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I. Introduction.  

The object 

tions of the forms 

(i. i) 

and 

(i. 2) 

in which 
constant, 

(~. 3) 

and 

of many investigations has been the study of difference equa- 

e, (~) F(~  + ~) = ~ (x) 
8~0 

P 

E (x + i )  = y~ ej~ (z) F~ (~) + ej  (~), 
k ~ l  

j =  I ,  . . . , p ,  

the coefficients are functions of the real variable x asymptotically 

lira cs ( x )  - ~  cs ,  8 ~ 0~ 1, . . . ,  m~ 

(I. 4) lim e~k(x) -~ e~k, j ,  k = I, . . . ,  p.  

Bochner ~ has considered the more general equations 

(I. 5) ~ c~ (x) F (x + ~) ---= G (x) 
8~0 

1 Na t iona l  Research  Fel low. 

S. BOCHZ~ER, M a t h .  Z e i t s c h r i f t  33 (I93I),  PP. 426- -450 .  
paper  as  , ,I, , .  BOCHNER g ives  o ther  re ferences  to t h e  l i te ra ture .  

8--37534. Acta mathematica.  69. Imprim4 le 28 octobre 1937. 

Herea f te r  we sha l l  refer  to t h i s  
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and 
P 

(I. 6) ~ (x + ~j) = ~ ,  elk (x) Fk (x) + Gj (x), j = I, . . ., p,  
k=l 

in which the spans & and toj are any positive numbers without any arithmetical 

restrictions. Boehner has developed the theory of the equation (I. 5) and has 

stated the problem for the system (I. 6) and for still more general systems. 

In  the investigation of the equation (I. I) with the special spans one con- 

siders the periodic function 

(I. 7) e ( t ) = C o  + q e t +  ".~ + c,~e '~t 

and uses the Dirichle~ developments of I/e(t)  in strips parallel to the imaginary 

axis in which e(t) is non-vanishing. The theory for this case is simplified by 

the introduction of a new variable �9 == e t and by the consideration of the polynomial 

(i. s) ( ~ ) = C o + C l Z + " "  +em*m. 

The Laurent developments of I/e(z) in annular rings replace the Dirichlet 

developments of i /e( t)  in strips. In  the investigation of the equation (I. 5)with 

the general spans no such simplification is possible. In this case Bochner has 

studied the almost periodic function 

(I. 9) E(t) = Co e~ot A- Cl eJlt -~- "'" "]- Cme ~mt 

and its reciprocal I / E ( t )  in strips parallel to the imaginary axis in which E ( t )  

is non-vanishing. By use of the almost periodicity of I / E ( t )  in these strips and 

by use of its generalized Dirichlet series, Bochner has developed the theory for 

the equation (I. 5). 

In the study of the equation (I. I) certain of the solutions are characterized 

by the behavior of the limit value 

(I .  IO) 

or, if this is not existent, of 

lim T'(x + I) 
F(x) 

(I .  I I )  lira sup [ F(x) [ l/* = lim sup e ~1  log ]F (*)]. 
X=+zc X~+r162 

Bochner has characterized certain of the solutions of (I. 5) by means of 
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(I. I2) lim inf x -1  10g [F(x)[ ,  lira sup x -1 log IF(x) l ,  

and certain others by the existence of the limit value 

(I. I3) lim F(x) .  
X ~ - F  oo 

In this paper we shall study difference equations of the form 

(I. 14) ~ c~ (z) F (z + 5~) = G (z) 
8 ~ 0  

and systems of difference equations of the form 

(r. I5) 

59 

c jk (z) Fk (z + djk) = Gj (z), j = I , . . . ,  ~, 
k = l  ~ s = O  

the spans 5s and $~k are any real non-negative numbers without any in which 

arithmetical restrictions and the coefficients c, (,) and gk (z) are analytic functions 

of the complex variable z asymptotically constant in certain sectors. The methods 

developed by Bochner are applicable to the study of the equation (I. I4)and are 

used in this paper. In part I [  we study the equation (I. 14)wi th  constant 

coefficients c~. Using the method of successive approximations and applying the 

results of part II,  we develop in part I I I  the theory of the equation (I. 14) with 

asymptotically constant coefficients. In part IV we study the system (1.15) with 

constant coefficients c jk. Subjecting the system to certain negative restrictions, 

we use the symbolic treatment of systems of equations developed by Bochner 1 

and Carmichael. ~ By use of this symbolic treatment we reduce the problem of 

studying the system (I. 15) with constant coefficients to the problem of studying 

p equations of the form (I. 14) with constant coefficients. The methods which 

enable us to pass from the theory of the single equation with constant coeffi- 

cients to the single equation with asymptotically constant coefficients enable us 

to pass from the theory of the system with constant coefficients to the system 

with asymptotically constant coefficients. Using these methods, we treat  in 

part V the system (I. I5) with asymptotically constant coefficients. 

1 S. BOCHN~,]~, Math. Annalen IO 4 (I933), PP. 579--587- Hereafter we shall refer to this 
paper as *II~. 

2 R. D. CARMICHAEL, Tg'ans. Am. Math. Soc. 35 (1933), PP- 1--28. 
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II. The Equation with Constant Coefficients. 

2. i. In  this par t  we consider the  equat ion 

m 

(2. i) ~ c~ F ( z  + ~) = ~ (z), 
S ~ 0  

in which the  coefficients c~ are any complex constants  and the  spans ~s are any 

non-negat ive numbers  ordered as follows: 

o ~ 0  < ( J l<~ '2<  "'" <~m.  

I t  is convenient  to assume tha t  m ~ I and c o ~ o, cm ~ o. Under  these hypo- 

theses the exponent ia l  polynomial  

m 

(2.2)  E (t) = 2~ e~ e~ ' 
8 ~ 0  

for  complex values of t, t =  u + i v ,  has infinitely many ze ros )  W e  shall state 

here  various facts  re la t ing  to the funct ion  E( t )  and its reeiprocal  HE( t ) .  These 

facts  are all given by Bochner  (I, pp. 434--435)  and are res ta ted  here  for  fu ture  

reference.  

I ~ The zeros of E ( t )  all lie in a bounded str ip u 0 < u < u,. I f  we consider 

on the  u-axis the set of the  real parts of all the  zeros of E ( t )  and annex its 

l imit  points then  we obtain a set m whose  complementary  set on the u-axis is 

composed of a t  most  denumerably  many open intervals,  among  them being two 

ha l f - l ines .  Fol lowing Boehner ' s  terminology,  w e  denote  the  lef t  half-line by J0, 

the r ight  half-line by J1, the remain ing  intervals  in any order  by J2, J s , . . -  

The  boundaries  of the interval  J~ we will denote  by b~ and b~ (therefore _b0=-- ~ ,  

bl ~ + ~ ) ,  and by J~ we will unders tand  not  only the >)interval~ 

(2. 3) b~<u<b~, 

but  also the  >>strip,> (2.3), tha t  is, the  to ta l i ty  of all complex numbers  t, whose 

real  par t  u verifies the relat ion (2.3). 

1 The fact that E(t) has infinitely many zeros is easily proved by use of the theory deve- 
loped by A. PRINGSHEIM, l~Iath. Annalen 58 (I9o4), pp. 257--342. The zeros of such functions 
have been studied by various writers. Cf. S. BOCHNER, I, p. 434, and R. E. LAN(~SR, Bull. Amer. 
Math. Soc. 37 (I93I), pp. 213--219. Other references are given in these papers. 



(2. 4) 

with integral  

them by 

(~. 5) 
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2 ~ W e  consider the numbers  representable in the form 

no~ + n1~1 + "'" + nm~m 

coefficients ns. 
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W e  order them in a fixed sequence and denote 

go, ),t, Z2, . . . ;  2 o = O .  

3 ~ The funct ion I/E(t) is an analytic almost periodic funct ion in the  strip 

J ,  and as such possesses a generalized Dirichlet  expansion of the  form 

o0 

(2.6) E (t) - -  ~ pq" e~"t b o- < u < b, ,  
n ~ 0  

where the exponents  ~ are the numbers  in (2.5) and the Y~n are uniquely 

determined constants.  The series (2.6) converges absolutely in J , .  

4 ~ From ~he ident i ty  
oo 

~ = E ( t ) ~ ,  ~ Y~n e n 

' ? ) . = 0  

follow the useful  relations 

for n = o, 
(2. 7) F ,  e, ~'~,~--~s = 

s=o for n ~ o. 

5 ~ For  the cases a =  o, I the series (2.6) are >>one-sided>>, tha t  is, 

(2. 8) 7 ~ . - ~ ~  for  ~ - < - - ~ o ,  

(2.9) 7~.-----~ for  ~,~=>--~r~: 

2.2.  Let  G(z) be an analyt ic  funct ion of the complex variable z, z = 

x + i y - = Q e  ie. I f  G(z) is regular  in a strip - -  or < x <  + ~ , a _ - - < y < f l ,  then 

we shall briefly say tha t  G (z) is regular  in the strip (a, fl). I f  G (z) is regular  

in a strip (a, 8) and such tha t  real  numbers  b, b, A exist  of such a sort  t ha t  

and 
I G(z)l_-< AJ~, x->_o, ~ = < v < A  

then we shall simply write 

(~. ~o) I ~ (~)l --< A (e- ~, ~) ,  ~ _-< v _-< ~. 
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We note  t h a t  the  relat ion (2. IO) implies t h a t  

0 ~ l im inf x - '  log J G(x + iyo)l, l im sup x - :  log I G(x  + iyo)l < b, 
x = - - ~  b =  + oo 

for  every Y0 in the  in terval  a ~ Y0 ~ ft. 

L e m m a  2. i. Let us consider an interval Ja and an analytic function G (z) 

I f  G (z) is such that (2. I0) holds where b, < b <= b < br regular in a strip (a, ~). 

then the series 
oo 

7~,~ G (z + Z~) (2. , , )  r ~  E ~ 
n = 0  

converges absolutely and uniformly in every finite region contained within the strip 

(a, ~) and represents a solution F(z) of (2. i) which is analytic in the strip (a, fl) 

and which is such that 

(2. ~ 2) I ~'(~) I <= A' (e ~ ,  e ~) ,  a <= y <= ~, 

where A ' =  3 A C and C is a constant independent of G (z). 
The equation (2. I) has only one analytic solution F(z) which verifies a relation 

of the form (2.12); in fact, it has only one analytic solution for which the relations 

(2. i3) _ b a < l i m i n f x - : l o g ] F ( x + i y o ) ] ,  l i m s u p x  - l l o g ] F ( x + i y o ) ] < b a ,  
X~----'oo X~  + 00 

hold for a fixed value of Yo, a < Yo < ft.: 

For  the  absolute convergence of (2. I I) we use the  re la t ion (2. I o ) . a n d  the 

absolute convergence of the  series (2.6). Let  us denote  by C the  sum ' 

C-~ ~ lT~n le  ~nb- + ~[7~nle  ~n~. 
~n<o ~n->_0 

Firs t  let us assume t h a t  x > o. Le t  us wri te  (for fixed x) 

Then  

Z + Z + Y, = Z , + Z , + Z ;  
n = 0  ~n ->0 --x__6A n < 0  )m < - x  

i This lemma is analogous to and was suggested by Lemmas I and 2 of S. ]30CHNER, I, 

PP. 453--435. I ts  proof is similar to the proofs of those lemnas. 

When there is no chance for ambigui ty  we shall  s imply write Y~n for 7a~n. 
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- - x _ ~ 2 n < 0  2 n < O  

< A ~17~.,[e-b(~+~,) < A C e  b-~ < A Ce ~ .  
a n < - - x  

For  the case x < 0 the proof is analogous and for x = 0 it is even simpler. We 

omit  these parts. The series in (2. I I) then  converges absolutely for all z in 

(a, fl). I f  z is restr icted to any finite region contained within the strip (u, ~) 

then the  uni form convergence of (2. 1 i) follows at once f rom the bounds just  

derived. Consequently the  sum funct ion F(z) is anMytic in the strip (u, f l ) a n d  

it  verifies (2. I2). 

Tha t  the funct ion F(z) defined by (2. i I) is a solution of (2. I) follows at 

once from (2.7) and the absolute convergence of the series (2. I I). Wri t ing  

+ = y ,  m e + 4. + as), 
n ~ 0  

8 - ~ - O ~  I ,  . . . ~  m ~  

subst i tut ing these series into (2.I), combining equal arguments  of G(~)and  using 

the relations (2.7), we obtain 

e~ F ( z  + de) ~- ~ G (z + Z,) ~ c~ 7a~-a~ = G (z). 
s~O n ~ O  8 ~ 0  

For  the uniqueness of the solution let  us assume tha t  F .  (z) is an analyt ic  

funct ion which verifies the relations in (2. I3). Then it  verifies ~ relat ion of 

the form 

(2. 14) I F ,  (x + i Yo) I ~ A (Yo) ( e-~' :~, eb' ~), /_,o < _b' ~ b' < bo. 

I f  F,  (z) is a solution of (2. I) we may write 

F (x + i Yo) = ~, 7Zn G (x + i Yo + Z,~) = ~ 7~, c, F .  (x + i Yo + ~* + ~0). 
n = 0  n ~ 0  s ~ 0  

In  view of (2. i4) the double series is absolutely convergent  and may be rear ranged  
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F ( x  + i yo )=  ~, F . ( x  + iyo + Z.) c,7z,-a~ 
n = O  8 ~ 0  

and from (2.7) we see that  F ( x  + i y o ) - ~ F , ( x  + iyo). Hence F(z ) -~F , ( z ) .  

2.3. The following lemma gives a class of functions verifying bounds of 

the form (2. IO): 

Lemm& 2.2. Let G (z) be an analytic function in a sector S (-- ~ < 0 < ~ + 

(o < d)) and such that 

(2. 15) lim sup ~-1-,~ log I G (e ei~ o 

uniformly in 0 (-- ~ < # < ~ + ~), for every positive value of ~ but not for any 

negative value. Define 

(2. I6) h (01 G) = lim sup # - '  log I G (e d~ 

I f  h(olG) and h(~lG) are finite and i f  for some value 0'(o < 0 ' <  ~) a constant 

h' exists such that h(O'tG ) <=h', then for every pair of positive numbers e and # 

there exists a constant A = A (e, fl) such that 

(2. 17) [G(z)l<=A(e-h('l~)-% eh!~176 o<=y~#. 

Let H(O) be the function of the form a cos0  + b s in0  which ~akes the 

values h(olG), h' at o, 0' respectively. From the theory developed by Phragm6n 

and Lindelbf 1 it follows that for every positive number ~ a constant B = R(~) 

(independent of 0) exists such that 

] G(#e*'~ < eU(~ # > R,  o < 0 <= 0', 

Using the continuity of H(O) and the fact that  H(o)=h(o lG) ,  we obtain the 

part of the bound in (2. I7) which holds for x_--> o. By means of a similar 

argument and by use of a function H~ (0) : a~ cos 0 + b I sin 0 which is such that  

HI(O')=h',  Hj(~r)=h(zIG),  we obtain the part of the relation (2. I7 )which  

holds for x < o. We omit the details here. 

By an analogous argument we prove the following lemma: 

1 E. PHRAGM~N and E. LINDEL6F, Acta math. 31 (I9O8), pp. 38I--4o6.  See, in particular,  
pp. 391--395. 
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2.3. Let G (z) be an analytic function regular in So ( - -  8 <--_ Lemma 0 8 

for every positive value of ~], but not for any negative value. I f  h(O I G) defined in 

(2. I 5) is finite in the interval - -  81 < 0 <~ 81,  where 0 < ~1 <= 8, then for  every positive 

number ~ and for every pair of  real numbers a, fl (a < fl) a constant A = A  (r; a, fl) 

exists such that 

[G(z)[ < A e  h(~ z in So, a ~ y =</?. 

The following theorem is an immediate  consequence of Lemmas 2. I and 2.2. 

Theorem 2. i. Let us consider an interval Jo and a function G (z) satisfying 

the hypotheses of  Lemma 2.2. I f  in addition 

(2. 18) Oo < - -  h(Tc! G)  ~-~ h ( o !  G)  < ba, 

then the function F(z) = 1" ~ G defined in (2. I 1) is a solution of (2. I) which is 

analytic in the upper half-plane 0 <= y < ~ and which is such that for every pair  

of positive numbers e, fl there exists a constant A-= A' (e, ~) of such a sort that 

(2. 19) IF(z)l<=A'(e-h(.le)-% eh/01~)+,~), o_<y_<~. 

The equation (2. I) has one analytic solution which verifies a relation of  the 

form (2.19); in fact, i t  has only one analytic solution for which 

(2.2o) b_o < -- h ( z lF) ,  h(otF) < b~.~ 

By means of Lemmas  2. I and 2.3 we prove at once ~he following theoremS: 

Theorem 2.2. Let us consider a function G (z) satisfying the hypotheses of 

Lemma 2.3. I f  in addition h (0[ G) is such that 

(2.21) h(oiG) < bo, 

then the function F(z) defined by the series 

1 We note  t h a t  (2. I9) and  (2. I8) imp ly  (2.20). 
I t  is to  be observed t h a t  the  i n t e rva l  Jo  is used in Theorem 2.2 .  The  theo rem t rea t s  

functions G(z) ana ly t i c  in  So - - d  -< 0_-< $ o < S N ~  , [z  I > R , t h i s  be ing  poss ible  s ince 7~n--o 

for ) .n--  > - -$0  (see (2.8)). For  the  ease w h e n  a is zero, i t  is c lear  t h a t  L e m m a  2. I m a y  be 

app rop r i a t e ly  modified to t r ea t  func t ions  G(z) ana ly t ic  in  So. 

9--37534. Aeta mathematica. 69. Imprim6 le 28 oetobro 1937. 
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( 2 . 2 2 )  r ~ G = G + z.)  
n ~ O  

is a solution of (2. I)which is analytic for all z such that z -- ~o is in S o. For 

every positive number e and for every pair of real numbers a, fl (a < fl) there exists' 

a constant A ' -~  A'(~; a, fl) of such a sort that 

(2.23) I F(~)I <= A'  e h~o!~')+-~, a <~ y <= fl, z - -  Oo in So. 

The equation (2. I) has only one analytic solution which satisfies a relation of 

the form (2.23); in fact, it has only one analytic solution for which h ( o l F ) <  b0. 

A similar theorem holds for functions possessing in Sa ( ~ -  6 ~ 0  ~ ~ + 6, 

I z l >  R) the character the function G(z ) in  Theorem 2.2 possesses in S 0. The 

condition b x < - - h ( ~  I G) replaces the condition (2.2t). For this case the series 

F ~ G is used. We omit the statement of this theorem. 

We next treat the case where G (z) is u function of finite exponential type q, 

t h a t  is, where G(z) is such that  

lim sup l e  (~) (o)I~/'~=q 
n = c ~  

holds. 1 Let G(z) be any such function and define h(0]G) as in (2. I6). For later 

use we state here the following results given by P61ya (loc. cir., pp. 571--585): 

1 Cf. S. PINCHERLE, Acta math. 38 (I926), pp. 279--304 (first publ ished in I888); G POLYA, 
Math. Zeitschrift 29 (i929) , pp. 549--64o. P61ya shows tha t  there is an int imate  relationship 
between a function G(z) of exponential  type and its Borel transform g ( t ) = ~  Gn(o)t - -n-1.  In  
Theorem 2.3 and Corollary 2. I we state certain relations which exist  between the  Borel trans- 
form g(t) of the given function G(z) in (2. I) and the Borel t ransform f(t) of a part icular  solution 
F(z) of (2. I). We state these relations in the present  paper merely for the sake of completeness, 
relations of this  sort not  being peculiar to equations of the form (2. I ) b u t  holding for (being 
implici t ly contained in the  theory of) more general equations such as difference equations wi th  
arbi t rary  complex spans and differential equations of infinite order. 

If  the  function G(z) in equation (2. I) is of exponential  type and if _~(z) is a solution of 

(2. I) which is of exponential  type in a sector S 0 ( - - ~ a r g z ~  , o < ~ ) t h e n  the  function 

F(z)  is of exponential  type in the  entire plane. BOCHNEI~ suggested the  t ru th  and the manner  
of proof of th is  s ta tement  to me. For the proof of the  s ta tement  i t  is sufficient (and also neces- 
sary) to show tha t  if there exist  positive constants  p and M such t ha t  

I G(z)[ < Mep[zl, all (finite) z; [ F(z) [  < MePlzl, z in So; 

then there exist  constants  p '  and M '  such tha t  

(*) I F ( z ) [  < M'ep'lzl, all z. 



L i n e a r  D i f f e r e n c e  E q u a t i o n s  w i t h  A r b i t r a r y  Rea l  Sp an s .  

(a) h(OIG ) i s  d e f i n e d  a n d  c o n t i n o u s  f o r  a l l  r e a l  O; 

(c) the Borel transform g (t) of G (z), 
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(2. 24) g (t) = ~ .  G(")(o) t -n-1 
?l~O 

is analytic for all t exterior to the convex region K, culled the conjugate dia- 
gram of G(z), where K is the point set defined in the fol lowing manner: the 

point t -~  u + i v belongs to K if  and only if for all real values of 

(2.25)  u cos ~ - -  v sin 0 - -  h(0] G) < o; 

(d) if  we denote by C, the boundary of the convex region K,, where K~ is 

the point set 

(2. 26) u cos O- -  v sin O--  h(O]e) --  e < o, e > o, 

We note that  this includes the case when G(z) is identically zero. Without loss of generality we 
take c o =  I and ~o=O.  From the relation 

(**) ~(z)  = G(z)--  ~ c~F(z+ ~s) 

we easily verify that  F(z) is an integral function. In order to see that  F(z) is of exponential 
type we consider a sequence of sectors S n (--~ < arg(z§ ~), n ~ o ,  I, 2 , . . .  Let us assume 

that  for every point z n in a given sector S n we have 

(***) ,F(Zn). < M ( I + _ P §  pn) eP'Zn', zn in S n, ( - P :  ~ ,cs,e~sP). 

If  Zn+ 1 is any point in Sn+ 1 then each of the points Zn+,§ s = I ,  . . . ,  m, is in S n and applying 

the relations (~*~) and (**), we see tha t  (***) holds with n replaced throughout by n +  I. The 
relation (***) holds when n is zero and hence by induction, we see that  it  holds for n = o ,  I, 2 . . . .  
If ~P< I, then the facts that  the relations (***) hold for every n and that  every (finite) point z 
is in some sector S n imply that  the relation (*) already holds with M ' = M / ( I - - P )  and/0 '=/9.  

If Zn+ 1 is a point  in Sn+ 1 and not in Sn, than we see at once tha t  [Zn_}.l[ > n $ , s i n ~ .  If 

P =  I, then 
I + P +  �9 .. + Pn+l : n + 2  < e.e n < e.e[Zn+l [/(d, sin~) 

and hence (*) holds with M ' =  Me and p ' : p  + I/(d, sin ~). Finally, if P >  I, then 

I + iO+ + ~n+1 pn+2 _ I ~0 ~ ~)~ . . . .  < _ _  en log P <~ e] zn + 1 ] (log P) / (~, s in  ~), 
P--I P--I P--x 

and hence the relation (*) holds with M'= M P~/(P - ,) and io' =p +(log P)/(d, sin ~). 
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then  

(2.27) V(z)--2ziI f e~tg(t)dt; 
Lt 

Ce 

(e) - -q  < h(O t G)< q, the  maximum q being assumed for at least one value 

of 0 (o _--< 0 < 2 zc). 

We next  state and prove a theorem relat ing to the  equation (2. I) when 

G (z) is a funct ion of finite exponential  type. 

Theorem 2.3- Let us consider an interval J~ and a function G (z) of expo- 
nential type q. Let us assume that the relations (2.18) hold. Then the function 

F(z) defined by (2. I I) is an analytic solution of (2. I) for which the relations (2.20) 

hold and is the only analytic solution of (2. I) for which the relations (2.20) do hold. 
The function F(z) is of exponential type q, and indeed 

(2.28) h (OI F ) =-- h (O t G). 

I f  f(t) and g(t) denote the Borel transforms of F(z) and G(z) respectively, then not 
only do f(t) and g(t), together with their analytic continuations, have the same 
singular points but also they possess the same Riemann surface. 

The facts that  the funct ion F(z) defined by (2. I I) is an analytic s o l u t i o n  

of (2. I) of the character  described in (2.20) and tha t  it is unique in these 

respects follow at once f rom Lemma 2. I. (It is easily verified tha t  G (z) satis- 

fies the hypotheses of Lemma  2. I in every strip (a, ~).) For  the remainder  of 

the theorem we note tha t  in view of (2.18) the function E(t)  has no zero within 

o r  on the boundary of the conjugate diagram K of G(z). Let  e be a positive 

constant  such tha t  

(2.29) _ha< - - h ( z l G ) - - e  , h ( o i G ) + e < b , ,  

and let C, be the contour  defined in (d) for this ~. Then the funct ion 

I f  e~ti  ,, (2 .30)  F .  (z) - 2 ~ g (t) d t, 

Ce 

easily seen to be an (analytic) solution of (2. I), verifies an inequality of the  form 

I v ,  (~ e'~ < M~[e ~�84176 [ = M~ e~uoos o-v~i~ 0)~ 
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where t ~- u + i v is on Cs. From this inequality and the inequality (2.26) we 

see that  

< M s e  

and from this we see that  F ,  (z) verifies relations of the form (2.20). In view 

of the part of the theorem already proved this implies that  F, (z)----F(z). The 

function F(z) is obviously of exponential type not exceeding q and from (2.3 I) 

it follows that  h(0[F) ~ h(O[ G). 1 One can easily show by direct means that  F(z) 
is of exponential type precisely q and that h(O[F)- h(O[V), but since the type q 

and the function h (0) of a function o f  exponential type depend only upon the 

singularities of the Borel transform these facts are consequences of the properties 

of f(t) and g(t) next to be proved. Writing F(z) in  the form 

F(z) ---- ~2zi ; e~tf(t) d t 
e] 

Cs 

and using the fact that F(z) is a solution of (2. I), we see that  

~ f (2.32) Z csF(z + ~s) G(z) -- I eZt[E(t)f(t)_g(t)]dt_~o. 
s=O Us 

If  we write 

(2. 33) E(t)f(t) -- g (t) ~- I(t), 

then we see t h a t  (2.32) implies that  I(t) is analytic for all t within and on Us. 

But f(t), g(t) and E(t) are analytic outside Us and consequently I(t) is an inte- 

gral function. Accordingly, the functions f(t) and g(t) have the same singular 

points except possibly at the points within or on Us at which E(t) vanishes. 

But in view of (2.29), E(t) does not vanish within or on Us and hence f( t)and 
g(t) possess the same singular points. The relation (2.33)implies  that  these 

singular points are of the same nature and that f(t) and g (t) possess the same 

Riemann surface. PSlya, (loe. eit.), has shown that the conjugate diagram of a 

function of exponential type is completely determined by the singularities of the 

Borel transform of the function and, in turn, that  the function h (0) is uniquely 

determined by the conjugate diagram. The type q of a function of exponential 

type is obviously determined by the function h(0). From these facts and the 

1 This inequality also implies that _b"(z) is of exponential type not exceeding q. 
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fact that  f(t) and g (t) possess the same singular points we see that (2.28)holds, 

that  F(z) is of exponential type q, and that  the functions F(z) and G (z) possess 

the same conjugate diagram. This completes the proof of Theorem 2.3. 

We have the foUowing corollary to Theorem 2.3: 

Corollary 2. I .  I f  E(t) has no zero for [t] <= q, then the function F(z) defined 
by (2. I I) is the only solution of exponential type not exceeding q. I f  E(t) has zeros 
of multiplicities s~ at the points a~, i~ = I, . .., k, [ a~ ] ~ q, then every solution of 

(2. I) of exponential type not exceeding q is expressible in the form 

F l ( z ) = F ( z ) +  ~ ~ d, ,z 'e% ~, 

where F(z) is the function defined by (2. I i) and the d~, are arbitrary constants. 
The function F (z) is the only solution of (2. I) whose conjugate diagram is the same 
as that of e (z). I f  F~ (z) is any solution, other than F(z), of (2. I) of exponential 
type not exceeding q, then the conjugate diagram of this solution F1 (z) is larger 

than the conjugate diagram of the function G (z), every point of the conjugate dia- 
gram of G(z) being contained within or on the boundary of the conjugate diagram 
of F, (z). The function Z (t) has a singular point at every point at which g (t) has 
one and moreover, it has at least one additional singular point. 

The first two statements in the above corollary are classic results in the 

theory of difference equations. They are easily proved by means of contour 

integrals. We omit the proofs here. For the remaining parts of the corollary 

we note that  the Borel transform f l  (t) of F 1 (z) is expressible in the form 

fl(t) = f ( t ) +  ~ ~ d, , ( t  - a,),+x. 
~ =1  v=0 

The function f(t) is analytic outside the conjugate diagram of G (z) and all the 

points a,  lie outside this conjugate diagram. The conjugate diagram of /;1 (z) 

must contain within or on its boundary all the singular points of f l  (t). Since 

f(t) and g (t) have the same singular points we see that if t'1 (z) is any solution, 

other than F(z), then fl(t) has every singular point which g(t) has and in addi- 

tion it has at least one other; in fact, it has a singular point at each of the 

points a~ for which at least one of the constants d~0, . . . ,  de, , s~-i is different 
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Th i s  shows  t h u t  the  c o n j u g a t e  d i a g r a m  of G(z) is smal le r  t h a n  t h a t  

This  comple tes  the  p roo f  of  Coro l la ry  2. I. 

I n  p r e p a r a t i o n  fo r  the  t r e a t m e n t  of  a ce r t a in  class o f  m e r o m o r p h i c  

f u n c t i o n s  we prove  the  fo l l owing  l e m m a :  

L e m m a  2 .4 .  Let  us consider an. interval J ,  and a meromorphie funetion G (z) 

possessing a pole of  order h +  I (h >= o) at z = b = a + i fl. Let G (z) be such that 

(2 .34)  (z - -  b )  T M  G ( z )  = Z(z) 

where J(z) is a function of  finite exponential type of  such a sort that 

(2. 35) b_, < --  h ( z l J ) ,  h (o lJ)  < b~. 

Then the equation (2. I) has the solutions 

F (z) = r G, < y  < 
(2. 36) 

Fs(z)=r G, + 

Each function F ,  (z), # = I, 2, is analytic in the associated strip I~ and is such that 

(2. 37) /2o < lim inf  x - 1  log  [F~(x  + iy~)l ,  l im sup x - 1  log  [ F ~ ( x  + iy~)[ < b~, 
X = - ~  Ig~  -I- 

where y ,  is a particular value of  y in the interval I , .  

The equation (e. I) has only one analytic solution which verifies a relation of  

the form (2 .37) for  a particular value of  y~ in I , .  

I f  {Z~j} denotes the subsequence of  {Z~} for which 7~ ~ o, then each of  the 

functions F~(z) and f~(z)  has singular points at the closure of  the set of points 

{ b -  Z~j}. I f  the ~,j are everywhere dense on the real axis, then the line y = fl 

forms a natural boundary for each of  the functions F 1 (z) and F 2 (z). I f  no Z,j lies 

in the open interval ~1~ < ~ < ~12, the function F~ (z) remains regular on the segment 

a - -  ./11 < x < a --  _41, y = fl and F 1 (z) ~ F~ (z). I f  several gaps occur among the 

~nj, FI(z) can be continued over each corresponding gap on the line y = fl, the 

continuation always leading to the same function F(z). Isolated singularities are 

poles of  order h + I and correspond to isolated ~,~.~ 

In another connection S. BOCHNER and F. BOHNENBLUST, Ann. of Math. (2) 35 (1934), 
pp. I 5 2 - - I6 I  , have obtained theorems which suggested the results contained in the final paragraph 
of Lemma 2.4. The method used here in studying the singularities of F l(z) and ~�89 was sug- 
gested by BOCHNER. For results of this sort see also E. GOURSAT, Bull. Sci. Math. (2) 11 (I887), 
pp. Io9--I  14. 
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That the series F r G converges absolutely in each of the strips /1 and I~ 

and that the convergence is uniform in every finite par6 of either strip are 

immediate consequences of the relations (2.34) and (2.35). Indeed we may 

write, for example, 

IF.(~)I- 7x~(z-b T~+~] ~]y-fll~+~ lT~€ + ;~'~)]' 

and we may apply the results of Theorem 2.3 to the latter series. The func- 

tions Fl(Z ) and .F~(z) are clearly solutions of (2. I) and are analytic in the strips 

11 and I~ respectively. That each function F ,  (z), / ~ -  I, 2, verifies a relation of 

the form (2.37) and that it is unique in this respect we easily see as in the 

proofs of Theorem 2 . 3  and Lemma 2. ~. 

We proceed now with the proof of the third par~ of the lemma. Let  C 

be a circle of radius R, center a, containing none of the points b-~)~nj, j = o ,  I, 2 , . . . ,  

in its interior and passing through a single one, b --  ~"k, so that [ a - -  b + ~'~k I - R, 

[ a - - b + ~ j [ > R ,  j ~ k .  If  C' is any circle of radius R ' < R ,  center a, then 

it is clear that  the series F ~ G converges absolutely and uniformly in C' and 

hence the series F"  G represents an analytic function regular in the interior of 

the circle C. We shall show that the function represented by this series in C 

has a singularity at the point b -  ~nk. Let L denote the interior of the line 

segment .~oining the point a to the point b -  )~'~k" Then if z is any point on L, 

we have I z --  b + ~n~ I < [Z -- b + ~ ' l '  J ~/~" Writing 

- -  , z i n  C, (2.39) (z - -  b + s h+l F '~ G = ~_~ 7~ni J (Z + ;~,,j) b + ;~,j/ 
j = o  

and using the f a c t  that  the series 

j = O  

converges absolutely and uniformly in every finite region, we see that  

lim (z -- b + ~,~)h+l Fo V ~ 7~,~ k J(b). 
z=b--~nk, z on L 

Since 7~,kJ(b ) ~ o, the point b -  )~nk is a singular point of the function repre- 
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sented within C by F ~ G. I f  ~,k is isolated the point b - / t ,  k is clearly a pole 

of order h + I of the function represented by I "~G. I f  a gap occurs among 

the ~,. we may take as the point a any interior point of the corresponding gap 

on the line y = ~ and we see that  Fj  (z) remains regular on this gap on the line 

y----fl and that F1 ( z ) -  F~(z). Since each of the functions F 1 (z) and F~ (z) has 

singular points ~t the closure of the set { b -  Znj}, the line y ~-fl is a natural 

boundary for each of the functions F 1 (z) and F~ (z) if the points i , j  are dense 

on the real axis. This compietes the proof of Lemma 2.4. 

On applying Lemmas 2. I and 2.4, we immediately prove the following 

theorem: 

Theorem 2.4. Let us consider an interval J~ and a set of fu~wtions Go (z), 

G~ (z), . . . ,  Gk(z) of finite exponential type such that 

(2.  4 ~ ) ~_)~r < - -  h , (yg lGp) ,  h(oJ(~Tp) < bc~, .p = o ,  I ,  . . . ,  ~. 

Let b I = a 1 + i ~ l  , . . . ,  bk  = Ctk + i flk be any k points of  the plane and let us denote 

by tip . . . . .  , flp~ the distinct fl's ordered as follows: tip, < flp~ < ... < flPa" Define 

t i p , = - -  ~ ,  flPa+l~- + ~" I f  we write 

G~ (z) 
(2.4I)  e(z)  = Go(z ) + ~ (z - -  b p ) m ,  + 1 ,  

p = l  

where the m~ are non-negative integers, then the equation (2. I) has the solutions 

( 2 . 4 2 )  T'~ (z) = F ~' G, I e  (~p, < y < ~P~+I), ~ = o, I . . . . .  a. 

Each solution F~ (z) is analytic in the associated sb'ip I~ and is such that 

(2.43) /-)~ < lim inf x -1  log ]Ft~(x + iy~)], lim sup x - a  log ]Fv(x + iy , )  I < bq, 
X~ --oo ~ + o0 

where Yt~ is any fixed value of y in the interval I~. 

The equation (2. I) has only one analytic solution which verifies relations of  

the form (2 .43)for  a particular value of Yt~ in the interval Its. 

The results contained in the third part of Lemma 2.4 enable us to discuss 

the singularities of the functions Fv (z). Before studying this problem we consider 

a special example which illustrates how certain of the singularities may cancel. 

Let  us consider the equation 
] 0 - - 3 7 5 3 4 .  Aeta mathematica. 69. I m p r i m 6  le 28 oc tob re  1 9 3 7 .  
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(2. 44)  / ~ ( g  -[- I ) - -  2~b ~(g) = G ( z ) .  

For  G (z) denot ing  successively the funct ions 

I 2 I 2 

Z-~- I Z Z-~- I Z 

the  equat ion (2.44) has t h e  solutions 

F o  I I I I I I 
__ , F ~ __ ~ , F ~ - - _  

2 n+l  Z + n + I 
n=O n--0 

The solution of the  first equat ion has poles at  z = -  i , -  2 , -  3 , - . - ;  the  

solution of the second equat ion has  poles at  z = o ,  - -  I, - -  2 . . . . .  ; while the 

solution of the th i rd  equat ion has but  a single pole, namely z = o. 

W e  r e tu rn  to the  case considered in Theorem 2.4.  Le t  us assume tha t  

Gp (bp) ~ o, p ~ I . . . .  , k, so tha t  the points bp are ~ctually poles of orders mp+ I 

of G (Z). Le t  {~,~) be the subsequence of {~} for  which 7~ ~ o. For  definiteness 

we consider the line y = ~1, where fit <t ip ,  p ~ 2 . . . .  , k, and we assume t h a t  

b~ . . . .  , br are the b's whose imaginary  parts  are fl~. W e  dist inguish between 

two cases. 

(I). No two of the  points bl, . . . ,  br differ by a ~ .  In  this case each of 

the funct ions  T' 0 (z) and F~ (z) has singulari t ies at  the closures of the sets of points 

{ b l -  ~,!j) . . . .  , { b ~ -  ~ j ) .  I f  one or more gaps on the line y = t l  occur among 

these sets then  both  F 0 (z) and F 1 (z) are regular  on each such gap and Fo(z ) - -F l (Z  ). 

I f  Fo (Z) (---- F~ (z)) possesses an isolated s ingular i ty  on y == t~, the s ingular i ty  is 

a pole. 

(2). Some of the points b~, . . . ,  b~ do differ by a ~ .  I f  b ~ - - b ~ - - ~  but  

if m~ ~ m~, then  again there  is no cancellat ion of singulari t ies (in so fa r  as the 

singulari t ies arise f rom the  poles b~, 5~). Hence  let us assume tha t  

b~ = b 1 + gk~, b 3 = b~ -~- ~k, . . . .  , bee = bl  + )~kOo, 

and tha t  mj = m ~  . . . . .  meo. I f  we write 

H n = 7 2  n G I (b l )  + ~'2 n + 2 ~ ( x 2 ( b ~ )  + " '"  + 72,,+2QoGQo(boo), • = o ,  i ,  2, . . . ,  

and if we denote  by {HnJ} t he  subsequenee of {Hn} for  which H .  ~ o, then  we 

see tha t  the  singulari t ies on the line y = t l  ar ising f rom the poles bt, � 9  boo 
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are the  points  which consis~ of the  closure of the  set  { b ~ -  ~nJ}. The  singula- 

r i t ies  ar is ing  f rom the poles beo+~ . . . .  , b~ do not  cancel  any of the  s ingular i t ies  

ar is ing f rom the  poles bl, . . . ,  beo. I f  there  are  any  in tervals  on the  line y=fl~ 

on which no s ingular i ty  occurs then,  as in (I), F 0 ( z ) -  F~ (z). 

The  behavior  on each of the  o ther  lines is s imilar  in every respect.  

F ina l ly  we note  t h a t  if  E(t) is such t h a t  for  some a the  re la t ion  _b~ < o < b ~  

holds ~, then  T h e o r e m  2 .4  applies to the  case where G (g) is any  ra t iona l  func- 

t ion and the  r em arks  fol lowing Theo rem  2 .4  give us the  na tu re  of the  s ingula  - 

r i t ies of the  solutions.  

2 .5.  W e  nex t  prove the  fol lowing theo rem:  

T h e o r e m  2.5- Let E(t) be such that bo > o. 
. :  

Let G(z) be analytic in 

(2.45)  l im G (z) -=-- a, z in S. 

Then the function F(z) defined by the series F ~  (for Izl sufficiently large) is 

analytic for all values of z for  which z -  do is in S and it  represents a solution 

of  the equation (2. I ) f o r  which 
qo 

(2.461 l im F(z)--~ a ~ 7~ z in S. 
n = O  

There is only one analytic solution of (2. I) for  which the limit as z ~ ~ in 

S exists. 

I f ,  moreover, G (z) possesses the asymptotic expansion 

(2.47) G (z) ~ ao + a l +  a~ z ~ +  ...,  z i n  S, 

then the function F ( z ) =  F ~ G possesses the asymptotic expansion 

(2.48) F(z)  ~ bo + b, + b~ z ~ + " "  z i n  S, 

where 

1 The condition b a < o <ha for some a is equivalent to the condition that I E(iv)[ >-_ ~ > o 
for - - ~  < v < + ~ .  Cf. BOCH:NER, I, p. 44o. 
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(2.49) bo Z ~ Z --- ao 7:~,,, b, : ap 7";,~ (-- Zn) "-v. 
n : O  p ~ l  n~O 

For  every positive ~ there exists a quant i ty  Qo ~ Qo(e) such that  

IG(z)--al<~, I~1 > eo, 
Using (2.8), we see tha t  

z i n  S. 

o o 2,  o z i n  S. 

I t  follows tha t  (2.46) holds and moreover  the  series F ~ G converges absolutely 

for  all z in S for which [z - -  ~o[ > Qo. In every finite subregion of this region 

the convergence is uniform and hence the sum-function F(z) is analytic for  all 

z in S for  which [ z -  ~o1 > qo- I t  is easily verified tha t  F(z)  is a solution of 

(2. I). Analytically cont inuing the solution by means of the r e l a t i o n  

(2 .50 )  F(z) ~- --  c~1[  ~=1 csF(z  + (t~-- r176 + G ( z - - d o ) ] ,  

we see tha t  F(z) is analytic for all values of z for which z -  ~o is in S. 

For  the uniqueness let F ,  (z) be any analytic solution of (z. I) for  which 

the limit as z--~ oo in S exists. Wr i t ing  

rearranging the (absolutely convergent) double series and using (2.7), we see 

tha t  F(z) --- F ,  (z). 
Let  us now assume that  G(z) possesses the asymptot ic  expansion (z. 47). 

In  the present paxagraph v will denote a fixed positive integer  and only values 

of z which are in S will be considered. For  every posit ive number  ~ there 

exists a q =O(e) such tha t  

( 2 . 5 , )  Iz + z .I  �9 ~ ( z  + z . ) -  ao . . . . . . .  z + z,~ (~ +--z.)" 

I f  we write 

bo, n = ct o, bj, n = a p  P I 

p = l  

then by (2.49) we see tha t  

<~,  {z+Z~{ < e. 
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I I I (z. 5 z )  . . . . .  < y ,  . . . . .  
n = O  

By use of the inequalities (2.5 i ) and (2.52) we verify that  

lim ] z, l ] F (z) _ bo _ b_~ _ .. b~, ] 
z - - ~  ~ Z 'v O ,  

and hence F(z) possesses the asymptotic developement (2.48). 

An analogous theorem holds for the case when E(t) is such that  /21 < o 

and where the sector S of Theorem 2.5 is replaced by a sector S 1 (z--(~ _--< 0 ~ z +  d, 

] z ] >  R). Because of its similarity to Theorem 2.5 we omit its statement. 

I II .  

3. I. 

(3. I) 

The Equation with Asymptotically Constant Coefficients. 

In  this part we shall consider the equation 

m 

c~ (z) F (z + de) ----- e (z), 
S ~ 0  

where the coefficients cs (z), analytic functions in a given sector, are asymptotically 

constant in this sector. Denoting by c~ the asymptotic values approached by the 

functions c,(z), we continue t o  use the notation of section 2. I relating to the 

function E(t), etc. 1 We use the following abbreviations due to Bochner: 

(3.2) _ /1F=~cs_F(z - i -~ ) ,  T ( F ) =  (cs--es(z))F(z + 6s). 
8 ~ 0  8 = 0  

We next prove the following theorem: 

Theorem 3. i. Let us consider the equation (3. I) where the e~(z) are analytic 

in S ( - - d  ~ 0  ~ (~(o < d ~ ~ ) ,  I z ] > / ~ )  and such that 

1 I n  section 2. ! we assumed tha t  c o # o ,  c m # o and tha t  otherwise the c s were a rb i t ra ry  

complex constants .  In  the theorems which  follow in th i s  par t  (Theorems 3- I and 3.2) i t  is not  

necessary tha t  c m be different from zero. I n  these theorems the  series F ~  occurs and in their  

proofs the  non-vanishing of c o is definitely used. For  analogous theorems where  the series p i g  

would occur co migh t  be zero and c m would  be assumed  different from zero. 
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(3.3) 

where C o ~ O, 
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lim c, (z) = e,, s = o ,  I, . . . ,  m, z in S, 

and let Co(Z) be non-va.nishing in S. I f  G (z) is analytic in S and 

is such 

exists of  such a sort that 

(3.4) IG(z) l ~ A e  ~,  z in S, 

where b < bo, then by successive solutions of the equations 

that for  every pa i r  of  real numbers a, fl (a < fl) a constant A -~ A (a, ~) 

~4 H ~  G, 

.4 H "+~ = T (H') ,  
(3.5) 

~ 0 ~  I~ 2~ . ..~ 
we are led to a function 

(3.6) F(z) = H ~ (z) + H 1 (z) + H "  (z) + ... 

which is a solution of  the equation (3. I). The function F(z )  is analytic for  all z 

such that z -  do is in S and moreover it is such that 

( 3 . 7 )  I F(z)  l <= A '  e b~, z - -  6o in  S, a <-% y < fl, 

where A '  is a constant. 

There exis ts  only one analytic solution of  (3. I) which verifies a relation of  the 

form (3.7) with a n  exponent b < bo .1 

W e  define .successively the funct ions  H ~ H*,  H ~ . . . .  , by means of  

H ~ 1 7 6  H ' + I : F ~  ~,---- o, I, 2, . . .  

By a slight modification of Lemma 2. I we see that  

I .H~ Ce b~, Z - - 6 o  in S, a<=y<=fl, 

where C is a constant  independent  of G (z). For  every positive r there exists 

an x, such tha t  I c , - - e , ( z )  l < e  for z in S and I z l > x , .  Hence  

IT(H~ b=A(,CD)e b~, z i .  s, I l>x., 

and we may form the series i-O~(HO). By induction we easily verify tha t  

* The methods  Used in the proof of this theorem are s imi l a r . t o  those-used  by  BOCIINER, 

I, pp. 443--444. 
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I  -00ins, I - ol>x. 
~ = 0 ~  I~ 2 ,  . . .  
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D e n o t i n g  by eo a positive constant  such tha t  eo CD < I, we see by (3.8) tha t  

the series (3.6) converges absolutely and uniformly in every finite region contained 

in tha t  part  of S for which [ z --  c~ o [ > X~o, a < y < ft. Since a and fl are arbitrary 

real numbers (a < ~) we see tha t  the sum-function F(z) is analytic in tha t  part  

of S for which [Z--~o[>X~o.  From (3.6) and (3.8) we see t ha t  

(3.9) [F(z)I<A1r S, 

where At = A  C / ( I -  CD). By means of the equations (3.5) we easily verify 

tha t  the funct ion F(z) in (3.6) is a solution of (3. I). Using a relation of the 

form (2.50) with c~ replaced by c~(z--~0), we continue the solution analyt ical ly 

and obtain a funct ion F(z) analytic for all z for which z -  ~o is in S. In  view 

of (3.9) and the analyt ici ty of F(z) for z - - ~ o  in S we see tha t  F(z) verifies 

a relat ion of the form (3.7). This completes the proof o f  the first part  of 

Theorem 3. I. 

In  order to prove the uniqueness we assume tha t  F , ( z ) i s  an analytic 

solution of (3. I) which verifies a relation of the form (3.7). We determine 

successively the functions j0,  jr, j ~  . . . ,  as ))the~) solutions of the equations 

(3- Io) .4  j o  = T (/7,), 

(3- II) A J  "+x = T(J'),  Y ~ - - O ,  I ,  2~ . . .  

In  the same manner  in which we derived the relations (3.8) we derive the relations 

Z i l l  S ,  v = O ,  I ,  2 ,  . . . ,  
(3. 12) [J' l  < A' C(eo CD)"e bx, 

[z- ol > X,o, .--<y=<fl. 

From the relations (3. I2) we see tha t  we may write F , (z )  in the form 

(3.13) F , = H ~  ..., z i n  S, [Z--~o]>X~o, a < y < f l ,  

where 
H ~ = F ,  -- jo ,  ~- - - -O~ I ,  2 ,  . . .  

The functions H~ are solutions of the system of equations (3.5) and moreover 

they satisfy bounds of the form (3.8). By Lemma 2. I we see tha t  these facts 

imply tha t  
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and hence 
H .  = H ' ,  

ao 

F ,  = y ,  H , = ~ .  

V = O ,  I~ 2~ . . . ,  

This eomple~es the proof of Theorem 3. I. 

In  an analogous manner  we obtain a similar theorem t reat ing the  case 

where the functions es (z) and G (z) are analytic in S~ ( z - -~  ~ O ~ z +  d, [z [ >  B) 

and where the functions cs(z) are asymptotically constant  in 81. Because of its 

similarity to Theorem 3. I we omit its s tatement .  

We  next  state and prove a theorem analogous to Theorem 2.5- 

Theorem 3-2. Let the functions e~ (z) in (3. 1) be analytic in 

and such that the relations in (3.3) hold where Co ~ o, and let Co (z) be non-vanishing 

in S. Let E(t) be such that bo > o. Let G(z) be analytic in S and such that 

(3. I4) lira G (z) = a, z in S. 
Z = o o  

Then by successive solutions of the equations (3.5) we are led to a function F(z) 

defined by (3.6) which is a solution of the equation (3. I). This function is analytical 

for all z for which z -  ~o is in S and moreover it is such that 

oo 

(3. ~ 5) lira F (z) = a ~ 7~,~, z in S: 
z = o o  

' a = O  

There is only one analytic solution 

S exists. 

I f  moreover the functions G (z) and 

of (3- I) for which the limit as z ~ ~ in 

c~(z) possess the asymptotic expansions 

(3. I6) G ( z ) ~  a o + as + a~ z ~ +  ' z i n  S, 

(3" I7) es(z) ~ es c~ c~ 
- 7  - P  - 

�9 , z i n  S, 

then the functions H �9 (z) possess asymptotic expansions of the form 
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b ~ b" b" 
�9 +1 ~+2 Z in  S, v = o ,  I ,  2,  (3. ,8) H ' ( z ) -  ;;  + ~+ i  + . ~  + " " ,  " '  ", 

and the function F(z )  possesses the asymptotic expansion 

(3. ~9) r ( ~ ) -  bo + b, + b~ z ~ + ' " '  z i n  S, 

where 
oo 

bo = b ~ = ao ~ 7~ 
(3.20) ~=o 

b,, .__~. b~ + b~, + ... + b ~, v ~ I ,  2, 3 , ~ �9 �9 , 

W e  firs~ prove the first par~ of the theorem. We define successively tile 

functions H ~ H 1, H 2, . . . ,  by means of 

H ~ = F ~ G ,  H ~ + I  = F 0 l / / ( H ~ ) .  

By Theorem 2.5 we see tha t  
oo 

(3" 21) lim t I ~  a ~  7o,  z in S, 
Z = o O  

n = O  

and hence for every positive number  ~o there exists a constant  Po =Po  (~o) such tha t  

(3.22) IH~ z in S, ] z [ >  Po. 
[ [ n 

and (3.2i)  we see tha t  for every ~ > o there exists a p = p ( ~ )  In  view of (3.3) 

such tha t  
I ~ (H~ < r ~ in S, 

and from this it  follows tha t  

For  every ~ > o there exists a q = 0 ( t )  such tha t  

I c . -  e.(z)l < *, 

and consequently we see tha t  

I ~(H1)I < ,(m + ~)d~. 
11 -- 37534. 

I ~ l > p ,  

z in S, I z - - 6 0 ] > P .  

z in S, I z [ > e ,  

z in  S, 
Acta mathematica. 69. Imprim6 le 28 octobre 1937. 

I~1 > (p,  e). 
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By induct ion we easily verify that  

IH~+:(z)l<~(m+ I)'d'+'C, ~ , = o ,  1 , 2 , . . . ,  Z in S, I ~ - a o l  > (p, e), 

and hence the series (3.6) converges absolutely for all z in tha t  par t  of S for 

which Izl > (p, (~(eo)), where ~o is a positive constant  such tha t  e0(m + I )d  < I. 

I f  z is restr icted to any finite par t  of the above region the  convergence of (3.6) 

is uniform and the funct ion F(z)  is thus  seen to be analytic for z in tha t  par t  

of S for which I zl > (P, O(~o)). As in the proof  of Theorem 3. I we see tha t  

F(z)  is a solution of (3. I) and that  it is analytic for all z such tha t  z - - d o  is 

in S. In  order to prove tha t  (3. I5) holds we write 

I [I  [ F(e)--a~),~n <- H~176 + IH~(e)l  + IH~(z)l  + ... < t o  + 

dC + 
I - ~ o ( m  + : )d '  

for  z in S and [z[ sufficiently large. Since a relat ion of this form holds for 

every positive to and C we see tha t  (3. i5) holds. 

Not ing  tha t  any analytic funct ion for  which the limit as z--* oo in S exists 

satisfies a relation of the form (3.7), we see tha t  the  uniqueness of this solution 

is a consequence of Theorem 3. I. 

Next  let us assume that  G (z) and the cs(z) possess the asymptot ic  expan- 

sions (3. I6) and (3. I7). By Theorem 2.5 we see tha t  

H ~ (z)~ b~ + bl~ + b~ ~ +  , z i n S ,  

a o where b ~ = ~,Txn. I f  we assume tha t  for a fixed integer  ~ the funct ion H~(z) 

possesses an asymptot ic  expansion of the  form (3. :8) then in view of (3.17) we 

see tha t  the funct ion T ( H  ~(z)) possesses an asymptot ic  expansion of the form 

dq0 d r  

(H ~(~))~ ,§ ~+~ z ~ + z ~ +  . . . ,  z in S. 

Applying Theorem 2.5 to the equat ion / 1H  ~+1: W(H~), we see that  the func- 

t ion H ~+:(z) has an asymptot ic  expansion of the form (3. i8) with ~ replaced 

th roughou t  by ~ + I. The induct ion argument  is complete and we see tha t  each 

of the funct ions H ~ H l(z), H ~(z), . . . ,  does possess an asymptot ic  expansion 



Linear Difference Equations with Arbitrary Real Spans. 83 

of the form (3. 18). In order to show that F(z) possesses the asymptotic expan- 

sion (3. I9) we consider, for tt a fixed non-negative integer, the expression 

(3.23) ~ ~ ( ~ / - b o  . . . .  ~ = ~ y ,  W ( ~ ) - - r  ... ~; + ~ N ~ H . + ~ ( ~ ) .  
j = 0  k = l  

From the definition of an asymptotic expansion we see that  the relations (3.18) 

imply that 

(3. 24) 

and 

(3.2s) 

( lira z~ HJ (z) --  ~j . . . .  ~ = o, z in S, j = o ,  I, . . : ,  tt, 

l i m z ' H ' + l ( z ) = o ,  z in S. 

Making an induction argument of the form made in the first paragraph following 

the statement of Theorem 3.2, we show that for every pair of positive numbers 

s and ~ there exist constants Q (s) and p (~) such that 

(3.26) Iz, H,+~(z)l<s~-l(m + I)k--ldk--l~, g in S, 

I gl > (r v(~)), k = o, i, ~ , . . .  

Letting s be a quantity % such that o < s0 (m + I) d < 1 and using the fact that  

(3.26) holds for every positive ~, we see that  (3.26) implies 

~o 

(3. 27) } i m z ' ~  H~+k(z )=o ,  z in S. 
k = l  

From (3.23), (3.24) and (3.27) we see that  

b.) 
(3. 28) l imz" F (z ) - -b  o - .  ~ = o ,  z in S, 

and since this is true for every non-negative integer tt the function F(z) has 

the asymptotic expansion (3. I9). This completes the proof of Theorem 3.2. 

We omit the statement of an analogous theorem relating to the case where 

the functions are analytic in S 1 (It --  d < 0 < z + d, [ z i > R). 
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I V .  T h e  S y s t e m  w i t h  C o n s t a n t  Coe f f i c i en t s .  

4. I. In  developing the theory of systems of difference we shall use a 

symbolic notat ion of the s o r t  used by Bochner and Carmichael. 1 

Let~ us consider a difference-expression 

m 

(4.  c F(z + 
S ~ 0  

with complex constants cs and non-negative ds, o _--< ~o < ~1 < J~ "< "'" < d,~. We  

associate with such a difference-expression as its characteristic funct ion E ( t ) t h e  

funct ion 

(4. 2) E(t )  cse~s t. 
~=0 

To every funct ion of the form (4. 2) there corresponds a unique difference- 

expression (4. I). In  view of this one-to-one correspondence we shall represent 

the difference-expression (4. I) also by the symbol 

(4- 3) E [F]. 

I f  /gl (t) and E 2 (t) represent two characteristic functions then  the relations 

(4- 4) E 1 [E~ [F]] = E~ E~ [F] = .E, [E 1 IF]] 

hold, where by E ~ E  2 (t) we mean the ordinary product E~(t)E~(t) of the func- 

tions E~ (t) and E~ (t). 

Let  us consider p~ difference-expressions 

'~jk 

(4. 5) _/ljkF=-- ~_j cJk F ( z  + djk), j ,  k =  I, . . ., p, 
S = 0  

and t;heir characteristic funct ions 
~njk 

(4. 6) Ejk (t) -~ ~_~ e jk ea~ kt, 

1 S. BOCHNER, II; R. D. CARMICHAEL, lOC. r The symbolic notation which we use in 
this section is a special case of that used by BOCHNER in his treatment of difference-differential 
equations. The laws of combination of the symbolic operators given in the present paper in (4-41, 
(4. I2), (4. I3), etc., are given by BOCHNER, II, pp. 582--583 and by CARMICHAEL, pp. 2-- 4. 
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where the mj~ are arbitrary non-negative integers, the ~{k are real non-negative 

numbers, and the c~ k are complex constants, the sets c jk and ~{k being subject 

to the restriction that  the functional determinant 

(4-Z) 

shall not vanish identically in t, 

(4-8) 

E (t) =-- I E:~ (t) I 

[E( t ) l  ~ o. 

We shall under these conditions consider the non-singular 1 system of difference 

equations 
P 

(4. 9) ~_j A j k  Fk  ~- G~(z), j = i ,  . . ., p ,  
k~l  

which we may also write in the form 

P 

(4. io) Z zj~ [F,] = ~.  = 3, j I ,  . . , p .  
k=l 

Denoting by e./k(t) the cofactor of E j k ( t )  in E(t), we have 

p I n ( t ) ,  k = ~, 
(4" I I )  Z eJl~(t) 'EJk(l):( 0 , kyg lA. 

j = l  

The ejk(t) being characteristic functions of difference-expressions, we can for 

every j )>multiply>> the r e l a t i o n  (4. IO) by ej~, where ~ is any fixed integer, 

I ~ /~  ~ p.~ Performing these >)multiplications>>, we have 

P 
(4" I2) Z ejp Ejk [Fk] = ejlz [Gj], j = I ,  . . . ,  jo. 

k=l 

Summing the expressions (4. 12) as to j from .X to p, we obtain 

P 

(4" I3) E [ F # ]  : Z r ~ :  I, . . . , .p .  
5=1 

I CARMICHAEL calls non-singular a system of difference equations for which the associated 
functional determinant is not identically zero. 

2 Cf. BOCHNER, II, p. 583. 
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Every set of  solutions of the system (4. IO) is a set of solutions of the system 

(4- !3) -1 W e  shall in this part  obtain an appropiate set of solutions of (4. I3) 

which is also a set of solutions of (4. IO). 

The determinant  E(t) in (4. 7) may be writ ten in the form (4. 2) where the 

cs are non-vanishing complex constants, the ~s are distinc~ real non-negative con- 

stants,  and m is a non-negative integer. I f  m is zero the problem is trivial as 

we see from (4. I3). Hencefor th  we shall assume .that m is greater than zero 

and under  t h i s  assumption we may use the notat ion of section 2. I relat ing to 

the funct ion E(t), its zeros, the generalized Dirichlet  expansions of its reci- 

procal, etc.  

4. 2. We next  prove a lemma which is the analogue of Lemma 2. I. 

L e m m a  4. i (2. I)'. Let us consider an interval Jo and p analytic functions 

G~ (z), . . . ,  Gp (z) regular in a strip (a, fl). I f  the G~(z) are such that 

(4. ~4) IVs(~)l<-- A(e ~-~, c~), , < y < = ~ ,  j =  ~ , . . . , p ,  

where br < [_> ~ b < b~, then the non-singular system (4. IO) has the set of solutions 

(4. 15) i~/z(z) = r ~  e~.~ it;j], ~ = ~ , . . . , p .  
j=l  

The functions ~'~ (z), . . . ,  Fp (z) are analytic in the strip (a, fl) and are such that 

(4. ~6) ]F~, (~)] __< A' (e~- ~, e~) ,  a =< y _-< ~, , = ~ , . . . ,  p,  

where A' = 3 A C' and C' is a constant independent of the Gi (z). 

The system (4. IO) has only one set of  analytic solutions Fl(z), . . . ,  Fp(z) for 

which relations of the form (4. I6) hold; in fact, i t  has only one set for  which the 

relations 

(4. I7) ba < lim inf  x -1  log ]F~, (x + iyo)1, lim sup x --1 log ]F~ (x + iyo) ] < ba, 
X ~  ---00 X ~ + o r  

where l*-~ I, . . . ,  p, hold for a particular value of Yo in the interval a <= Yo <= ft. 

We first show tha t  i t  is possible to form the series (4. 15). Using the 

facts tha t  the ejk(t) are characteristic funct ions of difference-expressions and tha t  

the relations (4. 14) hold, we see at  once tha t  the funct ions 

1 CARMI(2HAEL, foe. cir. p. 5, gives an example showing that the converse does not hold. 
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P 

(4- 18) Z ej,[Gj], 
j = l  

verify relations of the  form 

pt = I , . . . , p ,  

I I (4. 19) = a = y = ~, ~t I, . . . ,  p, j=~ ej,~[Gj] < A B ( e  ~-x, ebx), < < = 

where B is any constant  such that  

P 

(4- 20) B _--> ~,  ea't~ (b), te = I , . . . ,  p. 
j=l  

Since the relations (4. 19) hold we may apply Lemma 2. I to each of the  equa- 

tions (4- 13) and we see tha t  the  funct ions in (4. I5) form a set of solutions of 

the  system (4. 13), tha t  these functions are analytic in the strip (a, fl) and  tha t  

they satisfy relations of the form (4. I6) with C ' =  B C. We next  show tha t  

these funct ions furnish a set of solutions of the system (4. IO). Wri t ing  

Fj,~ [F.] = Ej .  n ,  , . . . ,  

performing an in terchange  of order of summation,  collecting terms (these processes 

being valid because of (4. I4), (4-I5) and (4. 19)) and using (4. I I), we see tha t  

p ~ oo 

~, Eb. [r~.] = ~ 7LE[Gj(z + Z.)] = ~  G~(z + Z.) ~, c~Z~,.-,,, j = 1 , . . ,  p. 
/ e = l  n = O  n = O  s = 0  

From the relations (2.7) it follows that  the functions F l ( z ) , . . . ,  Fp (z) constitute 

a set of solutions of the system (4. IO). This completes the proof of the first 

par t  of the lemma. For the  uniqueness we note tha t  every set of solutions of 

the system (4. io) is also a set of solutions of the system (4. I3). The uniqueness 

follows immediately by an application of Lemma 2. I to each of the equations 

in (4. I3). This completes the  proof of Lemma 4- 1.1 

I n  t h e  proof  of L e m m a  4. I we have  used no t  t h e  fact t h a t  the  func t ions  G(z) sa t i s fy  
re la t ions  of t h e  fo rm (4.14) b u t  the  fact t h a t  the  func t ions  (4. x8) sa t is fy  re la t ions  of the  sor t  
g iven  in  (4. I4) and  (4- I9). If, i n s t ead  of a s suming  (4. I4), we mere ly  assume (4- 19) we a r r ive  a t  
t h e  conclus ion t h a t  the  func t ions  F(z) sa t i s fy  (4.16) and,  f rom these  re la t ions  and (4. Io), we see 
t h a t  the  func t ions  G(z) do sat is fy  re la t ions  of the  form (4. I4). 
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T h e o r e m  4. i (2. i)'. Let  us consider an interval J~ and p functions G 1 (z), 
. . . ,  Gp (z), each satisfying the hypotheses of Lemma 2.2. I f  in addition 

(4. 21) 12a< - -h ( . IGj ) ,  h(olGj)< b~, j =  ~ . . . .  ,p,  

then the non-singular system (4. Io) has the set of  solutions (4. I5). The functions 

te 1 (z), . . . ,  Fv (z) are analytic in the upper halfplane o <= y < + oo and are such 

that for  every positive number fl and for every pair of numbers b and b (b_ ~ b) for  

which 

(4.22) b _ , < b < - - h ( z l G ~ ) ,  h ( o l G j ) < b < b ~ ,  j - - I , . . . , p ,  

there exists a constant f l  -= ~4 (fl; _b, b) of such a sort that 

(4. 23) I.F~,(z)l _-< ~(e~ ,  J~), o_-<y_-<fl, # =  i, . . . ,p .  

The system (4. ~o) has only one set of analytic solutions for which relations of  

the form (4. 23) hold; in fact, i t  has only one set of analytic solutions for which 

4. 24) _b~, < - -  h (n:! F~,), h (0 I-~,a) < b., # = I, . . . ,  p .  

This  theorem is an immedia te  consequence of Lemmas  2.2  and  4- I. 

Sl ightly modi fy ing  L e m m a  4. I, when  a is zero, to t reat  funct ions  analyt ic  

in sectors for  [z[ > R and apply ing  this  modificat ion and L e m m a  2.3,  we obtain 

the  fol lowing theorem:  

T h e o r e m  4. 2 (2. 2)'. Let  us consider p functions GI (z), . . . ,  Gp(z), each 

satisfying the hypotheses of Lemma 2.3. I f  in addition 

(4. 25) h(o!Gj) < bo, j ~ -  I , . . . , p ,  

then the non-singular system (4. Io) has the set of  solutions 

P 

(4. 26) F ,  (~) = r ~ 5', ej,~ [Gj], ~ = ~, . . . ,  p. 
j = l  

The functions F1 (z), . . . ,  Fp (z) are analytic for z -- 6o in So and moreover they are 

such that for every pair of real numbers a, fl(a < fl) and for every number b for 
which 

h(o]G~) < b < bo, j - -  I , . . . , p ,  
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there exists a constant ~t -~ f i  (a, fl; b) of  such a sort that 

(4. 27) IF,( )I<=Ae i ,  So , =  

The system (4- IO) has only one set of  analytic solutions for  which relations of  

the form "(4. 27) hold; in fact, i t  has only one set of  analytic solutions for which 

h ( o l F . )  < bo, = . . . .  , p .  

We next treat the case where the functions G l(z), . . . ,  Gp(z) are of finite 

exponential type. We have the following theorem: 

Theorem 4. 3 (2.3)'. Let  us consider an interval J ,  and p functions G1 (z), 

. . . ,  Gp (z), each of  exponential type not exceeding q. Let  us assume that the V (z) 

are such that the relations (4. 2I) hold. Then the non-singular system (4. IO) has 

the set of solutions (4. 15). The functions F 1 (z), . . . ,  Fp (z) are such that the rela- 

tions (4. 24) hold. 

The system {4. Io) has only one set of analytic solutions for  which the relations 

(4. 26) hold. 

Each of the functions F 1 (z), . . . ,  Fp (z) is of  exponential type not exceeding q. 

When one at least of  the functions G 1 (z), . . . ,  Gp (z) is of  exponential type q, then 

a t  least one of  the solutions F1 (z), . . . ,  Fv (z) is of  exponential type q.1 

The functions in (4. I8) are of exponential type not exceeding q and their 

associated functions h (0) satisfy relations of the form (4-2 I) whenever the func- 

tions Gl(z ) . . . .  , G~(z) possess these properties. Consequently we may apply 

Lemma 4. I and Theorem 2.3 and we immediately obtain the first two parts of 

Theorem 4. 3, together with the fact that  the functions F1 (z), . . . ,  Fp (z) are of 

exponential type not exceeding q. We see the t ruth of the final statement in 

Theorem 4. 3 by noting that  if each of the functions Fl(z), . . . ,  Fp(z) is of 

exponential type less than q then the equations (4. IO) imply that each of the 

functions Gl(Z), . . . ,  Gp(z) is of exponential type less than q. This completes 

the proof of Theorem 4. 3- 

Using the results of section 2.4, we can treat the case when the functions 

Gl(z), . . . ,  Gp(z) belong to the class of meromorphic functions considered in sec- 

tion 2.4. Furthermore, if E(t) is such that  for some a the relation b~ < o < b~ 

The results  contained in the  final paragraph of Theorem 4.3 were suggested by similar 
results  obtained by CARMICHAEL, lOe. cir., p. 7. 

12--37534. Acta matheraatica. 69. Imprim6 le 29 oetobre 1937. 
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holds, we can t reat  the  case when the funct ions GI(Z), . . . ,  Gp(g) are any 

rat ional  functions. W e  omit the s ta tements  of these results. 

W e  conclude this part  with a theorem relat ing to the case when the func- 

t ions G l ( z ) , . . . ,  Gp(z) are asymptot ical ly  constant  in a given sector. As in 

section 2.5 we impose an addit ional  restriction on the function E(t),  

Theorem 4 . 4  (z. 5)'. Let E( t )  be such that b o > o .  Let  G~(z), . . ., Gp(z) 

( ( ) be analytic in S -- 6 ~ O <= d o < d <= 2 ' [ z ] > B and such that 

(4. 28) lim Gj ( z ) =  aoj, z in S, j = I, . . . ,  p. 
Z = O r  

Then the functions F~(z), . . . ,  Fp(z) defined by (4. 2 6 ) ( f o r  I~1 sufficiently large 

in S) are analytic for" all values of  z for  which z -  60 is in S and they represent 

a set o f  solutions of  the non-singular system (4- Io) for  which 

p r162 

(4. 29) lim Fg (z) = ~ ejg (o)aoj ~ 7a ~  z in S, lz = I, . . ., p. 
Z = r  

j = l  n=O 

There is only one set o f  analytic solutions of  (4. I o) for" which the limit of  

each function as z - *  ~ in S exists. 

I f ,  moreover, the functions Ga (z), . . . ,  Gp(z) possess the asymptotic expansions 

(4. 3 0) Gj  ( z ) ~  aoj + a l j  -t- a2j z 7 + ' ' ' '  z i n  S, j = I , . . . , p ,  

then the functions in (4. I8) and the functions F~ (z), . . . ,  Fp (z) possess asymptotic 

expansions in S. I f  we write 

P 

(4. 3 I) ~ ej~IGj] ~ ao~ + a_l, + a2g z ~ 4- . . . ,  z in S, ~ t =  I , . . . . p ,  
j = l  

then the asymptotic expansions of  the functions F l (z), . . . ,  Fp (z) have the f o rm  

(4. 32 ) 

where 

(4. 33) 

a n d  

.F'~ (z) ~ bog + bxg + b2g g ~ - ' 1 -  . . . ,  z in S, i x =  I , . . . , p ,  

~o p ~o 

= Y, Z ~ = Y, (o)ao  y ,  # = I , ,  p, 
n=0 j = l  n=0 
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(4. 34) b~, = ~ de, ~ 7x~ (--  ;~n) e, 
~=1 ~=0 

From (4- 28) we see that  each of the funct ions in (4. 18) also possesses a 

limit as z ~  ~ in S. As a consequence we may apply Theorem 2.5 to  each 

of the equations (4-I3) and we see tha t  the funct ions F~(z), . . . ,  Fp(z)are 
analytic for all z for  which z -  c~ o is in S and tha t  they satisfy (4. 29). I t  is 

easily verified as in Lemma 4. I tha t  these functions const i tute  a set of solu- 

t ions of the system (4. I O ) a n d  that  they form the only analyt ic  set for  which 

the relations (4. 29) hold, in fact, tha t  they form the only set of analytic solu- 

t ions for  which the limit of each funct ion exists as z ~ oo in S. i f  (4. 3o)holds,  

then each of the funct ions in (4. I8) possesses an asymptot ic  expansion in S 

and, applying again Theorem 2.5 to each of the  equat ions (4- I3), we see tha t  

each of the funct ions F~(z), . . . ,  Fp(z) possesses an asymptot ic  expansion of 

the form (4. 32). 

V. The System with Asymptotically Constant Coefficients. 

5. I. In  this par t  we shall consider the  system of difference equat ions 

in which the coefficients are asymptot ical ly constant  in a given sector and the 

$jk are non-negative numbers  ordered as follows: 

.ik (5 .2 )  o _-< ~ < ~ k  < ~ < . . .  < ~m~, j ,  k = i , . . . ,  p.  

Denot ing  by c~ k the  asymptot ic  values of the funct ions e~(z), we associate with 

the system (5. I) the funct ions Ejk(t) and E(t) defined by (4. 6) and (4. 7). W e  

consider only those systems for  which the determinant  E(t)does not  vanish 

identically in t and we write E( t )  in the form (4. 2), where the  c, are non-zero 

complex constants,  the $s are non-negative numbers  and m is a non-negative 

integer. The problem being trivial if m is zero, we assume tha t  m is greater  

than zero. We  will use the symbolic t r ea tment  of section 4. I and the nota t ion  

of section 2. I relat ing to the funct ion E(t) ,  etc. W e  will also use the following 

abbreviations:  
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mjk 

(5. 3) Tik(F) =~ ~ (c j k -  cJk(z))F(z + 6jk), j, k - -  i , . . . ,  p. 
s=O 

5.2. We  next  prove the following theorem:  

Theorem 5. i (3 .0 ' -  Let us consider the system (5. I) where the cJk(z) are 

( ( ) analytic in S --  d ~ 0 __< (~ o < d _--< ~- , ]z] > R and such that 

(5.4) lira cJ~(z) = c~ k, z in S, s~ -o ,  I , . . . ,  mjk; j ,  k =  I, . . . ,  19. 

Let us assume that the system (5. I) is such that 

(5.5) 

that the functional determinant 

( ~ J k = o ,  ], ~ =  I,  . . . , p ,  

(~) - I c~ (~) l 

is non-vanishing in S and that the determinant 

= I c~ *l 

is different fi'om zero. ~ I f  G~ (z), . . . ,  Gp (z) are analytic in S and such that for 

every pair of real numbers a, fl (a < fl) there exists a constant A = A (a, fl) of such 

a sort that we have 

(5.6) [Gi(z)[<=Ae b~, z in S, a<=y<=fl, j = I  . . . .  ,p,  

where b < bo, then by suec~vsive solutions of the systems 

p 

(5 7) ~ E~iH~] = G~(~), j = i , .  ,p ,  
k = l  

P 1) 

(5-8) ~ E~k[H; +1] = ~,  Tjk(H;), j =  i , . . . , p ,  ,=--o, i, 2 , . . . ,  
k ~ l  k = l  

we are led to the functions 

' H i  (~) , , p, (5.9) F ,  ( z ) =  H ~ (z) + H~ (z) + + = I, 

In view of (5.5) the condition that d be different from zero implies that  the function 
E (t) defined in (4. 7) does not vanish identically in t. 
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which constitute a set of solutions of  the system (5. I). The functio,~s F~(z), . . ., F~(z) 

are analytic in S and are such that there exists a constant fi  = fi  (a, fl) of  such a 

sort that we have 

(5. IO) I~ ; (z )  l ----< 2 e  ~ ,  z in S, a =< y =< ft. ~ = I , . . . , p .  

There exists only one set of analytic solutions of (5. I) which satisfies relations 

of  the form (5. IO) with an exponent b < bo. 

For  the proof we use Theorem 3.1 and Lemma 4- i. As usual, we make 

a slight modification in Lemma 4. i to t rea t  the case when the region S is used, 

such a modification being possible since we are using the interval  J0. By this  

modified form of Lemma 4. I we see tha t  the funct ions 

P 
(~. II)  H~(Z)= F~ Z vile[Vii , ~ =  I, . . . , p ,  

j : l  

are analytic in S and that  they const i tute  a set of solutions of the system (5.7) 

of such a sort  tha t  we have 

(5. ie) IH;(z)[<=ABCe b~, Z in S, a ~ = y ~ ,  i l l = I , . . . , p .  

Recall ing the form of ~ k ( F )  and using (5.4) and (5. I2), we see tha t  for  every 

positive number  e there exists an x~ such tha t  we have 

(5" I 3 ) i ~ T J k ( H ~ ) [  <= A B Ceb~(~D)' k=l 

where D is any constant  such tha t  

(5 

z in S, a~=y~=fl, [ z l > x ~ ,  

p ~ k  ~k 
D_->ZZe., 

k=l s~0 
j =  I, . . . , . p .  

Proceeding  as before, we obtain a set  of solutions H11 ( z ) , . . . ,  H ~ ( z ) o f  the  

system (5.8) for  ~ ~ o, each funct ion of which is analyt ic  in tha t  par t  of S for  

which I zl 2> x~ and each one of which satisfies a relat ion of the  form 

(5. I5) I H ~ ( z ) I ~ A B C e b ~ ( e B C D ) ,  z in S, a < = y ~ f l ,  I z l > x ~ .  

Continuing this process, we see that  t h e  functions H ~ + l ( z ) , . . . ,  H : + l ( z ) a r e  
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analytic in 

they satisfy the relations 

S for [ z [ >  x,, tha t  they form a set of solutions of (5.8) and tha t  

(5. I6) ]H;+~(z)I<--_ABCeb~(~BCD) "+1, z in S, a<~y<=fl, 

I f  *o is a positive constant  such tha t  ~o B C D  < I, then the series in (5.9) con- 

verge absolutely and uniformly in every finite subregion of tha t  part  of S for 

which a ~ y ~ fl, [z [ > x~,, and the sum-functions F~ (z), . . . ,  Fp (z) are analytic 

in tha t  part  of S for which [ z [ > x,o. Moreover these functions verify the relations 

(5. ~7) I F ; ( z ) I ~ AC ' e %  z in S, =<=y<=~, Izl>x~o, 

where C' = B C/(I --  cob  CD). By means of these properties and equations (5.7) 

and (5.8) we see at once tha t  the functions F ~ ( z ) , . . . ,  Fp(z) form a set of solu- 

tions of the system (5. i). Using the  relations in (5. I) and (5.5), we may write 

p p mjk  

~_~ c~*(z) Fk(z) = Gi(z ) + ~_j ~_j c, (z)Tk(z  + __ j =  I, . . ., p. 
k = l  k ~ l  s = l  

Using the fact  tha t  the  funct ional  de te rminant  A(z) is non-vanishing in S, we 

see tha t  we can continue the solutions analytically and accordingly, we see tha t  

the functions F1 (z), . . . ,  Fp (z) are analytic for all z in S. Since they are analytic 

in S and since they satisfy the relations (5. I7) for [z[ > x~o they satisfy relations 

of the form (5. IO). 

In  order to prove the uniqueness we proceed as we did in the  proof of 

Theorem 3. I. We  assume tha t  the functions F , ,  (z) . . . .  , Fv ,  (z) consti tute a 

set of analytic solutions of the system (5. I) verifying relations of the form (5. IO). 

We  determine successively the  sets of functions 

Jt~ (z), J~ (z), J~ (z), . . . ,  ~ t ~  I ,  . . . , p ~  

as ~)the~) sets of solutions of the systems 

P P 

(5- 18) ~,  Ejk [J~.] ~ ~,  T~k (F~,), j = I , . .  ~, p, 
k = l  k = l  

P P 

�9 ~r  ~ .  �9 . . . .  (5 '9) ~,  EJk[J~'+l] = Z 3~(Jk), J =  i, .., p, v = o ,  ,, 2, 
k = l  k = l  
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In  the  same manne r  in which we derived the relat ions (5.15) and (5. I6) we 

derive the relat ions 

z =~4BCebX(eoBCD) ~, z in S, a < y < f l ,  (5.  ) l  < = = 

I~1> X~o, ~ = o ,  ~ , 2 , . .  , 

Accordingly,  we may write the  funct ions  F , ,  (z), . . ., F p , ( z ) i n  the  form 

/ ~ ,  = H o t , ,  + H , ,  + H , ,  + ..., z in S, I Z [ > Xso, # : I ,  . . . ,  p, ( 5 - z i )  

where 

(5 .22)  

T h e  sets 

H~ ,  F~,  - -  j o  H , + I  ~ j~  _ j , + l  t~ tt, t e t t , / t =  i, . . . ,p~ ~ = o ~  i, 2~ . . .  

of funct ions  H ~ H ~ are sets of solutions of the systems (5.7) 
t t  , ,  �9 . .~  p ,  

and (5.8) and moreover  they verify bounds of the  form (5. I5) and (5. I6). By 

L e mm a  4. I we see tha t  

t~, ~, /t I~ . . . , p ;  v ~ o ~  I~ 2~ . . .~ 
and hence 

oo 

F . - E H  . . . .  = _~,, # I, . . . ,  p. 
V ~ 0  

This completes the proof of Theorem 5. i. 

There  is an analogous theorem when the region S is replaced by a region 

S i ( ~ - - d ~ 0 ~ + d ( o < d ~ , ~ )  ] e l > R ) .  Because of its s i m i l a r i t y t o T h e o -  

rem 5. I we omi~ i~s s ta tement .  

The  theorem which we next  prove is analogous to Theorems 3.2 and 4 .4 .  

T h e o r e m  5.2 (3.2)'. Let the functions cJk(z) in the system (5. l) be analytic 

( ( ) in S -- d <= O <--<_ 6 o ~ < 6 < = ~  , ]zl > R and such that (5.4) holds. Let the system 

(L I) be such that (5.5) holds, such that the functional determinant J (z) is non- 

vanishing in S, such that the determinant J is different from zero, and such that 

bo > o. I f  the functions G1 ( z ) , . . . ,  Gp (z) are analytic in S and such that 

(5. 23) t im e j ( z )  = aoj, z in  S, j = ~, . . ,  p, 
z ~ a o  

then by successive solutions of the systems (5.7) and (5.8) we are led to the functions 

F,(z) ,  . . . ,  Fp(z) defined by (5.9) which constitute a set of solutions of the system 

(5. I). The functions F,  (z), . . . ,  Fp (z) are analytic in S and are such that 
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p co 

(5.24) l i m F ~ ( z ) = ~  ej~(o)aoj~,7~ z in S, g = , , . . . , p .  
j = l  n=0 

There is only one set of analytic solutions of the system (5. I) for which the 

limit of each function exists as z--+ oo. 

I f  moreover the functions Gj(z) and cJ~(z) possess the asymptotic expansions 

(5.25) Gj(z) ~ ao~ + a ~  + a v  z z ~ + . . . ,  z i n  S, j I , . . . , p ,  

j k  j k  8 =  O, I~ 9njk, C2s �9 . . ,  
(5.  26 )  c jk ( ~ ' ) -  e j k -  c l - s  + z2 ~ i n  S ,  

z ' j, k =  I, . . . , p ,  

then the functions HI  (z), . . . ,  H~ (z) possess asymptotic expansions of the form 

b" b" b" 
(5. 27)  H "  (z) ~ " '"  , , ,+1 , , ,+2 # : I , . . . , p ,  ~7- + z--7~ + z~TV + "",  z in S, v = o , I ,  2 , . . . ,  

and the functions F1 (z), . . . ,  Fp (z) possess the asymptotic expansions 

(5.28) 

where 

(5.29) 

F t , ( z )  ~ btto _jr_ bgl  q- bg2 --  ~ + . . . ,  

p co 

j = l  n=O 

z in S, ~t = I , . . . , p ,  

~ :  I, . . . , p ,  

(5.30) b , ,  = b~, + ~',, + ... + b" ~t i, ' # :  I ,  . . , p ;  Y :  I ,  2 ,  . . .  

1 2 The  sets of funct ions  H~(z), H~(z),  H~(z),  . . . ,  ~t : I, . . . ,  p, defined as 

>>the>, sets of solutions of the systems (5-7) and (5.8), are also se t s  of solutions 

of  the systems 
P 

(5.31) o . .  E [H,,] = ~ ejt~ Iv  j], ,u : i, ., p, 
j = l  

(5.3~) E[H;+I l =  e~, e ~ (  ~ , ~ = i ,  . . , p ;  , = o ,  i, ~, 
j = l  

From (5-23) and f rom the  form of the operators  ejk we see tha t  

(5.33) l imej~[Vj]=aojej~(o),  z in S, 

and hence by Theorem 3.2 we see tha t  
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(5. 34) lim H/~ (z) = ~ aoj ej~ (o) ~j 7~.,~, z in S, /z ~ I  . . . .  , p. 
z ~ a r  

j = l  u=0 

Prom the form of ~j'k (F) and from (5.4) and (5.34) we easily verify tha t  

)] (5. ) lira ej~ ~ o, z in S, ,u ~- - -  I . . . . .  . ~), 

I flr 

and as before we have 

(5. 36) lim H '  -~ . ~ ( z ) = o ,  z in S, ?z I, . . ,p.  

By cont inuing this argument,  we obtain the relations 

( 5 . 3 7 )  l i m H f ,  + l ( z ) = o ,  z in S, ! t =  I, . . . , p ;  v ~ o ,  I, 2 , . . . ,  

and by making an anMysis of the manner  in which these limits are .approached 

(similar to the a rgument  made in the proof  of the first par t  of Theorem 3. z), 

we show not  only that  the series 
oo 

(5.3s) ~ H;+~ (~), :,  ~ 1 , . . . ,  ~), 

converge absolutely for [z] sufficiently large in S but  also tha t  

oc 

~+1 (5. 39) lira ~_~ H (z) = o, z in S, # ~- I, . . . ,  1). 

The convergence of each of the series (5.38 ) is uniform in every finite sub- 

region of the region considered. Hence  the funct ions ~ ( z ) ,  . . . ,  F~(z), defined 

by (5.9), are analytic for I~1 suffieient|y large in S, and Sil~ee (5.34) and (5.39) 

hold, these funct ions satisfy (5.24). That  they form a set of solutions of the  

system (5. I) and tha t  the set is unique follow from Theorem 5. ~ since any set 

of analytic functions F~(z), . . . ,  F~,(z), for which the limit of each funct ion 

exists as z --~ ~ in S, satisfies relations of the form (5. Io) for o < b < b0. From 

Theorem 5. I it follows that  the funct ions /~'~(z), . . . ,  Fp(z) are analytic in S. 

Final ly we assume that  (5.25) and (5.26) hold. Applying Theorem 2.5 to 

each of the equations (5.3I), we see that  each of the functions H ~ (z), . . . ,  H~,(z) 
possesses an asymptot ic  expansion in S. Using Theorem 2.5 and the form of 

the operators ej~, we can easily compute  the form of these asymptot ic  expansions. 

We  omit the computa t ion  and simply write them in the form (5.27) ,  for ~ ~ o. 

Using (5.9) and (5- 32 ) and applying successively the preceding argument ,  we see 
13--37534. Aeta mathematica.  69. Imprim6 Io 18 d6eembre 1937. 
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that the functions H~ (z), H * (z), �9 = I, 2, 3, �9 �9 possess asymptotic expan- �9 . . ,  p ~ 

sions in S and that these expansions have the forms indicated in (5.27). In 

order to see that  the functions F1 (z), . . . ,  Fp (z) have the asymptotic expansions 

denoted in (5.28) we write, for h a fixed non-negative integer, 

(5.4o) z h F,, (z) -- b,,0 . . . .  zh i z h ~ H~, (z) - -  - ~  - ~ l 
1--0 

oo 

/ /  (,~), ~ = i ,  . . . ,  p .  

The relations (5. :7) imply (by definit ion)that 

(5 .4I )  l imz  a H - - - ~ / - - . -  = o ,  z in S ,  u =  I, . ,p ,  

# =  I ,  . . . , p ,  
~lt h + n  (5.42) l imz  H,~ (z)~--o, z in S, 

z = |  ' n ~ I ,  2 ,  3 ,  - . -  

M a k i n g  an argument of the form made in the proof of Theorem 3.2, we see 

that  the limits in (5.42) are such that  

0o 

H h+'(z)--- o, z in S, # = I , . .  p.  (5.43) lira z h ~, ~, . ., 

From (5.40), (5.4I) and (5.43) we have 

(5.44) l imz  h ~ F . ( z ) - 4 , 0  . . . .  ~ - ~ 1 = ~  z in S, ~ = I , . . . , p .  
Z ~ a o  ( 

Since these relations hold for every non-negative integer h, the functions ffl (z), 

. . . ,  Fp(z)  possess the asymptotic expansions (5.28), where the coefficients are 

given in (5.29) and (5.3o). This completes the proof of Theorem 5. e. 

An analogous theorem holds when the region S is replaced by a regio n 

S l ( ~ - - d = < 0 - - - - < z ~ + d ( o < d =  2<~), I z I > R ) .  Because of its similarity to Theo- 

rem 5.2 we omit its statement. 
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