Plane harmonic measures
live on sets of o-finite length

Thomas H. Wolff

The purpose of this paper is to prove Theorem 1 below. Let ECC be compact
and Q=C*\ E where C*=CU{oo} is the Riemann sphere. We always assume that
 is regular for the Dirichlet problem and denote by w(?,Y, z) the harmonic measure
relative to  of the set Y CC* (equivalently, of Y NO), evaluated at z€Q. We also
use w(,Y) when discussing properties invariant when z is changed.

Theorem 1. If §) is as above there is a set FCOQ satisfying w(Q, F)=1 and
with o-finite one-dimensional Housdorff measure.

Remarks. (1) The assumption that € be regular for the Dirichlet problem is
made only for convenience and in fact is no loss of generality in view of A. Ancona’s
result [2] which implies that an arbitrary domain @ whose complement has positive
capacity may be expressed as [, 0\ P where each €, is regular for the Dirichlet
problem and P has zero capacity. A set with full harmonic measure for each ,, will
have full harmonic measure for €, and since a countable union of sets with o-finite
length clearly has o-finite length Theorem 1 for the §2,,’s implies the corresponding
statement for Q.

(2) Theorem 1 sharpens the result of [5] which says the same with “o-finite
one-dimensional Hausdorff measure” replaced by “Hausdorff dimension one”. For
simply connected domains, Theorem 1 is proved in [6,7].

(3) In a sense we obtain a semiexplicit set F' namely

F= {C:limsupw(ﬂ—’Dgc’—r22 >0},
r—0 r
where D(({,r) is the (euclidean) disc with center ¢ and radius r. However, it is easy
to see that if any set F' will work then so will this one, so we do not stress this
point.
Theorem 1 will be a corollary of the following somewhat more precise result.
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Theorem 2. With notation as above suppose that diam E<1. Then for any
0<6<1, 0<p<1 and sufficiently large M (how large depends on & only) there is a
set FCE such that w(Q, F,00)>C~16 and with a covering FC\J; D(z;,7;) where
(1>, r; <CM? and (ii) Zi:”>gri§CM_1.

Here C' is an absolute constant. Theorem 1 follows from Theorem 2 by a
formal argument as we will explain shortly. It first seems necessary to make a few
nonmathematical remarks.

I first proved Theorem 1 (and 2) in 1986. I circulated a handwritten manuscript
at the time but did not have it typed up. The proof was related to the proof of
the corresponding dimension one statement given in the preliminary version [4] of a
joint paper with P. Jones. Subsequently a more elegant approach to the dimension
one result was given by L. Carleson and the published version [5] of the paper by
Jones and myself uses Carleson’s argument. It is not immediately clear how to
adapt the latter argument to give the o-finite length statement but it is natural to
expect that this can be done. However, I have now decided to publish the original
argument, with a few technical simplifications, which is what will be found below.
This argument is quite precise if also quite long-winded and conceivably it could be
of interest for other problems.

Since paper [4] was written jointly with Jones and is not published it is also
appropriate to mention that the Lemma 2.1 below was in [4] and that the general
scheme of the argument in the subsequent sections is also similar to [4], although
in the case of the dimension one result proved there the latter argument is more
straightforward and simpler.

Now let us return to mathematics and explain why Theorem 2 implies Theo-
rem 1.

Proof of Theorem 1. We require only the case § :% of Theorem 2.

Let ¢ be any rate function strictly weaker than one dimensional, i.e., ¢: [0, 00)—
[0, 00) is continuous and increasing with lim; ¢ ¢(¢)/t=0. Let

hy(E) =inf{; ¢(ri): E CLZJD(zi,n)}

be the associated Hausdorff content.

Assume first that Q=C*\E with diam E<1. If £>0, then an appropriate
choice of ¢ and M in Theorem 2 (namely: M>¢~! and g small enough that
#(0)<eM %) yields a set F. with w(f, F.,00)>C~! and hg(F.)<Ce. Taking
limsup,_,,F1/;2 We obtain a set F, such that w(2, F, 00)>C~! and hy(Fe)=0.

Next let © be arbitrary and let {2} be a countable dense subset of 2. Moving
the result in the preceding paragraph around using linear fractional transformations
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we obtain sets {Fy} with w(Q, Fy,2x)>C~! and hg(Fi)=0. It is well known that
then Fy={J, Fi will satisfy w(Q, F)=1, and clearly hy(Fy)=0.

Finally let
F= {g:limsup“(Lli(Cf—)) >o}.

r—0

Suppose to get a contradiction that w({2, F)#1 or in other words that
QD
(0.1) w(Q, {g; 11116%—’-(?;)””):0}) >0.

By Egorov’s theorem there is a set Y with nonzero harmonic measure on
which the limit in (0.1) may be taken uniformly, i.e., a rate function ¢ with the
property lim; .o ¢(¢)/t=0 and a set ¥ with w(Q,Y)>0 such that (€Y implies
w(Q,D(¢,r),00)<¢P(r) for all r. With F, as above we have w(Q,YNFy,00)=
w(,Y,00)>0 and hy(YNF,)<hg(Fy)=0. Choose a covering of YNFy by discs
D(C@,’I‘i), QGYﬂFd,, with Z¢(ri)<w(Q,YﬂF¢,oo). Then

w(Q,YNF,, 00) < Z w(Q, D(¢i,73),00)

<> é(re)
< w(Q, YﬂF¢, OO)
and we have our contradiction. So w(Q, F)=1.

On the other hand it is well-known that F' will have o-finite one-dimensional
Hausdorff measure. This is proved as follows. It suffices to show that

Fé= {(:limsupw > 6}

7r—0 r

has finite one-dimensional Hausdorff measure. Clearly each point ¢ € F® has arbi-
trarily small neighborhoods D((,r) such that w(Q2, D({,r),c0)>6r. By the Besico-
vitch lemma there are discs D;=D((;, ;) such that r; is less than any preassigned ¢,
r: <6 tw(, D(¢i,ms),00) and no point belongs to more than a fixed finite number
C of the D;’s. Then .

Z T Z w(Q, D({iyri),00) < CEL

and if we now let £¢—0 we are done. [
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We note that the more natural looking way to quantify Theorem 1, namely,
that if Q is normalized as in Theorem 2 then there is a set F with w(Q, F,0c0) > %
(say) and with one dimensional Hausdorff measure bounded by a universal con-
stant, is readily seen to be false using conformal mapping. Start with a simply
connected domain @ whose Riemann mapping function f:{z:|2|>1}—Q satisfies
limsup,_,,|f'(re*)|=cc a.e. Delete a sequence of discs of uniform hyperbolic radius
centered at points f(z;) where {z;} is a nontangentially dense set with |f'(z;)|>N,
and N is a given large constant. Harmonic measure for the resulting domain will
be supported on the discs, and its density relative to length measure will be SN~1,

The rest of the paper is concerned with the proof of Theorem 2. As in [4], [5]
the proof is based on a recursive domain modification construction. In Section 1 we
give some preliminary lemmas and then explain the construction in a special case.
In Section 2 we prove two key lemmas, 2.1 which gives one of the building blocks
for the construction, and 2.6. Sections 3 and 4 contain the recursive construction
and Section 5 the main estimate on the resulting domain. In Section 6 we finish up
the proof.

We conclude this introduction by giving a list of notation.

D: closure of the set D

D{a,r): euclidean disc with center a and radius r

1(Q): side length of the square Q

AD: dilation of the disc or square DD by factor A >0 around its
center, e.g. AD(a,r)=D{a, Ar)

do: arc length measure on a given smooth curve

hi(E): one-dimensional Hausdorff content of E, i.e.,
hl(E) = 1nf(zz ri:EC U,L D(ai, Ti))

cap E: capacity of F, as defined in [1]

w(Q,Y,2): harmonic measure for 2 of Y NOQ, evaluated at z

gao: Green’s function of £ with pole at 0o, normalized so that

(i) go > 0 and (ii) if 9Q is smooth dw((, -, 00)=|Vgq|do.

We denote fixed constants by C, and use the notation £ <y to mean £ <Cy and
z=y for “z<y and y<z”. However, in many cases we have given numerical values
for constants instead of calling them C. With one exception (the $ and 2 at the
beginning of Section 3} the values of these constants are irrelevant and are given
only for the convenience of the author for whom it is easier to write 3, 4, and 12
instead of Cy,C> and C1Cs.
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1. Auxiliary lemmas and thick case

Fix €>0. Let Q=C*\E be a domain containing oo, D=D(z,r) a disc and
assume that

(1.1) cap(END) >e~Yer,

Condition (1.1) (called capacity density condition) and its negation will play
a significant role in this paper as in [4]. If (1.1) is satisfied we can “smooth” the
domain Q by deleting D from it, without distorting harmonic measure by very
much, as described in the following lemma.

Lemma 1.1. Suppose Q and D satisfy (1.1). Then for A>1,

w(Q\D, D, ) < C; yw(Q, AD, 00).

Proof. We have w()\D\E,Eﬂ)\D,z)ZCE_’)l\ for all zedD. This is a corollary
of Lemma 2.1 below so we skip the proof at present. By the maximum prin-
ciple w(Q,Eﬂ)\D,z)ZC;}‘ for 2z€0D. So by the maximum principle on Q\D,
w(Q\D, D, 2)<C zw(Q,AD, 2) for all z€Q\D and in particular when z=oco. O

We will also want to control the density of harmonic measure. In the following
lemma, o is surface measure on dD.

Lemma 1.2. Suppose Q=C*\E is a domain containing oo, w=w($,-,c0)
and that D=D(a,r) is a disc contained in E and A>1. Then w|gp is absolutely
continuous with respect to o and for z€0D,

l‘;—j(z) < Car~w(@\AD, AD, 00).

Proof. Equivalently

(1.2) w(Q,Y, oo)SC,\U—(;—)w(Q\)\D,M—),oo)

for all Y CAD. To prove (1.2) define N=maxy(»pyw(Q,Y,-) and choose zo€d(AD)
with w(Q,Y,20)=N. Let A be the annulus A2D\D. Then

N-w(QNAY, z) =w(Q,Y, 20)—w(QNA,Y, 20)
:/ w(Q, Y, )dw(QNA,-, z)
a(\2D)

< Nw(QnAaa()‘zD)7z0)y
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where the last step follows by the maximum principle on Q\AD. Also
w(QNA,B(\’D), 20) <w(4,8(\*D), 20) = }.

Combining this with the preceeding shows that w(2NA,Y, zO)Z%N :%w(ﬂ, Y, z9).
By the maximum principle again, w(A4,Y,z)>21w(Q,Y,20). Since w(A,Y,z) is
comparable to o(Y)/r we obtain maxsp)w(Q,Y,-)<Cro(Y)/r and then (1.2)
follows by the maximum principle on Q\XD. O

Remarks. (1) We can combine Lemmas 1.1 and 1.2: with the assumptions
of Lemma 1.1, let w(Q\D,-,00). Then |dw/do|<Ce 77 w(Q2, AD, 0) on the set
d(Q\D)NaD.

(2) Lemma 1.1 and the result in Remark (1) remain valid if Q\ D is replaced by
any domain contained in 2\ D, because of the maximum principle. We will make
this type of extension routinely and sometimes without explicitly saying so.

By way of motivation for the rest of the paper, we will now present a proof of
Theorem 2 (hence Theorem 1) under the assumption that every disc of radius <1
centered at a point of E satisfies (1.1) This case of Theorem 1 does not originate
with us, however. It is implicit in [6] given certain known facts about the covering
map onto such a domain, as was observed independently by a large number of people
in or around 1985. The proof below is implicit in [4] and the reason we make it
explicit here is that it provides a simple model for the proof in the general case.

Let w=w(,-,00). For each z€FE choose a disc D(z,r) which is maximal
subject to the following condition

(1.3) either r=p or w(D(z,71))>Mr.

Choose a subcover D;=D(z;,r;) with the Besicovitch property, i.e. EClJ; D;
and no point belongs to more than C' D;’s where C' is a universal constant. Let
Q=0\U;, D;, o=w(f, -, 00), § the Green’s function of 2 with pole at co. Note that
89 is smooth except at finitely many points so that do/do can be identified with
[Vg|. Also
(1.4) &(D;) Sw(2D;)
by Lemma 1.1 (and the maximum principle), and in fact

(1.5) V5| < i’@ on HINAD,
J

by Lemmas 1.1 and 1.2. In particular (1.5) implies
(1.6) Vgl <M
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on 89, because of the stopping rule (1.3). On the other hand

(1.7) /~ |V§ldo =1,
an

(1.8) /~ |V§|log |Vg|do > const
af

(see [3,5]), and therefore for large M it follows as in [4,5] that
(1.9) / |Vg|do >C~16.
V§|>M—8

The simple calculation showing that (1.6)—(1.8) imply (1.9) is also done in
Section 6 of the present paper. Now let {D;, } be all D;’s such that either r;>p,
or else r;=p but D; intersects the set {¢€69Q: |V§(¢)|>M}. By (1.9) we have
> @(Dj,)>C~16, and then (1.4) implies 3, w(2D;,)>C~16. If r;, >p then the
stopping rule (1.3) implies w(2D;, ) Sw(Dj, ) so if we let

o { Dy, T > 0,
=
* 2Dj,, rj, =0,

then >, w(A;,)>C~'6. Let F=J, Aj,. The A;, clearly have the Besicovitch
property so w(F)>C~16. On the other hand, if r;, >p then r;, <M 1w(4,,) by

(1.3). Thus
Z T SM_I'

Tjp >0

If r;, =p then r;, SM°w(A;,) by (1.5) since |V§|>M~° somewhere on 0D, .

Therefore
Z Tk S/ Méa

Tip =0

so the discs A;, give a covering of F' of the type in Theorem 2. O

The difficulty when (1.1) fails is of course that we cannot conclude (1.4) and
(1.5). We therefore cannot simply delete the D;’s from 2 and instead will use a
construction described in Lemma 2.1 below.
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2. Domain modification procedure near thin parts of the boundary

Lemma 2.1. There are absolute constants R<oo, €9>0, A<co making the
following true.

Suppose Q=C*\E is a domain containing 0o, w=w(,-,00), @ s a square
with diameter r, and cap(EﬂQ)Se_l/“r. Then there are r1 and 3, §<r1 <rs<l,
such that if we let B be any closed disc contained in iQ with radius
r(r~! cap(ENr2Q))V R and define E=(E\r,Q)UB, Q=C*\E, o=w(Q, -, x), then

(1) (V)< w(Y) for all Y with YNB=0,
(if) &(B) < Aw(ENT2Q),
(lll) hl(B)ZA—lhl(EﬁTQQ).

Remarks. (1) What the lemma says is that we delete the part of E which
is contained in a certain square 71 and replace it with a disc whose capacity is
roughly that of the part of E contained in a slightly larger square r2@. This makes
harmonic measure decrease except of course on the disc, where it increases in a
controlled way, and also makes h; content increase.

(2) Part (iii) of the lemma, while important for us, is trivial provided R>1
since a disc has essentially the largest h; content among all sets with the same
capacity. It will be clear later on that we can take R>1, so we regard (iii) as proved
and will say no more about it.

(8) Part (i) on the other hand may appear a bit strange, since if ENriQ is
deleted from E one would normally expect harmonic measure to increase drastically
on the part of F which is just outside 71 (). However, the small capacity assumption
will allow us to choose r; so that E is very thin near d(r;@) and then we will be
able to show (i). This is the main point in the proof.

(4) By shrinking @ slightly we can guarantee (provided &g is small enough) that
0QNE=0. This well-known fact (i.e. capacity dominates projected linear measure)
is also part of Lemma 2.4 below. We may (and will) therefore assume 0QNE=0 in
the proof.

(5) It is not hard to see (particularly if one thinks probabilistically) that it
suffices to prove the following local statements on @ instead of (i) and (ii).

(i") There is r3/p€(r1,72) such that w(raQ\E,Y, 2)<w(r,Q\E, Y, z) for all
2€0(r3/3Q) and all Y with YNB=0.

(ii’) There is r3€(r2, 1) such that w(Q\E, B, z) < Aw(Q\ E, ENrsQ, 2) for all
z2€0 (7‘3 Q) .

We will concentrate at first on proving (i'), (ii’) and after this has been done, will
give the details of the reduction of (i), (ii) to ('), (i').
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We will need some estimates of harmonic measure which are special to the
situation at hand, i.e., a domain obtained from a nice domain by deleting a set with
small capacity. The following four lemmas are of this type. The sets G appearing
in these lemmas are assumed closed relative to @@ and Wiener regular for the sake
of simplicity, although the latter assumption is not really needed. The first lemma
is wellknown.

Lemma 2.2. Let @ be a square with diameter 1. Fiz A<1 and 0>0. Suppose
GCAQ. Then w(Q\G,G,a)>(log(l/capG))~! for all acAQ. The inequality is
reversible if dist(a, G)>p. (Constants depend on X and 9.)

Remarks. (1) Similar statements when diam Q#1 are obtained by scaling.
(2) @ could equally well be a disc instead of a square. This justifies the first
sentence in the proof of Lemma 1.1.

Proof. Let p be the capacitary measure of G, i.e., ||ull=(log(1/ cap G))~! and
Vu(m)défflog(1/|x—y{)dp(y)=1 when z€@G. Let I'(z, y) be the Green’s function of
@ and consider the function x(z)=[I'(z,y)du(y). Then x vanishes on Q and is
bounded above and below on G since I'(z, y)=log(1/|z—y|) when z,y€AQ. Hence
x(z)=w(Q\G, G, z) for all z€Q. If z€AQ, then I'(z,y) is bounded below by a con-
stant for all y€ @G and therefore x(z)=||u||. If dist(z, G)> o then I'(z,y) is bounded

above by a constant so that x(z)<|lul. The lemma follows. O

Lemma 2.3. Let ¢y be a sufficiently small constant. Fiz A\<1 and 9>0. Sup-
pose Q is a square of diameter 1, GCQ and YCO(Q\G). Suppose a,beAQ\G
satisfy w(Q\G, G,a)<ey, w(Q\G,G,b)<eo, dist(a,Y)>p and dist(b,Y)>p. Then
w(Q\G,Y, a)=w(Q\G,Y,b) (constants depend on A and o).

Proof. This will be based on the following “fine” version of Harnack’s inequal-
ity. Suppose A is the unit disc, ECA is relatively closed, a€ 1A, w(A\E, E,a)<eo
where ¢¢ is sufficiently small. Suppose u is continuous on A, positive harmonic on
A\E and zero on E. Then sup; /5)a u(z) <Cu(a).

The proof we give for the Harnack inequality was suggested by P. Jones. Let
M=sup(;/5a u(z) and F={z€A:u(z)>M}. Then F intersects every circle cen-
tered at zero with radius between % and 1 so by the Beurling projection theorem,

w(A\F,F,a)>C"'. Then also ’
w(A\(EUF), F,a) >w(A\F, F,a)—w(A\E,E,a) > C ' —¢gy > (2C)7!
provided &y is small. So by harmonic estimation
u(a) > Mw(A\(EUF),F,a)>(2C)'M

6 —Arkiv for matematik
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and we are done with the Harnack inequality.

In proving the lemma we may assume diamY <p (else subdivide Y in sets
with this property). Note that by Lemma 2.2, cap(GNuQ) will be small, where
p=3(1+XA). Choose discs A;, j=1,..., N so that the following hold:

i) Ay is centered at a, Ay is centered at b;

i) A;Cp\Y;

iii) the diameters of the A; are bounded below;
iv) N is bounded above;

(v) $8,C3 Az,

We note that (iii) and (iv) are possible because diamY is small which implies that
Q\Y is for all intents and purposes an annulus. Because of (iii) the capacity of
GNA; will be small compared with the radius of A;. Thus, by Lemma 2.2, for
any j there will be a point a;€1A; such that w(A;\G,G,a;) is small. If j=1,
we can take a;=a. In view of (v), the Harnack type inequality of the first part of
the proof implies max; /2)a, ., u(2) Su(a;), so by iterating and using (iv) we obtain
uw(®Su(e). O

(
(
(
(

j+1

We mentioned in Remark 3 at the beginning of the section, that Lemma 2.1
requires choosing ry so that E is appropriately “thin near 8(r;Q)”. The next two
lemmas give a meaning to this.

Lemma 2.4. Let Q be a square with diameter 1, GCQ and define Gr=
{z€Q:w(Q\G, G, 2)> A} and ya={r:GANI(rQ)#0}. Then the linear measure of
va is <C(cap G)*.

Proof. By standard projection theorems for capacity it suffices to prove
cap Ga<(cap G)*. Let u and p, be the capacitary measures of G and G respec-
tively. Let V,(z)=[log(1/|z—y|) du(y). Then w(Q\G, G, )<V, by the maximum
principle. So

1Y _
(108 o) =ld <37 [ (@166 din()
S)\—l/V#duA

=)\‘1/VMdu

_ B 1 \!
<Al =A l(logcapa)

as claimed. O
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Lemma 2.5. Suppose Q is a square of diameter 1, GCQ, and a€Q. Then
the set

{teR*:3e>0:w(Q\G,GN((t+6)Q\(t—€)Q), a) > Mew(Q\G, G, a)}
has linear measure <CM 1.

Remark. Needless to say we are setting sQ=0 if s<0.

Proof. This is simply the one-dimensional Hardy-Littlewood maximal theorem
applied to the projected measure o([r1,72))=w(Q\G,GN(r2Q\r1Q),a). O

We won’t define precisely what we mean by “F is thin near 8(r1Q).” However,
the idea is as follows: fix a point a located well inside @ such that w(Q\E, F,a)<
(log(1/ cap(ENQ)))~!. Such points exist because of Lemma 2.4. Then choose r; by
Lemma 2.5 so that w(Q\E, EN((r1+¢)Q\(r1—¢)Q),a)<e(log(1/ cap(ENQ)))~!
for all £>0. This makes E about as thin as it can be near 8(r1Q), at least as
far as harmonic measures are concerned. Some variants on this idea will also be
used (later on, that is, when we give the precise definition of r1,72,73 and r3/2).

Now we start the proof of Lemma 2.1. We can assume that @ has diameter 1
and (see Remark 4 above) 0@ does not intersect E. The main work in the proof
is contained in the following inequality (2.2). Fix a large number M <oco. Suppose
a,beAQ with \=22 55 ECQ is relatively closed and Wiener regular. Let TG(GO, 63)
be such that ENJ(rQ)=0 and

{ w(Q\E, En((r+e)Q\(r—¢)@),a) <m(a)e

w(Q\E, En{(r+¢)Q\(r—¢)@),b) <m(b)e

for all £>0, where m(a) and m(b) are sufficiently small. Let F be EN(Q\rQ).
Then we claim that

(2.2) w(Q\FY, a)SW(Q\E1:Y’a)+Cm(a)w(Q\E’Y’ b)
for all Y CO(Q\F).

Remark. In other words, deleting ENr@ does not drive harmonic measures up
by very much.

Proof of (2.2). Let o, (respectively o3) be the projection of w(Q\E,-,a) (re-
spectively w(Q\E,-,b)) i.e. 04([s,8))=w(Q\E, EN(tQ\sQ),a) etc. Then

(2.1)

W(Q\F,Y,a)-w(Q\E,Y,a) = /E SHQ\RY, ) a(Q\B,

</< max_w(Q\F,Y, 2) doa(t).

r 2€0(1Q)
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We now show the following inequality on the integrand
1
(2.3) w(Q\F,Y,z)<C (log m) w(Q\F,Y,b), zed(tQ), t<r.

To prove (2.3) let D be a closed disc centered at z with radius half its distance
to 8(rQ) (approximately r—t). Then using the maximum principle

w(Q\(DUF), D,b) >w(Q\(DUE), D,b)

—w(Q\D,D,b)~ /E ,#(@\D, D, du(@\(DUE), .
>w(Q\D, D, b)~ /E #(@\D D) 4@\, )

Q\D is essentially an annulus so that
1 \1
W(Q\D,D,b)z (10g n) 5

1 \! 1
W(Q\D,D,C)S’ (lOg m) log—

Hence

. dop(s).

(24)  w(Q\(DUF),D,b) > (log r—itr—/ (log ;}t)_l log

By the assumption on oy([r—e,r+¢)) and monotonicity of the logarithm we
may replace doy, by m(b)ds and may therefore conclude that

r—t
provided m(b) is small enough. Next
wQ\FY,2) Sminw(Q\F,Y, ()
Sw(Q\F,Y,b)/w(Q\(DUF),D,b),

where the first inequality follows from Harnack’s inequality and the second from
harmonic estimation of the function w(Q\F,Y,-) on the domain Q\(DUF'). Since
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we have already shown that w(Q\(DUF), D,b)> (log1/(r—t))~! we may conclude
(2.3).
To prove (2.2) substitute (2.3) into the inequality preceding it obtaining

G(Q\F,Y,0)-w(Q\E,Y,0) Sw(Q\F,Y,¢) [ log - dou(t).

t<r

(2.5) w(Q\F,Y,a)-w(Q\E,Y,a) Sm(a)w(Q\F,Y,b),

where we used the assumption on o, ([r —¢, r+¢)) and monotonicity of the logarithm.
If we apply (2.5) with a=b we obtain

w(@\F,Y,0)—w(Q\E,Y,b) Sm(b)w(Q\F,Y,b)

and therefore w(Q\ F,Y,b)Sw(Q\ E,Y,b) provided m(b) is sufficiently small. Sub-
stituting this last inequality back into the right side of (2.5) gives (2.2).

We will also use the following slight variant of (2.2) where one deletes an annulus
instead of a disc. Let @, E,a,b as in (2.1) and suppose 7, 96(60, 60) p<r, are such
that ¢ as well as r satisfies (2.1), i.e

w(Q\E, EN((r+e)Q\(r—¢)@),a) <m(a)e
2.1 w(@\E, En({e+£)Q\(e—€)Q), a) <m(a)e
w(Q\E, EN((r+)Q\(r—¢)Q),b) <m(b)e
w(Q\E, EN((e+2)@\(e—¢)Q),b) <m(b)e

for all >0, where the numbers m(a) and m(b) are sufficiently small. Let us define
F=En(pQU(Q\rQ)). Then the statement analogous to (2.2) holds, i.e.

(2.2) Ww(Q\F,Y,a) <w(Q\E,Y,a)+Cm(a)w(Q\E,Y,b).

We indicate the necessary changes in the proof. The inequality preceding (2.3)
is now replaced by

W(@Q\F,Y,a)~w(Q\E,Y,a) < / L B WQ\RY,2)do(t)

o) 2€0(tQ)

and (2.3) is replaced by

@) w(Q\RY,2)<Omax(log - log - Jw(Q\R YD)
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2€0(tQ), o<t<r. The proof of (2.3') is essentially the same as of (2.3). Take D to
be a disc of radius half the distance from z to 8(eQ)Ud(rQ). Considering separately
the cases r—t<t—p and t—p<r—t we obtain

(2.4 . "
w(Q\DUF,D,b)z (log —1——) ——/(log L) log ——l—dab(s), r—t<t—p
~ r—t r—t |r—s]
w(Q\DUF,D,b) 2 (log L) 1—/(log L) log Ldab(s), t—p<r—t.
t—o t—o lo—s]

We conclude that w(Q\DUF,D,b)>(log(1/(r—t)))"! in the first case and
w(Q\DUF, D,b)>(log1/(t—e))! in the second case, and then (2.3') follows simi-
larly to (2.3). From (2.3') and the inequality preceding it we conclude that

w(Q\F,Y,a)—w(Q\E,Y,a)
SWQ\F,Y,b) [ /

<r

1
IOg m dO’a(t)-l-/

1
log —— do,(t)
t>p t_g
and then (2.2') follows like (2.2).
Now we define r1,72,73, and r3/5.

Choice of r3. We require r3€ (38, %), ENd(rsQ)=% and

for all z€8(r3Q). This is possible by Lemma 2.4 provided Cjs is a sufficiently large
universal constant and &g is small enough.

Choice of r5. Let a€9(r3Q) be such that w(Q\E, E, a) is as small as possible
and choose ry € (33, 33) such that ENd(r2Q)=0 and (for a sufficiently large universal
constant C3)

w(Q\E,E,2)<C; (log

(2.6) w(Q\E, EN((r2+6)Q\(r2—€)Q), a) < Coew(Q\E, E, a)

for all €>0. This is possible by Lemma 2.5.
The remaining choices—r3/, and r;——are analogous to the preceding but with

ro@ replacing Q.
Choice of T3/5. We require r3,5€ (32, 22), ENd(r3/2Q)=0 and

1 -1
w(r2Q\E, E,2) < Cyy» (bg m)
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for all z€9(r3;2Q), which is possible by Lemma 2.4.

Choice of r1. Let a€0(r3/2Q) be such that w(Q\ E, E, o) is as small as possible

and choose 71 € (33, 21) such that ENd(r1Q)=0 and

(27) w(TZQ\Ea Em(("'l +E)Q\(’f‘1 —E)Q)a a) S CIEW(T2Q\Ea E? Ot)

for all €>0, which is possible by Lemma 2.5.

Next we want to prove (i) and (ii’). Let us note first that (2.6) remains
valid (with a different constant C3) if the fixed point @ is replaced by any other
point b€73Q satisfying the following conditions: b¢(2Q\23Q) and w(Q\E, E,b)
is sufficiently small. This is a tautology for £> 1%6 and follows from Lemma 2.3 for
£< 135 (so that the distance from (r;+¢)Q\(r2—€)Q to b is bounded below), since
w(Q\E, E,b)>w(Q\E, E,a) by the maximum principle.

In the same way (2.7) remains valid if « is replaced by any point ﬂer—g/g—Q such
that 8¢ 32Q\£2Q and w(r2Q\ E, E, §) is small enough.

In particular inequality (2.6) holds for all a€(r3Q) and for some a€3Q (the
latter by Lemma 2.4) while inequality (2.7) holds for all a€9(rs3,2Q) and for some

a€iQ.
We are now set up to prove (i'), (ii’).

Proof of (ii'). Fix z€d(r3Q). Choose re(2,3) by Lemma 2.5 so that
Ww(Q\E, EN((r+¢)Q\(r—¢)Q), 20)<Cew(Q\E, E, zp) for all >0 and apply (2.2')
with this » and with p=r3, b=a=z, taking Y =ENrsQ. The hypothesis (2.1} is
satisfied with m(a)=m(b)=Cw(Q\E, E, ). We conclude that

M(Q\F’ Emr?Qa ZO) S W(Q\E, EanQa ZO)+C“‘)(Q\E’ E7 Z())(U(Q\E, Eﬂ’f‘zQ, zO)-

The second term on the right side can be absorbed leading to

W(Q\E, Eﬂr?Q, ZO) ZW(Q\F, EanQy 20)
> w(rQ\ENr:Q, ENraQ, 2o)

1 -1
R (log cap(EﬂrgQ))

by the maximum principle and Lemma 2.2. On the other hand

w(Q\E, B, z) <w(Q\B, B, %)

=~ | lo L y!
~\% cap B

1 -1
~) log ——MMM—
R( o8 cap(EﬂmQ))
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using the definition of B. This gives (ii’) with A=const -R.

Proof of (i'). We will apply (2.2) with Q replaced by r2Q, F=EN(r.Q\r1Q),
and taking @ to be an arbitrary point of d(r3,2@Q) and b a point of %Q such that
w(r2Q\E, E,b) is small. Then (2.7) holds with a=a or b, so (2.1) holds with
m(a)=Cw(raQ\E, E,a), m(b)=Cw(r,Q\E, E,b). Thus for Y CO(r:Q\ F)

(2.8) w(reQ\F,Y,a)—w(reQ\E,Y,a) Sw(r:Q\E, E, a)w(r.Q\ E, Y, b).

On the other hand
w(rsQ\F, Y, a)—w(rsQ\ B, Y, a) = /B w(rsQ\F,Y, ) dw(raQ\B, )
> minw(r2Q\F,Y, w(r2Q\E, B, a).

The values of w(r2Q\F,Y, ") at any two points of 2Q(D B) are comparable by
Harnack’s inequality. Taking {=b we get

29) w(raQ\F,Y,a)—w(r:Q\E,Y,a) > w(r:Q\F, Y, bw(r;Q\ E, B, a)
. o

(TZQ\Ea Y7 b)w(TZQ\E’ Ba a‘)'
Also by the maximum principle

w(rgQ\E, B,a) > w(r,Q\ B, B,a)—w(r.Q\ F, F, a)
_>_(4J(T2Q\B,B,G,)~LU(T2Q\E,E,a)

-1 —1
v N oliee— Lt
cap(r,QNE) & cap(r2QNE)
using that a€0(r3/2Q). So for large R,

> C_lR(log

~ L N
S(r2Q\B, B.0) 2 R (log o
~ Rw(raQ\E,E,a)

using a€9(r3/2Q) again. If we substitute this into (2.9) we obtain
w(rQ\F,Y,a)-w(rQ\E.Y,a) 2 Rw(r:Q\E, E, a)w(r2Q\ B, Y,b).
Comparing with (2.8) gives

w(rQ\F,Y,a)—w(rQ\E,Y,a) 2 R(w(r:Q\F, Y, a)~w(r:Q\E, Y, a))
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and therefore (I') provided R is sufficiently large.

In order to complete the proof of Lemma 2.1 we must now carry out the local-
ization argument showing that (i’) and (ii’) imply (i) and (ii).

Suppose first that Q is any domain (not necessarily containing oo) with
(C*\MNQ=ENQ, and let Q=(QUE)\E. We claim that if YNB=0 then
w(Q,Y, z2)<w(f,7, 2) for all zeQ\r2Q.

It suffices by the maximum principle to prove this when z€8(r2Q). Let P=
maxa(r, Q) W(@,Y, )/w(Q,Y, ) which is well-defined because d(r.Q)NE=0. For
2€0(r3,2Q)

w(Q, Y, 2)-w(r:Q\E, Y, 2) = 3 Q)w(ﬁ,x-)dw(m@\ﬁ,-,z)

5/ w(,Y,-) dw(r:Q\E, -, z)
9(r2Q)

SP W(Q,K')dUJ(T’zQ\E,',Z)
8(r2Q)
=P(w(®,Y,2)-w(r2Q\E, Y, 2)).

The first inequality followed from (i’) applied to subsets of 3(r2Q). Using (i’)
again, this time with the given Y,

w(,Y,2) < Pw(Q,Y,2)+(1-P)w(r:Q\E, Y, 2).

If P>1 this is a contradiction since w(ﬁ,Y,-)—Pw(Q,Y, -) would be a harmonic
function on Q\r_gTQ nonpositive and not identically zero on the boundary but
vanishing at some point of 8(r2Q). This proves the claim.

Lemma 2.1 follows immediately by taking {2 to be the given domain. For (ii)
we define [I=maxgg w(@, B, )/w(Q,r2QNE, ) where now  is the given domain.
For z€8(r3Q) we have

w(ﬁ,B,z)—w(Q\E,B,z):/BQ (@, B, ) dw(Q\B, -, 2).

If we apply the claim with Q=Q\ E we bound this by
| w(@,B,)du(Q\E, ,2)
0Q
which is then

< / (2, 7QNE, - ) dw(Q\E, -, z)
0Q

= H(w(ﬂ, 7‘2Q0E7 z)—w(Q\E, TszE, z))
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So by (ii')
w(Q, B, z) <Tw(Q,72,QNE, 2)+ (A—Dw(Q\ E, r2.QNE, 2)

with A as in (ii’). If II>A this means that w(ﬁ,B,-)—Hw(Q,rgQﬂE,-) would
be a nonpositive harmonic function on Q\r3Q, not identically zero but zero at an
interior part. A contradiction which finishes the proof of Lemma 2.1. O

As has already been mentioned Lemma 2.1 is intended as a building block in a
domain modification construction. However, let us first use it to prove the following
estimate which will be needed in Section 5. A somewhat cruder result than Lemma,
2.1 would also suffice for this.

Lemma 2.6. Suppose Q=C*\E is a domain containing 0o, w=w(,-,00),
Q o square, and assume that w(Q)<Mhy(ENQ). Then

Proof. We show first that if o is a small fixed constant and B* a disc of radius
ahi1(EN3Q) centered at z, then w(Q\B*, B*,00) <M - radius of B*.

For this we let ¢ be as in Lemma 2.1, let é = %Q and consider two cases

(i) cap(ENQ)>e~1/% diam Q

(i) cap(ENQ)<e~1/¢0 diam Q.

In case (i) we use Lemma 1.1 (more precisely, the analogous statement with
squares instead of discs, which is proved exactly the same) to conclude that
w(O\@,Q,0)Sw(Q). Hence by the maximum principle w(€2\ B*, B*,00) <w(Q),
and since w(Q)<Mh1(EN1Q)~M - radius of B* we are done.

For case (ii) we note that the radius of B* is smaller than the radius of the
concentric disc B obtained by applying Lemma 2.1 to the square é This follows
from Lemma 2.1 (iii) provided a is small, since %QC g—@ Crzé. Using the maximum
principle, then Lemma 2.1 (ii) therefore gives that

<CM, zelq.

w(Q\B*, B*, 00) <w(, B, ) Sw(Q)

where () is the domain resulting from Lemma 2.1. So it follows as in the previous
case that w(Q2\ B*, B*, 00) SM - radius of B*.
Now let w*=w(2\ B*,-,00). Then

c\Q -z Q —Z
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This is because [q. dw*(¢)/((—2) is the z-derivative of the Green’s function of
2\ B* (with pole at co) and therefore vanishes at interior points of C*\(Q2\ B*).

Now w*(Q)<w*(B*)+w(Q)S M- radius of B* and on the other hand the dis-
tance from z to suppw* is the radius of B*. We conclude that

Q)] oy
IR=it
and therefore that
4 Q) < o
(2.10) /C*\Q =, |°M
Now consider
d(w—W*)(C)‘
(2.11) /C*\Q = .

w—w* is a positive measure on C*\@Q by the maximum principle, and
w(C\Q)—w*(C*\Q)=w"(Q)—w(Q) Sw*(B*)<MI(Q). And dist(z, C*\Q)2U(Q),
so (2.11) is SM and if we combine this with (2.10) we are done. O

3. The domain £,
For n>0 let G,, be the nth 8-adic grid on the unit square

[-5: 3] x[=33];
i.e. G, is the set of all squares
We also define G,, for n<0 to be the singleton {Q} where Q is the square of side

8™ centered at zero.
For Q€gG,, define

Q*=3Q, Q*=3qQ, Q= disc concentric with Q of radius &sHQ).

Thus for n>0, @* is obtained from @ by adjoining all G, 1 squares which
touch @, and Q** is obtained from @Q* by adjoining all G,1 squares which touch
Q*. Q is a disc which is small enough for our purposes, in particular, small enough
that (I) below holds. We record the following two properties.

(1) If Q€G,, R€Gm, m>n, and R*¢Q* then R*N10Q=0. We also have
int QNint R=0.

(II) If {Q;} is any family of squares in [, Gn, such that j£k=Q; ¢ Qj, then
no point belongs to more than C' Q}’s, where we may take C'=148.
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Statement I is trivial but we will sketch the proof of II. Each square Q7 is the
union of 37 zones, where the first zone is ¢; and the others are the 36 G, squares
adjoined to Q; to form @7, numbered clockwise from the lower left, say. It is easy
to see (for fixed i€{1,...,37}) that if the interiors of the ith zones of @} and Qj
intersect then one of @7, Q% is contained in the other. So no point is contained in
more than 37 sets of the form @7\ Z; where Z; is the union of the boundaries of the
various zones of Q7. If a point belongs to a given Q] then a nearby point located
to one of the “southwest”, “northwest”, “northeast” or “southeast” directions will
belong to Q;\Zj. Consequently, if a point belongs to some collection of Q}’s then
a suitable nearby point will belong to at least one quarter as many Q;f\Z ; S0 we
are done.

We now choose M <oo and ¢>0 as in Theorem 2 and let G=|Jg-n5,Gn- We
assume g is a power of 8 and order G as {Q; }i— o in such a way that j<k implies
(Q;)>1(Qx). We can take I(Q;)=877 for j<O0.

Let Q=C*\E be our given domain, w=w(f,-,00). We may assume that
Ec[-},1]x[-1,1], and also that Mh;(E)>1, since if the latter assumption fails
we can take F=E. Then for j<0, w(Q})<Mhi(E)=Mh,(ENQ}). This will guar-
antee that the definition of €}; given below is consistent for nonpositive j.

We now perform the following recursive construction. Set Q_ .=}, and for
J<0, set ;=0 also.

If ; has been defined let E;=C*\Q;, w;=w(£;,-,00). We then say that

%11 18 chosen if (i) it is not contained in any previously chosen square and (ii)
either I(Q;)=p, or

(3.1) w;( ’;-+1)EMI}{lg)l(R_ﬁhl(EjﬂRQ;H).

Here 3 is a fixed constant which should be >1. For definiteness we will take §=2.
If Q7,1 is chosen it is thin if

cap(E;NQ7Y ;) < e_l/aol(Qﬁ-l)

with o as in Lemma 2.1 and thick if cap(E;NQ}%,)>e”/%UQ1,). If Q144
is chosen and thin then we define €2, by applying Lemma 2.1 to ; with the
squares Q=Q7}, and %Q:Q; 11. We denote the quantities r;, 72 and B appearing
in Lemma 2.1 by 7'9 ), réj ) and B;. We take B; concentric with Q;, and may assume
(by shrinking ¢¢ if necessary) that B; C éon. In all other cases (i.e. @}, is chosen
and thick or is not chosen) we let ;1;=;.

In this way we eventually obtain a domain 2, which we will analyze in this
section. In Section 4 we will make a further domain modification involving the thick

chosen squares.
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Remarks. (1) We note again that the definition of Q; is consistent for non-
positive j since (3.1) must fail. The nonpositive values of j are of course just a
technicality and the reader can safely ignore them. For clarity, we also note that
Q;41=9; unless Q741 is chosen and thin, in which case §2;,; differs from Q; only
inside Q7% ;.

(2) It seems worth comparing this construction with the constructions in [4,5]
and in the special case treated in Section 1 of the present paper. It differs from all
of them in various technical respects. However, the most significant difference is
the role of the h; content in the stopping rule, i.e. on the right hand side of (3.1).
The constructions in [4,5] and in Section 1 all use instead a comparison between
w(Q) and I(Q). Such a stopping rule does not permit the estimate in Lemma 5.2
below. Instead there is a ¢ dependent estimate (see [5]), although the dependence
on p was weak enough to permit a proof of the @ksendal conjecture.

(3) The lemmas in this section will involve the behavior of h; measures, har-
monic measures and capacity in passing from Q to ,. However, let us first note
some general properties of the construction.

(a) If Q7 is any square in G, then by (I) above, Q7" does not intersect B; for
any i<j. Therefore Q;*NE;_, is contained in E; for all i<j and in particular in
E.

(b) E, consists of discs B; where Q} is a thin chosen square, together with a
certain subset of | J{Q}:Q} chosen and thick}.

(c) No point can belong to more than 148 chosen squares Q7. This follows
from (II) above. Furthermore by (I) above, if Q} and Qj are chosen then int @;
and int Q) are disjoint.

These properties, (a) in particular, will be used frequently below.

Now suppose Q7 is a thin chosen square and define a set A; [, <; Ei as follows.

{ Q;ﬂEj_l if l(QJ‘)>Q,
i= i .
r Q5 NE;_1 i 1(Q)) =0

The sets A; with [(Q;)> o are disjoint, since A; is deleted from E;_; in forming
E;. The A; with l(Q;)=p are not necessarily disjoint, but since they are contained
in the Q7" no point can belong to more than four of them. So no point belongs to
more than five 4; in all.

Lemma 3.1 (h; contents increase).

(i) For any thin chosen square Q}, h1(B;)Zh1(4;),

(ii) For any j, any k>j and any square Q with {(Q)>1(Q;), h1(4QNE:)>
h1(QNE;) (Q need not be 8-adic here).
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Proof. Part (i) is immediate from part (iii) of Lemma 2.1. To prove (ii) it
suffices to show that hy (QN(E;\ Ex))Sh1(4QNEy). We have

QN(E;\Ey) C U Ci
j<i<k
Q7 chosen and thin
QITNQ#D

where C; denotes rgi)Q‘{*ﬂEi_l. Since (Q)>1(Q;) it follows that Q*C4Q and
therefore that B;C4Q), for all such i. Accordingly, we will be done if we show the
following:

Claim. If Q7 ,...,Q;  is any collection of thin chosen squares, then

h (U ré””Q;‘,.*nEij_l) <Chy (U Bi,.) :
J

J

To prove the claim choose a covering of | ; Bi; by discs Dy=D(ax,rx), with
> re~ha(U; Bi))-

For each j, consider two possibilities.

(i) Every Dy, with DpNB;; #0 is contained in Q,,

(ii) Not (1).

Then
h1( U Cij)f, Z Z Tkgzrkzhl(UBi])
3 type (i) 3 type (1) DrCQy; k J

where the second inequality follows because the (interiors of the) Q;; are disjoint.
On the other hand, if j is type (ii) then one of the Di’s which intersects B;,
has radius 21(Q;;), so a suitable fixed multiple of D}, will contain C;;. Hence

h1 ( U Cij> <C Z Tk
J type (ii)
and we are done. O

Next we consider harmonic measures which is somewhat more involved. The
information we need is contained in the following four lemmas.

Lemma 3.2. wi(B;)<Cw(4;) for any thin chosen square @} and any 1<j<k
(and in particular, if I=—oc0, k=r).

Lemma 3.3. (harmonic measures decrease) If Q) is any square which is not
strictly contained in a chosen square and if k>1 then wi(Q)Swi(5Q).
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Lemma 3.4. (doubling property) If Q} is a chosen square with [(Q;)>¢ and
if k>j—12>1, 1<T <oo then wi(TQ}) STPwi(Q}).

Lemma 3.5. If Q7 is a chosen square then there is T;>1 such that

T 8
wk(TQDSM(@) b (ENT3Q))

for all T>1 and all k>2m—1, where m=m(T) denotes an index such that
5TQ; CQy, and [(Qr)<100TUQ;). In particular,

7Y™
Q) sM( ) 1Ta)).

2

Proofs. These lemmas are closely related and we start with some observations
which are relevant to the proofs of all of them. First,

(3.2) if k>land f YNB; =0 for all i€ {{+1, ..., k} then wp(Y) <wi(Y).

This follows by induction on Lemma 2.1 (i). Next, the stopping rule (3.1) will
be used in the following way. Let Q; be a chosen square and let @, be a G square
containing @;, with length {(Q;,)=T1(Q}). Then Q;, was not chosen so

Wmn—1(@m) < Mrllgtlég?l( h1(Em—_1NRQ:)RP.

By Lemma 3.1 (ii)
Wm1(Q) S M max ha(E;_1N4RQ}, )R ™7

< Mr}]ggi( hi(E;—1NRQ:)R™P.
Q7. contains and is comparable to T'Q} where T"=max(1,T/100). So
Wm-1(Q) S M max hy(E;1NRT'Q;)R 7,

T

a
3) 1 (@5) S M o (By-1nR5) (5 )

If I(Q;)> o then we can further conclude by (3.1) that

(3.4) wm-1(Q) STPw;-1(Q5)-
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If we apply (3.4) with Q. the immediate predecessor of Q; (i.e. T'=8) and note
that Q7" CQ7, we obtain wm_ 1(QF*) Swj-1(Q5). However Q5 is disjoint from B;
for i<j (Remark 3a above) so, by (3.2), w;_ 1(Q *)<wm— 1(Q**) We conclude the
following “preliminary version of the doubling property”

(3.5) wj—1(Q7") Swj-1(Q}), Qj chosen, UQj) >

Proof of Lemma 3.2. Since the B; are disjoint we have wi(B;)<w;(B; )
(3.2). By Lemma 2.1 (ii), w;(B;)Swj- 1(r(])Q**) By (3.5) we can replace r$? Q**
by A; here, so wi(B;)Swj—1(4;). But A;NB;=0 for i<j so w;—1(A4;)<wi(4; )and
we are done.

Proof of Lemma 3.3. Write
(3.6) QnE=YU(J{Bil<i<k and BiNQ#0})

where Y CQ is a set which is disjoint from all B,’s with [ <i <k and therefore satisfies
we(Y)<wi(Y). The chosen squares Q; yielding B;’s in (3.6) all have side length
1(Qr)<4l(Q), since Q intersects B; which is situated near the middle of Q;, but is
not contained in Q}. Therefore each A; is contained in 5@). Using Lemma 3.2 we
obtain

( <u.);c -|- Z wk

I<i<k

Swi(Y)+ Z wi(A;)

I<i<k

with Y and the A; being contained in 5@). At most five A;’s contain any given point
so the sum is <5w;(5Q) and we are done.

Proof of Lemma 3.4. We may assume k=j—1=1, since wx(TQ}) Sw;-1(5TQ7})
by Lemma 3.3 and w;_1(Q})<wi(Q}) by Remark 3a and (3.2).
Choose Q;, containing 5T'Q} and with comparable side length. Then

wm-1(5TQ}) STPw;—1(Q})

by (3.4). On the other hand 57'Q; is not contained in any chosen square (else Q
could not have been chosen) so by Lemma 3.3

w;i—1(TQF) Swm-1(5TQ7)



Plane harmonic measures live on sets of o-finite length 161

and we are done. 0O

Proof of Lemma 3.5. Choose T} to be such that Tj“ﬂ h1(E,NT;Q7) is as large
as possible. If T is given and Q,, is as in the lemma, then by (3.3) there is R such
that

T B8
om(5TQ;) S Mt (B;-1070;) (3 ) -

R
By Lemma 3.1,
T 3
on-(5705) Mt (B,14R0) (1
T 3
SMhl(ETﬂTjQ;)(f) .
j
By Lemma 3.3,
* * T ’
wr(TQF) S Mh(E.NT;Q73) A
j

for all k>m—1, and we are done with the first part of the lemma. The “in partic-
ular” part follows by estimating hy(E,NT;Q7)<T;i(Q3). O

Finally we need to keep track of capacity.

Lemma 3.6. (capacities increase) If Q} is a thick chosen square then
cap(E-N3Q7) > e_l/sll(3Q;)

where €1 depends on eq.

Proof. If QF is a thin chosen cube with ¢>j then we denote rii)Qz‘*ﬂEi_l
(the set deleted from E;_; in forming E;) by C;. If CiﬂQ;*;é(Z) then B;C3Q;.
The lemma will follow from this and the fact that cap B;>capC; (for this, see
the statement of Lemma 2.1). Namely, the squares @; with QF chosen are dis-
joint except for edges. So for any z, there is at most one 7 such that dist(z, B;)<
%maxyeci lz—yl, since @; would have to contain z. Hence it suffices to prove the
following general fact.

Suppose E and F are subsets of a square of diameter r, and have the following
structure: E=EoU(lJ, C;) and F=EoU(|J; B;) where B; is a disc, cap B; >cap C;,
and for any given x we have dist(z, B;)> % maxycc, |z— y| for all ¢ with one possible
exception. Then cap F/r>3(cap E/r)%.

This statement is scale invariant and we may assume r=1. We may also assume
the C; are disjoint from each other and from Ey since otherwise we replace C;



162 Thomas H. Wolff

with Ci\(EoU(U,<; Cj))- Let u be the capacitary measure of E (ie. V, (.7:)dif

Jlog(1/|z—y|) du(y)=1 on E except for a set of zero capacity). Define

V—M|E0+Z,u dUZ’

where ¢; is a uniform mass distribution on the boundary of B; with total mass 1.
Given z, let o be the exceptional index with dist(z, By, )< maxyec,, [t—y|. (We
assume for notational purposes that such an exceptional iy exists.) Then

1
Vi(z S/ log ——— du( /lo da,
(z) L p(y g —— dai(y)

+M(Cio)/108x——

Since cap C;, <cap B;, the last term here must be bounded by 1. So for z€F,

V,(z) < / log —— du(y)+(10g 3)||l] +1
BoU(Uyypy, C) 1%~ I .
< Viu(z)+(0g 3|l +1,

where we used diam E<1 in the first term. Hence log(1/ cap F')<2log(1/ cap E)+
log 3 and we are done. O

4. The domain

This domain is defined as follows. For each thick chosen square Q] let R; be
the circamscribed disc. Let

Rj =R;U (U{Q‘ Q7 is chosen and thin and Rjﬂ%éi # (Z)})
We regard R; and Q, as being closed discs here. Let
Q= QT\U{ﬁj: Q] chosen and thick}

and let E:C*\ﬁ, ZD:w((NZ, -, 00).
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Note that each %QZ (QF chosen and thin) is either contained in E or disjoint
from it. Thus the same is true for each B;. Also it is clear that each Qz adjoined
to R; to form Ej must satisfy {(Q;)<l(Q;). Hence Ej C3R;, say.

For each chosen square @} we now define two sets A;CE and A, CE, which
we regard as the parts of E and of E associated to Q;. Namely

QiNE; if 1(Q;) > o
Aj=1 rPQrnE;_, ifI(Q;)=0 and Q} is thin,
100Q;NE if 1(Q;) = ¢ and Q7 is thick.

If Q7 is thin this definition agrees with the one in the previous section. Note
that no point belongs to more than C' A;’s with C' a fixed constant. This follows
easily using that no point belongs to more than 148 Q7’s. Also

B B; if QF is thin,
" R; if QF is thick.
Lemma 4.1. If Q} is a thick chosen square then G(Rj)swr(loRj),gWI(CjQ;)
for all 1<j—1, where Cj=1 if I(Q;)>p and C;=100 if I(Q;)=p.
Proof. First of all

&(R;) <w(Q\3R;,3R;, 0) Swr(10R;),

where the first inequality follows by the maximum principle and the second by
Lemmas 3.6 and 1.1.
Now consider cases. If I(Q;)=p¢ then

wr(10R;) < wr(20Q3) S w1(100Q7)
where the second inequality follows from Lemma 3.3. If [(Q;)> ¢ then

wr(10R;) S wr(20Q7) Sw;-1(100Q7) Sw;-1(Q7) <wi(Q3),

where the last three inequalities use respectively Lemma 3.3, Lemma 3.4 and (3.2). O

Lemma 4.2. For any chosen square Q]
(3) ha(8) 2 ha(4y),

(i) 3(A;) Sw(4)),

(iil) If l(Qj)>g then w(AJ)ZMhl(A])
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Proof. Part (i) is identical to Lemma 3.1 (i) if @ is thin and is trivial if Q7 is
thick. Part (ii) follows from Lemma 3.2 if Q] is thin, since the maximum principle
implies &(B;)<wr(Bj). If @} is thick then part (ii) is identical with the I=—oc0
case of Lemma 4.1. It remains to prove (iii). But w;_1(Q}) Sw(Q;NE;_1)=w(4;)
by (3.2), and on the other hand w;_1(Q})>Mhi(E;-1NQ})=Mhi(4;) by (3.1), so
we are done. [

Let us also prove the following fact.

Lemma 4.3. Each set R, (Q; chosen and thick) satisfies o(QNOR;)SIQ)
for all squares Q.

In other words ﬁj is what is called Ahlfors-David regular, with uniform bounds.

Proof. This is certainly true if 1~%j is replaced by R;. Hence it suffices to prove
it with ﬁj replaced by U{QiiRjﬂ%Qi?é@}. Fix a square Q. If QCQ;, for some
thin chosen square @, then @ cannot intersect Qoi for i#£ig and the lemma follows.
If @ is not contained in any such ;, and if Qﬂ@()ﬁé@ then Qi C3@, and clearly if
R;N1Q;#0 then 0(8Q:) So(Q:NOR;). Hence

o(Utodin@:rnigi#a) < 3 (6Qy)
QiC3Q
Rjﬂ%éi#@
< Z o(QiNAR;).
Q:C3Q
The subsets of OR; appearing here are disjoint so the sum is bounded by
o(OR;N3Q)SI(Q) and we are done. O

5. The gradient of the Green’s function

Let § be the Green’s function of Q with pole at co. E consists of B;’s and Ej’s
and 05 is therefore smooth except at finitely many points. So we may identify |Vg|
with diw/do. We will prove the following estimates.

Lemma 5.1. (thick case) If Q} is a thick chosen square and xeaéj N then
[V (z)| Smin(M,w(4;)/h1(4;))-

Lemma 5.2. (thin case) If Q] is a thin chosen square and Qj is not contained
i any R, then

(a) if z€0B; then |V(z)|Sw(4;)/hi(4;),

(b) if z€1Q;NQ then |Vi(z)| S&(B;)/|z—2|+ M.
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Here z; is the center of B;. We also let ; be the radius of B;. Note that the
estimates are independent of p.

Proof of Lemma 5.1. First let T'o=Q,\ R;, gr, its Green’s function with pole
at oo.

Claim 1. |Vgr,| Smin(M,w(A;)/h1(4;)) on OR;NOT .
Proof. By Lemma 1.2 it suffices to show that

w(2\2R;,2R;, 00) S1(Q;) min (M, ;:1 ((’Z))).

So by Lemmas 3.6 and 1.1 it suffices to show that

: w(4;)
+(3R;) S1(Q; M 1o,
o (31;) S Q) min (M1, 2250 )
However w,(3R;) SMI(Q;) by Lemma 3.5, and w,(3R;) Sw(A;) by Lemma 4.1, so
we are done. _
Now let Q; be one of the discs adjoined to R; to form R;. Let I'y=Q,\(R;UQ;)
and gr, its Green’s function with pole at oco.

Claim 2. |Vgr,|<min(M,w(A;)/h1(A;)) on 8(R;UQ;)NAT.

Proof. On OR; such an estimate follows from Claim 1 by the maximum prin-
ciple, so it suffices to prove the estimate on 8¢);. For this it suffices by Lemma 1.2
to prove

w(To\2Q;,20;, 00) <1(Q:) min (M, w(A;) ) .
hi(4;)
Consider the domain Qj,.=Q;NI'g whose complement relative to @; consists of
R;NQ; together with the disc B; (which may or may not be contained in R;). Since
OR; is a continuum which intersects %Qz and is not contained in @Q;, and since B;
is contained in %Qi, it is clear that w(Qjec, OR;,00)> const on Qlocﬂa(%o)i) (see
Figure 1).
It follows by the maximum principle that

w(To, QiNOR;,- ) > const

on 8(2622«), and therefore, using the maximum principle as in the proof of Lemma
1.1, that
w(Fo\zQi, 2Q;, OO) Sw(l_‘o, QiﬂaRj, OO)
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Figure 1. The square is ;. The large disc is 26:?,~ and the small disc is B;. Q. is the
part of the square lying above OR;, with B; deleted.

The right side here is SI(Q;) min(M,w(A4;)/h1(4;)) by Claim 1 so we are done with
Claim 2.

Lemma 5.1 follows immediately from Claim 2 using the maximum principle.

Proof of Lemma 5.2. Part (a) is basically trivial from Lemma 4.2. Namely,
since B; C 4Q] and ENi QJ =({, § may be extended by the reflection principle to a
harmonic function on 2B \1B;. Using polar coordinates based at z; we have for
1<5<2 (actually, for any s such that sBj\BjCﬁ)

/ / /dg do dr / o(By) dr _3(By) ||
a(sB;) 271' 2 1 ,o 2w = Top 8%

It follows by Harnack’s inequality that || S@(B;) on 8(3B;) and therefore on
2B;\3B;. By standard derivative bounds for harmonic functions |V§|<&(B;)/r;
on OB and (a) now follows from (i) and (ii) of Lemma 4.2.

Proof of (b). The preceding argument may be applied not just on 8B;, but on
3B;\B;, say, so we knoow |V§|<&(Bj;)/r; there and in proving (b), may restrict
attention to points of 1Q;\3B;.

We claim there is a scale T;Zl such that

(i) 3(T;Q;) SMh(ENZT;Q7),

(it) Q(TQ;)SM(T/T;)W(T]{Q;) when 1<T<Tj.

TJ{ is defined as follows. Let T} be the scale from Lemma 3.5. Let

F= {ﬁi: Q7 is a thick chosen square and diam R > dist(z;, E)}

If no féie]-‘ intersects 27;Q}, then we let T;=2T;. Otherwise we let T; =
1000 min{7": TQ;‘OIE#@ for some ﬁie]-'}.
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Thus 77 <10007}, and also T} >1 since no R, intersects %Q ;- We will now prove
(i) and (ii).

Claim. Suppose T'>1 is such that no R,€F intersects TQ;. Then G(TQ;’»)S
M(T/Tj)ﬁhl(EﬂTjQ;‘-).

Proof. By the maximum principle

(5.1) BTQ) <w (TQ)+ Y, @(ORy).

RNTQ:#0

Let C be a suitable constant. Choose m so that 5CTQ}CQ;, and I(Qm)<
500CTI(Q;). Consider one of the R; appearing in the sum in (5.1) and the cor-
responding thick chosen square Q. R; cannot belong to F and must therefore
be contained in 5TQ}, and consequently if C is large we will have i>m. So by
Lemma 4.1, 5(R;) Swm-1(CiQ?) where C;=1 if [(Q;)> g and C;=100 if I(Q;)=0.
By Lemma 3.3, w(TQ}) Swm—1(5TQ7). Thus

5(TQ}) Swm1(BTQN+ Y. wm-1(CiQ]).

ROTQ;#0

For large C all the C;Q; will be contained in CTQ7, and no point belongs to more
than a fixed finite number of them. So

HTQ7) Swm-1(CTQJ)
and therefore by Lemma 3.5,

TV
510 $M( 7 ) m(EnTQ))

J

TV -~
<m( ) mEnT,Q)

M

as claimed.

Now we consider cases. Suppose first that no R;c F intersects 2T;Q;. Then
T;=3T; and both (i) and (ii) follow immediately from the claim. Now suppose that

some R;€F intersects 2T;Q%. For (ii) there are two subcases 1<T'< ﬁGTJ{ and

T)>T> 101—00T]{ LI 1<T< 1—010-0T]( then by definition of T]{ no Rief intersects TQ7,
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and the claim implies
- TY -
5@ s M( 7 ) (BT,
J
3
T *
su( ) 1m@))
3
T *
(5 ) Q)
J
since T; ST and 8>1. This gives (ii) for T'< 1—010—0ij . It remains only to prove (i)
since (ii) for T'> ﬂ)lo—OT]( is clearly a corollary of (i). Moreover, to prove (i) it suffices
to prove

(5.2) G(T;Q3) S MUT;Q3)

since hl(%T;Q}ﬂE) is comparable to I(T;Q7) due to the fact that some ReF

intersects 555 77@5- To prove (5.2), denote T; by T and fix ¢ with RN ﬁTQ;f #0.

By the maximum principle
3(TQ;) Sw(Q\(R:UTQ;), TQ;, 0)

and since cap(TQ;ﬁﬁi)Zl(TQ;f) (this is because B;€F) Lemma 1.1 with squares
instead of discs now implies that

G(TQ}) Sw(\R:, 2TQ}, 00),
which by the maximum principle is
Swr(27Q7) +w(Q\ Ri, OR;N2T'Q}, o).

Here w,(2T'Q}) SMI(TQ}) by Lemma 3.5. On the other hand by Lemma 5.1 and
then by Lemma 4.3,
w(Q\R;, 0R;N2TQ}, 00) S Mo (0R;N2T Q")
S MUTQY).

We conclude that (5.2) holds and have therefore proved (i) and (ii).
To finish the proof of Lemma 5.2 write V§(z) for 2€2Q;\3B; as a Cauchy

integral
g _ [ 1 .
2= [ =m0
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and split the integral as

Jomas e, ™ o
C\T;Q; JTjQ}\3Q; VB;

The punch line is that by (i) above and Lemma 2.6, the first term is SM.

The other terms may be estimated in a straightforward manner. The last term
is clearly <&(B;)/ dist(z, Bj)~w(B;)/|2—2;|. The bound for the second term uses
the decay property (ii). Namely

1 1
dw(Q)| < —— di
~ [ aremue;) aria;)
1/200

where we used that dist(z,(TQ%))~TI(Q}) and that dist(z, C\3Q;)~(Q}). Us-
ing (ii) we bound (5.3) by
7

5]
M (%) UTIQ)THQ)) 2 d(TUQ) S M

1/200

where the last inequality follows since #>1. This finishes Lemma 5.2. O

6. Completion of the proof
The technical part of the proof is now over and we will finish up as in {4,5].

Step 1. For each thin chosen cube Q] such that Q°j is not contained in any R;
we will define a certain level set component £; for g, contained in %602]-. Namely
let C; and Cy be appropriate large constants. If &O(B;)<C1CyMr; then let £;=
8B If w(B )>01C2M7’J define s1=w ( )/(CngM) 82—~( )/(Cl ) Then

r;<s1<s2< radius of 4Q3, the last inequality following (for large C7) because
Uu(B )Swj—1(A;) (Lemma 3.2 and the maximum principle) and w;_1(A4;) SMI(Q;)
(Lemma. 3.5). For s=s1, sy we have
/g(zj—i—sew) df =o(Bj)log ri
J
as in the proof of Lemma 5.2(a). Therefore by Lemma 5.2(b)

21§(z;+51€%) <B(B;) 1o +C<M+ (B)>81,

81
T Ny @(B;)
27g(zj+s2€ )Zw(BJ)log C| M+ . s2,

2
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ie.
e <3(B &(B;) c
2§z +1e”) BB )[log coomr, YT EG)
B)) C
8 > w( — R
27mg(z5+52e") > &(B )[log Cir, -C A

So, if log C2>2C+C/(C1C3)+C/C1 (as we may arrange by taking C» large) then

min §> max ¢
|z—z5|=s2 |z—z5]=s1

and it follows that there is a level set component £; contained in s; Slz—zj|332.
On L;, we have |Vg|<M by Lemma 5.2(b). We also have this when £;=0B; by
the definition and Lemma 5.2(a).

Step 2. Let L=, L;U . OR;) where i runs over thick chosen squares and j
33 %

over thin chosen squares not contained in any R;. Since £ is a union of level set
components it follows (see [5]) that

/ |V3g|log |Vg|do > const .
c

Also [.|Vgldo=1. On the other hand |V§|SM on £ by Lemma 5.1 and the last
sentences in Step 1. So as in [5]

/ |V§|logt |V§| do < (log M+C)/ |V§| do
c £n{|vg|>1}

and then also

/ |V3|log™ |Vg|do < (log M) |Vg|do+C.
L £n{|vg|>1}

Therefore

Slog M V5| do < (log M) / V3| do+C
Ln{|vg|<mM-%} Ln{|vg|>1}

< (log M)/ V3| do+C,
Ln{|vVg|>M—-4}

) o
>C716
=146 (1+6)logM =

/ V51do >
Lr{|vgi>M-2}
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for large M.
Now we define our set F. Namely

F=|]4;,

J

where the union is over all j such that Q7 is chosen, A; intersects 89 and one of
the following holds.
(a) (Qj)>e,
(b) {Q;)=0, Q7 is thin and £;#0B;,
(c) {Qj)=0, Q; is thin, £;=0B; and |V§|>M~% somewhere on L;,
(d) Q;)=e, Q; is thick and |V§|>M~% somewhere on 8ﬁj.
We denote the set of all j satisfying (a), (b), (c) or (d) by J.
We show first that w(F)>C~16. Since the A4; have finite overlap it suffices to
prove
> w(4;) =07
jeJ

By Lemma 4.2, it even suffices if

Y H(A)=Ccle.
Jjeg

However, since [, g, |Vildo= i) ¢, |Vgldo for thin squares @7,

Yana)= Y / Vldot+ 3 / V3| do
€T jeg JOR; jeg ‘i
QF thick Q; thin

>

/ V) do
Ln{|Vg|>M~—%}

by choice of 7. This we know is >§ so we have proved that w(F)24.

What remains is to show that F' has a covering as described in Theorem 2.
First we consider the set |J; 4;, Q@ satisfying (a) or (b). If Q] satisfies (a), then
by Lemma 4.2 (iii},

hi(4;) SM ™ w(4;).

If Q7 satisfies (b), then by definition of £;, r; SM ~1%(A;). Using this and Lemma

4.2 (i) (ii),
hi(A;) SM ™ w(4A;).
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So we conclude that

Y mA)SMTY w(4) SMY

j satisfies (a) or (b)

i.e. there is a covering where radii sum to <M~!. Next consider j satisfying (c) or
(d). By Lemma 5.1 or 5.2(a)we know that

—s o w(4;)
M7S hi(4;)

Therefore
S h(4) MY w(4y) S M.

j satisfies (c) or (d)

Since A; has diameter Sp it is clear that only discs of radius <o need be used in
an economical covering of A;. Consequently the union of A; satisfying (c) or (d)
has a covering by discs of radius <p, whose radii sum to <M?, and the theorem is
proved. O
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