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1. In troduct ion  

Let P denote the collection of all dyadic cubes in R d, E--{O, 1}d\{O, O) and 
A = P  x E. The construction of the wavelet bases {CA }~eA on L2(R d) is a celebrated 
result in mathematical analysis. Y. Meyer [7] and G. David [3] have used the bases 
{r to study the boundedness of the Calder6n-Zygmund operators, and have 
successfully simplified the proofs of the "T1 Theorem" and the "Tb Theorem". It 
is well known that  operators of the form 

T f(x) =/R ~ I((x, y)f(y) dy 

can be compact; for example TES2, i.e. T is Hilbert-Schmidt, if and only if KC 
L2(Rd• R d) . In this paper we will study the compactness and the Schat te~von 
Neumann properties by wavelet bases. 

Precisely speaking, we consider the bilinear form T(fi g)=(T(f), g) on 7)• 
with the distributional kernel K(x, y). Let ~ ,~ , - -T( r162  for )~, ~'EA. Then 
the bilinear form T is determined by the infinite matrix {a~,~, }. In other words, 
~-]~ ~-~, a~ ,~ , r174  gives a decomposition for T, called the standard decomposi- 
tion. We will also consider non-standard decompositions for T. And we will find out 
the conditions for T E Sp (the Schatten-von Neumann class). Then we will consider 
an important example: paracommutators,  which are defined and studied systemat- 
ically by Janson and Peetre [5]. Supplementary results are given by Peng [9], [10], 
and Peng-Qian [11]. 

In Section 2 we will give some notations and definitions, and in Section 3 we 
will give some lemmas for the Sp estimates. In Section 4 we will revisit the para- 
commutator, and will give simplified proofs for most results on paracommutators 
by wavelet basis expansions. 
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2. P r e l i m i n a r i e s  

2.1. M u l t i d i m e n s i o n a l  w a v e l e t s  (see David [3]) 

Definition 2.1. A multiscale analysis (MSA) of L2(R d) is an increasing se- 
quence Vj, j ~ Z ,  of closed subspaces of L2(R4), with the properties: 

(1) ~ j e z  Vj--{0} and [-Jy~z Vj is dense; 
(2) f ( x ) e V ~  f(2x)eV~+~; 
(3) f(x)~Voc~f(x-k)~Vo, for each k~Zd; 
(4) There is a function g~Vo such that the sequence of functions g(x-_k), 

k~Z 4, is a Riesz basis of V0. 

Definition 2.2. A MSA is ""/-regular" (for some ~/~N) if one can choose g in 
Definition 2.1 such that  

IO"g(x)l <CM,~(I+Ixl) -M for all M, lal_<% 

T h e o r e m  2.1. Given a MSA of L2(Rd), of regularity ~, one can find a func- 
tion ~ = r 1 7 6  and 2d--1 functions r 6eE, such that IO~r 
CM,a(l-~lxl)  - M  for 1~1<_7, all M>_O, and such that if r162 

2Jd/2r for A--(Q,~)cA, QEP and Q=l-Idl[ki2-J,(ki+l)2 -j] then 
{~Q}length(Q)=2-J is an orthogonal basis of Vj and {r is an orthogonal ba- 
sis of L2(Rd). 

The functions { ~ }  are called wavelets and {r is called a wavelet basis. 
An example of an orthogonal wavelet basis of regularity "~=0 is the Haar basis. 
An example of an orthogonal wavelet basis of regularity 7=co  is the Meyer basis 
{r see David [3]. It is not only an orthogonal basis for L~(Rd), but also an 
unconditional basis for many functionspaces, so it is called a universal unconditional 
basis. 

2.2. F r a m e s  

Let H be a Hilbert space, {e~}~ch is a frame on H if T ({~} )=Y~  ~ e ~  is a 
bounded operator from 12(A) to H and T is onto. If {e~}~eh is a frame on H, then 
for all xeH,  x=~-~{L-l(x), e~)e~, where L(x)----~(x, e~}e;~ and Hx[12~--~ I(x, e;012. 

Let us consider an important example--a so called smooth frame. 
1 Let  eC (a 4) such that supp C{ :J l<  }, on 

and r  such that E j ~ - ~  1r =1 for ~ 0 .  Now we denote 

A = P  and )~=QcP. Then r162162162 form a frame (called 
a smooth frame) on L2(R d) by the Plancherel and Phlya Theorem. And for any 
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fEi2(Rd), we have f = ~ e h ( / , r 1 6 2  see Frazier and Jawerth [4]. We will show 
that this frame is universal for many function spaces. 

2.3. Function spaces and sequence spaces 

By the orthogonal wavelet basis in 2.1 or the smooth frame in 2.2, we can give 
a realization of the isomorphism between L2(R d) and/2(A). 

For the wavelet basis {r where A = P x  E, we denote IAl=length(Q) for 
~=(Q, e ) E P x E ,  and we have two kinds of projections Pj and Qj, 

1~l>2-J 1~1=2 -j 

QJ:L2(Rd)-~Wj=VJ+lOVJ' QJ(f)-- E (f ' r162 
I~l=2-J 

and 
PjTl(j--~+co), PjJ. O(j---,-co), 

+oc 

Qj=Pj+I-Pj, E Q j = I .  
- -  0 0  

For the smooth frame given in 2.2, where we denote ~j(~)=~(2-J~) and 
~j(~)=r we have also the two kinds of operators Pj and Qj: 

= 

moreover, 
Pj T l(j--~+cc), Pj,LO(j--~-~), 

+co 
Qj=5+I-Pj, ZQ,  =l. 

Now we introduce some sequence spaces: 

IP(Zd)={ (ak-)k-eZd: E [ak--lP<+(X~} f o r O < p < c ~  
k_cZ d 

(modification if p=oc). 



86 Lizhong Peng 

IP(kl)lq(~2)= {(OLk-"k2)k1'k-2czd: k l,ZdE [ a lolk1'~2lq]P/q~-]-O0} 

for O<p, q<c<D (modification if p=cxD or q--cx~). 
Let A = P x E  or A=P,  we introduce: 

for 0<p<oc  (modification if p = ~ ) .  

for sER, O<p, q<oc (modification if p=oc  or q=oo). 

lg(h) ;l~ IP(A) =l~(A). 

BMO(A) =QCM d= ~{(~}AEA:SUp 1 
[ R IRI 

(for QCMd, see Rochberg and Semmes [12]). 

QCR:A=(Q,~) or Q 

lP(A)Iq(A')----{(c~A,A,)A,A,cA:~[~A [c~A,A, < 

for 0<p, q<ec (modification i fp=oc  or q----oc). 
Now let us show that both the Meyer wavelet basis {CA} and the smooth 

frame given in 2.2 are universal unconditional bases for BMO(R a) and Besov spaces 
B;,q(rt~) 

First we give two lemmas, which will be used again in Section 4 below, the 
proof of them can be found in Triebel [15]. 

L e m m a  2.1. Let f~ be a compact subset o f R  a. Then for 0 < r < p < c %  there 
exist C1 and C2 such that 

Iv~(x-z)l 
sup 

zertd l+lzl a/~ 
< C  1 sup [~ (x - z ) l  
- zCRd I+IZ) a/~ <_CzMr(V)(x) 

holds for all qa EL~ = {~oELP: supp ~C f~}, where Mr(~o)(x)---- [Ml~[r(x)] 1/r and M 
is the Hardy-Littlewood maximal operator. 
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L e m m a  2.2. (The Plancherel and P61ya Theorem) Let 0<p<c% a>0. For 
any at>a, there exist C1 and C2 such that 

/ \lip ( 
Cl i  E I~(~/a')lP) ~-II~IIp~C2 E I~(~/a')lP) lip 

k_EZ a -- k_EZ a 

hol~s k r  alZ ~ e  {~ �9  ~ c B ( 0 ,  a)} 

Let {r denote the Meyer wavelet basis (A--P• E) or the smooth frame 
given in 2.2 (A=P), we have 

f E B M O ( R  d) if and only if sup~-71DI E I(f'r 
RGP I~tl {QcR:)~=(Q,e) or Q} 

i.e. 

i.e. 

BMO(Rd)< > BMO(A), isomorphism. 

f �9 B~'q(R d) if and only if ({f, r �9 

B~'q(Rd) < >/~'q(A)( >/~(A), isomorphisms. 

2.4. The Schatten-von N e u m a n n  class Sp 

Let T be a bounded operator from one Hilbert space H1 to another Hilbert 
space //2. If K~ n denotes the set of the operators of rank <n, then the singular 
number Sn=Sn(T) is defined by 

s~ -- inf{ LIT-T~LI : Tn �9 ~} 

If T is a compact operator, then (T'T)  1/2 has its eigenvalues 

So ~ Sl ~ ... ~_Sn ~_ ...,Sn --+0. 

The Schatten-von Neumann class SB is the set 

\A.~ n] < �9 

We denote the set of all bounded operators by S~, and denote the set of all 
compact operators by/~. 

For further information on Sp, see e.g. McCarthy [6]. 
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2.5. N W O  (near ly  weakly  or thonormal )  sequences  (Rochberg and Semmes 
[12]) 

A nearly weakly orthonormal sequence (NWO) is a function sequence {cA }Ach 
in L2(R d) such that if 

sup {IOl-~/21(f, eA)l}=f*(x ), 
l~Q-xl_<l~l 

then I[f*II2~Clffll2, where I~I=IQI~/d for A=(Q,e) or Q. 
It is easy to see that any {~A} and {CA} in Theorem 2.1 are NWO, and so are 

{~A} and {CA} in the smooth frame in 2.2. 

P ropos i t ion  2.1. I f A = 2 A e A s a  (. ,eA)fA, with {ea}, {fA} are NWO, then 

IIAII ~ CII{s~}rlBMO(A) 

and 

IIAIIs,, _< G ( ~  Is~,l~/1/~ for 0 <p< c% 
AcA 

[<TeA, f~>[ p <_Cp[[T[[sp for 1 < p <  oc. 

(1) 

implies 

(2) 

implies 

3. Es t ima tes  of  ope ra to r s  on L2(R  d) 

First we consider the operators on/2(zd). 

L e m m a  3.1. If  2<p<oc, 1 /p+l /p '= l ,  then 

(~k_l,k:) e lP(kl)ZP' (k2)nlP(k2)t~' (k_l) 

(ak_l ,k_l +k2 ) E 1 p' (k 2)1 p (k 1) 

(ak_l,k_2) C Sp; 
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(3) if O<p<_2, then 

implies 

(Olk_l,k2) �9 IP(k_l)12(~_2) or lP(~2)12(k_l) 

Proof. (1) is proved by Russo [13]. 
An easy argument shows that  (ak_l,kl+k_~)611(k2)lC~(k_l) or (ak_l+k_2,k_2)6 

11 (k 1)l ~ (k 2) implies that (ak_l ,_k 2 ) E So .  
If p=2 ,  the Hilbert-Schmidt norm shows that 

= Io _k, I 
k 1 k__ 2 

The interpolation theorems (cf. Bergh and LSfstrSm [1]) show (2). 
(3) is the consequence of the fact: I]TII~ = i n f ~ a  I]T~all p for 0 < p < 2  (cf. Mc- 

Carthy [6]). 

Now we consider operators on L2(Rd). 
We start with an operator T from ~)(R d) to :D'(Rd), where :D(R d) is a test 

function space in R d containing some family of wavelets or frame which will be 
specified in a concrete case. 

Let {CA} be a wavelet basis or the smooth frame in 2.2. Then we can give two 
decompositions for T (see [2]). 
(1) Standard decomposition: 

oo oo 

i=--ooj=--c~ 

where Tij =QiTQj, and 

I.XI=2-'~ IA'I=2-J 

where a ~ ,  = (TEA, ~b~, ). 
(2) Non-standard decomposition 

(molecular decomposition) 

(atomic decomposition) 

T = TI + T2 + T3 

where 

T I =  Z /3x.x,f:,| 
IAI>41A'I 
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1/4_<1;~1/I;V1<4 

T3 ~- E "~)')"r174 

wi th /3~,  = ( T ~ ,  r ), a ~ ,  = (Tr r ), and 7 ~ '  = (Tr ~ ,  }. 
For example, in the proofs of the "T1 Theorem" (cf. Meyer [7]) and the "Tb 

Theorem" (cf. David [3]), the Calder6n Zygmund Operator T has been split into 
three parts T=TI+T2+T3, where T1 and T3 are paraproducts, for T2, let axe ,=  
(T2r162 Then a ~ ,  satisfies 

(3.1) la~,l<_C(IQIAIRI)~/dIQId/21RId/2([Q[1/d+lRI1/d+dist(Q,R)) -d-~, 

and by the Schur lemma, T2 is bounded on L2(Rd). 
If T--Tb is an operator with a symbol b, let ~EC~, supp~C 

- -  - -  ( x )  b o G  {~ : l -~< l~ l<2+c} ,  such that E~=_~(~ /2L)=I  for ~#0. Then ----~z=_~bl 
with bl--b*~l, thus we have the standard decomposition for Tb: 

Tb = E E E Tij(b,) (sub-molecular decomposition), 
1 j i 

where Tij (bl) = QiTb~ Q j, and 

Tij(bl)-- E E a ~ , r 1 7 4  (sub-atomic decomposition). 
1~1=2 J la, i=2-J 

Similarly we have also the non-standard decomposition for Tb. By using the above 
decompositions, one can estimate the molecules or sub-molecules via atoms or sub- 
atoms by Lemma 3.1, then estimate T or Tb via molecules or sub-molecules by 
Lemma 3.2 below. 

L e m m a  3.2. If 2<_p<_oo, l i p+l / i f= l ,  then 

(llTi+j,J II s,) �9 l p' (i)lP(j) 

o r  

implies that T E Sp. 
/ f  0<p_<2, then 

(llT{,{+j IIs~) c l~' ( i) l , ( i)  

(JlT~,j Ifsp) e lP(i)lP(i) 
implies that 

TcSp. 
These two steps of decompositions have another advantage, i.e. they can be 

used to get the converse estimates (see Tirnotin [14]). 
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L e m m a  3.3. For l<p<_c~, if there exist ioEZ and {Si,i+io} such that 
IIT~#+io IIs, >_CIIS~,~+~o lisp, then 

IITIl[p -> Z IIT,,,+,o II~p 
i 

c ~  ~ I~#+~o(k,k+k~0)l p 
i k c Z  d 

where ai , j  (_kl, _k2) = Si,j (r Cj,k~ ). 

To estimate T1 and T3 in the non-standard decomposition, we need a result 
on paraproducts. Paraproducts were introduced by Bony. Nowadays there exist 
hundreds of equivalent definitions. Here we use the following definition: 

where p~, Ca are the functions in the Meyer wavelet basis or the smooth frame. 
Notice that both ~ and t)a are NWO, by Proposition 2.1, we have 

LlTrb]lsp ~ IlbllB~/p,p(i~) for l _ < p <  

and 

II~bll ~ IIblIBMo. 
Remark. In fact the Sp-estimates of paraproducts hold also for 0 < p < l ,  see 

Peng [9]. 

4. P a r a c o m m u t a t o r s  

The paracommutator is an operator of the form: 

(4.1) (T~t(A)f)A(~) = (27r) -d s  D(~-77)A(~, ~)[~]s[rl]tf(~) dry. 

It is defined in Janson-Peetre [5]. 
We adopt the notation of [5] for the norm IIA(~, rl)llM(UxY) of the Schur mul- 

tiplier A(~, 77)eM(Ux V) and the Sp-norm IIK(~, rl)llsp(vxy ). 
As in [5], we let A j = { ~ :  2J<l~l<2J+l  } and Aj=Aj_ lUAjUAj+I .  
For convenience, we list here some assumptions on A(~, ~), which come from 

Janson-Peetre [5], Peng [9] and [10]. 
A0: There exists an r > l  such that A(r~, r~)=A(~,  ~). 
AI: IIAlIM<,jx~k)<C, for all j, k e Z .  
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A2: There exist A1, A2 E M(Rd x R d) and 5>0 such that 

A(~,rl)=Al(~,r/) for Jr/I <SJ~] 

A(~,r/)=A2((,~) for J(i<SJrlJ. 

A3(a): There exist a > 0  and 5>0 such that if B=B(~0, r) with r<51~01, then 
JJAJJM(BxB) <_C(r/l~oJ)% 

A4: There exist no [ ~ 0  such that A(~+rl, rl)=0 for a.e.q. 
A41: For every ~or there exist r/o6R a and 5>0 such that, with Bo= 

B(~o +rlo, 51~ol) and Do =B(r/o, 51~ol), A(~, 7])-1 eM(Bo x Do). 
A5: For every ~or there exist 5>0 and rloER d such that, with U-- 

{(: J(/J(J-~o/J~J[<5 and I~J>J(oJ} and Y=B(r/o,SJqoJ), A(~ , r l ) - l eM(UxY) .  
1 and a subset 17o of R d A10: For any 05~06R d, there exist a positive 5<~ 

such that if Nr denote the number of integer points contained in VoNBr, where 
Br =B(0, r), then 

2im  >0 
and for every nEV0, 

I I A ( ~ + n + 0 , / ] - t - 1 % )  - I l I M ( B •  <_ Clnl ~, where B = B(0, 5). 

We adopt the notation of Peng [9] for Ap, 0 < p < l ,  instead of using M in A1, 
A3(a) and A41, we can list the conditions of Apl, Ap3(a) and Ap4�89 by using Ap. 

The paracommutators contain many examples, cf. Janson-Peetre [5] and Peng- 
Qian [11]. 

Now let us estimate the Sp-norm of a paracommutator by its molecular-atomic 
structure. Here we use smooth frame expansion. 

First we estimate the direct results. We split the operator (4.1) into three parts 
via the molecules Tij = Q i T ~ t Q j :  

T~t ( A ) = TI + T2 + T3, 

where 
oo i--3 --3 oo 

i=--ooj=--oo j=--oci=--c)o 

oo i+2  

i=--oo j=i-- 2 

i=--oo j = i + 3  i=--oo j= - -oo  

To estimate them, we need the following three lemmas. 
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Lemma 4.1. Suppose that A satisfies A1, A3(c~), ~GC~, supp~C 
{~c:1-~_<1~1<_2+~ } and ~t(()=~(~c/2t-2), then for I i - j l<3 ,  

(4.2) IIA(5, r~)~(~-r~)llM(~ • < C (2z. ~ .  
- \ 2 ' )  

Lemma 4.2. Suppose that A satisfies A1, r is the function of the smooth 
frame in 2.2, ~ e C ~ ,  ~(~)-1 on 50,  and ~i(~c)=~(~/2i-2). Then for i > j + 3 ,  

--kl I ~21-Jk2--kl xEQ2_-~ , x E(~2_~ - - and r>0  small enough, 

(4.3) i(T(t(r Cj,k_~)l-< C2-~d/2+~+JtM~(bd(x)M~(r 

where b~ =~i *b, Qk- 2 -  is the cube with side 2 - i  and center 2- ik .  

Remark. For j > i + 3 ,  we have the same result. 

Lemma 4.3. Suppose that A satisfies A1, A3(a) with a>0,  ~b is the function 
of the smooth frame in 2.2, ~E C ~ ,  supp ~(~) C 50,  and ~i(~) = ~(~/2i-2), then for 

--kl I ~21-Jk2--kl Ii-jl<_3, x~Q2~-~, x e~2_,  - - and r > 0  small enough, 

T ~t [2z~2-ie/2+i~+JtM. rb.~tx~M ~./,.~(x'~ (4.4) [< b~(ei ,k~) ,e j ,k_2) l<c\2i]  ~, ~,, , ~ , ~ , ,  , 

where b~ = ~ , b .  

Proof of Lemma 4.1. By the Fourier transform: 

~l (~ -~ )  = / P l ( x ) e - i ~ e  ~ dx, 

so IVd~-~)lIM<~dxRd)~Cl[~lll=C<o~. 
Let Q~ denote the cube with side 21 and center 2in for nEZ d, then 

IIA(~,~)~,(, '-~)IBM(~,• A(,~,~)~(~-V) ~ x ~ o q r ( ~ ) x ~ o Q r ( v )  M 
in-mi<~ 

-< E sup llA(~,t])~l(~--~l)llM(AinQ?xQ~nQ,~-.~) 
n 

Im]~_c 

<-c\2~ ] 
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Proof of Lemma 4.2. By Lemma 2.4, 

](T~ t (r 1 ), Cj,k_ 2 )] = I(T~ t (r 1 ), Cj,_k 2 )1 

= . f / b  A s t ^ _  i(~-r /)  (~,r/)l~ I 17/I r162 d~drl 

C2~2Jt2 -id/2 / ~i(~)Di,-_kl *r162 ~ (~) d~ _< 

• [I+(2'Iyi +2)'/']. [l+(2~lyl +2) '/'] lCj(y)l dy 
<_ c2i'2Jt2-id/2 M,(bi)(x)M,( r )(x ') 

where/~,_~1 (~)= g(~)~(r 
The proof of Lemma 4.3 is similar, we omit it here. Now we deal with T1. 

L e m m a  4.4. Suppose that A satisfies A1, Apl ifO<p< 1, t>max(-d/2, -d/p) 
and O<p<cc, then 

(4.5) I[T~lls. _< CIIblIB;+~§ 

Proof. This is a consequence of Lemma 3.1 , Lemma 3.2 and Lemma 4.2. We 
give the proof only for 2<p_<oc. We choose r<p. Integrating over xcQ2 k) and 

~,eQ2Z'_~,-_~i in (4.3), we get 

I(Tb ~ (r Cj,~. )1 
\~/" / f \~/P' 

By the atomic decomposition of Tij and Lemmas 3.1 and 3.2 we have 

_ s t  p IITg,jlls.< I(Tb (r162 J 
<- c 2  j'+j'2id/~ IIbj II. IlCj II.' 
<- C2J~+Jt2Jd/P[lb~ [I.. 
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By the molecular decomposition of T1 and Lemma 3.2 we have 

I[Tlllsp_< ~ ~ II ~#+Jlls. j=-o~ i=-o~ 
< {j -=~cc ( i~  2i(s+t+d/p)P,,bi,,Pp2J(t+d/p)P)P' /P} 1/p' 
<_ CIIbFI B?~+q/,,, (R~)" 

For T3 we have the same estimates. 

Now we turn to estimate IIT2112. 

L a m i n a  4.5. Suppose that A satisfies A1, A3(c~) 
s + t + d / p < a  and 0<p<cx~. Then 

(Apl,Ap3(a) if 0<p<l), 

(4.6) lIT211 ~ CIIblIB?*§ 

Remark. It should be noticed that  there is no assumption a > 0  in Lemma 4.5. 

The proof is similar to the one of Lemma 4.4. 

For p=e c ,  the sub-atomic and sub-molecular decomposition of T2(b), Lemmas 
3.1, 3.2 and 4.3 give us: 

[Ir2ll~ < CIIbll.2~,~(R~). 

For 0<p_< 2, again the sub-atomic and sub-molecular decomposition of T2(b), 
Lemmas 3.1, 3.2 and 4.3 give us: 

IIr~ lip -< Cll bll B;+,+(./.),.(r~.). 

The interpolation theorem gives us (4.6). 

Laminas 4.4 and 4.5 yield the following 

T h e o r e m  4.1. Suppose that A satisfies A1 and A3(c~) with some a > 0  (or Apl 
and Ap3(C~) if O<p< 1) and that s, t > max( -d /2 ,  -d /p ) ,  s+ t +d/p< a and 0 < p < o c .  
Then 

(4.7) T st A II p ( )lls, <- Cl[bllB;+~+(e/,),,(rte). 
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(4.10) 

and 

If p=cx~ and s = t = 0 ,  we have 

T h e o r e m  4.2. Suppose that A satisfies A1, A2, A3(a). Then 

(4.8) IITb(A)II < CIIblIBMo. 
The proof of Theorem 4.2 can be found in Janson-Peetre [5]. The main idea 

is the same as in the proofs of the "T1 Theorem" or the "Tb Theorem", i.e. by the 
non-standard decomposition Tb(A)=Tb(A1)+Tb(A2)+Tb(Aa)=TI+T2+Ta, TI and 
T2 can be estimated by the results of paraproducts and Ts can be estimated by 
Theorem 4.1. 

Secondly we estimate the converse results. 

T h e o r e m  4.3. Suppose that A satisfies A0, A4�89 and l <p<_oc. Then 

(4.9) I lbll.;+,+(./.),.m. ) -< CIIT[,t(A) IIs,. 

Proof. By A4�89 there exist finite sets of points ts0t~(Y)jj=~ ~J in Ao and {7/0 (y) }~=~ J 

in R d with corresponding open ball B(r 0), 50)) and B(r/o 0), 60)) such that 7/(J) r 

0, ,,o~~ ~(j), Uj=lJ B(r min(l~o(~)§ I~J)l, 1), and, with 
D B '  0) 60)), A-~cM(BjxDj). Let Bj=2Bj and Bj=B(~ j)+~7(oj),5 (j)) and J-- U70 , 

Dj=2Dj. We may assume that  BjCAo, Djc21io for some i0, where 
Ai=Ai_iUAit_JAi+I.  Now we choose the positive functions h}(~) and hi07) such 

I t - -  that  hj,hjEC~~ supphj-Bj, h}(~)_>C>0 on Bj, supphj=Dj and 
hj(~])>_C>O o n  Dj. 

Let 
J 

Then ~ C ~ ( R d ) , s u p p  ~c{1_<1~1_<2+�89 and ~(~)_>C>0 on A0, thus @ can be 
used to define the norm of Bp 'p. 
Thus 

1 
st p p liT; (A)lls,> _> �89 ~ IIT~+,,~+~olls, 

i /= - -1  

(4.11) > c  g(~-~)~l~ l ' lv l th  hj ,1 
j = l  

= cIIS~ I1~,. 
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We claim that  

(4.12) IIS~ IIs, ~ c 2  ~<8+~+d/~> I[b*r 

Therefore 
T, 8t A II b ( )lls, -CIIbllB?~(~/,>.,(rt~). 

By the homogeneity, it suffices to prove (4.12) for i=0.  Note that  So is an 
operator on L2((3T)d). We choose an orthonomal basis of L2((3T) ~) {e~_}~_~z~, 
ek_(r])=l/((67r)d/2)eik-'v/3. Then So is determined by (~_kl,_k2) , where C~_k~,k2= 
(So (e_kl), ek~ ). Note that  

J 

then we have 

IISollPsp>_ E lc tk_ ,k lP:CE b * r  P>_CIIb*r b y L e m m a 2 . 5 a n d 3 . 3 ,  
_k _k 

i.e. (4.12) holds. 

Remark. For statement and proof of Theorem 4.3 for 0 < p < l ,  see Peng [9]. 
If p=oo,  we have also the BMO result. 

T h e o r e m  4.4. Suppose that A satifies A0, A1, A3(c~) and A5. Then 

(4.13) IIb[IBMo ~ ClITb(A)II. 

Its proof can be found in [5]. It can be proved also by the non-standard 
decomposition. 

For completeness we list also the following theorems which describe the Janson- 
Wolff phenomenon and compactness of paracommutators. They can also be proved 
by taking the special frame of L2(Rd). 

T h e o r e m  4.5. Suppose that A satisfies A10(c~), l<p<_d/(ct-s-t) and 
T~t(A)ESp. Then b must be a polynomial. 

For the proof, see Theorem 4 of Peng [9], which contains the case 0 < p <  1. 

4-Arkiv F6rmatematik 
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T h e o r e m  4.6. Suppose that A satisfies A0, A1, A3(c~) and Ad�89 s,t>O, and 
s+t<(~; then T~t(A) is compact if and only i fbEh s+tv~ . And suppose that A satisfies 
A0, A1, A2, A3(c~) and A5; then Tb(A) is compact if and only if bcCMO.  

For the proof of Theorem 4.6, see Peng [10]. 
Finally we give another example of paracommutator. We consider the classical 

Toeplitz operator Tb =P(b f ) ,  where the symbol b is an analytic function, f e H 2 (R) 
(Hardy space) and P denotes the projection from L2(R) to H2(R). Let I s denote 
the fractional integral operator defined by I; ' ](~)=l~l-~](~).  Let us study the 
operator J~t----I-~TbIt. It is easy to check that j~t is a paracommutator with 
d(~, U)=X(~>0, ~>0),  which satisfies A0, A1, A3(0), Ad�89 and A10(0). So we have 

T h e o r e m  4.7. ( i ) / f s e R ,  t > m a x ( - � 8 9  0 < p < c ~  and s + t + l / p < O  then 

J~t CSp if and only if bE Bp +t+(1/p)'p. 
(ii) / f 0 < p < ~  and s+ t  + l /p>O then J~t E Sp only if b--O. 
(iii) / f  sCR,  t > 0  and s + t < 0 ,  then j~t is compact if and only i fbCb~ +~. 
(iv) / f  t>0 ,  then j [ t t  is bounded if and only if b c L  ~ ,  and Jb tt is compact 

only if b=_O. 
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