
On the distribution of Sidon series 

Nakhl~ H. Asmar(1) and Stephen Montgomery-Smith(2) 

1. I n t r o d u c t i o n  

Suppose that  G is a compact abelian group with dual group F. Denote the 

normalized Haar  measure on G by #. Let C(G) be the Banach space of continuous 
complex-valued functions on G. If  S CF, a function f E L l ( G )  is called S-spectral 
whenever f is supported in S, where here and throughout the paper  A denotes 

taking the Fourier transform. The collection of S-spectral  functions that  belong to 
a class of functions ]/Y will be denoted by l/Vs. 

Definition 1.1. A subset E of F is called a Sidon set if there is a constant c>0,  
depending only on E,  such that  

(1) ~ If(~/)l ~ c Ilfll~ 
~/CF 

for every fECE(G). The smallest constant c such tha t  (1) holds is denoted by S(E) 
and is called the constant of sidonicity of E,  or the Sidon constant of E.  

If E = { V j } C F  is a Sidon set and {aj} is a sequence in a Banach space B, then 
the formal series ~ ajvj will be referred to as a B-valued Sidon series. The norm 
on a given Banach space B will be denoted by [[.[[, or, sometimes, by [['HB- 

It  is well-known tha t  Sidon series share many common properties with Rade- 
macher series. The following theorem of Pisier illustrates this fact and will serve as 
a crucial tool in our proofs. 

T h e o r e m  1.2 [Pil, Th4or~me 2.1]. Suppose that E = { V n } c F  is a Sidon set, 
that B is a Banach space, and that al, ..., a g 6 B .  There is a constant Cl, depending 
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only on the Sidon constant S (E) ,  such that, for every pE[1, cr we have 

N p 1/p P r/,, 
(2) Cll ( E  ~ anrn ) < anTn < E a~rn 

In view of this similarity between Sidon series and Rademacher series, it is 
natural  to ask how the distribution function of a Sidon series compares to the 
distribution function of a Rademacher series. Our main result provides an answer 
to this question. 

T h e o r e m  1.3. Suppose that E = { V n } c F  is a Sidon set, and let B denote an 
arbitrary Banach space. There is a constant c > 0  that depends only on the Sidon 
constant S (E) ,  such that for all al, ..., aN EB, and all a>O, we have 

(3) 
N N N 

c-iN[ ~anrn >ca] <#[ n~_lan'Tn >a] <_cP I ~-~anrn > c - l a ] .  
L ' l l n~  I - -  L I I , / .~=  I I I  

Thus the distribution functions of Sidon and Rademacher  series are equiva- 
lent. Our proof of this result combines well-known properties of Sidon series with 
Lemma 2.3 below. This Lemma provides sufficient conditions for the equivalence of 
distribution functions. It  applies as well in the setting of noncommutat ive groups 
yielding an analogue of Theorem 1.3. Using the estimates of [Mo], we obtain sharp 

lower bound estimates on the distribution of scalar-valued Sidon series on compact 
abelian groups. 

We should note that  the topological implication of our main result is much 
easier to show, as is done in [Pil], that  is, the measure topology on the spaces of 
Rademacher series and the Sidon series are equivalent. 

2. A principle for the equivalence of  d is tr ibut ion functions 

All random variables are defined on some probabili ty space (~, AA, dP). We 
denote the set of positive integers by N, the set of integers by Z, and the circle group 
by T. All other notation is as in Section 1. We start  with a couple of preliminary 
lemmas. 

L e m m a  2.1. Suppose that f l ,  f2,..., fN are independent identically distributed 
random variables, and let f be a function with the same distribution as the f j  's such 
that 

0 
P[Jfl >- a] > 
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where a and 0 are positive numbers. Then 

0 
P[ sup I S j I > ~ ] > - -  

I<j<N I - 1+0" 

Proof. We first show that, for 0>0 and NEN,  we have (0;1 
(4) 1 - ~  < (1+0II-~ �9 

This follows from the inequalities 

( 1 - ~ )  ( 1 + ~ )  ~ 1 

and 

( 1 + O ; _ > 1 + 0 .  

Using (4) and independence, we get: 

P[sup Ifjl > a] -- 1 - P  [sup IfJl < a] -- 1 - I I  P[Ifjl < ~] 
J 3 j 

( __~; 1 0 
_>1- 1 -  _>1 0 + 0 ) - ( 1 + 0 )  

Lemma 2.2. Suppose that f l, f 2, ..., f N are independent identically distributed 
random variables, and let f be a function with the same distribution as the f j 's such 

that 
0 

P[I/I -> ~1 < 
where a and 0 are positive numbers. Then, we have 

(5) P[sup I f j l  >- ~] < O. 
J 

Proof. 

(6) P[sup I/xl-- ~] = P U[ I f j l  >- ~] -~ ~ P[IfJl -> a] ~- 0. 
J j J 

Before stating our main Lemma, we recM1 two well-known inequalities. Let X 
denote a random variable on a probability space (gt, A/{, dP), then, for all y>0, we 
have: 

(7) P[]XI > yEIXI] _< y-1 (Chebychev's Inequality); 

and, for 0 < y < l ,  we have 

(8) P[IXI > yEIXI] > ( 1 - y ) 2 ~  (Paley-Zygmund Inequality). 
- - E l X l  

See [Ka, Ineq. II, p. 8]. The statement of our main Lemma now follows. 
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L e m m a  2.3. Suppose that X and Y are two Banach valued random variables 
that are not identically zero, and suppose that {Xn}  and {Yn} are two sequences of 
independent Banach valued random variables such that Xn is identically distributed 
with X ,  and Yn is identically distributed with Y .  Suppose that there are constants 
cl and c2 such that, for all positive integers N,  we have: 

(9) c~-l[[ sup [[XjIIl[l~[[ sup [[YjlIIII_~Clll sup I]Xj]]]]l; 
I~_j~_N I~j~_N I~_j~_N 

(10) 

and 

[[suPI<j<N IIXjllll l 
SOPl_<J_ <N ilXjll[l  

(11) [[SUPl-<j--<N [[gjllll21 > e2. 
[[suPI_<j_<N [[gj]ll122 - 

Then there is a constant c, depending only on cl and ce, such that, for all a>O, we 
have: 

(12) c-Ip[[IXll >_ ca] <_ P[[[Y[I - a] __ cP[[lXll >_ e-la]. 

Pro@ We start with the second inequality in (12). Given an arbitrary 
a = a  1 ) 0  with 

(13) 0 < P[IIYI[ _> al],  

choose u to be the smallest positive integer satisfying: 

1 1 
(14) 2u <- PE[lgll >- al l  _< -'u 

From Lemma 2.1, it follows that 

(15) ! < p [ 3  - sup IlYJ[[ > a l ] . _  l_<j<u 

Chebychev's Inequality (7), and (15) imply that 

1 1 
(16) ~ ~ Oz----~- [[lSUpv [Irj]llll._<j_< 
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From (9) and (16), we have 

(17) �89 sup IIX, Illll. 
1 l<j_<, 

Hence, for any a2 >0, (17) implies that 

(18) a_____j__l _< 1 
30~2Cl OL'-'2111sup IlXj II I1~. 

In particular, if a2=ax/6Cx, we get from (18) 

(19) 2_< 111 sup IlXjlllll. 
2 l<_j<_, 

Now we go back to the Paley-Zygmund Inequality (8) and apply it to 

~2 
sup I[Xj[[ with y =  suP1< "<. [[Xj[l[] 1 " l < j ~ .  _ 3 _  

Taking into account (10) and noticing from (19) that y_< 1 g, we get 

(20) ~1c2_<P[ sup Ilxjll > ~2]_ = P[  sup Ilxjll > d~l ]_  
l<_j<_v l<_j<. 

where d=l/6Cl. Lemma 2.2, (14), and (20) imply that 

(21) P[lIxll > d~l] > cA 
- -  - -  4 / /  

> -~p[llvll > ~1]. (22) 

Take c - l=min(d ,  c2/4), then (22) shows that 

(23) P[[IXI[ > c - l a l ]  > c-lp[llY[I >_ all. 

Note that (23) holds for all a l  for which (13) is true. For all other values of hi ,  
inequality (23) holds trivially. Thus (23) holds for all a l > 0 .  Now we repeat the 
proof with X and Y interchanged. From (23) we get: 

(24) P[[IYI[ ~ C-IoQ] ----- c-lp[[[Z[I >- hi], 

for all o~ 1 ) 0 .  Combining (23) and (24), we obtain 

(25) c-xP[llxll > ~ ]  < P[IIYII >>_ c-1~1] -< cP[llxll > c - ~ 1 ]  

for all a l  >0. Equivalently, we have 

(26) c-Xp[llxll >_ cc~] < P[IIYII >_ ~] < cP[llxl[ >_ c--loll 

for all a > 0 ,  which proves (12). 
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3. T h e  d i s t r i b u t i o n  o f  B a n a c h  va lued  S idon  series  

To prove Theorem 1.3, Lemma 2.3 suggests that  we consider independent copies 
of the given Sidon series. The construction of independent copies of a given trigono- 
metric polynomial on a group G is easily done on the product group. The spectra of 
the resulting polynomials are supported in a subset of the product of the character 
group. Our first goal in this section is to s tudy properties of this set. To sim- 
plify the presentation, we will treat the commutative and noncommutative cases 
separately. Throughout  this section G will denote a compact abelian group with 
character group F and Haar measure #. Similar meanings are at tr ibuted to G j,  Fj 
and #j,  respectively. 

Definition 3.1. Suppose that Ej~O is a subset of Fj, for j = l ,  ..., n. The n-fold 
n join of the sets Ej is a subset of 1-I~-1 Fj, denoted by Vj=I Ej, and defined by: 

VEj-~-{~/:(~/1,...,~n) CIIFJ: all but one ~/j E Ej  are 0}. 
j = l  j = l  

If E • 0 C s  the n-fold join of E,  denoted by vjn=l  E, is the set  V nj=l Ej, where 
E j = E  for all j = l ,  ...,n. 

n Thus a generic element 3, of Vj=I Ej is of the form 7-- (0, 0, ..., 7j, 0, ..., 0) where 
7j E Ej. When ~ is evaluated at x = (xl, . . . ,  x j , . . . ,  Xn) E G ~ we get: 

Suppose that  S c F .  For the sake of our proof of Theorem 1.3 it turns out that  
it is sufficient to study the n-fold join of the set {1} x S c Z  x F. What  is needed is 
the following simple result. A more general result concerning joins of Sidon sets is 
presented following the proof of Theorem 1.3. 

L e m m a  3.2. Suppose E c F  is a Sidon set. Let T----{1} • 2 1 5  and let n 
n be an arbitrary positive integer. The n-fold join V j=I T is a Sidon subset of Z n • F n 

with Sidon constant s(vjn=l T) equal to S (E) .  

Proof. It is clear that  S ( T ) = S ( E )  and that  s ( V ~ _ I T ) > _ S ( E  ). Let F be a 
S n trigonometric polynomial with spectrum supported in (Vj=l T).  We can write F 

as: 
n 

F - - E f j ( t j , x j )  
j = l  
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where 
kj kj 

fJ = E afleit~xfl(xj)=eUJ E aj,xjt(xj). 
/=1 / : 1  

For each j : l ,  ...,n, pick xj so that  

kj 

ajlxjl(  xj ) = Ilfyll~, 
/=1 

and then pick tj so that  

kj 

eit~ E aflxfl(xj) = ][fj ]l~" 
l= l  

We have 

and so 

fy(t j ,  xj)  = lily I1~, 

F(tl,t2,...,tn,Xl,X2, . . . ,Xn)=~-~ Ilfjll~ ~ (S(E))- '  lay~l. 
j = l  j = l  l=1 

Hence (1) holds for F with c=S(E), and the proof is complete. 

We still need one ingredient for the proof of Theorem 1.3. This is the Khintchin 
Kahane theorem. 

T h e o r e m  3.3 ([Pil, Th~or~me K]). If 0 < p < q < c o ,  there is a constant Kp,q 
such that 

(27) (E,,~.~=lajrJ q)l/q~-Kp,q(E ~.~=lajrJP)l/P 

for any sequence {aj} in a Banach space B. 
N Proof of Theorem 1.3. Let f(x)----)--~n= 1 an%~(x) (xCG) be a trigonometric 

polynomial with ~ r  and let Y=e it EN~=I anTn(X) where (t,x)ET• Clearly, 
f and Y have the same distribution functions. We apply Lemma 2.3 with 

N N 

n = l  n = l  
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Given v c N ,  we construct a sequence of independent random variables 
T ~ x  G ~, identically distributed with Y, in the obvious way: for 

let 

(t, x) = (tl, t2,..., t , ,  Xl ,  ..., Xv ) E T "  • G ~, 

on 

N 
(28) Yj(t, x) = Y(tj ,  xj) = e i t r  an~n(Xj)" 

n = l  

Write 7~j (n--1, ..., N; j =  1, ..., v) for the character in F v given by: 

for all xEG ~. Let l~(B)  denote the Banach space consisting of the vectors 
a=(ax ,  ..., a , ) ,  where aj CB, equipped with the norm 

Ilall  (.)= sup Ilajll. 
l~_j(_v 

Let a n j E l ~ ( B )  be the vector whose components are all zero except that the j - th  
component is equal to an: anj=an(~ij)iV=l~ n=1, ..., N; j----l, ..., v. Let 

L (29) y ( t , x ) =  y'~anSJ~/.j(x) ( ( t , x ) e T ~ x a ~ ) .  
j = l  n = l  

We clearly have: 

(30) y ( t ,  x) = (]I1 (t, x), Y2(t, x), ..., Y,(t,  x) ) 

for all (t, x) E T"  x G v. For j = 1,_., v, let 

N 

Xj (t) = E anr~j (t). 
n = l  

Corresponding to y ,  construct a Rademacher sum A' with values in l~ (B): 

L (31) X ( t ) =  ~_anjrnj( t )  (t e [0, 1]), 
j = l  n = l  
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N v where (rnj)n=lj=l is an enumeration of distinct Rademacher functions, and anj 
is as above. Note that  y is a Sidon series with spectrum supported in the join 

n Vj_I{1} xE=Vj=I T of T----{1} x E .  Pisier's Theorem 1.2 implies that  

(32) c~ l (E  sup [[Xj][)<fa sup ][Yj[]_<Cl(E sup I[Xj[]~ 

where cl depends only on S(VT), and hence only on S(E), by Lemma 3.2. We 
have thus obtained (9). It remains to prove (10) and (11). These are consequences 
of (27) and Pisier's Theorem 1.2 applied to the random variables X and y above. 
Indeed, applying (27) with p = l  and q=2, we obtain: 

(33) ( E (  sup ,[Xj,,)2)I/2<KI.2E sup ,,Xj,, 

which proves (10). To get (11), we apply Pisier's Theorem 1.2, with p=2  to the 
functions X and y ,  then use (32) and (33) again. 

Remark 3.4. It is worth noting that  either of the inequalities (3) characterizes 
Sidon sets. For the first inequality, the assertion follows from the definition of Sidon 
sets. For the second inequality, this follows by Pisier's characterization of Sidon sets 
[Pi3]. 

In our original proof of Theorem 1.3, we worked directly with the function 
f = ~ a j ~ j  whose spectrum is supported in a Sidon set E. The result that  we 
needed concerned the Sidon constant of the n-fold join of E. We present this result 
in the next theorem, because of its interest in its own right. As far as we know, the 
best constant in the theorem below is not known. 

n T h e o r e m  3.5. Suppose that E is a Sidon subset o f f  and n~ l. Then Vj=I E 
S is a Sidon subset ofF n with Sidon constant (Vj=I E ) < 2 7 r S ( E ) + l .  In particular, 

n s(Vj= 1 E) is independent of n. 

The proof below was kindly communicated to us by D. U1Mch and other people 
after him. It is an easy consequence of the following lemma which, as D. Ullrich 
also remarked, may be well-known to probabilists. 

L e m m a  3.6. For j=l ,  ..., n, let Kj denote a compact topological space. Sup- 
pose that f jeC(Kj),  j=l, . . . ,n.  Suppose further that 0 is in the convex hull of 

C n n f j(Kj),  for each j. Define f e  (I-[j=1Kj) by f ( x )=~j=l f j ( x j ) .  Then 

j = l  
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Moreover, the constant 7~ is best possible. 

Proof. For all 0e[-%Tr[ ,  and all xel-ljn=l KS, we clearly have: 

n 

[[f[[~ -> Re(ei~ f (x) ) = E Re(ei~ f h(xh ) )" 
j = l  

Choose b 5 e K  5 such that  Ifj(bj)l--][fj [1~. Write Ifj(bj)[--eir for r e [-Tr, 7r[. 
Now, for each 0e[-~r,  Tr[, Re(ei~ may, or may not, be nonnegative. If 
Re(ei~ set aj(O)=b 5. If Re(e~~ define aj(O)eK 5 to be any 
element of Kj such that  Re(ei~ This is possible since the convex hull 

of f j(Kj) contains 0. Thus, for all 0e[-~r,  ~[, we have: 

Re(ei~ f s(as(O) ) ) >_ max{O, cos(O-r 5ll~ }. 

Hence, 
n 

IIfll  > max{0, cos(0-CA IIf5 II }. 
j = l  

Now integrating both sides of the last inequality with respect to 0E [ -% ~-[ we obtain 

n 

j = l  

from which the desired inequality follows. 
To see that we have the best constant in the statement of the Lemma, we 

consider the following example. For each j = 0 ,  1, ..., 2 n - l ,  we let K j = { 0 ,  1}, say. 
Define f j ( 0 ) = 0  and fj(1)=e ij~/n. Clearly we have Hf j l l~=l .  To compute Iif11r162 
notice that  

f 2n--1 

for some 0_< 0 < 2~- and some xj G Kj. Thus it is clear that  

n--1 

[ I f l l~=Es in( j~+O) ,  
j = 0  

where O<O<Tr/n. Thus, as n--~c~, 

I 2n--1 

j=O 
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C o r o l l a r y  3.7. Suppose EjcFj ,  S(Ej)<_x, for each j - - 1 , . . . , N ,  and O~Ej. 
Then s(VT-1 

E N N N Proof. Let =Vj= I  Ej, and suppose that  IeCE(IIj=I Gj). Then f =~j=l  fJ 
with fjCCEj(Gj). The fact that O~Ej shows that  fj has mean 0, so Lemma 3.6 
may be applied: 

 llfl, >_ EHfjI, _>x-IE E 
j "tEEj 

: X--1 E ' f ( 'T)]"  

"/EE 

To prove Theorem 3.5, apply Corollary 3.7, after removing 0 from E and 
putting it back, if necessary. 

The following is a typical application of Theorem 1.3. It amounts to transfer- 
ring, via Theorem 1.3, a known result about scalar valued Rademacher series to 
Sidon series. We need a definition. 

Definition 3.8. Suppose that a=(an)~-i El 2. Define the sequence (a*)nC~= 1 to 
be the nondecreasing rearrangement of the terms l anl. If 0 < t  < oc, we define 

It 2] / oo ,,112 
* * 2 K1,2(a , t )=Eas+t~  E (an))  

n=l \ [ t 2 ] + l  / 

where [t] denotes the integer part of t. 

The next result follows from Theorem 1.3 and [Mo]. The latter is the following 
result for Rademacher series. 

T h e o r e m  3.9. Suppose that E - - ( T n ) c F  is a Sidon set. There is a constant 
c>0 that depends only on S(E) such that for all a=(an)~=1612 we have 

pt an'~n ~_ cK1,2(a,  t ~ c e -  
~-'n=l 

and 

# an"/n _> (a , t  >_c-le -ct2 
L , n =  1 

for all t>0 .  

Thus it is possible to calculate rearrangement invariant norms of scalar valued 
Sidon series in the spirit of Rodin and Semyonov [PSI. 
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We note that  these results generalize to noncommutative compact groups with 
no further difficulties. We follow the notation of [Pi2], Section 5: G is a compact 
group; E is the dual object of G; # is the normalized Haar measure on G. Thus 
E is the set of equivalence classes of the irreducible representations of G. For each 
~cE, we let U~ denote a representing element of the equivalence class. Thus U~(x) 
is, for each xEG, a unitary operator on a fixed finite dimensional Hilbert space H~. 
The dimension of H~ will be denoted by d~. For further details, we refer the reader 
to [Pi2], and [HR]. 

In analogy with Definition 1.1, a subset SCE is called a Sidon set if there is a 
constant c such that  

E d~ tr  I](~)1 -< cllfll~ 

for every fCCs(G), where Cs(G) is defined as in the abelian case. 
Let I be a countable indexing set. An analogue of the Rademacher functions is 

defined as a sequence, {~}~cI, of independent random variables, each s~ being a ran- 
dom d~ • d~ orthogonal matrix, uniformly distributed on the orthogonal group (_9(d~). 
These functions are studied in [Pi2] and [MP]. Note that  we have the analogue of 
the Khintchin-Kahane inequality due to Pisier-Marcus, IMP, Corollary 2.12, p. 91]. 

The analogue of Pisier's Theorem 1.2 can be easily established in this setting 
by repeating the proof in [Pil] and making use of the properties of Sidon sets on 
noncommutative groups. All of these properties are found in [HR, Theorem (37.2)]. 
For ease of reference, we state the result below, and omit the proof. 

T h e o r e m  3.10. Suppose that P- - (~)CE is a Sidon set, that B is a Banach 
space, and that M~ is a d~ • d~ matrix with values in B. Then there is a constant 
cl, depending only on the Sidon constant S(P), such that, for every pE[1, ~ [ ,  we 
have 

IIp\l/p 
c [ l ( E  c~Fd~tr(e~M~)P)I/P<-(/a ~c~Fd~tr(U~M~) ) 

I lp '~ l /p  

<Cl (E  Ed~tr(e~M~) ) 
\ ' % c F  

for any finite subset F of P. 

The result concerning the join of Sidon sets in duals of compact groups is a 
straight analogue of Theorem 3.5. We omit even the statement. We have thus all the 
necessary ingredients to prove a noncommutative version of our main Theorem 1.3. 

T h e o r e m  3.11. Let G be a compact group with dual object E. Suppose that 
P = { t } C E  is a Sidon set. For n = l , . . . , N ,  let a n denote a d~ xd~  matrix with 
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entries  in a Banach  space B .  There is a constant  c>O such that, f o r  all a>O,  we 

have: 

N 1 
We close our paper  by pointing out to the interested reader that ,  under suit- 

able conditions, these methods also apply to commensurate  sets of characters of 
Pelczyfiski [Pe], as indeed they do also to topological Sidon sets, also described by 

Pelczyfiski loc. cit. 
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