Wavelets and paracommutators

Lizhong Peng(1)

1. Introduction

Let P denote the collection of all dyadic cubes in \mathbf{R}^d , $E = \{0,1\}^d \setminus \{0,0\}$ and $\Lambda = P \times E$. The construction of the wavelet bases $\{\psi_\lambda\}_{\lambda \in \Lambda}$ on $L^2(\mathbf{R}^d)$ is a celebrated result in mathematical analysis. Y. Meyer [7] and G. David [3] have used the bases $\{\psi_\lambda\}$ to study the boundedness of the Calderón–Zygmund operators, and have successfully simplified the proofs of the "T1 Theorem" and the "Tb Theorem". It is well known that operators of the form

$$Tf(x) = \int_{R^d} K(x, y) f(y) \, dy$$

can be compact; for example $T \in S_2$, i.e. T is Hilbert–Schmidt, if and only if $K \in L^2(\mathbf{R}^d \times \mathbf{R}^d)$. In this paper we will study the compactness and the Schatten–von Neumann properties by wavelet bases.

Precisely speaking, we consider the bilinear form $T(f,g) = \langle T(f),g \rangle$ on $\mathcal{D} \times \mathcal{D}$ with the distributional kernel K(x,y). Let $\alpha_{\lambda,\lambda'} = T(\psi_{\lambda},\psi_{\lambda'})$, for $\lambda,\lambda' \in \Lambda$. Then the bilinear form T is determined by the infinite matrix $\{\alpha_{\lambda,\lambda'}\}$. In other words, $\sum_{\lambda} \sum_{\lambda'} \alpha_{\lambda,\lambda'} \psi_{\lambda} \otimes \psi_{\lambda'}$ gives a decomposition for T, called the standard decomposition. We will also consider non-standard decompositions for T. And we will find out the conditions for $T \in S_p$ (the Schatten-von Neumann class). Then we will consider an important example: paracommutators, which are defined and studied systematically by Janson and Peetre [5]. Supplementary results are given by Peng [9], [10], and Peng-Qian [11].

In Section 2 we will give some notations and definitions, and in Section 3 we will give some lemmas for the S_p estimates. In Section 4 we will revisit the paracommutator, and will give simplified proofs for most results on paracommutators by wavelet basis expansions.

⁽¹⁾ The project supported by the National Natural Science Foundation of China

2. Preliminaries

2.1. Multidimensional wavelets (see David [3])

Definition 2.1. A multiscale analysis (MSA) of $L^2(\mathbf{R}^d)$ is an increasing sequence V_j , $j \in \mathbf{Z}$, of closed subspaces of $L^2(\mathbf{R}^d)$, with the properties:

- (1) $\bigcap_{i \in \mathbf{Z}} V_i = \{0\}$ and $\bigcup_{i \in \mathbf{Z}} V_i$ is dense;
- (2) $f(x) \in V_j \Leftrightarrow f(2x) \in V_{j+1}$;
- (3) $f(x) \in V_0 \Leftrightarrow f(x-k) \in V_0$, for each $k \in \mathbb{Z}^d$;
- (4) There is a function $g \in V_0$ such that the sequence of functions $g(x-\underline{k})$, $\underline{k} \in \mathbf{Z}^d$, is a Riesz basis of V_0 .

Definition 2.2. A MSA is " γ -regular" (for some $\gamma \in N$) if one can choose g in Definition 2.1 such that

$$|\partial^{\alpha} g(x)| \leq C_{M,\alpha} (1+|x|)^{-M}$$
 for all M , $|\alpha| \leq \gamma$.

Theorem 2.1. Given a MSA of $L^2(\mathbf{R}^d)$, of regularity γ , one can find a function $\varphi = \psi^0(x)$ and $2^d - 1$ functions $\psi^{\varepsilon}(x)$, $\varepsilon \in E$, such that $|\partial^{\alpha}\psi^{\varepsilon}(x)| \le C_{M,\alpha}(1+|x|)^{-M}$ for $|\alpha| \le \gamma$, all $M \ge 0$, and such that if $\psi_{\lambda}(x) = \psi^{\varepsilon}_{Q}(x) = 2^{jd/2}\psi^{\varepsilon}(2^jx - \underline{k})$, for $\lambda = (Q, \varepsilon) \in \Lambda$, $Q \in P$ and $Q = \prod_{i=1}^d [k_i 2^{-j}, (k_i + 1)2^{-j}]$ then $\{\varphi_Q\}_{\text{length}(Q)=2^{-j}}$ is an orthogonal basis of V_j and $\{\psi_{\lambda}\}_{\lambda \in \Lambda}$ is an orthogonal basis of $L^2(\mathbf{R}^d)$.

The functions $\{\psi^{\varepsilon}\}$ are called wavelets and $\{\psi^{\varepsilon}_{\lambda}\}_{{\lambda}\in\Lambda}$ is called a wavelet basis. An example of an orthogonal wavelet basis of regularity $\gamma=0$ is the Haar basis. An example of an orthogonal wavelet basis of regularity $\gamma=\infty$ is the Meyer basis $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$, see David [3]. It is not only an orthogonal basis for $L^2(\mathbf{R}^d)$, but also an unconditional basis for many functionspaces, so it is called a universal unconditional basis.

2.2. Frames

Let H be a Hilbert space, $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame on H if $T(\{\alpha_{\lambda}\})=\sum \alpha_{\lambda}e_{\lambda}$ is a bounded operator from $l^2(\Lambda)$ to H and T is onto. If $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame on H, then for all $x\in H$, $x=\sum \langle L^{-1}(x),e_{\lambda}\rangle e_{\lambda}$, where $L(x)=\sum \langle x,e_{\lambda}\rangle e_{\lambda}$ and $\|x\|^2\approx\sum |\langle x,e_{\lambda}\rangle|^2$.

Let us consider an important example—a so called smooth frame.

Let $\widehat{\varphi} \in C_0^{\infty}(\mathbf{R}^d)$ such that $\operatorname{supp} \widehat{\varphi} \subset \{\xi : |\xi| \leq \frac{1}{2}\}, \ |\widehat{\varphi}(\xi)| \geq C > 0$ on $\{\xi : |\xi| \leq \frac{1}{4}\},$ and $\widehat{\psi}(\xi) = \widehat{\varphi}(\xi) - \widehat{\varphi}(2\xi)$ such that $\sum_{j=-\infty}^{\infty} |\widehat{\psi}(\xi/2^j)| = 1$ for $\xi \neq 0$. Now we denote $\Lambda = P$ and $\lambda = Q \in P$. Then $\psi_{\lambda} = \psi_{Q} = \psi_{j,\underline{k}}(x) = 2^{jd/2}\psi(2^jx - \underline{k})$ form a frame (called a smooth frame) on $L^2(\mathbf{R}^d)$ by the Plancherel and Pólya Theorem. And for any

 $f \in L^2(\mathbf{R}^d)$, we have $f = \sum_{\lambda \in \Lambda} \langle f, \psi_{\lambda} \rangle \psi_{\lambda}$, see Frazier and Jawerth [4]. We will show that this frame is universal for many function spaces.

2.3. Function spaces and sequence spaces

By the orthogonal wavelet basis in 2.1 or the smooth frame in 2.2, we can give a realization of the isomorphism between $L^2(\mathbf{R}^d)$ and $l^2(\Lambda)$.

For the wavelet basis $\{\psi_{\lambda}\}_{{\lambda}\in{\Lambda}}$, where ${\Lambda}=P\times E$, we denote $|{\lambda}|=\operatorname{length}(Q)$ for ${\lambda}=(Q,{\varepsilon})\in P\times E$, and we have two kinds of projections P_j and Q_j ,

$$\begin{split} P_j &: L^2(\mathbf{R}^d) \to V_j, \quad P_j(f) = \sum_{|\lambda| > 2^{-j}} \langle f, \psi_{\lambda} \rangle \psi_{\lambda} = \sum_{|\lambda| = 2^{-j}} \langle f, \varphi_{\lambda} \rangle \varphi_{\lambda}, \\ Q_j &: L^2(\mathbf{R}^d) \to W_j = V_{j+1} \ominus V_j, \quad Q_j(f) = \sum_{|\lambda| = 2^{-j}} \langle f, \psi_{\lambda} \rangle \psi_{\lambda}, \end{split}$$

and

$$P_j \uparrow 1 \ (j \to +\infty), \quad P_j \downarrow 0 \ (j \to -\infty),$$

$$Q_j = P_{j+1} - P_j, \quad \sum_{-\infty}^{+\infty} Q_j = 1.$$

For the smooth frame given in 2.2, where we denote $\widehat{\varphi}_j(\xi) = \widehat{\varphi}(2^{-j}\xi)$ and $\widehat{\psi}_j(\xi) = \widehat{\psi}(2^{-j}\xi)$, we have also the two kinds of operators P_j and Q_j :

$$\widehat{P_j f}(\xi) = \widehat{\varphi}_j(\xi) \widehat{f}(\xi),$$

$$\widehat{Q_j f}(\xi) = \widehat{\psi}_j(\xi) \widehat{f}(\xi),$$

moreover,

$$P_j \uparrow 1 \ (j \to +\infty), \quad P_j \downarrow 0 \ (j \to -\infty),$$

$$Q_j = P_{j+1} - P_j, \quad \sum_{j=0}^{+\infty} Q_j = 1.$$

Now we introduce some sequence spaces:

$$l^p(\mathbf{Z}^d) = \left\{ (\alpha_{\underline{k}})_{\underline{k} \in \mathbf{Z}^d} : \sum_{\underline{k} \in \mathbf{Z}^d} |\alpha_{\underline{k}}|^p < +\infty \right\} \quad \text{for } 0 < p < \infty$$

(modification if $p=\infty$).

$$l^p(\underline{k}_1)l^q(\underline{k}_2) = \left\{ (\alpha_{\underline{k}_1,\underline{k}_2})_{\underline{k}_1,\underline{k}_2 \in \mathbf{Z}^d} : \sum_{\underline{k}_1 \in \mathbf{Z}^d} \left[\sum_{\underline{k}_2 \in \mathbf{Z}^d} |\alpha_{\underline{k}_1,\underline{k}_2}|^q \right]^{p/q} < +\infty \right\}$$

for 0 < p, $q < \infty$ (modification if $p = \infty$ or $q = \infty$).

Let $\Lambda = P \times E$ or $\Lambda = P$, we introduce:

$$l^p(\Lambda) = \left\{ (\alpha_\lambda)_{\lambda \in \Lambda} : \sum |\alpha_\lambda|^p < \infty \right\}$$

for $0 (modification if <math>p = \infty$).

$$l_p^{sq}(\Lambda) = \left\{ (\alpha_\lambda)_{\lambda \in \Lambda} : \sum_{j = -\infty}^{\infty} 2^{jsq} \left(\sum_{|\lambda| = 2^j} |\alpha_\lambda|^p \right)^{q/p} < +\infty \right\}$$

for $s \in \mathbb{R}$, 0 < p, $q < \infty$ (modification if $p = \infty$ or $q = \infty$).

$$l_p^q(\Lambda) = l_p^{0,q}(\Lambda), \quad l^p(\Lambda) = l_p^p(\Lambda).$$

$$\mathrm{BMO}(\Lambda) = \mathrm{QCM}_d = \left\{ \{\alpha_\lambda\}_{\lambda \in \Lambda} : \sup_R \frac{1}{|R|} \sum_{Q \subset R: \lambda = (Q, \varepsilon) \text{ or } Q} |\alpha_\lambda|^2 |Q| < +\infty \right\}$$

(for QCM_d , see Rochberg and Semmes [12]).

$$l^p(\lambda)l^q(\lambda') = \left\{ (\alpha_{\lambda,\lambda'})_{\lambda,\lambda' \in \Lambda} : \sum_{\lambda} \left[\sum_{\lambda'} |\alpha_{\lambda,\lambda'}|^q \right]^{p/q} < \infty \right\}$$

for 0 < p, $q < \infty$ (modification if $p = \infty$ or $q = \infty$).

Now let us show that both the Meyer wavelet basis $\{\psi_{\lambda}\}$ and the smooth frame given in 2.2 are universal unconditional bases for BMO(\mathbf{R}^d) and Besov spaces $B_p^{s,q}(\mathbf{R}^d)$.

First we give two lemmas, which will be used again in Section 4 below, the proof of them can be found in Triebel [15].

Lemma 2.1. Let Ω be a compact subset of \mathbf{R}^d . Then for $0 < r < p < \infty$, there exist C_1 and C_2 such that

$$\sup_{z \in \mathbf{R}^d} \frac{|\nabla \varphi(x-z)|}{1+|z|^{d/r}} \le C_1 \sup_{z \in \mathbf{R}^d} \frac{|\varphi(x-z)|}{1+|z|^{d/r}} \le C_2 M_r(\varphi)(x)$$

holds for all $\varphi \in L^p_{\Omega} = \{ \varphi \in L^p : \operatorname{supp} \widehat{\varphi} \subset \Omega \}$, where $M_r(\varphi)(x) = [M|\varphi|^r(x)]^{1/r}$, and M is the Hardy–Littlewood maximal operator.

Lemma 2.2. (The Plancherel and Pólya Theorem) Let 0 , <math>a > 0. For any a' > a, there exist C_1 and C_2 such that

$$C_1 \left(\sum_{k \in \mathbf{Z}^d} |\varphi(\underline{k}/a')|^p \right)^{1/p} \le \|\varphi\|_p \le C_2 \left(\sum_{k \in \mathbf{Z}^d} |\varphi(\underline{k}/a')|^p \right)^{1/p}$$

holds for all $\varphi \in \{ \varphi \in S' : \operatorname{supp} \widehat{\varphi} \subset B(0, a) \}$

Let $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ denote the Meyer wavelet basis $(\Lambda=P\times E)$ or the smooth frame given in 2.2 $(\Lambda=P)$, we have

$$f \in {\rm BMO}(\mathbf{R}^d) \quad \text{if and only if} \quad \sup_{R \in P} \frac{1}{|R|} \sum_{\{Q \subset R: \lambda = (Q,\varepsilon) \text{ or } Q\}} |\langle f, \psi_\lambda \rangle| \, |Q| < +\infty,$$

i.e.

$$BMO(\mathbf{R}^d) \longleftrightarrow BMO(\Lambda)$$
, isomorphism.

$$f \in B^{s,q}_p(\mathbf{R}^d)$$
 if and only if $(\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda} \in l^{s,q}_p(\Lambda)$

i.e.

$$B^{s,q}_p(\mathbf{R}^d) \longleftrightarrow l^{s,q}_p(\Lambda) \longleftrightarrow l^q_p(\Lambda), \text{ isomorphisms.}$$

2.4. The Schatten-von Neumann class S_p

Let T be a bounded operator from one Hilbert space H_1 to another Hilbert space H_2 . If \mathcal{K}_n denotes the set of the operators of rank $\leq n$, then the singular number $s_n = s_n(T)$ is defined by

$$s_n = \inf\{\|T - T_n\| : T_n \in \mathcal{K}_n\}$$

If T is a compact operator, then $(T^*T)^{1/2}$ has its eigenvalues

$$s_0 \geq s_1 \geq \ldots \geq s_n \geq \ldots, s_n \rightarrow 0.$$

The Schatten-von Neumann class S_p is the set

$$S_p = \Big\{T: \Big(\sum s_n^p\Big)^{\!1/p} < \infty\Big\}.$$

We denote the set of all bounded operators by S_{∞} , and denote the set of all compact operators by \mathcal{K} .

For further information on S_p , see e.g. McCarthy [6].

2.5. NWO (nearly weakly orthonormal) sequences (Rochberg and Semmes [12])

A nearly weakly orthonormal sequence (NWO) is a function sequence $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ in $L^2({\bf R}^d)$ such that if

$$\sup_{|\xi_Q-x|\leq |\lambda|} \bigl\{|Q|^{-1/2}|\langle f,e_\lambda\rangle|\bigr\} = f^*(x),$$

then $||f^*||_2 \le C||f||_2$, where $|\lambda| = |Q|^{1/d}$ for $\lambda = (Q, \varepsilon)$ or Q.

It is easy to see that any $\{\varphi_{\lambda}\}$ and $\{\psi_{\lambda}\}$ in Theorem 2.1 are NWO, and so are $\{\varphi_{\lambda}\}$ and $\{\psi_{\lambda}\}$ in the smooth frame in 2.2.

Proposition 2.1. If $A = \sum_{\lambda \in \Lambda} s_{\lambda} \langle \cdot, e_{\lambda} \rangle f_{\lambda}$, with $\{e_{\lambda}\}$, $\{f_{\lambda}\}$ are NWO, then

$$||A|| \le C ||\{s_{\lambda}\}||_{\mathrm{BMO}(\Lambda)}$$

$$||A||_{S_p} \le C_p \left(\sum_{\lambda \in \Lambda} |s_{\lambda}|^p\right)^{1/p} \quad \text{for } 0$$

and

$$\left(\sum_{\lambda}|< Te_{\lambda}, f_{\lambda}>|^{p}\right)^{1/p} \leq C_{p}\|T\|_{S_{p}} \quad \text{for } 1$$

3. Estimates of operators on $L^2(\mathbb{R}^d)$

First we consider the operators on $l^2(\mathbf{Z}^d)$.

Lemma 3.1. If $2 \le p \le \infty$, 1/p+1/p'=1, then

$$(1) \qquad (\alpha_{\underline{k}_1,\underline{k}_2}) \in l^p(\underline{k}_1)l^{p'}(\underline{k}_2) \cap l^p(\underline{k}_2)l^{p'}(\underline{k}_1)$$

implies

$$(\alpha_{\underline{k}_1,\underline{k}_2}) \in S_p;$$

(2)
$$(\alpha_{\underline{k}_1,\underline{k}_1+\underline{k}_2}) \in l^{p'}(\underline{k}_2)l^p(\underline{k}_1)$$

implies

$$(\alpha_{\underline{k}_1,\underline{k}_2}) \in S_p;$$

(3) if 0 , then

$$(\alpha_{\underline{k}_1,\underline{k}_2}) \in l^p(\underline{k}_1)l^2(\underline{k}_2)$$
 or $l^p(\underline{k}_2)l^2(\underline{k}_1)$

implies

$$(\alpha_{k_1,k_2}) \in S_p$$
.

Proof. (1) is proved by Russo [13].

An easy argument shows that $(\alpha_{\underline{k}_1,\underline{k}_1+\underline{k}_2}) \in l^1(\underline{k}_2) l^{\infty}(\underline{k}_1)$ or $(\alpha_{\underline{k}_1+\underline{k}_2,\underline{k}_2}) \in l^1(\underline{k}_1) l^{\infty}(\underline{k}_2)$ implies that $(\alpha_{\underline{k}_1,\underline{k}_2}) \in S_{\infty}$.

If p=2, the Hilbert-Schmidt norm shows that

$$\|(\alpha_{\underline{k}_1,\underline{k}_2})\|_{S_2}^2 = \sum_{\underline{k}_1} \sum_{\underline{k}_2} |\alpha_{\underline{k}_1,\underline{k}_2}|^2.$$

The interpolation theorems (cf. Bergh and Löfström [1]) show (2).

(3) is the consequence of the fact: $||T||_{S_p}^p = \inf \sum_{\alpha} ||T\varphi_{\alpha}||^p$ for 0 (cf. McCarthy [6]).

Now we consider operators on $L^2(\mathbf{R}^d)$.

We start with an operator T from $\mathcal{D}(\mathbf{R}^d)$ to $\mathcal{D}'(\mathbf{R}^d)$, where $\mathcal{D}(\mathbf{R}^d)$ is a test function space in \mathbf{R}^d containing some family of wavelets or frame which will be specified in a concrete case.

Let $\{\psi_{\lambda}\}$ be a wavelet basis or the smooth frame in 2.2. Then we can give two decompositions for T (see [2]).

(1) Standard decomposition:

$$T = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} T_{ij}$$
 (molecular decomposition)

where $T_{ij} = Q_i T Q_j$, and

$$T_{ij} = \sum_{|\lambda| = 2^{-i}} \sum_{|\lambda'| = 2^{-j}} \alpha_{\lambda\lambda'} \psi_{\lambda} \otimes \psi_{\lambda'} \quad \text{(atomic decomposition)}$$

where $\alpha_{\lambda\lambda'} = \langle T\psi_{\lambda}, \psi_{\lambda'} \rangle$.

(2) Non-standard decomposition

$$T = T_1 + T_2 + T_3$$

where

$$T_1 = \sum_{|\lambda| > 4|\lambda'|} \beta_{\lambda\lambda'} \varphi_{\lambda} \otimes \psi_{\lambda'},$$

$$T_{2} = \sum_{1/4 \leq |\lambda|/|\lambda'| \leq 4} \alpha_{\lambda\lambda'} \psi_{\lambda} \otimes \psi_{\lambda'},$$

$$T_{3} = \sum_{|\lambda'| > 4|\lambda|} \gamma_{\lambda\lambda'} \psi_{\lambda} \otimes \varphi_{\lambda'}$$

with $\beta_{\lambda\lambda'} = \langle T\varphi_{\lambda}, \psi_{\lambda'} \rangle$, $\alpha_{\lambda\lambda'} = \langle T\psi_{\lambda}, \psi_{\lambda'} \rangle$, and $\gamma_{\lambda\lambda'} = \langle T\psi_{\lambda}, \varphi_{\lambda'} \rangle$.

For example, in the proofs of the "T1 Theorem" (cf. Meyer [7]) and the "Tb Theorem" (cf. David [3]), the Calderón–Zygmund Operator T has been split into three parts $T=T_1+T_2+T_3$, where T_1 and T_3 are paraproducts, for T_2 , let $\alpha_{\lambda\lambda'}=\langle T_2\psi_{\lambda},\psi_{\lambda}\rangle$. Then $\alpha_{\lambda\lambda'}$ satisfies

$$(3.1) |\alpha_{\lambda\lambda'}| \le C(|Q| \wedge |R|)^{\alpha/d} |Q|^{d/2} |R|^{d/2} (|Q|^{1/d} + |R|^{1/d} + \operatorname{dist}(Q, R))^{-d-\alpha},$$

and by the Schur lemma, T_2 is bounded on $L^2(\mathbf{R}^d)$.

If $T=T_b$ is an operator with a symbol b, let $\widehat{\varphi} \in C_0^{\infty}$, supp $\widehat{\varphi} \subset \{\xi: 1-\varepsilon \leq |\xi| \leq 2+\varepsilon\}$, such that $\sum_{l=-\infty}^{\infty} \widehat{\varphi}(\xi/2^l)=1$ for $\xi \neq 0$. Then $b=\sum_{l=-\infty}^{\infty} b_l$ with $b_l=b*\varphi_l$, thus we have the standard decomposition for T_b :

$$T_b = \sum_l \sum_j \sum_i T_{ij}(b_l)$$
 (sub-molecular decomposition),

where $T_{ij}(b_l) = Q_i T_{b_l} Q_j$, and

$$T_{ij}(b_l) = \sum_{|\lambda| = 2^{-j}} \sum_{|\lambda'| = 2^{-j}} \alpha_{\lambda\lambda'}^l \psi_{\lambda} \otimes \psi_{\lambda'} \quad \text{(sub-atomic decomposition)}.$$

Similarly we have also the non-standard decomposition for T_b . By using the above decompositions, one can estimate the molecules or sub-molecules via atoms or sub-atoms by Lemma 3.1, then estimate T or T_b via molecules or sub-molecules by Lemma 3.2 below.

Lemma 3.2. If
$$2 \le p \le \infty$$
, $1/p+1/p'=1$, then

$$(||T_{i+j,j}||_{S_p}) \in l^{p'}(i)l^p(j)$$

or

$$(||T_{i,i+j}||_{S_p}) \in l^{p'}(j)l^p(i)$$

implies that $T \in S_p$.

If 0 , then

$$(||T_{i,j}||_{S_p}) \in l^p(i)l^p(j)$$

implies that

$$T \in S_p$$
.

These two steps of decompositions have another advantage, i.e. they can be used to get the converse estimates (see Timotin [14]).

Lemma 3.3. For $1 \le p \le \infty$, if there exist $i_0 \in \mathbb{Z}$ and $\{S_{i,i+i_0}\}$ such that $\|T_{i,i+i_0}\|_{S_p} \ge C\|S_{i,i+i_0}\|_{S_p}$, then

$$||T||_{S_p}^p \ge \sum_i ||T_{i,i+i_0}||_{S_p}^p \ge C \sum_i \sum_{\underline{k} \in \mathbf{Z}^d} |\alpha_{i,i+i_0}(\underline{k},\underline{k}+\underline{k}_0)|^p$$

where $\alpha_{i,j}(\underline{k}_1,\underline{k}_2) = S_{i,j}(\psi_{i,\underline{k}_1},\psi_{j,\underline{k}_2})$.

To estimate T_1 and T_3 in the non-standard decomposition, we need a result on paraproducts. Paraproducts were introduced by Bony. Nowadays there exist hundreds of equivalent definitions. Here we use the following definition:

$$\pi_b(f) = \sum_{|\lambda| > 4|\lambda'|} \langle b, \psi_{\lambda'} \rangle \langle f, \varphi_{\lambda} \rangle \psi_{\lambda'}$$

where $\varphi_{\lambda}, \psi_{\lambda}$ are the functions in the Meyer wavelet basis or the smooth frame.

Notice that both φ_{λ} and ψ_{λ} are NWO, by Proposition 2.1, we have

$$\|\pi_b\|_{S_p} \approx \|b\|_{B_p^{d/p,p}(\mathbf{R}^d)}$$
 for $1 \leq p < \infty$

and

$$\|\pi_b\| \approx \|b\|_{\text{BMO}}.$$

Remark. In fact the S_p -estimates of paraproducts hold also for 0 , see Peng [9].

4. Paracommutators

The paracommutator is an operator of the form:

$$(4.1) (T_b^{st}(A)f)^{\hat{}}(\xi) = (2\pi)^{-d} \int_{\mathbf{R}^d} \hat{b}(\xi - \eta) A(\xi, \eta) |\xi|^s |\eta|^t \hat{f}(\eta) d\eta.$$

It is defined in Janson–Peetre [5].

We adopt the notation of [5] for the norm $||A(\xi,\eta)||_{M(U\times V)}$ of the Schur multiplier $A(\xi,\eta)\in M(U\times V)$ and the S_p -norm $||K(\xi,\eta)||_{S_p(U\times V)}$.

As in [5], we let
$$\Delta_j = \{ \xi \colon 2^j \le |\xi| \le 2^{j+1} \}$$
 and $\overline{\Delta}_j = \Delta_{j-1} \cup \Delta_j \cup \Delta_{j+1}$.

For convenience, we list here some assumptions on $A(\xi, \eta)$, which come from Janson-Peetre [5], Peng [9] and [10].

A0: There exists an r>1 such that $A(r\xi, r\eta) = A(\xi, \eta)$.

A1: $||A||_{M(\Delta_i \times \Delta_k)} \leq C$, for all $j, k \in \mathbb{Z}$.

A2: There exist $A_1, A_2 \in M(\mathbf{R}^d \times \mathbf{R}^d)$ and $\delta > 0$ such that

$$A(\xi, \eta) = A_1(\xi, \eta)$$
 for $|\eta| < \delta |\xi|$

$$A(\xi, \eta) = A_2(\xi, \eta)$$
 for $|\xi| < \delta |\eta|$.

A3(α): There exist $\alpha > 0$ and $\delta > 0$ such that if $B = B(\xi_0, r)$ with $r < \delta |\xi_0|$, then $||A||_{M(B \times B)} \le C(r/|\xi_0|)^{\alpha}$.

A4: There exist no $\xi \neq 0$ such that $A(\xi + \eta, \eta) = 0$ for a.e. η .

A4 $\frac{1}{2}$: For every $\xi_0 \neq 0$ there exist $\eta_0 \in \mathbf{R}^d$ and $\delta > 0$ such that, with $B_0 = B(\xi_0 + \eta_0, \delta|\xi_0|)$ and $D_0 = B(\eta_0, \delta|\xi_0|)$, $A(\xi, \eta)^{-1} \in M(B_0 \times D_0)$.

A5: For every $\xi_0 \neq 0$ there exist $\delta > 0$ and $\eta_0 \in \mathbf{R}^d$ such that, with $U = \{\xi : |\xi/|\xi| - \xi_0/|\xi|| < \delta \text{ and } |\xi| > |\xi_0|\}$ and $V = B(\eta_0, \delta|\eta_0|), A(\xi, \eta)^{-1} \in M(U \times V).$

A10: For any $0 \neq \theta \in \mathbf{R}^d$, there exist a positive $\delta < \frac{1}{2}$ and a subset V_{θ} of \mathbf{R}^d such that if N_r denote the number of integer points contained in $V_{\theta} \cap B_r$, where $B_r = B(0, r)$, then

$$\overline{\lim_{r \to \infty}} \frac{N_r}{r^d} > 0$$

and for every $\underline{n} \in V_0$,

$$||A(\xi + \underline{n} + \theta, \eta + \underline{n})^{-1}||_{M(B \times B)} \le C|n|^{\alpha}$$
, where $B = B(0, \delta)$.

We adopt the notation of Peng [9] for Λ_p , 0 , instead of using <math>M in A1, A3(α) and A4 $\frac{1}{2}$, we can list the conditions of A_p1, A_p3(α) and A_p4 $\frac{1}{2}$ by using Λ_p .

The paracommutators contain many examples, cf. Janson–Peetre [5] and Peng–Qian [11].

Now let us estimate the S_p -norm of a paracommutator by its molecular-atomic structure. Here we use smooth frame expansion.

First we estimate the direct results. We split the operator (4.1) into three parts via the molecules $T_{ij} = Q_i T_b^{st} Q_j$:

$$T_b^{st}(A) = T_1 + T_2 + T_3,$$

where

$$T_{1} = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{i-3} T_{i,j} = \sum_{j=-\infty}^{-3} \sum_{i=-\infty}^{\infty} T_{i,i+j}$$

$$T_{2} = \sum_{i=-\infty}^{\infty} \sum_{j=i-2}^{i+2} T_{i,j}$$

$$T_{3} = \sum_{i=-\infty}^{\infty} \sum_{j=i+3}^{\infty} T_{i,j} = \sum_{i=-\infty}^{-3} \sum_{j=-\infty}^{\infty} T_{i+j,j}.$$

To estimate them, we need the following three lemmas.

Lemma 4.1. Suppose that A satisfies A1, A3(α), $\widehat{\varphi} \in C_0^{\infty}$, supp $\widehat{\varphi} \subset \{\xi: 1-\varepsilon \leq |\xi| \leq 2+\varepsilon\}$ and $\widehat{\varphi}_l(\xi) = \widehat{\varphi}(\xi/2^{l-2})$, then for $|i-j| \leq 3$,

Lemma 4.2. Suppose that A satisfies A1, ψ is the function of the smooth frame in 2.2, $\widehat{\varphi} \in C_0^{\infty}$, $\widehat{\varphi}(\xi) \equiv 1$ on $\overline{\Delta}_0$, and $\widehat{\varphi}_i(\xi) = \widehat{\varphi}(\xi/2^{i-2})$. Then for i > j+3, $x \in Q_{2^{-i}}^{-\underline{k}_1}$, $x' \in Q_{2^{-i}}^{2^{i-j}\underline{k}_2-\underline{k}_1}$ and r > 0 small enough,

$$(4.3) |\langle T_b^{st}(\psi_{i,k_1}), \psi_{j,k_2} \rangle| \le C2^{-id/2 + is + jt} M_r(b_i)(x) M_r(\psi_j)(x'),$$

where $b_i = \varphi_i * b$, $Q_{2^{-i}}^{\underline{k}}$ is the cube with side 2^{-i} and center $2^{-i}\underline{k}$.

Remark. For j>i+3, we have the same result.

Lemma 4.3. Suppose that A satisfies A1, A3(α) with $\alpha > 0$, ψ is the function of the smooth frame in 2.2, $\widehat{\varphi} \in C_0^{\infty}$, supp $\widehat{\varphi}(\xi) \subset \overline{\Delta}_0$, and $\widehat{\varphi}_i(\xi) = \widehat{\varphi}(\xi/2^{i-2})$, then for $|i-j| \leq 3$, $x \in Q_{2^{-i}}^{-\underline{k}_1}$, $x' \in Q_{2^{-i}}^{2^{i-j}} \underline{k}_2 - \underline{k}_1$ and r > 0 small enough,

$$(4.4) \qquad |\langle T_{b_{l}}^{st}(\psi_{i,\underline{k}_{1}}), \psi_{j,\underline{k}_{2}} \rangle| \leq C \left(\frac{2^{l}}{2^{i}}\right)^{\alpha} 2^{-id/2 + is + jt} M_{r}(b_{l})(x) M_{r}(\psi_{j})(x')$$

where $b_l = \varphi_l * b$.

Proof of Lemma 4.1. By the Fourier transform:

$$\widehat{\varphi}_l(\xi - \eta) = \int \varphi_l(x) e^{-ix\xi} e^{ix\eta} dx,$$

so $\|\widehat{\varphi}_l(\xi-\eta)\|_{M(\mathbf{R}^d\times\mathbf{R}^d)} \le C\|\varphi\|_1 = C < \infty$.

Let Q_l^n denote the cube with side 2^l and center $2^l n$ for $n \in \mathbb{Z}^d$, then

$$\begin{aligned} \|A(\xi,\eta)\widehat{\varphi}_l(\xi-\eta)\|_{M(\Delta_i\times\Delta_j)} &= \left\|A(\xi,\eta)\widehat{\varphi}_l(\xi-\eta)\sum_{|n-m|\leq c}\chi_{\Delta_i\cap Q_l^n}(\xi)\chi_{\Delta_j\cap Q_l^m}(\eta)\right\|_{M} \\ &\leq \sum_{|m|\leq c}\sup_n \|A(\xi,\eta)\widehat{\varphi}_l(\xi-\eta)\|_{M(\Delta_i\cap Q_l^n\times Q_j\cap Q_l^{n-m})} \\ &\leq C\left(\frac{2^l}{2^i}\right)^{\alpha}. \end{aligned}$$

Proof of Lemma 4.2. By Lemma 2.4,

$$\begin{split} \left| \langle T_b^{st}(\psi_{i,\underline{k}_1}), \psi_{j,\underline{k}_2} \rangle \right| &= \left| \langle T_{b_i}^{st}(\psi_{i,\underline{k}_1}), \psi_{j,\underline{k}_2} \rangle \right| \\ &= \left| \iint \hat{b}_i(\xi - \eta) A(\xi, \eta) |\xi|^s |\eta|^t \widehat{\psi}_{i,\underline{k}_1}(\xi) \widehat{\psi}_{j,\underline{k}_2}(\eta) \, d\xi \, d\eta \right| \\ &\leq C 2^{is} 2^{jt} 2^{-id/2} \left| \int \widehat{\psi}_i(\xi) \hat{b}_{i,-\underline{k}_1} * \widehat{\psi}_{j,2^{i-j}\underline{k}_2 - \underline{k}_1}(\xi) \, d\xi \right| \\ &= C 2^{is} 2^{jt} 2^{-id/2} \left| \int b_j \left(y - \frac{\underline{k}_1}{2^i} \right) \psi_j \left(y + \frac{2^{i-j}\underline{k}_2 - \underline{k}_1}{2^i} \right) \psi_i(y) \, dy \right| \\ &\leq C 2^{is} 2^{jt} 2^{-id/2} \int \frac{\left| b_i \left(y - \frac{\underline{k}_1}{2^i} - x + x \right) \right|}{1 + \left| 2^i \left(y - \frac{\underline{k}_1}{2^i} - x \right) \right|^{d/r}} \frac{\left| \psi_j \left(y + \frac{2^{i-j}\underline{k}_2 - \underline{k}_1}{2^i} - x' + x' \right) \right|}{1 + \left| 2^i \left(y - \frac{\underline{k}_1}{2^i} - x \right) \right|^{d/r}} \\ &\times \left[1 + (2^i |y| + 2)^{d/r} \right] \cdot \left[1 + (2^i |y| + 2)^{d/r} \right] |\psi_j(y)| \, dy \\ &\leq C 2^{is} 2^{jt} 2^{-id/2} M_r(b_i)(x) M_r(\psi_j)(x') \end{split}$$

where $\hat{b}_{i,-\underline{k}_1}(\xi)\!=\!\hat{b}(\xi)\widehat{\varphi}(\xi/2^i)e^{-i2\pi\xi\cdot\underline{k}_1/2^{i+2}}.$

The proof of Lemma 4.3 is similar, we omit it here. Now we deal with T_1 .

Lemma 4.4. Suppose that A satisfies A1, A_p1 if $0 , <math>t > \max(-d/2, -d/p)$ and 0 , then

$$(4.5) ||T_1||_{S_p} \le C||b||_{B_n^{s+t+d/p,p}(\mathbf{R}^d)}.$$

Proof. This is a consequence of Lemma 3.1 , Lemma 3.2 and Lemma 4.2. We give the proof only for $2 \le p \le \infty$. We choose r < p. Integrating over $x \in Q_{2^{-i}}^{-\underline{k}_1}$ and $x' \in Q_{2^{-i}}^{2^{i-j}\underline{k}_2-\underline{k}_1}$ in (4.3), we get

$$\begin{split} |\langle T_b^{st}(\psi_{i,\underline{k}_1}), \psi_{j,\underline{k}_2} \rangle| \\ & \leq C 2^{js+jt} 2^{id/2} \Biggl(\int_{Q_{2^{-i}}^{-\underline{k}_1}} M_r(b_i)(x)^p \, dx \Biggr)^{1/p} \Biggl(\int_{Q_{2^{-i}}^{2^{i-j}\underline{k}_2 - \underline{k}_1}} M_r(\psi_j)(x')^{p'} \, dx \Biggr)^{1/p'}. \end{split}$$

By the atomic decomposition of T_{ij} and Lemmas 3.1 and 3.2 we have

$$\begin{split} \|T_{i,j}\|_{S_p} &\leq \left[\sum_{\underline{k}_2} \left(\sum_{\underline{k}_1} |\langle T_b^{st}(\psi_{i,\underline{k}_1}), \psi_{j,\underline{k}_2+2^{j-i}\underline{k}_1} \rangle|^p \right)^{p'/p} \right]^{1/p'} \\ &\leq C 2^{js+jt} 2^{id/2} \|b_j\|_p \|\psi_j\|_{p'} \\ &\leq C 2^{js+jt} 2^{jd/p} \|b_i\|_p. \end{split}$$

By the molecular decomposition of T_1 and Lemma 3.2 we have

$$\begin{split} \|T_1\|_{S_p} &\leq \bigg\{ \sum_{j=-\infty}^{-3} \bigg(\sum_{i=-\infty}^{\infty} \|T_{i,i+j}\|_{S_p}^p \bigg)^{p'/p} \bigg\}^{1/p'} \\ &\leq \bigg\{ \sum_{j=-\infty}^{-3} \bigg(\sum_{i=-\infty}^{\infty} 2^{i(s+t+d/p)p} \|b_i\|_p^p 2^{j(t+d/p)p} \bigg)^{p'/p} \bigg\}^{1/p'} \\ &\leq C \|b\|_{B_p^{s+t+q/p,p}(\mathbf{R}^d)}. \end{split}$$

For T_3 we have the same estimates.

Now we turn to estimate $||T_2||_2$.

Lemma 4.5. Suppose that A satisfies A1, A3(α) (A_p1,A_p3(α) if 0<p<1), $s+t+d/p<\alpha$ and 0<p $\leq\infty$. Then

(4.6)
$$||T_2|| \le C||b||_{B_p^{s+t+(d/p),p}(\mathbf{R}^d)}.$$

Remark. It should be noticed that there is no assumption $\alpha > 0$ in Lemma 4.5. The proof is similar to the one of Lemma 4.4.

For $p=\infty$, the sub-atomic and sub-molecular decomposition of $T_2(b)$, Lemmas 3.1, 3.2 and 4.3 give us:

$$||T_2||_{\infty} \leq C||b||_{B^{s+t,\infty}_{\infty}(\mathbf{R}^d)}.$$

For $0 , again the sub-atomic and sub-molecular decomposition of <math>T_2(b)$, Lemmas 3.1, 3.2 and 4.3 give us:

$$||T_2||_p \le C||b||_{B_p^{s+t+(d/p),p}(\mathbf{R}^d)}.$$

The interpolation theorem gives us (4.6).

Lemmas 4.4 and 4.5 yield the following

Theorem 4.1. Suppose that A satisfies A1 and A3(α) with some $\alpha > 0$ (or A $_p$ 1 and A $_p$ 3(α) if $0) and that <math>s, t > \max(-d/2, -d/p), s + t + d/p < \alpha$ and 0 . Then

(4.7)
$$||T_p^{st}(A)||_{S_p} \le C||b||_{B_n^{s+t+(d/p),p}(\mathbf{R}^d)}.$$

If $p=\infty$ and s=t=0, we have

Theorem 4.2. Suppose that A satisfies A1, A2, A3(α). Then

$$(4.8) ||T_b(A)|| \le C||b||_{BMO}.$$

The proof of Theorem 4.2 can be found in Janson-Peetre [5]. The main idea is the same as in the proofs of the "T1 Theorem" or the "Tb Theorem", i.e. by the non-standard decomposition $T_b(A) = T_b(A_1) + T_b(A_2) + T_b(A_3) = T_1 + T_2 + T_3$, T_1 and T_2 can be estimated by the results of paraproducts and T_3 can be estimated by Theorem 4.1.

Secondly we estimate the converse results.

Theorem 4.3. Suppose that A satisfies A0, A4 $\frac{1}{2}$ and $1 \le p \le \infty$. Then

(4.9)
$$||b||_{B_p^{s+t+(d/p),p}(\mathbf{R}^d)} \le C||T_b^{st}(A)||_{S_p}.$$

Proof. By A4 $\frac{1}{2}$, there exist finite sets of points $\{\xi_0^{(j)}\}_{j=1}^J$ in Δ_0 and $\{\eta_0^{(j)}\}_{j=1}^J$ in \mathbf{R}^d with corresponding open ball $B(\xi_0^{(j)},\delta^{(j)})$ and $B(\eta_0^{(j)},\delta^{(j)})$ such that $\eta^{(j)} \neq 0$, $\eta_0^{(j)} \neq -\xi_0^{(j)}$, $\bigcup_{j=1}^J B(\xi_0^{(j)},\delta^{(j)}) \supset \Delta_0$, $\delta^{(j)} < \frac{1}{4} \min(|\xi_0^{(j)} + \eta_0^{(j)}|, |\eta_0^{(j)}|, 1)$, and, with $B_j = B(\xi_0^{(j)} + \eta_0^{(j)},\delta^{(j)})$ and $D_j = B(\eta_0^{(j)},\delta^{(j)})$, $A^{-1} \in M(B_j \times D_j)$. Let $\overline{B}_j = 2B_j$ and $\overline{D}_j = 2D_j$. We may assume that $\overline{B}_j \subset \overline{\Delta}_0$, $\overline{D}_j \subset \overline{\Delta}_{i_0}$ for some i_0 , where $\overline{\Delta}_i = \Delta_{i-1} \cup \Delta_i \cup \Delta_{i+1}$. Now we choose the positive functions $h'_j(\xi)$ and $h_j(\eta)$ such that $h'_j, h_j \in C_0^\infty(\mathbf{R}^d)$, supp $h'_j = \overline{B}_j$, $h'_j(\xi) \geq C > 0$ on B_j , supp $h_j = \overline{D}_j$ and $h_j(\eta) \geq C > 0$ on D_j .

Let

$$\widehat{\psi}(\xi) = \sum_{j=1}^{J} \int |\xi + \eta|^{s} |\eta|^{t} h'_{j}(\xi + \eta) h_{j}(\eta) d\eta.$$

Then $\widehat{\psi} \in C_0^{\infty}(\mathbf{R}^d)$, supp $\widehat{\psi} \subset \left\{ \frac{1}{2} \leq |\xi| \leq 2 + \frac{1}{2} \right\}$ and $\widehat{\psi}(\xi) \geq C > 0$ on Δ_0 , thus ψ can be used to define the norm of $B_p^{s,p}$.

Thus

(4.10)
$$||T_b^{st}(A)||_{S_p}^p \ge \frac{1}{3} \sum_{i} \sum_{l=-1}^{1} ||T_{i+l,i+i_0}||_{S_p}^p$$

and

$$||T_{i+l,i+i_0}||_{S_p}^p = ||\hat{b}(\xi - \eta)A(\xi,\eta)|\xi|^s |\eta|^t ||_{S_p(\Delta_{i+l} \times \Delta_{i+i_0})}^p$$

$$\geq C \left\| \hat{b}(\xi - \eta) \sum_{j=1}^J |\xi|^s |\eta|^t h_j' \left(\frac{\xi}{2^{i+l}}\right) h_j \left(\frac{\eta}{2^{i+i_0}}\right) \right\|_{S_p}^p$$

$$= C ||S_i||_{S_p}^p.$$

We claim that

(4.12)
$$||S_i||_{S_p} \ge C2^{i(s+t+d/p)} ||b*\psi_i||_p.$$

Therefore

$$||T_b^{st}(A)||_{S_p} \ge C||b||_{B_p^{s+t(d/p),p}(\mathbf{R}^d)}.$$

By the homogeneity, it suffices to prove (4.12) for i=0. Note that S_0 is an operator on $L^2((3T)^d)$. We choose an orthonomal basis of $L^2((3T)^d)$ $\left\{e_{\underline{k}}\right\}_{\underline{k}\in \mathbf{Z}^d}$, $e_{\underline{k}}(\eta)=1/((6\pi)^{d/2})e^{i\underline{k}\cdot\eta/3}$. Then S_0 is determined by $\left(\alpha_{\underline{k}_1,\underline{k}_2}\right)$, where $\alpha_{\underline{k}_1,\underline{k}_2}=\langle S_0(e_{\underline{k}_1}),e_{\underline{k}_2}\rangle$. Note that

$$|\alpha_{\underline{k}_1,\underline{k}_2}| = \bigg| \iint \hat{b}(\xi - \eta) \sum_{j=1}^{J} |\xi|^s |\eta|^t h_j'(\xi) h_j(\eta) e_{\underline{k}}(-\xi) e_{\underline{k}}(\eta) d\xi d\eta \bigg| = C \bigg| b * \psi \bigg(- \frac{\underline{k}}{3} \bigg) \bigg|,$$

then we have

$$\|S_0\|_{S_p}^p \geq \sum_{\underline{k}} |\alpha_{\underline{k},\underline{k}}|^p = C \sum_{\underline{k}} \left| b * \psi \left(-\frac{\underline{k}}{3} \right) \right|^p \geq C \|b * \psi\|_{S_p}^p \quad \text{by Lemma 2.5 and 3.3,}$$

i.e. (4.12) holds.

Remark. For statement and proof of Theorem 4.3 for $0 , see Peng [9]. If <math>p = \infty$, we have also the BMO result.

Theorem 4.4. Suppose that A satisfies A0, A1, A3(α) and A5. Then

(4.13)
$$||b||_{\text{BMO}} \le C||T_b(A)||.$$

Its proof can be found in [5]. It can be proved also by the non-standard decomposition.

For completeness we list also the following theorems which describe the Janson-Wolff phenomenon and compactness of paracommutators. They can also be proved by taking the special frame of $L^2(\mathbf{R}^d)$.

Theorem 4.5. Suppose that A satisfies A10(α), $1 \le p \le d/(\alpha - s - t)$ and $T_b^{st}(A) \in S_p$. Then b must be a polynomial.

For the proof, see Theorem 4 of Peng [9], which contains the case 0 .

Theorem 4.6. Suppose that A satisfies A0, A1, A3(α) and A4 $\frac{1}{2}$, s, t>0, and $s+t<\alpha$; then $T_b^{st}(A)$ is compact if and only if $b\in b_\infty^{s+t}$. And suppose that A satisfies A0, A1, A2, A3(α) and A5; then $T_b(A)$ is compact if and only if $b \in CMO$.

For the proof of Theorem 4.6, see Peng [10].

Finally we give another example of paracommutator. We consider the classical Toeplitz operator $T_b = P(\bar{b}f)$, where the symbol b is an analytic function, $f \in H^2(\mathbf{R})$ (Hardy space) and P denotes the projection from $L^2(\mathbf{R})$ to $H^2(\mathbf{R})$. Let I^s denote the fractional integral operator defined by $\widehat{I^sf}(\xi) = |\xi|^{-s} \widehat{f}(\xi)$. Let us study the operator $J_b^{st} = I^{-s}T_bI^t$. It is easy to check that J_b^{st} is a paracommutator with $A(\xi,\eta)=\chi(\xi>0,\eta>0)$, which satisfies A0, A1, A3(0), A4 $\frac{1}{2}$ and A10(0). So we have

Theorem 4.7. (i) If $s \in \mathbb{R}$, $t > \max(-\frac{1}{2}, -1/p)$, 0 and <math>s + t + 1/p < 0 then $J_b^{st} \in S_p$ if and only if $b \in B_p^{s+t+(1/p),p}$.

- (ii) If $0 and <math>s+t+1/p \ge 0$ then $J_b^{st} \in S_p$ only if $b \equiv 0$.
- (iii) If $s \in \mathbf{R}$, t > 0 and s + t < 0, then J_b^{st} is compact if and only if $b \in b_\infty^{s+t}$. (iv) If t > 0, then J_b^{-tt} is bounded if and only if $b \in L^\infty$, and J_b^{-tt} is compact only if $b \equiv 0$.

References

- 1. Bergh, J. and Löfström, J., Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- 2. Beylkin, G., Coifman, R. and Rokhlin, V., Fast wavelet transforms and numerical algorithms I, Comm. Pure. Appl. Math. 44 (1991), 141-183.
- 3. G. DAVID, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Mathematics 1465, Springer-Verlag, Berlin-Heidelberg-New York, 1991.
- 4. Frazier, M. and Jawerth, B., Decomposition of Besov spaces, Indiana Univ. Math. *J.* **34** (1985), 777–799.
- 5. Janson, S. and Peetre, J., Paracommutators—boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504.
- 6. McCarthy, C. A., c_p, Israel J. Math. 5 (1967), 249-271.
- 7. MEYER, Y., Ondelettes et Opérateurs, Hermann, Paris, 1990; English translation, Wavelets and Operators, Cambridge Univ. Press, 1992.
- 8. Peetre, J., New Thoughts on Besov Spaces, Duke Univ., Durham, N. C., 1976.
- 9. Peng, L. Z., Paracommutators of Schatten-von Neumann class S_p , 0 , Math.Scand. 61 (1987), 68-92.
- 10. Peng, L. Z., On the compactness of paracommutators, Ark. Mat. 26 (1988), 315-325.
- 11. Peng, L. Z. and Qian, T., A kind of multilinear operators and the Schatten-von Neumann classes, Ark. Mat. 27 (1989), 145-154.
- 12. ROCHBERG, R. and SEMMES, S., Nearly weakly orthonormal sequence, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 239-306.

- RUSSO, B., On the Hausdorff-Young theorem for integral operators, Pacific J. Math. 68 (1977), 241–253.
- 14. TIMOTIN, D., A note on C_p estimates for certain kernels, Integral Equations Operator Theory 9 (1989), 295–304.
- 15. TRIEBEL, H., Theory of Function Spaces, Birkhäuser, Basel-Boston-Stuttgart, 1983.

Received July 25, 1989, in revised form May 27, 1991

Lizhong Peng Institute of Mathematics Peking University Beijing 100871 People's Republic of China