
Plane harmonic measures 
live on sets of or-finite length 

Thomas H. Wolff 

The purpose of this paper is to prove Theorem 1 below. Let E c C  be compact 
and 1 2 = C * \ E  where C*=CU{co}  is the Riemann sphere. We always assume that  
12 is regular for the Dirichlet problem and denote by w(~, ]I, z) the harmonic measure 
relative to ~ of the set Y c C *  (equivalently, of YNO~), evaluated at zESt. We also 
use w(~, Y) when discussing properties invariant when z is changed. 

T h e o r e m  1. If 12 is as above there is a set F c Ol2 satisfying w( ~, F ) = I  and 
with a-finite one-dimensional Hausdorff measure. 

Remarks. (1) The assumption that  ~ be regular for the Dirichlet problem is 
made only for convenience and in fact is no loss of generality in view of A. Ancona's 
result [2] which implies that  an arbitrary domain gt whose complement has positive 
capacity may be expressed as An l ' t n \P  where each ~,~ is regular for the Dirichlet 
problem and P has zero capacity. A set with full harmonic measure for each ~n will 
have full harmonic measure for ~, and since a countable union of sets with a-finite 
length clearly has a-finite length Theorem 1 for the ~n'S implies the corresponding 
statement for gt. 

(2) Theorem 1 sharpens the result of [5] which says the same with "a-finite 
one-dimensional Hausdorff measure" replaced by "Hausdorff dimension one". For 
simply connected domains, Theorem 1 is proved in [6,7]. 

(3) In a sense we obtain a semiexplicit set F namely 

F =  {~ :limrSo pw(~'D(~'r)) > 0 } ,  

where D(4, r) is the (euclidean) disc with center ~ and radius r. However, it is easy 
to see that  if any set F will work then so will this one, so we do not stress this 
point. 

Theorem 1 will be a corollary of the following somewhat more precise result. 



138 Thomas H. Wolff 

T h e o r e m  2. With notation as above suppose that d i a m E < l .  Then for any 
0 < 5 < 1 ,  0 < 6 < 1  and sufficiently large M (how large depends on 5 only) there is a 
set F C E  such that w(~,F,~)>_C-15 and with a covering FCU~D(zi,r~) where 
(i) ~ i r i < C M  ~ and (ii) ~:r~>er~<CM-1. 

Here C is an absolute constant. Theorem 1 follows from Theorem 2 by a 
formal argument as we will explain shortly. It first seems necessary to make a few 
nonmathematical remarks. 

I first proved Theorem 1 (and 2) in 1986. I circulated a handwrit ten manuscript 
at the time but  did not have it typed up. The proof was related to the proof of 
the corresponding dimension one statement given in the preliminary version [4] of a 
joint paper with P. Jones. Subsequently a more elegant approach to the dimension 
one result was given by L. Carleson and the published version [5] of the paper by 
Jones and myself uses Carleson's argument. It is not immediately clear how to 
adapt the latter argument to give the a-finite length statement but it is natural to 
expect that this can be done. However, I have now decided to publish the original 
argument, with a few technical simplifications, which is what will be found below. 
This argument is quite precise if also quite long-winded and conceivably it could be 
of interest for other problems. 

Since paper [4] was written jointly with Jones and is not published it is also 
appropriate to mention that  the Lemma 2.1 below was in [4] and that  the general 
scheme of the argument in the subsequent sections is also similar to [4], although 
in the case of the dimension one result proved there the latter argument is more 
straightforward and simpler. 

Now let us return to mathematics and explain why Theorem 2 implies Theo- 
rem 1. 

1 of Theorem 2. Proof of Theorem 1. We require only the case 5=~ 
Let r be any rate function strictly weaker than one dimensional, i.e., r [0, cxD)--+ 

[0, ~ )  is continuous and increasing with limt--+0 r Let 

h r 1 6 2  

be the associated Hausdorff content. 
Assume first that  ~ t - - C * \ E  with d i a m E < l .  If ~>0, then an appropriate 

choice of Q and M in Theorem 2 (namely: M > c  -1 and ~ small enough that 
r yields a set F~ with w(~,F~,cc)>C -1 and hr Taking 
lim supj~ocF1/j2 we obtain a set F ~  such that  w(~, F ~ ,  cx~)>C -1 and h r  

Next let ~ be arbitrary and let {zk} be a countable dense subset of ~. Moving 
the result in the preceding paragraph around using linear fractional transformations 
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we obtain sets {Fk} with w(12, Fk, zk)>_C -~ and hr It is well known that  
then Fr k Fk will satisfy w(12, F r  and clearly hr162 

Finally let 

Suppose to get a contradiction that  w(~t, F ) ~ I  or in other words that  

(0.1) 

By Egorov's theorem there is a set Y with nonzero harmonic measure on 
which the limit in (0.1) may be taken uniformly, i.e., a rate function r with the 
property limt-~oO(t)/t=O and a set Y with w( ~ ,Y) > 0  such that  ~EY implies 
w(~,D(~,r),oo)~O(r) for all r. With Fr as above we have w(~t, YAFr 
w(12, Y, oc)>0 and hr162162 Choose a covering of YNFr by discs 
D(~i, ri), ~iEYAFr with ~ r YNFr co). Then 

~(~, Y nF~, oo) <_ ~ ,~(~t, D(r ri), oc) 
i 

i 

< w(a, YAF~, co) 

and we have our contradiction. So w(~, F ) = I .  
On the other hand it is well-known that  F will have a-finite one-dimensional 

Hausdorff measure. This is proved as follows. It suffices to show that  

F~ = { ~ : lim sup w( ~' D ( ~-' r ) ' c~ ~o r > 5 }  

has finite one-dimensional Hausdorff measure. Clearly each point ~ E F e has arbi- 
trarily small neighborhoods D(~, r) such that  w(~, D((,  r), oc)>hr.  By the Besico- 
vitch lemma there are discs Di =D(~i, ri) such that  ri is less than any preassigned ~, 
r~ <_5-1w(12, D((i, ri), c~) and no point belongs to more than a fixed finite number 
C of the Di's. Then 

E ri <_ 5 -1 E w(~t, D((i, ri), c~) ~ C5 -1 
i i 

and if we now let e--*0 we are done. [] 
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We note that  the more natural  looking way to quantify Theorem 1, namely, 
1 tha t  if ~ is normalized as in Theorem 2 then there is a set F with w(~, F, oe) > 

(say) and with one dimensional Hausdorff measure bounded by a universal con- 
stant,  is readily seen to be false using conformal mapping. Start with a simply 
connected domain ~t whose Riemann mapping function f :  {z: Izl>l}--*~t satisfies 
lim supr__.llf'(reiO)l= oo a.e. Delete a sequence of discs of uniform hyperbolic radius 

centered at points f(zj) where {zj } is a nontangentially dense set with I f'(zj)l >_N, 
and N is a given large constant. Harmonic measure for the resulting domain will 

be supported on the discs, and its density relative to length measure will be ~<N -1. 
The rest of the paper  is concerned with the proof of Theorem 2. As in [4], [5] 

the proof is based on a recursive domain modification construction. In Section 1 we 
give some preliminary lemmas and then explain the construction in a special case. 
In Section 2 we prove two key lemmas, 2.1 which gives one of the building blocks 
for the construction, and 2.6. Sections 3 and 4 contain the recursive construction 
and Section 5 the main estimate on the resulting domain. In Section 6 we finish up 

the proof. 

We conclude this introduction by giving a list of notation. 
D: closure of the set D 
D(a, r): euclidean disc with center a and radius r 
/(Q): side length of the square Q 
AD: dilation of the disc or square D by factor A > 0 around its 

center, e.g. AD(a, r) = D(a, Ar) 
da: arc length measure on a given smooth curve 
h i (E) :  one-dimensional Hausdorff content of E,  i.e., 

h i (E)  = i n f ( ~  i r~: E C ~Ji D(ai, ri)) 
cap E: capacity of E,  as defined in [1] 
w(~, Y, z): harmonic measure for ~ of YNO~, evaluated at z 
ga: Green's function of ~ with pole at oe, normalized so that  

(i) ga > 0 and (ii) if 0 ~  is smooth dw(~,., oo)= IVg~lda. 

We denote fixed constants by C, and use the notation x~y  to mean x<Cy and 
x~y  for "x<y and y<~x". However, in many  cases we have given numerical values 
for constants instead of calling them C. With  one exception (the 5 and 23- at the 
beginning of Section 3) the values of these constants are irrelevant and are given 
only for the convenience of the author for whom it is easier to write 3, 4, and 12 

instead of C1, C2 and C1C2. 
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1. A u x i l i a r y  l e m m a s  and  th ick  case  

Fix ~>0. Let ~=C*\E  be a domain containing co, D-=D(z,r) a disc and 
assume that  

(1.1) cap(EMD) ~_ e-1/er. 

Condition (1.1) (called capacity density condition) and its negation will play 
a significant role in this paper as in [4]. If (1.1) is satisfied we can "smooth" the 
domain ~ by deleting D from it, without distorting harmonic measure by very 
much, as described in the following lemma. 

L e m m a  1.1. Suppose 12 and D satisfy (1.1). Then for A>I,  

w(~\D, D, co) < C~,~(~, XD, co). 

Proof. We have w(AD\E, EMAD, z)>_C~,~ for all zEOD. This is a corollary 
of Lemma 2.1 below so we skip the proof at present. By the maximum prin- 
ciple w(~,EMAD, z)>C -1 for zEOD. So by the maximum principle on ~ \ D ,  
w(~\D, D, z) <_C~,~w(~, AD, z) for all z E ~ \ D  and in particular when z=co.  [] 

We will also want to control the density of harmonic measure. In the following 
lemma, a is surface measure on OD. 

L e m m a  1.2. Suppose ~=C*\E  is a domain containing co, w=w(~,.,co) 
and that D=D(a,r) is a disc contained in E and A>l .  Then ~d[O n i8 absolutely 
continuous with respect to a and for zEOD, 

dc~ I ~ C~r-lw(12\~D' ~D, co). 

Proof. Equivalently 

(1.2) w(~, Y, co) <_ CA a(Y) w(12\)~D, )~D, co) 
r 

for all YcOD. To prove (1.2) define N=maxo(~D)w(~, Y,. ) and choose zoEO()~D) 
with w(~, Y, z0)=N. Let A be the annulus )~2D\D. Then 

N-w(12MA, Y, zo) = w(~, Y, zo)-w(~MA, Y, zo) 

= f w(12, Y,. ) dw(~MA,., zo) 
Jo ()~2D) 

< Nw(~NA, 0()~2D), z0), 
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where the last step follows by the maximum principle on ~ \AD.  Also 

1 w(~oA,  0(~2D), zo) <_ w(A, O(X2D), z0) = ~. 

Combining this with the preceeding shows that w(~tOA, Y, 1 z z0)_> ~ N =  ~w(~, Y, z0). 
By the maximum principle again, w(A, Y, Zo)>_ �89 Y, z0). Since w(A, Y, zo) is 
comparable to cr(Y)/r we obtain maxa(~D)OJ(ft, Y,.)<_C~a(Y)/r and then (1.2) 
follows by the maximum principle on ~ \ AD. [] 

Remarks. (1) We can combine Lemmas 1.1 and 1.2: with the assumptions 
of Lemma 1.1, let w ( ~ \ D , - ,  cr Then Idw/dal <_C~,~r-lw(fl, )~D, ~)  on the set 
O(~\D)nOD. 

(2) Lemma 1.1 and the result in Remark (1) remain valid if f t \ D  is replaced by 
any domain contained in f I \D,  because of the maximum principle. We will make 
this type of extension routinely and sometimes without explicitly saying so. 

By way of motivation for the rest of the paper, we will now present a proof of 
Theorem 2 (hence Theorem 1) under the assumption that  every disc of radius _< 1 
centered at a point of E satisfies (1.1) This case of Theorem 1 does not originate 
with us, however. It is implicit in [6] given certain known facts about the covering 
map onto such a domain, as was observed independently by a large number of people 
in or around 1985. The proof below is implicit in [4] and the reason we make it 
explicit here is that  it provides a simple model for the proof in the general case. 

Let ~=w(S2,. ,oc).  For each zEE choose a disc D(z,r) which is maximal 
subject to the following condition 

(1.3) either r = t~ or w(D(z,r)) >_ Mr. 

Choose a subcover Dj =D(zj, rj) with the Besicovitch property, i.e. E c U j  Dj 
and no point belongs to more than C Dj's where C is a universal constant. Let 
~=~t\[ .J j  Dj, ~ = w ( ~ , . ,  c~), t7 the Green's function of ~ with pole at oc. Note that 

c9~ is smooth except at finitely many points so that d~/da can be identified with 
Iv~l. Also 

(1.4) ~(Dj) <~ w(2Dj) 

by Lemma 1.1 (and the maximum principle), and in fact 

(1.5) iV~l < w(2Dy) on 0~ N cgDj 
rj 

by Lemmas 1.1 and 1.2. In particular (1.5) implies 

(1.6) IV~] ~< M 
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on 0n,  because of the stopping rule (1.3). On the other hand 

(1.7) Joffi IV,~lda = 1, 
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(1.8) ~o5 IV'~I log IV~lda k const 

(see [3,5]), and therefore for large M it follows as in [4,5] that 

f 
(1.9) [ IV~lda ~ c-l~. 

Jlv ~I>M-~ 

The simple calculation showing that (1.6)-(1.8) imply (1.9) is also done in 
Section 6 of the present paper. Now let {Djk} be all Dj's such that either rj > Q, 
or else rj=~ but ODj intersects the set {~E0fl: IV.~(~)I_>M-5}. By (1.9) we have 
Y~k ~(DJk )-> C-15, and then (1.4) implies ~-~-k w(2Djk) >- C-15" If rjk > Q then the 
stopping rule (1.3) implies w(2nj~)<~w(Djk ) so if we let 

f DJk' rjk ~> ~, 
Aik [ 2Djk , rjk : Q, 

then ~kw(Ajk)>>C-15. Let F----UkAjk. The Ajk clearly have the Besicovitch 
property so w ( F ) > C - 1 5 .  On the other hand, if rjk >Q then rjk <_M-lw(Ajk) by 
(1.3). Thus 

E rjk~M-l" 
rj  k >Q 

If ry k--~ then rjk <~M~w(Ajk) by (1.5) since IV~l > M  -~ somewhere on ODjk. 
Therefore 

E rJk<~MS' 
r jk  : Q  

so the discs Ajk give a covering of F of the type in Theorem 2. [] 

The difficulty when (1.1) fails is of course that we cannot conclude (1.4) and 
(1.5). We therefore cannot simply delete the Dj ' s  from ~ and instead will use a 
construction described in Lemma 2.1 below. 
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2. D o m a i n  modif icat ion procedure  near th in  parts of  the  b o u n d a r y  

Lemma 2.1. There are absolute constants R<c~, c0>0, A<c~ making the 
following true. 

Suppose ~ = C * \ E  is a domain containing ce, w=w(~,. ,oc), Q is a square 
5 with diameter r, and cap(ENQ)<e-UeOr. Then there are rl and r2, g < r l < r 2 < l ,  

such that if we let B be any closed disc contained in �88 with radius 
r(r -1 cap(Enr2Q)) 1/R and define E=(E\r lQ)UB,  5---C*\E, ~=~v(5,., oc), then 

(i) ~ ( Y ) <  w(Y) for all V with YNB=r 
(ii) ~(B)  <Aw(ENr2Q), 
(iii) hi (B) >_A-lhl (Enr2Q). 

Remarks. (1) What  the lemma says is that  we delete the part of E which 
is contained in a certain square rlQ and replace it with a disc whose capacity is 
roughly that  of the part of E contained in a slightly larger square r2Q. This makes 
harmonic measure decrease except of course on the disc, where it increases in a 
controlled way, and also makes hi content increase. 

(2) Part  (iii) of the lemma, while important for us, is trivial provided R > I  
since a disc has essentially the largest hi content among all sets with the same 
capacity. It will be clear later on that  we can take R>  1, so we regard (iii) as proved 
and will say no more about it. 

(3) Part  (i) on the other hand may appear a bit strange, since if ENrlQ is 
deleted from E one would normally expect harmonic measure to increase drastically 
on the part of E which is just outside rlQ. However, the small capacity assumption 
will allow us to choose rl  so that  E is very thin near O(rlQ) and then we will be 
able to show (i). This is the main point in the proof. 

(4) By shrinking Q slightly we can guarantee (provided c0 is small enough) that  
OQNE----O. This well-known fact (i.e. capacity dominates projected linear measure) 
is also part of Lemma 2.4 below. We may (and will) therefore assume OQNE----O in 
the proof. 

(5) It is not hard to see (particularly if one thinks probabilistically) that it 
suffices to prove the following local statements on Q instead of (i) and (ii). 

(i') There is r3/2 e (rl, r2) such that w(r2Q\E, Y, z) <w(r2Q\E, Y, z) for all 
zcO(r3/2Q) and all Y with YNB=O. 

(ii') There is r3E(r2, 1) such that w(Q\E ,B , z )<Aw(Q\E ,  ENr2Q, z) for all 
z~O(r3Q). 
We will concentrate at first on proving (i'), (ii') and after this has been done, will 
give the details of the reduction of (i), (ii) to (i'), (ii'). 
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We will need some estimates of harmonic measure which are special to the 
situation at hand, i.e., a domain obtained from a nice domain by deleting a set with 
small capacity. The following four lemmas are of this type. The sets G appearing 
in these lemmas are assumed closed relative to Q and Wiener regular for the sake 
of simplicity, although the latter assumption is not really needed. The first lemma 
is wellknown. 

L e m m a  2.2. Let Q be a square with diameter 1. Fix A<I and 6>0. Suppose 
GcAQ. Then w(Q\G,G,a)>~(log(1/capG)) -1 for all aeAQ. The inequality is 
reversible/f dist(a, G)>_Q. (Constants depend on A and 6.) 

Remarks. (1) Similar statements when diam Q #  1 are obtained by scaling. 
(2) Q could equally well be a disc instead of a square. This justifies the first 

sentence in the proof of Lemma 1.1. 

Proof. Let # be the capacitary measure of G, i.e., IIpil=(log(1/cap G)) -1 and 

V~(x)de--fflog(1/ix--yl)d#(y)=l when xEG. Let F(x ,y)  be the Green's function of 
Q and consider the function X(x)=f F(x,y)d#(y) .  Then X vanishes on OQ and is 
bounded above and below on G since F(x, y)~log(1/ix-yl) when x, yEAQ. Hence 
X(X)~W(Q\G, G, x) for all xeQ. If xcAQ, then F(x, y) is bounded below by a con- 
stant for all y eG and therefore X(x)>~ ]]#l]. If gist(x, G )>  Q then F(x, y) is bounded 
above by a constant so that  X(x)<~Np] ]. The lemma follows. [] 

L e m m a  2.3. Let Co be a sufficiently small constant. Fix A<I  and 6>0. Sup- 
pose Q is a square of diameter 1, GcQ and YCO(Q\G). Suppose a, bcAQ\G 
satisfy w(Q\G, G, a) <_Co, w(Q\G, G, b) <_Co, dist(a, Y) > ~ and dist(b, Y) > 6. Then 
w(Q\G, Y, a)~w(Q\G, Y, b) (constants depend on A and 6). 

Proof. This will be based on the following "fine" version of Harnack's inequal- 
1 w(A\E,E,a)<~o ity. Suppose A is the unit disc, E c A  is relatively closed, aE ~A, 

where ~0 is sufficiently small. Suppose u is continuous on A positive harmonic on 
A \ E  and zero on E. Then sup(1/2)A u(x)<Cu(a). 

The proof we give for the Harnack inequality was suggested by P. Jones. Let 
M=sup(1/2)~ u(x) and F={xCA:u(x)>M}.  Then F intersects every circle cen- 

1 and 1 so by the Beurling projection theorem, tered at zero with radius between 
(A \ F, F, a) > C -  1. Then also 

F, a) > F, E, a) > C -1 > (2C) -1 

provided ~0 is small. So by harmonic estimation 

u(a) > M (a\(EUF), F, a) > (2C)- M 

6 - A r k i v  f'6r matematik 
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and we are done with the Harnack inequality. 
In proving the lemma we may assume diamY<_0 (else subdivide Y in sets 

with this property). Note that by Lemma 2.2, cap(GMpQ) will be small, where 
#--�89 Choose discs Aj, j = l ,  ..., N so that  the following hold: 

(i) A1 is centered at a, A N is centered at b; 
(ii) A j c # Q \ Y ;  
(iii) the diameters of the Aj are bounded below; 
(iv) N is bounded above; 
(V) 1 A j c l  ~Aj+I.  

We note that (iii) and (iv) are possible because diam Y is small which implies that 
Q \ Y  is for all intents and purposes an annulus. Because of (iii) the capacity of 
GMAj will be small compared with the radius of Aj. Thus, by Lemma 2.2, for 

1 any j there will be a point ajE-~Aj such that  w(Aj\G,G, aj) is small. If j=l ,  
we can take aj=a. In view of (v), the Harnack type inequality of the first part of 
the proof implies max(1/2)~r u(z)<u(aj), so by iterating and using (iv) we obtain 
u(b)<~u(a). [] 

We mentioned in Remark 3 at the beginning of the section, that  Lemma 2.1 
requires choosing rl  so that  E is appropriately "thin near O(rlQ)". The next two 
lemmas give a meaning to this. 

L e m m a  2.4. Let Q be a square with diameter 1, GcQ and define G~-- 
{zEQ:w(Q\G,G,z)>_A} and ~/~={r:G~MO(rQ)~O}. Then the linear measure of 
~/~ is _<C(capG) ~. 

Proof. By standard projection theorems for capacity it suffices to prove 
cap G~ _< (cap G) ~. Let # and #x be the capacitary measures of G and G~ respec- 
tively. Let V~(x)-- f log(1/lx-yl) d#(y). Then w(Q\G, G,. ) <V~ by the maximum 
principle. So 

(lO c&) : II~ll .~--1 / o2(Q\e, G,. ) d#A(-) 

= A -1 / V~dp 

1(lo  ) 
as claimed. [] 



P l a n e  h a r m o n i c  m e a s u r e s  l ive  on  se t s  of  a - f i n i t e  l e n g t h  147 

L e m m a  2.5. Suppose Q is a square of diameter 1, GcQ, and aEQ. Then 
the set 

{t e R+:  3~ > 0: w(Q\G, GN((t+e)Q\(t-e)Q), a) >_ Msw(Q\G, G, a)} 

has linear measure <_ CM -1. 

Remark. Needless to say we are setting sQ=O if s<0 .  

Proof. This is simply the one-dimensional Hardy-Li t t lewood maximal theorem 

applied to the projected measure a([r i ,  r2))=w(Q\G, GN(r2Q\rlQ), a). [] 

We won't  define precisely what we mean by "E is thin near O(rlQ)." However, 
the idea is as follows: fix a point a located well inside Q such that  w(Q\E, E, a)< 
Clog( l /cap(ENQ)))  -1. Such points exist because of Lemma 2.4. Then choose r l  by 

Lemma 2.5 so that  w(Q\E, EN((rl§ -1 
for all s>0 .  This makes E about  as thin as it can be near O(rlQ), at least as 
far as harmonic measures are concerned. Some variants on this idea will also be 
used (later on, that  is, when we give the precise definition of r l ,  r2, r3 and r3/2). 

Now we star t  the proof of Lemma 2.1. We can assume that  Q has diameter  1 
and (see Remark 4 above) OQ does not intersect E.  The main work in the proof 
is contained in the following inequality (2.2). Fix a large number  M < c ~ .  Suppose 

_ 59 EcQ is relatively closed and Wiener regular. Let rE(6A6, ~ )  a, bEAQ with A - W ,  
be such that  ENO(rQ)=O and 

S w(Q\E, EN((r+~)Q\(r-e)Q), a) <_ m(a)s 
(2.1) 

w(Q\E, En((r+r b) <_ m(b)r 

for all ~>0, where rn(a) and m(b) are sufficiently small. Let F be EN(Q\rQ). 
Then we claim that  

(2.2) w(Q\F, Y, a) <_ w(Q\E, Is, a)+Cm(a)•(Q\E, Y, b) 

for all YcO(Q\F). 

Remark. In other words, deleting ENrQ does not drive harmonic measures up 

by very much. 

Proof of (2.2). Let aa (respectively ab) be the projection of w(Q\E,.,  a) (re- 
spectively w(Q\E,.,  b)) i.e. aa([s, t))=w(Q\E, En(tQ\sQ), a) etc. Then 

w(Q\F,Y,a)-w(Q\E,Y,a)=/E w(Q\F,Y,.)dw(Q\E,.,a) 
\F 

< [ max w(Q\F, Y, z) daa(t). 
gt dr zEO(tQ) 
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We now show the following inequality on the integrand 

(2.3) w(Q\F, Y, z) <_ C log ~ w(Q\F, Y, b), z e O(tQ), t < r. 

To prove (2.3) let D be a closed disc centered at z with radius half its distance 
to O(rQ) (approximately r-t). Then using the maximum principle 

w(Q\(DUF), D, b) >_ w(Q\(DUE), D, b) 

=w(Q\D,D,b)-/E w(Q\D,n,.)dw(Q\(nUE),.,b) 
\D 

> w(Q\D, D, b)--JE\D w(Q\D, D," ) dw(Q\E, ", b). 

Q\D is essentially an annulus so that 

w(Q\D, D, ~) 5 (log ~ - t )  log 1 
1 

Ir 
( 1 ) - 1  1 

logg _t log ]r-s] if cO(sQ). 

Hence 

(2.4) w(Q\(DUF),D,b) ~ (log V _t)-/(logr_t/1 -1 -1YllOglr_sll dO-b(S). 

By the assumption on Crb([r--e , r+e)) and monotonicity of the logarithm we 
may replace dOb by m(b)ds and may therefore conclude that 

w(Q\(DUF),D,b)~ (log r-~)- l ( i -Cm(b))~ (log A )  -1 

provided m(b) is small enough. Next 

w(O\F, Y, z) ~ ~i~w(O\F, Y, r 

< w(Q\F, II, b)/w (Q\ (DUF), D, b), 

where the first inequality follows from Harnack's inequality and the second from 
harmonic estimation of the function w(Q\F, Y,. ) on the domain Q\(DUF). Since 
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we have already shown that  w(Q\(DUF), D, b)>(log 1/(r-t)) -1 we may conclude 
(2.3). 

To prove (2.2) substitute (2.3) into the inequality preceding it obtaining 

L 1 
w(Q\F,Y,a)-w(Q\E,Y,a)<~w(Q\F,Y,b) log~L~_tda~(t ). 

T 

(2.5) w(Q\F, Y, a)-w(Q\E, Y, a) <~ m(a)w(Q\F, Y, b), 

where we used the assumption on aa ( [ r - e ,  r + e)) and monotonicity of the logarithm. 
If we apply (2.5) with a=b we obtain 

w(Q\F, Y, b)-w(Q\E, Y, b) <~ m(b)w(Q\F, Y, b) 

and therefore w(Q\F, Y, b)<~w(Q\E, Y, b) provided re(b) is sufficiently small. Sub- 
stituting this last inequality back into the right side of (2.5) gives (2.2). 

We will also use the following slight variant of (2.2) where one deletes an annulus 
instead of a disc. Let Q,E,a,b as in (2.1) and suppose r, QE(~ 0 59 , ~ ) ,  g<r ,  are such 
that p as well as r satisfies (2.1), i.e. 

(2.1') 

w(Q\E, En((r+e)Q\(r-~)Q), a) <_ rn(a)e 
w(Q\E, EN((g+e)Q\(Q-e)Q), a) <_ rn(a)~ 
w(Q\ E, En( (r +e)Q\ (r-r b) <_ m(b)r 
w(Q\E, EN((Q+e)Q\(~-e)Q), b) <_ m(b)e 

for all e>0,  where the numbers re(a) and m(b) are sufficiently small. Let us define 
F=EN(QQU(Q\rQ)). Then the statement analogous to (2.2) holds, i.e. 

(2.2') w(Q\F, Y, a) <_ w(Q\E, Y, a)+Cm(a)w(Q\E, Y, b). 

We indicate the necessary changes in the proof. The inequality preceding (2.3) 
is now replaced by 

w(Q\F,Y,a)-w(Q\E,Y,a)<_ f c  max w(Q\F,Y,z)daa(t) 
(~,r) zEO(tQ) 

and (2.3) is replaced by 

(2.3') 
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zEO(tQ), Q<t<r. The proof of (2.3') is essentially the same as of (2.3). Take D to 
be a disc of radius half the distance from z to O(QQ)UO(rQ). Considering separately 
the cases r-t<t-Q and t-Q<r-t  we obtain 
(2.4') { w(Q\DuF'D'b)>~(l~176 D, b) >~ ~ -1 1 ~ - t )  l o g ~ d ~ b ( S ) ,  r--t<_t--o 

/ log 1 \--1 /~ / 1 \ -1  1 - j  t log log i~_sidC%(S), t-o<_r-t. 

We conclude that w(Q\DUF, D,b)>~(log(1/(r-t))) -1 in the first case and 
w(Q\DUF, D, b)>(log 1/(t-~))-1 in the second case, and then (2.3') follows simi- 
larly to (2.3). From (2.3') and the inequality preceding it we conclude that 

w(Q\F, Y, a)-w(QkE, Y, a) 

<~w(Q\F, Y, b) [~t<rl~ r-~ daa(t)+ ~ol~  t~Q daa(t) 1 

and then (2.2') follows like (2.2). 

Now we define rl,  r2, r3, and r3/2. 
r , - / 5 6  57 Choice of r3. We require 3=(~6, ~6), EOO(r3Q)=O and 

( 
cap(ENQ)l ) 

I 1 

w(Q\E, E, z) <_ C3 \ log 

for all zEO(r3Q). This is possible by Lemma 2.4 provided C3 is a sufficiently large 
universal constant and r is small enough. 

Choice of r2. Let acO(r3Q) be such that w(Q\E, E, a) is as small as possible 
and choose r ~- [ 54 55 2 = ~6 ,  ~6) such that ENO(r2Q)=0 and (for a sufficiently large universal 
constant 6'2) 

(2.6) ~(Q\E, EN((r2+s)Q\(r2-r <C2r 

for all ~>0. This is possible by Lemma 2.5. 
The remaining choices--r3~2 and r l - - a re  analogous to the preceding but with 

r2Q replacing Q. 

Choice of r3~2. We require r3 /2E(~oo  , 53 ~6), ENO(r3/2Q)=O and 

( 1 )1 
w(r2Q\E, E, z) <_ C3/2 log cap(ENr2Q) 
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for all zEO(r3/2Q), which is possible by Lemma 2.4. 

Choice of rl. Let aCO(r3/2Q ) be such that  w(Q\E, E, a) is as small as possible 
and choose r lE  ( ~ ,  ~0) such that  EMO(rlQ)=O and 

(2.7) w(r2Q\E, EM ((rl +E)Q\(rl -~)Q), a) <_ ClCW(r2Q\E, E, a) 

for all e>0,  which is possible by Lemma 2.5. 
Next we want to prove (i') and (ii'). Let us note first that  (2.6) remains 

valid (with a different constant C2) if the fixed point a is replaced by any other 
point bEr3Q satisfying the following conditions: 56 53 b~(~6Q\~Q ) and w(Q\E, E, b) 

1 and follows from Lemma 2.3 for is sufficiently small. This is a tautology for s > 1~ 
c<  720 (so that  the distance from (r2 + s ) Q \  ( r2-~)Q to b is bounded below), since 
w( Q \ E, E, b)>_w(Q\E, E, a) by the maximum principle. 

In the same way (2.7) remains valid if a is replaced by any point ~cr3/2Q such 

that 9 4  49 ~ Q  and w(r2Q\E, E, ~) is small enough. 
In particular inequality (2.6) holds for all aEO(r3Q) and for some aE �88 (the 

latter by Lemma 2.4) while inequality (2.7) holds for all aEO(r3/2Q) and for some 
 e�88 

We are now set up to prove (i'), (ii'). 

Proof of (ii'). Fix zoEO(r3Q). Choose rE( 5s 59 ~ , ~ )  by Lemma 2.5 so that  
w(Q\E, EM((r+e)Q\(r-s)Q), zo)<_Cew(Q\E, E, zo) for all s > 0  and apply (2.2') 
with this r and with ~=r2, b--a=zo, taking Y=EMr2Q. The hypothesis (2.1 I) is 
satisfied with m(a)=m(b)=Cw(Q\E, E, zo). We conclude that  

w(Q\F, EMr2Q, zo) <_ w(Q\E, EMr2Q, Zo)+Cw(Q\g, E, zo)w(Q\E, EMr2Q, zo). 

The second term on the right side can be absorbed leading to 

w(Q\E, EMr2Q, zo) >~ w(Q\F, EMr2Q, Zo) 
>_ w(rQ \ EMr2Q, EMr2Q, zo ) 

~> log cap(E-Mr2Q) 

by the maximum principle and Lemma 2.2. On the other hand 

w(Q\E,  B, z0) _< w(Q\B, B, Zo) 
- 1  

( cap(EMr2Q)l )-1 R \log 



152 Thomas H. Wolff 

using the definition of B. This gives (ii') with A--const .R. 

Proof of (i'). We will apply (2.2) with Q replaced by r2q, F=EN(r2Q\rlQ), 
and taking a to be an arbitrary point of O(r3/2Q) and b a point of �88 such that 
w(r2Q\E,E,b) is small. Then (2.7) holds with a = a  or b, so (2.1) holds with 
m(a)=Cw(r2Q\E, E, a), m(b)=Cw(r2Q\E, E, b). Thus for YCO(r2Q\F) 

(2.8) w(r2Q\F,Y,a)-w(r2q\E,Y,a)<~w(r2Q\E,E,a)w(r2Q\E,Y,b). 

On the other hand 

w(r2Q\F, Y, a)-w(r2Q\E,, ]I, a) = ./. w(r2Q\F, Y,. ) dw(r2Q\F.,., a) 

> minw(r2Q\F, Y, ~)w(r2Q\E, B, a). 
- CeB 

The values of w(r2Q\F, Y,. ) at any two points of �88 are comparable by 
Harnack's inequality. Taking (=b we get 

w(r2Q\F, Y, a)-w(r2Q\E, Y, a) >~ w(r2Q\ F, Y, b)w(r2QkF,, B, a) 
(2.9) 

>_ ~(r2Q\E, Y, o)~(r2Q\~, B, a). 

Also by the maximum principle 

~(r2Q\ ~, B, a) _> ~(r2Q \B, B, a)-w(~Q \F, F, a) 
>_ ~(r~Q\B, B, a)-~(r~Q\E, E, a) 

1 - 1  
>C-1R(lOgcap(r~-QNE) ) - C ( l o g  cap(r2QNE))-i 1 

using that a60(r3/2Q). So for large R, 

w(r2Q\E,B,a) >~R(log 1 -1 
cap(r2-QNE) ) 

Rw(r2Q\E, E, a) 

using a60(r3/2Q) again. If we substitute this into (2.9) we obtain 

w(r2Q \ F, Y, a)-w(r2Q \ E, Y, a) >~ Rw(r2Q \ E, E, a)w(r2Q \ E, Y, b). 

Comparing with (2.8) gives 

w(r2Q \ F, Y, a)-w(r2Q \ E, Y, a) >~ R(w(r2Q \ F, Y, a)-w(r2Q \ E, ]I, a) ) 
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and therefore (i') provided R is sufficiently large. 
In order to complete the proof of Lemma 2.1 we must now carry out the local- 

ization argument showing that (i') and (ii') imply (i) and (ii). 
Suppose first that i2 is any domain (not necessarily containing c~) with 

(C*\~)nQ=ENQ, and let 5 = ( ~ U E ) \ E .  We claim that if YNB=~ then 
w(5, Y, z)_<w([2, Y, z) for all zE~\r2Q. 

It suffices by the maximum principle to prove this when zeO(r2Q). Let P= 
maxo(r2q) w(~, Y,.)/~v(i2, Y,.) which is well-defined because O(r2Q)fqE=O. For 
zEO(r3/2Q) 

~v(5, Y, z)-~v(r2Q\E, Y, z) = f ~v(5, Y,. ) dlv(r2Q\E,., z) 
Jo (r2Q) 

< f ~v(5, Y,. ) d~v(r2Q\E, z) B ~ 

Jo (~2Q) 

<<-P ~o ~v(~,Y,. )d~v(r2Q\E,.,z) 
(~2Q) 

: P(~v(f~, Y, z)-~v(r2Q\E, Y, z)). 

The first inequality followed from (i') applied to subsets of (O(r2Q). Using (i') 
again, this time with the given Y, 

~v(5, Y, z) _< Pw(~, Y, z ) + ( 1 - P ) w ( r 2 Q \ E ,  Y, z). 

If P > l  this is a contradiction since w(~,Y,.)-Pcv(f~,Y,. ) would be a harmonic 
function on 12\r3/2Q nonpositive and not identically zero on the boundary but 
vanishing at some point of O(r2Q). This proves the claim. 

Lemma 2.1 follows immediately by taking ~ to be the given domain. For (ii) 
we define II=max0Q w(~, S , .  )/w(~, r2QNE,. ) where now f~ is the given domain. 
For zEcO(r3Q) we have 

w(5, B, z ) -w(Q \/~, B, z) = ~OQ ~v(5, B,. ) d~v(Q \ /~, . ,  z). 

If we apply the claim with ~=Q\E we bound this by 

which is then 

~OQ ~v(~, B, . ) d~v( Q \ E, . , z) 

<_lifo w(~,r2QNE,.)dcv(Q\E,.,z) Q 
= II (~v(f~, r2QNE, z)-~v(Q\E, r2QNE, z)). 
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So by (ii') 

w(5, B, z) _ 1-Iw (f~, r2QnE, z)+(A-II)w(Q\E,  r2QnE, z) 

with A as in (ii'). If I I > A  this means that  w ( ~ , B , . ) - I I w ( f ~ , r 2 q N E , . )  would 
be a nonpositive harmonic function on f~\r3Q, not identically zero but zero at an 
interior part. A contradiction which finishes the proof of Lemma 2.1. [] 

As has already been mentioned Lemma 2.1 is intended as a building block in a 
domain modification construction. However, let us first use it to prove the following 
estimate which will be needed in Section 5. A somewhat cruder result than Lemma 
2.1 would also suffice for this. 

L e m m a  2.6. Suppose f ~ = C * \ E  is a domain containing oo, w=w(f~, . ,oo) ,  
Q a square, and assume that w(Q)<_Mhl(EN�89 Then 

/ c  dw(~--~) ] < CM' z e ~Q. 
\ Q  r  - 

Proof. We show first that  if a is a small fixed constant and B* a disc of radius 
ahl(En 1 ~Q) centered at z, then w(f~\B*, B*, oo)<M, radius of B*. 

For this we let ~0 be as in Lemma 2.1, let ~)= 3Q and consider two cases 

(i) cap(EAQ)>_e -1/~~ diam ~) 
(ii) cap(ENQ)) <e  -1/~~ diam ~). 
In case (i) we use Lemma 1.1 (more precisely, the analogous statement with 

squares instead of discs, which is proved exactly the same) to conclude that  
N 

w(ft\Q, Q, oo)~w(Q). Hence by the maximum principle w(f~\B*, B*, oo)~w(Q), 
and since w(Q)<_Mhl(En�89 radius of B* we are done. 

For case (ii) we note that  the radius of B* is smaller than the radius of the 
concentric disc B obtained by applying Lemma 2.1 to the square (~. This follows 
from Lemma 2.1 (iii) provided a is small, since ! Q  5 - - 2 c~Qcr2Q. Using the maximum 
principle, then Lemma 2.1 (ii) therefore gives that  

~(~\B*, B*, ~)  < ~(fi, B, ~)  s  

where ~ is the domain resulting from Lemma 2.1. So it follows as in the previous 
case that  w(f~\B*, B*, oo)<~M, radius of B*. 

Now let w* =w(f~ \B*, - ,  c~). Then 

c dw* (~) = _ f do;* (~) 
.\Q r  JQ r  
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This is because fc* dw*(~)/(~-z) is the z-derivative of the Green's function of 
f~\B* (with pole at oc) and therefore vanishes at interior points of C*\(f~\B*). 

Now w*(Q)<w*(B*)+w(Q)~M, radius of B* and on the other hand the dis- 
tance from z to suppw* is the radius of B*. We conclude that 

/Q dW*(~) ( M 
(C-z) ~ 

and therefore that 

(2.10) 

Now consider 

C*\Q dw*(~) ~ - z  ~<M. 

(2.11) fc.\c  d(w-w*)(r162 

w-w* is a positive measure on C*\Q by the maximum principle, and 
w(C*\Q)-w*(C*\Q)=w*(Q)-w(Q)<w*(B*)<_Ml(Q). And dist(z, C*\Q)~l(Q), 
so (2.11) is ~<M and if we combine this with (2.10) we are done. [] 

3. The domain  Ftr 

For n>0 let Gn be the nth 8-adic grid on the unit square 

_ 1  1 1 7,1]• 
i.e. Gn is the set of all squares 

, _ _ _ ~ 8  - 1 .  8 n  , - -  X 8 n , - - ~ 8  < j , k <  1 n 

We also define Gn for n<0 to be the singleton {Q} where Q is the square of side 
8 -n centered at zero. 

For Q E G~ define 

Q. __ 5Q, q** = 3Q, ~ __ disc concentric with Q of radius 1-~61(Q). 

Thus for n>0, Q* is obtained from Q by adjoining all ~+1 squares which 
touch Q, and Q** is obtained from Q* by adjoining all ~+1  squares which touch 
Q*. Q is a disc which is small enough for our purposes, in particular, small enough 
that (I) below holds. We record the following two properties. 

(I) If QE6n, RE~m, re>n, and R*c:Q* then R**M10Q=O. We also have 
int QMint R=0. 

(II) If {Qj} is any family of squares in Nn G,~, such that j#k~Q;~_Q*k, then 
no point belongs to more than C Q~'s, where we may take C=148. 
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Statement I is trivial but we will sketch the proof of II. Each square Q~ is the 
union of 37 zones, where the first zone is Qj and the others are the 36 ~n+l squares 
adjoined to Qj to form Q~, numbered clockwise from the lower left, say. It is easy 
to see (for fixed ie{1 ,  ...,37}) tha t  if the interiors of the i th zones of Q; and Q~ 

intersect then one of Q~, Q~ is contained in the other. So no point is contained in 
more than 37 sets of the form Q~ \ Z j  where Zj is the union of the boundaries of the 
various zones of Q~. If a point belongs to a given Q~ then a nearby point located 
to one of the "southwest", "northwest", "northeast" or "southeast" directions will 
belong to Q~\Zj. Consequently, if a point belongs to some collection of Q~'s then 
a suitable nearby point will belong to at least one quarter as many  Q~\Zj so we 
are done. 

We now choose M < o c  and 6>0  as in Theorem 2 and let G=Us-~>_e~n. We 
Q r assume ~ is a power of 8 and order ~ as { j}j=--oc in such a way tha t  j < k  implies 

l(Qj)>_l(Qk). We can take l(Qj)=-8 -j for j_<0. 
Let ~=-C*\E be our given domain, w--w(f~, . ,ec) .  We may assume that  

EC[-�89 �89 • [-�89 �89 and also tha t  Mhl(E)>I, since if the lat ter  assumption fails 
we can take F=E. Then for j<O, w(Q~)<Mhl(E)=Mhl(EnQ~). This will guar- 
antee that  the definition of ~ j  given below is consistent for nonpositive j .  

We now perform the following recursive construction. Set ~-o~--f},  and for 
j<_0, set ~j=f~ also. 

If ~ j  has been defined let Ej-~C*k~j, ~dj=02(~'~j,.,OC). We then say that  
Q~+I is chosen if (i) it is not contained in any previously chosen square and (ii) 
either l(Qj)=~, or 

(3.1) wj (Q;+I)  ___ M max R-~hl(Ej NRQ~+I). 
R>I  

Here ~ is a fixed constant which should be >1. For definiteness we will take/3--2.  
If Q~+I is chosen it is thin if 

c a p ( E j  [ ' IQ~;1 ) < e - 1 / e ~  

with ao as in Lemma 2.1 and thick if cap(EjAQ~;l)>e-1/e~ If Q~+I 
is chosen and thin then we define ~ j+ l  by applying Lemma 2.1 to f/j with the 

~Q--Qj+I. We denote the quantities r l ,  r2 and B appearing squares Q=Q~I and 5 �9 

in Lemma 2.1 by -1 ~(j), -2 ~(j) and Bj. We take Bj concentric with Qj, and may assume 
B 1 ~ * (by shrinking ~0 if necessary) tha t  j C ~Qj. In all other cases (i.e. Qj+I is chosen 

and thick or is not chosen) we let f~j+l=f~j.  
In this way we eventually obtain a domain gtr which we will analyze in this 

section. In Section 4 we will make a further domain modification involving the thick 
chosen squares. 
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Remarks. (1) We note again that  the definition of f~j is consistent for non- 
positive j since (3.1) must fail. The nonpositive values of j are of course just a 
technicality and the reader can safely ignore them. For clarity, we also note that  
12j+l--~j unless Q~+I is chosen and thin, in which case ~ j+l  differs from ~tj only 
inside Q~-I. 

(2) It seems worth comparing this construction with the constructions in [4,5] 
and in the special case treated in Section 1 of the present paper. It differs from all 
of them in various technical respects. However, the most significant difference is 
the role of the hi content in the stopping rule, i.e. on the right hand side of (3.1). 
The constructions in [4,5] and in Section 1 all use instead a comparison between 
w(Q) and l(Q). Such a stopping rule does not permit the estimate in Lemma 5.2 
below. Instead there is a 6 dependent estimate (see [5]), although the dependence 
on 6 was weak enough to permit a proof of the 0ksendal  conjecture. 

(3) The lemmas in this section will involve the behavior of hi measures, har- 
monic measures and capacity in passing from f~ to gtr. However, let us first note 
some general properties of the construction. 

(a) If Q~ is any square in ~, then by (I) above, Q~* does not intersect Bi for 
any i<j. Therefore Q~*NEj-1 is contained in Ei for all i<j and in particular in 
E. 

(b) Er consists of discs Bi where Q* is a thin chosen square, together with a 
certain subset of U{Q~ :Q~ chosen and thick}. 

(c) No point can belong to more than 148 chosen squares Q~. This follows 
from (II) above. Furthermore by (I) above, if Q~ and Q~ are chosen then int Qj 
and int Qk are disjoint. 

These properties, (a) in particular, will be used frequently below. 

Now suppose Q~ is a thin chosen square and define a set Aj C Ai<j Ei as follows. 

Q;NEj-1 if l(Qi) > 6, 
Aj - -  _ ( J ) r ~ * *  ~ L- 

"2  ~,~j ' , • j - 1  if l(Qj) = 6. 

The sets Aj with l(Qj)> 6 are disjoint, since Aj is deleted from Ej -1  in forming 
Ej. The Aj with l(Qj)= 6 are not necessarily disjoint, but since they are contained 
in the Q~* no point can belong to more than four of them. So no point belongs to 
more than five Aj in all. 

L e m m a  3.1 (hi contents increase). 
(i) For any thin chosen square Q~, hl(Bj)>~hl(Aj), 
(ii) For any j, any k>j and any square Q with l(Q)>l(Qj), h1(4Q;)Ek)~ 

hl(QNEj) (Q need not be 8-adic here). 
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Proof. Part  (i) is immediate from part (iii) of Lemma 2.1. To prove (ii) it 
suffices to show that  hl(QN(Ej\Ek))<hl(4QNEk).  We have 

Qn(E~\Ek) c U ci, 
j<i<k 

Q* chosen and thin 
Q**nQr 

where C~ denotes "2-(i)'~**~'~r , ,~i-1.  Since l(Q)>_l(Qi) it follows that  Q**c4Q and 
therefore that  Bic4Q,  for all such i. Accordingly, we will be done if we show the 
following: 

Claim. If Q*I, "", Qi- is any collection of thin chosen squares, then 

/" ' (i~)~)**ME, 1 <Chl  UBi~ �9 hi  U r2 ~i~ . j -  

To prove the claim choose a covering of Uj B~ by discs Dk=D(ak,rk), with 

E rk  hl(Uj B j). 
For each j ,  consider two possibilities. 
(i) Every Dk with DkrlBij SO is contained in Qi~, 
(ii) Not (i). 

Then 

,,1( u z 
j t (i) j type (i) DkcQij k 

where the second inequality follows because the (interiors of the) Qij are disjoint. 
On the other hand, if j is type (ii) then one of the Dk's which intersects Bij 

has radius >l(Qij ), so a suitable fixed multiple of Dk will contain Cij. Hence 

,,,( u 
j type (ii) 

and we are done. [] 

Next we consider harmonic measures which is somewhat more involved. The 
information we need is contained in the following four lemmas. 

L a m i n a  3.2. o~k(Bj)~ Ccal(Aj) for any thin chosen square Q~ and any l<j  < k 
(and in particular, if l=-oo,  k--r). 

L a m i n a  3.3. (harmonic measures decrease) If Q is any square which is not 
strictly contained in a chosen square and if k>l then wk(Q)<~wz(hQ). 
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L e m m a  3.4. (doubling property) If Q~ is a chosen square with l(Qj)>~ and 
if k > j - l > l ,  l < T < c ~  then ~k(TQ~)<~T~wI(Q;). 

L e m m a  3.5. If Q~ is a chosen square then there is Tj > 1 such that 

wk(TQ~) <~M( T--~.. )Zhl(ErMTjQ~) 

for all T>I  and all k>m-1 ,  where m--m(T) denotes an index such that 
5TQ; C Q* and l(Qm)<_ IOOTI(Qj). In particular, 

wk (TQ~) <~ M \ Tj / (TQj). 

Proofs. These lemmas are closely related and we start with some observations 
which are relevant to the proofs of all of them. First, 

(3.2) if k > / a n d  i fYnBi=O for all iE{l+l , . . . ,k}  thenwk(Y)<_wt(Y). 

This follows by induction on Lemma 2.1 (i). Next, the stopping rule (3.1) will 
be used in the following way. Let Q~ be a chosen square and let Qm be a G square 

l , * * containing Qj, with length (Qm)=TI(Qy). Then Qm was not chosen so 

Wm-1 (Q~) _< M max h~ (E.m-~ ARQ~)R -~. 
R~_I 

By Lemma 3.1 (ii) 

* * - Z  w.~-l(Qm) ~ M max hl(Ej-1N4RQm)R 
R_>I 

~< M ~>ax h I ( E j _  1 N R Q ~ n ) R  - ~  . 

Qm contains and is comparable to r �9 * T Qj where T'=max(1,T/100). So 

Wm-1 (Q* ) <~ M max hi ( E j - 1 N R T ' Q ; ) R  -z,  
R_>I 

T z 
(3.3) Wm-l(Q*) ~Mmaxh l (E j_ lnRQ~) (=~  . R>_I \ ~ ] 

If l(Qj)>O then we can further conclude by (3.1) that  

(3.4) Wm-l(Q*) <~ TZwj-I(Q;). 
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If we apply (3.4) with Qm the immediate predecessor of Qj (i.e. T--8) and note 
that Q;*cQ* we obtain Wm_l(Q;*)~<Wj_l(Q;). However Q;* is disjoint from Bi 
for i<j (Remark 3a above) so, by (3.2), wj-I(Qj )_Wm-l (Qj  ). We conclude the 
following "preliminary version of the doubling property" 

(3.5) wj-l(Q;*) <~Wj-l(Q;), Q; chosen, l(Qj) > Q. 

Proof of Lemma 3.2. Since the B~ are disjoint we have wk(Bj)<wj(Bj) by 
< (J) ** - ( J ) ~ * *  (3.2). By Lemma 2.1 (ii), wj(Bj)~Wj_l(r 2 Qj ). By (3.5) we can replace '2 ~ j  

by Aj here, so wk(Bj)<~wj-l(Aj). But AjNBi=O for i<j so Wj-l(Aj)<wt(Aj) and 
we are done. 

Proof of Lemma 3.3. Write 

(3.6) QnEk= YU(U(Bi:I < i <_ k and B i n Q  r 0}) 

where Y C Q is a set which is disjoint from all Bi's with l < i _< k and therefore satisfies 
wk(Y)<_wt(Y). The chosen squares Q~ yielding Bi's in (3.6) all have side length 
I(Q*)_<d/(Q), since Q intersects Bi which is situated near the middle of Q*, but is 
not contained in Q*. Therefore each Ai is contained in 5Q. Using Lemma 3.2 we 
obtain 

l<i<k 

<~wz(Y)+ E wz(A,) 
l<i<_k 

with Y and the Ai being contained in 5Q. At most five Ai's contain any given point 
so the sum is <hwt(hQ) and we are done. 

Proof of Lemma 3.4. We may assume k=j-1=/, since wk(TQ~)<~wj_~(hTQ~) 
by Lemma 3.3 and Wj_l(Q~)<_wl(Q~) by Remark 3a and (3.2). 

Choose Q~ containing 5TQ~ and with comparable side length. Then 

wm_l(5TQy) ~<T W/- l (Qj)  

by (3.4). On the other hand 5TQ~ is not contained in any chosen square (else Q~ 
could not have been chosen) so by Lemma 3.3 

wj_I(TQ~) < w,~-I(5TQj)  
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and we are done. [] 

Lemma 3.5. Choose Tj to be such that  T~-~hl(E~nTjQ *) is Proof of large a s  

as possible. If T is given and Q,~ is as in the lemma, then by (3.3) there is R such 
that  

Wm-I (hTQ~) <~Mhl (Ej-I NRQ~) ( T ) ~. 

By Lemma 3.1, 

By Lemma 3.3, 

Wm-l (hTQ j ) ~ Mhl ( E~N4RQ j ) 

TjQ~ ) ( T ~ ~ < Mhl (E~ N 
\ 3 /  

for all k>_m-1, and we are done with the first part of the lemma. The "in partic- 
ular" part follows by estimating hl(ErNTjQ;)<Tjl(Q~). [] 

FinMly we need to keep track of capacity. 

L e m m a  3.6. (capacities increase) If Q~ is a thick chosen square then 

cap(Ern3e ) > e -1/ 1 (3Qj) 

where ~l depends on ~o. 

Proof. If Q* is a thin chosen cube with i>j then we denote r~)Q**nEi_l 
C.•n** �9 (the set deleted from Ei-1 in forming Ei) by Ci. If ~ ~ j  5 0  then Bic3Qj. 

The lemma will follow from this and the fact that  c a p B i > c a p C i  (for this, see 
the statement of Lemma 2.1). Namely, the squares Qi with Q* chosen are dis- 
joint except for edges. So for any x, there is at most one i such that  dist(x, Bi)<_ 
�89 maxycc  ~ Ix-yl, since Qi would have to contain x. Hence it suffices to prove the 
following general fact. 

Suppose E and F are subsets of a square of diameter r, and have the following 
structure: E--EoU(U i C~) and F=EoU(U i Bi) where B~ is a disc, capB~>capCi ,  
and for any given x we have dist(x, B~)>_ ~l maxyec  ' I x -  Yl for all i with one possible 
exception. Then cap F/r> �89 E/r) 2. 

This statement is scale invariant and we may assume r :  1. We may also assume 
the Ci are disjoint from each other and from E0 since otherwise we replace C~ 
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with Ci\(EoU(Uj< i Cj)). Let # be the capacitary measure of E (i.e. Vlz(X ) ' r / , d e f :  

f log(1/Ix-y D dp(y)=l on E except for a set of zero capacity). Define 

where ai is a uniform mass distribution on the boundary of Bi with total mass 1. 
Given x, let io be the exceptional index with dist(x, Bio)< �89 maxycc~ o [x-Y[. (We 
assume for notational purposes that  such an exceptional io exists.) Then 

V,(x) < log lx l y[ d#(y)+ E #(Ci) j log ~1 dai (y) 
o iT~io 

+#(Cio) f log ~xl~_y~ daio(Y) 

< log f log 
o i~io JCr [x--Yl 

+#(Cio) f log ~ daio(Y). 

Since capC~ o <capBi  o the last term here must be bounded by 1. So for xEF, 

V,(x) </E log 1 - 0u(u,~,o c,) V : ~  d , (y )+( log3) lMP+l  

_< Y~,(x) + (log 3) I1~11 + 1, 

where we used d i a m E < l  in the first term. Hence log(1/ cap F)<21og(1/ cap E)+ 
log 3 and we are done. [] 

4. T h e  d o m a i n  

This domain is defined as follows. For each thick chosen square Q~ let Rj be 
the circumscribed disc. Let 

Rj = Rju(U{d)i:Q* is chosen and thin and RjN�89 5 0 } ) .  

We regard Rj and ~)i as being closed discs here. Let 

~ = ~  - .  , \U{Rj. Qj chosen and thick} 

and let E - - C * \ 5 ,  ~ = w ( 5 , . ,  oc). 
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Note that  each ! ~  (Q* chosen and thin) is either contained i a /~  or disjoint 2 
from it. Thus the same is true for each B~. Also it is clear that  each Qi adjoined 
to Rj to form Rj must satisfy l(Q~)<_l(Qj). Hence RjC3Rj, say. 

For each chosen square Q~ we now define two sets A j c E  and AjCE, which 

we regard as the parts of E and of/~ associated to Qj. Namely 

Q;NEj-1 
Aj = r(J)~**NEj_ 1 2 ~j 

lOOQ nE 

if l (Qj)  > 4, 

if l(Qj) = ~ and Q~ is thin, 

if l(Qj) = Q and Q~ is thick. 

f I Qj is thin this definition agrees with the one in the previous section. Note 
that  no point belongs to more than C Aj's with C a fixed constant. This follows 
easily using that  no point belongs to more than 148 Q~'s. Also 

Bj if Q~ is thin, 
Aj = _ 

Rj if Q~ is thick. 

L e m m a  4.1. If Q~ is a thick chosen square then ~( Rj ) <~w,( IORj ) <~wt( CjQ~ ) 
for all l< j - l ,  where Cj=I if l(Qj)>Q and Cj=100 if l(Qj)=Q. 

Proof. First of all 

~(Rj) < w(~ \3R j ,  3Rj, oc) <~ w~(lORj), 

where the first inequality follows by the maximum principle and the second by 
Lemmas 3.6 and 1.1. 

Now consider cases. If l(Qj)=y then 

wr (10Rj) < w~(20Q;) ~< wl(100Q;) 

where the second inequality follows from Lemma 3.3. If l(Qj)>Q then 

wr(lORi) < wr (20Q;) <~ W~_l (100Q;) ~< wy-1 (Q;) <_ wz(Q;), 

where the last three inequalities use respectively Lemma 3.3, Lemma 3.4 and (3.2). 

L e m m a  4.2. For any chosen square Q~ 
(i) hl(Aj)~hl(Aj),  
(ii)  w(Aj)~w(Aj), 
(iii) / f  l(qj)>Q then w(Aj)>~Mhl(Aj). 

[] 
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Proof. Part (i) is identical to Lemma 3.1 (i) if Q~ is thin and is trivial if Q~ is 
thick. Part (ii) follows from Lemma 3.2 if Q~ is thin, since the maximum principle 
implies ~(Bj)<a~(Bj). If Q~ is thick then part (ii) is identical with the l = - o c  
case of Lemma 4.1. It remains to prove (iii). But ~j_I(Q~)~w(Q~NEj_I)=w(Aj) 
by (3.2), and on the other hand wj_I(Q;)>Mhl(Ej_INQ~)=Mhl(Aj) by (3.1), so 
we are done. [] 

Let us also prove the following fact. 

L e m m a  4.3. Each set Rj (Q; chosen and thick) satisfies (r(QNORj)~I(Q) 
for all squares Q. 

In other words Rj is what is called Ahlfors-David regular, with uniform bounds. 

Proof. This is certainly true if Rj is replaced by Rj. Hence it suffices to prove 
it with Rj replaced by U { Q i : R j n l Q i ~ O } .  Fix a square Q. If QCQio for some 

thin chosen square Qi*0 then Q cannot intersect (~i for i~io and the lemma follows. 

If Q is not contained in any such Qi0 and if QAOQi~O then Qic3Q, and clearly if 
R j N I Q i ~  then r Hence 

E 
O, iC3Q 

Rjn�89 

< ~ ~(OinORj). 
Oic3Q 

The subsets of ORj appearing here are disjoint so the sum is bounded by 
a(ORjn3Q)<~l(Q) and we are done. [] 

5. T h e  g rad i en t  o f  t h e  G r e e n ' s  func t ion  

Let ~ be the Green's function of ~ with pole at c~. /~ consists of Bi's and/~j ' s  
and 0n  is therefore smooth except at finitely many points. So we may identify IVg] 
with d~/da. We will prove the following estimates. 

L a m i n a  5.1. (thick case) If Q~ is a thick chosen square and xcORjN05 then 
]~7~(x)[~<min(M,~z(Aj)/hi(Aj)). 

L e m m a  5.2. (thin case) If Q~ is a thin chosen square and Qj is not contained 
in any Ri then 

(a) if xeOBj then IV~(x)I<~w(Aj)/hl(Aj), 
(b) if xe �88 then ]VO(x)[~(Bj)/Iz-zj]+M. 
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Here zj is the center of Bj. We also let rj be the radius of Bj. Note that  the 
estimates are independent of Q. 

Proof of Lemma 5.1. First let F 0 = ~ \ R j ,  gro its Green's function with pole 
at c~. 

Claim 1. IVgrol<~min(M,w(Aj)/hl(Aj)) on ORjAOFo. 

Proof. By Lemma 1.2 it suffices to show that  

w(~\2Rj,2Rj, c~) ~ l(Qj)min(M, ~ ). 

So by Lemmas 3.6 and 1.1 it suffices to show that  

/ ~d(Aj) 
wr (3Rj) ~< l(Qj) m i n [ M ,  hi(A j))" 

However wr(3Rj)<~MI(Qj) by Lemma 3.5, and wr(3Rj)<w(Aj) by Lemma 4.1, so 
we are done. 

Now let (~i be one of the discs adjoined to Rj to form Rj. Let rl=~\(RCuQ~) 
and grl its Green's function with pole at c~. 

Claim 2. IVgrl[<~min(M,w(Aj)/hl(Aj)) on O(RjUO, i)r 

Proof. On ORj such an estimate follows from Claim 1 by the maximum prin- 
ciple, so it suffices to prove the estimate on 0Qi. For this it suffices by Lemma 1.2 
to prove 

w(F0\2(~i, 2(~i, c~) < l(Qi) min (M,  w(dj) 
hl(Aj)]" 

Consider the domain ~loc=QinF0 whose complement relative to Qi consists of 
Rj nQi together with the disc Bi (which may or may not be contained in Rj). Since 
ORj is a continuum which intersects �89 and is not contained in Qi, and since Bi 
is contained in 1Qi, it is clear that  W(~loc,ORj, ~)>_ eonst on ~locn0(2Q~) (see 
Figure 1). 

It follows by the maximum principle that  

w(F0, Qi•ORj, . ) > const 

on 0(2(~i), and therefore, using the maximum principle as in the proof of Lemma 
1.1, that 

~(r0 \2Qi, 2 0 ,  ~ )  ~< w(r0, QinORj, ~). 
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Figure 1. The square is Q i .  The large disc is 2(~i and the  small disc is B i .  f~loc is the  
par t  of the  square lying above O R j ,  with B i  deleted. 

The right side here is <~l(Qi) min(M, w(Aj)/hl (Aj)) by Claim i so we are done with 
Claim 2. 

Lemma 5.1 follows immediately from Claim 2 using the maximum principle. 

Proof of Lemma 5.2. Part  (a) is basically trivial from Lemma 4.2. Namely, 
since Bjc�88 and ~:N 1 o gQj=O, [? may be extended by the reflection principle to a 
harmonic function on 2Bj \ �89 Using polar coordinates based at zj we have for 

l < s < 2  (actually, for any s such that sBj\BjC•) 

L -dO f~]rJf dO dOdr 
(sB~) g2-~ = -~r r 27r r _f]r j  ~(BJ)27r drr ~(BJ)27r logs. 

It follows by Harnack's inequality that  1 Ib (Bj) on O( Bj) and therefore on 
3 2 5Bj \ gBj. By standard derivative bounds for harmonic functions ]V~]<~(Bj)/rj 
on OBj and (a) now follows from (i) and (ii) of Lemma 4.2. 

Proof of (b). The preceding argument may be applied not just on OBj, but on 
~Bj\Bj, say, so we know IV~I<~(Bj)/rj there and in proving (b), may restrict 

attention to points of 1 ~ 4 

We claim there is a scale T~ > 1 such that 
~ T t  , < ~ 1 , , (i) w(jQj)~Mhl(EN~TjQy), 

(ii) ~(TQ;)<~M(T/T~)ZI(T~Q;) when I < T < T ~ .  
T~ is defined as follows. Let Tj be the scale from Lemma 3.5. Let 

5 c = {Ri. Qi is a thick chosen square and diam/~i > dis t(zj , /~)}.  

If no RiE~ c intersects 2TjQ;, then we let T~=2Tj. Otherwise we let T~= 

1000 min{T: TQ; NRi~ for some Ri Egr}. 
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Thus T~<_IOOOTj, and also T~>I_ since no R~ intersects 1(~2 3" We will now prove 
(i) and (ii). 

Claim. Suppose T > I  is such that  no RiE~-intersects TQ;. Then ~(TQ~)<~ 
M(T/Tj)~hl - . (EnTjQj). 

Proof. By the maximum principle 

(5.1) ~;(TQ;)<_w~(TQ;)+ E ~(ORi). 
Ri TQj ~O 

Let C be a suitable constant. Choose m so that  5CTQ~cQ* and l(Qm)<_ 
500CTI(Qj). Consider one of the Ri appearing in the sum in (5.1) and the cor- 
responding thick chosen square Q*. R~ cannot belong to ~ and must therefore 
be contained in 5TQ~, and consequently if C is large we will have i>m. So by 

Lemma 4.1, ~(Ri)<~w,~_l(CiQ *) where C i = l  if I(Qi)>Q and C i : 1 0 0  if I(Q~):Q. 
T * <  * By Lemma 3.3, wr(Qj)..,w~n_I(5TQj). Thus 

~(TQ;) <~Wm-l(5TQ;)+ E Wm-l(CiQ*). 
FQNTQ~ #O 

C , * For large C all the iQi will be contained in CTQj, and no point belongs to more 
than a fixed finite number of them. So 

~(TQ;) <~ w,~_l (CTQ]) 

and therefore by Lemma 3.5, 

~(TQ~ ) ~ M ( ~-~ )~hl ( ErNTjQ~ ) 

as claimed. 

Now we consider cases. Suppose first that  no/{i  E ~  intersects 2TjQ~. Then 
__1 t Tj-- 5T] and both (i) and (ii) follow immediately from the claim. Now suppose that  

�9 , 1 ! some RiE~" intersects 2TjQj. For (ii) there are two subcases I<_T<~Tj  and 
TS >T> 1 , 1 , , �9 yffff6T~. If I < T <  RiE~" intersects TQj, _ _ _ 1-6~T~ then by definition of T~ no 
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and the claim implies 

T f~ 

since T ~ T j  and •>1. This gives (ii) for T <  1 , 1-b-~6Tj. It remains only to prove (i) 
since (ii) for T >  1 , 

_ 1-6~6Tj is clearly a corollary of (i). Moreover, to prove (i) it suffices 
to prove 

( 5 . 2 )  - ' * ' * w(TjQj ) 5 MI(TjQj ) 

1 ! * ~ ! * since h,(~T;QynE) is comparable to I(TjQj) due to the fact that some Rie~" 

intersects 1 T'O* Tb-ff6* j ~j" To prove (5.2), denote T~ by T and fix i with .~i,,n ~ 1  TO*.~j ~ ~. 
By the maximum principle 

~(- TQj)_* <~(~r\(RiUTQ*),TQ~j , c<)) 

and since cap(TQjNRi)~I(TQj) (this is because R ieY)  Lemma 1.1 with squares 
instead of discs now implies that 

~(TQ~) s w(D~ \Ri, 2TQ;, co), 

which by the maximum principle is 

cgRi D2TQ j , oc ). 

Here w~(2TQ~)~Ml(TQ~) by Lemma 3.5. On the other hand by Lemma 5.1 and 
then by Lemma 4.3, 

w( f~ \ Ft~, c~R~ n2TQ;, oc ) s Ma( OR~ N2TQ~ ) 
<~ MI(TQ~). 

We conclude that (5.2) holds and have therefore proved (i) and (ii). 
1 ~ 4 To finish the proof of Lemma 5.2 write V~(z) for zE-~Qy\-~Bj as a Cauchy 

integral 
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and split the integral as 

The punch line is that by (i) above and Lemma 2.6, the first term is ~<M. 
The other terms may be estimated in a straightforward manner. The last term 

is clearly <~(Bj)/dist(z, Bj),.~(Bj)/]z-zj]. The bound for the second term uses 
the decay property (ii). Namely 

1 
~ , , 1 -  1 d ~ ( ( ) - < ~ ,  1 ~ [Z--~[ d~(~) 

jQj\hQJ Z--~ jQ;\hQj 
(5.3) 7; _ �9 �9 -2 �9 

~ ~ w(TQj)(TI(Qj)) d(Tl(Qj)) 
/200 

J J ~ * 
where we used that dist (z, O(TQ~)) ~Tl(Q~) and that dist (z, C \ �89 ~ l (Qj ) .  Us- 
ing (ii) we bound (5.3) by 

~ ,  T_ ! .  ~-2 T * M l(T'jQ,)(Tl(Q,)) d( I(Q3))<~M 
/200 T~ 

where the last inequality follows since/3>1. This finishes Lemma 5.2. [] 

6. C o m p l e t i o n  of  t he  p r o o f  

The technical part of the proof is now over and we will finish up as in [4,5]. 

Step 1. For each thin chosen cube Q~ such that (~j is not contained in any Ri 
1 ~ we will define a certain level set component s  for ~, contained in ~Qj. Namely 

let C1 and C2 be appropriate large constants. If ~(Bj)<C1C2Mrj then let s 
OBj. If w(Bj)>CIC2Mrj define Sl=W(Bj)/(C1C2M), s2=w(Bj)/(ClM). Then 
rj<Sl<82< radius of 1 ~ _ ~Qj, the last inequality following (for large C1) because 
~(Bj) <~wj_l (dj) (Lemma 3.2 and the maximum principle) and Wj-l(Aj)  <~MI(Qj) 
(Lemma 3.5). For s=sl, s2 we have 

/ g(zj+se iO) dO=~(Bj)log ~j 

as in the proof of Lemma 5.2(a). Therefore by Lemma 5.2(5) 

2~(zj+sle i~ <_ ~(Bj)log s~ +C (M +~(Bj) )Sl, 
rj \ 81 

_ 27r~(zj+s2e ie) > ~(Bj )  log rj \ s2 
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i.e. 

~(Bj) 
27r~(zj+sle i~ <_ ~)(Bj) log C1C2Mrj 

~(Bj) 
2~(zj+s2e ~~ > Z(Bj) log C1M~j 

So, if log C2 k 2C+6/(C162)+C/C1 (as we may arrange by taking C2 large) then 

min g k max .~ 
Iz-zjl=~2 Iz-z~l=sl 

and it follows that there is a level set component s contained in sl < Iz-zjl<s2. 
On s  we have IV~I<M by Lemma 5.2(5). We also have this when s by 
the definition and Lemma 5.2(a). 

Step 2. Let s s ORi) where i runs over thick chosen squares and j 

over thin chosen squares not contained in any -Ri. S ince/ :  is a union of level set 
components it follows (see [5]) that 

A Iv.~l log IvOl d~ ~ const. 

Also fL IV01dG----1. On the other hand IV~I<M o n / :  by Lemma 5.1 and the last 
sentences in Step 1. So as in [5] 

and then also 

f IV.~l log + IV~l d~ ~ (log M+C) / IV.OI d~ 
P 

ds n{IV~l_>l} 

fLIVgl log- IV.q] de _< (log M)  [ IVgl da+C. 
f 

aLn{IvOl>a} 

Therefore 

5 log M __f~.~{ P vO I_< " - ' }  IVOI d~ _< (log M)  __fc-n{Iv9l_> 1 }[VO[ do" + C  

_<(logM) f , IV~IK~+C, 
JLn{IVOI>M- } 

fc IV~l d,~ > 5 c > c _ ~  
n{iv~t_> g ~} -- 1+5 ( l + 5 ) l o g M  - 
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for large M. 
Now we define our set F.  Namely 

F =UAj, 
J 

where the union is over all j such that Q~ is chosen, Aj intersects 0~  and one of 
the following holds. 

(a) l(Qj)>o, 
( b ) / ( Q j ) = y ,  Q~ is thin and s  
(c) l(Qj)=o, Q~ is thin, Ej=OBj and IV~]_>M -6 somewhere on Ej, 

(d) I (Qj)=0,  Q~ is thick and IV~[_>M -6 somewhere on 0Rj .  
We denote the set of all j satisfying (a), (b), (c) or (d) by ,7. 

We show first that w(F)>_C-16. Since the Ay have finite overlap it suffices to 
prove 

E o3(Aj)~C-I~. 
j c..7 

By Lemma 4.2, it even suffices if 

E ~ ( A j )  _> C-15 .  
j ~ J  

However, since foBj IV~ldo=f=j IV~lda for thin squares Q;,  

j ~ J  j c J  "~ jE J  J 
Q; thick Q; thin 

>-- Jz:[n{IVOI>_M-Q 1~7~1 dcr 

by choice of ,7. This we know is _>6 so we have proved that w(F)~6. 
What remains is to show that F has a covering as described in Theorem 2. 

First we consider the set [.Jj Aj, Q~ satisfying (a) or (b). If Q~ satisfies (a), then 
by Lemma 4.2 (iii), 

hl(Aj) <~ M-lw(Aj). 

If Q; satisfies (b), then by definition of Ej, rj <~M-I~(Aj). Using this and Lemma 
4.2 (i) (ii), 

hl(Aj)  ~< M-lw(Aj). 
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So we conclude t h a t  

E h x ( A j ) ~ M - 1 E  w ( A j ) ~ M - I '  
j satisfies (a) or (b) 

i.e. the re  is a covering where  radi i  sum to ~<M -1.  Next  consider  j sa t is fying (c) or 

(d). By L e m m a  5.1 or 5.2(a)we know t h a t  

M_ ~ < w(Aj) 
"~ hi (Aj)" 

Therefore  

E h l ( A j ) ~ M ~ E w ( A j ) ~ M ~ "  
j satisfies (c) or (d) 

Since Aj has d i ame te r  ~< ~ it is clear  t h a t  only  discs of r ad ius  _< Q need be used in 

an economical  covering of Aj. Consequen t ly  the  union of A j  sa t is fying (c) or (d) 

has a covering by  discs of rad ius  -<6, whose radi i  sum to ~<M 5, and  the  t he o re m is 

proved.  [] 
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