observ ing  t h a t  M ( I I )  = M ( I ] I )  + 2 # ( O P t ,  O.P~+I) >~ M(II1)  + 2 

a n d  A (H*) = A (II*) 

i t  follows t h a t  
A (h*), M(h) 

A ~ - - ~ - - +  l>~n.  

(1) Since each polygon has n vertices we may assume that K is the same for all of them. 
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If  ~ + 1 = i - 1 we consider H2 = OP~OPi+I ... OPjOPi instead of H1 and the proof 

is similar. 

When  H 1 = OPiOP~+ 1 ... OP~_IOP~ and II  2 = OPiOPi+I ... OPjOPi each have three 

or more vertices bo th  H 1 and l]~ are in 9~(#) by  the corollary to Theorem 3 and by  indnc- 

t ional  assumption 

A (II~) M ( H  0 
A + ~  + 1 >~v(l-[~) 

and 
A ([I~) M(H2)  , 
~ - ~ - ~  • 1 ~> ~,(H2), 

where ~(I11) and u(H2) are the number  of vertices of H 1 and  H 2 respectively. 

Since A (I]*) = A (II*) + A (1-[~), 

M( I I )  = M (II1) + M(II2) - # ( O P ,  OPj)  - # ( O P ,  OPj+~) + # (OPj ,  OPj+~) = M (II~) + M (II3) 

and v(1]l) + v(l]2) = n  + 1 

it follows tha t  A (H*) , M (II) •  

Case (ii). Let  OP~OPj  be a diagonal of I I  and # (OP,  OPj)  = 1. According to Theorem 3 

O P t O P j  divides H into two polygons, say I I  1 and II~, each of which is in 9~(/~). Again 

A (II*) ~ )  
A + + 1 ~> v(H1) 

A (II~! + M ~_~)~H + 1/> ~ (H2). and 
A 

I n  this case we have A (H*) = A (II~) + A (I]~'); 

M ( H )  = M(H1) + M(II2)  - 2#(@P, | = M(II1)  + M ( I I  2) - 2 

and  v ([[1) + ~(II2) = n + 2. 

Hence A (H*) , M (H) 

Thus we have shown tha t  (In) holds for polygons in ~(#) .  Since a Jo rdan  polygon,  YI, 

admits  of a vertex t r iangulat ion it m a y  be realised as a polygon in ~ and if, fur thermore,  

it is weakly admissible, as a polygon in 9~(/~). (In) therefore holds, in particular,  for weakly  

admissible J o r d a n  polygons which is Theorem 2. 
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IV 

Proo/o/  Theorem 1. Let  ([I, E)  be a weakly admissible pair. Let  the vertices of I I  be 

P1 . . . .  , Pn-m and the remaining points of E be QI . . . . .  Qm, these being in the interior of I I .  

We proceed by  induct ion on m, the number  of points of E in the interior of 17[. We have 

proved in Theorem 2 tha t  Theorem 1 holds when m = 0. Let  us assume tha t  Theorem 1 is 

t rue for 0 < m'  < m.  

We introduce a coordinate sys t em as follows. Wi th  any  point,  0, as origin and any  

straight  line as y-axis we choose the x-axis to be parallel to  the tangents  to F (0) at  the 

points where the y-axis cuts F (0). Let  the coordinates of Q1 . . . . .  Q~ be (xl, Yl) . . . . .  (Xm, ym), 

respectively. We shall say tha t  Q, is to the r ight of Qj if x~ > xr to the left if x, < xj. B y  

moving Q, to the r ight  (left) we shall mean  moving Q, so as to increase (decrease) x, while 

holding y, constant.  I t  is clear t ha t  if Q, is no t  to  the left (right) of Qj then  by  moving Q, 

to  the r ight  (left) we do not  decrease # (Qi, Qj). 

I n  what  follows we shall consider variat ions of Q1 . . . . .  Q~ under  which (H, E) remains 

weakly admissible and, leaving P I  . . . . .  Pn -a  fixed, ~ ( H )  is unchanged.  I f  in the course of 

varying Q1 . . . . .  Qm any  of these points falls on II  we shall have nothing fur ther  to prove 

since the number  of points of E in the interior of II  is thereby decreased and the inductional  

assumption is immediately  applicable. We m a y  therefore omit  this possibility. 

Let  Q1 . . . .  , Q~ be so re-enumerated tha t  x 1 ~> x 2 ~> �9 �9 �9 ~> x~. I f  Q1 is not  #-d is tant  1 

from a vertex of II  to  its r ight  with the segment joining them in II* we move it to  the 

r ight  until  this is so. Q2 is either #-dis tant  1 f rom a point  amongst  P1, ..., Pn-m, Q1 to  its 

r ight  with the segment joining them in II* or we can move it to  the r ight until  this is the 

case. We continue in this way  with Q3 . . . .  , Q~-I. As a result each of the points Q~, ..., Qm 1 

can be joined to a vertex of H to its r ight  by  a simple polygonal  pa th  in H* whose vertices 

are amongst  Q1 . . . .  , Q~-I and whose sides are of/~-length 1. 

We now move Q~, if necessary, to the left so tha t  it is/~-distant 1 f rom a vertex of 

II ,  say P, ,  to  its left and P,Qm is in II*.  Ei ther  Q~ is/~-distant 1 f rom some other ver tex 

of II  or f rom one of Q1, ..., Qm-~ and the segment joining them is in II* or varying Qm along 

F (Pi) this becomes so or Q~ becomes a point  of H. 

I n  this way  we obtain a polygonal  pa th  of the form P,Q,,Pj or P~Q,nQ,I...Qr~ Pj 

whose inner points are in the interior of H and whose sides have #- length 1. I n  the second 

case Qr 1 ... QrPj is amongst  the paths  obtained earlier. Hence P j  is to  the  r ight of Q~ and 

P~ is to the left. Therefore P ,  and Pc are distinct and this is certainly so in the first case. 

Let  us suppose tha t  P,Q,nQrl ... QrPj is not  simple. Then since Q~I "'" Q~PJ is itself 

a simple pa th  one of its sides, say QrkQrk+ ~, intersects P~Qm; let the point  of intersection be 
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X.  P~Qrk+l is contained in II* for otherwise there would be a vertex of H, say Pl, in the 

interior of the trianglePiXQrk+ 1 such that  P~P~ is in H* and #(Pt ,  Pz) < l. Thus P~Qrk+I 

is in II* and #(P~, Q~k+l) ~> 1. Similarly #(Q~, Q~k) >~ 1. I~otiag that  

2 =/~(P~, Qm) +#(Q~k' Qrk+l) >#(P~, Qr~+~) § #(Qm, Q~k) 

it follows that  ~u(P~, Q~k+l) = 1 and we can replace PiQmQq...  Qr~Pj bYP~Qrk+l ... Q~Pj 

which is a simple path. Since P~QmPj is simple we can obtain under all circumstances a 

simple polygonal path, X = P~Qtl ... Q%Pj, whose sides have #-length 1 and whose inner 

points lie in the interior of II. 

The polygons I] 1 =PiP~+I ... P~_iPr QtlP i and II 2 =P~Qt l . . .  Q%PjPJ+I ... 

P~_iP~ contain subsets, E~ and E~ respectively, of E in their interiors. Let  E x denote the 

set consisting of E~ and the vertices of II~ and E2 denote E '  ' ~ together with the vertices of 

H2. The pairs (111, E~) and (II~, E2) are weakly admissible and since E'~ and E~ each contain 

fewer than m points we have, by the inductional assumption, 

A (II~) M (lI1) 

and A (II*) ? M__~H~_2) § 1 >~ n2, 
A 

where n 1 and n 2 are the number of points in E 1 and E2 respectively, l~oting that  

II* A (II~) + A ( 2 )  = A (II*), 

and 

M ( [ I 1 )  + M(YI2) = M ( H )  + 2 M ( ~ )  = M ( I I )  + 2 ( w  + 1), 

n 1 + n 2 = n + w  + 2, 

addition of the last two inequalities yields 

A (II*) M (II) + 
1 

V 

As an application of the inequality (In) we prove 

T ~ o ~ M  6. Let F (0) be a plane strictly convex Jordan curve having the origin, 0, as 

centre o/ symmetry. Let the n translates, F (P1) . . . . .  F (Pn), O/ F (0) be such that the domains 

they bound are non-overlapping and let S be the boundary o/ the smallest convex domain which 

contains them. Then 
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A (S*) - A (F*) - �89 [M (S) - M (F)] (p - A) >~ (n - 1) A (4n) 

where M (S) and M (F) are the lengths o / S  and F measured by the distance/unction,/t, deter- 

mined by 2 F; A is the critical determinant o /2  F and p is the area o/ the smallest parallelo- 

gram which contains F. 

Pro@ Let II  be the boundary of the smallest convex domain which contains P1 . . . .  , pn. 

Then 

A (II*) M (II) ~> n 
A ~ - - ~ - -  - 1. (5) 

We can assume tha t  P1 . . . . .  P~ are so enumerated tha t  YI is the polygon P1Pe ... ProP1. 

Referring to Fig. 10, we may  describe S*, the domain bounded by  S as the union of 

the following non-overlapping sets: 

(i) The parallelograms TiPcPi+l Uc+l (i = 1 . . . .  , m -  1) and TmPmP 1U 1 where Tc U~+I 

is the common tangent  to F (P~) and F (Pc+l) lying outside of H. 

(ii) The sector of F (Pc) bounded by  U~P~, ToP c and the arc of F (Pc) between U i and 

Ti which lies outside of II  (i = 1 . . . .  , m). 

(iii) II*,  the domain bounded by  II.  

Let  P~P~+I intersect F (P~) at  C~ and F (Pc+l) at  A i+l. Let  the points at  which Tc U~+I 

intersects the tangent to P(Pc) at  Ci and the tangent to F(P~+I) at Ac+ 1 be D~ and Bc+l 

respectively. We note that,  since F is centrally symmetric, CoD c is parallel to A~+IB~+ 1. 

Also Pi  T~ is parallel to P~+~ U~+ 1. 

Let  us translate A~+IB~+ 1U~+IPc+ 1 until Pc+l coincides with Pc and U~+i with T i. 

We obtain thereby a parallelogram A~+IAc+IB~+IB~+I where A~+I is the reflection of C~ 
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in P i  and  B~+I is the  po in t  a t  which U~+I T~ p roduced  in tersects  t he  t a nge n t  to  F (P~) a t  

A~+I. Fu r the rmore ,  the  area  of PiPi+l U~+IT ~ is the  same as t h a t  of A[§ 

The ra t io  of t he  l a t t e r  to  the  a rea  of A[§ is the  same as  t he  r a t io  of A~+IA~+ 1 

A '  to  A'~+~C~ which is precisely  # (  ~+1, A~+I) and  this  is equal  to  /z(P~, P~+x). Ref lec t ing  

A'~+IC~D~B~+I in P~ we ob t a in  a pa ra l l e logram which circumscribes F (P~) and  whose a rea  

"A" ~ ~ B '  " is therefore  no t  less t h a n  p. Thus  A (  i+lU~/)i  ~ l ) > ~ � 8 9  hence A(PiP~+IU~+IT~)~ 

# (P~, Pi+l) p/2. 

W e  nex t  observe t h a t  the  sum of the  areas  of the  sectors referred to  in (ii) is precisely  

A (F*) (see [4], p. 320). 

F r o m  these  observa t ions  we see t h a t  

A (S*) >1 A (II*) + M (II) p + A (['*) (6) 

while M (H) = M (S) - M (F). (7) 

Combining (6) and  (7) wi th  (5) we ob ta in  (4n). 
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