Commutators of Littlewood—Paley sums

Carlos Segovia and José L. Torrea

Introduction

For every interval ICR we denote by S; the partial sum operator:

(S1f)"=far.

Given a sequence {I;} of disjoint intervals and a function b, we form the square
function

1/2
885 = (LIS, f0)-51,60@F )
J
We aim to prove inequalities of the type

12, 01f]] Lo 5y < Collfllza (@),

for some classes of weights «, 3, depending on the family {/;} and on the function b.
See Theorem (3.2) and (3.5).

Inequalities of the aforementioned type are new, even in the unweighted case,
for general families of intervals {I;}. In the case of the family of dyadic intervals
some results are known see [ST2], for the smooth operators S 1,, see Definition (3.11).

We shall need a vector-valued commutator theorem (see Theorem (2.2)) for
a kind of vector-valued L"-Dini singular integrals. The use of these vector-valued
L"-Dini singular integrals in the Littlewood—Paley theory was introduced in the
beautiful paper of J.L. Rubio de Francia [RF2].

To prove the commutator theorem, we shall need an extrapolation theorem (see
Section 1) for pairs of weights o and 3 that satisfy the relation a=vP3, where v is
a given positive function and o and g8 belong to A,. For notation and the general
theory of A, weights, we indicate [GCRF] for instance.
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Throughout this paper we shall work in R, endowed with the Lebesgue measure.
Given a Banach space E we shall denote by L% (R) or L% the Bochner-Lebesgue
space of E-valued strongly measurable functions such that

/R 1£(@) 3 do < +oo.

Given a positive measurable function a(z), we shall denote by L% (a) the space
of E-valued strongly measurable functions such that

[ 15@ a(@) do < +oo.
R

Given two Banach spaces E and F, we shall denote by L(E, F) the Banach
space of all continuous linear operators from E into F.

1. An extrapolation theorem

Let 1<p<oo and 1<A<p. Let v be a measurable function. We shall say that
a weight (positive measurable function) w belongs to AZ(J"))\ if

we€Ay and rPweA,,.

If A=1 we shall write A%, Observe that A;’K:A;’;;).
Now we list the basic properties of the classes Ag"))\. See [ST1].
(1.1) The class Agj))\ is not empty if and only if v* € A,.
(1.2) Given wEAI(:;, there exists £>0 such that if p<g<p+e then weAgt'))\.
(1.3) Given weASj/)\, A<p, there exists €>0 such that w belongs to Ag’j))\ for

p—e<qg<p.
(1.4) (Factorization). The weight w belongs to A;’j))‘ if and only if w=wow; ” >

A -
where woe AL and w; €A ).
The classes Ag”;\ also satisfy extrapolation results. We are interested in the
following theorems (see [ST1]).

(1.5) Theorem. Let S be a sublinear operator defined on C§°(R) with values
in the space of measurable functions and 1<A<oco. If the operator satisfies

lwSflleo < Collwflloo
for every w such that w™*€A; and (vw) €Ay, then

1S Fllze(wy < CullfllLew)
holds for every weAI(,"’i and p> .
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(1.6) Theorem. Let S be a sublinear operator defined on C§° with values in
the space of measurable functions. Let 1<A\<r<oo. If the operator satisfies

NS fllrw) £ Coll FllLr (>

for every weAﬁl"))\, then for every p, A<p<oo,

IS fllze(wy < Cullfll rw)

holds for every wEA;':;\.

2. Singular integrals and commutators

Let E be a Banach space, b an E-valued measurable function, and v a positive
function. We shall say that b is in BMOg(v) if for any interval I

/ lo(z)—br||gdz < Cv(I)=C / v(z)d,
I

I
where by=(1/|1]) f; b(y) dy.
The following lemma is an easy consequence of the definition of BMOg(v).

(2.1) Lemma. Let I be an interval and I;=2FI. Then, if be BMOg(v) it
follows that
lor=br, || < Ckuy,,,,

where Iy is the interval I; such that

(2.2) Theorem. Let E,F be Banach spaces. Let T be a bounded linear op-
erator from L%(R) into L%.(R), for ' <p<oo, s>1. Assume that there exists an

L(E, F)-valued kernel K(z,v) satisfying:
(K.1) For any compactly supported f, we have,

Tf(z)= / K(z,9)f(y)dy, for = ¢supp f.

(K.2) There exists a sequence {cn }5o_, such that

o0
Z Mmepy, < +00,

m=1
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and

In(y, 2)l .

1/s
Er da:) <CecmllalF-

(/zelm(y,z) e, Ky, 2) =K (2, 2))]

for any integer m>1 and any y, z€R, where
In(y,2) ={2:2"|y—2| < [o—2| <2+ |y—3| }.
Let 1—1 be a bounded linear mapping from L(E, E) into L(F, F), such that
ITf(x)=T(f)(z), l€L(E,E), z€R,

and N .
K(z,y)l=1K(z,y), l€L(E,E).

Then, if v is an Az weight and b6 BMO, (g gy(v), the commutator

Cof (z) =b(x)T f(z)~T(bf)(z),
is bounded from L% () into L%.(B) for a=vPB3 and BEAI(:S?,.

Proof. The main idea is to obtain the estimate

(2.3) (Cof)# () UL(IT f Nl p) (=) + U (|| f 1| £) ()

where the operators S1(g)=U1(v~'g) and S2(g)=Ux(r~'g) are sublinear operators
satisfying Theorem (1.5). Then, by the sharp maximal function theorem for vector-
valued function (see [RFRT]), we have,

Cofll e (;3)<C||(be) lzr(8)

<C{OUTAIE) gy HIT A1) oo }
0{!!51 AT gogey + 15205 1)] ) §
<C{IIATAE] 1o oy + CalllF 12+ | o s }
C{IT ey + 1l @)} <O Flg o

In the last inequality we have used the fact that T is bounded from L% () into
L% (a) for a€ A, s (see [RFRT]).
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Now we shall show how to obtain (2.3). Let ¢ be a point in R and I be an
interval with center at zg. Given a smooth and compactly supported function, f,
we define

filz) = f(z)X2r(z), and fo=f-f1.
Let ¢;=T((b;—b)f2)(zo). Then if €I, we have,

ICof (@) —crllr < [|(B(z) =BT f (@)l o+ | T((bs =) f1) ()| F
+{T((br —b) f2)(z) =T ((br —b) f2)(z0) || F
=o1(z)+o2(z)+o3(x).

If we denote
1/r
N = [ -bile@) az)
it is clear that
1 1
il /I o1(x)dz < m /1 16(z) = b1 || |\ T £ || r dz < Na(WT £l 7 ) (o).

On the other hand, by the boundedness properties of T', we have for ' > s’ that

I_}|/IU2(Z) dx < (ﬁ/jllT((b—bz)ﬁ)(z)H? dw)w

, 1/v'
§C<ﬁ [p@-onlis@)ley dm)
OV (1f]16) (20).

Now we shall estimate o3(z). ,
Let g(z) be an arbitrary F*-valued function with ||g(z)||F-<1 for all z€l.
Then we have

(s6@) [ (K= K)o -0 dy>|

o3(x) =sup
g

Given z €], there exists a j, depending on z, such that
2797 I| < |z —zo| < 279|1).
Therefore,

Ln(z,20) = {y: 2™z —z0| < |y—z0| <2™ 2z —20| }
C{y: 2™ NI < |y—zo| 2™ TN} C Line j1s
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in particular, |Im(z, zo)|~2™ 3|1 ~|Ln—j11|.
Now, for each g and each €1, we use condition {K.2) and we get

/ (60, (0~ K ) (0w b )]
< / Ko(2), K (2,3)~ K (z0,1) | 2~ ((®) ~b1)  (9) 1 dy.
y&2I

If y¢2I then |y—xo|>|I]|>2%|z—z0]|, therefore the last integral is less than

/, e l”<9(m)7K(w’y)—K(xoyy))HE*H(b(y)—bz)f(y)llEdy
<>/ 9) = K (@0, )15+ 1(0(w) ~b) @)1 dy

m>j In(z, z0)

<> ( /1 o Ita(@), K@)~ K (o, ) - dy)l/s

mz2j

x </1m(z7%) (6 =b2) F (W)[|5% dy)l/s:

, 1/s'
<C Y enltnloan ([ w0l )

m>j m(Z,%0)

1/s
<O Y enltneginl ([ ()-ullI£0le)* d)

m>j Im—it1

, 1/s’
<Y en(lmosinl™ [ ()b W )

m>j Im—j41

1/s’
0 3 ealtr=t sl (il [ @G )

mz>j
By Lemma (2.1) this is less than
C Y eaNu(lIfl1£)(20)

m2j

1/s'
+3 emlm—j+Dvr, o (um_mrl [ s dy) .
m—j4+1

m2>j
But

i(m—j+1)

! 1/Sl 1+ ’
(sl [ U5 ar) <ot 0171
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where M is the Hardy-Littlewood maximal operator, so that

1/¢
S en(m=i Dt (s [ 1@ a0)
m—j+1

Cm M V(N8 Y -
<m2>:J Hi(m— J+1[ 1(m-,v+1)(M(”f”E)( N v(z)d
<3 cnmM (715D ) 20)

<OM((M([|£11%))"* v)(o)-
Therefore (2.3) is proved if we take
Ui(g)(z) = N1(g)(z), and
Uz(9)(z) = C1N(g9)(z) +C2 N (9)(2)
+CsM((M(g*))"*'v)(@).
These operators appeared in [ST1]. Then it follows that the operators S;,
(i=1,2), defined at the beginning of this proof, satisfy Theorem (1.5).

(2.4) Remark. I the condition (K.2) is substituted by:
(K.2') if |z —y|>2|y—2| then

IK (0 2)- Kz, a)l <Oy,

then the conclusion of Theorem (2.2) remains valid for all v€A4;, a=v?8 and
B=A), 1<p<oo, (see [ST2)).

(2.5} Remark. The theory of vector-valued Calderén-Zygmund operators can
be applied in Theorem (2.2), and T" is a bounded operator from L% () into L% (o)
for a€ Ay, (for €Ay in the case of Remark (2.4)). See [RFRT].

3. Application to Littlewood—Paley theory

For every interval ICR we denote by S; the partial sum operator:

(S1fH) = far.

Given a sequence of disjoint intervals I;, we form the square function

Af(z)= (Z 15131z )
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When I is the sequence of dyadic intervals
{[2ja 2j+1]a ‘[2ja 2j+1]? .7 € Z}

it is well known that, for 1<p< oo, the following inequality holds, (see [LP]):

(3.0) [Afllp < Cpll fllp-

When all the intervals have the same length, then inequality (3.0) holds for
2<p< 00, and this is the best possible result, see [C].

Rubio de Francia proved in [RF2] that for every sequence {I;} of disjoint in-
tervals, the inequality (3.0) holds for 2<p<oo. The constant C, is an absolute
constant not depending on the sequence {I;}.

(3.1) Remark. Weighted versions of inequality (3.0) are also known. In the
case of dyadic intervals A maps LP(w) into LP(w) for weA,, 1<p<oo. See [K]. In
the general case A maps LP(w) into LP(w) for w€ Ay /o, 2<p<co. See [RF1], [RF2].
It is also well-known that for any sequence of intervals {I;} and any p, 1<p<oo,
the following inequality is true

“ (Z |S1, fj|2)1/2‘ o S CpH (Z |fj|2)1/2|

The main results of this section are Theorems (3.2) and (3.5). Before stating
them we introduce a definition. Given a weight v, a function b6 BMO(v) and a
sequence of disjoint intervals we form the square function

1/2
[A,b]f(z) = (Zm}, > :

@) €A

where
[S1,,01f (z) = b(z) S, f(x) = S, (bf ) ().
(3.2) Theorem. Letv,a, 3 be positive functions, such that v€ Ay and a=vP{.
Let b be a function in BMO(v) and J be a family of disjoint intervals. Then the
inequality
1A, b fllr(8) < Coll fll Lo (a)

holds in the following cases:
(3.3} J is the family of dyadic intervals, 1<p<oo, ﬁeA,(,”).

(3.4) J is an arbitrary family, 2<p<oo, ﬁeAz(:z).

This theorem has the following consequence:
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(3.5) Theorem. Given a weight v in Ay and a function b, the following con-
ditions are equivalent:

(i) b BMO(v).

(ii) For the family of dyadic intervals, we have,

||[Aa b]f”Lp(g) < CP“f”L”(a)’

or 1<p<00, a=vPB and B AY.
P
(i) For any family of disjoint intervals, we have,

A, 8] £l e gy < Cpll flLo(ays

where 2<p<oo, a=vP3 and ,BEA;"'Z).
(iv) If H denotes the Hilbert transform, then

IH, 8] fll o) < Gyl fllzo o
for 1<p<oo, a=vPB, and B AY.
The constants Cy, C}, and C, depend on a, v and ||b|lsmo(w)-

Proof of Theorem (3.5). That (i) = (ii) and (i) == (iii) are contained in
Theorem (3.2). On the other hand (iv) = (i) is known and due to Bloom, see [B].
Let us prove first that (iii) implies

(iv’) IH, b] fllze(a) < Coll fllLr(a),

for 2<p<oco, a=vP3 and ﬁeAf:%.

We shall use the following fact:

(3.6) If h is a function in L*(R) and its Fourier transform A is compactly
supported in [~ R, R], denoting Sp=_S|_g g, we have

Hh(.’E) — _i{e2ﬂiRmSR(e~2m‘R-h(‘))(x) ——6_2“RISR(€2MR'h(-))(:ﬂ)}.
In particular
[H, bh(z) = —i{e*™F2[Sg, b](e 72 h(-))(z) —e "2 [SR, B](e*™F h(-))(2) }.
Therefore, if we assume (iii), we have

I{H, bR Lo sy < || (S, b](e_zﬂR'h(')ﬂle(ﬂ)*‘“[SRv b](ewR'h('))HLp(g)
< Cplle™™™ ()| Lo () +Col|€*™F (-
< CpllhllLe(wy-

)HLP(a)
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Since A;"'% CA,(,"), then by Bloom’s theorem, see [B], we get that (iv’) implies (i).
Therefore, (iii) implies (i).
On the other hand, if we assume (ii) and I is any dyadic interval, we have

151, 0)ll e (8) < Collfll Lo e)-
If we denote by I+R, R>0, the interval {z:z— Re€I}, then
Srinf =€ RG (e~ 2R £(.))(z),
and therefore

IS14-rfllze(8) < CpllfllLo(a)

holds for 1<p<oo, any dyadic interval I and any R>0. Now we can continue as in
the case (iii) = (iv’), showing that (ii) = (iv) and therefore (ii) = (i).

Now we state some lemmas that we shall need for the proof of Theorem (3.2).

(3.7) Lemma. Let 1<p<oo and v be an As-weight. Given an arbiirary se-
quence of intervals {I;} and a function b6 BMO(v), we have

59 [(Sisne)” (Sisr)

provided that a=vP3 and ﬂeA,(,”).

Proof. The operator [H,b] is bounded from L,(«) into L%,(3) see [ST2] for
details. Therefore (3.8) holds due to the following fact:
(3.9) If I;=(a;,c;), we have,

<G,
(8)

Lr LP{a)

1, 1(@) = {2 H(e ™2™ f()) () —e 2 H(e™ [())(2)}.

(3.10) Definition. Given an interval I we shall say that a function ¢y is adapted
to I if ¢y is a Schwartz function with Fourier transform ¢y such that ¢;(¢)=1, (€l
and $7(£)=0, £¢ NI, for some fixed natural number N.

(3.11) Definition. Given an interval I and an adapted function ¢y, let us denote

Sif=pr*f.

Given a family of disjoint intervals I;, we define

Gf(z)= <Z |§ij(x)|2)1/2
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and ) 12
6.0 = (L 185 87@P)

where as usual

[S1,, 815 (z) = b(2) ST, () - S1, (bf ) (=)-

(3.12) Lemma. Given a weight v and a function b in BMO(v), we have that
for any smooth function f and any interval I, the equalities

(3.13) [S1,b1f = Sr([S1, 8] £)+[S1, B(S1 f)
and
(3.14) [S1,81f = S1([S1,81)+[S1, b](S1 )
hold.

Proof. Observe that SI§I=SISI=SI.

(3.15) Lemma. Let v,a, and 8 be positive functions, such that v€ A2 and
a=vPB3. Let b be a function in BMO(v) and J be a family of disjoint intervals.
The inequality
NG, 81 e ey < Cpll fll oy

holds in the following cases:
(3.16) J is the family of dyadic intervals, 1<p<oo, ﬂeAg').
(3.17) J satisfies 3_ ;¢ 7 Xsr(x)<C, 2<p<oo, ﬂeA;’g.

Proof. The proof of (3.16) can be found in [ST2]; we shall give here a brief
idea.

Let ¢ be a test function, ¢€S(R), such that its Fourier transform satisfies
?(0)=0 and p(¢)=1, £€[1,1]; define ¢;(z)=27p(2/z), and

Tf(z)={p;*f(2)};.

Then T is a bounded linear operator from LP(R) into L7,(R) with kernel
satisfying (K.2') of Remark (2.4).

Consider the linear map I— from R into £(I2,2) given by I{t;}={lt;}. Then,
by Remark (2.4), the operator

Cof (2) = b(x)(¢;* f)(z) — 0, (bf)(2),
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is bounded from LP(a) into L%, (8), that is to say [G, b] maps LP(«r) into LP(G).

The proof of (3.17) runs parallel to the proof of (3.16). It is enough to show
that a family ¢; of functions adapted to the intervals I; of J can be found in such
a way that the operator

Tf(z)={p;*xf(=)};

be a bounded linear operator from L?*(R) into L% (R) with a kernel satisfying condi-
tion (K.2). This was done by Rubio de Francia in his celebrated paper, (see [RF2]),
where he showed that we may take ¢, =273/, Therefore Theorem (2.2) can be
applied, which finishes the proof of the lemma.

Now we can prove part (3.3) of Theorem (3.2). We observe that part (3.4) can
be proved at this moment assuming that the family J satisfies

Z Xor(z) < C.

If this is the case we divide each interval I into seven consecutive intervals of
equal length
I=1Vur®y. .o, 19 =\1/7,

so that 81(Y c2I. It suffices to prove the theorem for each one of the families,
{I : I ¢ initial sequence}, 1<:i<7T.

Therefore, we can assume that the family satisfies > Xg7(z)<C. Now the proofs
for the two parts are the same. By using Lemma (3.13), we have,

)+“ (Z |[Sj,b]5~jf'2)1/2

Lr(B Lr(B)

8 i | (1505 b]f)12>1/2
=I—|—IIJ.

Now we apply Remark (3.1) and Lemma (3.15), and we get

(s, )

On the other hand applying Lemma (3.7) and Remark (2.5) we get

(S

1<C,

§Cp||f”LP(a)-
Lr(B)

1I<C, S Cpllfllze(a)-

Lr(a)
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We need to do some additional work in order to prove part (3.4) of Theo-
rem (3.2) completely. We follow closely the ideas of Rubio de Francia, see [RF2].

Given an interval I, we define the Whitney decomposition W (I) of I to be the
construction, invariant under translations and dilations, such that if I=[0, 1], then
W (I) consists of the intervals

{lar+1, ak]}7Zo, [%, %], {[1-ax, 1-akt1]}izo,

where a;=2"%/3.
The intervals of W([I) form a disjoint covering of I, 2H CI for every HeW (I)
and }° yew () X2n(z)<5 for all z.

(3.18) Lemma. Let v, a, and 8 be weights such that a=vP3, and b be a
function in BMO(v). Let {I;} be an arbitrary family of disjoint intervals. Then for
1<p<oo and ﬁEAg'), we have

1/2 1/2
j Lr(B) J HieW(l;) Lr(B)
1/2
(S % ismrr) |
i HieW(I;) Lr(a)

Taking this lemma for granted, observe that the proof of (3.4) can be easily
deduced since the family {{H’} gjcw 1;)}; satisfies 37 X 55 <5, and then we can
apply to the first summand in the lemma the reduced and proved part of (3.4) and
to the second summand, the result of Rubio de Francia mentioned in Remark (3.1).

Proof of Lemma (3.18). Observe that [S7,,b]=3 y;cw(s,)[Sms,b]. Then by
using (3.14), we have
2)1/2

(S s
2>1/2

Now for any j we consider the sequence of [?-valued functions

> SuilSui,blf

HieW(I;)

<
(o>

J

+”(Z‘ > [Sws,blSmif

i Hiew(;)

Lr(B)

=TI+IL
Lr(B)

Fy={fus}uiewu;)

5 —Arkiv for matematik
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and we define the operator
T;Fj= Y Spifus.
HieW(I;)
This operator is the transpose of an [2-valued operator
Tif ={Sui fYuiew ;)
that can be handled as the case of Tg={Sr, g}x when {I;;} are the dyadic intervals;

in particular, for each I; the operator 7} is bounded from L?(w) into L} (w), w€ As.
The operators T are uniformly bounded in j, therefore by the extrapolation theorem

for A, weights (see [RF3], [GC]) we have,
1/2
(Z |fjl2)
J

1/2
H (Z ||ijj||122>
j
for 1<p<oo, w€Ap.

On the other hand, by (3.3) the operator [T},b] is bounded from L?(a) into
L%(B), a=1243, ﬁeAg”). The operators [T}, b] are uniformly bounded in j, therefore,
by the extrapolation theorem for Agj) weights, see Theorem (1.6), we have,

1/2 1/2
(Z lI[Tj,b]ijI?2> (Z |fj|2)

J 3
for 1<p< oo, ﬂeA§,”), a=vPg.

Therefore the following inequalities are true:
(3.19) Given 1<p<o0, we Ay, we have

1/2 1/2
|(Zimer) (Zii)
J J
(3.20) Given 1<p<oo, ﬁEA,(D"), a=vP3, we have
<Gy

1/2 1/2
(ZI[T;‘,b]ij?) (Z nFju%z)
j Lr(3) j

Now, if we take F;={[Sgs,b]f}n; in (3.19), we get that

<G,
Lr(w)

LP(w),

<G,
)

e (3 L*(a)

<Cp
Lr(w)

Lr(w)

LP(a)

1/2
156, (S X 15wt ,
j Hi Lr(B)
and if we take F;={Sg; f}ns in (3.20) we have
1/2
I<Cp (ZZISmfF)
j  Hi LP(a)
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4. Generalizations to sequences of commutators

Given a sequence of arbitrary intervals {I;} and a sequence of functions b={b;}
we shall study the boundedness of the operator

A, b]f ()= (Z|Sz,-,bk f(z)] )1/2

We shall need the following theorem

(4.1) Theorem. Let E; and F,,i=1,2 be Banach spaces. Let T;,i=1,2 be
bounded linear operators from L%, (R) into L%, (R) for s'<p<oo, s>1. Assume that
there exist L(E;, F;)-valued kemels K;(z,y), z—l 2 satisfying (K.1) and (K.2) of
Theorem (2.2). Let 1—1 be a bounded linear mapping from L(Ey, E2) into L(F1, F2),
such that

ITy f(z) =T2(1f)(2)
and -
1K (z,y) = K2(z,y)l.

If v is a weight in As, and bEBMO,(E, E,), then the operator

By f(z) = b(x)T1 f(2) - T2(bf) (),
is bounded from L%, () into L%, (B) for a=vPf and 3 GA;V;
Proof. The proof follows the lines of the proof of Theorem (2.2) with some
technical changes. Let zo€R and let I be an interval with center at zg. Given an
E;-valued function with compact support we define f; and f2 as in the proof of
Theorem (2.2).
Let c;=T5((br—b)f2)(zo). Then if z€l, we have
By f(2) =b(@)T1 f(2) - T2(bf)(2)
= (b(z)—br) T f () + T (b1 f)(2) = T2(b)(2)
= (b(z) =br) Ty f(2) + To((br = b) f)(<)-

Therefore for x€I, we have,
1By f(z)—c1llm, < [1(B(z)=br)T1 f (@)l +I T2 (01 = 0) f1)(@) | 7,
+||T2((br —b) f2)(z) = T2((br —b) f2) (z0) || .-
Now the proof follows that of Theorem (2.2).

An application of this result will be the following theorem:
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(4.2) Theorem. Let v, o, and 3 be positive functions, such that veA; and
a=vPB. Let b={bx} be a sequence of functions in BMOp(v) and J a family of
disjoint intervals. The inequality

114, B1£ || Lo gy < Coll Fll o

holds in the cases (3.3) and (3.4) of Theorem (3.2).
For the proof we shall need some versions of Lemmas (3.7), (3.15) and (3.18).

(4.3) Lemma. Let 1<p<oo and v be an Az-weight. Given an arbitrary se-
quence of intervals {I;} and a sequence of functions b={by}€BMO2(v), we have

that
an (2 sonint) | el (S

Le(g) L?(a)

holds, provided a=v*(3 and ,BEAE,").

Given a sequence of functions b={b} and a family of intervals I;, we shall

G, bf(x (Zusz,,bk )/

where S is defined in (3.11).

write

(4.5) Lemma. Let v, a, and (3 be positive functions, such that veA; and
a=vPB. Let b={bi} be a sequence of functions in BMOy(v) and J be a family of
disjoint intervals. The inequality

I[G, b]flle sy < Coll fliLe(a)

holds in the cases (3.16) and (3.17).

Proof of Lemma (4.3). Let Ty be the extension of the Hilbert transform to a
bounded operator from Lj; ;) into L), defined as Ti({f;(z)})={Hf;(x)}, and
T2 the extension of the Hilbert transform to a bounded operator from sz Gb) into

LE, 4y, defined by To({f3.e(e))={H f;x(2)}; let b(z)={bs ()} €BMOya(ao(v).

The space BMOj2()(v) can be considered as a subspace of the space
BMO c(i2(j),i2(j,) (¥) by the identification b(z) ({A;})={bk(z)A;}. Then, if we ap-
ply Theorem (4.1) with the already defined 71 and T3, E1=E,=1(j),
Fy=F,=12(j,k), and b(z)=Db(z), we get the lemma.
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Proof of Lemma (4.5). Let Ty be the operator
T1f(z)={pj*f()},

bounded from L? into sz ) and T3 be the operator

Tz fu(z) = pj* fr(z),

bounded from Ll2(k) into le(J k)"
The mapping that sends {A;}€1%(k) to the element of L£(C,[?(k)) defined by
A—{MgA} is a Banach space isomorphism. Therefore, if

{bi(2)} = b(z) € BMOss 1y (v)

then it can be considered as an element of BMO,(c i2(x))- Let b be the element of
BMOL(lz(J)’lz(]’k)) glven by _
b{A;} ={bk(x)A;}-

Then by Theorem (4.1) with E;=C, F1=12(j), E;=12(k), and F>=1?(j, k) we obtain
the lemma.

(4.6) Lemma. Let v, a, and 3 be weights such that a=vP3, and b={b;}
a sequence of functions, bEBMOj2(v). Let {I;} be an arbitrary family of disjoint
intervals. Then for 1<p<oo and B€AY) we have

(Z| S1;5be)f )/2 Cp (Z > ’[SHi,bk]f|2)1/2

Lr(B) gk HieW(I;) L (B)
1/2
P (Z Z |Sij|2) :
i Hiew(l;) L?(a)
Proof. As in the proof of Lemma (3.21), we have
1/2 N 2.1/2
,bk]ff) H( > SwslSw, )
L?(B) ik HiEW(I;) Le(p
_ 2.1/2
+”(Z > [SuibklSui f ) =I+IL
gk | HieW(I;) Lz (B)

Now for each j we consider the operator

UiFj=_ Spifus, Fy={fus}ns.

Hi
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For each j, U; is a vector-valued Calderén-Zygmund operator defined on

1?(H7)-valued functions, and U; is bounded from L%, ()W) into LP(w), 1<p<oo,

weA,. We consider also the [?(k)-valued extension of U}, that is
ViGj = {Z gHJ‘g’fn} ,  where G;={gf;} i k-
Hi k

V; are vector-valued Calderén-Zygmund operators bounded from sz( Hi k)(w)
into sz(k)(w), 1<p<oo, weAp, uniformly on j. Therefore by the extrapolation
theorem for A, weights (see [GC]) we have that

1/2 1/2
[(Zimeite) (1)
J J

for 1<p<oo and weA,. This means that

o |Eslpsal)’

for 1<p<oo, weA,.
On the other hand, for each j, if we apply the first part of Theorem (4.2)
(case (3.3)) taking Ty =Uj, To=V; and

<c,
Lr(w)

Lr(w)

<Gy

Lr(w) ’

Lr(w)

(ZZme)m

j k Hi

(bx) € BMO(ci2(k)) € BMO 29y 2(H3 1))
we get that the operators
[Uj, b] = {bk(U; Fy) ~U; (be F) } iy

are bounded, uniformly in j, from Lf’z(m)(a) into sz(k)(ﬁ), 1<p<oo, a=vPS, and

ﬂEA,(,”). Therefore, by the extrapolation theorem for Ag’) (see Theorem (1.6)) we
have that

H (Z Iv;, b]Fj”lzz(k))lm

holds for 1<p< oo, a=vPg3, ,BEA,(,V); that is

w (2% )

<Cp
)

1/2
(} : ||an?z<m))
i

Lr(B L?(a)

)

Lr(a)

<c, (ZZ!me)l/z

(g i Hi

> [Sms, bxl frs
Hi
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for 1<p<oo, a=v”3 and ﬂEA,(,").
Now if we take g%, =[Sg;,b]f in (4.7) we get that

1< H > |[Sm,bk1f|2)l/2

L”(ﬁ),

j.k Hi
and taking fy;=Sgif in (4.8), we get that
1/2
11<C, (ZZ |5ij|2) .
i HI L7 (a)

Now, the proof of (4.2) continues as the proof of Theorem (3.2).
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