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I. Introduction.

The object of many investigations has been the study of difference equa-
tions of the forms

(1. 1) D@ Fla+s)= Gz
and =
P
(1. 2) Fi(x + 1) Z x) + Gj(x), J=1, ..,

in which the coefficients are functions of the real variable z asymptotically
constant,

(1. 3) lim ¢ () = ¢s, §=0,1,..., M,
x=-+o
and
(1. 4) lim ¢jx (x) = ¢, LEk=1,...,p
r=+o

Bochner® has considered the more general equations

(1.5) i es(x) Flx + 65) = G(x)

§=0

! National Research Fellow.

® 8. BocNER, Math. Zeitschrift 33 (1931), pp. 426—450. Hereafter we shall refer to this
paper as »I». BOCHNER gives other references to the literature.

837534, Acta mathematica. 69. Tmprimé le 28 octobre 1937.
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(1. 6) Fi(x + w)) = D\ eji () Fu () + Gy(a), Jj=1,...,p,

in which the spans d; and w; are any positive numbers without any arithmetical
restrictions. Bochner has developed the theory of the equation (1.3) and has
stated the problem for the system (1.6) and for still more general systems.

In the investigation of the equation (1.1) with the special spans one con-
siders the pertodic function

(1. 7) e(ty=cy+ c ¢+ - + cpemt

and uses the Dirichlet developments of 1/e(f) in strips parallel to the imaginary
axis in which e(f) is non-vanishing. The theory for this case is simplified by
the introduction of a new variable 7 = ¢! and by the consideration of the polynomial

(1. 8) e(r) =¢y+ eyt + - + em™

The Laurent developments of 1/e(z) in annular rings replace the Dirichlet
developments of 1/e(f) in strips. In the investigation of the equation (1. 5) with
the general spans no such simplification is possible. In this case Bochner has
studied the almost periodic function

(1. 9) E(t)=cye% + ¢y eht + - + ¢pePnt

and its reciprocal 1/E(f) in strips parallel to the imaginary axis in which E(#)
is non-vanishing. By use of the almost periodicity of 1/E(f) in these strips and
by use of its generalized Dirichlet series, Bochner has developed the theory for
the equation (1. 5). |

In the study of the equation (1. 1) certain of the solutions are characterized
by the behavior of the limit value

. Flx + 1)
1. 10 lim —0—~
( ) it F(z)
or, if this is not existent, of

(1. 11) lim sup | F(z) | = lim sup = ' logl F @],

=+ @ =+

Bochner has characterized certain of the solutions of (1.35) by means of
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Fe=—o0

(1. 12) lim inf 2~ ! log | F(z)|, lim sup x—*log | F(x)]|,
r=+x

and certain others by the existence of the limit value

(1. 13) ' lim F(x).

2=+

In this paper we shall study difference equations of the form

m

(1. 14) _ el Fle+ 6)= Ge)

§=0

and systems of difference equations of the form

(r. 13) é {é ci*(2) Fi (2 + 6{;")} = Gj(2), J=1,...,D,

in which the spans J; and d7* are any real non-negative numbers without any
arithmetical restrictions and the coefficients ¢;(z) and ¢*(z) are analytic functions

of the complex variable z asymptotically constant in certain sectors. The methods
developed by Bochner are applicable to the study of the equation (1. 14) and are
used in this paper. In part II we study the equation (1.14) with constant
coefficients ¢;. Using the method of successive approximations and applying the
results of part II, we develop in part III the theory of the equation (1. 14) with
asymptotically constant coefficients. In part IV we study the system (1. 15) with
constant coefficients ¢/f. Subjecting the system to certain negative restrictions,

we use the symbolic treatment of systems of equations developed by Bochner'
and Carmichael.? By use of this symbolic treatment we reduce the problem of
studying the system (1.15) with constant coefficients to the problem of studying
p equations of the form (1.14) with constant coefficients. The methods which
enable us to pass from the theory of the single equation with constant coeffi-
cients to the single equation with asymptotically constant coefficients enable us
to pass from the theory of the system with constant coefficients to the system
with asymptotically constant coefficients. Using these methods, we treat in
part V the system (1.15) with asymptotically constant coefficients.

! 8. BOCHNER, Math. Annalen 104 (1933), pp. 579—587. Hereafter we shall refer to this
paper as »II». .
* R. D. CARMICBAEL, Trans. Am. Math. Soc. 35 (1933), pp. 1—28.
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IT. The Equation with Constant Coefficients.

2.1. In this part we consider the equation
m
(2. 1) D Flz + &)= G2),
§=0

in which the coefficients ¢; are any complex constants and the spans d; are any

non-negative numbers ordered as follows:
0=0,<0, <0< -+ < 0.

It is convenient to assume that m = 1 and ¢, % 0, ¢y % 0. Under these hypo-
theses the exponential polynomial

(2. 2) E(t)= i cs et

for complex values of ¢, t=wu + ¢v, has infinitely many zeros.! We shall state
here various facts relating to the function E(t) and its reciprocal 1/E(f). These
facts are all given by Bochner (I, pp. 434—435) and are restated here for future
reference.

1°. The zeros of E () all lie in a bounded strip u, < u < u,. If we consider
on the w-axis the set of the real parts of all the zeros of E(f) and annex its
limit points then we obtain a set m whose complementary set on the w-axis is
composed of at most denumerably many open intervals, among them being two
half-lines. Following Bochuer's terminology, we denote the left half-line by J,,
the right halfline by J,, the remaining intervals in any order by J;, Jy, . ..
The boundaries of the interval J, we will denote by b, and b, (therefore by=—
b, = + ©), and by J, we will understand not only the »interval»

(2' 3) bg<%<io’,

but also the »strip» (2. 3), that is, the totality of all complex numbers £, whose
real part w verifies the relation (2. 3).

! The fact that E(f) has infinitely many zeros is easily proved by use of the theory deve-
loped by A. PRINGSHEIM, Math. Annalen 58 (1904), pp. 257—342. The zeros of such functions
have been studied by various writers. Cf. S. BOCHNER, I, p. 434, and R. E. LANGER, Bull. Amer.
Math. Soc. 37 (1931), pp. 213—219. Other references are given in these papers.
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2°. We consider the numbers representable in the form
(2. 4) NoOp + 10, + -+ + 1 Om
with integral coefficients #;, We order them in a fixed sequence and denote
them by
(2. 5) Aoy Ay Agy .. Ag=oO.

3°. The function 1/E(f) is an analytic almost periodic function in the strip
Js and as such possesses a generalized Dirichlet expansion of the form

o

(2. 6) B = D V" by < u <Dy,

n=>0

where the exponents A, are the numbers in (2.5) and the yi, are uniquely
determined constants. The series (2.6) converges absolutely in J,.
4°. From the identity

1=E(t) > yi, et
’ n=0

follow the useful relations

< e 1 for n=o,
2. Cs Ya,—8, =
z.7) ‘ g) e {o for n # o.

z°. For the cases 0=o0, 1 the series (2.6) are »one-sided», that is,
(2.8) o i, =0 for A, = —d,,
(2. 9) ' Vi,=0 for 1, = — dn.

2.2. Let G(z) be an analytic function of the complex variable z, z =
=z + 1y =906 If G(2) is regular inastrip — o <z < + »©, ¢ =y = g, then

we shall briefly say that G(z) is regular in the strip (e, 8). If G (¢) is regular
in a strip (¢, ) and such that real numbers b, b, A exist of such a sort that

IG(Z)|§A3gx, x=o0, a’S‘ySﬂ
and -
|G @)= Aes, zzo, a=Zy=§,

then we shall simply write

(2. 10) o 1GE) = Al &9, . e=y=p
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We note that the relation (2. 10) implies that

b<liminf x—'log |G (x + dy,)|, limsup2z'log|G(x + iy)|= b,
b=+

p=—u
for every y, in the interval o =y, = .

Lemma 2. 1. Let us consider an interval J, and an analytic function G (2)
regular in a strip (e, 8). If G(2) is such that (2. 10) holds where bs <b = b < b,
then the series

(2. 11) roG= 3 71,G+ )

n=0

converges absolutely and uniformly in every finite region contained within the strip
(@, B) and represents a solution F(2) of (2.1) which is analytic in the strip (e, f)
and whach is such that

(2. 12) | F )] < 4 (&2, é%), e=y=4

where A’ =3 A C and C is a constant independent of G (2).
The equation (2. 1) has only one analytic solution F(2) which verifies a relation
of the form (2. 12); in fact, it has only one analytic solution for which the relations

(2. 13) bo<lim inf 2~ log | F(z+iy,)|, lim sup =" log | F 2+ yo) | < bo,

=0 FECE X

hold for a fixed value of yo @ < yo < .1

For the absolute convergence of (2. 11) we use the relation (2. 10) and the
absolute convergence of the series (2.6). Let us denote by C the sum?

C:—Zly;_nle;'nﬁ + 2'}’;%'627713.

I, <0 1,20 :
First let us assume that « > o. Let us write (for fixed x)

Slmel+m=3+ 3 + S =3+3+3,

n=0 =0 —2=2p<0 2, <—=z

Then

! This lemma is analogous to and was suggested by Lemmas I and 2 of S. BOCHNER, I,
PP- 433—435. Its proof is similar to the proofs of those lemnas.

® When there is no chance for ambiguity we shall simply write Vi, for ygn.
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21 <4 |7;n|ei(”+1n) =< A Ceb®,

ipz0

22 =4 |71n|eg(x“n)§ Aebe Z |7/1"|e_“ﬂ < ACe=,

—r=1,<0 2y <0

S, S 43 |5, |detin s ACer < A0,

Ap<—=a

For the case x << o the proof is analogous and for z =0 it is even simpler, We
omit these parts. The series in (2. 11) then converges absolutely for all z in
(¢, 8. If 2z is restricted to any finite region contained within the strip (a, §)
then the wuniform convergence of (2. 11) follows at once from the bounds just
derived. Consequently the sum function F(z) is analytic in the strip (e, ) and
it verifies (2. 12). '

That the function F(z) defined by (2. 11) is a solution of (2. 1) follows at
once from (2.7) and the absolute convergence of the series (2. 11). Writing

F(z+6g)=27znG(z+ln—l-6s), §=0,1,...,m,

n=0

substituting these series into (2.1), combining equal arguments of G (§) and using
the relations (2. 7), we obtain

2 es Flz + 8) = D) Gz + ) Desyi,—s,= G (2).
n=>0

§=0 §=0

For the uniqueness of the solution let us assume that F,(2) is an analytic
function which verifies the relations in (2. 13). Then it verifies a relation of
the form

(2. 14) | Fy (e + dyo) | < Alyo) (2%, &'9),

&
A
=
I
ol
A
QQ-' !

If F,(¢) is a solution of (2.1) we may write

Flx + 1y, = Zy; (@ + iy + An) = D) 72, Dy s Fy (@ + i¢fp + &5 + La).

n=0 §=0

In view of (2. 14) the double series is absolutely convergent and may be rearranged
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w0

1;,(m + z:’/O) =2 F*(.',E + ’?/o + ln)z Csjfj,n—d’s

n=0 §=0

and from (2.7) we see that F(x + ¢y,) = F,(x + ¢y,). Hence F(z)=F,(2).
2.3. The following lemma gives a class of functions verifying bounds of
the form (2. 10): '

Lemma 2.2. Let G(2) be an analytic function in a sector S(—d<@<nm+4
(0 < 9d)) and such that

(2. 13) lim sup ¢~ log | G (0 €¥)| =0
o=

uniformly in 0(— 0 <@ <+ d), for every positive value of 7 but not Jor any
negative value. Define

(2. 16) 1 (0] G) = lim sup ¢~ log | G- (e €'9)].
9:@

If h(o|G) and h(z|G) are finite and if for some value 6’ (0 <0 < n) a constant
B exists such that h(0'|G) < I, then for every pair of positive numbers & and f
there exists a constant A — A (e, B) such that

(2. 17) |G(2)] £ A(etrl@—e h0]@) ey o=y =4

Let H(0) be the function of the form a cos 6 + b sin & which takes the
values h(0|G), I at o, & respectively. From the theory developed by Phragmén
and Lindelof' it follows that for every positive number { a constant R = R({)
(independent of 6) exists such that

| Goei®)| < eH®+le, o> R, o=0<x¢.
Using the continuity of H(6) and the fact that H(o)= h(o|G), we obtain the
part of the bound in (2.17) which holds for x = 0. By means of a similar
argument and by use of a function H,(f) = a, cos 0 + b, sin & which is such that
H,(0)="h, H, (n)=h(x|G), we obtain the part of the relation (z.17) which
holds for x <o. We omit the details here.

By an analogous argument we prove the following lemma:

! E. PHRAGMEN and E. LINDELOF, Acta math. 31 (1908), pp. 381—406. See, in particular,
Pp. 391—395.
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Lemma 2.3. Let G(2) be an analytic function regular in S, (— i=0=9

(o <d= g), lzl = R) and such that (2.13) holds uniformly in 6(— d < 6 = d),
for every positive value of 4, but not for any negative value. If h(0|G) defined in
(2. 16) is finite n the interval — 0, < 0 << d,, where 0 < 8, = 0, then for every posttive

number ¢ and for every pair of real numbers a, 8 (¢ < 8) a constant A=A(¢; e, )
exists such that

| G (e)] = A h0IFFex 2 4n 8, e=y=4.
The following theorem is an immediate consequence of Lemmas 2. 1 and 2. 2.

Theorem 2. 1. Let us consider an interval J, and a function G (2) satisfying
the hypotheses of Lemma 2. 2. If in addstion

(2. 18) bo < — h{z|G) = k(0! G) < by,

then the function F(z)= I'°G defined in (2.11) is a solution of (2. 1) which is
analytic in the upper half-plane 0 =<y < © and which is such that for every pair
" of positive numbers ¢, 8 there exists a constant A = A’ (e, B) of such a sort that

(2.19) | Flz)] < A’ (¢ hnT01=es, pOlaT+ea), o=y=8g

The equation (2.1) has one analytic solution which verifies a relation of the
Jorm (2. 19); in fact, it has only one analytic solution jfor which

(2. 20) bs < — h(n|F), h(o|F) < byt
"By means of Lemmas 2.1 and 2. 3 we prove at once the following theorem*:

Theorem 2.2. Let us consider a function G(2) satisfying the hypotheses of
Lemma 2. 3. If in addition h(0|G) is such that

(2. 21) hio| Q) < by,

then the function F(z) deﬁned by the series

! We note that (2. 19) and (2. 18) imply (2. 20).

It is to be observed that the interval .J, is used in Theorem 2.2. The theorem treats
functions G(z) analytic in S, (—JS 0=4d (o <d= ;), lz] > R), this being possible since y7 =o
for A,= —4d, (see (2.8)). For the case when ¢ is zero, it is clear that Lemma 2.1 may be
appropriately modified to treat functions G'(z) analytic in 8.

9—387534. Acta mathematica. 69. Imprimé le 28 octobre 1937.
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(2. 22) Ir'G= > 7,6+ k)

n=0
is a solution of (2. 1) which is analytic for all z such that z — 9, is in S,. For
every positive number & and for every pair of real numbers a, 8 (a < f) there exists
a constant A" = A’ (s; , B) of such a sort that

(2. 23) | Flo)| < 4’ d0lG+ex g <y<B 2—3,n S,

The equation (2. 1) has only one analytic solution which satisfies a relation of
the form (2.23); in fact, it has only one analytic solution for which h(o|F) < b,.

A similar theorem holds for functions possessing in S,(mx —d <0 < = + ¢,
lz] > R) the character the function G (2) in Theorem 2.2 possesses in S,. The
condition b; < — h(z|G) replaces the condition (2.21). For this case the series
I'' G is used. We omit the statement of this theorem.

We next treat the case where G (z) is a function of finite exponential type q,
that is, where G (z) is such that

lim sup | G® (o) |n = ¢
n=aw

holds.! Let G (z) be any such function and define k(0| @) as in (2. 16). For later
use we state here the following results given by Pélya (loc. cit., pp. 571—585):

' Ct. 8. PINCHERLE, Acta math. 38 (1926), pp. 279—304 (first published in 1888); G POLYa,
Math. Zeitschrift 29 (1929), pp. 549—640. Pdlya shows that there is an intimate relationship
between a function G(2) of exponential type and its Borel transform g(f)=3y Gr(o)i—n—1. In
Theorem 2.3 and Corollary 2.1 we state certain relations which exist between the Borel trans-
form g(f) of the given function G(2) in (2. 1) and the Borel transform f(£) of a particular solution
F(z) of (2.1). We state these relations in the present paper merely for the sake of completeness,
relations of this sort not being peculiar to equations of the form (2. 1) but holding for (being
implicitly contained in the theory of) more general equations such as difference equations with
arbitrary complex spans and differential equations of infinite order.

If the function G'(z) in equation (2. 1) is of exponential type and if F(z) is a solution of

(2.1) which is of exponential type in a sector S, (-—Cé argz<f,0<f= g) then the funetion

F(2) is of exponential type in the entire plane. BOCHNER suggested the truth and the manner
of proof of this statement to me. For the proof of the statement it is sufficient (and also neces-
sary) to show that if there exist positive constants p and M such that

| G(2)| < Meplzl, all (finite) 2; | Fio)] < Merlzl, z in S,;
then there exist constants p’ and M’ such that

(® | F2)]| < M'er'lzl, all 2.
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(a) k(0| @) is defined and continous for all real 6;
(b) h(0+“|G) +h(0—§
2| 2
(c) the Borel transform g(f) of G (2),

G) >0, and hence h(0|G) > — h(z|G);

(2. 24) g (t) = Z Gin (O) 1

is analytic for all ¢ exterior to the convex region K, called the conjugate dia-
gram of G(z), where K is the point set defined in the following manner: the
point {==w + v belongs to K if and only if for all real values of 6
(2. 25) % cos @ —vsin 0 — h(0|G) < o;

(d) if we denote by C. the boundary of the convex region K, where K, is
the point set

(2. 26) ucos —vsind —h(0|G)— e <o, &> 0,

We note that this includes the case when G(2) is identically zero. Without loss of generality we
take ¢, = I and 3; = 0. From the relation

m
(**) F@)=G@)— D\ ¢, Flz+4,)

§=1
we easily verify that F(z) is an integral function. In order to see that F'(z) is of exponential
type we consider a sequence of sectors S, (—{=arg(z+nd,)<0), n=o0,1,2,... Let us assume

that for every point 2, in a given sector S, we have

m
(22*) |Fz)| < Ma+P+-- + P)e?l®nl, 2, in 8, (P= e |cs|638p).

s=1

If 2,4, is any peint in S, then each of the points Zyy1td, 8=1,...,m, is in S, and applying
the relations (***) and (**), we see that (**%) holds with n replaced throughout by n+1. The
relation (¥#%) holds when » is zero and hence by induction, we see that it holds for n=o0, 1, 2, ...
If P<1, then the facts that the relations (***) hold for every n and that every (finite) point z
is in some sector §, imply that the relation (*) already holds with M’'=M/(1— P) and p’'=p.
It 2z,,, is a point in S ,; and not in S, than we see at once that |zn+1| > nd, sinf If
P=1, then
1+ P+ -+ Porr=n+z2<e-e"<e-elntrisind)

and hence (*) holds with M’ = Me and ' =p+1/(d, sin§). Finally, if P> 1, then

.Pn+2—'l' P2 p? § sin
1+ P+ ...+ Pl = < nlogP . 47 lzpyq | (og P)/(dysin O)
P—1 P—1° <_P-—-Ie

and hence the relation (*) holds with M'=M P?/(P—1) and p’ = p+(log P)/(d, sin &).
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then
(2. 27) G(z)—; fe“g(t) dt;

27
Ce

() —q = h(0|G) < g, the maximum ¢ being assumed for at least one value
of 0lo=0<2nx)

We next state and prove a theorem relating to the equation (2. 1) when
G (2) is a function of finite exponential type.

Theorem 2.3. Let us consider an interval J, and a function G(z) of expo-
nential type q. Let us assume that the relations (2. 18) hold. Then the function
F(2) defined by (2.11) 4s an analytic solution of (2. 1) for which the relations (2. 20)
hold and is the only analytic solution of (2. 1) for which the relations (2. 20) do hold.

The function F(z) is of exponential type q, and tndeed

(2. 28) h@|F)=hL(6|G).

If f(t) and g(t) denote the Borel transforms of F(z) and G (z) respectively, then not
only do f(t) and g(t), together with their analytic continuations, have the same
singular points but also they possess the same Riemann surface.

The facts that the function F(z) defined by (2. 11) is an analytic solution -
of (2.1) of the character described in (2.20) and that it is unique in these
respects follow at once from Lemma 2.1. (It is easily verified that G (z) satis-
fies the hypotheses of Lemma 2.1 in every strip (e, §)) For the remainder of
the theorem we note that in view of (2. 18) the function E(f) has no zero within
or on the boundary of the conjugate diagram K of G (z). Let ¢ be a positive
constant such that

(2. 29) be< —h(z|@)—e h(0]G)+ &< by,
and let C. be the contour defined in (d) for this &. Then the function
I e

~ 2 wi f(?)g(t)dt’
C

(2. 30) F,(2)

&

easily seen to be an (analytic) solution of (2. 1), verifies an inequality of the form

IFs (Qew)l < Mele(u_‘_iv)geiel =M, elwcos 6—vsin 8)g
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where t=wu + ¢v is on C,. From this inequality and the 1nequallty (2. 26) we
see that

(2. 31) | F, (0 ¢/%) | < M, eti®1G)+ee,

and from this we see that F,(2) verifies relations of the form (2.20). In view
of the part of the theorem already proved this implies that F,(z)= F(z). The
function F(z) is obviously of exponential type not exceeding ¢ and from (2. 31)
it follows that h(0|F) < h(0|G).* One can easily show by direct means that F'(z)
is of exponential type precisely ¢ and that k(0| F)= h(0|G), but since the type ¢
and the function h(0) of a function of exponential type depend only upon the
singularities of the Borel transform these facts are consequences of the properties
of f(t) and g () next to be proved. Writing F(2) in the form

Fe= 7 [ e

Ce

and using the fact that F'(z) is a solution of (2. 1), we see that

(2. 32) ch (¢ + &) — G(z):—ﬁi AEDFH —g ) dt=o.
CE

If we write
(2. 33) E@)f#)—g@)=1()

then we see that.(z. 32) implies that I(f) is analytic for all ¢ within and on C..
But f(¢), g(¢) and E(f) are analytic outside C, and consequently I(t) is an inte-
gral function. Accordingly, the functions f(f) and g(f) have the same singular
points except possibly at the points within or on C. at which E(f) vanishes.
But in view of (2.29), E(f) does not vanish within or on (. and hence f(f) and
g(t) possess the same singular points. The relation (2.33) implies that these
singular points are of the same nature and that f(f) and g(f) possess the same
Riemann surface. Pélya, (loc. czt.), has shown that the conjugate diagram of a
function of exponential type is completely determined by the singularities of the
Borel transform of the function and, in turn, that the function h(6) is uniquely
determined by the conjugate diagram. The type ¢ of a function of exponential
type is obviously determined by the function h(f). From these facts and the

! This inequality also implies that F'(2) is of exponential type not exceeding g.
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fact that f(¢) and g (f) possess the same singular points we see that (2. 28) holds,
that F{z) is of exponential type ¢, and that the functions F(2) and G (z) possess
the same conjugate diagram. This completes the proof of Theorem 2. 3.

We have the following corollary to Theorem 2. 3:

Corollary 2.1. If E(f) has no zero for |t] < g, then the function F(z2) defined
by (2. 11) 4s the only solution of exponential type not exceeding q. If E(t) has zeros
of multiplicities s, at the points ay, u=1, ... k, |a.|<gq, then every solution of
(2. 1) of exponential type not exceeding q is expressible in the form

k Sp—1
FI(Z):F(Z) + 2’ Z d‘uvzvea"‘z’

u=1 »=0

where F(2) 4s the function defined by (2. 11) and the d,, are arbitrary constants.
The function F (2) is the only solution of (2. 1) whose conjugate diagram is the same
as that of G (2). If Fy(2) 4s any solution, other than F(¢), of (2. 1) of exponential
type not exceeding q, then the conjugate diagram of this solution Fy(z) is larger
than the conjugate diagram of the function G (2), every point of the conjugate dia-
gram of G (2) being contained within or on the boundary of the conjugate diagram
of F\(2). The function f,(t) has a singular point at every point at which g(t) has
one and moreover, ¢t has at least one additional singular point.

The first two statements in the above corollary are classic results in the
theory of difference equations. They are easily proved by means of contour
integrals. We omit the proofs here. For the remaining parts of the corollary
we note that the Borel transform f,(¢) of F,(z) is expressible in the form

Sl =11+ Z MZ wr i va! )v+1'

The funetion f(f) is analytic outside the conjugate diagram of G (z) and all the
points a, lie outside this conjugate diagram. The conjugate diagram of F|(z)
must contain within or on its boundary all the singular points of f;(f). Since
S(t) and g (f) have the same singular points we see that if F,(2) is any solution,
other than F'(z), then f(f) has every singular point which g (¢) has and in addi-
tion it has at least one other; in fact, it has a singular point at each of the
points a, for which at least one of the constants dyo, ..., dy, s,—1 is different
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from zero. This shows that the conjugate diagram of G (2) is smaller than that
of F;(z). This completes the proof of Corollary 2. 1.

2.4. In preparation for the treatment of a certain class of meromorphic
functions we prove the following lemma:

Lemma 2.4. Let us consider an interval J, and a meromorphic function G (2)
possessing a pole of order h + 1(h=0) at z=b=0qa + B Let G(2) be such that

(2. 34) (2 — )t G () = J (2)

where J(2) is a function of finite exponential type of such a sort that

(2. 35) bo< —h(z|d),  h(o]d)< bs.
Then the equation (2.1) has the solutions
Fi(e)=T1°G, Li(—» <y<§),
(2. 36)
: Fyle)=1°aG, Lg<y<+ =)

Each function F,(2), u=1, 2, is analytic in the associated strip I, and s such that

(2.37) bo<liminfz—'log | F.(x + iy,)|, lim sup 2~ log|Fu(x + iy.)| < bs,
: L==——0 r=+®

where Yy, 1s a particular value of y in the interval I,.

The equation (2. 1) has only one analytic solution which verifies a relation of
the form (2.37) for a particular value of y. in I,.

If {lnj} denotes the subsequence of {A} for which yi 5 o, then each of the
Sunctions F(z) and F,(z) has singular points at the closure of the set of points
{b——lnj}. If the A,,j are everywhere dense on the real axis, then the line y =8
Jorms a natural boundary for each of the functions F,(e) and Fyle). If no hn lies
tn the open interval 4, <1 < A,, the function F,(2) remains regular on the segment
a—di<x<a—d, y=8 and F|(z)= F,(2). If several gaps occur among the
Anj, Fy (2) can be continued over each corresponding gap on the line y = 8, the
continuation always leading to the same function F(z). Isolated singularities are
poles of order h + 1 and correspond to isolated /1,,]..1

! In another connection S. BOCHNER and F. BoENENBLUST, Ann. of Math. (2) 35 (1934),
Pp. 152—161, have obtained theorems which suggested the results contained in the final paragraph
of Lemma 2.4. The method used here in studying the singularities of F,(z) and F,{(z) was sug-
gested by BOCHNER. For results of this sort see also E. Goursar, Bull. Sci. Math. (2) 11 (1887),
pp. 109—114. .
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That the series I'° G converges absolutely in each of the strips I, and I,
and that the convergence is uniform in every finite part of either strip are
immediate consequences of the relations (2.34) and (2.35). Indeed we may

write, for example,

< J(z + An I < .
(2. 38) |Fule)]= Z}’A,,(Z_(b_l_ln))hﬂ ély_ﬂlhﬂz|}qn||J(3+/1n)|, zin I,

n=0 n=0

and we may apply the results of Theorem 2.3 to the latter series. The func-
tions F;(z) and F,(2) are clearly solutions of (2. 1) and are analytic in the strips
I, and I, respectively. That each function F(z), u = 1, 2, verifies a relation of
the form (2.37) and that it is unique in this respect we easily see as in the
proofs of Theorem 2.3 and Lemma 2. 1.

We proceed now with the proof of the third part of the lemma. Let C
be a circle of radius R, center a, containing none of the points b=41,, J=0,1,2,...,
in its inferior and passing through a single one, b — 4, so that Ia——b+lnk| = R,
la — b+ lnj| >R, j#k If C' is any circle of radius R’ < R, center a, then
it is clear that the series I'° G converges absolutely and uniformly in C’ and
hence the series I'° G represents an analytic funection regular in the interior of
the circle C. We shall show that the function represented by this series in C
has a singularity at the point b —1,,. Let L denote the interior of the line
segment joining the point a to the point b — 4,,. Then if ¢ is any point on L,
we have Iz —b + lnkl < |z — b+ lnj|, j 5 k. Writing

l Z - b + ln h+1 .
@39 =t 6= S T i) () e

j=0
and using the fact that the series
Z }/zan (Z -+ lnj)
=0
converges absolutely and uniformly in every finite region, we see that

lim (2= b+ My TG =y, T (D).

z=b—-lnk, zon L

Since 71, J (b) # o, the point b — An, is a singular point of the function repre-
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sented within C by F“vG. If An, is isolated the point b — 4., is clearly a pole
of order A+ 1 of the function represented by I'°G. If a gap occurs among
the l,.j we may take as the point @ any interior point of the corresponding gap
on the line y = and we see that F,(2) remains regular on this gap on the line
y=_48 and that F,{z) = F,(z). Since each of the functions F,(z) and F,(2) has
singular points at the closure of the set {6 — i}, the line y =g is a natural
boundary for each of the functions F)(s) and F,(s) if the points 1, are dense
on the real axis. This cpmpletes the proof of Lemma 2. 4.

On applying Lemmas 2.1 and 2.4, we immediately prove the following
theorem:

Theorem 2.4. Let us consider an interval J, and a set of functions G (2),

G (2), ..., Gr(2) of finite exponential type such that
(2. 40) bo < — h(z|Gy), h{o|Gp) < bs, p=o,1,...,k
Let by =0, + 48, ..., bp=oar+ ¢8; be any k points of the plane and let us denote
by Boy . - -, Bo, the distinct §'s ordered as follows: 8y, < fp, < -+ < Bp,. Define
Bpo=— 0, By, = + . If we write
k

Y — 4 GP (Z)

(2. 41) G (2) = Gole) + p%l (z — by +1’

where the my, are mon-negative integers, then the equation (2. 1) has the solutions
(2. 42) Fu@)=T°G, I.(fp, <Y < Bpy11)> u=0,1,...,a
Each solution F,(2) is analytic in the associated strip I, and is such that

(2. 43) bo <lim inf a~ ' log | Fy(z + ¢<y,)|, lim sup 2= log | Fu(x + 7 9,)| < bs,
x=-—00 =+
where y,, is any fixed value of y in the interval I,.

The equation (2.1) has only one analytic solution which verifies relations of
the form (2. 43) for a particular value of v, in the interval I,.

The results contained in the third part of Lemma 2.4 enable us to discuss
the singularities of the functions F),(z). Before studying this problem we consider
a special example which illustrates how certain of the singularities may cancel.

Let us consider the equation
10—37534. Acta mathematica. 69. Tmprimé le 28 octobre 1937.
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(2. 44) Flg+ 1)—2F ()= G2

For G (¢) denoting successively the functions

the equation (2. 44) has the solutions

1 o 1 1 2 S 1 2 1
ref——=»>) =-—-3 - -2} ==, 7_~_)_—_~.
(z+1) 7;2"+12+n+1’ ( z) Zz“z—l—n z+1 2 z

0 n=0
The solution of the first equation has poles at ¢= — 1, —2, — 3, ...; the
solution of the second equation has poles at 2=o0, — 1, — 2, ...; while the

solution of the third equation has but a single pole, namely z=o.

We return to the case considered in Theorem 2.4. Let us assume that
Gp(bp) 520, p=1, ..., k, so that the points b, are actually poles of orders m; + 1
of G(z2). Let {lnj} be the subsequence of {i,} for which y; 7 0. For definiteness
we consider the line y = 8, where 8, =8), p=2, ..., k, and we assume that
by, ..., b are the b's whose imaginary parts are 8. We distinguish between
two cases.

(1. No two of the points &, ..., b, differ by a 4,. In this case each of
the functions F,(z) and F,(2) has singularities at the closures of the sets of points
{bi = 2a}, .. {br — du;}. Tf ome or more gaps on the line y =@ occur among
these sets then both F,(¢) and F, (z) are regular on each such gap and F,(¢)="F,(2).
If F,(2) (= F,(2)) possesses an isolated singularity on y = B,, the singularity is
a pole.

(2). Some of the points b, ..., b, do differ by a A,. If b, — by =24, but
if m, 5 m,, then again there is no cancellation of singularities (in so far as the
singularities arise from the poles b,, b,). Hence let us assume that

by=0b; + A, b3=10b +dp, ..., bgoz b, + lk(’o’
and that my =my= - =my,. If we write
Hn =y, G, (by) + Vi + g, Gy(by) + -+ + Vi + 2y, Gec; (beo)> ®=0,1,2,...

and if we denote by {H,.j} the subsequence of {H,} for which H, ## o, then we.
see that the singularities on the line y = g8, arising from the poles b;, . . ., by,
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are the points which consist of the closure of the set {b, — A,j}. The singula-
rities arising from the poles by+1. ..., b do not cancel any of the singularities
arising from the poles &, ..., b,. If there are any intervals on the line y=4,
on which no singularity occurs then, as in (1), F,(z) = F, (2).

The behavior on each of the other lines is similar in every respect.

Finally we note that if K (t) is such that for some ¢ the relation b, <0 < b,
holds!, then Theorem 2.4 applies to the case where G (z) is any rational funec-
tion and the remarks following Theorem 2.4 give us the nature of the singula-
rities of the solutious.

2.5. We next prove the following theorem:

Theorem 2.5. Let E(t) be such that by,>o. Let G(z) be analytic in
S(— 6§0§6(0< dé‘g)’ |z|>R) and such that

(2. 43) lim G {2) = a, z i S.

2=0c0

Then the function F(z) defined by the series I'° G (for |z| sufficiently large) s
analytic for all values of z for which z — 6, is tn S and it represents a solution
of the equation (2. 1) jfor which

(2. 46) lim Fle) =a 3 7i,, zwm 8.

There is only one analytic solution of (2. 1) for which the limit as 2— % in
S exists.

If, moreover, G (z) possesses the asymptotic expansion
(2. 47) G(z)‘~ao+%+§§+-~, z i 8,

then the function F(z)= I'° G possesses the asymplotic expansion

by b

(2. 48) F(z)~bo+3+%§+--', zm S,

where

! The condition b, <o <b, for some ¢ is equivalent to the condition that | E(iv)] = y>o
for —o0 <v< +o0. Cf. BOCHNER, I, p. 440. )



76 W. T. Martin.

v

o , »— 1 o ,
(2. 49) b= 3 s 1= X (" ) 3 (e
n=0 n=0

p=1
For every positive ¢ there exists a quantity ¢, = ¢,(¢) such that

|Ge)—al<e |2z]|> 0y z in S.
Using (2. 8), we see that

lF(z)_—aZyi’n|=|Zy3n[G(z +ln)—a]|< e |7l 6=l > 2z in 8.

It follows that (2.46) holds and moreover the series I'* G converges absolutely
for all 2 in S for which |z — J,| > g, In every finite subregion of this region
the convergence is uniform and hence the sum-function F'(z) is analytic for all
z in 8 for which |z — d)| > ¢, Tt is easily verified that F(z) is a solution of
(2. 1). Analytically continuing the solution by means of the relation

(2. 50) F(e)=—¢r [ch z+6s—6)+G(Z-5o)],

we see that F'(2) is analytic for all values of 2 for which z — ¢, is in S.
For the uniqueness let F,(z) be any analytlc solution of (2. 1) for which

the limit as 2— o in § exists. Writing
Fle)= D71, Gz + h) = Zyz ch (z + 0s + Au),

rearranging the (absolutely convergent) double series and using (2.7), we see
that F(2)= F, (2).

Let us now assume that G (z) possesses the asymptotic expansion (2. 47).
In the present paragraph » will denote a fixed positive integer and only values
of z which are in § will be considered. For every positive number ¢ there
exists a ¢ ==p(¢) such that

(2.51) e+ h|GE+ ) —a ty = ==
If we write
! J—1 , .
bo,n = ay, ijnzzap( )(—]‘n).i—'lj, J=1,...,7

then by (2.49) we see that
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=

(2.52) ||| F G(z+ An)—bo,n— - — —=|-

zm [E

By use of the inequalities (2. 51) and (2. 52) we verify that

lim |2 | F(z)—bo—bg—‘— N

and hence F'(2) possesses the asymptotic developement (2. 48).

An analogous theorem holds for the case when E(f) is such that b, <o
and where the sector S of Theorem 2. 5 is replaced by a sector S, (xn—d =0 ==+,
|2] > R). Because of its similarity to Theorem 2.5 we omit its statement.

III. The Equation with Asymptotically Constant Coefficients.

3. 1. In this part we shall consider the equation
m
(3. 1) Z Fle + 0= Ge),

where the coefficients ¢;(z), analytic functions in a given sector, are asymptotically
constant in this sector. Denoting by c¢; the asymptotic values approached by the
functions ¢;(¢), we continue to use the notation of section 2.1 relating to the
function E(t), etc.! We use the following abbreviations due to Bochner:

(3. 2) AF= chﬁ (¢ + dy  F(F)= D (es — () Fle + 6.
8=0 §=0
We next prove the following theorem:

Theorem 3. 1. Let us consider the equation (3.1) where the c;(2) are analytic

n S( 6<0<6(0<6< ) | 2 |>R) and such that

! In section 2.1 we assumed that ¢, o0, ¢, # 0 and that otherwise the ¢, were arbitrary

complex constants. In the theorems which follow in this part (Theorems 3.1 and 3.2) it is not
necessary that ¢, be different from zero. In these theorems the series I'°G occurs and in their

proofs the non-vanishing of ¢, is definitely used. For analogous theorems where the series I''G
would oceur ¢, might be zero and ¢,, would be assumed different from zero.
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(3. 3) lim ¢ (2} = ¢, s=o0,1, ... m, zin S,

2=

where ¢y 7% 0, and let c,(2) be non-vanishing in S. If G (¢) is analytic in S and
25 such that for every pair of real numbers a,8 (¢ < f) a constant A = A (a, §)
exists of such a sort that

(3. 4) [GlE)|=Ade=,  zin S, e=y=8p,

where b < by, then by successive solutions of the equations

A4 H"= G,
(3. 5)
_ A H Y =P (H?), y=0,1,2,...
we are led to a function
(3. 6) F(z)=H"2) + H'(z) + H*(z) + -

which s a solution of the equation (3.1). The function F(z2) ¢s analytic for all z
such that z — d, 7s in S and moreover it vs such that

(3.7) |Fle)|<4’¢b*,  z—d,in S, e=<y=8,

where A’ is a constant.

There exists only one analytic solution of (3. 1) which verifies a relation of the
form (3.7) with .an exponent b < b,.! _

We define .successively the functions H®, H', H% ... by means of

H°=T1°@G, H**' =g (H"), v=o0,1,2,...

By a slight modification of Lemma 2.1 we see that
|H| < 4 Ce?, z—d, in S, e <y =g
where C is a constant independent of G (z). For every positive ¢ there exists

an z. such that |¢; —¢;(2)| <& for z in § and |z| > .. Hence

IlP'(H")IéeACZe"abzA(aCD)e’“’, zin 8, |z|> =, ey =8,

=0

andl we may form the series I'°¥ (H®. By induction we easily verify that

! The methods used in the proof of this theorem are similar to those used by BOCHNER,
I, pp. 443—444.
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(3.8) |H'|=ACECDres z—46,in S, |z—6,| >, a<y=§,

v=0,1,2,...

‘Denoting by ¢, a positive constant such that & C' D < 1, we see by (3. 8) that
the series (3.6) converges absolutely and uniformly in every finite region contained
in that part of S for which |z — d,| > 2, ¢ <y < . Since ¢ and # are arbitrary
real numbers (¢ < ) we see that the sum-function F'(¢) is analytic in that part
of 8 for which |z —d,| > 2., From (3.6) and (3. 8) we see that

(3. 9) |F(2)] = A, 2, zin 8, |z — dy] > ze, e=y=4

where 4, =4 C/(1 — CD). By means of the equations (3.5) we ea.éily verify
that the function F(z) in (3.6) is a solution of (3.1). Using a relation of the
form (2. 50) with ¢, replaced by ¢ (2 — d,), we continue the solution analytically
and obtain a function F'(z) analytic for all z for which z— d, is in S. In view
of (3.9) and the analyticity of F(z) for z — J, in S we see that F(z) verifies
a relation of the form (3.7). This completes the proof of the first part of
Theorem 3. 1.

In order to prove the uniqueness we assume that F',(z) is an analytic
solution of (3.1) which verifies a relation of the form (3.7). We determine

successively the functions .JJ° J*, J% ... as »the» solutions of the equations
(3- 10) 4J°=¥(T,),
(3. 11) A I =¥ (]J*), y=0,1,2,...

In the same manner in which we derived the relations (3. 8) we derive the relations

zin S, y=0,1,2,...
lz =6l >z, a=y=

(3. 12) |J?| =< A’ C(s, C D) €2,

From the relations (3. 12) we see that we may write F,(2) in the form

(3. 13) F,=H.+H.+H:+ -, zin 8, |z—08|> ., e<y=8,
where
H,=F,—J° Hitt=J» — J*, y=0,1,2, ...

The functions H} are solutions of the system of equations (3. 5) and moreover
they satisfy bounds of the form (3.8). By Lemma 2.1 we see that these facts
imply that
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H* = H"*, y=0,1,2,...
and hence

F,=3 H'=F.
»=0

This completes the proof of Theorem 3. 1.

In an analogous manner we obtain a similar theorem treating the case
where the functions ¢;(2) and G (¢) are analytic in 8, (n—0 =0 =n+4,|2|> R)
and where the functions ¢, (z) are asymptotically constant in S;. Because of its
similarity to Theorem 3.1 we omit its statement.

We next state and prove a theorem analogous to Theorem 2. 5.

Theorem 3.2. Let the functions cs(2) in (3. 1) be analytic in
4—6§0§5@<5§§y|d>3)

and such that the relations in (3. 3) hold where ¢, # o, and let ¢, (2) be non-vanishing
in S. Lel E(t) be such that by>o. Let G(2) be analytic in S and such that

(3. 14) lim G (2) = a, z i 8.

Then by successive solutions of the equations (3.5) we are led to a function F(2)
defined by (3.6) which is a solution of the equation (3. 1). This function is analytical
Sor all z for which z — 0, ¢s in S and moreover ¢t is such that

2=

(3. 13) lim F(z)=az 7. z1in S.
n=0

There is only one analytic solution of (3. 1) for which the limit as 2 — « in
S exusts.

If moreover the functions G (z) and cs(2) possess the asymptotic expansions

(3. 16) G(z)~a0+%+%+~-, z i S,
8 3
(3. 17) cs(Z)~cs—C;'—§—--~, 2z 8, §=0,1,..., M,

then the functions H(z) possess asymptotic expansions of the form
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bv

bv
() o Y v+1 v+2 . _
(3. 18) H(2) gv+zv+1+2v+2+ , 2z S, y=0,1, 2, ...
and the function F(2) possesses the asymptotic expansion
| b, by .
(3. 19) F(z)~b0+;+z—2+~--, z in 8,
where
by = by = %2 737“
(3. 20) 0
by =1"by + by + - + b2, vy=1,2,3,...

We first prove the first part of the theorem. We define successively the
functions H®, H', H? ... by means of

H'=r'4d, H** 1=y (H?).
By Theorem 2.5 we see that

(3. 21) lim H'(z)=a X 4, zin §,
n=0

and hence for every positive number [, there exists a constant p,==p,(,) such that

(3. 22) H'e)—a D7, | <8 2in 6§, 2] > pe.

In view of (3.3) and (3.21) we see that for every > o there exists a p=p({)

such that
|#(H)| < zin S, lz] > p,

and from this it follows that

|H @<t || =Cd, 2 in S, e — 8> p.

For every & > o there exists a ¢ = (¢) such that
les—es(z)]<e, 2in S, lz] > o,
and consequently we see that

| F(HY| <e(m+ 1)dl, 2z in S, l2] > (p, o).

11—37534. Acta mathematica. 69. Imprimé le 28 octobre 1937.
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By induction we easily verify that
| H**1(e)| < & (m + 1) d*+1 e, y=0,1,2,... z in 8, le—d,] > (p, o),

and hence the series (3.6) converges absolutely for all z in that part of S for
which |z]| > (p, o(s)), where &, is a positive constant such that &(m + 1)d < 1.
If 2 is restricted to any finite part of the above region the convergence of (3. 6)
is uniform and the function F'(2) is thus seen to be analytic for z in that part
of S for which |z]| > (p, e(e)). As in the proof of Theorem 3.1 we see that
F(z) is a solution of (3.1) and that it is analytic for all z such that z—d, is
in 8. In order to prove that (3. 15) holds we write

|F(Z)—az;fi’n|é'H"(z)——aZﬁn!+|H1(z)| +|H2 )|+ - <G+

ag
gipe glm + 1)d’
for z in S and |z| sufficiently large. Since a relation of this form holds for
every positive {, and { we see that (3. 15) holds.

Noting that any analytic function for which the limit as 2— o in S exists
satisfies a relation of the form (3.7), we see that the uniqueness of this solution
is a consequence of Theorem 3. 1.

Next let us assume that G(z) and the c;(z) possess the asymptotic expan-
sions (3. 16) and (3. 17). By Theorem 2.5 we see that

H(2) ~ b°+b~+b+  zin 8,

where b, = aZﬁn. If we assume that for a fixed integer » the function H*(z)

possesses an asymptotic expansion of the form (3. 18) then in view of (3.17) we
see that the function ¥ (H"(e)) possesses an asymptotic expansion of the form

dr d¥
W(H”(z))~zlii+zfi:+ KR z in 8.

Applying Theorem 2.5 to the equation 4 H**'= ¥ (H"), we see that the func-
tion H**'(z) has an asymptotic expansion of the form (3. 18) with » replaced
throughout by » + 1. The induction argument is complete and we see that each
of the functions H(z), H'(z), H%(z), ..., does possess an asymptotic expansion
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of the form (3.18). In order to show that F'(z) possesses the asymptotic expan-
sion (3.19) we consider, for u a fixed non-negative integer, the expression

. b El iy Y 7 S

(3. 23) z“(l? (&) —bp— - —-Z—‘I:) =24 (H’(z)—j-— b s z"kz Hutk(z).
j=0 =1
From the definition of an asymptotic expansion we see that the relations (3. 18)
imply that
: N b . :

(3. 24) hztgzﬂ Hf(z)—g ————— ) =0 zin S, j=o,1,...,4,
and
(3. 25) lim ¢ H#*+1(2) = o, z in 8.

=R

Making an induction argument of the form made in the first paragraph following
the statement of Theorem 3.2, we show that for every pair of positive numbers
¢ and { there exist constants ¢(e) and p(l) such that

(3.26) |e* H* ()| < & 1(m + 1)1 d*1L, =z in S,
l2]1>(e(e), p(C), E=o0,1,2,...

Letting ¢ be a quantity & such that o < e (m + 1)d < 1 and using the fact that
(3.26) holds for every positive , we see that (3.26) implies

(3. 27) lim zﬂz He+k(z) = o, z in S.

k=1
From (3.23), (3.24) and (3.27) we see that

(3. 28) limzﬂ(F(z)—bo— ~~——@)=o, z in 8§,

and since this is true for every non-negative integer u the function F'(z) has

the asymptotic expansion (3. 19). This completes the proof of Theorem 3. 2.
We omit the statement of an analogous theorem relating to the case where

the functions are analytic in S;(z —d <0 ==+ 4, |z| > R).
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IV. The System with Constant Coefficients.

4.1. In developing the theory of systems of difference we shall use a
symbolic notation of the sort used by Bochner and Carmichael.’

Let us consider a difference-expression
(4. 1) Z es Fle + 0,)
§=0

with complex constants ¢; and non-negative d;, 0 = J, < d; < dy << -+ < 0. We
associate with such a difference-expression as its characteristic function E (f) the
funection ‘

(4. 2) B) = S eaele.

To every function of the form (4.2) there corresponds a unique difference-
expression (4.1). In view of this one-to-one correspondence we shall represent
the difference-expression (4. 1) also by the symbol

(4. 3) E[F).
If E,(f) and E,(t) represent two characteristic functions then the relations
(4. 4) E,[E,[F)| = E, E, [F| = E, [E, [I']]

hold, where by E;E,({) we mean the ordinary product F, () E,(t) of the func-
tions E,(f) and E,(t).
Let us consider p® difference-expressions

(4- 5) 4 F = el F(z + 8iF), Gik=1,...p
8=0
and their characteristic functions
mjk
(4. 6) Ej(t) Z ¢k e"s ,
. &=0

1 §. BOCHNER, II; R. D. CARMICHAEL, loc. cit. The symbolic notation which we use in
this section is a special case of that used by BoCHXER in his treatment of difference-differential
equations. The laws of combination of the symbolic operators given in the present paper in (4. 4),
(4- 12), (4.13), ete., are given by BOCHNER, II, pp. 582—583 and by CARMICHAEL, pp. 2—4.
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where the mj: are arbitrary nou-negative integers, the ¢/* are real non-negative
numbers, and the ¢/* are complex constants, the sets ¢/* and d/* being subject

to the restriction that the functional determinant

(4. 7) E(t)=| E(8)]

shall not vanish identically in f,

(4. 8) | E(®)]=o.
We shall under these conditions consider the non-singular' system of difference
equations
?
(4. 9) D A Fr = Gj(e), J=1,...,p,

k=1

which we may also write in the form

b
(4- IO) ZEjk[Fk]:Gj’ J=1,..5D

k=1

Denoting by e, (f) the cofactor of Eji(f) in E(f), we have

» B, k=g,
4 1) Z (0 Z5e () { o() Hﬁ.

The ¢;x(f) being characteristic functions of difference-expressions, we can for
every j »>multiply> the relation (4.10) by e, where u is any fixed integer,
1=u=p? Performing these »multiplications», we have

D
(4' 12) Z e],ll ]k Fk —e]y, [Gj] j: I,.. .,p.
Summing the expressions (4. 12) as to j from 1 to p, we obtain

(4. 13) FM=Z u=1I,...p.

! CARMICHAEL calls non-singular a system of difference equations for which the associated
functional determinant is not identically zero.
? Of. BOCHNER, II, p. 583.
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Every set of solutions of the system (4. 10) is a set of solutions of the system
(4.13).! We shall in this part obtain an appropiate set of solutions of (4. 13)
which is also a set of solutions of (4. 10).

The determinant E(f) in (4. 7) may be written in the form (4.2) where the
¢; are non-vanishing complex constants, the d; are distinet real non-negative con-
stants, and m is a non-negative integer. If m is zero the problem is trivial as
we see from (4.13). Henceforth we shall assume that m is greater than zero
and under this assumption we may use the notation of section 2.1 relating to
the function E(f), its zeros, the generalized Dirichlet expansions of its reci-
procal, ete.

4.2. We next prove a lemma which is the analogue of Lemma 2. 1.

Lemma 4.1 (2.1). Let us consider an interval J, and p analytic functions
G (2), ..., Gpl(2) regular in a strip (e, ). If the G;(2) are such that

(4. 14) |Gi(@)| = A(e®, &2), e=y=S§, j=1...p
where by <b<1b < bs, then the mon-singular system (4. 10) has the set of solutions

P

(4. 15) ' Fu(2) =172 eulGil, pw=1,...,p.
Jj=1

The functions F(2), ..., Fyplz) are analytic in the strip (e, ) and are such that

(4. 16) |Fue)| = 4" (%, &%), asy=p, w=1,..,p,

where A"’ =3 A C" and C' is a constant independent of the Gj(z).

The system (4. 10) has only one set of analytic solutions Fy(2), . .., Fyp(e) for
which relations of the form (4. 16) hold; in fact, it has only one set for which the
relations
(4. 17) by <lim inf 2= log | Fu(x + i9,)|, lim sup 2= log |Fu(z + 74,)| < bo,

Q=0 =+
where w=1, ... p, hold for a particular value of y, in the interval a < Yo=p.

We first show that it is possible to form the series (4. 15). Using the
facts that the e;:(f) are characteristic functions of difference-expressions and that
the relations (4. 14) hold, we see at once that the functions

! CABMICHAEL, loc. cit. p. §, gives an example showing that the converse does not hold.
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: » |
(4‘ 18) Z ej(‘ [GJL pu=1,...,9,
j=1
verify relations of the form
p _ .
(4 19) Z ej!b[Gj] éAB(ekx1 ebx)’ aéyéﬂw .u': I; c 0y p7
j=1

where B is any constant such that

(4. 20) B

%

P -
Zej#(b)7 ‘ fH=1,..,p.
j=1

Since the relations (4. 19) hold we may apply Lemma 2.1 to each of the equa-
tions (4.13) and we see that the functions in (4. 15) form a set of solutions of
the system (4. 13), that these functions are analytic in the strip (e, 8) and that
they satisfy relations of the form (4. 16) with 0'= B (. We next show that
these functions furnish a set of solutions of the system (4. 10). Writing

D B 4 ® P
2 Byl = 2 By [Z Vin D exul Gile + zn)]], i=1...0
#=1 w=1 n=0 k=1

performing an interchange of order of summation, collecting terms (these processes
being valid because of (4. 14), (4. 15) and (4. 19)) and using (4. 11), we see that

r ®© © m
D Bl = v, ElGie + L) =) Gile + ) D esvt—a,  J=1,...,p
1w=1 n=0 n=0 §=0 v

From the relations (2. 7) it follows that the functions F,(z), . . ., Fp(2) constitute

a set of solutions of the system (4. 10). This completes the proof of the first
part of the lemma. For the uniqueness we note that every set of solutions of
the system (4. 10) is also a set of solutions of the system (4. 13). The uniqueness
follows immediately by an application of Lemma 2.1 to each of the equations
in (4. 13). This completes the proof of Lemma 4. 1.

! In the proof of Lemma 4.1 we have used not the fact that the functions G(z) satisfy
velations of the form (4.14) but the fact that the functions (4. 18) satisfy relations of the sort
given in (4.14) and (4.19). If, instead of assuming (4. 14), we merely assume (4. 19) we arrive at
the conclusion that the functions F(2) satisfy (4. 16) and, from these relations and (4. 10), we see
that the functions G (2) do satisfy relations of the form (4. 14).
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Theorem 4.1 (2.1). Let us consider an interval J, and p functions G, (2),
.« Gp(2), each satisfying the hypotheses of Lemma 2.2. If in addition

(4. 21) be < — h(z| Gj), h(o] G)) < bs, J=1,..,p

then the mnon-singular system (4. 10) has the set of solutions (4. 15). The functions
Fy(2), ..., Fple) are analytic in the upper half-plane 0 <y < + « and are such

that for every positive number 8 and for every pair of mumbers b and b(b < b) for
which

(4. 22) be < b < —hizx|Gy, k(o] Gy) < b < b, j=1,...p,
there exists a constant A = A (8; b, b) of such a sort that
(4. 23) |F.(e)| = A=, &%), o=y=8§, p=1,...,p.

The system (4. 10) has only one set of analytic solutions for which relations of
the form (4.23) hold; in fact, it has only one set of amalytic solutions for which

4. 24) bﬂ<_h(n!FM)’ h(ok‘E‘N)< _b_lﬁ u=1I,...,p.

This theorem is an immediate consequence of Lemmas 2.2 and 4. 1.
Slightly modifying Lemma 4. 1, when ¢ is zero, to treat functions analytic
in sectors for |z| > R and applying this modification and Lemma 2. 3, we obtain

the following theorem:

Theorem 4.2 (2.2)'. Let us consider p functions G,(2), ..., Gp(2), each
satisfying the hypotheses of Lemma 2. 3. If in addition

(4 25) h(OIGJ) < 50, j= L ..,D

then the non-singular system (4. 10) has the set of solutions

P

(4. 26) Fule)=T° D) eju[G4), p=1,...p.
j=1

The functions Fy(2), . .., Fp(2) are analytic for z — &, in S, and moreover they are

such that for every pair of real numbers o, B{e << ) and for every number b for
whzech _
k(o] Gy) < b << by, J=1,...,D,
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there exists a constant A — fi(a, B; b) of such a sort that
(4. 27) |F.e)|<Aeb®, e<y<p, z—6inS w=1,...,0p.

The system (4. 10) has only one set of amalytic solutions for which relations of
the form <(4.27) hold; 4n fact, it has only one set of analytic solutions for which
ho|F)<by u=1, ..., p.

We next treat the case where the functions G,(2), ..., Gp(2) are of finite
exponential type. We have the following theorem:

Theorem 4.3 (2.3). Let us consider an interval J, and p functions Gy(2),
..+, Gpl2), each of exponential type not exceeding q. Let us assume that the G (z)
are such that the relations (4.21) hold. Then the non-singular system (4. 10) has
the set of solutions (4. 15). The functions Fy(2), . .., Fp(2) are such that the rela-
tions (4. 24) hold. :

The system (4. 10) has only one set of analytic solutions for which the relations
(4. 26) hold.

Each of the functions Fy(z), . .., Fp(2) is of exponential type not exceeding q.
When one at least of the functions Gy(2), . .., Gp(2) is of expomential type q, then
at least one of the solutions Fy(2), . .., Fp(2) is of exponential type q.!

The functions in (4. 18) are of exponential type not exceeding ¢ and their
associated functions h(0) satisfy relations of the form (4.21) whenever the func-
tions G,(2), . .., Gp(2) possess these properties. Consequently we may apply
Lemma 4.1 and Theorem 2.3 and we immediately obtain the first two parts of
Theorem 4.3, together with the fact that the functions F,(z), . .., Fj(2) are of
exponential type not exceeding q. We see the truth of the final statement in
Theorem 4.3 by noting that if each of the functions F\,(z), ..., Fp(2) is of
exponential type less than ¢ then the equations (4. 10) imply that each of the
functions Gy(2), ..., Gp(z) is of exponential type less than q. This completes
the proof of Theorem 4. 3.

_ Using the results of section 2.4, we can treat the case when the functions
Gy(e), ..., Gple) belong to the class of meromorphic functions considered in sec-

tion 2. 4. Furthermore, if E(f) is such that for some ¢ the relation b, <o <b,

! The results contained in the final paragraph of Theorem 4.3 were suggested by similar
results obtained by CARMICHAEL, loc. cit., p. 7.

12--37534. Acta mathematica. 69. Imprimé le 29 octobre 1937.
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holds, we can treat the case when the functions G,(¢), ..., Gp(¢) are any
rational functions. We omit the statements of these results.

We conclude this part with a theorem relating to the case when the func-
tions G,(2), ..., Gp(z) are asymptotically constant in a given sector. As in
section 2.5 we impose an additional restriction on the function F(t).

Theorem 4.4 (2.5). Let E(t) be such that by>o0. Let G,(2), ..., Gy(e)
be analytic in S(—- i=6= 6(0 <d= ;—E), |z] > R) and such that

(4. 28) lim G;(2) = ay;, z1in S, j=1,...,p
Then the functions Fi(2), ..., Fp(z) defined by (4.26) (for |2| sufficiently large
in S) are analytic for all values of z for which z — 0, is in S and they represent
a set of solutions of the non-singular system (4. 10) for whach

¥4 o
(4. 29) lim F, (z) = D ¢u(0)ao; D\ vh,, 2z in 8, w=1,...,p.

Z==m

j=1 n=0 -

There is only one set of analytic solutions of (4. 10) for which the limdit of
each function as £ — o in S exists.

If, moreover, the functions G(2), ..., Gp(2) possess the asymptotic expansions
(4. 30) Gj(5)~a0j+%j+(:_2éi+"', zin S, j=1,...,p
then the functions in (4. 18) and the functions F,(2), . .., Fp(z) possess asymptotic

expanstons wn S. If we write

P o (24 . :
(4. 31) Zleju{Gj]~ao#+—;—”+£+m, zin S, p=1,...p,
‘7:
then the asymptotic expansions of the functions F\(2), . .., Fp(2) have the form
bl,u b2y, . o
(4. 32) FM(Z)~b0y+7+?‘+"', 2 S, u=1,...,p,
where
(4- 33) bOM: aO[AZ 7,?” ZZ Ciu (0) aojz 7;?11, u=1I,...,p,
n=0 j=1 n=0

and
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v Yy — I o .
(4 34) b”" = 2 Ol(m (Q - I) 7111(— ln)v—g’ Y=1,2,..5,07=1,.., p.
n=0 :

o=1

From (4.28) we see that each of the functions in (4. 18) also possesses a
limit as 2— o in §. As a consequence we may apply Theorem 2.5 to each
of the equations (4.13) and we see that the funmctions F,(2), ..., F,(2) are
analytic for all z for which 2z — J, is in S and that they satisfy (4.29). It is
easily verified as in Lemma 4.1 that these functions constitute a set of solu-
tions of the system (4. 10) and that they form the only analytic set for which
the relations (4.29) hold, in fact, that they form the only set of analytic solu-
tions for which the limit of each function exists as z— c in §. If (4. 30) holds,
then each of the functions in (4.18) possesses an asymptotic expansion in S
and, applying again Theorem 2.5 to each of the equations (4. 13), we see that
each of the functions F,(z), ..., Fp(z) possesses an asymptotic expansion of
the form (4. 32).

V. The System with Asymptotically Constant Coefficients.

5.1. In this part we shall consider the system of difference equations

p | ™k .

(5. 1) Z {Z ik (2) Fi(z + 6{;")}= G;(2), Jj=1,... P,
k=1 s=0

in which the coefficients are asymptotically constant in a given sector and the

d/% are non-negative numbers ordered as follows:

(5.2) 0= 0k < OF <O < o <Oy, G k=1,...,p.

Denoting by ¢/* the asymptotic values of the functions ¢i*(z), we associate with

the system (5.1) the functions Ej;(f) and E(t) defined by (4.6) and (4. 7). We
consider only those systems for which the determinant FE(f) does not vanish
identically in ¢ and we write E (¢} in the form (4.2), where the ¢, are non-zero
complex constants, the J; are non-negative numbers and m is a non-negative
integer. The problem being trivial if m is zero, we assume that m is greater
than zero. We will use the symbolic treatment of section 4.1 and the notation
of section 2.1 relating to the function E(f), etc. We will also use the following
abbreviations:
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13

(5. 3) Wi (F) = 3 (et — cit () F (2 + 63Y), Jok=1,..p.
&=0

5.2. We next prove the following theorem:

Theorem 5.1 (3.1). Let us consider the system (5.1) where the ci*(2) are

analytic in S(—6§0§6(0<6§;—r), |z|>R) and such that

(3. 4) lim ¢/*(z) = ¢i*, 2z in 8, §=0,1,..., M J, k=1, ..., p.

Let us assume that the system (5. 1) s such that
(5. 9) 0ik = o, Lk=1,...,p

that the Sunctional determinant
4(2) = | ¢i} ()]

s non-vanishing in S and that the determinant
4 =|ci¥|

is different from zero* If Gy(2), ..., Gp(2) are analytic in S and such that for
every pair of real numbers ¢, B(e < B) there exists a constant A = A(a, B) of such
a sort that we have

(5. 6) 16| < Ade®, zin 8, a<y=8p, =1

where b < by, then by successive solutions of the systems

»
(5. 7) D) EixHil = G5(2), i=1,...p,
k=1

» » .

(5 8) . ZEjk[H;-H]:Z ’ij(H;), J=1,..,D y=0,1,2,...,
k=1 k=1

we are led to the functions

(5. 9) F.(z)=H.(e)+ H,.(2) + Hi(2) + -, pu=1,...,p,

! In view of (5.5) the condition that A4 be different from zero implies that the function
E (t) defined in (4.7) does not vanish identically in ¢,
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which constitute a set of solutions of the system (5. 1). The functions Fy(z), .. ., Fpl2)

are analytic in S and are such that there exists a constant A = A(a, ) of such a
sort that we have

(5. 10) IB'M(Z)Iéiebx, z in S, e<y=g L=1,...,p.

There exists only one set of analytic solutions of (5. 1) which satisfies relations

of the form (5. 10) with an exponent b < b,

For the proof we use Theorem 3.1 and Lemma 4.1. As usual, we make
a slight modification in Lemma 4.1 to treat the case when the region S is used,
such a modification being possible since we are using the interval J,. By this
modified form of Lemma 4.1 we see that the functions

2
(5. 11) Hie) =T 6164, B=1,..0D,
Jj=1

are analytic in S and that they constitute a set of solutions of the system (5. 7)
of such a sort that we have

(3. 12) |Hy(2)|<ABCe?, 2zin S, ae=y=<8§p, w=1,...,p.
o

Recalling the form of ¥j;(F) and using (5. 4) and (5. 12), we see that for every
positive number ¢ there exists an x, such that we have

SABCS*eD), zin S, esy=§, 2] > .,

(5. 13) D Fie(HY

k=1

where D is any constant such that

p Mk ¥ )

(5. 14) D=z X e, J=1,..,p
k=1s5=0

Proceeding as before, we obtain a set of solutions H};(z), ..., Hp(z) of the

system (5.8) for » = 0, each function of which is analytic in that part of S for
which |2z| > z: and each one of which satisfies a relation of the form

(5. 15) | H.(2)] < A B Cé*(e B C D), z in S, e=y =4, | 2] > ..

Continuing this process, we see that the functions H3*'(e), ..., H**'(z) are
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analytic in 8 for |z|> x., that they form a set of solutions of (5.8) and that
they satisfy the relations

(3. 16) IH;+1(Z)I§ABO€M(SBOD)”+1, zin 8, e =y =8,

|z]| > =z, vy=o0,1,2,...

If &, is a positive constant such that ¢ B CD < 1, then the series in (5.9) con-
verge absolutely and uniformly in every finite subregion of that part of § for
which ¢« <y =<8, |2| > z., and the sum-functions F,(2), . .., Fy(¢) are analytic
in that part of S for which |z|> z,. Moreover these functions verify the relations

(5. 17) |F@|<4Ce% 28, asy=4 2] > x,,

where ¢’ = B C/(1 — ¢, B CD). By means of these properties and equations (5. 7)
and (5. 8) we see at once that the functions F(e), ..., Fy(z) form a set of solu-
tions of the system (5.1). Using the relations in (5. 1) and (5. 5), we may write

P ik
D ek (e) Fi(2) +ZZ@J" VFi(z + 635,  j=1,...,p.
k=1 k=1 §=1

Using the fact that the functional determinant .7(2) is non-vanishing in S, we
see that we can continue the solutions analytically and accordingly, we see that
the functions F,(2), ..., Fp(e) are analytic for all zin S. Since they are analytic
in 8§ and since they satisfy the relations (5. 17) for | 2] > z., they satisfy relations
of the form (5. 10).

In order to prove the uniqueness we proceed as we did in the proof of
Theorem 3.1. We assume that the functions F,,(2), ..., Fp,(z) constitute a
set of analytic solutions of the system (5. 1) verifying relatlons of the form (5. 10).
We determine successively the sets of functions

Jul(2), Jule), Jal2), ..., w=1,...,Dp,

as »the» sets of solutions of the systems

S

P
(5. 18) Zijk[JL Z i (Fls), J=1,..,p,

k=1 k=1

¥4 »
(5. 19) _ Z By | Jit] = Z Fip(J}), J=1,..4p vy=0,1,2,...
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In the same manner in which we derived the relations (5. 15) and (5. 16) we
derive the relations

(5. 20) |7:(z)| = ABC&*(,BCDY, zin S, a=<y=4

2] > =, v=0,1,2,...,
Accordingly, we may write the functions F,, (2), ..., Fp.(2) in the form
(5. 21) F,,=Hp, +H,, +Hyy+ -+, 2zin S, |z]|>20, w=1,...,0p,
where

(5.22) Hp,=Fu,—J,, Ht=J) —*, p=1,...,p; y=0,1,2,...
The sets of functions H;*, R H;$
and (5.8) and moreover they verify bounds of the form (5. 15) and (5.16). By
Lemma 4.1 we see that

are sets of solutions of the systems (5.7)

H;*sﬂz, u=1Ii,...,p; y=20,1,2,...
and hence

FM=2H;=FM, p=1I, ...p.

=0
This completes the proof of Theorem 5. 1.
There is an analogous theorem when the region S is replaced by a region

S, (n —0=0=a+9 (o <d = g), |z] > R). Because of its similarity to Theo-

rem 5. I we omit its statement.

The theorem which we next prove is analogous to Theorems 3.2 and 4. 4.
Theorem 5.2 (3.2). Let the functions ¢i*(z) in the system (5. 1) be analytic
in S (— d=0=<4¢ (01< 0= ;—t), | 2] > R) and such that (5. 4) holds. Let the system

(5.1) be such that (5.3) holds, such that the Sunctional determinant A (2) is non-
vanishing tn S, such that the determinant 4 is different from zero, and such that

b, > 0. If the functions G,(2), ..., Gp(2) are analytic in S and such that
(5. 23) lim G;(2) = ay;, 2w 8, j=1,...,p,

then by successive solutions of the systems (5.7) and (5. 8) we are led to the functions
Fie), ..., Folz) defined by (5.9) which constitute a set of solutions of the system
(5.1). The functions F,(2), ..., F,(2) are analytic in S and are such that
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@

. p -
(5. 24) lim F, ( 2 (0) ao; D) #i,, 2 in S, u=1,...,p.

z2=ow
n=0

There is only ome set of analytic solutions of the system (5. 1) for which the
limet of each funclion exists as z — .
If moreover the functions Gi(z) and ci¥(z) possess the asymptotic expansions

(. 23) Gi(e)~ as + L+ G+, zin S, F=1, . p,
¢ik ik §==0,1,... M
Gk () ~ ik . 18 4 28 . 2 » PR
(5. 26) cik(2) ~ ¢J St , z1n S, k=1, ..p
then the functions H (), . .., H ” (2) possess asymptotic expansions of the form
b b b H=1,...,p
» v T, v+l w, v+2 L . * sy My
(5. 27) HM() pes + s + i + -, zin S, v —o 1 2 ...
and the functions Fy(2), . .., Fyl2) possess the asymplotic expansions
b,u,l bﬂ,2 .
(5. 28) Fﬂ(z)~bﬂo+~;+?+m, z i S, L=1I,...,p,
where
v > »
(5. 29) buo = buo =D} €ju(0)ao; 3, ¥i, L=1,...,p,
. j=1 n=0
(5' 30) b(t’v:b;;,v“'b;t'v +b‘:“, nw=1,..,p,v=1,2,...
The sets of functions Hp(z), H,.(2), Hule), ..., u=1, ..., p, defined as

»the» sets of solutions of the systems (5.7) and (5. 8), are also sets of solutions
of the systems ‘

(5' 31) E[H;:,]: eJN[GJ] H=1...,p

K'N':

Il
L

J

? 4
(5. 32) E[H " 2__2 [2 quk(H;)], p=1,..,p;v=0,1,2,...

k=1

From (5.23) and from the form of the operators ej; we see that

(5. 33) lim ¢;, [Gy] = av; € (0), zin 8,

=

and hence by Theorem 3.2 we see that
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(5 34) ].lm H,L Z aoj e]u_ S‘ ?//n, z in AS7 uw=1,...,p.

IlO

From the form of ¥;;(¥) and from (5. 4) and (5. 34) we easily verify that

(5.'35) hm eMIZ E HL)]z , 2 in S, nw=1,..,p,
E=1 1

and as before we have

(5. 36) lim H, () = o, z in 8, w=1, ... p.

By continuing this argument, we obtain the relations

(5. 37) hmH”“() o, zin §, w=1, ... P, v=0,1,2, ...

=%

and by making an analysis of the manner in which these limits are approached
(similar to the argument made in the proof of the first part of Theorem 3. 2),
we show not only that the series

(5. 38) H;’L“(z), w=1,...,p,

=0

converge absolutely for |z| sufficiently large in S but also that
(5. 39) hm Z H#(e) =o, z in 8, w=1,...p.

The convergence of each of the series (5.38) is uniform in every finite sub-
region of the region considered. Hence the functions F,(z), ..., Fp(e), defined
by (5.9), are analytic for |z| sufficiently large in S, and since (5. 34) and (5. 39)
hold, these functions satisfy (5.24). That they form a set of solutions of the
system (5. 1) and that the set is unique follow from Theorem 3.1 since any set
of analytic functions F,(2), ..., Fp(2), for which the limit of each function

exists as 2 — % in S, satisfies relations of the form (5. 10} for 0 < & < ,. From
Theorem 5.1 it follows that the functions F\(z), . .., F,(¢) are analytic in S.

Finally we assume that (5. 25) and (5. 26) hold. Applying Theorem 2. 5 to
each of the equations (5.31), we see that each of the functions H? (2), ..., Hp(2)
possesses an asymptotic expansion in §. Using Theorem 2.5 and the form of
the operators e;r, we can easily compute the form of these asymptotic expansions.
We omit the computation and simply write them in the form (5.27), for » =o.
Using (5.9) and (5. 32) and applying successively the preceding argument, we see

13-—-37534. Acta mathematica. 69. Imprimé le 13 décembre 1937.
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that the functions H(z), ..., Hle), v=1, 2, 3, ..., possess asymptotic expan-
sions in S and that these expansions have the forms indicated in (5.27). In
order to see that the functions F,(2), ..., Fy(¢) have the asymptotic expansions

denoted in (5. 28) we write, for 7 a fixed non-negative integer,

N bun L I bglu bLh]
a0 AEE —ho— =23 0=
=0
+ 2t Y HiAr(e), p=1,...,p.

n=1

The relations (5.27) imply (by definition) that

ES bl 1%
sa) wmeSlme-to oo cas w=i
o =0 ’
H=1,..,p
i b FhAR (5) — 53
(5. 42) llzr?o Z Hi*" (2) = o, z in S, n—1.23 ...

Making an argument of the form made in the proof of Theorem 3.2, we see
that the limits in (5.42) are such that

(5. 43) lim 2 3 H!*"(z) =0, 2 in 6§, L=T1,...,p.

n=1

From (5.40), (5.41) and (5.43) we have

(5. 44) lim z’L{EM(z)—b‘,LO— ~—%}———0, zin 8§, w=1,...,p.

2=

Since these relations hold for every non-negative integer h, the functions F, (),
... Fplz) possess the asymptotic expansions (5. 28), where the coefficients are
given in (5.29) and (5.30). This completes the proof of Theorem 3. 2.

An analogous theorem holds when the region § is replaced by a region

S, (n —0=0=nm+6 (o <d=s ;—t), || > R). Because of its similarity to Theo-

rem 5.2 we omit its statement.
Princeton University and The Institute for Advanced Study, Princeton,
New Jersey, February 16, 1933.



