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§ 1. Introduction.

1.1. We shall deal with the system of differential equations

dfllt(t) = ()& () + - + ara(t)Eal(t) + 8, (0)

(r.11) o
Lol 080 + - + a5 + a0

in which the functions a.,(t) and 8, are real or complex a.p.? functions of the
real variable ¢, and the g.(f) may or may not be identically zero. We shall
seek to determine conditions under which the solutions of (I.11) are of a rather
general type involving a.p. functions. Before characterizing this type of solu-
tion more explicitly, we shall introduce a shorter vector terminology.

1.2. Troughout this paper we shall use the letters z, y, 2, and b to denote

n-dimensional vectors (or matrices of » rows and one column) having the compo-
d

nents &, ..., & My - -0 M3 Gyy -, Goy and By, . . ., Ba. The vector d—t§l(t), e

Ed—t’;'n (6) will be denoted by D [z|; the n-by-» matrix whose elements are a,, will

be denoted by A4, and the matrix product of A and x will be denoted by 4 ..
Hence in this terminology (1. 11) becomes

(1.21) Dix(@®=A4@) x(t) + b(d).

We shall also define a norm for vectors, namely ||z||=|z,| + -+ + |zl

! This paper was written while the author was a National Research Fellow.
® a.p. = almost periodic (in Bohr's sense).
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1.3. If we consider the known facts in the case where A (f) and b(f) are
actually periodic with a common period P, we find that all of the solutions of
(1.21) are of the form

(1. 31 2(0) = 3 i),

where p is some positive integer, the A, are complex numbers, the 7, are non-
negative integers, and the y"(f) are a.p. vector functions.! It therefore seems
very natural to ask whether in the general case (when A(f) and b(t) are a.p.)
the solutions will all be of the form (1, 31) with the ¥ (f) a.p. instead of peri-
odic. Unfortunately such is not the case, as can be readily shown by examples.
However, the analogy with the periodic case makes (1.31) seem a natural type
of solution, and we are therefore going to seek for conditions under which the
solutions will all be of this type. It is clear that in the general a.p. case we
can without loss of generality assume the A, to be real, for if they have an
imaginary part the exponential breaks up into two factors of which the one with
the imaginary part can be absorbed into the a.p. vector functions y™(¢).

1. 4. Definition. A vector function xz(f) will be said to be of the a.p.

type if there exist a positive integer p, real numbers 1,, . .., 15, non-negative
integers 7y, ..., rp, and a.p. vector functions y™(¢), ..., ¥ (¢) such that (1. 31)
holds identically in ¢. The least common module of y® (), ..., ™ () will be

called the module of z(t).

1.5. It is the aim of this paper to obtain necessary and sufficient condi-
tions that all of the solutions of (1.21) be of the a.p. type and to obtain suffi-
cient conditions that a particular solution be of the a.p. type.

1.6. The vector b(f) may without loss of generality be taken to be iden-
tically zero and equation (1.21) replaced by

(1.61) » Dix() =A@) - = ().
For consider the system

[D [2(@)] = A(#) 2(t) + Earr (D) B (2)
(1.62) d
ld_t§n+1 (t) =o;

! §. BOCHNER, Abstrakte fastperiodische Funktionen, Acta mathematica, vol. 61 (1933),
149—184.
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where £,11(f) is a scalar function; and let z* () be the » + 1 dimensional vector
consisting of z(f) and &4:1(f); so that its components are §,(¢), &(8), . . ., &+ald).
If x(f) is a solution of (1.21), then for every conmstant C, x*(f)={Cx(#), C}
is a solution of (1.62); and every solution z*(f) can be written in this form for
gsome x(f) if E+41() +0. But (1.62) is homogeneous in the &,(f) and is
really in the form (1.61). Thus an equation of the form (1.21) can be reduced
to one of the form (1.61), and theorems proved concerning the homogeneous

equation can readily be re-phrased so as to apply to the non-homogeneous one.

§ 2. Decomposition of a Solution of the a.p. Type.

2.1. In our search for necessary and sufficient conditions that all the
solutions be of the a.p. type, we shall first study the properties of solutions
which are of the a.p. type and thus obtain necessary conditions. Conséquently
it will usually be assumed in sections 2 and 3 not only that A (¢) is a.p. but
also that one or more solutions of (1.61) is of the a.p. type.

In particular we shall be interested in the assymptotic behavior of solutions
as f— + o« or as {— — o, and therefore introduce the following notation. If
there exists a positive constant C such that ||z (£)]| < Cf(t) for all sufficiently

great f, we say that
z(t)=O[f(®)] at + ;

and if there exist two positive constants C, and C, such that C, f(t) < ||z ()]]| <
< (o f(¢) for all sufficiently great ¢, we say that '

x(t)=0*[f({t)] at + o.

The meaning to be attached to the statement that x(f) equals O[f(t)] or O*[f(?)]
at — o0 or at t oo is obvious.

It is obvious that if a solution z(f) of (1.61) is of the a.p. type and is
expressed in the form (1.31) with real 4,, a.p. ¥ (), and non-negative integers
7,, then

(2.11) ()= 0[e*t"] at + oo,

where A is the greatest value of 1, occuring in its expression of the form (1. 31),
and r is the greatest value of r, for values of » such that 4, =A. If 4 is the
least of the A, instead of the greatest, (2. 11) holds at — o, and if A, is a con-
stant independent of », (2. 11) holds at + o . This suggests the
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Definition. Let A4 (f) be any continuous matrix function. Then a solution
x(t) of (1.61) will be called a primary solution of order 4 and degree r if
z(t)=0[e*t] at + oo,

In this section it will be shown that if A(f) is a.p., any solution z(f} of
the a.p. type can be decomposed into the sum of a finite number of primary
solutions. :

2.2. Let A(f) be an a.p. matrix function, and let z(f) be a solution (1. 61)
of the a.p. type. Then z(f) can be written in the form

(2.21) z({)=eM [y, o(t) + ty, () + - + "y, ()] + -
+ et lyp,o(t) + typ,1 () + -+ Eoyp, 1, (2],

where 1, >12,> -+ > 1,, the y,,(f) are a.p., and none of the functions 1 - (?),

<+ Ypry(f) is identically zero. We shall first show that when x(¢) is written
in this way each of the terms in the above expression (i.e., an entire bracketed
expression with its exponential multiplier) is itself a solution. To simplify the
notation, we shall drop the subscripts from 4, and »; and let

(2. 22) Yu(t) = (r — )l g1, r— (0) (w=o0,1,...,7)
(2. 23) =3 E oyt w=0,1,...7).

(The reason for introducing the factorials will appear shortly.) Here x,(f) is
identical with the first term of (2.21), and we shall let " () denote the sum of
all the other terms. Tt follows that z(f) = x,(f) + 2™ (¢); and that for any s,
(2. 24) lim e~* ¢ x* (t) = o.

f—> o

2.3. We shall now try, by using (2.24), to perform a transformation on
x(f) which will still leave it a solution of (1.61) but will get rid of z*(¢). To

do this, we find a sequence of positive numbers hy, hy, ... Whose limits’is in-
finity and for which lim A (¢ +h) = A () uniformly in ¢ and lim g, (t+ k) = y. (¢)
Y] f=—r 0

uniformly in ¢ for each u =». Such a sequence exists since for each 7 we can

“choose k; so as to be greater than ¢ and at the same time a 1/7-translation number
for A(f) and every y.(f). Having chosen the sequence, and remembering (2.23)
and (2. 24), we have
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rilim [e=*Mh "z (¢ + k)] = ery, (t) = x, (£).

But rle* b "2 (t + k) is a solution of
(2. 31) Dle(t)] = At + ki) 2(2),

and therefore the limit x,(¢) of the sequence is a solution of the limiting system
(1.61). Hence our method is partially successful, as we have transformed x(f)
in such a way that all the terms of (2.21) except the first have vanished. How-
ever, the first term 2, (f) has become x,(t), and we must therefore find some way
of getting back to x,(¢).

2. 4. If our new solution ,(t) = ey, (f) had contained an extra factor #,
we would have been able to subtract out the last term of x,(f) and obtain a
new solution to which we could have applied the same process. Thus we would
have obtained the result that each term of x,(f) was a solution, and hence that
x:(t) was a solution. However, since the factor {" is missing, the last term of
2y (f) is not a solution unless 7 =0. As a matter of fact none of the terms of
xr(t) is a solution when r>o0, and hence our process must be modified; and
we will find that as we repeat the modified process we get successively z, (¢,
%,(t), ... and finally z,(¢) instead of obtaining monominal terms from z,(f).
Before passing to the complete induction proof that all of the x,(¢) are solu-
tions, we will carry through one more step of the process in order to see what
kind of meodifications enter.

2.5. We again deal with «(¢+ k), and again the only significant term
is . (t + h;), which may be written in the expanded form

’ v ek
(2. 51) 2o (t+ h) = 2 Sy (t+ k) S (??e—)'?
poi Io!

=0

oy ) ¥ gl

1
= )y (¢ + T By + AR

+ -+ (terms in A%, BT, ete).

r r

But the first term of this expression is ﬁxo (t+ hs), and z(¢+ k) —ﬁ% (t+h) is

a solution of (2.31). Thus

4 —37534. Acta mathematica. 69. Impriméle 1 septembre 1937.
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z(t + h) — —ax, (t + )
w () = e[y, () + tyo (9] = (r — 1)! lim h; ;

i—®

is a solution of (1.61).

2.6. From the way in which the second step was carried out, we see that
the subtraction of a multiple of the new solution is carried out after the argu-
ment of the solution has been translated, and that the multiplier to be used is
a function of the h;. In succeeding steps a further complication arises because
a combination of all the solutions already obtained has to be subtracted, and
further summations have to be used. We now pass to the general case.

Since we shall need to pass from the y,(t) to the x.(f) as well as from the
x.(t) to the v, (t), we first note that the » equations (2.23) have a unique solu-
tion if we regard the » functions w,(f) as unknowns; and it can readily be
verified that the expressions

(2. 61) = _“Z ar',b_v (w=o0, ..., 1)

satisfy (2.23), and hence that (2. 61) holds.

2.7. We now assume that z,(t) is a solution of (1.61) for all u less than
a certain integer ¢ which does not exceed ». As before, we consider (¢ + ki)
and obtain on interchanging the order of summation in (2. 51),

TR T ye—p he _
xr(t+kz)= el<t+hi)z _z] Z (t—)‘yr—v t{‘hz = Z — r—g t hll
0=0 Q y=p Q 0=0
where
- L 4
(2. 71) Z (8 h) = 4T R (¢t + B), (w=o, ..., 7).
=0

Substituting from (2. 61) in (2. 71), we obtain

- s S U(—=t—h)
wule =3 5 S =3 a3 TN
s ! o “ vl !
[ (___h)a
= o Zu—a(t + R)
o=0

and it follows that if u < g, Z.(¢ k) is a solution of (2.31). Thus
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-~

hg
|x’—9 t; hu) :

X(t, h) =t + k) — Z

r—g hg P t’l—@

=" (t + hy) + ACHR) e (t + I
e h e S S e
is also a solution of (2. 31), and
(r— a)! X(t,h) _ prrta
ehipr—a ¢! Z w—r+ ¥ () = (0

V=r—q

lim

i

is a solution of (1.61). We now know that x, (f) satisfies (1. 61) for all p<g-+1,
and the induction is complete.

2. 8. Finally, since ,(f) is a solution, so is x*(#); and the same argument

can be applied to it. Thus each group of terms in z(f) having the same expo-

nential factors forms a solution. Moreover the expansion (2. 21) of z(f) is unique,

for xy(t), ..., «-(f) have been given in terms of z(f) by a uniquely defined
process, the #1,0(t), ..., y1,»(f) are uniquely defined in terms of the z,(f), and
the #s50(t), ..., 92, (), etc. are uniquely defined afterwards in turn. These

results' will be summed up in (2.9).

2.9. In order to state the results of (2. 2—2. 8) more concisely, we first
introduce by means of the following definition a terminology for some of the
concepts which have arisen.

Definition. ~ Let A(¢) be any continuous square matrix function and let
%o () = 0, 2, (1), ,(8), ..., - (t) be solutions of (1.61) and A a real number such
that for all u = 7,
(2.91) nl)=eu 3 =80
, = !

is bounded for all ¢ Then y,(f) will be called a pseudo-solution of (1.61) of
order 4 and degree r. Moreover for u =<r, x,(f) and y,(f) will be called re-
spectively its generator and its minor of degree u, and z,(¢) will be called its
leader. Finally, a solution x(f) of (1.61) will be called a satisfactory solution of
order 4 and degree r if it is the leader of a pseudo-solution y(#) of order i and
degree r, and y(t) will be called its associated pseudo-solution.

B
If we express the quantity e'* > %yu—-v (t) in terms of z,(d), . . ., zu(t) by
v=0

means of (2.91), we obtain x,({) as a result. Thus we have
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Lemma 1. Let A(f) be any continuous square matrix function. Then if
y-(f) is a pseudo-solution of order 1 and degree  and has the minors y,(f), ..., ¥-(f)

and generators z,(f), . .., z-(t), it follows that for each p =< r,
[ A

(2. 92) , (f) = & 2 g1 Yo (t)
v=0

Hence every satisfactory solution is a primary solution.

Definition. Let A(f) be any continuous square matrix function. Then
a solution «(f) which is the sum of a finite number of satisfactory solutions
M (g, ..., 2P (#) having distinct orders 2, ..., 4, is called a decomposable
solution. If 1 is the greatest of 4,, ..., 4y, (t) is called a decomposable solu-
tion of order A

Now in terms of the above definitions, we sum up the results of (2. 2—2. 8).

Theorem I. Let A(f) be an a.p. square matrix function and let z(¢) be a
solution of (1.61) of the a.p. type. Then x(f) can be expressed in one and

only one way in the form

(2' 93) Z eo tZ yﬂ ra—v

o=1
where the A, are real and distinet, the y, ,(f) are a.p., and none of the y, o(f)
are identically zero. Moreover for each ¢ =p, y,,,(t) is a pseudo-solution of
(1.61) of order i, and degree 7, having the minors ¥4 o(f), - . ., %o, r,(f). Finally,

z (?) is the sum of the leaders of 41, (), ..., ¥p, rp(#), and hence x (t) is decomposable.

§ 3. The Necessity of Condition I.

3.1. In this section we shall show that if A4 (f) is a.p. and all the solu-
tions of (1,61) are of the a.p. type, then for each non-trivial solution z(t) there
exist a real number 4 and a non-negative integer » such that z(f) = O0*(e*'#) at
+ . In fact, we shall show that a similar statement holds for certain com-
binations of solutions, so that the following condition holds.

Condition I. The system (1.61) will be said to satisfy Condition I if to
every finite set of solutions = (f), z®(¢), ..., P (f) (not all identically zero)
there correspond a real number A4 and a non-negative integer » such that



Linear Differential Equations with Almost Periodic Coefficients. 29

Z tx"(t) = 0* (*tt) at + .

=0

Since Theorem I enables us (under the above hypothesis) to express solu-
tions in terms of pseudo-solutions, we will determine the asymptotic behavior of
pseudo-solutions as a preliminary to determining the asymptotic behavior of
solutions and combinations of solutions. We therefore develop in-this section
certain properties of pseudo-solutions — first some general properties and later
asymptotic properties.

3.2. We begin with a general uniqueness lemma

Lemma 2. Let A(f) be any continuous matrix function. Then every
pseudo-solution %(f) of (1.61) has a unique order and degree and a unique set
of minors and generators. .

For suppose that y(f) has the set of generators z,(f), ..., =,(f) and the
corresponding order A and degree r, and at the same time y({) has the set of
generators «'y(f), . .., «'»(f) and the corresponding order i’ and degree ’. Then
if 4, is any constant value of ¢, the two solutions

_—y - (_' to)v -
¢ 02 1 Zr—y (£) and e ”02 xr_., ()

=0

are both equal to y(f,) when { =1, and hence are equal for all £ Putting {=o0

and varying f,, we obtain a linear relation between the functions

—3 _'l ’
e gy L, @M R gy e T

with constant vector coefficients not all of which are zero (since x, () and z',(¢)
are non-trivial). Thus these functions are not linearly independent, and A= 4"
But since 1, £, t, ... are linearly independent it follows thar » =+" and

2, {t)—x.()=0 for v=o, ... 1

Moreover (2.91) determines the minors in terms of the generators, and hence
they are also unique.

3.3. Next we notice that the property of being a pseudo-solution of a
given order is invariant under addition and under multiplication by a constant.

This fact can easily be verified, so no proof will be given.
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Lemma 3. Let A(f) be a continuous square matrix function, 4 a real num-
ber, and r a non-negative integer (or the symbol -+ o). Then the set of pseudo-
solutions of (1.61) of order A and degree = r form with the trivial solution a

linear manifold.

Definition. If A (¢) is a continuous square matrix function, the manifold
consisting of the trivial solution together with set of pseudo-solutions of (1. 61)
of order 4 and degree =< » will be called the pseudo-solution manifold of (1.61)
of order A and degree ». If » is not specified, it will be understood to be the
symbol 4 0. '

3.4. Another lemma that holds under fairly general conditions is the

following.

Lemma 4. Let A(f) be any continuous #»byn matrix function and let
4 (t) be a pseudo-solution of (1.61) of order A and degree » having the genera-
tors x,(¢), ..., z-(!) and minors %,(#), ..., ¥-(f). Then if y,(f) is bounded away
from zero for sufficiently great positive values of £, we have for pu=»

(3. 41) xu(f) = 0® [*tt] at + .

Moreover for each ¢ the vectors z,(f), . .., #,(f) are linearly independent, so that
r < mn and y,(f) is different from zero for every value of u and ¢

For (3.41) is an obvious consequence of (2.92), and the linear independence
of the vector functions xz,(t) follows from (3.41). But if there is a linear relation
between the x,(f) at a certain point ¢= {,, the same relation holds for all ¢,
since a solution which vanishes at one point vanishes identically. Thus the
linear independence of the vector functions implies the linear independence of
the vectors obtained by giving ¢ a particular value.

3.5. Returning now to the case in which A4 (f) is a.p. we shall show that
under reasonable conditions the property of being a pseudo-solution is not altered
by a limiting translation of & ‘

Lemma 5. Let A(f) be an a.p. matrix function, and let y.(t) be a pseudo-
solution of (1.61) of order A and degree » whose minors and generators are g, (t),

. ¥r() and x,(¢), ..., x(f) respectively. Also let h,, by ... be a sequence
such that 4 (¢) =lim A (t+h;) exists uniformly in ¢ and lim y, (k) exists for each

p and does not vanish when u=o. Then § (¢)=lim y, (t+hs) exists for all ¢

and is a pseudo-solution of order A and degree » of



Linear Differential Equations with Almost Periodic Coefficients. 31
(3. 51) Diz(t)] = A () - z(d).

Moreover its minor of degree u is

i— ©

(3.-52) Fu(t) b= lim y, (¢ + k) (e=0,...,7%)

and its generator of degree u is

(3‘ 53) i‘,ll' y—w t + hz) (ﬂ:O, . ey 7').

i—> o

To obtain this result, we first express the function y,(¢t+h) in terms of
the x,(t+h) by means of (2.91), and then expand the binomials on the right,
and interchange the order of summation.

We find that

(3. 54) Yult + )= ‘“Z L (t; b)),
where

= (¢ ) —-Ahz M_vt+h)

Since x(0; hi) = yu (hs), lim (o h) exists for each u; and as ¢ — o the

sequence of systems D [z ()] = A4 (¢+ ki) - z(¢) approach a limiting system uniformly
and its sequence of solutions xj(¢; h;) approaches a limit at one point, = o.
Thus the sequence of solutions approaches a limit for all ¢, and this limit is a
solution of the limiting system; or in other words, for each u, Z.(f) exists for
all ¢ as defined by (3. 53), and is a solution of (3.51). Hence we can take limits
as ¢ — o in (3.354), and we find that for each u, #.(f) exists for all ¢ as defined

by (3.52), and ()= e 2

xy_v (t). The latter equation taken in con-

junction with the fact that xo( )=}1m ¥, (hi) # 0, shows that §(f) is a pseudo-

solution of order 1 and degree r of (3.51), having the Z,(f) as generators and
the #.(f) as minors.

3.6. We now show in Lemmas 6 and 7 that if A4 (f) is a.p. and all the
solutions of (1.61) are of the a.p. type, then every pseudo-solution of (1.61) is
bounded away from zero.
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Lemma 6. Let A be a real number and A(f) an a.p. matrix function such
that every pseudo-solution of (1.61) of order A and degree zero is bounded away
from zero for positive {. Then all of the pseudo-solutions of (1.61) of order 4
are bounded away from zero for all positive .

For suppose that there is a pseudo-solution y,(f) of order 4 and some de-
gree r which comes arbitrarily close to zero for positive f. Let its minors be

Yo(t), ..., yr(t) and let hy, hy, ... be a sequence of positive numbers such that
lim y,(hi) = 0. Since each of the y,(f) is bounded and because of Bochner's
theorem on normal functions®' we can choose a subsequence h'y, k', ... of
Ry, hs, ... such that lim g, (k') exists for each p and such that A@)= lim A(t+h'))

exists uniformly in ¢ By hypothesis, lim y,(h"s) # o, and hence by Lemma 5,
§u(f)=lim y,(t+ %) exists for all p and ¢ and % (f) is a pseudo solution of

Dx()=A(#)- x(f) of order A and degree » having the minors 7,(?), . . ., 7 (0.
But #,(f) is obviously bounded away from zero, and hence Lemma 4 applies and
shows that §(0) # o, in spite of our assumption that lim y,(h)=o0. Thus our
lemma holds. a

It is of course clear that if the hypothesis had been that the pseudo-
solutions of order A and degree zero were bounded away from zero for negative
t (or for all ) the corresponding conclusion would hold for negative ¢ (or for
all ).

3.7. Lemma 7. Let A(f) be an a.p. matrix function. Then all of the
a. p. pseudo-solutions of (1.61) of degree zero are bounded away from zero.

For suppose that there exists an a.p. pseudo-solution y,(f) of degree zero
and some order A which comes arbitrarily close to zero. Let z,(t) = e*ty,(t) be

the generator of y,(f) and &, ks, ... a sequence such that lim y,(h)=o0. Let
Wy By, ... be a subsequence of hy, hs, ... such that A (f) =lim A(t + ;) and

Ho(f)=lim g, (¢t+4") exist uniformly in ¢ for all £ Then if we let e*!§,(f) =2, (t)

we have

lim e ixy (¢ + B's)

i ®

= 2 (1),

! Fastperiodische Funktionen I, Mathematische Annalen, vol. g6, pp. 119—147, esp. p. 143.
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so that Z,(f) is a solution of Dz() =4 () -2(t). But %(0)=7,(0)=o0; so
Zo{t) =0 and #,(t)=o0; and because of the uniformity of the limits y, ()=
=1lim §,(¢ — #") =o0. Thus 2,(f) is identically zero, which is contrary to the

i—~ o
assumption that it is the generator of y,(¢).
3.8. Having proved all the necessary preliminary lemmas, we state our
main conclusion for this section.

Theorem II. Let A(f) be an a.p. matrix function. Then a necessary
condition that all the solutions of (1.61) be of the a.p. type is that the system
(1. 61) satisfy Condition I.

To prove this theorem, let z©(¢), ..., 2P (f) be any set of solutions of
(1.61) (not all identically zero), and let

(3. 81) - z(t) Eé 2™ (£).

Clearly by the argument used in Lemma I, z(t) 5 o, for if it were we should

B p )
have Z t; 2" (f)=o identically in ¢ and ¢, and all the 2"’ () would be trivial.

»=0
Moreover by Theorem I,

v

(3. 82) _ 2 (t) = 3, ettt oy, o (1) w=1,...,p)

0=1

where the 1, , are real, the g, , are non-negative integers, and the y, ,(f) are
pseudo-solutions of (1.61) of order A4, ,. But from Lemmas 6 and 7, for all »
and 6, ¥, () = O* (1) at + », and hence

(3.83) v 2 (f) = O* (Mt ter) at + o,

where 1, is the greatest of 4,1, A9, ..., Ay, and o, is the greatest of the g, o
for which 4,,,=4,. But if we substitue (3.82) in (3. 81) we obtain an expression
of the same form. For when terms having the same exponential and power of
t are combined, pseudo-solutions having the same orders (though not the same
degrees) will be combined, and the result will thus still be a pseudo-solution {or
else zero, in which the term drops out). Thus the same reasoning that was

used in establishing (3. 83) holds for z(f), and it follows that the system satisfies
Condition 1.

5—3175634. Acta mathematica. 69. Imprimé le 1 septembre 1937.
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3.9. It is quite clear that if in the statement of Condition I we replace
+ o by —o, Theorem IT will still hold. Of course, we can not replace +
by + «, because the i and r occurring in our asymptotic equation will not
usually be the same at +o and —o. We could on the other hand require
the asymptotic equation to hold both at —o and at + o for separate pairs
A, r; and Theorem II would be somewhat stronger since it would prove the
necessity of a stronger condition. However in the future Condition I will usually
appear in the hypothesis of our theorems rather than in the conclusions and
therefore we will restrict it to be a one-sided condition as stated. Our theorems

will be much stronger in consequence.

§ 4. Decomposable Solutions.

4.1. In this section we shall show the connection between Condition I and
systems of the form (1.61) all of whose solutions are decomposable.

In the first place we note that the proof of Theorem II could be carried
through just as well if the hypothesis that all the solutions are of the a.p.
type were replaced by the hypothesis that all the solutions are decomposable,
provided that we know that the hypothesis of Lemma 6 is satisfied for every .
Thus we have

Theorem III. Let A(f) be an a.p. matrix function. Then if all the solu-
tions of (1.61) are decomposable and all the pseudo-solutions of (1.61) of order
zero are bounded away from zero for positive ¢, it follows that Condition I is
satisfied.

4.2. We shall show in this section (§ 4) that the converse of Theorem ITI
is also true. The proof of this fact is rather long, and before carrying it through
we shall give an outline of it using for convience the following terminology.

Definition. TIf ()= 0*(e**¢) at + <, where A is real and r is a non-
negative integer, let .4*(x) denote A and 5+ (x) denote . Similarly if z ()=
= 0*(e*t") at —o or at + o, let 4 (x) and 5 (x) or 4 (x) and 5(x) denote
A and r respectively.

The converse of Theorem IIT of course has as its hypothesis the assump-
tion the A(f) is a.p. and Condition I is satisfied. Since Condition I holds,
A" (x) exists for every non-trivial solution , and as 2 ranges over all solutions
it takes on only a finite number of values, say 4, ..., 4y, where p does not
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exceed the order of A(t). These numbers 4, will play a prominent role in what
follows, for our conclusion will be proved by mathematical induction on the i,.
To carry through the induction we shall show the following three things.

(a). There are no pseudo-solutions of order < A, and degree zero, and every
pseudo-solution of order A, is bounded away from zero for positive i.

(b). If every pseudo-solution of order =<1, and degree zero is bounded
away from zero for positive ¢, and every solution x(f) such that 4+ (x) <4, is
decomposable of order < A,, then every solution z*(f) such that .4+ (x*)= 4, is
decomposable of order ,.

(¢). If every solution x(#) such that .4+ (x) <A, is decomposable of order
=1, and every pseudo-éolution of order = 1, and degree zero is bounded away
from zero for positive f, then every pseudo-solution of order =< A,.; and degree
zero is bounded away from zero for positive .

It is obvious that these three statements imply that all of the solutions
are decomposable and all pseudo-solutions of zero degree and order =<, are
bounded away from zero for positive {. Moreover the restriction on the order
of the pseudo-solutions can easily be removed, and we have the desired conclu-
sion. The proof of (a) is almost obvious, but for the sake of completeness is
given in Lemma 8. The proofs of (b) and (c) are given in Lemmas 11 and 12,
following the preliminary Lemmas 9 and 10.

4.3. Lemma 8. Let A(f) be an a.p. matrix function such that (1. 61)
satisfies Condition I. Then if 1 is the least value which 4* (x) assumes for any
solution z(f) of (1.61), there is no pseudo-solution of order less than 1; and every
pseudo-solution of order 4 is bounded away from zero for all &

For if there were a pseudo-solution of order less than 4, say u, its minor
Yo (f) of degree zero would also be of order u, and e*ty,(f) would be a solution
7, (f) of (1.61). But x,(f) = O(e!) at + =, so that .4+ (x,) < u contrary to the
assumption that 1 is the least value of 4% (x). Again, if y,(¢) is a pseudo-
solution of order A and degree zero, x,(t) = e*'y, (f) is a solution, and x,(t)=0(e*)
at +o. Thus A% (x,) =< 2; and this implies that .4* (x,) = 1 and 5+ (x,) = o, so
that x,(t) = 0% (¢*) at + oo and y,(f) = 0*(1) at + .

4.4. As a preliminary to the proofs of (b) and (¢} of (4. 2) we give two

lemmas concerning transformations on pseudo-solutions.

Lemma 9. Let A be a real number and A (f) an a.p. »-by-n matrix funec-
tion such that (1.61) has no pseudo-solution of order A and degree zero which
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comes arbitrarily close to zero for positive ¢. Let hy, hy, ... be a sequence of
positive numbers such that A (£) =lim A (¢t + h,) exists uniformly for all ¢. Then

there exists a subsequence h';, k', ... of Ry, hy, ... such that for each pseudo-
solution y(¢) of (1,61) of order A, Tly](f)=lim y(t + h") exists for all £. More-

i—> ®
over if such a subsequence is chosen and y(f) and y*(f) are distinct pseudo-
solutions of (1.61) of order A, then T[y](f) = T [v*] (%)
For in the first place the set of pseudo-solutions of order A forms with the
trivial solution a linear manifold, and this manifold must be of finite dimension-

ality since by Lemma 4 no pseudo-solution of order 4 is of degree = n. Let

yV(2), ..., yP(f) be a basis for it, and let h';, 'y, ... be a subsequence of
hy, hs, ... such that lim y® (k) exists, (w=1, ..., p). Then if y(f) is any

pseudo-solution of (1.61) of order 4, lim y(h';) exists, and the same applies to

i
the minors of y(t) which are also pseudo solutions. Moreover the corresponding
limit is not zero for the minor of zero order. Thus by Lemma 5, 7T [y](¢) exists
for all ¢ _

Now suppose y(f) and y*(f) are two distinct pseudo-solutions of (1.‘61) of
order i. Then y(f)—y*(f) is also a pseudo-solution of order A, and by Lemma 5,
Tly—y*)(t)= Ty (&) — Ty*] (/) is a pseudo-solution of D [x(f)] =i(t)-x(t)‘of>
order A and hence is not identically zero.

Lemma 10. Let A be a real number and A (f) an a.p. n-by-n matrix func-
tion such that (1.61) has no pseudo-solution of order i and degree zero which
comes arbitrarily close to zero for positive {. Then every pseudo-solution of
(1.61) of order A is bounded away from zero for all ¢. Moreover if h;, hs, .
is a sequence such that T'[y](f) = lim y(f+h,) exists for each pseudo-solution y(t)

of (1.61) of order 1 and such that uniformly in ¢, lim 4 (t+h)= A({), then the
transformation 7 has a single-valued inverse 7! defined over the entire pseudo-
solution manifold § of (1.61) of order A o

The second statement follows from the fact that according to Lemma 3,
T takes S into a sub-manifold S’ of itself, which is of the same dimensionality
as S since T takes a non-trivial element into a non-trivial element. Thus 8’ =38,
and T—1! is defined and single valued over the whole of S.

The first statement follows from the second statement and Lemmas 4 and 9.
For there exists a sequence 'y, &'5, ... which approaches + o« and for which
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lim A (t+4') = A(f) uniformly in ¢; and this sequence has a subsequence b, &, ...
i—> © L

such that lim y(¢+h;) exists for all ¢ and each pseudo-solution y(f) of order A.

i— ®
Then by what we have just proved, to every pseudo-solution #(f) of order 4
there corresponds a pseudo-solution of order A such that lim y(t+ k)= 7 (¢) for

i+ x
all . But y(t) is bounded away from zero for positive ¢, and 7 (t) is bounded
away from zero for all ¢. , ‘

4.5. We now proceed to the proof of proposition (b) of (4.2), whose
conclusion is that each solution z(f) for which .4* (x)= A is decomposable of
order 4. To obtain this result we shall have to actually carry out the decompo-
sition of x(f); and this process will be similar to but more involved than the
decomposition of a solution of the a.p. type given in (2.2—2.8). As in the
simpler case, we decompose x(f) step by step by mathematical induction. But
now each step will involve defining and showing the existence of the new quan-
tities involved, as well as showing that they are solutions or pseudo-solutions of
(1.61). Moreover each step will involve two new solutions and two new pseudo-
solutions, the pseudo-solutions being related by a transformation of the type
defined in Lemma 10. Finally, each step will depend on a formula obtained in
the preceding step, and we shall therefore give these formulas in the statement
of our lemma in order to carry on an induction proof based on them.

Lemma 11. Tet A(f) be an a.p. n-by-n matrix function such that (1.61)
satisfies Condition I. Let 4 be a number such that every solution z’ (£) of (1. 61)
for which 4" (x') <1 is decomposable of order < A and such that every pseudo-
solution of order A and degree zero is bounded away from gzero for positive ¢.
Let z(f) be a solution of (1.61) for which 4+ () =2, and let 5+ () = . Under
these conditions, x(f) is decomposable of order A.

Moreover corresponding to each non-negative integer s < r there exist a
sequence h,, iy, ... — + % and a pseundo-solution y,(f) of (1.61) having the
following properties:

(1) im A (¢+h;) = A (f) uniformly for all ¢.

i— w

(2) For every pseudo-solution y(f) of order A, lim y(¢+h,) exists for all ¢.

(3) If yo(t), ..., ¥s(¢) are the minors of y,(f), then for all ¢ and each non-
negative pu = s,
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@ (t+h) e ) — ) (H(;'h) Yro (t+ 1)
. o=r— ) -
(4. 51) Jim (t+ Ry °:

To begin the induction proof of the lemma, we show that the second state-
ment holds if s=o. It is obvious that a sequence %, h,, ... can be found
which approaches + o and has property (1). Moreover it follows from Lemma 9
that this sequence has a subsequence h';, #';, ... which satisfies (2). But since
z(f) = 0*(e**#), x(t)e* ¢~ is bounded and bounded away from zero for positive ¢.
Thus k';, ks, ... has a subsequence h,, hs, . . . such that lim x(h,) ik T exists.

i—> ®

Hence Z,(f) =r!lim x(t+h)e*" h;" exists for each ¢ and is a non-trivial solu-

i— ®

tion of (1.61). Moreover if #,(t) = ¢z, (t),

(4. 52) Go(t) = r! lim 2 (t + hi) e *EFP) (¢ + by
for all #; and since x(t)e*i—" = 0*(1) at + 0, #,(¢) is bounded for all £. Thus
#,(f) is a pseudo-solution of (1.61) of order A and degree zero and has the gene-
rator &,(¢). By Lemma 10, there is a unique pseudo-solution y,(f) of order A
and degree zero such that lim y,(¢f + k) =,(f). Moreover if we substitute
lim y, (t+hy) for #,(t) in (4. 32) we find that (4. 51) is satisfied for s =o. Hence
hy, hs, ... and y,(¢) satisfy (1), (2), (3); and our statement holds when s =o.
Continuing the induction, we assume that the second statement of the
lemma is true when s=p — 1 <7 Let us designate the corresponding sequence
by h'y, Iy, ..., the corresponding pseudo-solution by y,— (t); and the minors and
generators of () by y,(2), ..., yp—(f) and x,(f), ..., 2y (f) respectively.
Then (4. 51) holds for the sequence &y, 'y, ... with g =s=p—r1, and if

«
(4. 53) cl=al)—d Xy,
=r—p+1
it follows that o
(4- 54) ' lim inf || 2 () e ¢—r—p+|| = 0.

{— o

But

r

c=a2)— 3 Z-z

p=r—p+1" »=0

Lr—o—v (®);
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and hence by Condition I either z(f)=o0 or 4*(z) and 5+ (2) both exist. More-
over it follows from (4. 54) that either z(f)=o0, or 4t (¢) <, or 4% (2) =1 and
E*T(t)<r—p+ 1, so in any case z(t)= O (e #P) at + . Hence there exists

a subsequence hy, hy, ... of Iy, By, ... such that lim z(hs)e*" b~ exists.
And since 'y, h'y, ... has property (2), T'[y](f) =lim y(¢+h:) exists for all ¢ and

each pseudo-solution y(¢) of order A. Thus if 7 [yp—](f) has the minors #,(f), .. .,

Jp— () and generators Z,(¢), ..., Zp—(t), it follows from Lemma 5 that for
p=p—1, Ty = gu(t).
Let '
r he r’—'
Xt h=zlt+h— > 912 x,_g_w(t+h);

p=r—p+1 »=0

so that for each h, X (¢, A) is a solution of D[z ()] =A (¢ + k) z(f) and X (o0, h) =
=2z(h). Then lim X (o, h)e~ 4" h<r—? exists, and '

i ®

Zp(t) = (r — p)! im X (¢, k) e=*% h0—P)

i—> @
exists for all £ and is a solution of (1.61). Moreover
[2(t-+h)— X(t h)e —a(H 1)
T ¢ he te—o
o (E+ 1) Y ———
5 weteen3 s

o=r—p+1 o=l

R Ry TG (R

+ 2 (_3—'2 vl 2 o! Yr—r—alt 1)

e=r—p+1 =0 o=0
4 TP po oo
Z Yr—o (t‘[‘ h)z G_! (9__ 0)' )
o=r—p+1 =0

so that for all ¢
- (r—p)! lim [z (t+h)— X (¢, k)] e 2+ i) pAr—)

> ®

7

to—r+p P e
—— 3 S redo=— 3k
iy @7+ p)] ; el
Thus
(4.538) Fp(8) = (r — p)! lim 2 (t + h;) e AC+R) (¢ + hyy—r—P)

i—> o
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exists for all {, and

éz_—ug

)
t’l’
xp_g_a(t) + ey, (t) = —“2 —xp_.v

Since z(f)= O (et t™P) at + o, it follows from (4. 55) that 7, (f) is bounded for
all ¢, and hence is a pseudo-solution of (1.61) of order A and degree p having
Fo(?), ..., 9p(t) as minors and z,(f), . .., Z,(f) as generators.

Let yp(t)= T[] (), and let 43(2), . .., yp—(t), yp(t) be its minors. By
Lemma 5, the minors of ()= T[y,)(f) are T[y3](t), . .., Tlyp—1) (), Ty} (¢),
and hence by Lemma 2, T[yi](f)=4.() = T(y.)(t) for p=p-—1. Thus by
Lemma 10, y;(t) = yu(t) for p < p — 1, and y,(f) has the minors y,(¢), . . ., ¥ (2).
Moreover we have from (4.55) and (4. 53)

i~ i—+ o

lim y, (t + k) = (r — p)! lim {x(t + hy) e A0t —

T (E A4 R
e=r—p+1

so that (4.51) holds for the pseudo-solution y,(f) and the sequence hj, hy, . ..
Thus the induction is complete, and the second statement of this lemma holds
for all’s < r.
Finally, let s=1r, and let x,(f) be the leader of the pseudo-solution y,(t).
Then by (4. 51),
lim [z (t + h) — 2, (t + hi)] e+ H) = o,

so that if z*(f)=x(t) — 2, (f), lim inf ||2* ({)|]e* =o0. Hence either z*(t)=o0
ft— ©

or A% [z*] < 1; and in either case x(¢) is decomposable of order A.
4.6. Proposition (¢} of (4.2) is established in the following lemma.

Lemma 12. Let A(f) be an a.p. square matrix function such that (1.61)
satisfies Condition I. Let A be a number such that every solution z(f) of (1.61)
for which 4% (x) =< A is decomposible of order = 1, and such that every pseudo-
solution of order = A and degree zero is bounded away from zero for positive ¢.
Let 2" be the least number greater than A such that there exists a solution z’(f)
for which 4% (x)=14". Then every pseudo-solution of order = 1’ and degree zero

is bounded away from zero for positive t.
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For suppose that there exists a pseudo-solution y,(f) of order " < 1" and
degree zero which comes arbitrarily close to zero for positive ¢ and let x,(f) =
= e*"ty,(¢) be its generator. Then A’ > A; and A% (x,) is less than A’ and hence
less than or equal to 4. It follows that z,(f) is decomposable of order =< 4,
so that

P To
v
Loy (t) = z elat 2 ﬁ Yo, [Pt 4 (t),

o=1 =10

where A = 4, >4, > --- > A, and the y, . (¢) are pseudo-solutions of order A,. But
by Lemma 10, every ¥,,(f) is bounded away from zero for all ¢, and hence
x,(t) == O% (¢t 's) at —oo. Thus y,(f) = O* (") ¢'s) at — o, which is impos-
sible since w,(t) is bounded. It follows that all pseudo-solutions of order =< A’
and degree zero are bounded away from zero for positive &

4.7. We now state the main theorem of this section, which includes the
converse of Theorem III.

Theorem IV. Let A(f) be an a.p. square matrix function such that (1.61)
satisfies Condition I. Then every solution of (1.61) can be expressed in one and
only one way as a sum of satisfactory solutions having distinct orders. Moreover
every pseudo-solution of (1.61) is bounded away from zero for all ¢.

Almost all of the proof of this theorem has already been given, since the
three proposition (a), (b), (c), have been proved in Lemmas 8, 11, 12. Thus the
induction outlined in (4.2) is complete; and it follows that all solutions of (1. 61)
are decomposable and all pseudo-solutions of order not greater than the 4, of
(4.2) and degree zero are bounded away from zero for positive f. But there
are no solutions of order greater than A, and degree zero, for if there were a
pseudo-solution y,(f) of order A’ > A, and degree zero, x,(t) = e*ty,(t) would be
decomposable, .4~ (x,) would exist and be less than or equal to A, and y,(?)
would be unbounded for negative ¢ Thus it follows from Lemma 10 that all
pseudo-solutions are bounded away from zero for all .

Moreover a solution can be decomposed in only one way, for otherwise
the trivial solution would be decomposable and 4% (o) would exist.

Corollary 1. If A(f) is an a.p. square matrix function such that (1.61)
satisfies Condition I, it follows that (1.61) satisfies the condition obtained by
replacing +c by —o in the statement of Condition I.

6—37534. Acta mathematica. 69. Imprimé le 2 septembre 1937.
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It is of course also clear from symmetry that this negative reflection of
Condition 1 implies Condition I.

Corollary 2. If A(f) is an a.p. square matrix function such that (1. 61)
satisfies Condition I, it follows that every primary solution of (1.61) of order 4
and degree r is a satisfactory solution of order 4 and degree = 1.

For every solution x(f) is the sum of satisfactory solutions of distinet
orders, and it is clear that if two or more are present and z () = O (eh {1} at + oo
and z(f)= O(e2#2) at —oo, then A, > 1, and the solution in question is not
primary.

§ 5. The Invariance of Condition I.

We will now show that Condition I is invariant under limiting translations.
Theorem V. Let 4 (f) be an a.p. n-by-n matrix function such (1. 61) satis-
fies Condition I. Then if hy, h,, ... is a sequence of real numbers such that

A () =lim A(t+ h)

i
exists uniformly in ¢, it follows that the transformed system

(5. 1) D(z(t) =A() =)
also satisfies Condition I.

To establish this theorem, let 4, << 1, < --- <1, be the set of values 47 (x)
can take on as xz(¢) ranges over all solutions of (1.61), and for each v = p let
L, be the linear manifold consisting of all satisfactory solutions of order =4,
together with the trivial solution. Since every solution is decomposable into a
sum of satisfactory solutions, the sum of the dimensionalities #,, ..., 7, of
Ly, ..., Ly is n. Moreover for each » < p the pseudo-solution manifold L', of
(1.61) of order A, has #», dimensions, for each non-trivial element of L, is a
leader of an element of L', and the correspondence is 1—1 since by Lemma 4
and Theorem IV no pseudo-solution has the trivial solution as a leader.

Now let Xy, &'y, ... be a subsequence of h;, Ay ... such that for each
v =p and each element y(f) of L',, T'[y|(f) =lim y(t + ki) exists for all . That

such a subsequence can be chosen follows from Lemma 9 and Theorem IV, as
does also the fact that T sets up a 1—1 correspondence between L', and the
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manifold L,* into which it takes L’,. Thus L.* has », dimensions, and by Lemma §
its non-trivial elements are pseudo-solutions of (5. 1) of order i. Since the non-
trivial elements of L', are bounded away from zero, so are the non-trivial elements
of L.

For each »=p, let L; be the linear manifold consisting of the trivial
solution together with the leaders of the mon-trivial elements of L,". Then it
follows from Lemmas 2 and 4 that the correspondence between L;* and L7 is
1—1, so that L; has n, dimensions. Moreover it follows from Lemma 4 that
if Z(f) is a non-trivial element of L), 4% (Z)=A,; and hence the manifolds L;
and L; have only the trivial element in common if u 7% ». Thus the manifold
LY+ --- + Ly has #» dimensions and is therefore the entire manifold of solutions
of (5.1); and every solution of (5.1) is decomposable.

Finally, let #,(¢) be any pseudo-solution of (5. 1) of degree zero, and let 2
be its order. Then e*'§,(t) is a non-trivial solution of (5, 1) and is decomposable
into the sum z®)(¢) + - + 2(*9)(f); where each x(%)(f) is the leader of a non-
trivial element y(0)(t) of the manifold L; and » < --- <#,. By Lemma 4,

A (@) =12, for each ¢ =g, and hence .4 () = A, — 4 and A~ (o) = Av, — A
But since #,(¢) is bounded, i, =1,, =1, g=1, and ,({) =y™/(f}. Thus every
pseudo-solution of (5. 1) of order zero is bounded away from zero. Thus it follows
from Theorem TII that (5. 1) satisfies Condition I

§ 6. Stationary Pseudo-solutions.

In this section we shall obtain sufficient conditions that a pseudo-solution
of (1.61) be a.p. We shall assume at the outset that A ({) is a. p. with a module
contained in M and that (1.61) satisfies Condition I; and we shall show that a
pseudo-solution () is a.p. with a module contained in M if and only if y(f) is
what we shall call a positive stationary function with respect to M.

Definition. A vector function f(f) will be called (positive) stationary with
respect to a module M if for each real ¢

(6. 11) Tim f(t + h) = £(1)
whenever hy, hy, ... is a sequence of (positive) real numbers such that for each

element @ of M,
lim @h;=o0 (mod 2 7).

i— ®©
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We call particular attention to the fact that no uniformity is postulated
in connection with (6. 11). As a matter of fact, if (6. 11) were assumed to hold
uniformly for all ¢, a function which is stationary with respect to a module M
would be a.p. with the module M. However, as the definition stands, a sta-
tionary function need not be a.p. at all, nor even uniformly continuous. Thus
the theorem quoted above as the subject of this section is by no means a mere
triviality; and as a matter of fact it forms the basis for all our later theorems.

The theorem of this section will be proved by the method of Favard, which
is based on Bochner’s definition of a normal function. As this process involves
certain iterated limits, we shall first prove in Lemma 13, that a function which
is stationary with respect to a module M has a similar property involving
iterated limits. As another primilary to the main theorem, we shall show in
Lemma 14 that a part of the hypothesis of Lemma 5 may be replaced by the
hypothesis that (1.61) satisfies Condition I.

6.2. Lemma 13. Let f(f) be positive stationary with respect to a module
M, and let hy, hy, ... and %, k,, ... be sequences of positive numbers such
that for each element @ of M

lim @ (hi + kj) =0 (mod 2 n).

5L, j—>®
Then if ¢, is a real number such that g = lim lim f(¢, + h; + k;) exists, it follows

j>® i o®
that g = f(t,).
For corresponding to each positive integer # there exists an index j, > n

such that l g — Hm f({ + b + kjn)l = —:; and there exists an index ¢, > » such that

If(t0+hin+kjn)—1imf(to+hi+kjn)|§ :

I
n

Then lim f(#, + hs, + k;,) =g, and for each element @ of M lim @ (h;, + k;,) =0
n— o

(mod 2 7). It follows from the definition of a positive stationary function that
lim f (% + hi, + &;,) = f(t), so that the lemma is proved.

n— o

6.3. Lemma 14. Let A(#) be an a.p. matrix function such that (1.61)
satisfies Condition I, let y(¢) be any pseudo-solution of (1.61), and let r and 4
be the degree and order of y(¢f). Then if h,, Ay, ... is a sequence such that
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lim y (k) exists and A(t) =1lim A(t+ h) exists uniformly in ¢, it follows that

i— ® i—> ®»

§(t)=1lim y (¢ + ki) exists for all ¢ and is a pseudo-solution of order 1 and degree

r of D[Z (D) =A(f)- Z(f). Moreover if y.(f) is the minor of y(t) of degree u,
u(f) = lim g, (t + hy) is the minor of #(?) of degree u.

For suppose that there exists a minor y,(t) of y(t) such that lim y, (k)

. i— ®
does not exist. Then since y,(f) is bounded for u = r, there exist two sub-
sequences h'y, B, ... and A}, h,, ... of hy, hy, ... such that y; = lim y, (%)
i— ®

and y;* = lim y, (h{) exist for each u <+ and y; # yp*. It follows from Theo-
i+ ®

rem IV that g0 and %;" 40, and from Lemma 5 that y* ({) = lim y (¢ + %) and

i— o

y**()=1im y(¢+ h¥) are pseudo-solutions of D |[z(!) = A(f)- %(t) of order A and

]
degree . But 4*(0) =%**(0); so by Lemma 4, y*(f)=y**(f), and by Lemma 2
the minors of degree p, lim y,(t + ki) and lim y, (¢ + k) are identical. Thus

i ®

Yp =19y ; and this contradiction shows that lim y,(h) must exist for each pu.

Hence the lemma follows from Lemma 3.
6.4. We can now prove

Theorem VI. Let A(f) be a.p. with a module contained in a certain
module M, and let (1.61) satisfy Condition I. Then a pseudo-solution y(t) of
(1.61) is a.p. with a module contained in M if and only if y(¢) is positive
stationary with respect to M.

It is obvious that if y(f) is a.p. with a module contained in M, it must be
positive stationary with respect to M. We therefore assume that it is positive
stationary with respect to M and seek to show that it must be a.p. with a
module contained in M.

Procceeding along the general lines of Favard’s method of proof, we assume
that there exists a sequence of positive numbers hy, hy, ... such that for each
@ in M, lim ®h; =0 (mod 2 ), and such that lim y(¢ + ;) does not converge

i—+® i—+®
to y(t) uniformly in ¢ for all positive . Then there exist a number ¢ >0, a
subsequence h';, &', ... of hy, hy, ... and a sequence of positive numbers ¢, ,, . . .
such that for each index z,

(6. 41) , fly(t+ m) —y &) > e
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Let ny, n,, ... be a sequence of indices such that lim y(t,; + hn;) and hm y(tn)

i— ©

exist and for each element @ of M, lim @, converges (mod. 27r). Then

i— ®©

A*(f) = = lim A (t + ta;) exists uniformly in ¢ and lim A (t + &, + hn,) = A* (¢) uni-

> ® i ®

formly in ¢ Moreover by Lemma 14, ¢*(f) = hm y(t+ t;) and y**(f) =

=lim y (¢t + #s, + hy,) exist for all ¢ and are pseudo-solutions of D [x*(f)] =

i ®
=A% (1) - 2" (2).
Let %y, ks, ... be a sequence of positive numbers such that lim y* (%) and
lim y** (%) exist and for each element @ of M, lim @ (t,, + k)= o (mod 2 x).
i— ® 5, > ®

(It can easily be seen that such a sequence exists.) Then for each element @
of M, lim (D(tn2 + hn; + kj) = 0 (mod 2 #) and by Lemma 13, hm y" (k) =y (o) and

,j>w

lim »** (k) = y (0). Moreover lim A* (¢ + k) = A () umformly in .

Now it follows from Theorem V that D[:r (&) = A*(t) - = (¢) satisfies Con-
dition I, and from Theorem IV that y*(f) — (t) is either identically zero or
bounded away from zero. Since lim {y* (k) — y** (k:)} = o, the latter alternative

is impossible, and y*(f)=y""(f). Thus we deduce the statement lim {y (%) —

i—

—9(tn; + hn)} =0 which contradicts (6. 41). Hence we may conclude that for

every sequence of positive numbers hy, hy, ... such that for each @ in M,
lim @ ;= o (mod M), lim y (¢ + k) = y(¢) uniformly for all positive ¢. Since y(f)
i— o i— o

is positive stationary, lim y(t + h)=y(t) for each negative ¢ also. We shall

now show that this limit is uniform for all ¢, positive and negative.

In the first place, suppose that hy, hy, ... — + . Let ¢ >0; let N be
so great that when 2> N, ||y (¢t + h) — y(¢)]] = ¢ for all positive ¢; and let ¢, be
any value of ¢. Then for ¢ > N,

”?/ to"'h)_‘f’/to “——hm”y (ty + hi + hy) — (to‘i'hj)”

Thus lim y(t + k) = y(¢) uniformly in ¢ for all . If we remove the restriction

that hy, hy, ... — + o, we can still find a sequence [/, I,, .. — + © such
that A, + 1, hy +1;, ... > + © and such that for each element @ in M,

im @7;=o0 (mod 2 7). Then uniformly for all ¢, lim y (¢+k; + L) =lim y(t + 1) =y(t);

i—>® T 0 i— ™
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so that uniformly for all ¢, lim y(¢+h)=y(f). Finally, assume merely that

1— oo

hy, hs, ... is a sequence such that for each @ of M, lim @ h; exists (mod 2 7).

t—

Then lim @ (hs—h;) = o0 (mod 2 =) and uniformly in ¢, lim ||y (¢ +hi—h)—y () || =o.

1, J—> i— o

Thus lim y(f + h;) exists uniformly in ¢, and y(#) is a.p. with a module con-

o

tained in M.

§ 7. Almost Periodic Pseudo-solutions.

7-1. In this section we shall use Theorem VI of Section 6 to prove several.
theorems concerning a. p. pseudo-solutions. In order to prove such theorems we
shall have to.show that the pseudo-solutions in question are stationary. We
therefore prove Lemma 135, which shows how pseudo-solutions behave under
transformations which leave A (f) invariant.

7.2. The lemma of this section deals with what we shall call the range
of a function, and which is defined as follows.

Definition. If f(f) is a vector function, the closure of the set of values in
n-dimensional space which f(f) assumes as ¢ takes on all real values is called the
range of f(f) and is denoted by R(¢). If ¢ is restricted to take on only positive
vales, the closure of the set of values f(¢) is called the positive range of f(¢)
and is denoted by R™ (¢).

Lemma 15. Let A(f) be an a.p. square matrix function whose module is
contained in a certain module M, let (1.61) satisfy Condition I, and let the
pseudo-solution manifold 8 of (1.61) of order A and degree r contain at least
one mnon-trivial element. Let hj, h,;, ... be a sequence such that for each ele-
ment y(f) of S,

(7.21) ' Tly)(t)==1lim y (¢ + h;) exists for all ¢,

and such that uniformly in ¢, lim A(t + k)= A(f). Then T is a 1—1 linear
transformation which does not alter the positive range or the range of any
element of S. Moreover if § is understood to include all possible complex ele-

ments even though A (f) is real, there exists a basis y? (#), . . ., ¥ (f) of S such
that for all ¢
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(7. 22) Ty"](t) =6,y (2) p=1,..., L)

where the 6, are constants having the absolute value unity.
The fact that 7' is linear is obvious from (7.21), as is also the fact that

(7. 23) B [y ()] > RH{T [y] ()

for each element of S. It is also clear from Lemma 14 that 7'[y](f) is an ele-
ment of S whenever y(f) is an element of S. Hence (if S is taken in the wider
complex sense) the matrix which represents 7 can be reduced to the classic
canonical form. Thus there exists a set of indices 1 = p, <P, <+ <Pg<Pg+1=

=L 4 1, a set of constant multipliers 8,, . .., 6, and a set of linearly inde-
pendent elements %'V (¢), ..., 4% (f) of 8 such that '

(7. 24 a) T [y(e)) () = 6, y(2o) (¥) e=1,..., 9
(7.24b) TTy](t) =09 (&) + 4~ (2)

(Q= I, ..., g, 0:17()'!‘1,299‘]‘2, .. .,p9+1'—1),

Now by Theorem IV, for each » = L, ||y ()]| has a positive greatest
lower bound as well as a finite least upper bound. Thus it follows from (7 23)
and (7.24a) that |6,|=1, o=1, ... g. Moreover for each g, po+1=p, + I.
For if po41>p, + 1, we have by iteration of (7.24) that

I™[y2e)] () = 07 yo (1)
T [yme + )] (1) = B B+ D (1) + m 071 y(o0 ()

But this is impossible since for all positive integers m the set R {T™ [y(Po+Y)](¢)}
is contained in the bounded set R [y(P¢*V(¢)]. Hence the matrix representing T’
is in the diagonal form and (7.22) holds.

Finally, let m,, m,, ... be a sequence of positive integers such that for all
v< L, lim 6% = 1. Then for each » lim T™i[y")](f) = y" (t); and since T™ is
jow Jr®

linear, it follows that for each element y(f) of S, lim 7™ ly] () =y ({). But for
F )

each (positive) ¢ and each j, T™i[y](t) is an element of the closed set R {T'[y](¢)}.
Hence the limit point y(f)=lim T™[y](¢) also belongs to it, and R [y(¢)] <
jr®

< RH{Tly](9)}. 1t follows that T does not alter the range or the positive
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range of any element of §, (S being taken either in the wide complex or the
narrow real sense), and the lemma holds.
7.3. Lemma 15 can be used to to prove the following theorem.

Theorem VII. Let A(f) be a.p. with a module contained in a certain
module M, and let (1.61) satisfy Condition I. Then a pseudo-solution y(t) of
(1.61) must be a.p. with a module contained in M if every pseudo-solution of
(1.61) which is distinct from y(f) but has the same order, degree, and (positive)
range as y(t) is a.p. with a module contained in M.

In order to establish this theorem it is of course only necessary in view
of Theorem VI to show that y(f) is positive stationary with respect to M. With
this end in view let hy, h,, ... be a sequence of positive numbers such that for
each element @ of M, lim @h; =0 (mod 2 ), and assume that it is not true

that Zl_l)lf y({ + h)=1y(f) for all . Then there exists a subsequence h';, h's, . ..
of hy, hy, ... such that ililil y (ki) exists and is not equal to y(o); for otherwise
y(t) — k’ng y (t + ki) would be a psendo-solution of (1.61) which would vanish for
t=o0. By Lemma 14, 7(f)=1im y(f + ki) exists for all ¢ and is a pseudo-solu-

>0

tion of the same degree r and order 4 as y(f). Moreover it follows from Lemma 9

that we can choose a subsequence k), h,, ... of h';, k5, ... such that T{z](t) =
= lim z(¢ + k) exists for each pseudo-solution z(f) of order 1 and for all . Then

by Lemma 15, R™) [y ()] = RH{T[y](t)} = R [§#(¢)], and by hypothesis 7(¢) is
a.p. with a module contained in M. Since an a.p. function iz stationary with
respect to its module, T'[§](f)=§(¢) = T [y|(¢); and it follows from Lemma 9 that
J(#)=y(f). But this is impossible in view of our choice of A',, k5, ...; and
therefore lim y (¢ + hs) = y (f) for all ¢, and y(t) is positive stationary.

7.-4. In the preceding theorem we used a part of the conclusion of Lemma
15; namely, the statement concerning ranges. In the following theorem we shall
use the other part of the conclusion of Lemma 15 which deals with a canonical
form of the transformation 7. We first make the following definition.

Definition. A vector function f(f) will be called (positive) twistable with
respect to a module M if there exists a sequence of (positive) numbers hy, hs, . ..
such that for each element @ of M, lim @ h;= 0 (mod 2 ) and such that for

i—>

7—37534. Acta mathematica. 69. Imprimé le 2 septembre 1937.
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all ¢ lim f(t + h) =0f(¢), where 6 is a constant whose absolute value is unity

i— o

but which is not equal to unity.

Theorem VIII. TLet A(f) be a.p. with a module contained in a certain
module M, and let (1.61) satisfy Condition I. Then if for a certain A there are
no pseudo-solutions of (1.61) (neither real nor complex ones) of order 4 and
degree zero which are positive twistable with respect to M, it follows that all
of the pseudo-solutions of (1.61) of order A and degree zero are a.p. with a
module contained in M.

As in Theorem VII it is only necessary to show that the pseudo-solutions
are positive stationary with respect to M. Thus we let Ay, ks, . . . be a sequence
of positive numbers such that for each element @ of M, lim @ k; = 0 (mod 2 ),

i—>®
and assume that there exists a pseudo-solution y(f) of order 1 and degree zero
for which it is not true that lim y(¢ + h)=y(¢) for all £. As before, there

-

exists a subsequence A'j, h's, ... of hy, hy, ... such that lim y (ki) exists and

does not equal y(0). Moreover there exists a subsequence b, h,, ... of B, I/,, . ..
such that T'[¢](f)=lim z(¢ + A7) exists for each pseudo-solution z(f) of order 4

>

and for all ¢.
By Lemma 15, the set of pseudo-solutions of (1.61) of degree zero has a

basis M (f), ..., 4P (f) such that T[y"](§) =0,y () for all ¢ and all v < L,
where 0,, ..., 0. are constants whose absolute value is unity. By hypothesis,
0,=0,= ---=0,=1; and hence 7T is the identity transformation so far as

pseudo-solution of order 1 and degree zero are concerned. It follows that
lim y (hi) =y(0) contrary to the definition of &', h's, ... Hence all of the

pseudo-solutions of order A and degree zero are stationary with respect to M.
7.5. The following theorem shows that pseudo-solution and its minors

have similar a. p. properties.

Theorem IX. Let A(f) be a.p. with a module contained in a certain
module M, and let (1.61) satisfy Condition I. Then if a pseudo-solution of (1. 61)
is a.p. with a module contained in M, so are all of its minors. On the other
hand, if all of the pseudo-solutions of (1.61) of a certain order i and degree
zero are a.p. with a module contained in M, the same is true of all pseudo-
solutions of (1.61) of order A irrespective of their degrees.



Linear Differential Equations with Almost Periodic Coefficients. 51

The truth of the first statement follows immediately from the fact that
an a. p. pseudo-solution is stationary and from Lemma 14 which shows that the
minors of a psendo-solution have similar convergence properties to the pseudo-
solution itself.

In order to prove the second statement, assume that there is a pseudo-
solution of order A which is not a.p. with a module contained in M, let p be
the least degree which any such pseudo-solution bas, and let y,(f) be such a
pseudo-solution of order A and degree p. By hypothesis, p > 0; and because of
the choice of p all of the minors y,(¢), ..., yp—1(f) of yp(!) except y,(t) itself
are a.p. with modules contained in M. As in the two preceding theorems, let

by, hs, ... be a sequence of positive numbers such that for each element @ of
M, im @®h;=o0 (mod 2n), and as before let k', %y, ... be subsequence of
hy, ks, ... such that lim y,(h;) exists and is not equal to y(o). It follows from

i~ ®

Lemma 14 that T[y,)(f) exists for all ¢, where T'[z](f) =lim z(t + k).

i— @

Since y,(t), . . ., Yp—1(t) are a.p. with modules contained in M, 7T [y,](t)=
=y,(¢) for u <p. Thus y,(?) and T [y,](f) have the same minors of degree less
than p, so that y*(t) =y, () — T[yp) (¢} is a pseudo-solution of order A and degree
zero. It follows that y*(f) is a.p. with a module contained in M and that for
all non-negative integers m,

(7.51) y* ()= T"[y*](t) = T [yp] (t) — T™+* [y] (0).

Putting m=o0, 1, ..., r—1 and adding, we obtain ry*(t)=y, () — T [y (¢).
But this is impossible since the right member is bounded for all ¢ and y*(t) = o.
Thus our assumption was incorrect and all of the pseudo-solutions of order 4
are a.p. with modules contained in M.

7.6. In concluding this section, we shall prove a theorem which although
stated for the homogeneous rather than the non-homogeneous equation is based
directly on a theorem of Favard.' Its proof depends upon a specific device of
Favard, and not merely upon his general method as Theorem VI does. This
device will be given in Lemma 16.

Definition. The norm of a point set § in n-dimensional space is the least
upper bound of the norms of the elements of 8. It will be denoted by || S||.

! Sur les équations differentielles linéaires & coefficients presque-periodiques, Acta mathe-
matica, vol. 51, pp. 31—8I, esp. p. 59.
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Lemmsa 16. Let A(f) be a continuous »-by-n matrix function such that
(1.61) satisfies Condition I, and let 9 be the pseudo-solution manifold of (1.61)
of order 1 and degree . Let S be a closed convex point set in n-dimensional
space which contains the range of at least one element of 2, and let s be the
greatest lower bound of || R[y(d)]|| for all elements y(f) of ¥ whose ranges
lie in S. Then there exists one and only one element y*(f) of ¥ such that

R @)1 =s.

For if »W(t), y®(f), ... is a sequence of elements of U whose ranges lie
in S such that lim || R [y (¢)] || = s, there must exist a sequence of indices ¢;, 05, .- -
e ®
such that lim 4()(0) exists; and hence y*(f) =lim y@)(f) must exist for all ¢ and
i—» i—>®

be an element of 9 whose range is contained in S. (The convergence property of
the pseudo-solutions of order A follows from the fact that they form a finite
linear manifold and that y(0) # o for any pseudo-solution.) It is also clear that
IR y* (&) || =s, so that y*(¢) has the property described in the lemma.

To show that y*(f) is unique, assume that there exists another element
¥** (#) of U having its range in § and satisfying || R [y*"(#)]||=s. Then § ()=

=ég/* @+ ;—y** () is also an element of % whose range is contained in §; and

since s is a minimum and <4 if ||a]] < and ||b]] =, it follows

1
that ||R[§®)||=s. Let hy, hy, ... be a sequence such that lim || (k|| =s.

i—»>®»
I 2 2 I 2
o=l e el )
2 2 2

1 1 1
1 Z [* — % << - —
lim nz[?/ (t) Y (t)]||—28+ 28 S.

f>

Then since

I 2
E(a + b)” ’

But this is impossible since no pseudo-solution comes arbitrarily close to zero;
and it follows that »*(¢) is unique.

7.7. Theorem X. Let A () be an a.p. square matrix function baving the
module M such that (1.61) satisfies Condition I, and let § be a closed convex
point set in n-dimensional space which contains the range of a certain pseudo-
solution of (1.61) of order A and degree ». -Then if S does not contain the
origin, there exists an a.p. pseudo-solution y*(f) of (1.61) of order A and degree
< having its range contained in § and its module contained in M.
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For by Lemma 16, ||R[y(#)]]|] has a proper minimum for elements of the
pseudo-solution manifold of (1.61) of order A and degree r which have their ranges
in 8. Since § does not contain the origin, the element »*(f) which has this
minimum range norm is not identically zero but is actually a pseudo-solution.
But by Lemma 135, ranges and hence range norms are unaltered by the trans-
formations there considered, and hence the transform of %*(f) has a minimum

range norm and must be y*(f) itself. It readily follows that if A, h,, ... is
such that lim @h;=o0 (mod 27) for each element @ of M, then lim y* (¢ + hy)

exists for all ¢, and of course equals y*(f). Thus y*(f) is stationary and hence
a.p. with a module contained in M.

§ 8. Solutions of the Almost Periodic Type. — The Homogeneous Case.

8.1. The theorems of fhe last section enable us to prove theorems con-
cerning solutions of the a.p. type. Thus Theorem VII, the first part of Theo-
rem IX and Lemma 1 yield immediately

Theorem XI. TLet A(f) be an a.p. square matrix function which has its
module contained in a certain module M, and let (1.61) satisfy Condition I.
Let «(t) be a primary solution of (1.61) having y(f) as its associated pseudo- -
solution. Then if every other pseudo-solution which has the same order, degree,
and range as y(f) is a. p. with a module contained in M, it follows that x(f) is
of the a.p. type with a module contained in M.

In the following corollaries, A (f} is understood to be a.p. with its module
contained in M, and (1.61) is understood to satisfy Condition I.

Corollary 1. Let x(f) be a bounded solution of (1.61). Then if every
other solution which has the same range as x(f) is a. p. with a module contained
in M, so is z(2).

Corollary 2. Let x(f) be a bounded solution of (1.61). Then if no other
solution has the same range as z(t), z(f) is a.p. with a module contained in M.

Corollary 3. Let xz(f) be a primary solution of (1.61) having y(f) as its
associated pseudo-solution. Then if no other pseudo-solution has the same order,
degree and range as y(¢), z(f) is of the a.p. type with a module contained in M.

8.2. The above theorem leads immediately to a theorem giving necessary
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and sufficient conditions that all the solutions be of the a.p. type. The fact
that Condition I is a necessary condition was shown in Theorem I.

Theorem XII. Let A(f) be an a.p. n-by-n matrix function which has its
module contained in a certain module M. Then all of the solutions of (1.61)
will be of the a.p. type with a module contained in M .if and only if (1.61)
satisfies Condition I and there exist n pseudo-solutions y® (t), ..., y™ () of (1. 61)
whose leaders are linearly independent and for each of which the following
statement holds. With the exception of a.p. ones whose modules are contained
in M, there exists no pseudo-solution of (1.61) which is distinet from but has
the same order, degree, and range as y™ (f). ’

8.3. Another set of necessary and sufficient conditions can be obtained
from Theorem VIII and the second part of Theorem IX.

Theorem XIII. Let A (¢) be an a.p. square matrix function whose module
is contained in a certain module M. Then all of the solutions of (1.61) will
be of the a.p. type with modules contained in M if and only if (1.61) satisfies
Condition I and there exists no solution x(f) of (1.61) (neither a real nor a
complex one) having an exponential multiplier ¢~** such that ¢=*' (¢} is bounded
and positive twistable with respect to M.

8.4. A some what neater but less incisive theorem can be obtained from
Theorem XIII by use of the following definition and lemma.

Definition. A vector function f(f) will be called symmetric if R[f(t)] =
= Rlef(f)] for some constant scalar multiplier ¢ which is not equal to unity
but has unity as its absolute value.

Lemma 17. If there exists a module with respect to which a scalar func-
tion f(¢) is twistable, it follows that f(f) is symmetric.
For there exists a sequence hy, h,, ... such that for all ¢ lim f(t+ h) = cf(f)

for some constant ¢ which is not equal to but has the absolute value unity.
Thus Rlef ()] < R[f(f)]; and by repetition it follows that for all positive inte-
gers m and all ¢, ¢™f(¢) is an element of R[cf(f). But the set ¢, ¢? ¢* ... has
unity either as an element or as a limit point, and hence for each ¢, f(f) is an
element of R[cf(t). Hence R(cf(f)] = R[f(f)] and f(f) is symmetric.

Theorem XIV. Let A(t) be an a.p. square matrix function whose module
is contained in a certain module M. Then all of the solutions of (1.61) will
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be of the a.p. type with modules contained in M if and only if (1.61) satisfies
Condition I and every bounded and symmetric product e—* z(¢) of an exponential
and a (real or complex) solution z(f) of (1.61) is a.p. with a module contained
in M.

For e *x(f) cannot be bounded and twistable with respect to M, since if
it were it would be symmetric and hence a.p. with a module contained in M.

8.5. Finally, another theorem concerning a particular solution can be
obtained from Theorem X and the first part of Theorem IX.

Theorem XV. Let A(f) be an a.p. square matrix function having the
module M, let (1.61) satisfy Condition I, and let S be closed convex point set
in the n-dimensional space which contains the range of a certain pseudo-solution
of order 4 and degree . Then if § does not contain the origin, there exists a
satisfactory solution z(f) of (1.61) of order 1 and degree < r which is of the
a.p. type with its module contained in M and the range of its associated pseudo-
solution contained in S.

§ 9. Solutions of the Almost Periodic Type. — The Non-Homogeneous Case.

9.1. The non-homogeneous case will not be considered at length as the
homogeneous case was, since it has been pointed out in (1.6) how theorems
dealing with the homogeneous equation may be restated to fit the non-homoge-
neous equation. We shall however apply Theorem XV in order to show that
in the non-homogeneous case the condition analogous to Condition I alone implies
the existence of a solution of the a.p. type. The condition mentioned is

Condition II. The system (1.21) will be said to satisfy Condition II if to

P
every non-trivial vector function 2(f) of the form D\ [e, 2 () + 2 (¢)] 1 where
- =0

() is a solution of (1.21), the z(f) are solutions of (1.61), and the ¢, are
constants, there correspond a real number A and a non-negative integer # such
that z (f) = O* (e* ") at + 0.

9.2. We can now state

Theorem XVI. Let A(t) be an a.p. n-by-» matrix function and b(¢) an a. p.
n-dimensional vector function, let M be the least common module of A (t) and

b(#), and let (1.21) satisfy Condition II. Then (1.21) has at least one solution
of the form
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z* (8) = yo(t) + ty, (&) + - + t"yald),

where w,(f), .. , yn(f) are a.p. vectors having their modules conditioned in M.
In accordance with the method given in (1.6), we consider the system

, Dlx(t)=A(t) (&) + b))
(1. 62) d

a1 (t) = o;

where &(f) is a scalar function and the (n + 1)-dimensional vector [z(¢), £(¢)] is
the unknown. Since (1.21) satisfies Condition II, it is clear that (1. 62) satisfies
Condition I; and every solution of (1.62) is decomposable. But if x(f) is a
solution of (1.21), [z(f), 1] is a solution of (I.62); and at least one of the satis-
factory solutions into which it is decomposable is of the form [cx,(f); ¢], where
2, (t) is a solution of (1.21) and ¢ is a non-zero constant. Let [y(f); 7 ()] be
the associated pseudo-solution of [x,(f); 1]; let 2 and r be its order and degree,

and let [x,(t); ¢), - . ., [x-(); ¢;] be the minors. Then the bounded function
r -V

n(t)Ee—NZ %cr-—v, where ¢, =1; 80 A=1¢y= -+ = ¢—1=0. Thus if § is the
v=0

set of points in (» + 1)-dimensional space whose last coordinates are equal to
unity, it follows that (1.62) has a pseudo-solution of order zero whose range is
contained in S. Since S does not contain the origin we can apply Theorem XV,
and it follows that (1.62) has a satisfactory solution of order zero of the a.p.
type with a module contained in M whose associated pseudo-solution [y*(t), 1]
has its range contained in S. But a pseudo-solution and its leader are equal
when #= 0, and hence the solution of (1.62) in question is of the form [x*(¢), 1};
and z*(f) is a solution of (1.21) having the property demanded by the theorem.

9.3. In conclusion, we note that Theorem XVI can be combined with
Theorem XII, Theorem XIII, or Theorem XIV to give necessary and sufficient
conditions that all of the solutions of (1.21) be of the a.p. type.
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