ANALYSIS OF CONDITIONS OF GENERALISED ALMOST
PERIODICITY.
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In the paper »Almost Periodicity and General Trigonometric Series> by
A. 8. Besicovitch and H. Bohr!, devoted to the study of various types of almost
periodicity, the type of B-almost periodicity was considered which included all
the other types there studied.

We shall quote the definition of this type. But first we give some auxiliary
definitions.

We call a set E of real numbers a relatively dense (r.d.) set if there exists
a number 1> o0 such that any interval of length 1 includes at least one number of
the set. Such a number 1 is called an inelusion interval of the set.

We say that a set I/ is satisfactorily uniform if there exists a number b >0
such that the maximum value v(b) of the number of numbers of E included in an
interval of length b is less than twice the minimum value w(b) of the same number,
t.e., tf
(1) : v(b) < 2u(b).

Obviously we may always assume b an integer.

Definition of Ba.p. functions. We say that a function f(t) (real or complex)
of a real variable t is B-almost periodic (B a.p.) if corresponding to any posttive
number ¢, exists a satisfactorily uniform set of numbers

T LT < Ty << Ty <Ty...
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such that
a+e .
(2) M;Mi{; j LAt + ) ——f(t)|dt} <& forall ¢>o0
and
(3) M| fle+ ) —fla)|y<e for all ¢

(M;, M;, M,, M, denote respectively the mean value or the upper mean value
with respect to all integral values of ¢, or all real values of x.)

Denote by A the class of all exponential polynomials s(z) = Zaé'*®, where
all @ are arbitrary real or complex numbers, and all 4 arbitrary real numbers.
We say that a function f(x) is a B-limit function of the class A, if given any

& > 0 there exists a function s(x) such that

Mol f () = s@) [ <.

The class of all B-limit functions of the class A is called the B-closure of the
class A and is denoted Cg(4). The main result of the quoted paper, concerning
Ba.p. functions is that the class of Ba.p. functions is identical with Cg(4).
It was considered there whether the conditions (2) could be replaced by the

following simpler one:

But it was proved that the new type of almost periodic functions defined in
this way (B a.p. functions) is different from the type of B a.p. functions. In

fact the class of all Ba.p. functions includes the class of Ba.p. functions and
is wider than the latter.

We shall now introduce a new definition:

Definition of B* a.p. functions. We say that an integrable (L) function f({)
(real or complex) of a real variable t s B*-almost periodic (B* a.p.) if corresponding

to any positeve ¢ there exists a satisfactortly wniform set of numbers

T LT <=0 << T < Ty...

such that
2+1

(5) M, 3, [|f(t L) — S| dt<e.

%

a
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Thus the condition (2) is replaced by its particular case when ¢=1, and
the condition (3) is dropped. Nevertheless it will be shown that the type of
B#*.almost periodicity is identical with that of B-almost periodicity. Thus the de-
finition of B*-almost periodicity does not introduce a new type of almost peri-
" odicity, but gives a new and simplified definition of B a.p. functions.

In connection with the quoted result on the type of B a.p. functions, in
whose definition »the smoothing integration» of (2) is completely eliminated, it
may be said that the new definition of B a.p. functions reaches the extreme
bound of a possible simplification. .

Obviously any Ba.p. function is a B*a.p. function. In order to prove the
converse we shall prove that any B* a.p. function belongs to Cgp(A).

We shall first prove a number of lemmas.

Lemma 1. For any satisfactorily uniform set
e T <L T < =0 <7 < Ty...

and for any non negative fumction @(x) we have

I -

(6) | M0 = M, : f Ol + w)dz < 4 M, {D@))

where

»(b) < 2u(d).

Proof. Denoting

. (Ll S
A
we have
Tjp+e
) 1
@ P ECLELE
e

where i(z) denotes the number of intervals (z;, z}—l—c) (—jo=¢= + J) including
" the point . We have
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{ 0 < Alx) = v(c) in the intervals (v—j;,, v—j, + ¢) and (15, 7, + ¢

p(c) = A(x) = »(c) in the interval (v, + ¢, ;)

so that we conclude from (7)

(8) (ZJ:L_(S)”I)‘Gf LD(SC)d.’L‘ = A(jo) = (ZT:(-:) I)cj. (D(x) dax.
ot T—ja

We shall consider (8) for large values of j,. Denote
| min (— 7, — ¢, )= 1},
max (z;, + ¢, — 1) = T.
We conclude from the satisfactory uniformity of the set of #; that for

large values of 7,

I — T—j,
L P <
2 Tj,

whence by the definition of numbers 7, 7, we have also for large values of j,,
(10) LaZlo,
. 5 .

Observe now that

T

Tim -t — Yim -1 L — MO ()
(11) ]011.12 21‘1f@(x)dx ]0132 21,2[ D (x)dx = M{®@ (x)}.
=, -7
By (8), (9)
g (9
wle)2Ty 1 A RA LY
(r2) e(2j, + I)ZTlf Ola)da = Aljo) = e(2g, + 1)2 7T, O(z) dic.

—T -—T_,

Denoting by [a] the largest integer = a we write
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whence

plozTy 11y [Ef_o:L—zieiE].
(15) s ]

T~ T—j, T

From the definition of »{c) we conclude that 1/(0)[ . -] is greater

than or equal to the number of 7; in any interval of length z;, — 7—;, and conse-

quently in the interval (v—;,, 7;,), i.e.

(16) v(c) [ﬁ“—:*%]—tf] =2j,+ 1
whence by (15)
ule)2 T, Ty, .

(17) e >2112(2j0+ I)

Similarly we write
(18) 7?{4(0)2T2<2;L(c)2T12:_2‘

¢ c T,
By (9)
ZTI étjohz—jo_c

whence

we conclude

v(c)2 T, .- T,
I — < 2|2 + 1)
(19) 2% < iy + 1)
By (12), (17), (19)
. T T,
11, 1 Nty L :
s 1f®(x)dx<A(jo)<2T12T2 O(a)dz
— Ty —T,

whence by (10) we have for large values of j,
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+ 1 11
11 . 1
(20) 42T, q)(x)dx<A(go)<45T2le(x)dx.
—Ty —T

Taking the upper limit of all terms of this inequality, as j, — %, we conclude

on account of (11)

fw@+qu§4MM®@}

0

- M D)) = M,

| vt

I
4

n

which proves the lemma.

Remark. Obviously the lemma holds also when <, is different from zero.

Lemma 2. If f(t) s a B*a.p. function then for any & > o the set of all
the values of © satisfying the inequality

(21) ML+ 0 —fW]) <
vs relatively dense.

Proof. The function f(¢f) being B*a.p. there exists a satisfactorily uni-

form set
T LT <TG =0 <1y < Ty...

such that
a'+.1 v
(22) 3L, M, j fit + w) = S0l at < 5

from which we immediately conclude that

&

o r+c
(23) MmMi—c-flf(H W) —flar<

for any integer ¢ > o.
On account of the satisfactory uniformity of the set of zs we can choose

an integer ¢ such that

(24) : v(c) < 2ule).



is satisfied for some real values of x,.
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From (23) it follows that the inequality

ot
I \ &

Assume that x, = o (for we can always

come to this case by the change of variable ¢t =z, 4 ) so that

(25)

504

c
i1 ;f|f(t+ v — )t < $

We shall now prove another inequality which together with the above inequality

will lead to the proof of the lemia.

(28)

We have by Lemma 1

. L o/
Ty + /2 c+c

Mjé f{)[[%j'v(t + z) —f(t)|dt} d

P
72
e+

< 4N, 11[7~-If|f(f +oa)— )] de < A5
¢ 584

Hence by Fatou’s theorem

+r/ r4e
s R (t+2) —f(A]at\azw < 4
; ] [V - laef e < 4
,—z‘/) x
Observing now

tj-'f(.’.] ¢ 7‘;6,‘21?

f‘jm ) _/()w'm j f]f £+ 2) —

T —cl2 7; -—cf2 11\!

J

Jlfm— so1at

f ()Mxldt

|
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we obtain
7j+e
8¢
" M_—J |/ + 2) —fO)fde < =
: 584
or
” o Icf |t + 7+ ) —flt+ g)| dt < 5%52;

0

From (25) and (29) we conclude that there exists an integer I,>o0 such
that for all 1=1,

1 1 c
(30) 21+ 1 Z ' |ft-+ ) Bdt < -
21 1 ¢ g
RS ETERS ol 584
' 8¢
(31) 2l + 1 Z M- ] | £t + e + 5) — f(t + =) |dt<_§__
| Teks 4T 504

It follows from (30) that the number of values of % in the interval
(— 1, + I) satisfying the inequality

6
(32) f|ft+n |dt>38j

is less than »2I+ L
36

Similarly the number of values of % in the same interval satisfying the

inequality

36¢

(33) ﬂ*[i2~f|f(t+rk+rl-)—ft-% n|dt>58
_ 0

is less than 8(3§6j' d and consequently the number of values of 4 for which

one of the inequalities (32), (33) is satisfied is less than ‘1 (2I+ 1)



N
(]
ot
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Thus the number » of values of % for which the inequalities

o 36¢
: Ca) — FOdE < 2=
o) 1A w—rlae= %
(33) 31+t w)— flE )| de < 308
5 p . , =584
O .
are satisfied simultaneously, is greater than %(2[ + 1), i.e.
(36) n> 3-(2] + 1).

For any such value of & we have on account of (23)

¢
S 73¢
7 M; o) - S ) | dE <
(37) ;! /If(z‘+n w) St wlde <3
0
and thus by Lemma 1
: , . 2026 ¢
ML+ w) —fO1 < T =1
Let %', % be two values of % satisfying (34). (35). Writing the above
inequality for each of them we deduce

(38) M NS+ e — w) — fO)]) < e.

The lemma will be proved if -we prove that the set of all numbers 7 — 7
is relatively dense. We shall indeed prove that every interval of length ¢
(r —¢/2, r + ¢/2) contains at least one of the numbers 7 — 7v. Assume the
contrary. Let

By <hy< - <hy

be those integers of (— I, + I) which satisfy (34), (33).

If there are intervals of length greater than ! between consecutive num-
bers of the set

(39) Thyy Thay -y Tk

n

29 — 31368, Acta mathematica. 53. Imprimé le 11 février 1932.
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then we divide it (the set) by these intervals into groups of consecutive terms
distant from one another not more than [. If there is no interval of length
greater than [, then we consider the whole set (39) as one group.

To each group

Tk, 5

p Tkp+17 ey Tk

q

corresponds the interval (v, + 7 —¢/2, =, + r + ¢/2) which does not contain any

7. satisfying (34), (35).
The number of all the z; in this interval is greater than or equal to

Tk — T, + € I Ty — T + €
ule) [J____?’____] > 2o [_._‘I_%Lm]

4 4

and in the interval (z;,, 7,) is less than or equal to

Tky — Thky + ¢
v(c)[o cl ']

and thus the first number is greater than the half of the second onme.

The intervals (w, + 7 — ¢/2, @, + r + ¢/2) corresponding to all the groups

of the numbers of (39) do not overlap and thus the number of #; belonging to
all these intervals is greater than »312. None of them being substituted for #

in the inequalities (34), (35) satisfies either of them. They all belong to the
interval (z—r + r — ¢/2, 7+r + r + ¢/2). The number of those of them which do

not belong to (v—r, 7+7) is less than or equal to »(c) [hl j—ag—l, and thus of

7]+ 3¢

p ] Thus the number

those which do belong is greater than ;72 — v(c)[

of all 7; belonging to the interval (v—;, 74;) is greater than

n + én — »(¢) [MwJ

¢

so that we can write

c

2T+ 1 >%n—v(c) [L’_‘i};ﬁ] _

and by (36)
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(21 + 1)~ (o) ['ilﬁif]

2l 4+ 1>

%0 \O

¢
for all I = I,, which obviously cannot be true. Thus the lemma is proved.

Lemma 3. If a function f(x) is B*a.p. and if

x+d

)=y [ sar

then
M {|f (@) — folx)| } —o0, as d — 0.

Proof. Given any >0 there exists a satisfactorily uniform set of num-
bers ©; such that
a+1
L, 3, [ (e + o)~ fOlde= £

€T

Denoting, as before, by ¢ a positive integer satisfying the inequality
v(c) < 2u(c) we shall have
a+2c¢

(40) ’MwMiggflf(t + 1) —fO)|dt < 2—86

@

whence there exists an a such that

10

at2¢
- 1 ) &
(a1) it [Uste s m) = polar< 5
Choose a positive J << ¢ such that

(42 o[- rwla< 5

We write
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ate+d

flfo(t+ n)~fa(t)|dt§f|f(t+ @) — SO 4t

[43

a+2¢

= f 1 (E+ ) — f(8)] dt

and thus by (41)

a+tc
u, é.fm(t oa) = Sl + w)|dt

a+c

ate
= ﬁ.é~f|f3(t+zi)~fg(t)ldf+ M%flf(t+ a ~ flolat +

a

a+2¢ u+c¢

< ‘zmlcf|f(t+ w) — fit)|dt + M, 2-flf(t + ) — Sl +

a+2¢
T (1 o) — g L ©
<2M¢0f|j(tTu) silaes £ <

a
Hence by Lemma 1

M| fole) — fla)ly < e
which proves the lemma.
We now use all these preliminary lemmas to prove the main result.

Theorem. If a function f(x) is B* a.p. then given any ¢ > o we can find an

exponential polynomial s(x) such that
M\ @) —s(@)| ) < e.

Proof. For proving this theorem it is sufficient to prove that there exists

a uniformly almost periodic function ¢(x) satisfying the inequality

(44) M| f) — pl)]) <e



Analysis of Conditions of Generalised Almost Periodicity. 229

since uniformly «.p. functions can be approximated uniformly by exponential
polynomials.
By Lemma 3 there exists a d > o such that

(45) M. {|f (@) @)} <oz,

The function f(x) being B*a. p. there exists a satisfactorily uniform set of num-

bers ¢; such that

(46) B [ 176+ v —pilat <)

Define a function g@(x) by the equation

a+d

@) = Mg-ff(t%ﬁ)dt.

We shall have

(47) |fole) — pla)| = iy Tif(t +u)—f(Hldt
gé‘ﬂj]ﬂwu (o)l de.
Hence by (46)
(48) WA fole) — gl = 5 flf (t+w)— O] at < ©
and by (45), B
(49) A f ) — )} < e

To complete the proof we shall prove that ¢(z) is uniformly a.p. We write

xt+7+d

lp(e + 0 — pla)| = T f!fm 0 at
Tty
s+Tpte

< S, [ 11 + o) —Fl)] e
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and by Lemma 1

(= .
(50) lp@+ 0 — g < 4 Ml fle + ) — /@1
Thus any ¢ satisfying the ineqﬁality

e ]
(51) M| fle+ 0= Fla)l) <20
where 75 is an drbitrary positive number, is a translation number of ¢(x) be-
longing to 5. But by Lemma 2 the set of all the values of ¢ satisfying (51) is
relatively dense and, thus corresponding to any 7 > o the set of uniform transla-
tion numbers of ¢(x) belonging to 7 is relatively dense, i.e., ¢(z) is uniformly

@. p., which proves the theorem.



