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w I. I n t r o d u c t i o n .  

T h e  object  of the present  paper  is to s tudy in greater  detai l  than  has been 

done before a cer ta in  space of an infinite number  of dimensions, in which a 

theory  of in tegrat ion can be developed. The 'space in question was first con- 

sidered by Daniel l  i n  connect ion with his studies on infegra t ion  in abstract  

spaces~; since then  it  has been invest igated by Wiener,  Steinhaus,  Pa ley  and 

Zygmund,  Carlson and myself. ~ The theory has applications to analyt ical  problems 

and to problems in the calculus of probabilities. 

Le t  us consider a real or complex funct ion f (x l ,  x~, x3, . . . )  depending on a 

sequence of real  variables; such a funct ion is called per iod ic  with the periods 

i, I, I , . . .  if for  arbi t rary  integers  nl, ~ ,  ~ ,  . . .  we have always 

f ( x L ,  x~., xa, . . . ) =  f ( x ,  + nl,  x~ + ~ ,  x a + ~a, . . .). 

W e  restr ict  ourselves to the considerat ion of such functions. As always when 

dealing with periodic functions,  i t  is convenient  to consider the funct ions as 

defined not  in the usual >>open* space but  in the closed space which we obtain by 

replacing the coordinate  axes by circles. Thus the space with which we have 

to deal in the present  paper is tha t  closed space or torus-space which we obtain 

f rom the space of all real sequences xl ,  x~, xa, . . .  by reduct ion of the coordinates 

rood. I. This reduced space is denoted th roughou t  by Q~. 

I t  is not  usual to speak about  a space before relat ions between its points have  

been defined. We  give these relat ions in the next  few sections by introducing 

the notions of intervals,  l imit points and closed and open sets and by proving the 

classical covering theorems. These sections contain what  may be called the topology 

of the space Qr upon which the whole theory  is based. I t  is also possible to in- 

t roduce  a distance between the points of Q~ but  not  wi thout  violating the sym- 

metry  of the variables, and we do not  need the notion. The fac t  tha t  we con- 

sider the variables as a r ranged in a fixed order  is only a ma t t e r  of convenience. 

' P. J. Daniell Ill,  [2]. 
2 N. Wiener [I], H. Steinhaus II], [2], R. E. A. C. Paley-A. Zygmund Ill, I2], [3], F. Carlson Ill, 

]',. Jessen [[], [2], I3]. 
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Other  spaces than  the space (2~ can be t rea ted  in a similar way; such 

spaces have been considered by Daniell,  Feller  and Tornier,  and Kolmogoroff l ;  

a quite general  result  has been announced by Ulam. 2 T h e  theory is also related 

to a type of in tegra t ion  in funct ional  space in t roduced b y  Wiener.  3 

The idea of the present  exposition is to develop the theory of funct ions in 

the space Q~,, in close analogy to the t h e o r y  of the n-dimensional torus-space Qn, 

obtained f rom the ordinary ~,-dimensional space by reduct ion of the coordinates 

mod. I. This  is possible; in fact, as soon as intervals and the measure of 

intervals have been defined, the ordinary definitions of exter ior  and inter ior  

measure, and so also the ordinary definition of measurable and integrable func- 

tions, may be applied. The proof tha t  the measure and so the in tegra l  have the 

ordinary propert ies  is obtained, wi thout  the t rouble of repeat ing all arguments ,  by 

using a simple transferring principle; the corresponding principle for  n dimensions 

has been used by Lebesgue, F. Riesz and de la Vall6e-Poussin. 4 I t  would be easy 

to prove tha t  my definition leads to the same not ion as Daniell 's  which was based 

on Young's  definition of the Lebesgue integral.  - -  The mos~ interes t ing par t  of 

the theory  is tha t  which deals with such problems as have no analogue for  

funct ions of a finite number  of variables; for  instance, the problem of what  

meaning can be a t tached to an infinitely multiple integral.  - -  A main point  in 

the theory is the establ ishment  of a theory  of Four ier  series for  funct ions in 

Qo~. A solution of this problem in the case of cont inuous funct ions was given 

by Bohr in his second paper  on almost periodic funct ions;  in the present  paper  

we a t tach  to any integrable  funct ion in Qo~ a Four ier  series of the form 

E CPl, P'z . . . . .  Pn e~z i (PlX~ +p~x2+ �9 �9 �9 +Pn Xn) 

(where the summation is both over the p 's  and over n) and we prove tha t  this 

series determines the funct ion uniquely;  we also prove the Parseval  and Riesz- 

Fischer theorems for these series. 

Daniell  and Wiener  used the theory  of the space Q~ as an example and 

special propert ies  of the space were not  given. Steinhaus gave two applications 

of the theory;  he pointed out  tha t  a theory  of measure in Qo~ would make it  

1 p. j. Daniell [211 W. Fcller-E. Tornier [I], A. Kolmogoroff [2] 24--30. 
2 S. Ulam [I]. It is of interest to remark that the main results of the present paper, in 

particular the theorems of w167 13 and 14, hold also in the case considered by Ulam. The proofs 
must be rearranged. 

8 See R. E. A. C. Paley ~--3L Wiener-A. Zygmund I I ] .  . . . . . . . . . .  
H. Lebesgue [I] 365; F. Riesz [I 1 497; C. de la Vall6e-Poussin [I]. 



252 B. Jessen. 

possible to generalise the theory of probabilities by a sequence of choices of real 

signs + I (where the two signs are supposed to be equally probable) to the case 

of sequences of complex signs. This leads in our notation to considerations 

concerning the orthogonal system e2~ixk. Translating a beautiful result of Kol- 

mogoroff from the language of the calculus of probabilities into the language 

of real functions, Steinhaus proved an interesting convergence theorem for series 

of the form 

Z ake2Z~iXk; 
k = l  

he also proved a theorem on the analytical continuation of power series. Paley 

and Zygmund developed the theory for both real and complex signs in a syste- 

matic way; they obtained results not only for power series, but also for Fourier 

series and Dirichlet series; Carlson added certain results concerning Dirichlet series. 

The present author was led to the theory in connection with some investi- 

gations by Bohr concerning the distribution of the values of the Riemann zeta- 

function, which were carried out in collaboration with the author. ~ These in- 

vestigations have a certain connection with those just mentioned, but here it is 

the case of complex signs that  occurs. I t  proved advantageous to consider the 

zeta-function 

(8) = Z I I  ( i  - 
n = l  k = l  

in relation to the general class of functions 

H - �9 
k ~ l  

In the present paper I apply the theory of the space Q~ not to the zeta-function 

itself but to other almost periodic cases f o r  which the details are simpler. The 

results of Steinhaus and some of the results of Paley and Zygmund are of 

importance for these applications; I give a slightly simplified exposition of these 

results before I give my own applications. 

w 2. The Torus-spaee of all Infinite Number of Dimensions. 

We start from the space of all sequences xl, x2, x3, . . .  of real numbers. 

Reducing the coordinates of this space mod. I we obtain a certain closed space; 

H. Bohr-B. Jessen [I] ,  [2], [J].  
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we call i t  the torus-space Q~. W e  shall  have in the  sequel to consider funct ions  

defined in this space. Th rough  the reduct ion of the coordinates  mod. I the 

coordinate  axes in the or iginal  space become circles; we call these circles the  

coordinate circles of Qo~ and denote  t hem by cl, ca, cs, . . . ;  they all have the  peri- 

me te r  I. The le t ter  xk is in what  follows used in two different senses: both  to 

denote  a point  of the coordinate  circle ck and to denote  the  abscissa of this 

point  on ek; i n  the la t te r  case xk is only de te rmined  rood. I. The point  of Qo~ 

which is de te rmined  by the coordinate  points,  or s imply  coordinates,  xj, x~, x s , . , .  

is denoted by 

x = ( x .  . . . .  ). 

I t  will be convenient  for  us to have a fixed no ta t ion  for  wha t  is usually 

called the product of a finite or infinite n u m b e r  of (arbitrary) sets A1, A~, A s . . . .  

The produc t  A = ( A  D A~, As , . . . )  is defined as the set of all symbols  x ~  

: ( x  1, x~, x 3 , . . . ) ,  where  xk belongs to Ak. I n  this  sense the torus-space Q~ is 

the  p roduc t  of the coordinate  circles e~, ca, c3, . . .  or 

= ( e .  %, 

Of the g rea tes t  impor tance  for  the  present  paper  is now the definition of 

an  interval in the space Q~. Denote  as an arc b on a circle c e i ther  an ordi- 

na ry  open arc (perhaps the  circle wi~h except ion of one p o i n t ) o r  the  circle 

itself. The obvious th ing  to do would be to denote  as an in terva l  in Q~ any 

set of points  obta ined  by choosing on any  coordinate  circle ck an arc bk and  

then  fo rming  the produc t  

z =  . . . )  

of these arcs. This  definition, however,  turns  out  to be very unsat is fac tory .  Our  

t h e o r y  depends ent irely on the  fact ,  t ha t  we admi t  as in tervals  only those sets 

of the fo rm (2.I) for  which only a finite n u m b e r  of the arcs hi, b~, bs, . . .  are 

ord inary  arcs, the res t  of t hem being the  coordinate  circles themselves.  The  

lengths  of the arcs are called the  edge-lengths of the  interval ;  so for  an in te rva l  

in our sense ~he edge-lengths are all = I wi th  the  exception of a finite n u m b e r  

of t hem which are < I. The space itself is an in terval  and  its edge-lengths 

are all = I. 

1 In the applications we shall also consider spaces of the form (tt'n, Qr where /~n is, as 
usual, a Euclidean space,. It was found convenicn~ not to complicate the general theory by the 
consideration of this case. 
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I t  is of ten convenient  to consider Q~ as the product  of the ~-dimensional 

torus-space 

and the infinite-dimensional torus-spaee 

~n,r = (Cn+l, Cn§ 

W e  write then  in accordance with our general  nota t ion Q~ = (Q,,  Qn,~). I f  

x ' =  (x~, x 2 , . . . ,  x~) and x " =  (x~+~, x,~+2, . . . )  are two points of Q~ and Q,, o,, we 

d e n o t e  the corresponding point  of Qo~ by x = (x', x"). The points x'  and x "  are 

said to be the projections of x on the spaces Q~ and Q ...... I f  we project  all 

the points of a set in Q~ on Q,~ or Q~;~ we get the project ion of t h e  set itself. 

The projections of the interval  (z.I) on Q~ and Q~,r are the intervals 

and 
I '  = (bl,  b~ . . . .  , b.)  

I " - -  (bn+l, bn+2, . . . ) ;  

so we have I =  (I', I") .  I f  n is large enough we have I " =  Q,,,~ and so I - -  

= (I', Q~, ~)). For  an arbi t rary  set A in Q~ the relat ion A = (A', A") will gener- 

ally not  be true. I f  we have A = ( A ' ,  Q~,o,) or A = ( Q = , A " )  the set A i sca l led  

a cylinder; in the first case its base is the set A' in Qn, in the second case the 

set A"  in Q~, ~. 

Our theory  of funct ions in the space Q~ will be developed in close analogy 

to the theory of the space Q,~, but  it  should be observed tha t  the theory of the 

space Q~, contains tha t  of the space Q,~. In  fact  any funct ion f ( x l ,  x2, . . . ,  x,~) in 

Q,~ may as well be considered as a funct ion in Q~, which does not  depend on the 

variables x~+~, x,+2 . . . .  and to any set A'  in Q,~ corresponds the cylinder A--~ 

= (A', Q~, ~) in Q~. Funct ions  which only depend ei ther  on the variables xl, x ,~, . . . ,  xn 

or on the variables x,+~, x~+~, . . .  play an impor tan t  rble in the theory.  

w 3. Limit Points. Covering Theorems. 

A sequence of points x ('~) = (x~ '~), x~"), x~") , . . . )  in Q~ is said to be convergent 

and to have the l imit  poifit x = (xj, x~, x 3 . . . .  ) if  x~ ~) -~ xk as n -~ ~ for any fixed 

k (but not  necessarily uni formly in k); we then write x ('~) -o x as n--~ ~ .  Let  

t h e  sequence x (1), x (~), x(S), . . .  be convergent  to the limit point  x and let ~ b e  

an interval  surrounding x; then  it follows immediately tha t  x(") must  lie in T~ 
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for all sufficiently large n. The converse of this is also t rue:  Suppose tha t  the 

sequence x (1), x (2), x(3), . . .  and the point  x have the proper ty  tha t  for  any inter- 

val /~ containing x the points x (n) of the sequence lie ul t imately in T.~, then the 

sequence must  be convergent  and must  have the limit point  x. The Weierstrass-  

Bolzano theorem is t rue for  the space Q~, t h a t  is: A ny  sequence x (1), x C2), x(8), . . .  

of points in Q~j contains a convergent subsequence. This is proved in the ordinary 

way by means of the diagonal  method.  

I f  the l imit  point  of every convergent  sequence of points of a set A belongs 

to A then  we say tha t  A is a closed set; a set A is said to be open if its 

complementary set Q ~ - A  is closed. An interval  is evidently an open set, b u t  

the same is not  t rue for a set of the form (2. J) where an infinite number  of the 

arcs bk may be ordinary arcs. We  shall now prove the fol lowing more general  

theorem: A set A of  points in Qo~ is open i f  and only ~f corresponding to any of  

its point~ ~ x it contains an interval I~ surrounding x. 

The one par t  of this theorem is obvious: I f  the set A contains corresponding 

to any of its points x an interval  L: surrounding x, then  no point  x of A can 

be a l imit point  for  the complementary set Q ~ - A ;  so this set must  be closed 

and hence A open. In  order  to prove the converse suppose A to be open and 

x =  (xl, x,2, x ~ , . . . )  to be a point  of A, and consider for  any n the in terval  

I (~) = (b~, b~, . . . ,  b,~, Cn+i, en+2 . . . .  ) where bk for I _--<_ k ~ n is the arc on ck which 

has its midpoint  in xk and the length  ~; then  it is clear tha t  I (~) mus t  belong 

to A for all sufficiently large n; for  if not  we should have for  any n a point  

x (~) of Q o ~ - A  lying in I (n) and Q ~ - A  would not  be closed since evidently 

X(~)---~X a s  n ---~ o r  

I f  we add to an arbi t rary  set A all points outside A which are l imit points 

for  sequences of points of A we obtain the closure A of A, which is the smallest 

closed set contalning A. I f  A : ( e ~ ,  e~, c a , . . . )  where ek is an arbi t rary  set o n  

the coordinate circle c~ we have .4----- (el, e~, ~3, �9 �9 .). I f  I is an interval  we call 

the corresponding closed interval.  

Finally we call to mind the two classical covering theorems: 

I. The covering theorem of Lindel5f. I f  to any point x of  a set A in Q~ 

there corresponds an interval I~ surrounding x then we can find a finite or churner- 

able number of these inter~'als which will cover A. 

In  order  to prove this  we denote as a ra t ional  point  on each coordinate  

circle a point  with rat ional  abscissa and as a ra t ional  arc an arc whose endpoints  
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are ra t ional  (the circle itself shall  also be considered as a ra t ional  are). An in- 

terval  I in Q~o is now called a ra t ional  interval,  when the defining arcs are all 

ra t ional ;  evidently there  is only an enumerable number  of ra t ional  intervals in 

Q~. Now any interval  Is surrounding a point  x in Q~ cer ta inly contains a 

ra t ional  interval  surrounding x. This proves the theorem. 

2. The covering theorem of B o r e l .  I f  the set A co~zsidered is a closed set, 
then a finite number of the intervals will always be enough to cover A. 

A simple way of proving this theorem is to deduce it  f r o m  Lindelhf 's  

theorem. Suppose tha t  A is covered by a sequence of intervals I(~), i(2), /<3), . . .  

a n d  denote  by A ('~) the par t  of A which lies outside the first n intervals 

i ( 1 ) , p ) ,  . . . , i ( n ) ;  then  A (~) is evidently closed. We have t o  prove tha t  A (n) 

vanishes for  all sufficiently large n; this, however,  is clear; for  f rom the Weier- 

strass-Bolzano theorem it e a s i l y  follows tha t  a sequence of closed sets A (~)==_ 

>= A(2)~A(3)>--_ ..., none of which vanishes, must  have a point  in common; and 

such a point  does not  exist  in our  case. 

We could of course carry this study of the space Qo, fur ther ;  we shall only 

add the following theorem, which is in  itself of no great  interest  but  which we 

shall require la ter  on: Le t  A'  denote an arb i t rary  set in (~)~ and let the set 

A ~ (A', Q~,~) in Q,,~ be enclosed in an open set 0 in Q,.~; then ttmre exists an 

open set U' in Q~ which contains A' and is such tha t  U = ( U ' ,  Q,,.~j) is con- 

ta ined in 0. The proof is as follows: For  a fixed point  x '  of A' we consider 

t he  set (x', Q~,,~) in Q~; this set is contained in 0, so to any of its points x 

there  corresponds an interval  /.~ surrounding x and contained in 0;  now the set 

(x', Q,,, ~) is closed, so by Borel 's theorem a finite number  of the intervals Is 

will cover the set and we may conclude tha t  there  exists an interval  I'  in Qn 
containing x '  such tha t  (I', Q,~,~) is contained in O. This proves the theorem. 

We  have also the corresponding theorem, tha t  if a set of the form (Q,, A"), 
where A" is a set in Q,, .... is c o n t a i n e d  in an o p e n  set 0 in Q .... then  A" is 

contained in an open set U" such tha t  U-~ (Qn, U") lies in 0. 

w 4. Cont inuous  and Semi -con t inuous  Funct ions .  

A funct ion f ( x ) = f ( x t ,  x~, x 3 , . . . )  defined in Q~,, is said to be eo~ti~ous 
(v01!stetig) in QoJ, if f ( x  (n))---*f(x) whenever  x(")-~ x. I t  follows easily: A func- 

t ion f (x)  is cont inuous if and only if for  any x in Q~,, and for any e > o there 

exists an interval  [~ surrounding x such tha t  tile inequali ty 

I f ( z ) - f ( x ' ) l  < 
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holds for  all points x'  in L,. I f  we keep ~ fixed and vary x, it follows at  once 

f rom the covering theorem of Borel  (since Q~o is c l o s e d ) t h a t  any cont inuous 

funct ion f ( x )  must  be bounded in Qo,. A real funct ion f ( x )  is cont inuous if, 

and only if, for  any real a the points where f ( x ) >  a or f ( x ) ~  a both form a 

closed set. The funct ion at tains both its upper  and its lower bound. 

We shall give one more proper ty  of cont inuous funct ions which also follows 

imuiediately f rom Borei 's covering theorem:  I f  f ( x ) : f ( x ~ ,  x2, x 3 , . . . ) i s  cont inuous 

in Q. then  there  exists for  any e > o a number  n and a number  d > o, such tha t  

the inequali ty 
t 

I f ( x ,  x,~, x~,  . . .) - f ( x ; ,  x'~, x ~ ,  . . . ) 1 <  

holds whenever  the n inequalities Ixk - -  x; I < d for  I < ]c ~< n are fulfilled. This 

theorem shows tha t  any continuous funct ion in (r may be uniformly approximated  

by continuous functions,  each of which depends only on a finite number  of the 

variables. 

A real funct ion f (x)  defined in Q. is called semi-confinuous f rom above in 

Q~ if lira f ( x  ('~)) <=f(x) whenever  x (hI --~ x; a funct ion is semi-continuous from 

above if, and only if, for  any real a the points where f(x)>~ a form a closed 

set. A funct ion f (x)  is semi-continuous from below if - - f ( x )  is semi-continuous 

f rom above. 

w 5. The  Lebesgue  Measure.  

The way to a theory of  measure in Q~ is now ra the r  obvious; we need only 

a t tach  to any (open) interval  1 (in the sense defined a b o v e ) a s  measure the 

p r o d u c t  of its edge-lengths and then  apply the o rd in a ry  Lebesgue definitions. 

These definitions are the following: 

Le t  A be any set in Qo~ and consider all coverings of A with a (finite or) 

enumerable  number  of intervals I ;  determine for  each such covering the sum of 

the measures of the covering intervals;  the set of numbers  obtained cer ta inly 

contains the number  I since Q~o itself is a covering interval.  W e  call its lower 

b o u n d  m~A the  exterior Lebesgue measure of the set A; the interior Lebesgue 

measure n~A of A is defined by the relation m iA-~  I me(Qo,- A). 

We have o < m e A <  I and hence also o_--<miAN I. Fu r the r  m ~ A < m e A  

or meA + m e ( Q o ~ A ) >  I; for  two coverings of A and @ , - - A  form toge ther  a 

covering of Qo. Then,  however,  it  follows f rom Borel 's covering theorem th a t  

a finite number  of the intervals considered will cover Qo~; now these intervals  

3:3--34198. Acta mathematica. 63. Imprim6 le 6 ju i l le t  1934. 
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may for  some fixed n all be wri t ten in the form I ~  (1', Q,,~) where I '  denotes 

an interval  in Q~, whose measure is equal to tha t  of L ]Now as these inter- 

vals Y must  cover Q~ the sum of thei r  measures must  be >= I and so the theorem 

is proved. 

I f  the interior measure is equal to the exterior measure, the set A is said to 

be measurable in the Lebesgue sense with the infinite-dimensional measure 

m A  = m~A ~ meA. " 

Now it must  of course be proved, tha t  inter~'als are measurable sets and 

tha t  their  measure is equal to tha t  already defined. This could easily be proved 

directly but  follows also from the more general  remark  tha t  if A'  denotes any 

set in Qn then  the exter ior  and in ter ior  measure of the cylinder A--~ (A', Qn,(o) 

will be equal to the exter ior  and inter ior  n-dimensional measure of A'. In  par- 

t icular  the two sets A and A' will be measurable together  and with the same 

measure, i n  order  to prove this we suppose first t ha t  A' is measurable;  then  

the relat ion meA + me(Q~ - A) >= I in connect ion With the relations 

give 
m ~ A = ~ n A ' ,  m~(Q(o-- A ) = m ( Q n - A ' )  

and so m~A -- m~A - mA ' .  Suppose now tha t  A' is not  measurable;  it  is evidently 

enough to prove tha t  meA ~ m~A' and since n~eA G m~A' it is enough to prove 

tha t  me A + ~ > me A'  for  any ~ > o. Consider now a (finite o r ) e n u m e r a b l e  

n u m b e r  of intervals I covering A such tha t  the sum of thei r  measures is 

< m~A + ~; denote the open set composed of these intervals  by O; then we 

have clearly meA + ~ > meO; now we have proved before tha t  there  exists an 

open set U' in Qn containing A' so tha t  U =  (U', Q,,,,,,) is contained in 0 ;  but  

this proves the theorem since then  by the case already considered 

~ A  + e > m ~ O > m U = m U ' > m , ~ A ' .  

The theorem is to be considered as showing tha t  n-dimensional mea.~,ure (in the 

space Q,~) is a particular case of  the infinite-dimensional measure. I t  follows 

especially tha t  any closed interval  _1 in Q,~ is also measurable and tha t  its measure 

is equal to the product  of its edge-lengths. 

In  exactly the same way it  can be proved tha t  if A"  denotes an arbi t rary  

set in Q ..... and A = (Qn, A") is the corresponding cylinder in Q,.,, then  the two 
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sets A" and A have the same exterior and interior measure (now both measures 

are infinite-dimensional). The proof depends on the theorem (not yet established) 

that  any open infinite-dimensional set is measurable. Observe also the following 

theorem which is very easy to prove: If  A' and A" are arbitrary measurable sets 

in Qn and Q .... , then the set A ~ (A', A") in Q~ is also measurable and we have 

m A  ~ m A '  �9 m A " .  

A special r61e is played by the null-sets in Q~, that  is the measurable sets 

of measure o. The sum of an enumerable number of null-sets is again a null- 

set. I f  Q* is a subset of Q~ which differs from Q~o only by a null-set and if 

A* denotes the common part of Q~ and an arbitrary set A in Q~, then it is 

easily seen tha~ m~A ~ - m e A *  and m~A ~ m i A  ~. As an example of a null-set we 

mention the set of all points in Q~ whose coordinates are not all irrational. 

w 6. The Construction of Nets. 

After the above discussion it will not be surprising that  the measure in- 

troduced has all the properties of the v-dimensional measure in the space Qn. 

This could be proved by  repeating all the ordinary proofs. I t  is, however, much 

easier to use a simple transferring principle, which gives everything without the 

trouble of repeating all arguments. This transferring principle depends entirely 

on the concept of a net, introduced with such great success in the theory of real 

functions by de la Vall~e-Poussin. In the case of functions of a finite number of 

variables the importance of the nets is rather that  they give a simple technique 

for proving theorems which have themselves nothing to do with the nets 

and could have been proved without them. I n  the theory of the space Q~ it 

seems (as we shall see later on) that the use of nets is the only way of ob- 

taining the deeper results. We shall have to use nets not only for the proof 

of the transferring principle but also later on; we therefore postpone the proof 

of the transferring principle and deal in this section only with the construc- 

tion of nets. 

We shall speak of a dissection of a circle c into arcs b, when we leave 

out of c a finite number of points; the extreme cases where no point, or only 

one point, is left out are also to be considered as dissections. When we denote 

the arcs by b they are supposed to be open; the corresponding closed arcs are 

denoted by b. Now consider the first ~ coordinate circles ck which form the 

torus-space Q~ and take a dissection of each of them into arcs bk; then  we ob- 
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rain a dissection D '  of Q,~ into intervals ,  which we shall  denote  by I ' ,  by tak ing  

all in tervals  of the  fo rm 
I '  = (bl, b~ , . . . ,  b~) 

where  each bk is an are f rom the dissection of ek considered. W e  obta in  a 

subdisseetion of a circle e by leaving out more  points of e; accordingly a sub- 

dissection of Q,, is ob ta ined  by tak ing  subdissections of the  coordinate  circles 

ek or a t  least  of some of them.  W e  now define a net in Q~ as a sequence of 
t v t r P 

dissections D , , D ~ ,  D,,  . . .  where Dm+l is a lways a subdisseeti0n of D,~ and 

where fu r the r  the  fundamen ta l  condit ion is fulfilled t ha t  the m a x i m u m  of t he  
t 

edge-lengths of all intervals  in D~ tends to zero as m - ~  ~ .  

This  definit ion is easily general ised to the case of the  space Q~. I n  order 

to obta in  a dissection D of Q~, we take a dissection of each of the coordinate  

circles ek into ares bk but  so t ha t  only a finite n u m b e r  of these dissections are 

real  dissections no points  being lef t  ou~ f rom the rest  of the circles. Then  again  

we may  form the  set of all in tervals  

I =  (bl, b2, b~ , . . . )  

and these sets I are indeed intervals  in Q~ according to our definition. I t  

follows at  once t ha t  any dissection D of Qo~ may  also be considered as genera ted  

by a dissection of the space Q,~ where n is sufficiently large, in the sense t ha t  

the  intervals  I of the dissection D are all of the  fo rm I = (r ,  Q~, ~,), the inter- 

vals I '  fo rming  a dissection of Q~. Now consider a sequence of dissections 

D,, D2, D ~ , . . .  of Qo~ where D,~+I is always a subdissect ion of D~; we then  say 

tha t  this sequence forms a ~et i,n Q,., if for  any fixed k the  maximal  length  of 

the  arcs of t ha t  dissection of ck which corresponds to D,~ tends to zero as n --* 

(but evidently not  un i formly  in k). W i t h  this definit ion of a ne t  in Q~ the 

f u n d a m e n t a l  p roper ty  holds t ha t  if ~ > I~ > ~ > . -  denotes  any sequence of 

closed intervals  such tha t  L~ for  any n belongs to D~,, then  these intervals  will 

have exact ly  one point  in common.  Obviously there  exist nets  in Qo, The set 

of all points  which lie on the boundary  of some in terval  in a net  form a null-set. 

w 7. The Transferring Principle. 1 

By means  of the cons t ruc t ion  of nets  it  is now easy to prove tile t rans-  

fe r r ing  principle refer red  to above. Let  Q and q be two torus-spaces of the kind 

1 Cf. H. Lebesgue [I] 367; F. Riesz [I] 497; C. de la Vallde-Poussin [I], 
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considered; they need not  be of an infinite number  of dimensions; suppose for  

instance tha t  Q is Q,,, and q a circle of l e n g t h  I. W e  shall prove tha t  there  

exists an application of Q on q which conserves the measure in the fol lowing 

precise sense: 

There exists a o~e-one application of the points of  Q with the exception of  a 

null-set on the points of q with the exception of a ~ull-set, with the property that 

eorresfgondiug sets in Q and q have always the same exterior a~d interior measure. 

For  our  present  object (the proof tha t  the measure in Q~ has all the  pro- 

perties of ~he measure on a circle) t h e  existence of one such application in the 

special case ment ioned above would be sufficient; the way in which it  is con- 

s tructed is, however, of impor t ance  for  the applications, and it is also of im: 

por tance tha t  we do not  restr ict  ourselves to this case alone. 

We consider a sequence of dissections D~, D~, D~, . . .  which form a net  in 

Q and a sequence of dissections all, d~, d3, . . .  which f o r m  a net  in q. The inter- 

vals of Dn will be denoted by L~, ~he in te rva ls  of d~ by i~. Now we suppose 

tha t  the two nets in Q and q correspond in the sense tha t  for  any  n we have 

a one-one correspondence between the  intervals L~ of Dn and the intervals i,~ of 

d~ with the fol lowing two propert ies:  Corresponding intervals  L~ and i~ have 

always the same measure; to an interval  I.+1 contained in an interval  In always 

corresponds an interval  i~+1 contained in the corresponding interval /~.  Evident ly  

there  exist corresponding nets in Q and q. 

We now consider any sequence 

(7. i) ]I => L _-> L _-> 

of closed intervals  in Q, one f rom each of the dissections Dn; this s equence  de- 

termines uniquely a point  x of Q but  there  are points of Q which are deter- 

mined by more than  one sequence (7. I); those are the points x which lie on 

the boundary  of some interval  / ,~.  Now to any sequence (7. I) by the corres- 

pondence of the two n e t s  there  corresponds a sequence �9 

(7. ~) ~ => ~-~ => ~3 ->- " 

of closed intervals in q, which determines uniquely a certain point  t in q. So 

if we let two points x and t of Q and q correspond if they are determined by 

corresponding sequences (7. I) and (7.2), we obtain an applicat ion of Q on q. T h i s  

applicat ion is not  a one-one applicat ion except in tr ivial  c a s e s -  the:possiSilit ies 
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are i l lustrated in fig. I - -  but  we shall show tha t  if we only consider the applica- 

t ion for  pairs of corresponding points x and t, each of which has only one 

corresponding point, the exceptional  sets are null-sets and the applicat ion has the 

desired properties. The proof of this is simple, but it  requires a certain care 

and we may of course during the proof only apply the few properties of the 

measure which we have already established in ,~ 5. 

I t  is convenient  to delay for  a moment  the omission of the exceptional 

sets and first consider ~he application as it is defined by the correspondence 

between the sequences (7. I) and (7.2). For  any set S in Q we may consider 

the set s of all points in q which correspond to some point  of S (this does not  

imply tha t  S contains all points in Q which correspond to some point  of s); 

Fig.  L 

we can now prove very easily tha t  m~s ~ rueS. Consider for  a given ~ > o a 

(finite or) enumerable number  of intervals I covering S, so tha t  the sum of the 

measures of these intervals is < me S + e .  Take now first all the closed intervals 

I l of D 1 which belong to one of these covering intervals I ,  then  all the closed 

intervals i~ of D~ which belong to one of the intervals I wi thout  being contained 

in one of the intervals I1 already selected, and continue this process; the sum 

of the measures of all the closed intervals T, obtained in this way is clearly 

< m e S + ~ ;  fur thermore  for  each sequence (7. I) which defines a point  x of S, 

the.  first interval  /~, of the sequence which belongs to one of the intervals I is 

among the selected intervals i~. Now consider the set in q composed of all the 

corresponding intervals i,; this set must contain s; now an)" interval  ~,, can be 

enclosed in an open interval  whose measure is only slightly greater ;  so we get 

m e s < m e S + e  and since ~ was arbitrary,  mesdameS. We have of course the 
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corresponding result that  if r is a set in q and R the set of all points  in Q 

which correspond to the points of r, then ~eR __~ met. 

Now consider first the set $1 of all points in Q which have more than 

one corresponding point in q, and denote by s I the set of all corresponding 

points in q; the set S t is known to be a null-set; since rues 1 <= rues 1 we see that  

sl must also be a null-set: Similarly if rl denotes the set of points in q with 

more than one corresponding point in Q, and if R~ is the corresponding set in 

Q, we have that  r~, and hence also R1, is a null-set. Now denote by Q* the set 

obtainecI from Q by leaving out the two null-sets $1 and R~ and by q* the set 

obtained from q by leaving out the sets s~ and r~; then Q* and q* are formed 

by all the pairs of points x and t each of which has the other point as its only 

corresponding point. Q* and q* differ from Q and q by null-sets and the one- 

one application o f  Q* on q* preserves the exterior and interior measure; in fact, 

if S and s are corresponding sets in Q* and q*, we have both rnes ~ rues and 

rueS <= rues and hence m ~ S =  m~s, and the corresponding result for the interior 

measure follows by considering the complementary sets with respect to Q~ and 

q*, using the remark that the omission of a null-set does not alter either the 

exterior or the interior measure. 

Thus the theorem is proved; together with the above remark on null-sets 

the transferring principle proves that the measure in Q~ has all the properties 

o f  the measure on a circle; we emphasize especially the main theorem: If  

A1, A2, A~, . . .  denotes a finite or enumerable sequence of measurable sets in Q~, 

then the common part and. the sum of these sets are again measurable. I f  no 

two of the sets have common points we have further 

m(AI + A2 + A~ + .. .) = m A l  + mA,~ + m A s  + . . . .  

From this theorem it follows that  any open set A in Q~ must be measurable; in 

fact, if we choose for each point x of A an interval /.~ surrounding x and con- 

tained in A, it follows from LindelSf's theorem that  A is the sum of a finite or 

enumerable number of these intervals. From this it follows that  also any closed 

set, as complementary set to an open set, must be measurable. 

In the 

measure; in 

w 8. The Jordan  Measure. 

general theory we use exclusively the infinite-dimensional Lebesgue 

the applications, however, the corresponding Jordan measure 
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also plays an essential r61e. We define this measure imitat ing the ordinary 

definitions. 

Le t  A denote an arbi t rary  set in Q .... W e  consider all coverings of A hy 

a finite number  of intervals I and determine for each such covering the sum 

of the measures of the covering intervals. We define the exterior Jo rdan  measure 

of the set A to be the lower bound u~A of the numbers  obtained;  the i~terior 

Jo rdan  measure is defined by the relat ion t t i A - -  I--#~,(Q,.~--A). W e  have evi- 

dently o=<#~A=< I and hence also o < # i A = <  I; the relat ion tt~A:<=tt~A is for 

the Jo rdan  measure an e lementary  relation. 

I f  the interior Jordan measure is equal to the exterior, we say that the set A 

is measurable in the Jordan se~se with the i~finite-dimensional Jordan measure 

t tA  --  # iA  = #~A. 

The propert ies of the Jo rdan  measure are, exactly as in the n-dimensional 

case, most  easily t reated by means of the Lebesgue measure. Let  A be an 

arbi t rary  set in Q~ and let ~-1 denote the closure of A in the sense defined above; 

since A is closed, it is measurable in the Lebesgue sense and we shall now 

prove tha t  
#cA = m-A. 

Tha t  #~A ~ rnA follows at  once from Borel 's  covering theorem; in fact, if we 

have a covering of A by a (finite or) enumerable set of intervals 1, then  a finite 

number  of these intervals will cover A and so A. On the other  hand, if A is 

covered by a fn i t e  number  of intervals I,  then  the corresponding closed intervals 

f will cover A; so #~A>= m A  and the two inequalities toge ther  give the result. 

By considerat ion of the complementary sets we get immediately the correspond- 

ing result  for  the inter ior  Jo rdan  measure tha t  

,aiA - m A  

where A = Q, , , - (Q~, -A)  denotes the open kernel of A (that  is, the open set 

composed of all inter ior  points of A). The two relations together  show that  a 

set A is measurable in the Jordan  sense if and only if the closed set A - - A ,  

which we may denote as the bom~dary of A, has the Leheso.ue measure, and so 

also the Jo rdan  measure, zero. From this result  it follows at once tha t  the stun 

and common part  of a finite number  of sets measurable in the Jo rdan  sense are 

agMn measurable in the Jo rdan  sense. 
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The  infinite-dimensional  J o r d a n  measure  is more  near ly  re la ted  to the n- 

dimensional  measure  than  we should perhaps  th ink  a t  first sight.  Le t  A denote  

an a rb i t ra ry  set in Qo, and let An for  each n denote  the project ion of A on the 

n-dimensional  torus-space Q,,; then  the  sequence of numbers  

tteAi, tteA2, #eAa , . . .  

is evidently decreasing (in the wide sense); we shall prove tha t  

l im #~ A n  ~ -  tte A .  
n ~ o r  

As the inter ior  J o r d a n  measure  is defined by means  of the exterior,  this  gives 

us a definition of the infini te-dimensional  J o r d a n  measure  by means  of the  

n-dimensional.  1 The proof  is immedia te ;  for  in the  first place we have t,~A,~>=tt~A 

for  all n; and  on the o ther  hand  if e > o is given, then  there  exists a cover ing 

of A by a finite number  of intervals  such t ha t  the sum of the i r  measures  is 

< #~ A + e ;  for  all sufficiently large n these intervals  have the same measure  as 

the i r  p ro j ec t ions  on Q~; so for  large n we have tt~ A~ < #eA+~. A corresponding 

de te rmina t ion  of the  exter ior  Lebesgue measure  in Qo, is not  possible. 

w O. T h e  Defini te  and Inde f in i t e  I n t e g r a l s .  

On the basis of the Lebesgue measure  the  notions of measurable and inte- 

grable funct ions  f ( x ) ~ f ( x l ,  x2, x~ . . . .  ) can now immedia te ly  be introduced.  

Suppose first t ha t  f ( x )  is a real funct ion  in Q~. I f  now for  any a the  set 

of points  in which f(x)_--> a is a measurable  set, then  we call f ( x )  a measurab le  

funct ion.  Suppose this to be t rue  and consider an a rb i t ra ry  scale 

' "  < y-2 < y--1 ~ Y0 ~ Yl ~ Y~ ~ " "  

of increasing numbers  for  which y-,~-~ - -  av and y~--~ ac as n - ~  ac and fu r the r  

the n u m b e r  

(9. I) bound (Y,~+i - -  Y~) 

is finite; we denote by m,~ the measure  of t h a t  pa r t  of Qo, in which we have  

y,~ ~ f ( x ) <  y~+i and  fo rm the series 

(9 Y 

This  def ini t ion was  used  in  H. Bohr - -B .  dessert [~] 65- -69 .  

34--34[98.  Aeta matheraatlea. 63. Imprim4 le 6 ]uille~ 1984. 
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I f  now for  some scale this series is absolutely  convergent ,  then  it  is absolutely 

convergent  for  any scale of the kind considered; the  funct ion f (x)  is then called 

in tegrable  and its in tegra l  is defined as the l imit  of the stun of the series (9. z) 

when the  number  (9. I) tends to zero in an a rb i t ra ry  way. A complex funct ion 

f (x)=u(x)  4-iv(x) is called measurable  or in tegrable  if  the two  funct ions  u(x)and 

v(x) are both  measurable  or in tegrable  respectively.  In  the l a t t e r  case we define 

the infinite-dime~sional integral 

(9.3) f / (x )  d 

Qco 

of f ( z )  over Q~ by in tegra t ing  the real  and i m a g i n a r y  par ts  separately.  

Any conti~mo~ts funct ion f (x )  is integrable;  for  a cont inuous and real  func- 

t ion is always bounded and the set of points  in which f ( x ) ~  a is for  any a 

closed and so measurable .  I t  should also be observed tha t  if a funct ion f (x )  in 

(2(,, depends only on the variables xl, x2, . . . ,  x~, then it is measurable  considered 

as a funct ion in the  n-dimensional  torus-space @~. if and only if i t  is measurable  

considered as a funct ion  in (2~,; the funct ions are also in tegrable  toge ther  a n d  

the in tegra l  over (2,,, is equal  to the in tegra l  over (2.,~. This  r e m a r k  may  be 

considered as an expressio~ of the r~-dime~sional integral (for funct ions  in (2~~) 

as a particular ease of the infinite-dimeJ~sio~al. Similarly if a funct ion depends 

only on the variables x,~+~, xn+2, �9 �9 then  it is in tegrable  considered as a funct ion 

in (2 ....... if a n d  only if it is in tegrable  over Qo~ and the integrals  are equal. We  

shall somet imes allow ourselves to write 

f f(x)dw,~ or 

Qn %, 

instead of (9.3) in these cases. 

Exact ly  as in the n-dimensional  case, the  c i rcumstances  in a set of measure  

zero are of no impor tance  in the integrat ion.  Two funct ions which differ only 

in a null-set will therefore  in the followirLg not  be considered as different func- 

t ions and a funct ion will also be considered as defined in (2~ if it is only defined 

outside a set of measure  zero. 

The in tegra l  has evidently the same ftt.ndamental properties as the ordina~'y 

Lebesgue integral. This follows immedia te ly  f rom the t r ans fe r r ing  principle;  in 

fact  if we denote by x=x(t)  the appl icat ion of a circle q of length I on Qo~ 
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constructed by means of corresponding nets in Q~ and q, then for any real 

function f(x) in Q. the corresponding function qD(t)=f(x(t)) on q will have the 

same distribution of its values as f(a:) in the sense that  for any real a the sets 

of points where we have f ( x ) ~  a and ~(t)~= a will have the same exterior and 

the same interior measures. This, however, implies that  the two functions f (x)  
and q~(t) will always be measurable or integrable together and in the latter case 

always with the same integral. 

In addition to the definite integral (9.3), for the considerations of the 

present paper the indefinite integral of an integrable function f@) in Qr is also 

very important. Let E denote an arbitrary measurable set in Qr we consider 

that  function defined in Qo~ which in E is equal to f(~') and is o elsewhere; 

this function is again integrable; we denote its integral over Q~ as the integral 

F ( E )  = d 

E 

of f(x) over the set E. The function F ( E )  of the variable set .E is called the 

indefinite integral of f(x). From the transferring principle follows at once the 

main theorem of Lebesgue: 

A f~tnetion F(E) defined for all measurable sets E in (2o~ is the indefinite 
integral of an iutegrable function f(x) in Q~ i f  and only i f  it is additive and 
absolutely continuous, that  is if, firstly, for any two sets E j . and  E2 without com- 

mon points we h~ve 

and, secondly, to any e > o there corresponds an '0 > o, so that 

]/~'(E) I < e  when m.E< 'q .  

The indefinite integral determines uniquely the integrated function f(x); 

but how shall we obtai~ f (x)  when F ( E )  is given? The Lebesgue theory of 

symmetric derivatives certainly cannot be generalised to our case (at least there 

is no obvious generalisation); this follows from the fact that there are no sym- 

metric neighbourhoods for the points of Q~, all intervals in Q~ (except Q, itself) 

being highly unsymmetric. We may, however, always differentiate F ( E ) o n  any 

net in Q~; so the construction of a net turns out to be of greater importance 
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for  the theory  than  merely to supply a simple technique of proofs. The diffe- 

rent ia t ion  theorem which w e  obtain is as follows: 

Suppose that the sequence of dissections D~, D~, D 3 . . . . .  of Q~ form a net and 

denote by H~(v), for any value of n, the >>stepfunction>> which in any interval L~ of 

the n-th dissection D,~ is equal to the corresponding quotient 

m~ 

then the sequence of functions J , ( x )  will tend to f (x)  as n ~  ~ almost everywhere 

in Q~o. 

The proof of this theorem follows immediately.  On a circle q of length 

i we construct  a net  dl, de, d s . . . .  which corresponds to the net  Dl, De, D 3 . . . .  

in Qr W e  denote  by x=x(t )  the  corresponding applicat ion of q on Q,,, and by 

@(e) the indefinite integral  of the funct ion ~(t): f (x( t ) )  on q; then  we have 

evident ly for  any interval  I,, in Q~ and the corresponding interval  i~ on q the 

relat ion 
= (i,,) 

hence to the sequence of funct ions Hn(x) in Qo, there  corresponds by the applica- 

t ion of Qo, on q a sequence of funct ions which tends to ~(t) a lmos t  everywhere 

in q; but  then  the sequence H,~(x) must  tend to f (x)  almost everywhere in Qo~. 

In  the last theorem we have the fundamenta l  s tar t ing point  for  a deeper 

s tudy of integrable functions of an infinite number  of variables. I t  shows tha t  

the relat ionship between these functions and integrable funct ions of a finite 

number  of variables is not  so distant  as might  have been expected f rom the 

beginning, each of the functions H,~(x) being in fact  a funct ion depending only 

on a finite number  of the variables x~, x.~, x~ . . . . .  This state of affairs is finally 

only a characterist ic reflection of the definition of an interval  upon which the 

theory  is based. 

w io. The Riemann Integral. 

In  the applications we shall also make use of an infinite-dimensional Rie- 

mann  integral.  We  introduce this integral,  imitat ing the ordinary definitions. 

Le t  f (x )  be an arb i t rary  funct ion in Q~ which is real  and bounded,  and 

let  us form, for  any dissection D of Q~, the two sums 
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s(D) := Zg(I )mI  and S ( D ) :  ZG( I )mI  

where the summations are over all intervals I of D,  and g(I) and G(I)  denote 

the lower and upper bounds of f(x) in I.  I t  is easily seen tllat 

bound {s(D)} ~ bound {S(D)} 

where the upper and lower bounds are with respect to all dissections D of Q~. 

These two numbers define the lower and upper Riemann integrals of f(x) over 

Q,o. I f  they are equal, we call f(x) integrable in the Biemann sense; in this case 

i t  is easily seen tha t  f(x) is measurable and that  the integral is equal to the 

Lebesgue integral. When we say tha t  a function is integrable in the Riemann 

sense, it is always understood tha t  f(x) is real and bounded. 

The simplest way of dea l ing  with the Riemann integral  is to reduce it 

to the Lebesgue integral. I f  we introduce to a give n function f(x), which we 

suppose to be real and bounded, the two functions 

~o (x) ~ bound {g (Ix)} and tO (x) = bound { G (Ix)} 

where the upper and lower bounds are with respect to all intervals Ix surrounding 

x, i t  is seen tha t  these functions ~ (x) and tO(x), are semi-continuous from below 

and above respectively. The integrals of ~ (x) and tO (x) are simply the lower 

and upper Riemann integrals of f(x). We therefore obtain the usual criterion 

for the integrabili ty in the Rieinann sense tha t  t O ( x ) -  q~(x)must  be a null- 

function. 

We shall also use the following remark: A funct ion f(x) is integrable in 

the Riemann sense if, and only if, there exists corresponding to any e > o two 

continuous functions a (x) and A (x) such tha t  

and 

a (x) f(x) A (x) for  al l  x 

f (A (x) -- a d o, < 
Q~ 

I t  is always possible to choose for a (x) and A (x) functions depending only on a 

finite number of the variables xl, x2, x 3 , . . . ;  if we wish we may take a(x) and 

A (x) as finite tr igonometrical  polynomials. 
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A funct ion f (x)  which takes only a finite number  of values is integrable in 

the Riemann sense if, and only if, the  sets of points where it takes its values 

are all measurable in the Jordan  sense. 

I I .  An I m p o r t a n t  L e m m a .  

W e  shall sometimes meet, in the following considerations, funct ions f (x)  

in Q~o which have the property tha t  for  any two points x in Q~) which differ 

only in a finite number  of coordinates the funct ion is ei ther  not  defined in the 

two points or is defined and has the same values in both points. We shall call 

this property the property S. A set of points in Q,,, will be said to have the 

proper ty  S if the characterist ic  funct ion of the set has the property,  tha t  is if 

any two points in Q~ which differ only in a finite number  of coordinates ei ther 

both belong to the set or  both belong to the complementary  set. Another  way 

of expressing t lmt a funct ion f (x)  has the property S is by saying tha t  for  any 

n the funct ion does not  depend on the variables x~, x~ . . . .  , x,~ but  may be con- 

sidered as a funct ion  in (2~,, ~; f rom this formulat ion it is na tura l  to conclude 

tha t  the funct ion cannot  depend on any th ing  but  must  be a constant.  I f  the 

funct ion f ( x )  is measurable, this is actually true in the sense tha t  the function 

must  be a constant  almost everywhere.  This theorem, and the corresponding 

theorem for  measurable sets, is a very useful lemma for  many considerations:  

A measurable function f(x) in Q,, which has the property S must be a constant 

almost everywhere. A measurable set with the property S has either the measure o 

or the measure I. 

I t  is clearly sufficient to prove the theorem for sets. The proof follows 

at  once from the differentiat ion theorem given above. Le t  A denote  a measur- 

able set in Q~) with the proper ty  S and let f (x)  be the characterist ic  funct ion 

of A; then for any value of n the corresponding function//:~(x) must  be constant  

and - -mA.  This follows at once from the fact  tha t  for  any value of n we have 

A=(Q~, A"), denot ing by A" the project ion of A on Q ...... ; now A is measurable;  

it  follows tha t  also A"  must  be measurable and tha t  m A - - m A " .  On the other  

hand, if I ~ ( I ' ,  Q ..... ) denotes an arbi t rary  interval  in Q,.) with its base I '  in Q~, 

then  we have A I - - ( I ' , A ' )  and consequently m A I = m I ' m A " - - m l m A .  But 

this proves tha t  we have for any interval  L~ of tile dissection to which Jn(X) 

belongs 
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and consequently J ~ , ( x ) = m A  in all points of Q,.). Hence  since zl,~(x)--~f(x) 

almost everywhere and since f ( x )  only takes the two values o and I, we must  

have ei ther  m A = o  or m A = I .  

There  is a corresponding theorem tha t  if a measurable funct ion of a single 

real  variable has arbi trar i ly small periods then it  must  be a constant  almost  

everywhere. This theorem is familiar.  The  applicat ion of the same idea to the 

space Q,,, is due to Steinhaus 1 who used the above lemma to prove an interes t ing 

theorem on anMytie cont inuat ion of power series. I shall quote this theorem 

which is a s tandard example for  the applicat ion of the lemma. 

Le t  us consider all power series of the form 

k ~ l  

where the ak are g iven numbers;  all these series have the same radius of 

convergence; suppose this radius r to be > o and finite. Then to any point 

x = ( x l ,  x,2, x 3 , . . . ) i n  Q~ there corresponds by ( ~ .  I) an analytic  funct ion f ( z ,  x) 

i n  < ,~ Now consider those of these funct ions which are not contiuuable 

(for which the circle ]z I = / "  is a na tura l  boundary)i The corresponding set of 

points x in Q~.~ has clearly the proper ty  S ~nd it is also measurable;  the la t te r  

assertion follows from the remark  tha t  it is the set of points x in Q~ for  which 

1 

for  all points z - = a + i b  in [z[ < r where a and b are rational.  Consequently we 

may conclude tha t  the  measure of the set is always ei ther  o or I. Steinhaus 

proved tha t  it  is always the la t ter  case tha t  occurs and so gave a very na tura l  

in terpre ta t ion  of the theorem tha t  almost all power series are not continuable. A 

more general  (and more difficult) theorem for  Dir ichlet  series was proved by 

Paley and Zygmund;  I shall deal with a generMisation of this theorem in w 22. 

1 H* S t e i n h a u s  [21. 
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w i2. Appl icat ion o f  F u b in i ' s  T h e o r e m .  

Our first problem will be to give an extension of Fubini ' s  theorem, con- 

cernino' the reduct ion of an integral  over a space to simple integrations,  to the 

case of the infinite-dimensional integral.  For  this purpose we need the fol lowing 

applicat ion of Fubini 's  theorem for funct ions of a finite number  of variables. 

Suppose tha t  the coordinate sequence Xl, x.~, x ~ , . . ,  has been divided in 

some way into a finite number  of sets 

x ? ) ,  . . .  

X I 2 ) ,  12 ~ , ,  

x ( : ' ) ,  . .  

some of these sets (but evidently not  all) may be finite. If the point  x = ( x ,  x2, x:~, ...) 

describes (2,., then each of the points x~*')-=(x~ ''', x~'), x~*'), . . . ) w h e r e  i_~ v-~ ~ 

describes a certain toms-space which we may denote by Q;") and which may be 

of tL finite or infinite number  of dimensions; we write as usual x = ( x  (1), x (2), ..., x ('')) 

and Q,, __( Q(L), Q(.~),..., Q,,~). Then  we have the following theorem: 

I f  f (x) de~wtes an arbitrary integrable.fanetion in Q,.,, then we have 

f,( f f f.; X) (I IVI, ,  = d l / ~  ~( ' ' l  �9 . �9 d ~U '2 )  ( p ~ ' l ) ,  , L  ' ,  . . . ,  

L 
q,,j (2(,', q('2! q(1 ) 

where the integration,s, carried out ji'om the right to the left, are always possible 

ahnost everywhere and always lead to integrable fun, ctions of  the remabdng variables. 

The proof follows at once from the t ransfer r ing  principle. In each of the 
�9 " [v  torus-spaces Q') we construct  a sequence of dissections D; ', D((), I ) ~ ) , . . .  which 

form a ~Tet in Q(')  and we construct  also a corresponding net  of dissections 

d~. ''), d!.,"), d!,"), . . .  on a circle q(') of length I; then by these corresponding nets 

is determined an application x(')-:xl")(l ~')) of q(') on Q(~, where t (') denotes the 

parameter  on q('). Now for a n y  m the dissections I)11,,) , I)~ ) . . . .  , 1)i' ') generate  

a certain dissection D,~ of Q .... each interval  of D,, being the product  of inter- 

vals, one f rom each of the dissections D~); in the same way the dissections 

d(~) d(~ ), d ~') generate a dissection d,,~ of the n-dimensiomfl space q described 
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by the point  t = ( t  (1), t (2), . . . ,  t(n)). The two  sequences D~, D~, D.~ . . . .  and d~, d~, d~, . . .  

evidently determine corresponding nets in Q~ and q and the application x=x(t) 
of q ou Q~ to which these nets give rise is exactly the ~pplication (x a), x (2), . . . ,x(n))= 

: (x(1)(t(1)), x(e)(t(2)),..., x(n)(t(n))). So if we apply the ordinary theorem of Fubini  

for  the space Q.,, to the function 9~(t)=f(x(t)) we obtain the theorem. 

w 13. Infinitely Multiple Integrals. 

W e  are now able to give the promised extension of Fubini's theorem to 

functions of an infinite number  of variables. Le t  f(x) denote an integrable func- 

tion in Q~; we write Qo~=((~,~, Qn.o,); then it follows from the theorem of the 

last section tha t  the in tegral  

(I 3. I) f f(x)dwn= f d., . . . .  f f .f(xl, . . . .  )dx  
Qn C n C2 C 1 

exists as an integrable funct ion of the variables x,+~, x~+2 , . . ,  defined ahnost  

everywhere in Qn, o~; it  also follows t h a t  the integral  of this funct ion over Q~, 

is equal t o  the in tegral  of f(x) over Q,,, which we denote  by A. I t  is more 

convenient  for  the following considerat ions to cons ider  the integrM (I 3. I) not  

as a funct ion in Q.,o, but  as a funct ion in Q~ which does not  depend on the 

variables xl, x~,. . . ,  x~; denot ing this func t ion  by f,,~o(x) we have for  all n 

f f., (x) d = A. 
Q~ 

The theorem which we are going to prove states tha t  the sequence of funct ions 

fl,~(x), f.2,r fa,~(x),..,  is convergent almost everywhere in Q~, and tha t  its 

limit funct ion is exactly the constant  A; in other  words, we have the theorem:  

I f  f (x) is an arbitrary integrable fmwtion in qo,, then 

Qm c n c,2 cj 

for almost all points of Q~. 
35--3419g. Acta  ma themat i ca .  63. Imprim6 le 7 jui l let  1934. 
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The proof  is not  quite obvious. I t  is evidently sufficient to consider the 

ease where f(x) is real. I t  is also sufficient to prove tha t  we have 

lira f~, ~o (x) ~ A 

Mmost everywhere in Q~, 

follows tha t  we have also 

almost everywhere in Q~. 

for  then applying this to - - f (x)  instead of f ( x ) i t  

lim .f,~, ~o (x) => A 

Now the funct ion 

@(x) = lira f i  .... (x) 

has evidently the proper ty  S. of w I I ;  in fact,  since the funct ion f~,o,(x) does 

not  depend on the variables x~, x, . . . .  , x~, a change in a finite number  of the 

variables will not  al ter  @(x); hence it  follows by the fundamenta l  lemma tha t  

@(x) must  be a constant ,  say @ ( x ) ~  B almost  everywhere. In  order to prove 

tha t  we have A >= B we prove the fol lowing lemma: 

Let E denote the set of 2)oi~'~ts where 

(I3.2) 
then 

bound {am, ~,, (x)} - bound {A,,o(X), f.,,,,,(x), f,,,,,(x), . . . i  > K; 

f f(x) dwo, >= KmE.  
E 

Let  us first prove tha t  this lemma implies A > B;  in fact,  if we choose 

K < BI it follows f rom the relation @ ( x ) >  K almost everywhere in (2r tha t  the 

relat ion (I 3. z) must  also be true almost everywhere in Qo,; consequently the set 

E only differs f rom Q~ by a null-set and so it  follows from (13. 3) tha t  we have 

F 
A = I f ( x  ) dw,,, ~ K 

d 
qoJ 

and since this is t rue  for any K < B we get  A > B. 

We prove the lemma by making N--* ~ in the following more e lementary 

lemnla: 

Let E~ denote the set of points where 
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(13.4) 

then 

(i3.5) 

bound {,f~,r ,f~,o~(x), . . . ,  fs,~o(x)} > K;  

f 4~ f ( x )  dwo, > Km1~i~v. 

E N  

Let  B,~ denote  the set of points in Q~ in which ilL, ~ ( x ) >  K;  then  we have 

evidently 

E ~ =  B~- + B~--1B~ + Bx -2  * * + * * * B~Bx--1 + . . . . . .  B] B x  B~'-I B~ 

where for  a moment  the star  is used to indicate the complementary set with 

respect  to Q.. We  write for  abbreviat ion 

A?~ * * * Bn BN BN-1 " " " B n  + 1 �9 

Now the set B,~ is for  any n a cylinder with its base in Qn, ol; it  follows tha.t 

also the set A,~ must  be such a cylinder;  let  us wri te  AI~ = (Q,, An), where A',~ 

is the project ion of A,~ on Qn, o~; then  we get  immediately 

f f(x)d,vo,-- f ff(x)d ,vl = f ..... - f f~.~o(x)dw~o. 
A n A "  Qn A~P 72 ?~, A 12 

Now A~ is contained in B,~; so ,f,,~(x) > K in AI, and thus we get 

f f ( x )  dwo, >= K m  A,~. 

A n 

Adding these relat ions for n - -  I, 2, . . . ,  N and using the fact  tha t  no two of 

the sets A,~ have common points, we get  the re la t ion ( i3.5)  1. 

1 The  idea of th i s  proof  was  sugges t ed  by  a s inf i lar  proof  of Kolmogoroff;  see A. Kohnogo-  
roff [I]. Exac t l y  t he  s ame  proof g ives  t he  fo l lowing t h e o r e m :  Le t  f ( t )  be an  in$egrable  func t ion  
on a circle q of l e n g t h  I and  let  u s  wr i te  

~n 

T h e n  
s 

f~n ( t ) ~ / f ( t  } d l  

i] 
q 

as n ~ ~c a lmos t  eve rywhere  on q. T he  proof of the  ergodie t h e o r e m  of Birkhoff  is based  on t he  

same  idea b u t  is more  compl ica ted ;  see A. K h i n t c h i n e  [I 1. 
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w I4, R e p r e s e n t a t i o n  o f  a F unc t i on  as t h e  L i m i t  o f  an I n t e g r a l .  

There  is a theorem which is in a cer ta in  sense dual to t ha t  of the last  

section. W e  consider again  an a rb i t ra ry  int, egrable  funct ion f ( x ) i n  Qo~ and 

now f o r m  for  any  u the  in tegra l  

f f  (x) d Wn, 

QI}, c+J 

this  in tegra l  is according to w I2 an in tegrable  funct ion of the variables 

x~, x 2 , . . . ,  x~ defined a lmost  everywhere  in Q~. I t  is, however,  more convenient  

for  our purposes  to consider it  not  as a funct ion  in Q~ but  as a funct ion  in 

Qr this funct ion,  which does not  depend on the variables  x~+~, x~+2 . . . .  , will 

be denoted by 

A (x). 

Now we have  the fol lowing theorem:  

The sequence of ,functio,~s A (x), J'2 (x), j;, (x) . . . .  is co~werge~t almost every- 
where in Q~ and its limit function is exactly the function f(x)  itself 

Using' the  resul t  of the last  section wve may  also say: I f  f(x) is an a rb i t ra ry  

in tegrable  funct ion in (~,,, then  

c n + p c?+ + 2 Cn + 1 

a lmos t  everywhere  in Q .... 

I n  order  to prove this I we shall have to use the theorem on differentia- 

t ion on nets. Le t  el, ~2, e~, . . .  denote a sequence of positive numbers  such t ha t  
or 

the series ~ . , +  is convergent ,  and let 61, 6+2, 6.~, . .. denote a sequence of positive 
n--X 

numbers  t end ing  to zero. Our a im is to const ruct  a sequence of dissections 

D1, D~, D ~ , . . .  of Q~., which fo rm a net  and which have the fol lowing proper-  

ties: For  any n the dissection D~+ shall be genera ted  by a cer tain dissection of 

t The  fol lowing proof was  sugges t ed  to me  by  t h e  proof of a special  case of the  t heo rem 

g iven  by  P r o f .  F. Riesz and  e o m n m n i c a t e d  to me  by  Dr. K~lmSr. We  sha l l  app ly  t he  t h e o r e m  

to th i s  special  case in w I8. 
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Q~ (that is each interval of D~ is a cylinder with an interval in Qn as base); 

further,  denoting by J~  (x) the funct ion defined in w 9 which belongs to D,~ and 

by En the set of points in Q~ where 

< 

we must  have mE,~ > I - -en.  

Suppose tha t  we have such a net  in Q~; then  our theorem is immediately 

proved. In  fact, we know from ~ 9 tha t  J,~ (x)---~f(x) almost everywhere in Qd; 
so what  we slmll prove is tha t  the properties of the net  imply J~ (x ) - - f i~ (x )~o  

almost everywhere in (~r This, however, is clear, for on account of the assumed 
o v  

convergence of the series ~ ,  almost all points x of Q~ must  ultimately belong 

to the sets of the sequence El,  L'~, E~, . . .  and for any such point the property 

follows, since 6~-~o as n - ~ .  

I t  remains to construct a net in Qo~ with the required properties; we do 

this by induction. Suppose tha t  the dissections D~, D 2 , . . . ,  D~-I have already 

been constructed. Dn-~ is generated by a certain dissection of Q~-I hence also 

by a dissection of Qu. We now take u sequence of dissections D (~), D (~), D(8), . . .  

of (2o~ beginning with D~_~ and generated by dissections of (~n, so tha t  these 

dissections form a net  in Q,,,. For  an interval I (~) of D (~) we have, since ~;, (x) 

depends only on x 1, x 2 , . . . ,  xn, 

f = f f, (x)dwo,; 

so the funct ion J(~')(x) defined by 

' f f( 
i(~) 

in any interval I (*) of D (~') is equal to the corresponding function where f ( x )  
has been replaced by f,(x). Hence, since the sequence /)(1) D(2), ~ ( 3 ) , . . .  was 

generated by a net  in Q,~ and since ~ ( x )  does not  depend on x,~+l, x,~+2, . . . ,  i t  

follows from the theorem on differentiation on a net in Qn tha t  we must  have 

J(~)(x)-~f,~(x) ahnost  everywhere in Q~; thus for any sufficiently large value 

of v we have by Egoroff's theorem 
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(z)l < 

in a set of measure > I - - ~ ,  and consequently (I4. i) will be fulfilled if we take 

D , ~ :  D (~). In  this way we get a sequence of dissections D1, D.~, D~, . . .  where 

D,~+I is always a subdissection of D~ but  we cannot  be sure tha t  these dissec-  

t ions form a net in Q~; this, however, can easily be obtained;  we only need in 

the choice of D~ to take care tha t  M1 edge-lengths of the intervals of the 

genera t ing  dissection Of Q,,~ are (say) < I which will be t rue  if we choose v 

large enough. 

w I5. S t rong  Convergence.  

So far  the only not ion of convergence with which we have worked has 

been tha t  of convergence almost everywhere. In  this sense we obtained in 

w167 9, I3 and I4 (with the notat ions there  used) the results 

( I S . I )  J,~(x) ---, f (x) ,  f , ,  o, (x) ~ A and f,, (x i ---~ f (x ) .  

There  are, however, o ther  notions of convergence which are of greater  impor- 

tance for  most  applications, above all the not ion of strong convergence. I t  is 

therefore  not  wi thout  interest  t ha t  the limit relations (IS.X) are also true when 

the arrow is used to denote  convergence in this sense. ~ 

W e  say that  the (measurable) funct ion f ( x )  belongs to the class Ls where 

p ~ I if If(x)l ~' is integrable.  I f  f ( x )  and g(x) both belong to Lp we define 

the i r  distance D~)(f, g) by 

1 

 l=lf,s  l [ 
QeJ 

I f  h(x) is any funct ion of L1' it follows by Minkowski 's inequali ty tha t  we have 

D~, (f, g) ~= Dp (f, h) + Dp (g, h) which is the usual t r iangle inequality.  

I had  or ig ina l ly  p roved  t he  t h e o r e m s  fn, ~(x)~A and  J'~t (x)~f(x) u s i n g  the  no t ion  of 

c o n v e r g e n c e  on the  average  (dem Masse  naeh)  wh ich  is weaker  t h a n  bo th  t he  no t ion  of s t rong  
convergence  a n d  t h e  no t ion  of convergence  a lmos t  everywhere .  I t  was po in ted  ou t  to me  by  

Prof.  F. Riesz t h a t  t he  (well-known) a r g u m e n t  used  above would  give t he  stone t heo rems  for the  

more  conven ien t  not ion  of s t r ong  convergence.  F ina l ly  i t  was  Prof. Danie l l  who sugges t ed  to me 
t h a t  t he  t h e o r e m s  shou ld  be t rue  for convergence  a lmos t  everywhere .  
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A sequence of funct ions h~(x), h~(x), h 3(x) . . . .  is said to converge strongly 

in - the  class LJ' towards the funct ion f(a:) if I)~,(f, h,,)--~ o as n - ~  *r Such a se- 

quence cannot  at the same time converge strongly to another  funct ion g(x); 

in  fact  f rom D s, ( f ,  g) ~ D s, (/ ,  D,,) + D s) (g, D,,) wou ld  fa l l ow 1)~ (./; g)  = :  o whic l ,  is 

possible only when d r ( x ) -  g ( x ) =  o ahuost  everywhere.  

W e  have now the following theorem:  

I f  f ( x )  belongs to tDe class L"  where p ~ i, then the relations ( I5 . I )  are all 
true ~ot only i~ the sense of  com,erqence almo.,'t everywhere but also i,n the se~z<~e 

of  .~'tro~g com'ergence in the class L~. 

For  the first relat ion /J,, (x) ---+f(x) this follows at once from the corres- 

ponding theorem for functions of a finite number  of variables by the trans- 

ferr ing principle. Let the sequence of functions ~J,i (x) correspond to the net  

Da, D.2, D ~ , . . . ;  we construct ,  just  as at the end of w 9, a corresponding net  

dj, d,,, d ~ , . . ,  on a circle q of length I; if then the application of q on Q<., ob- 

tained in this way is denoted by x : =  x(t), the funct ion 9~(t) :=f(x(t))  on q will 

also belong to L~>; and to the sequence J , , (x)  there  corresponds a sequence of 

funct ions in q which tends strongly to q~(t) in the class L ~). 

Now from this theorem we may immediately deduce the corresponding 

result  for  the sequences f ..... (x) and .f,(x). Suppose (as we may) tha t  the net  

D~, D~, D s . . . .  to which the sequence L/,,(x) belongs is such tha t  D,, is always 

genera ted  by a dissection of Q,; then the result  follows at once from the two 

inequalit ies 

1), ( f  ...... A) -< D;, (f, J,,) aud 1)p (fi,, J,,) ~ I),, (f, ,4,) 

which we obtain from a familiar  inequali ty by the relat ions 

f I .f  0,:) - I" d,,,<., - -  IJ; - ..l I" d : 
F 

. ]  

qc,J Qn, e~ 

. . . .  

qn, c,~ % 

and 

f f 
Qn, (,~ qn, 

If(x)  --  .4, (x)I" dw,, := flax)- 
Qc,J 

//,, (x)] p dw,,, 
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f lA 
Q~o 

[ "  

. ]  

Qn 

/ .  / ,  /* 

I dwn I ] f ( x ) -  ~ln (x)[P dw, ,~= ~] f ( x ) -  ~tn (x)[P dw~. 
d d l 

qn On, ~ Q~ 

Let  

funct ion 

I6. Majorised Convergence.' 

hi(x ), hu(x), h~(x), . . .  denote a sequence of functions in Qo); then the 

H ( x )  = bound Ih,,(x)l 

is called the (smallest) majorant of the sequence. In  all cases w h e r e  u sequence 

of funct ions is known to be convergent  it  is of par t icular  interest  to study the 

majoran t  of the sequence. We  shall consider this problem in the case where 

h~(x) is e i ther  of the three sequences J~(x),  f~,,,,(x) or fi,,(x)~ttached to an 

integr~ble funct ion f(x) in 0,~. Our resul t  is given by the following theorem: 

I f  the function f(x) belongs to the class Lp where p > I, then the same is true 
Jbr the mqiorant H(x) of any of the three sequences J~(x), fi,,~(x) and fi,(x) and 
we have in any of the three cases: 

qo~ Q~ 

This theorem is closely connected with a well-known maximal  theorem of 

Hardy  and Lit t lewood. ~ I t  is convenient,  however, to a t tach our proof not  

to the la t ter  (which is possible only when hn(x) is ei ther J,~(x) or fi~ (x)) but  to 

a lemma which is implicitly con'tained in the proof given by F. R i e s z  for the 

maximal  theorem. ~ Le t  us first observe tha t  it is sufficient to consider the case 

1 The theorems of this  section general ise some resul ts  of Paley and Zygmund;  see R. E. A. C. 
Paley-A. Zygmund  [i] 35I, [2] 462, [3] I9o. 

G. H. Hardy-J .  E. Li t t lewood [I]. 
F. Riesz [3]. The l emma is obta ined by  combin ing  the  last  pa r t  of the  proof of F. Riesz 

with an earlier inequal i ty  of H a r d y . . F o r  the  s imples t  possible  proof of th is  inequal i ty ,  see F. 
Riesz [2] 167--I68.  
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where f(x) is real and ~ o; this follows from the fact that  in any of the three 

hypotheses the majorant H(x) i s  not decreased when we replace f(x) by If(x)l. 

The lemma is now as follows: 

Suppose 

condition 

that the two functions f(x)>= o and H ( x ) >  o satisfy for any K the 

f f(x) dw~ > K m E  
E 

where E denotes the set of points in which H(x) > K, then i f  f(x) belongs to L~, 
where p > i, the same is true for H(x) and 

(I6.3) f( H(x)), <= d wo,. 

q~ qo~ 

From this lemma t h e  proof of the above theorem is immediate;  we only 

need to prove that  if f ( x ) >  o the functions f(x) and H(x) will satisfy the con- 

ditions of the lemma. In the case h,, (x) = fn, ~ (x) this is an immediate con- 

sequence of the lemma of w t3; in the cases where h~(x)is either z/ , ,(x)or 

fn(x) we deduce this result from the following lemma which is the analogue 

of that  of w I3: 

Suppose that f(x) is real and that hn (x) 'is either zI,~ (x) or fn (x); then i f  we 
denote by E the set of points where 

(I6.4) 

we have 

(16.5) 

bound {hn (x)} > K,  

f f(x) dwo, ~ KmYE. 
.E 

The proof is simpler t han  that  of w I3. Let us denote by B,  the set of 

points in Q~ where hn(x)> K. Then 

E =  BI+B~B*+B3B*B~*+.- . ,  

where the star is used to indicate.the complementary set with respect to Qo,. 

Let us write for shortness 

A n  $ $ $ Bn B, B~ . . . .  = B n - - 1  

36--,34198. Acta mathematica. 63. Imprimg le 7 juillet 1934. 
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W he n  h,~(x)=/in(x) the  set B~ is composed of a certain number  of intervals  

t aken  f rom the dissection of Q~ to which J,~(x) belongs; it  follows tha t  the 

same is t rue of the set An. Consequently we have 

A n A n 

When  h,,(x)=fi~(x) the set B~ is a cylinder with its base in Q~; it  follows tha t  

A,~ also is a similar cylinder;  let us write A,, =(A',~, Q~,~) where A~, is the pro- 

ject ion of An on Q,. Then  we have 

! ! 
An A n Qn, co A n An 

In  both eases the set A,, is contained in B~; thus h,,(x) > K in A,, and we get 

f f ( x )  dwo~ > K m A . .  

Adding these inequalities for  n ~ I ,  2, 3 , - . . ,  we get the desired inequali ty (I6.5). " 

In  the case where p = I the theorem fails; it is not  difficult to construct  

examples showing tha t  in this ease the ma jo ran t  H(x) need not  even be 

integrable.  

For  later  application we call the a t tent ion  to the following result,  which 

is an easy deduct ion from tile above theorem: 

I f  e zlf(:~)l( is integrable for some ~ > o, then the same i,~ the case jbr the 

f u n c t i o n  c z(11(aO)2 in any of the three hypotheses and 

(2~o Qw 

The proof follows at  once when we apply the expansion for e zy~ and use 

(/;  the fact  tha t  Z-~ is a decreasing funct ion of 2). 
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w ~7. Four ier  Series. 

The general theory of normalised orthogonal systems, in particular the 

Riesz-Fischer theorem and the Parseval equation, follows for functions in Q,.~ 

either by repeating the usual arguments word by word or more simply by using 

the transferring principle. In contrast to this, the generalisation of the theory 

of ordinary Fourier series requires new considerations, peculiar to the space Qo~. 

We consider for any of the coordinate circles ck the system of all pure 

oscillations 

(I7. I) e " ~ * x k ;  2~ = o, + I, + 2 , . . .  

these functions are known to form a complete orthogonal system within the 

class of all functions of L ~ on the circle ck. Any integrable function of xk has 

a Fourier series, its development in terms of the system (I 7. I), which conversely 

determines the function completely. 

Now in order to get from the single systems (I 7. I) to a complete ortho- 

gonal system in Q~ one might be tempted to denote as a pure o,~cillation in Q~ 

any function 
c~ 

(I 7. 2) H e2 ziPkxk = e~ ~i (p~x~+p~ x~+p~x~+. ..) 

I t  is clear that  this is without meaning, since the product generally does not 

exist. But if we restrict ourselves to the consideration of those products where 

only a finite number of the numbers pk are 4 = o, then we have in (I 7. 2) a cer- 

tain system of functions in Qo~. If  we write 

P ~ -  (~91' ./92' P 3  . . . .  ) 

where this notation is to be reserved for sequences of the kind considered, we 

may denote the linear form p l x l + p 2 x 2 + p 3 x ~ + . . ,  occuring in (I 7. 2) as p x ;  

then the pure oscillations in Qoj are all functions of the form 

(I7.3) e 2~i~x 

where P : ( P l , P ~ , P s , . .  ) is a sequence of the kind considered. By e -2"~i~' 

we shall, of course, denote the oscillation belonging t o - - P = ( - - P l , - - ~ % ,  
- p ~ ,  . . . ) .  
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The system (I 7. 3) is evidently a normalised or thogonal  system in Q~; as, 

moreover,  the funct ions of the system are all bounded, we may a t tach  to any 

integrable  funct ion f (x )  in Q~ a Fourier series 

f(x) - ~_~ cp e 2~'p~ 
P 

with respect  to the system (I7.3),  w h e r e  

= f f ( x )  e -~  ~ ' ~  dmo c~, 
, ]  

and where the (purely formal) smnmution is over all sequences p. lqow we have, 

jus t  as in the theory of Four ier .  series i n  the space Qn, the main theorem: 

As  integrable function f (x )  in Qr is always uniquely determined by its 

Fourier series; that is, two functions have the same Fourier series only when they 

are identical. 

We reduce this theorem to the corresponding theorem for the space Q,,, 

using the remark  tha t  we obtain the Four ie r  series of the funct ion 

(x) = [ f ( x )  dw , oJ 
.] 

f rom the Four ie r  series of f (x )  by formal  in tegra t ion  over the variables X,+l, 

x ,~+~, . . . ,  or more precisely by replacing cp by o for  any p = ( p ~ , p 2 , p s , . . . )  

for  which the numbers  pn+~, p,~+2,. . ,  are not  all zero. This follows at  once 

when we calculate the Fourier  constunts of f~(x); in fact,  if the  numbers  pn+l, 

pn+2, . . .  are all zero, we have 

QoJ Qn Qn, m Qm 

and if the numbers  p,~+l, p,~+2, . . .  are not  al l  zero we have 

r  

5~ow the funct ion fn(x) is uniquely determined by its Four ie r  series; this is 

simply the theorem for  the space Qn; since f ~ ( x ) ~ f ( x )  almost everywhere  as 
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n--* or we obtain the resul t  tha t  f (x)  also must be uniquely determined by its 

Four ier  series. 

I f  we restr ict  ourselves to the considerat ion of funct ions f (x)  of L ~, then  

it follows f rom the theorem jus t  proved tha t  the system ( I 7 . 3 ) i s  a complete 

system; consequently we have the Parseval  equat ion 

f l l (x) l  , d,,.o,-- Z Ic,,l'. 
P (ill,.* 

I~ follows in the usual way tha t  ~his equat ion is also t rue when f ( x )  does not  

belon~ to L ~, tha t  is, in this case both sides are infinite. 

I8. ~ Special Orthogonal System. 

As an example of the application of the general  theory we shall prove an 

in teres t ing convergence theorem for  Four ie r  series. The theorem is: 

I f  the Fourier series of an integrable fi~nctio~ f(x)  in Q<,, is of the special 

forll~ 
r 

(I8. I) f (x)  ~ ~ ake"'~*~a'; 
k=l 

that is, ~f e v - - o  whenever e ''.*~p.' is not o~,e of the oscillaUons e 2=ir then the 

series is convergent almost everywhere in Q~o to the sum f(x) ,  so that we may write 

or 

2 r ~ i x  k S(x)-- Zak  �9 

The proof  ~ follows at  once from the discussion of the last  section; in fact,  

since we obtain the Four ier  series of the funct ion J;~(x) f rom the Fourier  series 

of f (x)  by formal  in tegrat ion over the variables x,,+l, x,~.2, . . . ,  we have 

n 

f , (x) -  y akc 
k = l  

I :% proof  o[ the theorem by means of the di f ferent iat ion theorem of w 9 was given by 

Prof. F. Riesz and communicated to me by Dr. Kahn~r.  I t  was th is proof  that  suggested to me 
the proof  of  the theorem in w I4. I note from a let ter f rom Prof.  Zygmund that  a proof  on 

similar lines was given by Paley. 
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and consequently by the uniqueness theorem (formally for functions in Q~, 

actually only for functions in Q,), since a finite sum is its own Fourier series, 

= e ; 
k ~ l  

this proves the theorem since fn (X)---)f(x) as n--~ ~r 

General trigonometrical series of the form 

~v 

(I8.2) ZakC 2a:izk 

were considered by Steinhaus. ~ I t  is clear from the lemma of w I I that  a 

series of this form must always either be convergent or be divergent ahnost every- 

where in Q~; in fact, since the convergence of u series is not altered if we 

change a finite number of its terms, the set of points in Q~ in which the series 

(i8.2) is convergent must have the property S of w I I; and it is also measurable. 

Now the main theorem is: 

A series of the form 
series 

(I8.2) is convergent almost everywhere in Qo~ i f  the 

(,8.3) y, la l 
k=l  

is eonve~yent; it is divergent almost et,erywhere in Q~ i f  the series ( I8 .3 ) i s  

divergent. 

This theorem is in fact only a very special case of a general theorem of 

Kolmogoroff z concerning the convergence of series whose terms >>depend on 

chance>>. One of the proofs given by Kolmogoroff w~s translated from the 

language of probabilities to the language of real functions by Steinhaus. This 

proof, however, is not the simplest possible. A very simple way of proving the 

first part of the theorem is to deduce it from the theorem given above; in fact, 

when the series (I8.3) is convergent, the series (t8.2) is by the l~iesz-Fischer 

theorem the Fourier series of a function f ( x ) i n  Qo,; consequently the series 

converges to the sum f(x) almost everywhere in Qo. As to the second part of 

the theorem, a simple proof was given by Paley and Zygmund~; I shall give 

1 H. S te inhaus  [I]. 
2 See for the  most  general  expos i t ion  A. Kohnogoroff  [I]. 

R. E. A. C. Paley-A. Zygmund  [2] 464--465.  
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this proof  in a slightly different  form;  i t  depends on the fol lowing lemma, due 

essentially to Zygmund:  

Let t2. denote the set of points in Q~o in which we have 

then 

(18 .4)  

[ ~  ~ = 
I,%(x)l= i / , ,  ~.e < R; 

I k = l  

k = l  

Tha t  this lemma implies the theorem is clear; for  if the series ( I8 .3)  is 

divergent,  we may deduce from (I8.4)  tha t  for  a~.y R 

lim m D,~ G _I ; 
T ~  00 2 

consequently the set of points where the series ( I8 .2)  is convergent  can at  most  

I 
have the measure - and since the measure is e i ther  o or I, i t  must  be zero. 

2 

The proof  of the lemma is as follows. W e  have 

fl f~ 
~2 n ~2 n t c = l  l = l  

f 
k ~ l  k, 1=1 ..on 

We write for  shortness 

f e2Zi (Xk--: @ 

~2 n 
d w r  ~ bk, 1. 

Then the n u m b e r s  bk.~ are all Four ier  constants  of the character is t ic  funct ion  

of the set t2,~; the Four ier  series of this funct ion contains in addit ion the con- 

s tant  t e rm m t2,,. So we ge~ immediately f rom ParsevM's theorem 

and so 

(,~ ~ ) ~ +  ~ Ibk,,I ~ ~ ~ ~ 
k, l ~ l  k#l 
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~lz),. ,1~ < too , , - ( too , , )  ~ < I-. 
k,z=l 4 

This, however, gives for the second term of I the evaluation 

1 1 

I I ~ 1 =  ~a~bk , ,  < ~ .~1  ~ ~lb~,~l ~ 
I k , / = l  = k k L k ,  1=1 J 

< lak l  -~ �9 ~_ 
2 

k = l  

and so we have 

k - - l  

On the other hand we have from the definition of the set ~,~ 

I <  mD,~ . R ~ < R~; 

this gives the desired inequality (I8.4). 

Making n-~  ~ in the last lemma we obtain the following more general 

lemma: 

Let  the series (I8.3) be eo~2vergent, a~d denote by t~ the set of  points in Q~ 

where 

If@ ake2~i'~'k <= R;  

then�84 

( i s .  5) la~ l  ~ ,~  ~ -  R '~ . 

The class of function f ( x )  whose Fourier series is of the form (I8. I) will 

be denoted by G. I t  follows from the theorems already proved that  this class 

is also characterised as the class of functions represented by a series (I8.2), 

where the series (I8.3) is convergent; in particular, a function of the class G 

must  always belong to L ~. I t  follows immediately that for a function of the 

class G we have 

~ ,  o~ (x)  - Y~ ak e ~- ~i~.k, 
k---n+ 1 
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so tha t  f,,~o(x) is also a function of G .  The result of w I3, according to which 

./~ .... (x) tends to the integral of f ( x )  over Q,o (in this case o), is therefore in 

this particular case equivalent to the result  f i , (x ) -*f (x) .  We shall prove some 

more theorems for functions of the class G, which play an essential rSle in the 

later applications. 

Let  us first consider a sequence of functions 

( s6) f (m) (x )  = Z a(m)k e2~ia'k 

belonging to G. I t  is clear tha t  if this sequence converges in mean ~, then the 

l imit  function f ( x )  must also belong to the class G; tha t  isl we nmst have 

r  

= >2 
k = l  

but the sequence need not  converge to f ( x )  almost everywhere. The interest ing 

thing is tha t  the converse is true; we have, in fact, the following theorem: 

I f  a seq~c~me o.f function,s (18.6) belongingto (; is conrergent almost every- 

wl~ere i~ Qo,, theJ~ it is also co~werge~t i,~2 mea~ and co~sequer~tly ~ to the samc limit. 

The proof follows at on'ce from the last lemma. We have to prove tha t  

lim E I al~") -- ~,('~11 "~ - - k  I - - -  O. 

k : = l  

Now let us denote for any R > o by t~ '','t the set of points in Q~, in which 

] f~")(x)- - f ( '0  (x)[ _--< B; then we have by (I8.5) 

Since 

Z a(m) - -  o(~)1~ 
k 

k = I  

lim m Y 2 " , "  = I 

and since R may be taken arbitrarily small, the result follows. 

We use the expression ,convergence in mean,  instead of strong convergence in the class L -~. 
By the familiar theorem tha t  a sequence which converges strongly to a function f ( x )  

always contains a subsequence which converges to .f(x) almost  everywhere. 

37--34198. Acta mathcmatica. 6:1. Imprim6 lo 7 jnillet 1934. 
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We shall need one more result concerning the class G, which is due t o  

Pa!ey and Zygmund)  In  order to formulate this result briefly, we denote by 

L* the class of functions f(x) in Q~ for which e z[f(a')p is integrable for any 

Z > o; this class is contained in all the classes L p. I t  follows easily from the 

inequality l a +  bl ~_-<2[al 2 +  2]b[~ tha t  the sum of two functions of L* will 

again belong to L*. A distance in the class L* is defined by the expression 

[ ; f ]  D~(f,g) = log e~lf(xl-.q(~ )F dw(~ ~. 

Q~ 

This distance is a function of Z; it  is easily seen tha t  i t  is increasing (in the 

wide sense). We  have the inequality D,  ~ (f, g) < D~, z (f, hi + D~, x (g, h) for any 

funct ion h (x) in L*; this inequality takes the place of the tr iangle inequality. 

A sequence hi(x), h2(x), ha(x),.., is said to converge strongly towards f ( x ) i n  
the class L* if D~,(f, hn)--*o for any Z > o; strong convergence in L* implies 

strong convergence in Lp for any p. 

Now we have the following theorem: 

A function f(x) of the class G will always belong to the class L* and we 
have f.(x)---)f(x) in the sense of strong convergence in L*. 

Let  us write 

or ?l 00 

B =  B n =  Ela l and la l ' 
k = l  k = l  k = n + l  

I t  is sufficient to prove tha t  for any fixed Z the function d.lf ,  ~(~ I ~ is integrable 

for all sufficiently large values o f . n ,  and tha t  its integral  over Q~o tends to I 

when n--* ,e.  We deduce this from the inequality 

(~8.7) ( e~ f~ ~''(~'~) I"dwo, < I 
. . I  

which is valid for Z B,,, ~o < I; this inequMity will also be applied later on. 

is clearly sufficient to prove tha t  

[ .  

( I 8 .  8) ] c'~ Lf(x) [,z d w a ,  ~ - -  
, ]  

Q~ 
I - - , ~ B  

I t  

1 See R. E. A. C. Paley-A. Zygmund  [I] 342--343 . 
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when Z B < I ; then  (I 8 . 7 )  will follow when we replace f ( x )  by fn, ~ (c). In order  

to obtain (~8.8) we apply Parseval's equation to the  funct ion (f,,(X)) q where q 

is any positive integer;  this gives 

q~+q~+-"+~n=:~l ~ . q 2 ! . . . q ~ !  . . . a ~ n  __--< 
Q~ 

q! I q! <= q[ 7~ ql ! q 2 l , , "  q,,[ ] a l ] 2 q l ] a 2  . . .  [an  = . 

qt + q 2 +  ... +qn=q 

Now if ZBn < I this implies the inequali ty 

/ 
qo~ 

e ~ If~ (~)I ~ dwo, <= 
I - -  Z B,~ 

and f rom this we deduce (I8.8) by a well-known theorem of Fatou.  

w I9. A Case of Birkhoff's Ergodie Theorem. 

In  the next  few sections we shall make some applications of a case of the 

ergodic theorem of Birkhoff  to funct ions which are almost periodic in the gene- 

ralised sense of Besicovitch. The theory of these funct ions depends on a cer ta in  

no t ion  of a mean value for  funct ions defined on the infinite line l: -- a c<  t < ac. 

I use a slightly nar rower  definition than  tha t  general ly adopted;  this makes no 

difference in the theory but  it  makes our results more precise. 

Le t  .f(t) be a funct ion defined on the infinite line 1 and integrable  over any 

finite intervM j on I. W e  shall say tha t  it has a mean  value 

2]/7, { f(t)} 

over l, if  and only if the two limits 

0 T 

limIf f T ~  T f ( t )  d t  and iim I r ~  ~ T f ( t )  d t  

- - T  0 

both  exist and have the same value; this value is then by definition the mean 

value 3f t{f( t )}  of f ( t ) .  The special r61e played by the point  t = o  is only 
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and we have 

is, if 
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Mt {f(t)} exists, then 2~lt {f( t  + a)} exists for  any real a, 

M, {f( t  + a)} = Mt {/(t)}. 

Now let /, - -  (&, #e, #3, �9 �9 .) be an arb i t rary  sequence of real  numbers  which 

are not  all zero; by /zt, where t is any real  number,  we denote the point  

/ ~ t = ( # l t ,  # ~ t , / * a t , . . . ) ;  then if x is any point  in Q~, the point  x + # t  w i l l  

describe a >>straight line~) in Q~ when t describes the real axis. Le t  f ( t)  be any 

funct ion in Qr then  f ( x  + l,t) is, for  a fixed /,, a funct ion in the space (l, Qo,) 

in which the variable point  is (t, x). ~ I t  is easily seen tha t  if f (x)  is measurable 

in Q~, then f ( x  + tzt) is measurable in (l, Q~); also if f (x)  is integrable in (~)~.~, 

then  f ( x  + t~t) will be integrable over any set (j, Qr in (1, Q~), where j is an 

interval  on l. F rom this it  follows at once by Fubini 's  theorem tha t  for  almost 

all x in Q~ the funct ion f ( x  +/~t), considered as a funct ion of t alone, is 

integrable over any interval  j on l. Now we have the following theorem, which 

is a special case of the ergodic theorem of Birkhoff. 2 

Let f ( x )  be integrable over Q~ and let u be aiven; then for almost all x in 

Qr the mean value 

(I 9. I) M, { f (x  + #t)} = ~ (x) 

exists; this mean value 9 (x) is integrable over Q~, and we have 

(,9.:) 

More generally we have 

f = f f ( x )  dwo, 

(I9.3) f f f(x) tw o 

for any measurable set Y] in Q~ which is invariant under the translations x + #t. 3 

1 In  t h i s  and  t he  fo l lowing sect ions  we use  freely and  w i t h o u t  f u r t he r  c o m m e n t  t he  exten-  

sion of t he  genera l  t heo ry  to spaces  of the  form (Rn ,  Q~) where  /~u is, as  usua l ,  a Euc l idean  

space.  I t  is  clear f rom t he  p rev ious  expos i t ion  how t h e  t heo ry  shou ld  be developed for s u c h  spaces.  
See A. K h i n t c h i n e  [I] for t he  redac t ion  wh ich  comes  nea res t  to our  fo rmula t ion .  Kh in t -  

ch ine  proves  (19.1) for one-sided m e a n  va lues  on ly  and  does no t  fo rmu la t e  (I9.2) or (19 .3)expl ic i t ly ,  

b u t  i t  is easy  by  m e a n s  of h is  a r g u m e n t s  to ob ta in  t h e  r e su l t  in the  genera l  form. 

T h a t  m e a n s  wh i ch  con ta ins  all  po in t s  of t he  l ine  x + # t ,  w h e n  i t  con ta ins  x. 
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I t  is easy to find the Fourier series of ~(x)  in te rms  of the Four ie r  series 

of f (x) .  Let  us suppose t ha t  

f ( x ) -  and 
P P 

we shall then  prove tha t  7p =cp whenever  2~tt ~ o, while 7p-~-o when p t t  =4= o; 

here P # = P ,  tq +Pftt.a +p~tt.~ + ' " .  This resul t  is wha t  we should expect  f rom 

a fo rmal  calculation. Tha t  7 0 = c 0  is s imply the  re la t ion  (I9.2).  Now let  us 

apply  the theorem tO the  funct ion  f ( x ) e  -2€ ins tead of f (x ) ;  then  we get  in 

the  case p / ,  = o ins tead of 99(x) the cor responding  funct ion  9~(x)e -2~ip~, and  we 

see t ha t  7p = cp. I t  r emains  to prove t ha t  7p= o when 1~/* q= o, but  this follows 

immedia te ly  f rom the fac t  t ha t  we have F ( x ) - ~  ~p(x + #t)  and consequently 

~ p ~ y p e  2~ip~tt for  any t. 

I n  the  special  case where the numbers  tq,  #,,, tts, . . .  are linearly independent, 

t h a t  is when p t t =  o only when p - - o ,  the funct ion ~ (x) is seen to reduce to a 

constant ,  and we have 

_71It { f (x  + t t t ) } =  lf(*) 
Qm 

for  a lmost  all x in Q~. The only measurab le  sets ~ which are invar ian t  by the  

t rans la t ions  x + # t  are e i ther  null-sets or sets differing f rom Q~ by null-sets. 

I f  in this case the func t ion  f (x)  is in tegrable  in the Riemann sense, this  resul t  

can be essential ly sharpened  by an immedia te  extension of a classical t heorem 

of Weyl .  W e  re tu rn  to this case in w 25. 

w 20. App l i ca t ion  to A h n o s t  P e r i o d i c  Func t ions .  

w e  de ne t h e  upper mean value {h(t)} of a non-negative funetion h(t) 

over the infinite line l: - -  ~ <  t < ~ as the  g rea te r  of the two numbers  

o T 

lira I h(t) dt  and l im~ .  h(t) dt  

- - T  0 

I f  p ~ I, we may  consider the class of all real  or complex funct ions  f ( t )  for  

which Mt{]f(t)[P} is finite. Similarly we may  consider the class of funct ions  
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which Mt{e alf(*)l'} is finite for  any )~ > o. Le t  us dmmte these classes by 

M* respectively. In  these classes distances may be int roduced by the 

1 

( / ,  = [M,  { I f ( t )  - -  g 

]' Da, ( f  , g ) =  log Mt {e ~lf(t)-'a(t) l'} =. 

Strong convergence in M p or M* is defined by the relat ions D p ( f ,  hn)-+ o and 

D~,(f, h,~)---+o for  any s respectively. The class of Bv a.p. funct ions is now 

defined as the closure in the sense of s trong convergence in Mp of the class of 
n 

all finite t r igonometr ica l  sums h ( t ) =  ~-a bkei'kt (with arbi t rary  real exponents  #k). 
k--1 

Similarly the class of B* a .p .  funct ions is defined as the closure of the same 

class in the sense of s t rong convergence in M*. 

B p a.p. funct ions  were studied in detail  by Besicovitchl;  we get the widest 

class for  p - -  I; this class is denoted simply the class of B a.p. functions.  Any 

B a.p. funct ion has a Four ie r  series 

Qr 

f ( t )  ~ ~_~ ak d~'k t 
k = l  

where ak = Mt {f(t) e-iak t} while Mt {f(t) e -iat} -= o for all other  *. The mean 

value Mt{if(t)lP) exists always for  a By a.p. funct ion and is in the case p = 2  

determined by Parseval 's  equation 

M ,  { I f ( t )  Iq = Zla l '> . 

For  B ~ a .p .  f unc t i ons  the analogue of the Riesz-Fischer theorem is also true. 

The class of B* a .p .  funct ions is contained in the class of B p a.jO. funct ions for 

any p ;  it  is in t roduced here  only to give our results in their  most precise form. 

The part ial  sums of the Fourier  series of a By or B* a.p. funct ion will 

not  generally converge strongly to the funct ion in ]lip or M* respectively, but  

if a t r igonometr ica l  series (of the general  type considered here) converges strongly 

in M p or M*, the series will always be the Four ier  series of its sum. 

1 See  A.  S. B e s i c o v i t c h  [2]. 
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L e t  us  now cons ider  the  ser ies  

where  the  coeff ic ients  ak are  g iven  and  the  e x p o n e n t s  ;tk a re  rea l  and  all  d i f ferent .  

I f  the  series 
0o 

(2o. 2) 
k=l  

is conve rgen t ,  t he  series (20. I) is f o r  any  x in Qoj t he  F o u r i e r  ser ies  of  a B~ a.p. 

func t ion .  W e  shal l  g ive  f i r s t  a t h e o r e m  c o n c e r n i n g  the  case whe re  ~he ser ies  

(20.2) is d ive rgen t ,  and  a f t e r w a r d s  a m o r e  de ta i l ed  t h e o r e m  fo r  t he  ease w h e r e  

t he  series (20.2) is conve rgen t .  

Let the series (20. 2)be divergent. Then for almost all points x in Q~ the series 

(20. I) is not the Fourier series of a B a.p. function. 1 

L e t  n u m b e r s  r~ m) fo r  m = I ,  2, 3, �9 �9 �9 be  t a k e n  in such  a way  t h a t  fo r  each  

m only a f inite n u m b e r  of  the  r(k m) differ  f r o m  zero, a n d  m o r e o v e r  the  t w o  con- 

d i t ions  0 < r~. ~) < I fo r  all  k a n d  m and  r~ m) ~ I as m - - ~  f o r  each  k a re  

sat isf ied.  W e  cons ider  the  sequence  of f u n c t i o n s  

f(~) (x) = ~ r~ m) ak e2=i~k 
t:=1 

in Q~,,; each  ser ies  is a c tua l l y  a f inite sum.  Th i s  sequence  is n o t  c o n v e r g e n t  in 

m e a n ;  consequen t ly  by  a t h e o r e m  of w 18 i t  is no t  c o n v e r g e n t  a l m o s t  e v e r y w h e r e  

1 The  cor responding  t h e o r e m  for o rd inary  Four ie r  series is con ta ined  as a special  case in a 

t h e o r e m  of Pa ley  a nd  Z y g m u n d .  See R. E. A. C. Paley-A.  Z y g m u n d  [2] 466. For  t he  special  Case 
of l inear ly  i n d e p e n d e n t  exponen t s  )'k a m u c h  s t ronger  r esu l t  ha s  recent ly  been proved,  n a m e l y  t h a t  

a ser ies  

Z a k e i )-k t 

k : l  

wi th  l inear ly  i n d e p e n d e n t  e x p o n e n t s  is t he  Four ie r  ser ies  of a B a .p .  func t ion  on ly  w h e n  t h e  
ser ies  

o0 

k - - I  

is  convergen t ;  t h a t  is, w h e n  i t  is  a l r eady  t he  Four ie r  ser ies  of a B ~ a.p.  func t ion .  See S. Bochner-  
B. J e s s e n  I I ] .  
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in Q~ either. The same is of course t rue for any subsequence of the sequence 

f(m) (x). 

Now by the extension of the Fej~r summation theorem to B a.p.  functions 

we may take the numbers  r~ m) in such a way tha t  if we write 

o v  

f(m) (t, x)~- Z ry) ak e 2zia'k e ilk t ,  

k = 1  

we have 
i t  {If(~) (t, . )  - , f ( " ) ( t ,  x)l} -~ o as m, n -~  

for  any point  x in Qo, for  which the series (2o. I) is the Four ie r  series of a 

B a.p. funct ion.  The set of points x in Q~ for which the last relat ion is t rue 

is de a r l y  measurable;  it  also has the property S of w I I, and it  therefore  

follows tha t  its me~sure is ei ther  o or I. Le t  us suppose tha t  i t  is I, and show 

tha t  this leads to a contradict ion.  

W e  write )~k = 2z / tk .  Then we have clearly f('~)(t, x) =f (m)(x  + #t) where 

the nota t ion  is tha t  of w I9. Our assumption is tha t  

Mt{]f(m)(x + t t t ) - - f (n ) ( x  + #t)]}--+O aS m,n - -~oc  

for  almost  all x in Qo,. For  a given R > o we denote  by ~ , ' ~  the set of points 

x in Q~ for  which 

M, {If(M) (x + #t) --f( , , /(x + t~t)l} < R .  

This set t2 ~,'~ is invar iant  for  the t ranslat ions x + t t t ;  i t  therefore  follows from 

(I9.3) applied to the funct ion f ( x )  -=- [f(m) (x) --  f (< (x)] tha t  we must  have 

f I f (  "~1 (x) _fl,,I (x)] dwo, <= R m~  '~, n 
.Q'rit,, ?~ 

Since rn~,'~--+ I as m, n---* az and since R may be taken arbi t rar i ly  small, by 

famil iar  arguments  this contradiets  the result  t h a t  no subsequence of the se- 

quence f(m)(x) converges almost everywhere.  This completes the proof. 

In  the ease where the series (2o. 2) is convergent  we have the following 

theorem:  

Let the series (20.2) be convergent. Then for  almost all points x in Qo~ the 

series (20. I) is convergent almost everywhere i~ t and strongly in the class 31" to 

a certain sum f ( t ,  x). Consequently, f ( t ,  x) is B* a.p. and has (20. I ) a s  its 

Fourier serie.~ ~. 
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The first par t  of the theorem concerning convergence almost everywhere  

is an immediate  deduction from w I8. The series 

oo 

k--1 

determines a funct ion in t2~ of the class G. Now let us write 2 k ~  2zt i~  as 

before; then f i , (x  + #t) is simply the par t ia l  sum of the series (2o. 1). Since 

~(x ) - -~ f ( x )  almost everywhere,  it  follows tha t  f i , (x + tit)---+f(x + #t) almost 

everywhere in the space (l, Q~), where (t, x) is the variable point, and this 

implies tha t  for  almost  all x we have f i , ( x + u t ) ~ f ( x + t i t )  almost every- 

where in t. This proves the first par t  of the theorem, and i t  shows also tha.t 

f ( t ,  x ) = f ( x  + tit). 
In  order to prove the second par t  of the theorem,  concerning strong con- 

vergence in M*,  we first observe tha t  since f ( x )  belongs to the class L* of 

w 18, the funct ion  f ( t ,  x) = f ( x  + tit) must  by Birkhoff 's  theorem belong to M *  

for  almost all x. I~ will be sufficient, in order  to prove tha t  f~,(x + t t t )  con- 

verges s t rongly towards f ( x  + tit) in M ~ for  almost  all x, to prove tha t  for  any 

fixed ~ > 0 we have 

(20.3) Mt{ezlY'n,.~(x+~t) F'} --~ I aS n " - - )  O0 

for  almost all x. The existence of the mean values on the left  in (20.3) is a 

consequence of Birkhoff 's  theorem, which also shows tha t  

f Mt {e ~ I J,,, ~,~ I~+~tl I~ I d w,~ = f 

Qo~ Qw 

e ~ IF,,, ~ (~') F- dw<o. 

W e  know from w I8 tha t  the r ight-hand side of this relat ion tends to I as 

n--+oo; this, however, does not  imply the l imit  relat ion (20.3). In  order  to 

obtain this l imit rel~'tion we have to apply the last  theorem of w 16. 

For  a given value of n we denote  by H.,~(x) the  majoran t  of the sequence 

f,+p,o~ (x); it  is sufficient if we can prove tha t  

(20.4) Mt {e ~(gn(z+t~t))2} ~ I as 77 -----) oo 

for  almost  all x. Now the sequence fn+p,~o(x) has the same relat ion to the 

funct ion f,,~o(x) as the sequence fi,,~(x) has to f (x ) ;  it  follows tha t  we have 
38--34198. Acta mathematica. 63. Imprim6 le 9 juillet 1934. 
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(20.5) 

We  also have 

(20.6) 

fe2(Hn(X))~'dWto--I <=4(fe~'f,,~(x)'~dW~--I). " 

Q~ %j 

Q~ q~ 

By (20.5) the r ight  hand side of (20.6) tends to I as n--~ ~ ;  since the sequence 

II~ (x) is decreasing (in the wide sense), this implies (20.4). 

w 2~. Or thogona l  Ser ies  whose Coefficients are  Ana ly t ic  Func t ions .  

Le t  us denote  by D a fixed open domain in the s - - a + i t  plane. By A 

we shall always denote  a bounded and closed set belonging to D, but  not  always 

the same. We shall make use of the fac t  t ha t  if A~ is any such set and A2 

a set of the same kind whose points are all i n t e r i o r  points of A~, then there 

exists ~ constant  C, depending only on A~ and A,~, such tha t  for  any funct ion 

f(s) which i s  regular  in D we have 

2 I .  I )  
�9 j bound If(s)[ ~ C [.f(.,:)[d~v.~, 

Aa 

A~ 

and consequently for  perhups a different value of C 

If ]J 
" - 2 

(2, .  2) b o u n d  If(,~')l ~ C If(,") I ~ ,tw.~ . 

A1 

This theorem immediately implies tha t  if a sequence of regular  funct ions  f i (s) ,  

.f~(s),J~(s), . . .  converges in mean to a certain funct ion f(s)  in the sense tha t  it  

converges in mean in any set A, then  the sequence is also uniformly convergent 
in any set A and consequently f(s) is regular  in D. 

Now let g~ (s), g~ (s), g3 (s), . . .  be ~ sequence of regular  funct ions in D, such 

tha t  the series 

A 
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converges for an)" A. This condition is by (2I. 2) equivalent to the apparently 

stronger condition, that for any A the series 

r162 

(2, .  4) Z bound I.q,~ (~)I ~ 
k - - 1  

shall be convergent. 

(zr. 5) 

We consider now the series 

f(s, x)= F, g~(s)e~"~, 
k - - 1  

where s varies in D and x .in Q~, ~nd shall prove the following theorem: 

For almost all x i~ Qr the series (2I. 5) is uniformly convergent in any set 

A and consequently its sum f ( s ,  x) is regular in D. 

of ~he series (21.4) for any A i~ follows, in parti- From the convergence 

cul~r, that the series 
ov 

I.q~(~')l ~ 
k = l  

is convergent for any point s in D. This implies by w I8 that for any s the 

series (21.5) is convergent for almost all x to a certain sum f ( s , x ) .  The func- 

tion f ( s ,  x) is clearly ~ measurable function in the space (D, Q~). I t  also fol- 

lows from w 16, taking p :  2, that if H(s,  x) denotes the m~jorant of the se- 

quence 

we have 

fn (S, ~) = ~ g~(S) e ~ ,  
k : l  

f(~(s, x)) ~ dwo~ =< 4 F,  I g~ (s)I '~. 
Qto k = l  

Now H(s,  x) is measurable in the sp~ce (D, Q~); using the convergence of the 

series (2I. 3) it follows that the integral of (H(.% x)) ~ over any set (A, Qo~) in 

(D, Q~) must be finite. This implies, however, by Fubini's theorem that for 

Mmost all ~c in Qo~ the integral 

f (t/(s, x)) ~ dw~ 
A 
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must  exist for  any A. On the other  hand we know tha t  for  almost all x in Qo, 

we have f~(s, x)-#.f(s, x) for  ahnost  all s in D. Both proposit ions toge ther  

show tha t  for  almost all x we have 

f If(g,  x) - - f ~  (s, x)I" d'w, -~ o as n -+ <~, 

A 

and for  any such x we know tha t  ./;~(s, x) converges uniformly in any set A. 

This completes the proof. 

w 22. General Exponential Series. 

Let  us consider all exponential  series of t h e  form 

(=. f ( , ,  x) + it), 
k ~ l  

where the coefficients ak are given numbers  and the exponents 2k are real  and 

all different;  the exponents  shall not  be rest r ic ted in any other  way. Suppose 

tha t  the series 
cr 

k = = l  

is convergent  for  some a; these a must  clearly form an interval;  we suppose 

tha t  this interval  does not  reduce to a single point. The end-points a and (~ of 

the interval  (if they are finite) may or may not  belong to it; in all cases we 

denote by (a,~)  the open interval  a < a < ~ .  The vert ical  strip a < a < f l  shall 

also be denoted by (a, fl); this strip will be the domain D of w 2I ;  as before A 

will be used to denote any bounded and closed set in D. As an immediate  

consequence of the result  of w 2I we have the theorem:  

For almost all x in Qo, the series (22. I) i8 uniformly converge~t in any set A 
in the strip (a, fl) and consequently its sum f(s ,  x) is regular in (a, fl). 

W e  wish to s tudy these funct ions f ( s ,  x) in greater  detail; in this section 

we shall prove the following result, which is a general isat ion of a theorem for 

Dir ichlet  series of the usual type due to Paley and Zygmund. 1 

i R. E. A. C. Paley-A. Zygmund [3] 2~ 
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For almost all x in Q~ the function f ( s ,  x) is not eontinuable across the lines 

a =  a and a =  fi. 

I t  is no restr ict ion in general i ty  to suppose tha t  all Zk are positive, in 

which ease we have a = - - ~ c ;  we may also suppose tha t  f l = o ,  and it  is then  

sufficient to prove tha t  the series (22. i) almost  all have the point  s = o  as a 

singular point. For  in this ease since the class of all funct ions f ( s  + i~, x), 

where ~ is some fixed real number,  is identical  with the class f ( s ,  x), it  follows 

tha t  the point  s - = i ,  must  also be a singular  point  for  almost all the  series 

(22. I); and considering only ra t ional  values of ~ we conclude tha t  ~he series 

(22. I) are almost  all singular in all points of the line a =  o. We shall denote 

by E the set of points x in Q~ for which the series (22.I)  converges uniformly 

in any set A in ( - - ~ ,  0); this set E has clearly the property S of w II .  

In  the proof we sh~ll have to use the different iated series 

(22.3) f ( , )  (s, = 
k = t  

for  1 ) =  I, 2, 3, . . . ;  the value p = o  corresponds to the series (22,  I). For  a 

point  x in E these series are all uniformly convergent  in any set A in ( - -ac ,  o). 

We  shall also use the associated series 

c~ 

(22.4) ~.~ Z~ I .~ I  ~ e2Zk ~; 
k = l  

they all converge in ( - - ~ ,  0). 

W e  now observe tha t  if the series (22. I) were not  almost  all singular  at 

the point  s = o, then  they would be almost all regular  at  s = o. This follows 

f rom the lemma of w ~I. In  fact,  i t  is clear tha t  the set of points x in E for 

which the funct ion f ( s ,  x) is regular  at s =  0 has the proper ty  S and it  is 

measurable since it  may be defined as the set of points in E for which 

1 

[I m x)II (22.5) lim ' < I. p__~ [ - -  p! J 

Hence  by the lemma its measure is e i ther  0 or I. 

The only case in which the theorem presents a difficulty is when the series 

(22.4) are all convergent at the point  s =  o. For  suppose tha t  for  some p the 
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series (22.4) were divergent  for  s = o; denot ing by em a sequence of negative 

numbers  t e n d i n g  to o, it  follows tha t  we have 

c~ 

k = l  

and this implies by a theorem of w I8 tha t  the sequence of funct ions  f(~')(s,~, x) 

cannot  be. convergent  almost  everywhere in Q~0; consequently the functions 

f(~) Is, x) and hence also the funct ions f (s ,  x) cannot  Mmost all be regular  at 

the point  s = o. 

Suppose now tha t  the series (22.4) are all convergent  ~t the point  s -=  0 

and tha t  the series (22. I) are almost  all regular  at this point;  then  the ine- 

quali ty (22.5) holds for  almost  all points as in .Q~o. The left-hand side of the 

inequal i ty  (22.5) is a measurable funct ion in Q~.~, it  is defined at  least  for  all 

points as in E and it  has the proper ty  S of w II .  I t  follows tha t  it  is a con- 

s tant  t~lmost everywhere in Qo, and this constant  must  be < I. Let us denote 

it  by ~ ; then  the funct ions f (s ,  as) are almost all regular  in the circle 
I d - s  

Is + i I < i + s and a fortiori in the circle Isl < ~. F rom this we shall obtain 

a contradict ion by proving directly tha t  it involves the convergence of the series 

(22. 2) for  a < e. 

We write for  shortness 

k = l  

Front  the (supposed) convergence of this series it  follows tha t  for  ahnost  all x 

the series (22.3) converges at s = o and also tha t  its sum will be the limit in 

mean  of f(~)(s,~, x) as m--* z~ if. ~ denotes a sequence of negative numbers 

tending  to o; now we know tha t  f(~')(sin, x ) -~ f (P) (o ,  x) as m--* oc almost every: 

where; hence it follows t ha t  

k : = t  

On the other  hand, since f ( s ,  x) is regular  for  I,s'l < ~, we have 

1 
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The idea of the proof  is now to deduce f rom this an inequal i ty  for  IEv 

which will show the convergence of the series (22.2) for  a < e .  W e  shall  use 

for  this purpose the 1emma of w I8 in its second form;  t h a t  is, the inequal i ty  

I 
(I8.5)- Chose B > and denote  by ~(~') the set of  points  x in Q~ for  which 

If(~') (o, x)l < B• .p!. 

I t  follows f rom (22.7) t ha t  m t~(~,)-~I as p - ~ .  On the other  hand,  ( I 8 . 5 ) g i v e s  

F rom this it follows t h a t  we have for  some posit ive cons tan t  C 

(22 .  s )  <__ 

Consider  now the series (22. 2) at  a point  a =  6 where ~ ~ ~ and suppose 

I I 
t ha t  B has been t aken  > - -  but  < Then the convergence of t h e  series 

(22.2) a t  the point  a ~ - ~  follows f rom (22.8). W e  have,  in fact ,  1 

k=: .= p=0 (219)! "Azp=0 "(2 ~9)[__ k~'J-k=l 

o,  9 
2 .  p ( ~ P  

= 2 
/ )=0  

r162 O2p {~2p 
"t ~ 2 C ~ : - - B  P(p!) ~ 2 

oo 

=<2 c F,(21  + 
1)=0 

where the las t  series is convergent  since ~ B  < I .  

w 23. Analyt ic  Ahnost  Periodic  Functions.  

W e  wish now to s tudy tile a lmost  periodic charac te r  of the funct ions  

f ( s ,  x) in t roduced in w 22. To do this we mus t  first define when  a regula r  

funct ion f ( s )  in the str ip (a, fi) shall  be called B p a .p .  or B *  a .p .  in the strip. 

~o 

ex + e--x Z x2p (pl) ~ 2 p + r : We use e x<2 -- 2 and - < �9 
2 i~-p~ (2 p)! = 2~p 

p ~ O  
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The notions we s h a l l  introduce correspond to those of ~lmost periodicity in 

[a, fl] in the Bohr theory; as always, (a, fl) shall denote the strip (or the interval) 

a < a < fl and (~1, ill) any strip (or interval) inside (c~, i), tha t  is, for which 

a < cq < fl~ < fl; the words >>in [a, fl]>> shall mean >>in any (~,  ~t)>>. We may 

now consider the class of all functions f(s) which are regular in (a, fl) and for 

which 

Mt [ [f(a + it)' ') da or Mt ,~fie zl'r(<'+it)''~ da ij 
cq cq 

is finite for any (al, i ,) and a fixed p _--> I o r  for a n y  (q l ,  il) and ally ~ > O 

respectively. Le t  us denote these classes by B~ and R*. In these classes we 

introduce distances by the formulae 

lt, n d  (q 

These distances are functions of (cq, ill). Strong" convergence in R ~) or B* is 

defined by the relations Dp (f ,  h,~)--~ o for any (cq, ill) and D~, (f, h~)~  o for any 

(~,  l,) and any ~ > o respectively. The class of Bp a.p.  functions in [a, fl] is 

now defined as the closure in the sense of strong' convergence in Bp of the class 

of all finite exponential sums h (s)= ~_~ bk e,'~k '~. Similarly the elass of B* a.p. 
k = l  

functions in [a, flJ is the closure of the same class in the sense of strong" con- 

vergence in R*. The mean values 

~1 (Zl 

will always exist when f(s) is Bp a.p. or B* a.p.  respectively. 

I f  a~ < a~ < fl-2 < ill, it  follows from (2I. I) tha t  we have 

t + l  /~1 

............. f .f .>,.,,o (2 3. i) bound If(a + i t )p ) <= C [f(a + 
t - -1  al 
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for any funct ion .f(s) which is regular in (a. fl), the constant  C depending only 

on a~, ct_~, fl~, fl~. This implies tha t  a Bp a.p.  function in [a, fl] is always BP a.p.  

on any vertical line in (a, fl) and even uniformly in a in a very strong sense. 

I t  is easily seen tha t  the Fourier  series for the functions f ( a  + it) for different 

values of a >>go together>> to form a Dirichlet series 

ao 

f ( s )  - ~.j ak eak ~ 
,~.~1 

for f ( s ) .  In  analogy to (23. I) we have the fur ther  result tha t  for some fixed C 

t+ l  fl, 

(2 3. 2) bound e ~lf(~+~t)l" < C d~ da; 

t ~ l  ai 

this follows from (2I. I) and from Jensen's  inequality for the convex function 

e ~.~/' and shows tha t  a B* a.p.  function in [~, fl] is B* a.p.  on any vertical line 

in (a, fl), again with a strong uniformity in a. Finally we observe tha t  if an 

exponential  series (of general type) happens to converge strongly in Rp or R* 

to a function f ( s )  which is regular in (a, fl), then  it is the Dirichlet series off(s) .  

I t  was proved by Besicovitch tha t  if a regular funct ion f ( s )  in (a, fl) is of 

bounded order in [a, fl] and has the property tha t  Mt{] j (a  + it)] ~} is finite for 

all a in (a, fl), then  it is B 2 a.p.  on any vertical line in (a, fi) if it  is B ~ a.p.  

on one single line a-~ %.1 The proof gives enough uniformity  in a to show 

tha t  f ( s ) i s  B ~ a.p. in [a, fl] in our sense also. 

We shall now prove the following theorem: 

For almost all points x in Q~, the series (22. I) i s s t rongly  convergent to its 

sum f(.% x) in the class R*; consequently f ( s ,  x) is B* a.p.  in [c~, fl] with (22. I) 

as its Dirichlet series; that is, we may write 

for  almost all x. 

The proof is 

sider the funct ion f (a ,  X). 

f ( s ,  x) - ~_j ak e 2 ~ k  e~'k s 

very similar to tha t  of w 2o. For  each a in (a, fl) we con- 

Considered as a function of x, this funct ion belongs 

1 See A. s .  Besicovi tch  [I]. 

39--34198.  Acta mathematlea. 63. [mprim6 le 9 juillet 1934. 
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t o  t h e  class G o f  w I8. Let  fi,(a, x) and f, , ,+(a, x) have the usuat  meaning. 

Now if we write ~ k =  2~#k ,  we ge t  f ( s ,  x ) = f ( a ,  x + # t ) ,  and j ; ( a ,  x + #t) and 

fn, ~(a, x +/~t)  will be the part ial  sum and the rest of the series (22. I). I t  will 

b e  sufficient to prove tha t  for a n y  fixed strip (eL, fl~) and any fixed s > o we have 

for ahnost  all x. 

Le t  us write 
co 

B.  ; 

k : = n + l  

then it follows from (I8.7) tha t  we have 

(23.4) 

[ ,  
/e~l.&, ~ , (~,~) I~ dw~o 
, ]  

QoJ 

- -  Z B , , ,  o, 

when  EB,~,~,,(a) < I .  Also if Hn(a,  x) for a fixed n denotes the majorant  of the 

sequence f,~+v,r x), it follows from (I6.6) tha t  

f (f ) - -  I ~ e • [ f n ,  vJ (a,  a:) I~ d ~:t2e) - -  I . (23.5) eZ(H"(~' ~)1~ dwoJ = 4 

Since B,,, o, (a) ---* o uni formly  in [a, fl], it  follows from (23.4) and (23. 5) that  

fdw,~feZ(Hn(<z))2da---)I. 
Q~o al 

a S  7,7 ----> ~ .  

Now we have for each n by Birkhoff 's theorem 

Q~ al Q<~ 
J dw~o eZ(H,~(a, a.))'~ da .  

et I 

Since Hn(a,  x) is decreasing (in the wide sense), it  follows tha t  
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Mt ez (H n (o, x+t~t))2 d ~ I as  n ---) r162 

a l  

for  a lmost  all x and this  implies (2 3. 3). 

The above theorem contains,  in par t icular ,  Parseval's equation, t ha t  

ao 

~ { I f ( .  + i t ,  . ) I q  = ~ l a~ I ~ e ~  ~ 

holds for  almost all x and it  also follows tha t  the l imits defining the mean value 

exist un i formly  in a in [a, fl], This  contains  a recent  resul t  of Carlson for  

Dir ichle t  series of the usual  type.1 

Le t  us finally cons ider  the  order  of g rowth  of B v a.p. and B* a.p. func- 

tions. F r o m  the existence of a mean  value wi th  respect  to t of the r igh t -hand  

side of (23. i) in the case where f (s)  is B v a .p .  we conclude t h a t  ]f(a.+ it) Iv = 

= o(]t[) or f ( a  § i t ) - -  o I tl ~ un i fo rmly  in [a, fl]. Similarly we conclude f rom 

(23.2) t ha t  if f ( s )  is B*  a .p .  we have e~W(~ for  any Z > . o  or 

f ( ~ +  i t )=  o(glog I tl) uni fo rmly  in [~, 8]. W e  thus obta in  the  resul~ t ha t  for  

almost all x 

f ( a  + i t ,  x) = o (Vlog I t I) 

uniformly in [a, fl]. This resul t  was proved by Carlson for  Dir ichle t  series o f  

the usual  type;  his proof,  which is more  e lementary  t han  ours, is appl icable also 

in the present  case. 

w 24.  D i s t r i b u t i o n  F u n c t i o n s .  

I n  this section w e  take  up aga in  the  s t u d y  o f  funct ions  of the form 

(24. i) f ( x ) =  F, a~ e2"~k 
k =  ! 

1 See F. Carlson [I]. Carlson did not obtain the result for the most general Dirichlet series 
of the usual type but had to make a restriction on the exponents. His method is valid also for 
the ease where the signs e2~iX k are replaced by real signs =t: I, in which case our argument 
does not apply. 
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but  the prob lem we shall  consider now is of a more specia l  character .  For  the 

sake of s implici ty we d o  not  consider the general  class G of w I8 but  restr ic t  

the inves t igat ion to the special  class of series (24. i) for  which the  series 

c~ 

(24.2) la l 
k = l  

is convergent .  In  this case t h e  series (24. I) is absolutely convergen t  in Q~ and 

consequent ly  its sum f(x) is continuous.  We  call the  class of funct ions  f(x) 
defined in this way the class H ;  we shall say t ha t  f(x) belongs to H *  if at  

least  5 of the numbers  ak are not  zero and shall prove t ha t  in this case the 

values of the  funct ion are par t icular ly  regular ly  distr ibuted.  Problems of this 

na tu re  were t r ea ted  by Bohr  and the au thor  in an e lementa ry  way1; the method  

here  used yields bet ter  results  and is in the ma in  par t  an  adap ta t ion  f rom a 

paper  of Win tne r .  ~ 

The  set, S of values z = f (x )  a t t a ined  by a funct ion  of the class H is always 

closed and connected and it  also has the proper ty  of being t r ans fo rmed  into 

itself by any ro ta t ion  about  the  origin. Consequent ly  it  is e i ther  a closed circle 

I z l ~ R  or a closed circular  r ing r ~ z ~ R .  I n  bo th  cases R is the sum of 

the series (24. z). I t  is easy to see t ha t  the second case occurs only when one 

of the  numbers  l akl is g rea te r  t h a n  the sum R - - l a k l  of the  res t  of them and 

tha t  in this case r - ~ [ a k [ - - ( R - - [ a k D = - 2 [ a k [ - - R .  I n  the special  case when 

one of the  ]ak[ equals the  sum of all the other  [ak[ it is convenient  still to 

consider S as a r ing with z ~ o as the  inter ior  boundary.  

Now let  E denote an a rb i t r a ry  measurable  set  in the complex z-plane and 

let  t2 ~ - t ] ( E )  denote  the  set of points  x in Q~ for  which f(x) belongs to E ;  

if  t~ is measurable ,  we denote  its measure  mt~(E)by T(E) ;  the  set-function 

~0 (E) obta ined  in this  way is called the  distribution function off(x).  I t  is clear 

t ha t  ~ (E) is not  changed by a ro ta t ion  about  the origin. W e  wish to prove 

the fol lowing theorem:  

I f  f(x) belongs to H*, then q~ (E) is defined for all n~easurable sets E and is 
the indefinite integral of a continuous function F(z) ;  that is, we have 

1 H. Bohr-B. Jessen [I]. 
2 A. Wintner I I l ;  s e e  also S. Bochner-B. Jessen IIl. Wintner considered directly the distri- 

bution problem for almost periodic functions to which we shall apply our results in w 25. The 
extension to distributions with respect to a weight function is new. 
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(24.3) (~) = f F(~)dw~ 
E 

for any measurable set E. The function F(z) is called the density of the distribu- 

tion o f f ( x ) .  

The funct ion '  F(z) is clearly a funct ion of Iz l  alone; it is zero outside and 

on the boundary of the set S and its in tegral  over S is I. I t  could easily be 

proved tha t  F(z)  is positive in all inter ior  points of S except  in the special case 

ment ioned above where S should be considered a r ing with z - - o  as the in ter ior  

boundary in which ease we have F ( o ) =  o. Finally we may observe tha t  ~ ( E )  

is the indefinite integral  of an integrable funct ion F(z) also when f ( x )be longs  

to H provided at  least 2 of the numbers  ak are not  zero, but  there  are cases 

where 4 of the numbers  a/~ are not  zero and where F(z)  is not  continuous. W e  

shall not  require these addit ional  statements.  

The theorem has the fol lowing immediate  consequence of which we shall 

make use: tha~ i f  the set E is measurable in the Jordan sense, then the set in Q~ 

is also measurable in the Jordan sense. This follows f rom the fact  that ,  since 

f (x)  is continuous,  the boundary  of Y2 will be conta ined in the set of points x 

in Qo~ for  which f (x)  belongs to the boundary of E.  

Le t  f (x)  belong to H *  and let  

o~ 

k = l  

be any funct ion of H. 

with respect to I g(x)l  9 as 

Then we define the distr ibution funct ion ~p(E) of f (x )  

(E) = f I ~ (x) I ~ d ~ .  
.~ (E) 

W e  shall prove the following theorem:  

The function ~p (E) is also the indefinite integral of a continuous .function G (z), 
that is we have 

(24.4) ~ (E) = ( ~ (~) dw=. 
, ]  

We call G (z) the density of the distribution o f f ( x )  with respect to [g (x)[ ~. 



310 B. Jessen. 

The function G ( z ) i s  also a funct ion of [zl alone; it  is zero when F ( z ) i s  

zero, and generally positive when F(z) is positive; it  can be shown tha t  the 

only case in which this may not  be true is when g ( x ) - - k f ( x )  for some constant  

k, when we have G (z) --  ] k 12 ] z 1~ F (z). T h e  integral  of G (z) over S is equal to 

the integral  of Ig(x) l  ~ over Q~; we do not  suppose  that  it is i. 

The proof of these theorems is based on a theorem of Fourier transforms 

and on well-known properties of the Bessel functions Jo(Y) and Jj(y) .  Let  us 

write z = u + iv; then ~(E)  and ~p(E) are at least always defined when E is a 

rectangle u0 < u  < u~, Vo < v  <v~.  I t  is sufficient to show the existence of 

continuous functions _F(z) and G(z) such tha t  (24.3) and (24.4) hold whenever 

E is a rectangle of this type. Now let ~ -- a + ifl be another complex variable 

and let us form the Fourier  t ransforms 

f e-  i (~ ~+~ ~) (~) -- d~(E)  a,,d 

Z Z 

where the integrals are Stieltjes integrals over the z-plane Z. I f  we can prove 

tha t  @(~) and ~(~) are integrable over the whole ~-plane Z, our theorems will 

follow from a familiar theorem for Fourier t ransforms which says tha t  in this 

case ~0 (E) and ~p (E) are the indefinite integrals of the functions 

l i ' ( z ) - -4  . 2 d('"~+"~ ) q~(~)dw: and G ( z ) =  (.,,.+v~) 
�9 - , . t .  T g  ~ 

Z Z 

We prove the integrability of @(~) and ~g(~) by simple calculation; we 

consider first the ease of the function q)(~). Le t  us write f ( x ) - - u ( x ) +  iv(x); 

applying the definition of an integral we get immediately 

cl) (~) = f e-~( ~u (x)+~,~ (x)) dwo,. 
. 2  

Qm 

I f  ak-= l akl e 2~iQk the term ake2~i'~'k in f (x )  will give the contributions 

I ak I cos 2 ~ ( ~ k .  e~) and I a,~ I sin 2 ~ (.~ + Q~) 

to u(x) and v(x) respectively and therefore, if ff = I ffl e ~ ' r176 the contribution 

I"~ffl cos ~ ( ~  + e ~ - - ~ )  to . ~ ( ~ )  + f l~(x) .  

Consequently we have 
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q) (.~)~ __ ~--i1%:1~ ,,,,~ 2~ (~'t:-," ('k--") dwo,. 
Qto k- -1 

Now the  p roduc t  is u n i f o r m l y  c o n v e r g e n t  in Q(o fo r  a n y  fixed ~; we t h e r e f o r e  ge t  

k ~ l  Ck 

or  finally,  u s ing  a f a m i l i a r  f o r m u l a  fo r  the  func t i on  JO(Y), 

oo 

�9 (~) = [ [  J0(I ~ 1 ) .  
k ~ l  

N o w  we use the  we l l -known p r o p e r t y  of  the  Besse l  f u n c t i o n  J0 '(Y), t h a t  Jo(Y)= 

= O(y-"-') as y - *  r162 since a t  leas t  5 of  the  n u m b e r s  ak are  supposed  to be 

d i f fe ren t  f r o m  zero imd since I Jo(y)  l ~  I fo r  all  y ,  we conc lude  t h a t  @(~)=- 

o ( I F ] - ~ )  as ]~ ] - - .  o0 and  th i s  p roves  t h a t  O(~) is i n t e g r a b l e  over  the  whole  

~-plane. 

Fo r  the  func t ion  W(;r the  resu l t  is ob t a ined  in a s imi l a r  w,~y. W e  have  

i ]  

F o r  the  func t ion  Ig(x)i" we use the  expans ion  

I',1 (~)P --  ~ 1 I,~ I ~ + Z ~': t,, ~"-" ~.~-.~,) 
~" 1 k , l = l  

where  the  series is abso lu te ly  c o n v e r g e n t .  H e n c e  

k- ,1  l,', l -1 
k-!.l 

where  
t 

Tk, ~ (~) - -  / e-~' (~'' (~) § t~' (~')) e'-'" i(~'k- ~'z) d wo,. 
* ]  

This  aga in  yie lds  
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= f 
Ck 

or finally 

e--i([ak~l cos 2Z(Xk~-~k--(~)--2~Xk) d x  k e $( l(~/~1 cos  2z(xl-b~l--(~)T 2~Xl) dxt 

c l 

•II1 
e--ilam~l c o s  2n(.~:m+em--a) d x m  

1 cm 

m:~ k, l 

Now we have also J I (Y)=O(Y-~)  as y - , ~  and IJ~(y) l G  I for  all y. Conse- 

quently we have Wk,~(~)=O(l~[-~) as I~l--~ ~ uniformly in ]e and I. This 

implies tha t  a l so  W (~) : 0 (I ~] ~) as ] ~1 --~ ~ and this proves the theorem. 

The formulae  for  the funct ions F(z) and G (z) which we have obtained are 

useful if we want  to study these funct ions more closely. We shall need the 

following easy deduct ion from these formulae:  t h a t  if f('~) (x) and g(m)(x)are 
funct ions of H *  and H respectively converging uniformly to f(x) and g(x), then  

the corresponding funct ions F(")(z)  and G (~) (z) must  converge uniformly towards 

F(z)  and G(z). W e  may express this more briefly by saying tha t  F(z)and G(z) 
depend continuously on f(x) and g(x). 

w 2 5. Weyl's Theorem on Equal Distribution. 

We shall need a definition o f  a mean value for funct ions f ( t)on the 

line l: - -  ~ < t <  ~ which is more special than  tha t  of w I9. L e f f ( t )  be real 

and bounded but  not  necessarily measurable on 1. Then we say tha t  it has a 

mean value 
Fit {f(t)} 

over l in the Riemann sense if there  exists corresponding to any ~ > o a number  

2" such tha t  for  any interval  j on l with mj  > T the lower and upper  Riemann 

integrals  of f(t) over j when divided by mj differ by less than ~ from Mt {f(t)}. 

I f  the character is t ic  funct ion a(t) of a set A on 1 has a mean value Fit {a(t)} in 

this sense, we call it  the relative Jo rdan  measure of A on l; if the mean value 

Fit {a(t)f(t)} exists, we call it  the mean  value in the Riemann sense of f(t)over 
A. I t  is clear when, for  a class of funct ions f(t) or sets A, the mean values 
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or relat ive measures shall be said to exist uniformly for all funct ions or sets in 

the class. 

W i th  these definitions we have the following theorem which is an i m m e -  

diate extension to the space Qo, of a classical theorem of Weyl ;  the notat ions  

are those of w 19. 

I f  f (x )  is integrable over Qn i,n the Riemann sense and i f  the numbers 

tt~, tt~, tt:~, . . .  are li~warly independent, then 

Q~o 

for all x in Q~ and the mean value exists uniformly for all x. 

The proof is the same as for  the theorem in the space Qn. I t  is sufficient 

to apply the remark  made in @ Io according to which a funct ion  f (x)  in Q~, 

when i t  is integrable in the Riemann sense, can be enclos@d for  any e > o be- 

tween two exponential  polynomials  a(x) and A(x) such tha t  the integral  over 

Q~ of A ( x ) - - a ( x )  is smaller than  e. Since the theorem is tr ivial  when f (x)  is 

such a polynomial  (it follows by a simple computation),  this remark  shows its 

general  validity. 

Let  us observe tha t  if  the funct ion f ( x ) d e p e n d s  only on the variables 

xk~, x~.~, xk~, . . .  (in finite or infinite nmnber), the theorem will hold if only the 

nmnbers  ttk,, t%, #k.~, �9 �9 �9 are l inearly independent .  

w 25 Application to a Class of Almost Periodic Functions. 

I t  is known tha t  if an almost periodic funct ion has l inearly independent  

exponents,  then  the Fourier  series of the funct ion is absolutely convergent.  We 

may therefore  base the study of such funct ions direct ly on the i r  representa t ion 

by means of an absolutely convergent  t r igonometr ic  series with l inearly inde- 

pendent  exponents  and need not  use the almost periodic character  explicitly. 

Le t  the funct ions 

c~ av 

f ( x ) = ~  ake ~'~'xk and g ( x ) = ~  bke ~'~xk 
k = l  k = l  

b e  

H. 
40- -34198 .  

as in w 24; tha t  is, let  f (x)  belong t o  the class H *  and g(x) to the class 

We consider the funct ions 
Acta mathematica. 63. I m p r i m 6  le 9 j u i l l e t  1934. 
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a n d  g (t, x) ----- 

as funct ions of t on the line l: --  ~ < t <  ~ .  The exponents  ~ or at least 

those of them which belong to non-vanishing coefficients ak, shall be linearly 

independent. We want  to s tudy the distr ibution of the values of the funct ion 

f ( t ,  x) and of f ( t ,  x) with respect to ]g(t, x)[~ for  any x. 

Le t  E be any set in the complex z-plane which is measurable in the Jo rdan  

sense; we know from w 24 tha t  the set ~ in (~  in which f (x)  belongs to E is 

also measurable in the Jo rdan  sense. This implies tha t  if a (x) denotes the 

characterist ic  funct ion of the set ~ ;  the functions a(x) and a(x)[g(x)[ ~ are both 

integrable o v e r  (2~ in the I~iemann sense. We also have 

Q~ Q~o 

Now let a ( t ,  x) denote  I when f ( t ,  x) belongs to E and o elsewhere. Le t  

us write s = 2 ~ g~ as usual. Then  we have f ( t ,  x) - ~ f ( x  + ~ t), g (t, x) = g (x + tt t) 

and also a(t, x)=~ a(x  + g t). I t  therefore  follows f rom Weyl 's  theorem tha t  

uni formly in x 

~(I':) = ~ { ~ ( t ,  x)} and ~,(.~) = M~{,~(t, x) lg ( t  , x)] ~} . 

We formula te  this result  in the fol lowing way: 

The distribution functions ~ (E) and ~p (E) off(x) and of f (x)  with respect to 

a,-e al o fo," any fixe   the d,:st,'ib tio, fu.ction  o f f ( t ,  o f f ( t ,  x) 

with respeet to [g (t, x)[~ in the sense that, for any set E which is measurable in 

the Jordan sense, q~ (E) is the relative Jordan measure of the set A on 1 in whieh 

f ( t ,  x) belonq.9 to E and ~O(E) is the mean value in the Riemann sense of  [g(t, x)[ 2 

over this set A. Furthermore these relative measures and mean values exist unL 

formly in x for any fixed E .  

This way of combining Weyl ' s  theorem with results concerning the distri- 

but ion of the values of funct ions of an infinite nmnber  of variables in order  to 

obtain results for  almost periodic funct ions  is due to Bohr. I 

1 See for t h e  l a t e s t  expos i t ion  H. Bohr-B. J e s sen  [2], [3]- The  s impl i f ica t ion  obta ined  1)y the  
use  of the  theory  of in teg ra t ion  in ~ 0  is more  essen t ia l  in tile case of ana ly t ica l  a l m o s t  periodic 
func t ions  wi th  wh i ch  we sha l l  deal  in w 28 t h a n  in t he  case considered here.  
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w 2 7. Dis t r i bu t ion  o f  t he  Values  of  Cer ta in  Classes o f  Analy t ic  Funct ions .  

We consider as in w 2~ a class of funct ions 

(2 7. I )  f ( s ,  x)--  ~-a gk(s) e 2'~i~k 
k - -1  

where the funct ions gk(s) are regular  in a fixed domain D in the z-plane, but  

this t ime we suppose tha t  for  any set A the series 

bound l yk(*)[ 
A 

k = l  

converges. In  this ease the funct ion f ( s ,  x) will exist as a regular  funct ion in 

D for  any point x in (~ ,  the series (2 7 . I) being u n i f o r m l y  convergent  in any 

set A. The funct ion f (s ,  x) is obviously continuous considered as a funct ion in 

the space (D, Q~) where (s, x) is the variable point. I f  s denotes a fixed point  

in D, we may consider f ( s ,  x) as a funct ion in Q~; it  is a funct ion  of the class 

H .  The derivatives 

f ' ( s ,  x) = ~, g'k (s) e 2 '~ a',: 
k = l  

f o r m  clearly a class of the same kind by the famil iar  fact  tha t  if A, and A~ are 

as in w 2I, there  exists a constant  C, depending only on A 1 and A2, such tha t  

bound [ f ' ( s ) [  --< C bound If(s)[ 
A2 A 1 

for any funct ion f(s) whieh is regular  in D .  

W e  shall assume tha t  none of the funet ions f ( s ,  x) reduees to a constant  

in D;  then it  follows in a famil iar  way tha t  there  exists, corresponding to any 

set A, a number  N =  N(A) which is grea ter  than  or equal to the number  of 

z-points of f (s ,  x) in A for  any eomplex z and any x in Q~. Here  and later  on 

z-points are always eounted in thei r  multiplicity.  

Final ly we shall assume tha t  in any point  s of D at  least  5 of the func- 

tions gk(s) are not  zero. This means tha t  for  any s the funet ion  f ( s ,  x)eon-  
sidered as a funct ion in (~o belongs to the class H * .  The distr ibution funet ion 

of this funct ion in the sense of w 24 will be denoted by 9~(s, E) and its density 
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by F(s, z). W e  shM1 also consider the distribution funct ion g0(s, E) of f ( s ,  x) 

with respect to the weight  funct ion If'(s, x)l~; its density will be denoted by 

G(s,  z). These  funct ions F(s,  z) and G(s,  z) are continuous, not  only considered 

as funct ions of z for  a fixed s, but  also considered as functions o~ (s, z) in the 

space (D, Z) where Z is Used to denote the complex z-plane; this follows f rom the 

remark  at the end of w 24. For  any set A we have F ( s , z ) = o  and G ( s , z ) = o  

for  all s in A when z is outside the set S - - S ( A )  of vMues a t ta ined by all the 

funct ions f ( s ,  x) in A; this set S is e i ther  a closed circle or a dosed  circular 

ring" about  the origin in the z-plane. 

W6 will now consider the dis tr ibut ion of the values of the funct ions f (s ,  x) 

from another  point  of view. Le t  z be any complex number  and B an arbi t rary  

measurable set belonging" to a set A in D. We denote by n(B,  z, x) the number  

of z-points of f ( s ,  x) in B;  this funct ion n ( B ,  z, x) takes for  a fi~ed B only a 

finite number  of values; if it  is measurable over Qo, we call its integral  

z (B, z) = f n (B, z, x) dw~, 
qm 

the  average fi'equency with which the funct ions f (s ,  x) take the value z in the 

set B. W e  wish to prove the fol lowing theorem:  

The function 7, (B, z) is aheays defined for all measurable set~" B belonging to 

a set A in D and we have 

(:7. ~) z (B, z) - f (; (,., ,) dw,,. 
B 

Thus the same function G (s, z) which for a fixed S determines the density of the 

distribution of f ( s ,  x) with respect to I f '  (s, x)18 will for a fixed z determine the 

density of the average frequency of the z-points of the functions f (s ,  x). 
Behind this theorem lies a famil iar  funct ion-theoret ic  lemma which we shall 

formulate  la ter  on. The proof of the theorem is complicated by the fac t  tha t  

the measurabi l i ty  propert ies of the funct ion n ( B ,  z, x) are not  trivial. 

I t  is clearly sufficient to prove ~he theorem in the case where B is measurable 

in the Jordan sense. We first prove tha t  in ' this  case the funct ion n (B, z, x) is even 

integrable in the Riemann sense over Q~o for  any z. This will be of importance for  

the applications. F rom Rouch6's theorem it follows tha t  if for  ~ given x the func- 
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tion f ( s ,  x) has no z-points on the boundary C of B ,  then there  exists an 

interval  /.~: in Q~ surrounding x and  in which n (B, z, x) is constant ;  it  is there- 

fore sufficient to show tha t  the set F of points x in Q~ for  which f ( s ,  x) has 

z-points on  C is a null-set. 

W e  choose a set A which contains the set C in its interior;  let e > o 

be given; then since the set C is ~ null-set we may cover it  by a (finite or) 

enumerable number  of circles C,, belonging to A such tha t  the sum of the measures 

mC~ of these  circles is less than  e. We  denote  the mid-point of Cn by s, and 

the radius of C~ by r,~. Now let K denote  a constant  such tha t  ] f ' ( s ,  x ) ] =  < K 

for all s in A and all x; then  if x belongs to F, the inequali ty 

If(s, , ,  x) - Z l < Kr~  

must  be t rue  for at  least one value of n. This means tha t  the set F i s  covered 

by the sets I;~ where F,, is the set of points x in Qo for  which f(s~, x) belongs 

to the circle E~ in the z-plane which has its mid-point in the fixed point  z and 

the radius Krn. By the definition of the funct ions 00(s, E) and F ( s ,  z) we have 

Now let M denote a constant  such tha t  F ( s , z ) ~ M  for  all s in A and all z. 

Then  we obtain 
m I:,~ <= MINE,+ : M K "  m C~. 

Consequently the sum of the measures of the sets F~, is less than  M K ~ e  and 

s i nc e . M and K depend only on A and not  on e, it  follows tha t  F is a null-set. 

This result  has some fu r the r  applications which are of importance for the 

proof. We know now tha t  z ( B ,  z) exists for  any z; we shall prove tha t  i t  is 

a continuous funct ion of z. This follows f rom Rouchd's theorem which shows 

tha t  if zl, z~, za . . . .  is a sequence of points converging to z, the sequence 

n(B,  z~, x) will converge to n ( B ,  z, x) except perhaps in the set F;  since the 

sequence is uniformly bounded in Q~, this implies z ( B ,  z~)--*Z (B, z). 

Another  consequence is tha t  the funct ion n (B, z,  x) is measurable not  only 

as u funct ion in Q~ for  a fixed z, but  also as a funct ion of (z, x) in the space 

(Z, Qo,); we shall even prove more:  namely, tha t  the funct ion is integrable  in 

the t~iemann sense. From Rouch6's theorem it follows tha t  if f ( s ,  x ) h a s  no 
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z-points on C, then n(B, z, x) is constant  in an interval in (Z, Qo~) containing 

(s, x); i t  is therefore sufficient to prove tha t  the set F* of points (z, x ) f o r  

which f (s ,  x) has z-points on C is a null-set. Now C is closed; consequently F* 

is closed and therefore measurable; fur thermore its intersection with any s e t  

(z, Q~) is a set F of the kind considered above and this implies by Fubini 's  

theorem tha t  F* must  be a null-set. 

After  these preparations, we now begin the proof of the formula (2 7 . 2). 

Since both sides of this formula are continuous functions of z, it is sufficient 

to prove the formula in the integrated form 

f z(B,z)dWz-- f f a(s,z)dw., 
1,~ E B 

and we may of course restrict ourselves to the case where E is measurable in 

the Jordan sense. Upon inversion of the order of integrat ion on the r ight-hand 

side, by virtue of the definition of G(s, z) this relation takes t h e  form 

(27.3) f f 
E 11 

We base the proof on a familiar  function-theoretic l e m m a :  

Let f(s) be any regular function in D and let n (B, z) denote the number of 
z-points off(s)  in B. Then 

14 B 

where a (s) is I when f(s) belongs to E and o elsewhere. 
I f  we apply this lemma to the functions f(s,  x), we obtain for each x the 

relation 

f n (B , z , x )  dw~ - f a(s, x) . f ' (s ,  x).2 dw~ 
E B 

where u(s, x) is ~ when f (s ,  x) belongs to E and o elsewhere. Now this funct ion 

a(s, x) is integrable, even in the Riemann sense, over the set (B, Q~); this 

follows in the usual way when we observe tha t  the boundary of the set of points 

(s, x) in (D, Q~) for which f (s ,  x) belongs to E is contained in the set of points 
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for which f ( s ,  x) belongs to the boundary of E, which is closed and has the 

measure zero since its intersection with any set (.~, Q~) has the measure zero. 

Consequently, we may integrate the last relation over Q~o and we may also invert  

the order of integration.  This gives immediately the relation (27. 3). 

w 28. A Class of  Analy t ic  Ahnos t  Periodic Functions. 

I f  an analytic function is almost periodic in a strip is, fl] and has linearly 

indel=fendent exponents, then its Dirichlet series is absolutely convergent in (a, r 

We may therefore base the study of such functions directly on their  representa- 

tion by means of an absolutely convergent exponential  series. 

We consider as in w 2I a whole class of series 

but  now the series 

ov 

f ( s ,  x ) = ~ ,  ak e~i~k eak * ( s = a +  ~'t), 

oo 

y, lakle k  
k ~ l  

is supposed to converge in a certain interval a < a < r We do not yet  suppose 

that  the exponents Zk are linearly independent,  but only tha t  they  are real and 

all different. W e  make the assumption tha t  at  least 5 of the coefficients ak are 

not  zero. Then tile functions f ( s / x )  satisfy all t he  conditions of w 27 when D 

denotes the strip (~, ~/). The result o f  w 27 takes in this case a particularly 

simple form. 

Let  us write ~k-- 2zttk. Then we have .f(a + i t ,  x ) ~ f ( a ,  x + t t t ) .  Since 

o o  

we have also f ' ( a  + i t ,  x ) ~ f ' ( a ,  x + tit). This, however, implies tha t  for a 

given s -~ a + i t  the distribution of f ( s ,  x) with respect to I f '  (s, X)19 depends on 

a only and not  on t; t ha t  is, we have ~p (s, E ) =  ~p (a, t ~ ) a n d  G (s, z) = G (a, z) 

for any t. Now let B be a rectangle a ~ < a < f l l ,  _ I < t < I  where 
2 2 

a < a~ < fit < ft. Then the result of the last section takes the following form:  
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I f  n(al, 131, z, x) denotes the .umber of z-point~' of  f ( s ,  x) in a, < a < fl,, 

_ I < t <  i then the integral 
2 2 

Z (CZ1, {~i, *) : f ~v/ (C~1 ' 131, ~', X) dwm, 

which measures the 

I 

2 

given by 

(zsl 

average fi'equency of the z-points of the functions f ( s ,  x) in 
! 

-- < t <  - ,  exists as a Riemann integral over Q~, and its ,value is 
2 

ffl 

where G (a, z) is the den.~ity of  the distribution o f f ( a ,  x) with re,~jaeet to I f '  (a, x)] 2. 

W e  now make the fu r the r  assumption tha t  the exponents ,~k, or at least  

those of them for  which the corresponding coefficients ak are not  zero, are 

linearly independent. [n  this case we have by the theorem of Weyl  

uniformly for  all x. This result takes a simpler form if we introduce the 

following notat ion:  

Le t  f (s)  be regular  in (a, fl) and let N(al ,  ill, 7, 6, z) denote the number  of 

z-points of f (s)  in the rectangle a l < a < f l ~ ,  7 < t < 6 .  W e  say tha t  the func- 

t ion f (s)  takes the value z with the average fi'equency Z(ai, 132, z) in the strip 

(al, 131) if there  exists, corresponding to any ~ > o, a number  T such tha t  the 

number  N(a , ,  t31, 7, d, z) when divided by d - - 7  differs by less than  s f rom 

Z(a~, 131, z) as soon as d - -  7 > T. I t  is clear when for  a class of funct ions f (s)  

the f requency shall be said to exist uni formly for  all funct ions in the class. 

Now the number  n(%,  131, z, x + #t) is merely the number  of z-points of 

f ( s ,  x + #t) = f ( s  + i t ,  x) in a 1 < a < 131, I < t < I . . . . .  or, what  amounts  to the 
2 2 

same thing,  the number  of z-points of f ( s ,  x)-in the  rectangle obta ined f rom 

- -  < t < by the vertical t ranslat ion i t .  From this in terpre ta t ion 
2 2 

of n(a~, fl~, z, x + t t t )  follows at once the following theorem. 
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The average frequency Z(%, fl~, z) with which the functions f ( s ,  x) take the 

value z in % < a < flj, - -  I < t <  I is also for each fixed x the average frequency 
2 2 

with which f (s ,  x) takes the value z in the strip (a~,fll). Furthermore we have 

umformity in x in the existence of  this average frequency for fixed (%, ill) and z. 

The previous theorem gives for Z(%, ill, z) the expression (28. I). I t  is not 

uninteresting to observe that  in the present case the function G(a, z) can also 

be determined in another way. This follows immediately from the result of w 25, 

which shows that  G(a, z) for each fixed x is the density of the distribution of 

f ( a  + i t ,  x) with respect to J f ' ( a +  i t ,  x)] ~. This additional remark gives a 

formulation of the last theorem which makes no use of the theory of integration 

in Qo, and in which the point x plays only the r61e of a parameter with respect 

to which we h~ve a certain uniformity. As this theorem is perhaps the most 

interesting result of our discussion we formulate it explicitly. 

I f  the series 
r 

h=l 

where at least d of  the numbers ak are not zero, is absolutely eonvewent in (c~, fl) 

and , f  those of the numbers ~ for which the corresponding ak are not zero are 

linearly independent, then there exists for any x an average fi'equency Z (cq, fl~, z) 

with which the function f ( s ,  x) takes the value z in the strip (a <) % < a "~/~1 (</~)" 
The function Z ( e i ,  /~1, Z) defined in this way is independent of x and ~nay be 

represented in the form 

f *  

z) - / ( ;  (a, da, Z 
t /  

where G (a, z) is a continuous function defined for a < o < fl and all z. In  their 

dependence on z the functions Z (al , ill, z) and G (a, z) are functions of  [ z J only. 

The function G (a, z) may also be determined as the density of  the distribution of  

f ( a  + i t ,  x) with respect to i f '  (a + i t ,  x)j,a for any fixed x.  

Finally; we have uniformity with respect to x in the existence of  Z (~,, fl,, z) 

as well as in t he  existence of  the distribution of  f ( a  + i t ,  x) with respect to 

If' (" + it, x)IL 

41--34198. Acta qnathematica. 63. Imprim4 le 11 juillet 1934. 
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The distr ibution of the z-points for  a rb i t rary  analyt ic  almost periodic func- 

tions has been studied by the au thor  in a previous paper~;  it  would be easy by 

means of the theory  o f  in tegrat ion in Q~ for  the case here  considered to re- 

establish the main result  of  tha t  paper. 
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