Wavelets and paracommutators

Lizhong Peng(*)

1. Introduction

Let P denote the collection of all dyadic cubes in R¢, E={0,1}%\{0,0} and
A=PxE. The construction of the wavelet bases {1x}, _, on L*(R?) is a celebrated
result in mathematical analysis. Y. Meyer [7] and G. David [3] have used the bases
{du} to study the boundedness of the Calderén-Zygmund operators, and have
successfully simplified the proofs of the “I'l Theorem” and the “T'd Theorem”. It
is well known that operators of the form

Tf(z)= o K(z,y)f(y)dy
can be compact; for example T€Ss, i.e. T is Hilbert-Schmidt, if and only if K€
L*(R*xR%) . In this paper we will study the compactness and the Schatten—von
Neumann properties by wavelet bases.

Precisely speaking, we consider the bilinear form T'(f, g)=(T(f),g) on DxD
with the distributional kernel K(z,y). Let axx=T(¥x,¥x), for A, N €A. Then
the bilinear form T is determined by the infinite matrix {a A, ,\r}. In other words,
Yox 2w YA @y gives a decomposition for T', called the standard decomposi-
tion. We will also consider non-standard decompositions for 7. And we will find out
the conditions for T'€ S, (the Schatten—von Neumann class). Then we will consider
an important example: paracommutators , which are defined and studied systemat-
ically by Janson and Peetre [5]. Supplementary results are given by Peng [9], [10],
and Peng—Qian [11].

In Section 2 we will give some notations and definitions, and in Section 3 we
will give some lemmas for the S, estimates. In Section 4 we will revisit the para-
commutator, and will give simplified proofs for most results on paracommutators
by wavelet basis expansions.
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2. Preliminaries

2.1. Multidimensional wavelets (see David [3])

Definition 2.1. A multiscale analysis (MSA) of L?(R¢?) is an increasing se-
quence Vj, j€Z, of closed subspaces of LZ(R?), with the properties:

(1) Njez Vi={0} and U,z V; is dense;

(2) f(2)€V;o f(20)€V s

(3) f(x)eVoe f(z—k)eVp, for each k€ Z4;
(4) There is a function geVy such that the sequence of functions g(z—k),
keZ?, is a Riesz basis of V.

Definition 2.2. A MSA is “y-regular” (for some y€ N) if one can choose g in
Definition 2.1 such that

10%9(2)| < Cr,a(1+|z))™  for all M, |a| <.

Theorem 2.1. Given a MSA of L2(R?), of regularity v, one can find a func-
tion ©=vy(x) and 2¢—1 functions ¥(z), e€E, such that |0%Y%(z)|<
Cua(l+|z))™™ for |o|<v, all M>0, and such that if ¥a(z)=9¢5(z)=
204/ 2pe (29 x—k), for A=(Q,e)€A, QeP and Q=[] [k:i277, (ki+1)277] then
{©Q hength(Q)=2-s 18 an orthogonal basis of V; and {¥x}rea is an orthogonal ba-
sis of L*(R%).

The functions {°} are called wavelets and {¢5}rea is called a wavelet basis.
An example of an orthogonal wavelet basis of regularity vy=0 is the Haar basis.
An example of an orthogonal wavelet basis of regularity y=o00 is the Meyer basis
{¥2}aea, see David [3]. It is not only an orthogonal basis for L2(R?), but also an
unconditional basis for many functionspaces, so it is called a universal unconditional
basis.

2.2. Frames

Let H be a Hilbert space, {ex}aca is a frame on H if T({ay})=)_ aye, is a
bounded operator from [?(A) to H and T is onto. If {ex}aea is a frame on H, then
for all z€ H, z=) (L™ 1(z),ex)ex, where L(z)=3"(z,e))ex and |z}~ |(z, ex}|?.

Let us consider an important example—a so called smooth frame.

Let $cCg°(R?) such that suppcﬁC{f:lﬂS% 1, 18(9)|=C>0 on {§:|§|§% +
and $(&)=3(€)—P(2€) such that Y50 |3(£/2%)|=1 for £#£0. Now we denote
A=P and A=Q€P. Then yY=1g=1;x(x)=2742)(27z—k) form a frame (called
a smooth frame) on LZ(R?) by the Plancherel and Pélya Theorem. And for any
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feL?*(R?), we have f=3,.x(f,¥x)¥x, see Frazier and Jawerth [4]. We will show
that this frame is universal for many function spaces.

2.3. Function spaces and sequence spaces

By the orthogonal wavelet basis in 2.1 or the smooth frame in 2.2, we can give
a realization of the isomorphism between LZ(R%) and I2(A).

For the wavelet basis {1x }xea, where A=P x E, we denote |A|=length(Q) for
A=(Q,e)ePx E, and we have two kinds of projections P; and Q;,

PiLPRY)-V;, Pi(f)= D (A= D (f,ex)ex

|A[>2-7 Al=2-7

Qi L*RY) - W,; =Vi0V;, Qi(H= D (fn)a,

Aj=2-4

and
P;11(j—+o0), P;jl0(j— —00),

+o0
C?j221%44j—}%, j{:(2j==1.
—o0

For the smooth frame given in 2.2, where we denote $;(£)=(277¢) and
¥;(£)=1%(277¢), we have also the two kinds of operators P; and Q;:

—

B7(8) =3;(6) 1 (&),
Q;1(&) = ;)£ (),

moreover,
Pi11(j—+o0), Pjl0(j——o00),

+0o0
Qi=Pi1—-P;, Y Q=1
hate o]
Now we introduce some sequence spaces:

P28~ {(@cas: 3 e <o} for 0<p<oo
kezd

(modification if p=o00).
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p/q
|: Z |O‘E1J§2|q:| <+OO}

ky€2e

lp(kl)lq(ka) = {(aﬁ1 .28 )El :Ezezd : Z

k €Zd

for 0<p, g< oo (modification if p=o0 or g=00).
Let A=Px E or A=P, we introduce:

P(A)= {(aA)AeA DY laalP < oo}

for 0<p< oo (modification if p=o0).

[e o}

) = {(@en: 3 29> |a,\|p>q/p<+oo}

j=—0o0 A|=27
for s€ R, 0<p, g<oo (modification if p=o0 or g=00).

(M) =139(A), P(A)=IE(A).

1
BMO(A):QCMd:{{aA}AEA:supE Z |a)\|2|Q|<+oo}
R QCRA=(Q,¢) or Q

(for QCM,, see Rochberg and Semmes [12]).

PN = {(m,m,m:EA;[;MA,NP]”“ <oo}

for 0<p, g<oo (modification if p=o00 or g=00).

Now let us show that both the Meyer wavelet basis {¢x} and the smooth
frame given in 2.2 are universal unconditional bases for BMO(R*?) and Besov spaces
B 1(RY).

First we give two lemmas, which will be used again in Section 4 below, the
proof of them can be found in Triebel [15].

Lemma 2.1. Let Q be a compact subset of R®. Then for 0<r<p<oo, there
exist Cv and Cy such that

aup IVPE=D oo 1002 s o))

sere 12| seRre 1+]z]4m ~

holds for all pe LY ={p€LP: supp CQ}, where M, (p)(x)=[M|p|"(z)] YT and M
15 the Hardy-Littlewood mazimal operator.
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Lemma 2.2. (The Plancherel and Pélya Theorem) Let 0<p<oo, a>0. For
any a’'>a, there exist C; and Co such that

A0 |<P(E/a’)|p>1/p <oy <o 3 lote /a,)lp)up

keZd kezd

holds for all pe{p€ S :supp $CB(0,a)}

Let {¥x}rea denote the Meyer wavelet basis (A=P x E) or the smooth frame
given in 2.2 (A=P), we have

fEBMO(RY) if and only if supil ) 1F, )] 1Q] < +o0,
Rep {QCR:A=(Q,¢) or Q}
ie.
BMO(R?) «—— BMO(A), isomorphism.
feB(RY) ifand only if ((f,9a))rer €15U(A)
1.e.

By (R?) I;9(A) «—12(A), isomorphisms.

2.4. The Schatten—von Neumann class S,

Let T be a bounded operator from one Hilbert space H; to another Hilbert
space Hy. If I, denotes the set of the operators of rank <n, then the singular
number s, =s,(7T) is defined by

sn=Inf{||T-T,||: Tn € Kn}
If T is a compact operator, then (7*T)'/2 has its eigenvalues
S0 > 81 >... > 8y 2> iy Spy — 0.

The Schatten—von Neumann class S}, is the set

Sp = {T: (Z sﬁ)l/p < oo}.

We denote the set of all bounded operators by S, and denote the set of all
compact operators by K.
For further information on S, see e.g. McCarthy [6].
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2.5. NWO (nearly weakly orthonormal) sequences (Rochberg and Semmes
(12])

A nearly weakly orthonormal sequence (NWO) is a function sequence {e } \EA
in L2(R?) such that if

sup {IQI7*|(f,ex)l} = (),

g —=|<[A

then || f*[|2<C|| f||2, where |A|=|Q|*/? for A=(Q, ) or Q.
It is easy to see that any {¢,} and {¢»} in Theorem 2.1 are NWO, and so are
{p»} and {9} in the smooth frame in 2.2.

Proposition 2.1. If A=Y, , sa(-,ex)fx, with {ex}, {fr} are NWO, then

4]l < Cli{sxHlsmo)

1/p
||A||S,,§Cp(2|8,\|p) for 0 < p < o0,
AEA

and

1/p
<Z|<Tex,fA>|”> <Gp|IT||s, for 1<p<oo.
A

3. Estimates of operators on L?(R?%)
First we consider the operators on {%(Z%).

Lemma 3.1. If 2<p<oo, 1/p+1/p'=1, then
(1) (k) € 1P (R IP (k) NP (k)17 (k)
implies
(aﬁl 7&2) € Sp’
(2) (o, ky +k,) € i (ko )IP(Ky)

implies
(k, k, ) € Sp;
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(3) if 0<p<2, then
(0, k) €17 (By )P (kg)  or IP(ky)PP(ky)

implies
(0, k;) € Sp-

Proof. (1) is proved by Russo [13].

An easy argument shows that (o, k +,)€lM (kK1) or (O, 4k, k,)E
1'(k;)1°°(k,) implies that (o k,)€ Soo-

If p=2, the Hilbert—-Schmidt norm shows that

ok, )11 =D D Lo, .
ky ky

The interpolation theorems (cf. Bergh and Lofstrom [1]) show (2).

(3) is the consequence of the fact: ||T||5 =inf }_,, [T¢all” for 0<p<2 (cf. Mc-
Carthy [6]).

Now we consider operators on L?(R%).

We start with an operator T from D(R?) to D'(R?), where D(R?) is a test
function space in R? containing some family of wavelets or frame which will be
specified in a concrete case.

Let {1»} be a wavelet basis or the smooth frame in 2.2. Then we can give two
decompositions for T" (see [2]).

(1) Standard decomposition:

> o
T= 2 Z T;; (molecular decomposition)

i=—00 j=—0o0
where T5;=0Q;TQ);, and
T;; = Z Z CONYARY (atomic decomposition)
[Al=2-% |Af|=2-7

where axx = (TP, ¥ar)-
(2) Non-standard decomposition

T=T1+T>+T3

where

T = Z B @,

[AI>4])]
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= > owta®dy,

1/4<|Al/IN <4
I3= Z TANYAR P
[M1=4(A]

with Bxx =(Tox, ¥ar), axx=(T¥x, ¥}, and yax =(T¥xr, ox).

For example, in the proofs of the “I'l Theorem” (cf. Meyer [7]) and the “T'b
Theorem” (cf. David [3]), the Calderén—Zygmund Operator T has been split into
three parts T'=T1+75+7T3, where Ty and T3 are paraproducts, for Tb, let ayy =
(Tawa, ¥a). Then ay satisfies

(31)  laan| SCUQIAIRNQI*RIYZ(1Q1*+ | RV +dist(Q, R)) 47,

and by the Schur lemma, T5 is bounded on L%(R¢%).

If T=T, is an operator with a symbol b, let @eC§, supppC
{€:1-e<|¢|<2+¢}, such that Y72 $(£/2')=1 for £#£0. Then b=3;2 b
with b =bx(;, thus we have the standard decomposition for T}:

T, = Z Z Z T;;(b;) (sub-molecular decomposition),
T

where T;(b;)=Q;T5,Q,, and
Ty (b)) = Z Z af\)‘,q/))\@)zp,\, (sub-atomic decomposition).
IA|=2—7 |A/|=2-7

Similarly we have also the non-standard decomposition for T,. By using the above
decompositions, one can estimate the molecules or sub-molecules via atoms or sub-
atoms by Lemma 3.1, then estimate T or T, via molecules or sub-molecules by
Lemma 3.2 below.

Lemma 3.2. If2<p<oo, 1/p+1/p'=1, then

(ITi+550s,) €7 ()P (5)
or
(ITs544lls,) € 7 (P (3)
implies that T € S,.
If 0<p<2, then
(1T 5ls,) € P()IP(F)
implies that
TES,.
These two steps of decompositions have another advantage, i.e. they can be
used to get the converse estimates (see Timotin [14]).
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Lemma 3.3. For 1<p<oco, if there ezist ic€Z and {Siiti,} such that
[T5i+i0lls, 2 ClSisitiolls, » then

(TG, > 1Tl >CY D letiivio (ks k+ko)lP

i keZzd

where a;,;(ky,ka)=5:,;(Yik, Vik,)

To estimate T3 and T3 in the non-standard decomposition, we need a result
on paraproducts. Paraproducts were introduced by Bony. Nowadays there exist
hundreds of equivalent definitions. Here we use the following definition:

m(f)= D (b ){fiea)dn

[Al>4]x|

where @),y are the functions in the Meyer wavelet basis or the smooth frame.
Notice that both ¢, and ) are NWO, by Proposition 2.1, we have

“7rb”5p ~ ”bHBg/p,p(Rd) for1 <p<oo

and
75| = {|bllBMO -

Remark. In fact the Sp-estimates of paraproducts hold also for 0<p<1, see
Peng [9].

4. Paracommutators

The paracommutator is an operator of the form:
@) @O =0 [ He-mag il o

Tt is defined in Janson—Peetre [5].

We adopt the notation of [5] for the norm [|A(¢,n)|mwxv) of the Schur mul-
tiplier A(¢,7)€M(UxV) and the Sp-norm ||K (&, n)||s,wxv)-

As in [5], we let AJZ{f 2j§l£|52j+1 } and ZjZAj_lLJAjUAj_HL.

For convenience, we list here some assumptions on A(£,7), which come from
Janson-Peetre [5], Peng [9] and [10].

AQ: There exists an r>1 such that A(r¢,rn)=A(£,n).

AL ||Allma; xa,) <C, for all j,keZ.
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A2: There exist Ay, Ay€ M(R*xR?) and §>0 such that

A&, m) = A (&m) for |n] <6l¢]

A3(a): There exist a>0 and §>0 such that if B=B(&,r) with r<§|&|, then
1Al (Bx B) <C(r/€0])>.
A4: There exist no £7#0 such that A(£+n,n)=0 for a.e. 7.
A4%: For every £#0 there exist meR? and §>0 such that, with By=
B(&+no,6|éol) and Do=B(no, 6&l), A(€,n)~* € M(Box Dy).
A5: For every £ #0 there exist §>0 and no€R? such that, with U=
{€: 1€/1€1—&0/1€]1<6 and {€]>|€o|} and V'=B(no, blmol), A(£,n)"*€ MU X V).
A10: For any 0#6€R?, there exist a positive §< and a subset Vp of R¢
such that if IV, denote the number of integer points contained in VyNB,, where
B,.=B(0,r), then
i 2 5
r—oor

and for every neVj,
||A(§+ﬂ+9,7l+ﬂ)_1||M(BxB) <Cln|*, where B=B(0,).

We adopt the notation of Peng [9] for A,, 0<p<1, instead of using M in Al,
A3(a) and A4%, we can list the conditions of A,1, A,3(a) and A,43 by using A,.

The paracommutators contain many examples, cf. Janson-Peetre [5] and Peng—
Qian [11].

Now let us estimate the Sp,-norm of a paracommutator by its molecular-atomic
structure. Here we use smooth frame expansion.

First we estimate the direct results. We split the operator (4.1) into three parts
via the molecules T;;=Q; T3 Q;:

T A) =T+ Ty +Ts,

where
o0 o>
=D Z Tis= Z > Tiitg
t=—00 j=—00 J=—o0i=—00
00 142

=2 2. Ty

t=—00 j=1—2

OB 3L TR I oE

t=—o00 j=1i+3 i=—00 j=—00

To estimate them, we need the following three lemmas.
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Lemma 4.1. Suppose that A satisfies Al, A3(a), PeC§°, supppC
{€:1—e<|€]<2+¢ } and G(E)=G(€/22), then for li—j|<3,

l o
(42) |1A(§a77)@(5—77)”M(AixAj) SC(;) ’

Lemma 4.2. Suppose that A satisfies Al, 1 is the function of the smooth

frame in 2.2, PECE, B(E)=1 on Bo, and Gi(E)=G(E/2?). Then for i>j+3,

—k 2Tk, —k
T€EQ,-}, ' €Q5; E2=E1 ond r>0 small enough,

(4.3) T3 (Wik, ), i, )| S C27H2FRHIM, (b) () My (45) ('),

where b;=¢p;*b, Qf_i is the cube with side 2-¢ and center 27 k.
Remark. For j>i+3, we have the same result.

Lemma 4.3. Suppose that A satisfies A1, A3(a) with a>0, ¢ is the function
of the smooth frame in 2.2, $€C§°,supp (£) C Ao, and §;(£)=3(£/2'72), then for

.. —k 2T, —
li—j1<3, zeQ,¢, ' €@, b and r>0 small enough,

1\
(44 T3] S 3 ) 9 ()0 M )

where by=;*b.

Proof of Lemma 4.1. By the Fourier transform:
ou(E-n) =/<Pl($)€_m§€iz" dz,

so [|@i(€ —Mllmmrexray <C|lpl1=C<o0.
Let QT denote the cube with side 2 and center 2'n for n€Z<, then

||A<s,n)@(&—muM(AixAﬂ=HA<s,n>@<s—n> ) xAmQ;z@)me;n(n)HM

In—m|<c

< Z sup || A(€, )P (5—77)||M(Amql" xQ;NQp™™)

|m|<c
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Proof of Lemma 4.2. By Lemma 2.4,
(TS (i, ) Vi) | = [T (Wi, )s sy )|
| sem A €01, (s, () s )

< C2is2jt2—id/2

/{/;i(g)gi,—&l*Jj,zi—ikz_gl(g) dﬁ’

k 2-ik. —k
/bj( —5—1)% (y+—5%;1>¢i(y)dy‘
k 2 Ik, —k
bi(y-g—;—zﬁ-m) ¥; <y+—5—f—;1—x’+a:’)
d/r ) i—jL

x [1+ 2y +2)¥7]- [1+(2y | +2)Y 7] [ (y) | dy
< 02 2* 27 2 M, (b;) (2) My (45)(2)

— C2i82jt2—id/2

S 02i32jt2—id/2

d/r
1+

where bi g, (€)=b(§)p(€/2)e "¢ k/™".
The proof of Lemma 4.3 is similar, we omit it here. Now we deal with T7.
Lemma 4.4. Suppose that A satisfies Al, A,1if0<p<1, t>max(—d/2,—d/p)
and 0<p<oo, then

(4'5) HT1”S,, < CHb”B;“““”"(Rd)'

Proof. This is a consequence of Lemma 3.1 , Lemma 3.2 and Lemma 4.2. We
give the proof only for 2<p<oo. We choose r<p. Integrating over :I:EQ;_%‘ and

2eQ2 B 5 in (4.3), we get
HTE* (Wi ke, )s ik, )|

/'
< C2istityid/? (

R AIG dx)l/p ( / sy, M) dx)l

Q= Q.

By the atomic decomposition of T;; and Lemmas 3.1 and 3.2 we have

p' /p11/p’
IT:sls, < [Z(Z|<T:t<wi,ﬁl>,wj,wj--iw) ]
ky

k;
< CTTILA2 by ||| ||
< CIFitaIdln b,
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By the molecular decomposition of 773 and Lemma 3.2 we have

-3 o0 o' /py1/p
mis,<{ 3 (3 ITicel, }

j=—00 M=—oc
-3 00 p'/p\1/p'
S{ Z ( Z 2%’(s+t+d/p)p||bi||52j(t+d/p)p) }
Jj=-—00 ‘=—00

S C”b“B;+t+q/pm(Rd)-

For T3 we have the same estimates.
Now we turn to estimate || 3|2

Lemma 4.5. Suppose that A satisfies Al, A3(a) (Ap1,Ap3(a) if 0<p<l),
s+i+d/p<a and 0<p<co. Then

(4.6) [ T2ll < ClIbll gosercarmnr(gay-

Remark. Tt should be noticed that there is no assumption a>0 in Lemma 4.5.

The proof is similar to the one of Lemma 4.4.

For p=o0c, the sub-atomic and sub-molecular decomposition of T5(b), Lemmas
3.1, 3.2 and 4.3 give us:

1T2]loc < ClIBl| gett.oo may-

For 0<p<2, again the sub-atomic and sub-molecular decomposition of T (b),
Lemmas 3.1, 3.2 and 4.3 give us:

”T2“P S C”b”B;‘H'F(d/P),P(Rd)-

The interpolation theorem gives us (4.6).
Lemmas 4.4 and 4.5 yield the following

Theorem 4.1. Suppose that A satisfies A1 and A3(a) with some >0 (or A,1
and Ap3(a) if 0<p<1) and that s,t>max(—d/2, —d/p), s+t+d/p<a and 0<p<oco.
Then

(4.7) ||T;t (Als, < C|Ib“B;+t+(d/P)»P(Rd).
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If p=o00 and s=t=0, we have
Theorem 4.2. Suppose that A satisfies A1, A2, A3(a). Then
(4.8) ITo(A)]| < CllbllBmo-

The proof of Theorem 4.2 can be found in Janson—Peetre [5]. The main idea
is the same as in the proofs of the “T'1 Theorem” or the “T'b Theorem”, i.e. by the
non-standard decomposition T4(A)=Ty(A1)+Ts(A2)+Tp(A3)=T1+T>+T5, T) and
T5 can be estimated by the results of paraproducts and T3 can be estimated by
Theorem 4.1.

Secondly we estimate the converse results.

Theorem 4.3. Suppose that A satisfies AO, A4% and 1<p<oo. Then
(49) Hb||B;+t+(d/p) P(R4) = C“T t(A)HSp'

Proof. By A4%, there exist finite sets of points {§éj )}j: in Ag and {n(] )}le
in R¢ with corresponding open ball B(£$,6()) and B( ) 5(1)Y such that nU) £
0, ng#—¢”, U;-Ile(&()J),fs(j))DAo 60 < min((e) +n], '] 1), and, with
B;=B(t{"+1n,60)) and D;=B(n{’,61), A~Le M(B;x D;). Let B;=2B; and
D;=2D;. We may assume that B;CA,, D;CA;, for some iy, where
A;=A; 1UA;UA;;;. Now we choose the positive functions k(&) and hj(n) such
that h},h;€Ce°(RY), supph,=B;, W;(€)>C>0 on Bj, supph;=D; and
hj(n)ZC>0 on D]‘.

Let

J
J©=%" / lE+nl*lnl? R €+ )by (n) din.
j=1

Then {ZJ\EC'(‘)’"(Rd),supp JC{%§|E|§2+%} and $(§)20>0 on Ay, thus ¢ can be
used to define the norm of BJP.

Thus
(4.10) ITs (AN, >3 Z I Tivt,i4i 115,
i I=-1
and
Tt stl18, = IE - AP, a0y mns
N J é‘ n r
(a.11) > ol Y leris (55 )is (55 )|
Jj=1 P

=C|IS:ls, -
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We claim that
(4.12) [1Sills, = C2HHTHI/P b .

Therefore
1755 (A)lls, = C||b“B;+t<d/p>,p(Rd)-

By the homogeneity, it suffices to prove (4.12) for i=0. Note that Sy is an
operator on L*((3T)%). We choose an orthonomal basis of L?((3T)%) {ex}, za

ex(n)=1/((6m)¥/?)ek /3. Then Sy is determined by (e ), where o k=

<So(€&1), 6E2>. Note that
k
(5)]

J
i1 =| [ 600 3 Pl €ns mea~€Jen(n)dean| =

then we have

150113, =D law sl =C Y
k k

P
b*z/}(—%)’ > Cllbx¢|ls, by Lemma 2.5 and 3.3,

i.e. (4.12) holds.

Remark. For statement and proof of Theorem 4.3 for 0<p<1, see Peng [9].
If p=00, we have also the BMO result.

Theorem 4.4. Suppose that A satifies A0, A1, A3(e) and A5. Then
(4.13) lI6llBmo < C| To(A)]-

Its proof can be found in [5]. It can be proved also by the non-standard
decomposition.

For completeness we list also the following theorems which describe the Janson-
Wolff phenomenon and compactness of paracommutators. They can also be proved
by taking the special frame of L2(R%).

Theorem 4.5. Suppose that A satisfies Al0(a), 1<p<d/(a—s—t) and
Tft(A)eS,. Then b must be a polynomial.

For the proof, see Theorem 4 of Peng [9], which contains the case 0<p<1.

4 — Arkiv for matematik
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Theorem 4.6. Suppose that A satisfies AO, Al, A3(a) and A4%, s,t>0, and
s+t<a; then T (A) is compact if and only if bebitt. And suppose that A satisfies
A0, A1, A2, A3(a) and A5; then Ty(A) is compact if and only if b6 CMO.

For the proof of Theorem 4.6, see Peng [10).

Finally we give another example of paracommutator. We consider the classical
Toeplitz operator Ty=P(bf), where the symbol b is an analytic function, f€ H%(R)
(Hardy space) and P denotes the projection from L?(R) to H2(R). Let I°® denote

the fractional integral operator defined by ﬁ?(g)zlﬂ_s f({) Let us study the
operator JS'=I"°T,I*. It is easy to check that J§' is a paracommutator with

A(€,m)=x(£>0,7>0), which satisfies A0, A1, A3(0), A4 and A10(0). So we have

Theorem 4.7. (i) If seR,t>max(—1,—1/p), 0<p<oc and s+t+1/p<0 then
JsteS, if and only if be By TTC/P)P,

(ii) If 0<p<oo and s+t+1/p>0 then Jit€S, only if b=0.

(i) If s€R,t>0 and s+t<0, then J5* is compact if and only if bebt.

(iv) If t>0, then Jb'tt is bounded if and only if b€ L™=, and Jb_” is compact
only if b=0.
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