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§ 1. Introduction.

The object of the present paper is to study in greater detail than has been
done before a certain space of an infinite number of dimensions, in which a
theory of integration can be developed. The 'space in question was first con-
sidered by Daniell in- connection with his studies on integration in abstract
spaces’; since then it has been investigated by Wiener, Steinhaus, Paley and
Zygmund, Carlson and myself.* The theory has applications to analytical problems
and to problems in the calculus of probabilities.

Let us consider a real or complex function f(x, 2, @, ...) depending on a
sequence of real variables; such a function is called periodic with the periods

1, 1, 1, ... if for arbitrary integers #,, 7y, n,, ... we have always
Sy, @y, @, ) =Sl + 0y, 25 + 1, 25 + 0y, ...

We restrict ourselves to the consideration of such functions. As always when
dealing with periodic functions, it is convenient to consider the functions as
defined not in the usual »open» space but in the closed space which we obtain by
replacing the coordinate axes by circles. Thus the space with which we have
to deal in the present paper is that closed space or torus-space which we obtain
from the space of all real sequences x,, x,, @;, ... by reduction of the coordinates
mod. 1. This reduced space is denoted throughout by Q..

It is not usual to speak about a space before relations between its points have
been defined. We give these relations in the next few sections by introducing
the notions of intervals, limit points and closed and open sets and by proving the
classical covering theorems. These sections contain what may be called the topology
of the space ¢, upon which the whole theory is based. It is also possible to in-
troduce a distance between the points of ., but not without violating the sym-
metry of the variables, and we do not need the notion. The fact that we con-

sider the variables as arranged in a fixed order is only a matter of convenience.

' . J. Daniell [1], [2].
? N. Wiener [1], H. Steinhaus [1], [2], R. E. A. C. Paley-A. Zygmund [1],{2], (3], F. Carlson [1},
B. Jessen [1], [2], [3].
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Other spaces than the space ., can be treated in a similar way; such
spaces have been considered by Daniell, Feller and Tornier, and Kolmogoroff!;
a quite general result has been announced by Ulam.* The theory is also related
to a type of integration in functional space introduced by Wiener.?

The idea of the present exposition is to develop the theory of functions in
the space ¢, in close analogy to the theory of the n-dimensional torus-space @,
obtained from the ordinary n-dimensional space by reduction of the coordinates
mod. 1. This is possible; in fact, as soon as intervals and the measure of
intervals have been defined, the ordinary definitions of exterior and interior
measure, and so also the ordinary definition of measurable and integrable func-
tions, may be applied. The proof that the measure and so the integral have the
ordinary properties is obtained, without the trouble of repeating all arguments, by
using a simple transferring principle; the corresponding principle for = dimensiohs
has been used by Lebesgue, F. Riesz and de la Vallée-Poussin.* It would be easy
to prove that my definition leads to the same notion as Daniell’'s which was based
on Young's definition of the Lebesgue integral. — The most interesting part of
the theory is that which ‘deals with such problems as have no analogue for
functions of a finite number of variables; for instance, the problem of what
meaning can be attached to an infinitely multiple integral. — A main point in
the theory is the establishment of a theory of Fourier series for functions in
Q.. A solution of this problem in the case of continuous functions was given
by Bohr in his second paper on almost periodic functions; in the present paper
we attach to any integrable function in ¢, a Fourier series of the form

2Ly + Pattat - - +py @
nghpz,”_,pne (pyy + paa Py 117,

(where the summation is both over the p’'s and over »n) and we prove that this
series determines the function uniquely; we also prove the Parseval and Riesz-
Fischer theorems for these series. ' o

Daniell and Wiener used the theory of the space ¢, as an examiple and
special properties of the space were not given. Steinhaus gave two applications
of the theory; he pointed out that a theory of measure in ., would make it

! P. J. Daniell [2], W. Feller-E. Tornier [1], A. Kolmogoroff [2] 24—30.

? 8. Ulam [1]. It is of interest to remark that the main results of the present paper, in
particular the theorems of 8§ 13 and 14, hold also in the case considered by Ulam. The proofs
must be rearranged. : . ’

3 See R. E. A. C. Paley T-N. Wiener-A: Zygmund [1].

* H. Lebesgue [1] 365; F. Riesz [1] 497; C. de la Vallée-Poussin [1].
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possible to generalise the theory of probabilities by a sequence of choices of real
signs t+ 1 (where the two signs are supposed to be equally probable) to the case
of sequences of complex signs. This leads in our notation to considerations
concerning the orthogonal system ¢>7**x. Translating a beautiful result of Kol-
mogoroff from the language of the calculus of probabilities into the language
of real funections, Steinhaus proved an interesting convergence theorem for series
of the form .

oo
Z ak e?nixk;
k=1

he also proved a theorem on the analytical continuation of power series. Paley
and Zygmund developed the theory for both real and complex signs in a syste-
matic way; they obtained results not only for power series, but also for Fourier
series and Dirichlet series; Carlson added certain results concerning Dirichlet series.

The present author was led to the theory in connection with some investi-
gations by Bohr concerning the distribution of the values of the Riemann zeta-
function, which were carried out in collaboration with the author.! These in-
vesﬁigations have a certain connection with those just mentioned, but here it is
the case of complex signs that occurs. It proved advantageous to consider the

zeta-function

@

£l = Syumr= [ (x = 5

k=1

in relation to the general class of functions

Lls, @y, g, 2, .. )= [ (1 — e o)t
k=1 _
In the present paper I apply the theory of the space @, not to the zeta-function
itself but to other almost periodiec cases for which the details are simpler. The
results of Steinhaus and some of the results of Paley and Zygmund are of
importance for these applications; I give a slightly simplified exposition of these
results before T give my own applications.

§ 2. The Torus-space of an Infinite Number of Dimensions.

We start from the space of all sequences x, 5, @3, ... of real numbers.

Reducing the coordinates of this space mod. 1 we obtain a certain closed space;

! H. Bohr-B. Jessen [1], [2], [3].
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we call it the torus-space ¢.,. We shall have in the sequel to consider functions
defined in this space. Through the reduction of the coordinates mod. 1 the
coordinate axes in the original space become circles; we call these circles the
coordinate circles of @, and denote them by ¢, ¢, ¢;, . . .; they all have the peri-
meter 1. The letter x; is in what follows used in two different senses: both to
denote a point of the coordinate circle ¢; and to denote the abscissa of this
point on ¢; in the latber case x: is only determined mod. 1. The point of @,
which is determined by the coordinate points, or simply coordinates, x;, x4, %, . . .

is denoted by
2 == (2, Xy, Tg, - . .).

It will be convenient for us to have a fixed notation for what is usually
called the product of a finite or infinite number of (arbitrary) sets 4,, 4,, 4,, ...
The product A= (4,, 4,, 4,,...) is defined as the set of all symbols xz=—
= (2, 3, %3, ...), where z; belongs to A;. In this sense the torus-space @, is
the produet of the coordinate circles ¢, ¢, ¢;, ... or

Qo= (e, €5 5, .. )0

Of the greatest importance for the present paper is now the definition of
an nterval in the space @,. Denote as an arc b on a circle ¢ either an ordi-
nary open arc (perhaps the circle with exception of one point) or the circle
itself. The obyvious thing to do would be to denote as an interval in Qw any‘
set of points obtained by choosing on any coordinate circle ¢y an arc b; and
then forming the product '

(2.1) I=(by, by, by, .. )

of these arcs. This definition, however, turns out to be very unsatisfactory. Our
theory - depends entirely on the fact, that we admit as intervals only those sets
of the form (2.1) for which only a finite number of the arcs by, b, b, ... are
ordinary ares, the rest of them being the coordinate circles themselves. The
lengths of the arcs are called the edge-lengths of the interval; so for an interval
in our sense the edge-lengths are all = 1 with the exception of a finite number
of them which are = 1. The space itself is an interval and its edge-lengths
are all =1,

! In the applications we shall also consider spaces of the form (R, Qu) where R, is, as
usual, a Euclidean space,. It was found convenient not to complicate the general theory by the
consideration of this case. '
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It is often convenient to consider ¢, as the product of the »-dimensional

torus-space
Qn=>_cy, €, . .., Cn)

and the infinite-dimensional torus-space
Qn,w = (Cn+1, Cptia, .. )

We write then in accordance with our general notation @, = (Qu, @ o). If
& =2y, %9 . .., ¥u) and " = (Tnt1, Tate, ...) are two points of @, and @, ., we
denote the corresponding point of @, by z=(x', 2”'). The points 2’ and =" are
said to be the projections of x on the spaces @, and Q, .. If we project all
the points of a set in @, on @, or @n » we get the projection of the set itself.
The projections of the interval (2.1) on @, and @, . are the intervals

I=(b, by ... by
and
I = (bn+11 bn+2, .. ),

so we have I=(I', I"). If = is large enough we have I = ¢, ., and so I=
= (I', @, ). For an arbitrary set 4 in @, the relation 4 = (4’, A”) will gener-
ally not be true. If we have A =(4', Qn o) or A =(@u, A”) the set A is called
a cylinder; in the first case its base is the set A" in ¢),, in the second case the
set A" in Q, ..

Our theory of functions in the space ., will be developed in close analogy
to the theory of the space @, but it should be observed that the theory of the
space @, contains that of the space @, In fact any function f(x,, z,, ..., Z,) in
@n may as well be considered as a function in ., which does not depend on the
variables %pi1, Znis, ... and to any set A" in @, corresponds the cylinder A =
= (4’, @n, ) in Qu. Functions which only depend either on the variables 2, @, . . ., 2x
or on the variables @ni1, Zn4te, ... play an important réle in the theory.

§ 3. Limit Points. Covering Theorems.

A sequence of points z® = (x{, 2, 2, ...) in @, is said to be convergent
and to have the limit point x = (x,, @, a5, . ..) if & — a8 n — o for any fixed
k (but not necessarily uniformly in %); we then write 2" -z as n— o. Let
the  sequence a2, z® x® ... be convergent to the limit point x and let I, be

an interval surrounding z; then it follows immediately that ™ must lie in I,
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for all sufficiently large n. The converse of this is also true: Suppose that the
sequence z, z® 28 .. and the point z have the property that for any inter-
val I, containing x the points ™ of the sequence lie ultimately in I, then the
sequence must be convergent and must have the limit point x. The Weierstrass-
Bolzano theorem is true for the space Q., that is: Any sequence x\V, x?, 2®, ...
of points in Qo contains a convergent subsequence. This is proved in the ordinary
way by means of the diagonal method.

~ If the limit point of every convergent sequence of points of 4 set A belongs
to 4 then we say that A4 is a closed set; a set 4 is said to be open if its
complementary set ¢, — A is closed. An interval is evidently an open set, but
the same is not true for a set of the form (2. 1) where an infinite number of the
arcs by may be ordinary arcs. We shall now prove the following more general
theorem: A set A of points in Q. s open if and only if corresponding to any of
tts points x ¢t contains an interval I, swrrounding zx.

The one part of this theorem is obvious: If the set A contains corresponding
to any of its points x an interval I, surrounding z, then no point x of 4 can
be a limit point for the complementary set @, — 4; so this set must be closed
and hence 4 open. In order to prove the converse suppose 4 to be open and
x = (&1, Xy, X3, . ..) to be a point of A, and consider for any n the interval

I™ = (b, by, ..., bu, Cat1, Cats, ...) Where by for 1 =k < n is the arc on ¢ which
has its midpoint in x; and the length ;;; then it is clear that I") must belong

to A for all sufficiently large »; for if not we should have for any » a point
2™ of Q,— A lying in I™ and @,— 4 would not be closed since evidently
" -z as n— ©.

If we add to an arbitrary set A all points outside 4 which are limit points
for sequences of points of A we obtain the closure A of A, which is the smallest
closed set containing 4. If 4 =/(e, e, €, ...) where ¢ is an arbitrary set on
the coordinate circle ¢; we have A = (7, &, £, ...). If I is an interval we call I
the corresponding closed interval.

Finally we call to mind the two classical covering theorems:

1. The covering theorem of Lindeldf. If to any point x of a set A in Q.
there corresponds an interval I, surrounding x then we can find a fintte or enumer-
able number of these intervals which will cover A. '

In order to prove this we denote as a rational point on each coordinate

circle a point with rational abscissa and as a rational arc an arc whose endpoints
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are rational (the circle itself shall also be considered as a rational arc). An in-
terval I in @), is now called a rational interval, when the -deﬁning arcs are all
rational; evidently there is only an enumerable number of rational intervals in
Q.. Now any interval I, surrounding a point x in ., certainly contains a
rational interval surrounding x. This proves the theorem.

2. The covering theorem of Borel. . If the set A considered is a closed set,
then a finste number of the intervals will always be enough fo cover A.

A simple way of proving this theorem is to deduce it from Lindelof’s
theorem. Suppose that A is covered by a sequence of intervals I, I 8 .
‘and denote by A™ the part of 4 which lies outside the first = intervals
W g o I™; then A™ is evidently closed. We have to prove that A®
vanishes for all sufficiently large #»; this, however, is clear; for from the Weier-
strags-Bolzano theorem it easily follows that a sequence of closed sets A=
= A= A®=-..) none of which vanishes, must have a point in common; and
such a point does not exist in our case.

We could of course carry this study of the space ., further; we shall only
add the following theorem, which is in itself of no great interest but which we
shall require later on: Let A’ denote an arbitrary set in @, and let the set
A= (4", Qn o) iIn Q. be enclosed in an open set O in @Q.; then there exists an
open set U’ in ¢, which contains A’ and is such that U = (U’, Q. ) is con-
tained in 0. The proof is as follows: For a fixed point 2" of A’ we consider
the set («', Qn o) in Q. this set is contained in O, so to any of its points x
there corresponds an interval I, surrounding x and contained in O; now the set
(', @n, ) is closed, so by Borel's theorem a finite number of the intervals I,
will cover the set and we may conclude that there exists an interval I' in @,
containing «’ such that (I, ¢, o) is contained in 0. This proves the theorem.
We have also the corresponding theorem, that if a set of the form (Q,, 4”),
where A" is a set in @, ., is contained in an open set O in ,, then A" is
contained in an open set [/” such that U ={(Q,, U”) lies in O.

§ 4. Continuous and Semi-continuous Funetions.
A function f(z)= f(z,, x5 23, ...) defined in @, is said to be contznuous
(vollstetig) in Q., if f(2™)— f(x) whenever x® — x. It follows easily: A func-
tion f(x) is continuous if and only if for any z in ¢, and for any & > o there

exists an interval I, surrounding 2z such that the inequality

| /(@) = f=)] <&
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holds for all points #" in I,. If we keep ¢ fixed and vary z, it follows at once
from the covering theorem of Borel (since €. is closed) that any continuous
function f(x) must be bounded in ,. A real function f(x) is continuous if,
and only if, for any real @ the points where f(z)=a or f{(z)= a both form a
closed set. The function attains both its upper and its lower bound.

We shall give one more property of continuous funetions which also follows
immediately from Borel’s covering theorem: If f(x) = f(x;, %s, @, . . .) is continuous
in @, then there exists for any & > 0 a number # and a number d > o, such that
the inequality

lf(xh %‘2, x:}v < ) ._f(a’.’n m,za CC;, ce )l <&

holds whenever the n inequalities |z — zi| < ¢ for 1= % = n are fulfilled. This
theorem shows that any continuous function in ¢, may be uniformly apprommated
by continuous functions, each of which depends only on a finite number of the
variables.

A real function f{x) defined in @, is called semi-continuous from above in

Q. if hm fla ”’) = f(r) whenever z™ — z; a function is semi-continuous from

above if, and only if, for any real ¢ the points where f(x) = ¢ form a closed
set. A function f(x) is semi-continuous from below if — f(x) is semi-continuous
from above.

- 8§ 5. The Lebesgue Measure.

The way to a theory of measure in €, is now rather obvious; we need only
attach to any (open) ‘interval [ (in the sense defined above) as measure the
product of its edgelengths and then apply the ordinary Lebesgue definitions.
These definitions are the following: ‘

Let A4 be any set in ¢, and consider all coverings of 4 with a (finite or)
enumerable number of intervals I; determine for each such covering the sum of
the measures of the covering intervals; the set of numbers obtained certainly
contains the number 1 since @, itself is a covering interval. We call its lower
bound m.A the exterior Lebesgue measure of the set A; the inferior Lebesgue
measure m; A of A is defined by the relation m;A4 = 1 — m.(Q, — A).

We have 0 = med =<1 and hence also o =m;4 = 1. Further mAd = m. 4
or meAd + me(Qo— A) = 1; for two coverings of 4 and @, — A form together a
covering of @.,. Then, however, it follows from Borel's covering theorem that
a finite number of the intervals considered will cover .; now these intervals

33—34108. Acta mathematica, 63. Imprimé le 6 juillet 1934. '
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may for some fixed » all be written in the form I=(I', @, .,) where I’ denotes
an interval in ¢, whose measure is equal to that of I. Now as these inter-
vals I’ must cover @, the sum of their measures must be = 1 and so the theorem
is proved.

If the interior measure is equal to the exterior measure, the set A is said to
be measurable tn the Lebesgue sense with the infinite-dimensional measure

mAd =mA = m.A. -

Now it  must of course be proved, that intervals are measurable sets and
that their measure is equal to that already defined. This could easily be proved
directly but follows also from the more general remark that if A’ denotes any
set in @, then the exterior and interior measure of the cylinder 4 = (A’, Qn o)
will be equal to the exterior and interior n-dimensional measure of 4’. In par-
ticular the two sets 4 and A’ will be measurable together and with the same
measure. In order to prove this we suppose first that A" is measurable; then
the relation med + me(Q, — A) = 1 in connection with the relations

mA +m(Qr— A ) =1, mA"=m A, m(Q,— A') = m.(Q, — A)
give

med =mA", m(Qu— A)=m(Q, — A"

and so m;A =m,A =mA’. Suppose now that A’ is not measurable; it is evidently
enough to prove that m.d = m.A’ and since m.d < m.A’ it is enough to prove
that med + ¢ >m,A" for any ¢>o0. Consider now a (finite or) enumerable
number of intervals I covering A such that the sum of their measures is
<meA + &; denote the open set composed of these intervals by O; then we
have clearly m.,A4 + ¢ > m,0; now we have proved before that there exists an
open set U’ in ¢, containing A’ so that U= (U", @, ) is contained in O; but
this proves the theorem since then by the case already considered

med+e>m0zmU=mU =mA"

The theorem is to be considered as showing that n-dimensional measure (in the
space @) ¢s a particular case of the infinite-dimensional measure. It follows
especially that any closed interval I in (), is also measurable and that its measure
is equal to the product of its edge-lengths.

In exactly the same way it can be proved that if A” denotes an arbitrary
set in Qn » and 4 = (Q., A”) is the corresponding cylinder in €., then the two
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sets 4” and A have the same exterior and interior measure (now both measures
are infinite-dimensional). The proof depends on the theorem (not yet established)
that any open infinite-dimensional set is measurable. Observe also the following
theorem which is very easy to prove: If A" and A" are arbitrary measurable sets
in Q. and @Qu o, then the set 4= (4", A”) in Q. is also measurable and we have
mA=mA" -mAd".

A special role is played by the null-sets in ., that is the measurable sets
of measure 0. The sum of an enumerable number of null-sets is again a null-
set. If Q5 is a subset of @, which differs from @, only by a null-set and if
A* denotes the common part of . and an arbitrary set 4 in Qw, then it is
easily seen that meA = m.A* and wm;Ad = m;A*. As an example of a null-set we
mention the set of all points in @u whose coordinates are not all irrational.

§ 6. The Construction of Nets.

After the above discussion it will not be surprising that the measure in-
troduced has all the properties of the n-dimensional measure in the space Q.
This could be proved by repeating all the ordinary proofs. It is, however, much
easier to use a simple transferring principle, which. gives everything without the
trouble of repeating all arguments. This transferring principle depends entirely
on the concept of a nef, introduced with such great success in the theory of real
functions by de la Vallée-Poussin. In the case of functions of a finite number of
variables the importance of the nets is rather that they give a simple technique
for proving theorems which have themselves nothing to do with the nets
and could have been proved without them. In the theory of the space Q. it
seems (as we shall see later on) that the use of nets is the only way of ob-
taining the deeper results. We shall have to use nets not only for the proof
of the transferring principle but also later on; we therefore postpone the proof
of the transferring principle and deal in this section only with the construe-
tion of nets.

We shall speak of a dissection of a circle ¢ into arcs b, when we leave
out of ¢ a finite number of points; the extreme cases where no point, or only
one point, is left out are also to be considered as dissections. When we denote
the arcs by & they are supposed to be open; the corresponding closed arcs are

denoted by b. Now consider the first # coordinate circles ¢; which form the
torus-space ¢, and take a dissection of each of them into ares b;; then we ob-
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tain a dissection D’ of ¢, into intervals, which we shall denote by I, by taking

all intervals of the form
I/ - (bl? b2, ey bn)

where each b; is an arc from the dissection of ¢; considered. We obtain a
subdzssection of a circle ¢ by leaving out more points of ¢; accordingly a sub-
dissection of (), is obtained by taking subdissections of the coordinate circles
¢ or at least of some of them. We now define a nel tn @, as a sequence of
dissections IV, D,, D, ... where D1 is always a subdissection of D), and
where further the fundamental condition is fulfilled that the maximum of the
edge-lengths of all intervals in Dj tends to zero as m — .

This definition is easily generalised to the case of the space @,. In order
to obtain a dissection D of ¢, we take a dissection of each of the coordinate
circles ¢; into arcs by but so that only a finite number of these dissections are
real dissections no points being left out from the rest of the circles. Then again

we inay form the set of all intervals
I= (bly b2, b31 . )

and these sets I are indeed intervals in @ according to our definition. It
follows at once that any dissection D of @. may also be considered as generated
by a dissection of the space @, where n is sufficiently large, in the sense that
the intervals I of the dissection D are all of the form I = (I', . ), the inter-
vals I’ forming a dissection of (. Now consider a sequence of dissections
D,, D,, D,, ... of Q. where D,;; is always a subdissection of I),; we then say
that this sequence forms a net in €., if for any fixed % the maximal length of
the arcs of that dissection of ¢; which corresponds to D, tends to zero as n —
(but evidently not uniformly in k). With this definition of a net in @. the
fundamental property holds that if I, =1,=1,= - denotes any sequence of
closed intervals such that I, for any % belongs to D, then these intervals will
have exactly one point in common. Obviously there exist nets in @,. The set
of all points which lie on the boundary of some interval in a net form a null-set.

§ 7. The Transferring Principle.*
By means of the construction of nets it is now easy to prove the trans-
ferring principle referred to above. Let ¢ and ¢ be two torus-spaces of the kind

1 Cf. H. Lebesgue [1] 367; T. Riesz [1] 497; C. de la Vallée-Poussin [1].
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considered; they need not be of an infinite number of dimensions; suppose for
instance that ¢ is . and ¢ a circle of length 1. We shall prove that there
exists an application of @ on ¢ which conserves the measure in the following
precise sense: : ‘

There exists a one-one application of the points of Q with the exception of a
null-set on the points of q with the exception of a null-set, with the property that
corresponding sets in @ and q have always the same exterior and interior measure.

For our present object (the proof that the measure in . has all the pro-
perties of the measure on a circle) the existence of one such application in the
special case mentioned above would be sufficient; the way in which it is con-
structed is, however, of importance for the applications, and it is also of im-
portance that we do not restrict ourselves to this case alone.

We consider a sequence of dissections D;, Dy, Dy, ... which form a net in
¢ and a sequence of dissections d|, d,, d;, ... which form a net in ¢. The inter-
vals of D, will be denoted by I, the intervals of d, by 7». Now we suppose
that the two mnets in @ and ¢ correspond in the sense that for 'any n we have
a one-one correspondence between the intervals I, of D, and the intervals 2, of
dr, with the following two properties: Corresponding intervals I, and ¢, have
always the same measure; to an interval I,.; contained in an interval I, always
corresponds aun interval ¢,11 contained in the corresponding interval 7,. Evidently
there exist corresponding nets in @ and q.

We now consider any sequence |

Iy

1%

1,

v
1%

(7. 1) I,

of closed intervals in ¢, one from each of the dissections D,; this sequence de-
termines uniquely a point z of @ but there are points of ¢ which are deter-
mined by more than one sequence (7. 1); those are the points x which lie on
the boundary of some interval I,. Now to any sequence (7. 1) by the corres-
pondence of the two nets there corresponds a sequence :

v
v
i\

(7. 2) 7

£}

of closed intervals in g, which determines uniquely a certain point ¢ in ¢. So
if we let two points z and t of @ and ¢ correspond if they are determined by
corresponding sequences (7. 1) and (7. 2), we obtain an application of @ on ¢. This

application is not a one-one application except in-trivial cases — the possibilities
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are illustrated in fig. 1 ~— but we shall show that if we only cousider the applica-
tion for pairs of corresponding points x and ¢, each of which has only one
corresponding point, the exceptional sets are null-sets and the application has the
desired properties. The proof of this is simple, but it requires a certain care
and we may of course during the proof only apply the few properties of the
measure which we have already established in § 5.

It is convenient to delay for a moment the omission of the exceptional
sets and first consider the application as it is defined by the correspondence
between the sequences (7.1) and (7.2). For any set S in @ we may consider
the set s of all points in ¢ which correspond to some point of S (this does not
imply that § contains all points in ¢ which correspond to some point of s);

Jennnn

9 (.1 YRR L)

Fig. 1.

we can now prove very easily that mes =< m.S. Consider for a given ¢ >0 a
(finite or) enumerable number of intervals I covering S, so that the sum of the
measures of these intervals is < m.S+¢. Take now first all the closed intervals

I, of D, which belong to one of these covering intervals 7, then all the closed
intervals I, of D, which belong to one of the intervals I without being contained
in one of the intervals Il already selected, and continue this process; the sum

of the measures of all the closed intervals I, obtained in this way is clearly
< meS+e¢; furthermore for each sequence (7. 1) which defines a point z of S,
the. first interval I, of the sequence which belongs to one of the intervals I is
among the selected intervals J,. Now consider the set in g composed of all the
corresponding intervals i,; this set must contain s; now any interval 7, can be
enclosed in an open interval whose measure is only slightly greater; so we get
mes < meS+e and since & was arbitrary, mes = m,S. We have of course the



The Theory of Integration in a Space of an Infinite Number of Dimensions. 263

corresponding result that if » is a set in ¢ and R the set of all points in @
which correspond to the points of », then m.R = m.r. - ’

Now consider first the set 8, of all points in @ which have more than
one corresponding point in ¢, and denote by s, the set of all corresponding
points in g; the set S, is known to be a null-set; since s, = m.S;, we see that
s, must also be a null-set: Similarly if », denotes the set of points in ¢ with
more than one corresponding point in @, and if R, is the corresjpohding set in
@, we have that »;, and hence also R,, is a null-set. Now denote by @* the set
obtained from ¢ by leaving out the two nullsets S, and R, and by ¢* the set
obtained from ¢ by leaving out the sets s, and 7,; then @ and ¢* are formed
by all the pairs of points x and ¢ each of which has the other point as its only
corresponding point. @* and ¢* differ from ¢ and g by null-sets and the one-
one application -of @Q* on ¢* preserves the exterior and interior measure; in fact,
if § and s are corresponding sets in @* and ¢*, we have both m.s < m.S and
MmeS = mes and hence meS = mes, and the corfesponding result for the interior
‘measure follows by considering the complementary sets with respect to @* and
q*, using the remark that the omission of a null-set does not alter either the
exterior or the interior measure. »

Thus the theorem is proved; together with the above remark on null-sets
the transferring principle proves that the measure en Q. has all the properties
of the measure on a circle; we emphasize especially the main theorem: If
Ay, Ay, A, ... denotes a finite or enumerable sequence of measurable sets in ,,
then the common part and the sum of these sets are again measurable. If no
two of the sets have common points we have further

m(d;+ Ay + A3+ ) =mA, +mAy+mAz+ .

From this theorem it follows that any open set 4 in @, must be measurable; in
fact, if we choose for each point x of A an interval I, surrounding x and con-
tained in A, it follows from Lindelsf's theorem that A4 is the sum of a finite or
enumerable number of these intervals. From this it follows that also any closed

set, as complementary set to an open set, must be measurable.

§ 8. The Jordan Measure.

In the general theory we use exclusively the infinite-dimensional Lebesgue
measure; in the applications, however, the corresponding Jordan measure
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also plays an essential réle. We define this measure imitating the ordinary
definitions.

Let A denote an arbitrary set in {,. We consider all coverings of 4 by
a fintte number of intervals I and determine for each such covering the sum
of the measures of the covering intervals. We define the exterior Jordan measure
of the set A to be the lower bound u.A of the numbers obtained; the znterior
Jordan measure is defined by the relation w;d = 1—p{Q.—4). We have evi-
dently 0= pu,4 =1 and hence also 0 =< ;4 = 1; the relation ;4 < u.4 is for
the Jordan measure an elementary relation.

If the interior Jordan measure is equal to the exterior, we say that the set A

s measurable in the Jordan sense with the wnfinite-dimensional Jordan meusure
pud=uwd=puAd.

The properties of the Jordan measure are, exactly as in the n-dimensional
case, most easily treated by means of the Lebesgue measure. Let A be an
arbitrary set in ¢, and let A denote the closure of A in the sense defined above;'
since A is closed, it is measurable in the Lebesgue sense and we shall now

prove that )
ped =mA.

That peA <mA follows at once from Borel's covering theorem; in fact, if we
have a covering of A by a (finite or) enumerable set of intervals I, then a finite
number of these intervals will cover A and so A. On the other hand, if A is
covered by a finite number of intervals I, then the corresponding closed intervals
I will cover 4; so u.A=mA and the two inequalities together give the result.
By consideration of the complementary sets we get immediately the correspond-

ing result for the interior Jordan measure that

wAd=mAd

where A = (u—(Qu—A) denotes the open kernel of A (that is, the open set
composed of all interior points of 4). The two relations together show that a
set A is measurable in the Jordan sense if and only if the closed set 4—A,
which we may denote as the boundary of A, has the Lebesgue measure, and so
also the Jordan measure, zero. From this result it follows at once that the sum
and common part of a finite number of sets measurable in the Jordan sense are

again measurable in the Jordan sense.
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The infinite-dimensional Jordan measure is more nearly related to the =-
dimensional measure than we should perhaps think at first sight. ILet 4 denote
an arbitrary set in @, and let A, for each » denote the projection of A on the

n-dimensional torus-space @,; then the sequence of numbers
xu(fAl’ [‘LCA% ALLeA3) e
is evidently decreasing (in the wide sense); we shall prove that

lim uc 4, = A.

N——r 0

As the interior Jordan measure is defined by means of the exterior, this gives
us a definition of the infinite-dimensional Jordan measure by means of the
n-dimensional. The proof is immediate; for in the first place we have ped, = p A
for all #; and on the other hand if ¢ > o is given, then there exists a covering
of A by a finite number of intervals such that the sum of their measures is
< ue A+e; for all sufficiently large » these intervals have the same measure as
their projections on ; so for large » we have ue Ay < u.A+é¢. A corresponding
determination of the exterior Lebesgue measure in ¢, is not possible,

§ 9. The Definite and Indefinite Integrals.

On the basis of the Lebesgue measure the notions of measurable and ente-
grable functions f(x)=f(x,, x;, Z,, ...) can now immediately be introduced.

Suppose first that f(x) is a real function in ¢,. If now for any a the set
of points in which f(z) = ¢ is a measurable set, then we call f(x) a measurable

function. Suppose this to be true and consider an arbitrary scale
LY LY Yy Yy < Yy <

of increasing numbers for which y—, — — % and y,— % as n— % and further

the number

(9. 1) . bound (Yn+1 ~ Yn)

is finite; we denote by m, the measure of that part of ¢, in which we have
Y = f(x) < yn+1 and form the series ‘

<9~ 2) 2 Yn My,

n=-—x0

! This definition was nsed in H. Bohr—B. Jessen [1] 65—069.
34—34198. Acta mathematica. 63. Imprimé le 6 juillet 1884.
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If now for some scale this series is absolutely convergent, then it is absolutely
convergent for any scale of the kind considered; the function f(x) is then called
integrable and its integral is defined as the limit of the sum of the series (9. 2)
when the number (9. 1) tends to zero in an arbitrary way. A complex function
S (@)=u(x) +7v(z) is called measurable or integrable if the two functions u(x) and
v{x) are both measurable or integrable respectively. In the latter case we define

the ¢nfinite-dimensional integral

(©.3) f Fle) dowe

Qe

of f(x) over (. by integrating the real and imaginary parts separately.

Any continuous function f(x) is integrable; for a continuous and real func-
tion is always bounded and the set of points in which f(x) = a is for any a
closed and so measurable. It should also be observed that if a function f(x)in
@) depends ounly on the variables x, x,, ..., 2, then it is measurable considered
as a function in the n-dimensional torus-space @, if and only if it is measurable
considered as a function in ¢,; the functions are also integrable together and
the integral over @), is equal to the integral over (),. This remark may be
considered as an cxpression of the n-dimensional integral (for functions in )
as a particular case of the infinite-dimenstonal. Similarly if a function depends
only on the variables Zu+1, @nye, ..., then it is integrable considered as a function
in @, o if and only if it is integrable over ¢, and the integrals are equal. We

shall sometimes allow ourselves to write

Q!.f(x)dw,, or ff(x) don s

Qn, (o)

instead of (9. 3) in these cases.

Exactly as in the n-dimensional case, the circumstances in a set of measure
zero are of no imﬁortzmce in the integration. Two functions which differ only
in a null-set will therefore in the following not be considered as different func-
tions and a function will also be considered as defined in Qo if it is only defined
outside a set of measure zero. ‘

The integral has evidently the same fundamental properties as the ordinary
Lebesgue integral. This follows immediately from the transferring principle; in
fact if we denote by x=uxz(f) the application of a circle ¢ of length 1 on @,
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constructed by means of corresponding nets in ¢, and ¢, then for any real
function f(x) in Q. the corresponding function ¢(f)=f(z(t) on ¢ will have the
same distribution of its values as f(x) in the sense that for any real a the sets
of points where we have f(x) =« and @(f) = ¢ will have the same exterior and
the same interior measures. This, however, implies that the two functions f(x)
and ¢(¢) will always be measurable or integrable together and in the latter case
always with the same integral. )

In addition to the definite integral (g.3), for the comsiderations of the
present paper the ¢ndefinite integral of an integrable function f(x) in @, is also
very important. Let F/ denote an arbitrary measurable set in ¢,; we consider
that function defined in @, which in F is equal to f(x) and is o elsewhere;

this function is again integrable; we denote its integral over @, as the integral

P(E) = ] Fla)dwe

of f(x) over the set E. The function F'(F) of the variable set K is called the
indefinite integral of f(z). From the transferring principle follows at once the
main theorem of Lebesgue:

A function F(E) defined for all measurable sets E in Q. is the indefinite
integral of an integrable function f(x) in Qo if and only if <t is additive and
absolutely continuous, that is if, firstly, for any two sets I, and F, without com-

mon points we have

Fr (E1 + Ez) = F(E;) + F(Ea)
and, secondly, to any ¢ > o there corresponds an 5 > o, so that
|F(E)| <& when mE <.

The indefinite integral determines uniquely the integrated function f(x);
but how shall we obtain f(x) when F(E) is given? The Lebesgue theory of
symmetric derivatives certainly cannot be generalised to our case (at least there
is no obvious generalisation); this follows from the fact that there are no sym-
metric neighbourhoods for the points of ., all intervals in Q. (except ¢, itself)
being highly unsymmetric. We may, however, always differentiate F'(E) on any

net in @,; so the construction of a net turns out to be of greater importance
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for the theory than merely to supply a simple technique of proofs. The diffe-
rentiation theorem which we. obtain is as follows:

Suppose that the sequence of dissections D, Dy, Ds, ... of Q. form a net and
denote by An(z), for any value of n, the »stepfunction> which in any interval I, of
the n-th dissection D, is equal to the corresponding quotient

F(L)

mly ’

then the sequence of functions An(x) will tend to f(x) as n— o almost everywhere
n Q.

The proof of this theorem follows immediately. On a circle ¢ of length
1 we construct a net d,, dy, ds, ... which corresponds to the net D,, D,, D,,
in @, We denote by x=x(f) the corresponding application of ¢ on @, and by
®@(e) the indefinite integral of the function ¢@(f)=f(2(f)) on ¢; then we have
evidently for any interval I, in ¢, and the corresponding interval 7, on ¢ the
relation

F(L) _ @)

w1y miy

’

hence to the sequence of functions A#,.(x) in @, there corresponds by the applica-
tion of @, on ¢ a sequence of functions which tends to ¢(f) almost everywhere
in ¢; but then the sequence A,(x) must tend to f(x) alimost everywhere in ¢,

In the last theorem we have the fundamental starting point for a deeper
study of integrable functions of an infinite number of variables. 1t shows that
the relationship between these functions and integrable functions of a finite
number of variables is not so distant as might have been expected from the
beginning, each of the functions A,(x) being in fact a function depending only
on a finite number of the variables xy, x,, @5, .... This state of affairs is finally
only a characteristic reflection of the definition of an interval upon which the

fheory is based.

& 10. The Riemann Integral.

In the applications we shall also make use of an infinite-dimensional Rie-
mann integral. We introduce this integral, imitating the ordinary definitions.

Let f{x) be an arbitrary function in ¢, which is real and bounded, and
let us form, for any dissection D of ¢, the two sums
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s(D)=Zg(I)mI and S(D)=IGI)mI

where the summations are over all intervals I of D, and ¢(I) and G (I) denote
the lower and upper bounds of f(z) in I. It is easily seen that

bound {s(D)} < bound {S(D)}

where the upper and lower bounds are with respect to all dissections D of @,.
These two numbers define the lower and upper Riemann integrals of f(x) over
Qu. If they are equal, we call f(z) integrable in the Riemann sense; in this case
it is easily seen that f(z) is measurable and that the integral is equal to the
Lebesgue integral. When we say that a function is integrable in the Riemann
sense, it is always understood that f(z) is real and bounded.

The simplest way of dealing with the Riemann integral is to reduce it
to the Lebesgue integral. If we introduce to a given function f(z), which we

suppose to be real and bounded, the two functions
¢ () = bound {g (L)} and @ (2) = bound {G (L))

where the upper and lower bounds are with respect to all intervals I, surrounding
x, it is seen that these functions ¢ (z) and @ (x) are semi-continuous from below
and above respectively. The integrals of ¢ (x) and @ () are simply the lower
and upper Riemann integrals of f(z). We therefore obtain the usual criterion
for the integrability in the Riemann sense that @ (x) — ¢ (x) must be a null-
funection. | :

We shall also use the following remark: A function f(z) is integrable in
the Riemann sense if, and only if, there exists corresponding to any &> o two
continuous functions a(x) and A (z) such that

a(uc) = flx) £ A(x) for all x

/

Q

and

—

Ax)—alx) dw, < e.

It is always possible to choose for «(x) and 4 (x) functions depending only on a
finite number of the variables z;, ,, #,, ...; if we wish we may take «(z) and

A (x) as finite trigonometrical polynomials.
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A function f(x) which takes only a finite number of values is integrable in
the Riemann sense if, and only if, the sets of points where it takes its values

are all measurable in the Jordan sense.

§ 11. An Important Lemma.

‘We shall sometimes meet, in the following considerations, functions f(z)
in (. which have the property that for any two points x# in ¢, which differ
only in a finite number of coordinates the function is either not defined in the
two points or is defined and has the same values in both points. We shall call
this property the property S. A set of points in ¢, will be said to have the
property § if the characteristic function of the set has the property, that is if
any two points in ), which differ only in a finite number of coordinates either
both belong to the set or both belong to the complementary set. Another way
of expressing that a function f(x) has the property S is by saying that for any
5 the function does not depend on the variables x|, ., ..., 2, but may be con-
sidered as a function in @), »; from this formulation it is natural to conclude
that the function cannot depend on anything but must be a constant. If the
function f(x) is measurable, this is actually true in the sense that the function
must be a constant almost everywhere. This theorem, and the corresponding
theorem for measurable sets, is a very useful lemma for many considerations:

A measurable function f(x) in Q. which has the property S must be a constant
almost everywhere. A measurable set with the property S has either the measure o
or the measure 1.

It is clearly sufficient to prove the theorem for sets. The proof follows
at once from the differentiation theorem given above. Let A denote a measur-
able set in ¢, with the property S and let f(x) be the characteristic function
of A; then for any value of » the corresponding function ,(x) must be constant
and ==m 4. This follows at once from the fact that for any value of % we have
A=(@r, A”), denoting by A" the projection of A on @ »; now A is measurable;
it follows that also A" must be measurable and that m A=mA"”. On the other
hand, if I=(I', Q. ) denotes an arbitrary interval in @, with its base I' in @,,
then we have AI=(I", A”) and consequently mAI=mI mA” " ==mImA. But
this proves that we have for any interval I, of the dissection to which A4,(x)

belongs
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fj(aﬂ) Adwe=m AL, =mI,mA

In

and consequently A,(x)=m A in all points of Q.. Hence since A.(x)— f(x)
almost everywhere and since f(z) only takes the two values o and 1, we must
have either m A=0 or m A=1.

There is a corresponding theorem that if a measurable function of a single
real variable has arbitrarily small periods then it must be a constant almost
everywhere. This theorem is familiar. The application of the same idea to the
space @, is due to Steinhaus® who used the above lemma to prove an interesting
theorem on analytbic continuation of power series. 1 shall quote this theorem
which is a standard example for the application of the lemma.

Let us consider all power series of the form
o0
(11.1) Sy o) = D apermien
k=1

where the a; are 'givén numbers; all these series have the same radius of
convergence; suppose this radius » to be >0 and finite. Then to any point
x=(xy, Ts, Ty, . . .) in Qo there corresponds by (11.1) an analytic function f(z, z)
in |z] <». Now consider those of these functions which are not continuable
(for which the circle |z| =17 is a natural boundary). The corresponding set of
points x in €. has clearly the property S and it is also measurable; the latter
assertion follows from the remark that it is the set of points = in @, for which

1

i [1222 2] '

p! r—|e]

p—r®

for all points z=a-+4b in |z| <7 where a and b are rational. Consequently we
may conclude that the measure of the set is always either o or 1. Steinhaus
proved that it is always the latter case that occurs and so gave a very natural
interpretation of the theorem that almost all power series are not continuable. A
more general (and more difficult) theorem for Dirichlet series was proved by

Paley and Zygmund; I shall deal with a generalisation of this theorem in § 22.

! H. Steinhaus [2].
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.§ 12.  Application of Fubini’s Theorem.

Our first problem will be to give an extension of Fubini's theorem, con-
cerning the reduction of an integral over a space to simple integrations, to the
case of the infinite-dimensional integral. For this purpose we need the following
application of Fubini's theorem for functions of a finite number of variables.

Suppose that the coordinate sequence =z, 7y, x,, ... has been divided in

some way into a finite number of sets

)l gdm

some of these sets (but evidently not all) may be finite. If the point x=(x,, ,, 2, .. )
describes (), then each of the points »*'-—(z*', 2, 2 ..) where 1 =<v =
describes a certain torus-space which we may denote by ¢'' and which may be
of a finite or infinite number of dimensions; we write as usual x==(zW, z®, ..., )
and Q.,=(Q", @¥, ..., @"). Then we have the following theorem:

If flx) denotes an arbitrary integrable function in Q.. then we have

ff(.’c) di, = f(lu*('” o dw(")j Flay 22t e

% o Qe Q.
where the integrations, carried out from the right to the left, are always possible
almost everywhere and always lead to integrable functions of the remaining variables.

The proof follows at once from the transferring principle. In each of the
torus-spaces (") we construct a sequence of dissections Dy, DU, ¥, ... which
form a wet in Q® and we construct also a corresponding net of dissections
d¥, d¥), d¥, ... on a circle q" of length 1; then by these corresponding nets
is determined an application a"'=z" (¢*) of ¢ on ¥, where {*) denotes the
parameter on ¢". Now for any m the dissections D), D2 . . D" generate
a certain dissection D, of ¢., each interval of I),, being the product of inter-
vals, one from each of the dissections DI; in the same way the dissections

dw

0, d® .., d" generate a dissection d, of the n-dimensional space ¢ described

‘m
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by the point ¢=(tV, {2, .. ., ™). The two sequences D, Dy, D,, ... and d,, d,, d,, . . .
evidently determine corresponding nets in @, and ¢ and the application xz=ux(¢)
of ¢ on @, to which these nets give rise is exactly the application (x, 22 .. ") =
== (@U(HY), @), ... 2™ (™). So if we apply the ordinary theorem of Fubini
for the space @, to the function ¢(f)=f(z(t)) we obtain the theorem.

§ 13. Infinitely Multiple Integrals.

We are now able to give the promised extension of Fubini’s theorem to
functions of an infinite number of variables. Let f(z) denote an integrable func-
tion in Qu; we write Qu=(@n, @n »); then it follows from the theorem of the
last section that the integral

(13. 1) 'ff(ac)dwn:fdxn...fflxsz(xl, Xa, Ly, . . L) A Xy
Qp Cy, Ca Cy

exists as an integrable function of the variables %,+1, @n+s, ... defined almost
everywhere in @y .; it also follows that the integral of this function over @, «
is equal to. the integral of f(x) over Q,,, which we denote by A. Tt is more
convenient for the following considerations to consider the integral (13. 1) not
as a function in @ . but as a function in ¢, which does not depend on the

variables 2, @,, ..., x,; denoting this function by f,, »(x) we have for all »

ff", w@) dw,=A.
Qw

The theorem which we are going to prove states that the sequence of functions
Sr0(@), fo0(@), fo,olx), ... is convergent almost everywhere in @, and that its
limit function is exactly the constant A; in other words, we have the theorem:

If flx) 4s an arbitrary integrable function in Q,, then

ff( dw, = lim fdxn. fd,xsz Xy, Lyy Ty, - - )cilyc1

w

Jor almost all points of Q.
35—34198. Acta mathematica. 63. Tmprimé le 7 juillet 1934.
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The proof is not quite obvious. It is evidently sufficient to consider the

case where f(x) is real. It is also sufficient to prove that we have

lim fp o(x)= 4

n—s»
almost everywhere in ,, for then applying this to — f(x) instead of f(x) it
follows that we have also

lim fo o{z) = 4

n—x

almost everywhere in @,. Now the function

@ (’v) = lim ﬁz, w (96)
e
has evidently the property S of § 11; in fact, since the function f,, »(x) does
not depend on the variables x;, ,, ..., s, a change in a finite number of the
variables will not alter @(z); hence it follows by the fundamental lemma that
@ (x) must be a constant, say @ (z) = B almost everywhere. In order to prove
that we have 4 = B we prove the following lemma:
Let I denote the set of points where

(13:2)  bound {fo,u (@)} = bound {fi.ule), frole) fiofe), ..} = K
then

(13. 3) ff(qc) dw, = KmI.

K

Let us first prove that this lemma implies 4 = B; in fact, if we choose
K < B, it follows from the relation @ (x) > K almost everywhere in ¢, that the
relation (13.2) must also be true almost everywhere in @.,; consequently the set
F only differs from ¢, by a nullset and so it follows from (13. 3) that we have

A= f S@) dw, = K
Qu

and since this is true for any K < B we get 4 = B.
We prove the lemma by making N - o in the following more elementary
lemma:

Let Ey denote the set of points where
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(13' 4) Eunﬂd {.fl,w(x)y .ﬁ,w(x)v cry fN,w(x)} > Ky
then
(13' 5) ff‘(x) d?/l}u) 2 KW’LE’I\K

Ex

Let B, denote the set of points in €. in which f; »(z) > K; then we have
evidently

Ix= By + By-1 BN+ Bx—s ByByx—1 + --- + B, By B¥—, --- B;

where for a moment the star is used to indicate the complementary set with
respect to Q.. We write for abbreviation

B P
An = Bn BN BN—I T B:-{-l-

Now the set B, is for any % a cylinder with its base in ¢, .; it follows that
also the set 4, must be such a cylinder; let us write A, = (Qn, A7), where A
is the projection of A, on @ «; then we get immediately

ff(x)dww-:—fdw,,,wff(x)dwn:fﬁb,w(x)dw,,,,w: [f;z,w(x)dww.
, A;{ Aln ’

Ay A
n ”

Now A4, is contained in By; 0 fu, (@) > K in 4, and thus we get

ff(x) d“)w = Km An-

A?l

Adding these relations for =1, 2, ..., N and using the fact that no two of
the sets 4, have common points, we get the relation (13.3).

* The idea of this proof was suggesfed by a similar proof of Kolmogoroff; see A. Kolmogo-
roff [1]. Exactly the same proof gives the following theorem: Let f(f) be an integrable function
on a circle ¢ of length 1 and let us write

m
I . U
P = L £,
S8 m Zj (t+ m)
w=1
Then

S (O f fwat
q

as n— o almost everywhere on ¢. The proof of the ergodic theorem of Birkhoff is based on the
same idea but is more complicated; see A. Khintehine [1].
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§ 14. Representation of a Function as the Limit of an Integral.

There is a theorem which is in a certain sense dual to that of the last
section. We consider again an arbitrary integrable function f(x) in @, and

now form for any » the integral

ff(l’) dwy, o;

Qn, v

this integral is according to § 12 an integrable function of the variables
2y, Loy - .., Ty, defined almost everywhere in ¢,. It is, however, more convenient
for our purposes to consider it not as a function in ¢, but as a function in
()»; this function, which does not depend on the variables xni1, Tnta, ..., will
be denoted by

Now we have the following theorem:

The sequence of funetions fi{x), fy(x), [y @), ... is convergent almost every-
where in -Qy, and its limit function is exactly the function f(x) itself.

Using the result of the last section we may also say: If f(x) is an arbitrary

integrable function in ¢, then

flx) = lim [ lim [d.’rn“, . .‘/dxnﬂ ff(zl Ly, Ty, . . .)dxn.H]
fon j
) Cn+p Cn+2 Cnt+1

almost everywhere in @,.

In order to prove this® we shall have to use the theorem on differentia-
tion on nets. Let &, &, ¢, ... denote a sequence of positive numbers such that
the series Zen is convergent, and let d,, dy, dy, . .. denote a sequence of positive

n=1
numbers tending to zero. Our aim is to construct a sequence of dissections
D, D, D,,...of @, which form a net and which have the following proper-

ties: For any n the dissection D), shall be generated by a certain dissection of

' The following proof was suggested to me by the proof of a special case of the theorem
given by Prof. F. Riesz and communicated to me by Dr. Kalmir. We shall apply the theorem
to this special case in § 18.
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@» (that is each interval of D, is a cylinder with an interval in ¢, as base);
further, denoting by A, (x) the function defined in § 9 which belongs to D, and
by E, the set of points in ¢, where '

(14.1) | () — fulw)] < 0,

we must have mE, > 1 — g,.

Suppose that we have such a net in @,; then our theorem is immediately
proved. In fact, we know from § 9 that 4, (z)—f(x) almost everywhere in Q.;
so what we shall prove is that the properties of the net imply A, (x)—/f»(z)—0
almost everywhere in ,. This, however, is clear, for on account of the assumed

»

convergence of the series 2‘9" almost all points x of Q. must wltzmately belong

n==1
to the sets of the sequence K, F, E; ... and for any such point the property
follows, since d,—0 as #—> 0.

It remains to construct a net in ¢, with the required properties; we do
this by induction. Suppose that the dissections Dy, D,, ..., Dy— have already
been constructed. D,—; is generated by a certain dissection of .., hence also
by a dissection of Q,. We now take a sequence of dissections DW, D® DB
of ¢. beginning with D,—, and generated by dissections of @, so that these
dissections form a net in @,. For an interval I® of D™ we have, since f, ()

depends only on @y, x,, ..., %,

| S@) dwe = | fulw) dowo;
=]

1 b

so the function /' (x) defined by

. I
d‘ﬂ ((L‘) = E‘j@’) ff(’)f) d%’w

in any interval I™ of D is equal to the corresponding function where f(x)
has been replaced by f,(x). Hence, since the sequence DW, D D® . . was
generated by a net in @, and since f(z) does not depend on Zui1, Zute, ..., it
follows from the theorem on differentiation on a net in ¢, that we must have
A" (x) > f(x) almost everywhere in @.; thus for any sufficiently large value

of » we have by Egoroff’s theorem
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|2 () —fo ()] < 6w

in a set of measure >1—¢,, and consequently (14.1) will be fulfilled if we take
D,=D™. In this way we get a sequence of dissections D,, D,, D, ... where
Dypyy is always a subdissection of D, but we cannot be sure that these dissec-
tions form a net in ),; this, however, can easily be obtained; we only need in
the choice of D), to take care that all edge-lengths of the intervals of the

generating dissection Qf Q. are (say) < ;I;, which will be true if we choose »

large enough.

§ 15. Strong Convergence.

So far the only notion of convergence with which we have worked has
been that of convergence almost everywhere. In this sense we obtained in
8§ 9, 13 and 14 (with the notations there used) the results

(15.1) M@ = f@), fol@— A  and  file) > f().

There are, however, other notions of convergence which are of greater impor-
tance for most applications, above all the notion of strong convergence. It is
therefore not without interest that the limit relations (15.1) are also true when
the arrow is used to denote convergence in this sense.!

We say that the (measurable) function f(z) belongs to the class LP where
p=1 if |f(@)|? is integrable. If f(z) and g(x) both belong to L? we define
their destance Dy (f, g) by

1

DS g) = [ j 1) Id]

Q(.U

If h(x) is any function of L? it follows by Minkowski's inequality that we have
D, (f, 9) = D, (f, h) + D, (g, h) which is the usual triangle inequality.

' I had  originally proved the theorems f x)— A and f, (x)~f(x) using the notion of

n, w
convergence on the average (dem Masse nach) which is weaker than both the notion of strong
convergence and the notion of convergence almost everywhere. It was pointed out to me by
Prof. F. Riesz that the (well-known) argument used above would give the same theorems for the
more convenient notion of strong convergence. Finally it was Prof. Daniell who suggested to me
that the theorems should be true for convergence almost everywhere.
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A sequence of functions hy(z), hs(z), hy(x), ... is said to converge strongly
in- the class L» towards the function f(x) if D,(f, hs)— 0 as n—o. Such a se-
quence cannot at the same time converge strongly to another function g¢(x);
in fact from D,(f, g) = D, (/f, ")+ D, (g, k) would follow D, (f, ¢g) = o which is
possible only when f{x) — ¢(x) =0 almost everywhere.

‘We have now the following theorem:

If f(x) belongs to the class L? where p = 1, then the relations (15.1) are all
true not only in the sense of convergence almost everywhere but also in lhe sense
of strong convergence in the class LP.

For the first relation ,(x)— f(z) this follows at once from the corres-
ponding theorem for functions of a finite number of variables by the trans-
ferring principle. Let the sequence of functions .7, (x) correspond to the net
D, D, D, ...; we construct, just as at the end of § 9, a corresponding net
dy, dy, dg, ... on a circle ¢ of length 1; if then the application of ¢ on . ob-
tained in this way is denoted by x == z({), the function ¢ () = f(z(f)) on ¢ will
also belong to L¥; and to the sequence ,(x) there corresponds a sequence of
functions in ¢ which tends strongly to @(f) in the class L?.

Now from this theorem we may immediately deduce the corresponding
result for the sequences f, .(x) and f,(z). Suppose (as we may) that the net
D, D,, D, ... to which the sequence 4, (x) belongs is such that D, is always
generated by a dissection of ¢; then the result follows at once from the two

inequalities

p (j;z 0y £ ) = I'(.f! 4’;1) and _1)1) (j;,,, [/,,) = ])l' (j; //n)

which we obtain from a familiar inequality by the relations

j |/u u - ‘lll dir, —flf], “ - AII) d,w“,“ o

(JII ©)
p
f | — An (@) dre,| dten, o=

Qn [©] QH

fdw,, UJ |f () — An () | diey = flf(x) — 4, ()P dw.,

Q" o Q('l

and
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| /o) = ()P drwe = | | [ (2 (@) dewn==
J Jue |
:f f(f( ) é]w( )) d%n ) dwn =

Q Uy o

fdwnf|f — Ay ()P dawn, w——flf Ay (@)|P drw,.

§ 16. Majorised Convergence.'

Let hy(z), hy(x), hy(x), ... denote a sequence of functions in €.; then the

function B
H(z) = bound |h,(z)|

is called the (smallest) majorant of the sequence. TIn all cases where a sequence
of functions is known to be convergent it is of particular interest to study the
majorant of the sequence. We shall consider this problem in the case where
hn(z) is either of the three sequences 4,(z), fu o(x) or f.(x) attached to an
integrable function f(x) in @, Our result is given by the following theorem:

If the function f(x) belongs to the class LP where p>1, then the same s true
Jor the majorant H(x) of any of the three sequences An(x), fu, o(x) and f,(x) and
we have tn any of the three cases:

(16.1) f (H ()} dowy, = (p—f_l)p j | S dw.,.
Qu

Q

This theorem is closely connected with a well-known maximal theorem of
Hardy and Littlewood.? Tt is convenient, however, to attach our proof not
to the latter (which is possible only when &, (z) is either #,(x) or f.(x)) but to
a lemma which is implicitly contained in the proof given by F. Riesz for the
maximal theorem.® Let us first observe that it is sufﬁelent to consuder the case

! The theorems of this section generalise some results of l’zlcy and Zygmund see R. E. A. C.
Paley-A. Zygmund [1] 351, [2] 462, [3] I190.

® G. H. Hardy-J. E. Littlewood [1].

# F. Riesz (3]. The lemma is obtained by combining the last part of the proof of I'. Riesz
with an earlier inequality of Hardy. For the simplest possible proof of this inequality, see F.
Riesz [2] 167—168. :
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where f(z) is real and = o; this follows from the fact that in any of the three

hypotheses the majorant H (x) is not decreased when we replace f(x) by |f(z)|.

The lemma is now as follows: _ '
Suppose that the two functions f(x) = o and H(x) = o satisfy for any K the

condition

(16.2) ff(ar) dw, = KmE

E

where E denotes the set of points in which H(x) > K, then if f(z) belongs to L?,
where p > 1, the same is true for H(x) and

(16.3) f (H(x))f’dwwé( P )p f (Fl)? d .

»—1
Q(O QLU

From this lemma the proof of the above theorem is immediate; we only
need to prove that if f(x) = o the functions f(r) and H (x) will satisfy the con-
ditions of the lemma. In the case h,(x})=/s o(x) this is an immediate con-
sequence of the lemma of § 13; in the cases where h,(x) is either 4,(x) or
Salx) we deduce this result from the following lemma which is the analogue
of that of § 13:

Suppose that f(x) is real and that hy,(x) is either A.(x) or fu(x); then if we
denote by E the set of points where

(16.4) bound {A,(x)} > K,
we have
(16.3) ff(x)dww?_—K'mE.

The proof is simpler than that of § 13. Let us denote by B, the set of
points in ., where hn(x) > K. Then

E=B,+B,B;+B, B B;+ -,

where the star is used to indicate.the complementary set with respect to @..
Let us write for shortness

An:BnBT.B: P B;;—].

36—34198. Acta mathematica. 63. Imprimé le 7 juillet 1934.
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When hy, (#) = 4,(x) the set B, is composed of a certain number of intervals
taken from the dissection of €. to which 7,(x) belongs; it follows that the
same is true of the set 4,. Consequently we have

f Fl) dw, — f () v

An An

When h, (x) = fu(x) the set B, is a cylinder with its base in @,; it follows that
A, also is a similar cylinder; let us write 4, =(4y, @ ») where A, is the pro-

jection of 4, on @,. Then we have

ff(x)dwwzfdww,ff(oc)dwn,w=ffn(x)dwn=fﬁl(x)dww.
A;L ;1 Ay,

Ay Qﬂ, w A

In both cases the set A, is contained in B,; thus h,(x) > K in 4, and we get

ff(af) dw, = Km A,.
'A”/
Adding these inequalities for n=1, 2, 3, ..., we get the desired inequality (16.5).

In the case where p =1 the theorem fails; it is not difficult to construct
examples showing that in this case the majorant H(z) need not even be
integrable.

For later application we call the attention to the following result, which
is an eagy deduction from the above theorem:

If &l @I s integrable for some A > o, then the same s the case for the

Junction FUE” in any of the three hypotheses and

(16.6) fe“H(dew —1= 4([6’"”“‘”"67%— I) :

W w

The proof follows at once when we apply the expansion for ¢*¥’ and use

P
the fact that (__p_,) is a decreasing function of p.
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§ 17. Fourier Series.

The general theory of normalised orthogonal systems, in particular the
Riesz-Fischer theorem and the Parseval equation, follows for functions in ¢,
either by repeating the usual arguments word by word or more simply by using
the transferring principle. In contrast to this, the generalisation of the theory
of ordinary Fourier series requires new considerations, peculiar to the space .

We consider for any of the coordinate circles ¢; the system of all pure

oscillations

(17.1) ¢ TEPE Ty pr=0, %1, £2, ...

these functions are known to form a complete orthogonal system within the
class of all functions of L? on the circle c¢;. Any integrable function of a; has
a Fourier series, its development in terms of the system (17. 1), which conversely
determines the function completely. '

Now in order to get from the single systems (17.1) to a complete ortho-
gonal system in ¢, one might be tempted to denote as a pure oscillation in @,
any function

o
(17_2) He2 (A5 T — 627”'(2719014'172 X+ py Xyt ")‘
k=1

It is clear that this is without meaning, since the product generally does not
exist. But if we restrict ourselves to the consideration of those products where
only a finite number of the numbers p, are = o, then we have in (17.2) a cer-
tain system of functions in ¢,. Tf we write

p:(plap%p.%a . )

where this notation is to be reserved for sequences of the kind considered, we
may denote the linear form p, x, + p, 2, + pyxs+ - - occuring in (17.2) as px;
then the pure oscillations in ¢, are all funections of the form

(17.3)

where p=(p,, ps, ps, .- ) is a sequence of the kind considered. By ¢—27ir«
we shall, of course, denote the oscillation belonging to — p=(—p,, — ps,

— P - )
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The system (17.3) is evidently a normalised orthogonal system in Q,; as,
moreover, the functions of the system are all bounded, we may attach to any
integrable function f(z) in Q. a Fourier series

S~ S ey
»
with respect to the system (17.3), where -

ey = ff(x) e27IPY
Qy

and where the (purely formal) summation is over all sequences p. Now we have,
just as in the theory of Fourier-series in the space @, the main theorem:

An integrable function f(x) in Q. is always wniquely determined by its
Fourier series; that is, two functions have the same Fourier series only when they
are tdentical. ‘

We reduce this theorem to the corresponding theorem for the space @,
using the remark that we obtain the Fourier series of the function

ﬁm=j}mem

Qn, w

from the Fourier series of f(x) by formal integration over the variables i1,
Zn+a, ..., or more precisely by replacing ¢, by o for any p = (p,, Ps, Ps, - - -)
for which the numbers pp+i, Pn+2, ... are not all zero. This follows at once

when we calculate the Fourier constants of f,(x); in fact, if the numbers py+1,

Pn+e, ... are all zero, we have
ffn(x) e—2ﬂil)xdww= fe—Enipxdw" ff('%) dwn,w = ff(x) 2P gy, = Cp,
Qi Q Qn,w Qu
and if the numbers pni1, pn+a, ... are not all zero we have
/fn(x)e—“i“dww:ffn(ac)dwnfe"“’ff‘”’dw,,,w=o.
Qo Q n, 0

Now the function f,(x) is uniquely determined by its Fourier series; this is
simply the theorem for the space .; since fn(x) — f(x) almost everywhere as
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n —o we obtain the result that f(r) also must be uniquely determined by its
Fourier series.

If we restrict ourselves to the consideration of functions f(x) of L?, then
it follows from the theorem just proved that the system (17.3) is a complete
system; consequently we have the Parseval equation

[1serae, = Shak
p

.,

It follows in the usual way that this equation is also true when f(x) does not
belong to L2, that is, in this case both sides are infinite. '

& 18. A Special Orthogonal System.

As an example of the application of the general theory we shall prove an
interesting convergence theorem for Fourier series. The theorem is:

If the Fourier series of an integrable function f(x) in Q. vs of the special
Jorm

(18.1) Sflw)~ D ar e %
k=1

. . . A . v . . Qrixy
that s, if ¢,=o0 whenever e*7iP* is not one of the oscillations & ™% then the

series is convergent almost everywhere in Q. to the sum f(x), so that we may wiite

[«]

fla)= S

k=1

The proof' follows at once from the discussion of the last section; in fact,
since we obtain the Fourier series of the function f,(z) from the Fourier series

of f(x) by formal integration over the variables @.+1, @a+2, ..., we have

n
fula)~ D aet i
k=1

' A proof of the theorem by means of the differentiation theorem of § 9 was given by
Prof. F. Riesz and communicated to me by Dr. Kalmir. It was this proof that suggested to me
the proof of the theorem in § 14. I note from a letter from Prof. Zygmund that a proof on
similar lines was given by Paley.



286 B. Jessen.

and consequently by the uniqueness theorem (formally for functions in Q,,
actually only for functions in ,), since a finite sum is its own Fourier series,

n
f;z(x) — 2“/{327”1%;
k=1

this proves the theorem since f(x) — f(x) as n— oo,
General trigonometrical series of the form

@

(18.2) Zakemm’“

k=1

were considered by Steinhaus.! It is clear from the lemma of § 11 that a
series of this form must always either be convergent or be divergent almost every-
where in @),; in fact, since the convergence of a series is not altered if we
change a finite number of its terms, the set of points in @, in which the series
(18.2) is convergent must have the property S of § 11; and it is also measurable.
Now the main theorem is:

A series of the form (18.2) ds convergent almost everywhere in Q. if the

series

(18.3) 2 la]®
k=1

is convergent; it is divergent almost everywhere in Q. if the series (18.3) is
devergent.

This theorem is in fact only a very special case of a general theorem of
Kolmogoroft? concerning the convergence of series whose terms »depend on
chance». One of the proofs given by Kolmogoroff was translated from the
language of probabilities to the language of real functions by Steinhaus. This
proof, however, is not the simplest possible. A very simple way of proving the
first part of the theorem is to deduce it from the theorem given above; in fact,
when the series (18.3) is convergent, the series (18.2) is by the Riesz-Fischer
theorem the Fourier series of a function f(x) in €,; consequently the series
converges to the sum f(x) almost everywhere in Q.. As to the second part of
the theorem, a simple proof was given by Paley and Zygmund?; I shall give

! H. Steinhaus [1].
* Bee for the most general exposition A. Kolmogoroff (1],
® R. E. A. C. Paley-A. Zygmund [2] 464—465.
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this proof in a slightly different form; it depends on the following lemma, due
essentially to Zygmund:
Let Q. denote the set of points in Q. in which we have

n
[sn(2)|= Z ad " < R
k=1
then
n
(18.4) Z|ak|2(m!2n— —;)§R2.
i—1

That this lemma implies the theorem is clear; for if the series (18.3) is
divergent, we may deduce from (18.4) that for any R

I
lim m 0, =-
Py O 2

consequently the set of points where the series (18.2) is convergent can at most
have the measure g and since the measure is either o or 1, it must be zero.
The proof of the lemma is as follows. We have

T
—fls,7 (@) dwo = | D are* % “ale_“”ldw

k=1 l=1
L, .

= Zla PmQ, + 2 ardy | @ m) duwy = I, + L.

k=1
Tl Ry

feQni(xk—:rl) dwy = by,

2,

We write for shortness

Then the numbers #:; are all Fourier constants of the characteristic function
of the set £,; the Fourier series of this function contains in addition the con-
stant term m £2,. So we get immediately from Parseval's theorem

(m Qo)+ D [br]* = m Qy

k, =1
k=1

and so
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lebk,ll2 = m-gn'_ ("lgn) =

k, =1
k=Rl

-F-{H

This, however, gives for the second term of I the evaluation

1 1

Zak&lbk’ll [ Z|akm| ] [ ZIbk,zF] §2|ak|2.
R k=1

%, 1=1 k 1 1 K, I=1
kel kel

N[ =

|12|:

and so we have

< 1
I:Il +I2gz |ak|2(mfgn_5) .

k=1
On the other hand we have from the definition of the set Q,
I<mQ, R®=< R?%

this gives the desired inequality (18.4).

Making % % in the last lemma we obtain the following more general
lemma:

Let the series (18.3) be convergent, and denote by Q the set of points in Qo

where
@] =| D me*™1| < R;
k=1
then
o 12 IV - ope
(18.5) kZZIIa;J (m.Q 2) = R

The class of function f(x) whose Fourier series is of the form (18.1) will
be denoted by G'. It follows from the theorems already proved that this class
is also characterised as the class of functions represented by a series (18.2),
where the series (18.3) is convergent; in particular, a function of the class G
must always belong to L% Tt follows immediately that for a function of the

class G we have

j;l w Z e e‘kzmk

k=n+1
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so that f, o (x) is also a function of (. The result of § 13, according to which
Ju o(x) tends to the integral of f(x) over @, (in this case o), is therefore in
this particular case equivalent to the result f.(x)— f(x). We shall prove some
more theorems for functions of the class (7, which play an essential role in the
later applications.

Let us first consider a sequence of functions

(18.6) S ) = ) alm e

k-1

belonging to G. It is clear that if this sequence converges in.meanl, then the
limit function f(z) must also belong to the class @; that is, we must have

@«
Sflz)= 2 ap €7 7k
k=1

but the sequence need not converge to f(x) almost everywhere. The interesting
thing is that the converse is true; we have, in fact, the following theorem:
If a sequence of functions (18.6) belonging to (7 is convergent almost every-
where in @, then <t is also convergent in mean and consequently® to the same limit.
The proof follows at once from the last lemma. We have to prove that

0
i m) __ )2 —
lim  » |af a|®*=o.
m, n— o
kel

Now let us denote for any R > o0 by £™" the set of points in @, in which
|£ i () — f") (z)] = R; then we have by (18.3)

=®
3 la) — a? ( amn— ) <R
v 2
k=1

Since

llm m Q™" =1

m, n—s e

and since R may be taken arbitrarily small, the result follows.

! We use the expression »convergence in mean» instead of strong convergence in the class I,
4 g
* By the familiar theorem that a sequence which converges strongly to a function flx)
always contains a subsequence which converges to f{x) almost everywhere.
A 1 1 JE, A

37--34198. Acta mathematica. 63, Imprimé le 7 juillet 1934.
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We shall need one more result concerning the class &', which is due to
Paley and Zygmund.! In order to formulate this result briefly, we denote by
L* the class of functions f(x) in @, for which e*l/@F is integrable for any
. > 0; this eclass is contained in all the classes L?. It follows easily from the
inequality |a + b|* = 2|al® + 2|b|* that the sum of two functions of L* will
again belong to L*. A distance in the class L* is defined by the expression

W

Di(f.g) = [;L log ‘/Aealf(w)——.o(é)l2 dww]i.

This distance is a function of 1; it is easily seen that it is increasing (in the
wide sense). We have the inequality DA(f, g) < Di*(f, h) + Di* (g, h) for any
function k(x) in L*; this inequality takes the place of the triangle inequality.
A sequence h(x), hy(x), hy(x), ... is said to converge strongly towards f(x) in
the class L* if DX(f, ) — 0 for any A > 0; strong convergence in L* implies
strong convergence in L? for any p.

Now we have the following theorem:

A function f(x) of the class G will always belong to the class L* and we
have f(x)— f(x) in the sense of strong convergence in L*.

Let us write

@® n @
B=Yal’, Bi=Dlal and Bi,.= D |al.
k=1

k=1 k=n-+1

It is sufficient to prove that for any fixed A the function e*!/s,0@F igintegrable
for all sufficiently large values of .», and that its integral over ¢, tends to 1
when »— . We deduce this from the inequality

2 1
I 8 el Ifn‘ ) () I? du)m <
(18.7) f 5
v‘ Q(x)

which is valid for 4 By, » << 1; this inequality will also be applied later on. It
is clearly sufficient to prove that

MARE Jop < L
(18.8) fe dw, = —.
Q .

' 8ee R. E. A. C. Paley-A. Zygmund [1] 342—343.
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when 12 B < 1; then (18.7) will follow when we replace f(x) by fu, o(z). In order
to obtain (18.8) we apply Parseval's equation to the function (f,(x))? where ¢

i3 any positive integer; this gives

2
f|fn(x) Prdw,= D afral ... ain| =
Qu

ql

0! 6! !

Q1+ Gat-+0u=g

!
sot 3 ot labelalabn—g B
ne

! ! ... gl
(11+’12+"'+an911 2 ¢

Now if 4B, < 1 this implies the inequality

1
A ) g —
et in Wy =
f SO 1 — A B,
QU)

and from this we deduce (18.8) by a well-known theorem of Fatou.

§ 19. A Case of Birkhoff’s Ergodic Theorem.

In the next few sections we shall make some applications of a case of the
ergodic theorem of Birkhoff $o functions which are almost periodic in the gene-
ralised sense of Besicovitch. The theory of these functions depends on a certain
notion of a mean value for functions defined on the infinite line I: — oo < ¢ << .
I use a slightly narrower definition than that generally adopted; this makes no
difference in the theory but it makes our results more precise.

Let f(f) be a function defined on the infinite line I and integrable over any
finite interval j on . We shall say that it has a mean value

M {f (o)}

over [, if and only if the two limits

0 : : T

}T;Tff(t)dt and }Erio—f,ff(t)dt

—T 0

both exist and have the same value; this value is then by definition the mean
value M;{f(f)} of f(f). The special réle played by the point ¢=o0 is only
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apparent; that is, if B {f(f)} exists, then IM;{f(t + a)} exists for any real a,

and we have

M f(t+ a)) = M {f(D)}.

Now let uw=1(u,, us, s, . ..) be an arbitrary sequence of real numbers which
are not all zero; by uf, where ¢ is any real number, we denote the point
pt={(ut, ust, ust,...); then if z is any point in @,, the point x + ut will’
describe a »straight line» in @, when ¢ describes the real axis. Let f(f) be any
function in @,; then f{xr + ut) is, for a fixed u, a function in the space (I, Q)
in which the variable point is (¢, ). It is easily seen that if f(x) is measurable
in Qu, then f(x + ut) is measurable in (I, Q.); also if f(x) is integrable in Q..
then f(x + uf) will be ihtegrable over any set (j, @), in (I, Q.), where j is an
interval on /. From this it follows at once by Fubini’s theorem that for almost
all z in @, the function f(z + ut), considered as a function of ¢ alone, is
integrable over any interval j on {. Now we have the following theorem, which
is a special case of the ergodic theorem of Birkhoff.?

Let f(x) be integrable over Q. and let u be aiven; then for almost all x in
Qo the mean value

(19.1) M {f (e + nt)} = ()

exists; this mean value @ (x) is integrable over Q. and we have

(19.2) Q ] pla) dwe - f Fla) .

More generally we have

(19.3) f(p(x)dww:ff(x) d .

Sfor any measwrable set Q in Q. which is invariant under the tramslations x + ut.*

! In this and the following sections we use freely and without further comment the exten-
sion of the general theory to spaces of the form (Rn, Qu) where Ry is, as usual, a Euclidean
space. It is clear from the previous exposition how the theory should be developed for such spaces.

2 See A. Khintchine [1] for the redaction which comes nearest to our formulation. Khint-
chine proves (19.1) for one-sided mean values only and does not formulate (19.2) or (19.3) explicitly,
but it is easy by means of his arguments to obtain the result in the general form.

3 That means which contains all points of the line x + uf, when it contains .
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It is easy to find the Fourier series of ¢(x) in terms of the Fourier series
of f(x). Let us suppose that

~ 2rip T 2P .
Depermin and ¢z Zye P

we shall then prove that y, = ¢; whenever pu = o, while yp =0 when pu + o;
here pp = p, by + Py fts + pypeg +---. This result is what we should expect from
a formal calculation. That y,=g¢, is simply the relation (19.2). Now let us
apply the theorem to the function f(x)e—27/?= instead of f(x); then we get in
the case pu — o instead of ¢ (x) the corresponding function ¢ (x)e¢27'2%, and we
see that y, ==c,. It remains to prove that y, =0 when pu =F o, but this follows
immediately from the fact that we have ¢(z)=@(zr + ut) and consequently
yp=yp 27?4t for any ¢.

In the special case where the numbers p,, uy, ts, . .. arve linearly independent,
that is when pu =0 only when p = o0, the function ¢ (x) is seen to reduce to a

constant, and we have

M Af o+ ) = f Fa) duce

for almost all  in @,. The only measurable sets £ which are invariant by the
translations = + ut are either null-sets or sets differing from @, by null-sets.
If in this case the function f(x) is integrable ¢n the Riemann sense, this result
can be essentially sharpehed by an immediate extension of a classical theorem
of Weyl. We return to this case in § 25. '

§ 20. Application to Almost Periodic Functions.

We define the upper mean value M;{k(f)} of a nonnegative function & (f)
over the infinite line /: — o< ¢ << o as the greater of the two numbers

T
lim - [h )dt and lim- fh () dt
T—nw T o _[1

If p=1, we may consider the class of all real or complex functions f(t) for

which M {|f(t)|?} is finite. Similarly we may consider the class of functions
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for which M, {¢*V@F} is finite for any 4 >o0. Let us denote these classes by
MP and M* respectively. In these classes distances may be introduced by the

formulae

Dy(f, 9)=[MAlF ()~ g (DI}
and

1

Dif, o) = |} tog Taterro-som |

Strong convergence in MP or M* is defined by the relations D,{f, ha)— 0 and
Di(f, hy) o0 for any A respectively. The class of B” a.p. functions is now
defined as the closure in the sense of strong convergence in M? of the class of

n
all finite trigonometrical sums % (t) = Zb’"' ¢tk (with arbitrary real exponents uy).
=1 :
Similarly the class of B* a.p. functions is defined as the closure of the same
class in the sense of strong convergence in M*.
B? qg.p. functions were studied in detail by Besicovitch®; we get the widest
class for p = 1; this class is denoted simply the class of B a.p. functions. Any

B a.p. function has a Fourier series
*©
f(t) ~ de @t
k=1

where a; = M, {f(t)e~"*?} while M,|f(t)e %!} =0 for all other .. The mean
value M {|f(t)|?} exists always for a B? a.p. function and is in the case p =2
determined by Parseval's equation

MALFOP = el

For B® a.p. functions the analogue of the Riesz-Fischer theorem is also true.
The class of B* a.p. functions is contained in the class of BP a.p. functions for
any p; it is introduced here only to give our results in their most precise form.

The partial sums of the Fourier series of a B? or B* a.p. function will
not generally converge strongly to the function in M? or M* respectively, but
if a trigonometrical series (of the general type considered here) converges strongly

in M? or M¥, the series will always be the Fourier series of its sum.

! See A. 8. Besicoviteh [2].
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Let us now consider the series

=)
(z0.1) 2 ay 7 ¢t
k=1

where the coefficients a; are given and the exponents 4; are real and all different.
If the series

]

(20.2) D lal?

k=1

is convergent, the series (20.1) is for any x in @, the Fourier series of a B2 a. p.
function. We shall give first a theorem concerning the case where the series
(z0.2) is divergent, and afterwards a more detailed theorem for the case where
the series (20.2) is convergent.

Let the series (20. 2) be divergent. Then for almost all points x in Q. the series
(20.1) is not the Fourter series of a B a.p. function.*

Let numbers riml for m=1, 2, 3, ... be taken in such a way that for each
m only a finite number of the »™ differ from zero, and moreover the two con-

{m 1 as m — o for each % are

ditions o=r™ <1 for all ¥ and m and 7!

satisfied. We consider the sequence of functions
=]
f(m) (x) — 2 T;Cm) ap €27 %%
k=1

in Q.; each series is actually a finite sum. This sequence is not convergent in
mean; consequently by a theorem of § 18 it is not convergent almost everywhere

! The corresponding theorem for ordinary Fourier series is contained as a special case in a
theorem of Paley and Zygmund. See R. E. A. C. Paley-A. Zygmund [2] 466. For the special case
of linearly independent exponents A, a much stronger result has recently been proved, namely that

a series
@O

1ALt .
Dy

k=1

with linearly independent exponents is the Fourier series of a B a.p. function only when the

series
w

el

k=1

is convergent; that is, when it is already the Fourier series of a B* a.p. function. See S. Bochner-
B. Jessen [1).
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in @, either. The same is of course true for any subsequence of the sequence
S (@).
Now by the extension of the Fejér summation theorem to B a.p. functions

we may take the numbers 7™ in such a way that if we write

t x ___Z?m ax ermiag e“lct,
k=1
we have
M A fom (t, 2) — f™ (¢, 2)|]} 0 as m,n— o

for any point x in @, for which the series (20.1) is the Fourier series of a
B a.p. function. The set of points x in @, for which the last relation is true
is clearly measurable; it also has the property S of § 11, and it therefore
follows that its measure is either o or 1. Let us suppose that it is 1, and show
that this leads to a contradiction. '

We write 4y = 2w u;. Then we have clearly f™(¢, x) = f™(x + pt) where
the notation is that of § 19. Our assumption is that '

Al ™ (e + pt) — W (2 + ut)]} 20 as m,n—ow

for almost all  in @,. For a given R > o we denote by £™" the set of points

x in @, for which
MAlf™ (@ + wt) — " (@ + )]} = RB.

This set £2™" is invariant for the translations x + ut; it therefore follows from
(19.3) applied to the function f(z)=|f™ (z) — f™ (x)| that we must have

1/ (&) — £ @) daey < Bmm».

om,n

Since mQ™"—1 as m,n—>% and since R may be taken arbitrarily small, by
familiar arguments this contradicts the result that no subsequence of the se-
quence [ (x) converges almost everywhere. This completes the proof.

In the case where the series (20.2) is convergent we have the following
theorem:

Let the series (20.2) be convergent. Then for almost all points x in Qu the
serdes (20.1) s convergent almost everywhere in t and strongly in the class M* to
a certain sum f(t,x). Consequently, f(t, x) s B* a.p. and has (20.1) as its

Fourver series.
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The first part of the theorem concerning convergence almost everywhere
is an immediate deduction from § 18. The series

f(z:) — Z ay e?ﬂ.ixk

k=1
determines a function in ¢, of the class . Now let us write 4, = 2y as
before; then f,(xz + wf) is simply the partial sum of the series (20.1). Since
folx) > f(x) almost everywhere, it follows that f,(x + wi)— f(xr + ut) almost
everywhere in the space (I, Q.), where (¢, x) is the variable point, and this
implies that for almost all x we have fu(xz + ut)— f(x + ut) almost every-
where in ¢. This proves the first part of the theorem, and it shows also that
it &) = fle + ).

In order to prove the second part of the theorem, concerning strong con-
vergence in M* we first observe that since f(x) belongs to the class L* of
§ 18, the function f(t, ) = f(x + pt) must by Birkhoff’s theorem belong to M*
for almost all x. It will be sufficient, in order to prove that f,(z + ut) con-
verges strongly towards f(z + ut) in M* for almost all x, to prove that for any
fixed 4 > 0 we have

(20.3) My {etVn,o@tetd Pl 1 ag n—

for almost all x. The existence of the mean values on the left in (20.3) is a
consequence of Birkhoff’s theorem, which also shows that

fﬂj—t {e;*'f11,w<93+(‘t7 |2} d@(;w = \/‘gilfnyw(i) & dww .

Qu QU

We know from § 18 that the right-hand side of this relation tends to 1 as
n-—>o; this, however, does not imply the limit relation (20.3). In order to
obtain this limit reldtion we have to apply the last theorem of § 16.

For a given value of # we denote by H,(x) the majorant of the sequence
Jotp w(x); it is sufficient if we can prove that

(20.4) M, {e* Hnetut} -1 ag n—o oo

for almost all z. Now the sequence fntp o (x) has the same relation to the

function fu . (x) as the sequence fy o(x) has to f(x); it follows that we have
38—-34198. Acta mathematica. 63. Tmprimé le 9 juillet 1934.
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(20.3) fe'”Hn(””2 dwy — 1 = 4(fe“fﬂ,w(m) Fdw., — I). '

Qup 1)
We also have

(20.6) f M (e P &) 10, — f A 6 o

Q Qy

By (20.3) the right hand side of (20.6) tends to 1 as n — o; since the sequence
H, (x) is decreasing (in the wide sense), this implies (0. 4).

§ 21. Orthogonal Series whose Coefficients are Analytic Functions.

Let us denote by D a fixed open domain in the s =0 + #¢ plane. By 4
we shall alWays denote a bounded and closed set belonging to D, but not always
the same. We shall make use of the fact that if A, is any such set and 4,
a set of the same kind whose points are all interior points of A, then there
exists a constant €, depending only on 4, and A4,, such that for any function
Jf(s) which is regular in D we have

(21.1) bound |f(s)] = (Jflf(s*)ldws,

and consequently for perhaps a different value of (' .
(21.2) bound |/(5)] = 0[ f | f(,g>|2,/@us]2.
4,

This theorem immediately implies that if a sequence of regular functions f,(s),
Jfa(s), f3(s), ... converges in mean to a certain function f(s) in the sense that it
converges in mean in ahy set A4, then the sequence is also wnzformly convergent
in any set 4 and consequently f(s) is regular in D.

Now let g, (s), 94(s), g5(s), . .. be a sequence of regular functions in D, such
that the series

(21.3) Zw flgk ($)[* deos

k=1 A
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converges for any A. This condition is by (21.2) equivalent to the apparently
stronger condition, that for any A the series

(21.4) ¥, bound | g (s) |*
4

shall be convergent. We consider now the series

@

(21.5) S, 2= ) guls) i,

k=1

where s varies in D and x -in ., and shall prove the following theorem:

For almost all z in Q. the series (21.35) <s uniformly convergent in any sel
A and consequently its sum f (s, x) is regular in D.

From the convergence of the series (21.4) for any A it follows, in parti-
cular, that the series

8

" g (s)
1

k

-is convergent for any point s in D. This implies by § 18 that for any s the
series (21.5) is convergént for almost all x to a certain sum f(s,.z). The func-
tion f(s, ) is clearly a measurable function in the space (D, Q.). It also fol-
lows from § 16, taking p==2, that if H(s, z) denotes the majorant of the se-
quence

Fuls, @)= 3 gels) o

k=1
we have

[ o e = 4 3 1000k,

Q k=1

Now H(s, ») is measurable in the space (D, €.); using the convergence of the
series (21.3) it follows that the integral of (H (s, z))? over any set (4, Q) in
(D, Q,) must be finite. This implies, however, by Fubini’s theorem that for
almost all z in @, the integral

f (F (s, a))* don,

A
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must exist for any 4. On the other hand we know that for almost all = in @,
we have fu(s, z)—f(s, ) for almost all s in D. Both propositions together

show that for almost all x we have

j |f(s, ®) = fals, ®) P dws—o0 as n— oo,
A

and for any such x we know that /,(s, x) converges uniformly in any set 4.

This completes the proof.

§ 22. General Exponential Series.
Let us consider all exponential series of the form -

(22.1) Slsy ) = D\ a7 ehis (s=0+7t),
k-1

where the coefficients a; arve given numbers and the exponents 1; are real and
all different; the exponents shall not be restricted in any other way. Suppose
that the series

o
(22.2) Z |ak|2 eZlko'
k=1

is convergent for some o; these ¢ must clearly form an interval; we suppose
that this interval does not reduce to a single point. The end-points « and £ of
the interval (if they are finite) may or may not belong to it; in all cases we
denote by («, 8) the open interval ¢« <o <. The vertical strip « < ¢ < 8 shall
also be denoted by («, 8); this strip will be the domain D of § 21; as before 4
will be used to denote any bounded and closed set in D. As an immediate
consequence of the result of § 21 we have the theorem:

For almost all x-in Q. the series (22.1) is uniformly convergent in any set A
in the strip («, B) and consequently its sum f(s, x) is regqular in (e, 8).

We wish to study these functions f(s, z) in greater detail; in this section
we shall prove the following result, which is a generalisation of a theorem for

Dirichlet series of the usual type due to Paley and Zygmund.'

I R. E. A. C. Paley-A. Zygmund [3] 202--203.
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For almost all x in @, the function f(s, x) is not continuable across the lines

=ua and o= (.

It is no restriction in generality to suppose that all 1; are positive, in
which case we have ¢ = — o; we may also suppose that =0, and it is then
sufficient to prove that the series (22.1) almost all have the point s =0 as a
singular point. For in this case since the class of all functions f(s + ¢7, @),
where 7 is some fixed real number, is identical with the class f(s, =), it follows
that the point s=+¢7 must also be a singular point for almost all the series
(22.1); and considering only rational values of = we conclude that the series
(22.1) are almost all singular in all points of the line 6 =0. We shall denote
by E the set of points z in ¢, for which the series (22.1) converges uniformly
in any set 4 in (— o, 0); this set E has clearly the property S of § 11.

In the proof we shall have to use the differentiated series

®

(22.3) F (s, x):Z AP @y 7 g

k=1

for p=1,2,3,...; the value p=o0 corresponds to the series (22.1). For a
point x in E these series are all uniformly convergent in any set 4 in (— o, o).

We shall also use the associated series
N w
N 2 20 0.
(22.4) D |ay]® e
k=1

they all converge in (— o, o).

We now observe that if the series (22. 1) were not almost all singular at
the point s=o0, then they would be almost all regular at s =o0. This follows
from the lemma of § 11. In fact, it is clear that the set of points x in E for
which the function f(s, x) is regular at s=o0 has the property S and it is

measurable since it may be defined as the set of points in ¥ for which

1

(22.5) lim [I—KWY <.

P o

Hence by the lemma its measure is either o or I.
The only case in which the theorem presents a difficulty is when the series
(22.4) are all convergent at the point s =o. TFor suppose that for some p the
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series (22.4) were divergent for s =o0; denoting by e, a sequence of negative
numbers tending to o, it follows that we have

D hr|ar]? etrem — o0 as om0

k=1
and this implies by a theorem of § 18 that the sequence of functions f7 (g, x)
cannot be. convergent almost everywhere in @,; consequently the functions
S@ (s, z) and hence also the functions f(s, z) cannot almost all be regular at
the point s =o.

Suppose now that the series (22.4) are all convergent at the point s=o0
and that the series (22.1) are almost all regular at this point; then the ine-
quality (22.5) holds for almost all points x in Q.. The left-hand side of the
inequality (22.5) is a measurable function in @, it is defined at least for all
points z in K and it has the property S of § 11. It follows that it is a con-
stant almost everywhere in @, and this constant must be < 1. Let us denote

it by

: _IF ;; then the functions f(s, ) are almost all regular in the circle

s+ 1] <1+ e and a fortiori in the circle |s| <e. From this we shall obtain
a contradiction by proving directly that it involves the convergence of the series
(22.2) for o <.

We write for shortness

[val
S il — K,

k=1

From the (supposed) convergence of this series it follows that for almost all «
the series (22.3) converges at s =0 and also that its sum will be the limit in
mean of fP)(en, 2) as m— o, if. e, denotes a sequence of negative numbers
tending to o; now we know that /" (e,, z) — f?) (0, ) as m — oo almost every-

where; hence it follows that

(22.6) : F @ (o, )= 2‘, AP a2
k=1

On the other hand, since f(s, x) is regular for |s] < &, we have

1

(22.7%) Tim [I-ﬂm(()vwl]zg i .

p—e
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The idea of the proof is now to deduce from this an inequality for K,
which will show the convergence of the series (22.2) for o0<<e. We shall use

for this purpose the lemma of § 18 in its second form; that is, the inequality

(18.5). Chose B >§ and denote by Q) the set of points x in ¢, for which
/o, 2)] = Br - pl.

Tt follows from (22.7) that m Q¥ —1 as p—o. On the other hand, (18.35) gives
K, (mQ”’) — 5) < B (pl)e.
2=

From this it follows that we have for some positive constant C
(22.8) K, = CB??(p!)%

Consider now the series (22.2) at a point 6=4d where ¢ <& and suppose
that B has been taken > —l but <§- Then the convergence of the series

(22.2) at the point o =0 follows from (22.8). We have, in fact,®

®*

] o
Z‘ak|23”’”6<2 ZI kl Z Zlk 2 “%\ —\| 2p|ak|2
k= p=0

22p §2p *

203y B S20 B ep+ 0 B

2p 2p
2
p=0

2 2
=2
go(p

ll/\

where the last series is convergent since ¢ B < 1.

§ 23. Analytic Almost Periodic Functions.

We wish now to study the almost periodic character of the functions
f(s, ) introduced in § 22. To do this we must first define when a regular
funetion f(s) in the strip (¢, 5) shall be called B? a.p. or B* a.p. in the strip.

2 )' (21))!: 22p

'E m‘ 2p ’2 '
1 We use e <2 ¥+e~ Z(“ \17) _2ptl
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The notions we shall- introduce correspond to those of almost periodicity in
[@, 8] in the Bohr theory; as always, («, 8) shall denote the strip (or the interval)
¢«<o<pf and (¢, ) any strip (or interval) inside (e, 8), that is, for which
a<a <p <@B; the words »in [a,8]> shall mean »in any (¢, 8,)>. We may
now consider the class of all functions f(s) which are regular in (a, §) and for

which
) ﬂx ﬂ1

]_l[t{f|f(a+it)|1’da} or J_l[t{fe“f("”‘“"da}

o @y

is finite for any (e;,3) and a fixed p =1 or for any (e, §;) and any A >0
respectively. Let us denote these classes by E? and R* In these classes we

introduce distances by the formulae

D,(f, ) = [M { j"l,f(a Fil)—glo+ z‘tnwa}]%
and

ﬂ_l ’
it o= [ v 30| [ avemecarag) |

These distances are functions of (a,, p,). Strong convergence in R? or R* is
defined by the relations D, (f, ki) — o for any (o, 8,) and Di(f, h,) = 0 for any
(¢, 8,) and any A > o respectively. The class of B? a.p. functions in [e, 8] is

now defined as the closure in the sense of strong convergence in R? of the class

n
of all finite exponential sums h(s)= Zb"' e*rs,  Similarly the class of B* a.p.
k=1

functions in [a, 8] is the closure of the same class in the sense of strong con-

vergence in I'*, The mean values

2 , g,
Mt{jlf(0+it)|pda} and Mt{.fe“f("*””gda}

will always exist when f(s) is B? a.p. or B* a.p. respectively.
If o <a,<B,<p, it follows from (21.1) that we have

t+1 B

(23.1) bound |f{o + {07 = o] df,fm.w i do
W <<y
t—1 A
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for any function f(s) which is regular in (. ), the constant C depending only
on «, a,, 8,, B,. This implies that a B? a. p. function in [o, 8 is always B? a. p.
on any vertical line in (¢, 8) and even uniformly in ¢ in a frery strong sense.
Tt is easily seen that the Fourier series for the functions f(o + 7f) for different
values of ¢ »go together» to form a Dirichlet series

@

£~ 3 ane

F=1
for f(s). In analogy to (23.1) we have the further result that for some fixed C

R t+1 £
(23.2) bound 7+l < (¢ [ dv [ ClV o+ 44,

Ae<O< ﬁ2
{~—1 oy

this follows from (21.1) and from Jensen's inequality for the convex function
e*¥ and shows that a B* a.p. function in [e, 8] is B* a.p. on any vertical line
in (e, 8), again with a strong uniformity in ¢. Finally we observe that if an
exponential series (of general type) happens to converge strongly in R? or R*
to a function f(s) which is regular in (@, §), then it is the Dirichlet series of f(s).

It was proved by Besicovitch that if a regular function f(s) in (e, 8) is of

bounded order in [«, 8] and has the property that M, {|f(c + ¢#)|®} is finite for
all ¢ in (¢, ), then it is B? a4.p. on any vertical line in (e, g) if it is B* «.p.
on one single line ¢= 0‘0.41 The proof gives enough uniformity in ¢ to show
that f(s) is B? a.p. in (e, 8] in our sense also.

We shall now prove the following theorem: _

For almost all points x in Qu, the series (22.1) is strongly convergent to its
sum f(s, x) in the class R*; consequently f(s, x) 7s B* a.p. in [e, 8] with (22. 1)
as tts Dirichlet series; that is, we may write ‘

o

Fls, ) ~ 2 ar €278 ¢k S
k=1
Sfor almost all x.
The proof is very similar to that of § 20. For each o in (e, B) we con-
sider the function f(o, ). Considered as a function of z, this function belongs

! See A. S. Besicovitch [1].
39—34198. Acta mathematica. 63. Tmprimé le 9 juillet 1934,
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to the class G of 8§ 18. Let f, (0, %) and fy (o, «) have the usual meaning.
Now if we write & = 2 wpur, we get f(s, 2} =f(o, z + nt), and fn(o, z + uf) and
Fn w(o, © 4+ ut) will be the partial sum and the vest of the series (22.1). It will
be-sufficient, to prove that for any fixed strip (z,, ;) and any fixed 2 >0 we have

By
(23.3) M{f&“fﬂ.w(”’””t”?dU}HI as n— ©

for almost all .
Let us write

Buold)= Z || 7 ;
k=n+1
then it follows from (18.7) that we have °
(23.4) im0 @D dag, < —
1

Ry -

when A B, o(0) < 1. Also if Hy(s, z) for a fixed » denotes the majorant of the
sequence fu+p o(0, x), it follows from (16.6) that

(23 5) fgl(Hn(": x))? dww —_1 = 4 ( f e7~|fn, w o, o) |2 d@(}w""l) .
Qw w

Since B o(0) =0 wuniformly in [, 8], it follows from (23.4) and (23.5) that

B

fdwwfe“Hn(“'?’)’?do—»I as n— o,

Qw [£31

Now we have for each # by Birkhoff’s fheorem

8 g
f Mt{ j e“”n(":‘“ﬂm?da}dww: f duwe ] Py 05 g
Qw (231 Qw oy

Since H, (o, x) is decreasing (in the wide sense), it follows that



The Theory of Integration in a Space of an Infinite Number of Dimensions. 307
13_1 ' )
M, {] ¢ (Hy (0, 2t t)? dd}‘—> 1 as n—©

oy

for almost all x and this implies (23. 3).

The above theorem contains, in particular, Parseval’'s equation, that
Ml flo + 2t, o)’} = Z | ax|? e2*
k=1

holds for almoest all x and it also follows that the limits defining the mean value
exist uniformly in ¢ in [e, 8]. This contains a recent result of Carlson for
Dirichlet series of the usual type.!

 Let us finally consider the order of growth of B? a.p. and B* a.p. func-
tions. From the existence of a mean value with respect to ¢ of the right-hand
side of (23.1) in the case where f(s) is B? a.p. we conclude that | f(o -+ 7t)|? =

) 1
=o(|t]) or flo +fz't):0(|t|p) uniformly in [e, f]. Similarly we conclude from
(23.2) that if f(s) is B* a.p. we have el/0till®—=,(|¢]) for any A1 >0 or

flo+t)=0o(Vlog [t]) uniformly in [e, 8]. We thus obtain the result that for
almost all x g ' : '

flo + it, x) = o(V1og | £])
wniformly in |e, ). This result was proved by Carlson for Dirichlet series of

the usual type; his proof, which is more elementary than ours, is applicable also
in the present case.

' § 24, Distribution Funetions.

In this section we take up again the study of functions of the form

(24.1) () :Z ap €27

! See F. Carlson [1]. Carlson did not obtain the result for the most general Dirichlet series
of the usual type but had to make a restriction on the exponents, His method is valid also for

the case where the signs 7% are replaced by real signs & I, in which case our argument
does not apply. :
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but the problem we shall consider now is of a more special character. For the
sake of simplicity we do not consider the general class G of § 18 but restrict
the investigation to the special class of series (24.1) for which the series

(24.2) ' | S lal

k=1

is convergent. In this case the series (24.1) is absolutely convergent in ¢, and
consequently its sum f{(x) is continuous. We call the class of functions f(x)
defined in this way the class H; we shall say that f(x) belongs to H* if at
least 5 of the numbers ar are not zero and shall prove that in this case the
values of the function are particularly regularly distributed. Problems of this
nature were treated by Bohr and the author in an elementary way'; the method
here used yields better results and is in the main part an adaptation from a
paper of Wintner.? , ’

The set S of values 2= f(x) attained by a function of the class H is always
closed and connected and it also has the property of being transformed into
itself by any rotation about the origin. Consequently it is either a closed circle
|z] =R or a closed circular ring r =<2z =R. In both cases R is the sum of
the series (24.2). It is easy to see that the second case occurs only when one
of the numbers |ax| is greater than the sum R — |ax| of the rest of them and
that in this case r=|ax| — (R —|ak|) = 2]|ax| — R. In the special case when
one of the |ax| equals the sum of all the other || it is convenient still to
consider § as a ring with 2= 0 as the interior boundary.

Now let E denote an arbitrary measurable set in the complex ¢-plane and
let Q= Q(F) denote the set of points z in ., for which f{(xz) belongs to E;
if Q is measurable, we denote its measure mQ(F) by ¢(E); the set-function
@ (E) obtained in this way is called the distribution function of f(x). It is clear
that @(E) is not changed by a rotation about the origin. We wish to prove
the following theorem: ‘

If f(x) belongs to H#, then @(E) is defined for all measurable sets E and s
the indefinite integral of a continuous function F(2); that is, we have

! H. Bohr-B. Jessen [I]. .

2 A. Wintner [1]; see also S. Bochner-B. Jessen [1]. Wintner considered directly the distri-
bution problem for almost periodic functions to which we shall apply our results in § 26. The
extension to distributions with respect to a weight function is new. )
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(24.3) wm=wamz

Sor any measurable set E. The function F(2) ds called the density of the distribu-
tion of f{x).

The function F (¢) is clearly a function of |2| alone; it is zero outside and
on the boundary of the set S and its integral over § is 1. It could easily be
proved that F'(z) is positive in all interior points of S except in the special case
mentioned above where S should be considered a ring with &= 0 as the interior
boundary in which case we have F'(o)=o0. Finally we may observe that ¢ (E)
is the indefinite integral of an integrable function I'(¢) also when f(x) belongs
to H provided at least 2 of the numbers a; are not zero, but there are cases
where 4 of the numbers @, are not zero and where F(g) is not continuous. We
shall not require these additional statements.

The theorem has the following immediate consequence of which we shall
make use: that 7f the set E is measurable in the Jordan sense, then the set in €,
is also measwrable <n the Jordan sense. This follows from the fact that, since
JS(x) is continuous, the boundary of Q will be contained in the set of points x
in @, for which f(x) belongs to the boundary of E.

Let f(z) belong to H* and let

g(x) — Z br 27t
k=1

be any function of H. Then we define the distribution function Y (E) of f(x)

with respect to |g(x)]® as

wm=[umeW

2 (E)

We shall prove the following theorem: ‘
The function W(E) 4s also the indefinite integral of a continuous function G (2),

that is we have

(24.4) W (H) = f G (o) du.

E

We call G(2) the density of the distribution of f(x) with respect to | g (x)|".
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The function G (2) is also a function of |z| alone; it is zero when F(z) is
zero, and generally positive when F'(z) is positive; it can be shown 4that the
only case in which this may not be true is when g(x)==%f(x) for some constant
k, when we have G(2) =|%|*|¢|* F(2). The integral of G(z) over § is equal to
the integral of |g(x)|® over Q,; we do not suppose that it is 1.

The proof of these theorems is based on a theorem of Fourier transforms
and on wellknown properties of the Bessel functions J,(y) and J,(y). Let us
write 2= w + ¢v; then ¢ (L) and ¥ (E) are at least always defined when F is a
rectangle u, =u <u,, v, =v <v,. It is sufficient to show the existence of
continuous functions F(z) and G () such that (24.3) and (24.4) hold whenever
E is a rectangle of this type. Now let { =« + ¢ be another complex variable
and let us form the Fourier transforms

o) = fru«uwv) dg(E) and #(0) = f et duy (B)
Z Z

where the integrals are Stieltjes integrals over the z-plane Z. If we can prove
that @(5) and % () are enfegrable over the whole {-plane Z, our theorems will
follow from a familiar theorem for Fourier transforms which says that in this
case @ (E) and y(E) are the indefinite integrals of the functions

F(z) = I'fe”"”"’(’) @ (&) dw: and G(z)zlj ¢ watvB) P (7) daoy

T4 4
/ A

We prove the integrability of @() and ¥ ({) by simple calculation; we
consider first the case of the function @(f). Let us write f(x)= u(x) + 7v(x);
applying the definition of an integral we get immediately

D)= [ e tlav®m+8v@) goy,
%
If ay = |ax]e*™?% the term aye2”% in f(x) will give the contributions
|ax]| cos 27w (xx + o) and |ax] sin 27 (@ + o)
to u(x) and v(x) respectively and therefore, if {=|{|e*#?¢, the contribution
larl| cos 2 (xr + o —6) to au(x) + fv(z).

Consequently we have
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“\ e —ifap 2] cos 27 (op 4 o — o) .
d’(s)_f e ™ ' daw,, .
Q k--1

Now the product is uniformly convergent in @), for any fixed {; we therefore get

—1 « cos 2a(xp+o —a)
II Lagsl (o + o d e

k=1 g

or finally, using a familiar formula for the function J/,(y),

o@Q) [ Tl L],

Now we use the well known property of the Bessel function J,(y), that J,(y) =

— 0@y} as y— o; since at least 5 of the numbers a; are supposed to be
different from zero and since |J,{(y)| =1 for all ¥, we conclude that @({)--

O(]7% as |Z] > % and this proves that @(Z) is integrable over the whole
{-plane.

For the funection ¥(5) the result is obtained in a similar way. We have
W)= [ el 3r@ | g (o) diwe .
Qo
For the function |g(x)]* we use the expansion

o @ )
g = Z |1'k|2 + Z by by €277 =)
ko1

k, =1
kol

where the series is absolutely convergent. Hence

0 X
P \ \
)= bl @) + 3 bebi¥ei(D),
b1 EL-1
k4t
where
lpk,l(g) = e Haw(z) + fo 2 6’"‘”[(”5_—2:[) dww-
Qu

This again yields
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zpk,l(:) e fe—iﬂ ap o] eos 27 (ap + o — o) —2 7w ay) dxk fe—i(lal’gl cos 27 (ay+o;—0) + 272y dxl
cr, a
®
H e-—z‘lamgl c08 27 (X + 0y —0) dxm
:L 1 7)1

or finally
P10 = — eie—e) I, (D), (ac) H Jollan ).

m=i=k l

Now we have also J;(y)=O(y~ %) as y— o and |J;(y)] =1 for all y. Conse-
quently we have ¥::(()= |§| as |{]|— « uniformly in % and [. This

implies that also ¥ (§)= O(|Z] %) as |{]— * and this proves the theorem.

The formulae for the functions F(z) and G (z) which we have obtained are
useful if we want to study these functions more closely. We shall need the
following easy deduction from these formulae: that if f™(x) and g™ () are
functions of H* and H respectively converging uniformly to f(x) and g(x), then
the corresponding functions F ™ (z) and G'™ (2} must converge uniformly towards
I'(¢) and G(z). We may express this more briefly by saying that F( ) and G (2)
depend continuously on f(xz) and g{x).

§ 25. WeyPs Theorem on Equal Distribution.

We shall need a definition of a mean value for functions f(f) on the
line I: — % < ¢ < % which is more special than that of § 19. Let f(f) be real
and bounded but not necessarily measurable on . Then we say that it has a

mean value

M. { f(8)}

over ! in the Riemann sense if there exists corresponding to any ¢ >0 a number
T such that for any interval j on ! with mj > 7 the lower and upper Riemann
integrals of f(f) over j when divided by mj differ by less than & from M, {f(t)}.
If the characteristic function «(f) of a set 4 on ! has a mean value M;{e(f)} in
this sense, we call it the relative Jordan measure of 4 on [; if the mean value
M {a(t) f(t)} exists, we call it the mean value in the Riemann sense of f(f) over
A. Tt is clear when, for a class of functions f(f) or sets 4, the mean values
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or relative measures shall be said to exist uniformly for all functions or sets in
the class.

With these definitions we have the following theorem which is an imme- .
diate extension to the space ., of a classical theorem of Weyl; the notations
are those of § 19.

If flx) us integrable over Q. in the Riemann sense and if the numbers
Wiy sy Uy, - .. arve Unearly independent, then

M flae + nt) = | fla) dw.,
/

Jor all z in Q. and the mean value exists ungformly for all x.

The proof is the same as for the theorem in the space (. It is sufficient
to apply the remark made in § 10 according to which a function f(x) in .,
when it is integrable in the Riemann sense, can be enclosed for any ¢ > o be-
tween two exponential polynomials «(x) and A (z) such that the integral over
Q. of A(x)— a(x) is smaller than ¢. Since the theorem is trivial when f(x) is
such a polynomial (it follows by a simple computation), this remark shows its
general validity.

Let us observe that if the function f(z) depends only on the variables
Xk, Xhyy Lryy - - (in finite or infinite number), the theorem will hold if only the
numbers g, t,, Ui, . . - are linearly independent.

§ 26. Application to a Class of Almost Periodic Functions.

It is known that if an almost periodic function has linearly independent
exponents, then the Fourier series of the funection is absolutely convergent. We
may therefore base the study of such functions directly on their representation
by means of an absolutely convergent trigonometric series with linearly inde-
pendent exponents and need not use the almost periodic character explicitly.

Let the functions

»

Sflz)= 2 ar ™% and glx) = 2 by €272
k=1 :

be as in § 24; that is, let f(x) belong to the class H* and g(x) to the class
H. We consider the functions
4034198, Acta mathematica. 63. Tmprimé le 9 juillet 1934.
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8

(06.1)  flta)= S aemnent and gt )= 3 bt oa

k=1 k=1

Ji

as functions of 7 on the line [: — © < ¢t < . The exponents 1; or at least
those of them which belong to non-vanishing coefficients ay, shall be linearly
independent. We want to study the distribution of the values of the funection
f(¢, ) and of f(t, ) with respect to |g(f, )|* for any .

- Let E be any set in the complex z-plane which is measurable in the Jordan
sense; we know from § 24 that the set 2 in ¢, in which f(x) belongs to E is
also measurable in the Jordan sense. This implies that if o(x) denotes the
characteristic function of the set 2, the functions «(x) and «(x)|g (x)|* are both
integrable over @, in the Riemann sense. We also have '

(p(E)éfa(x)dww and w(E)——-fa(x)lg(x)]?dww.

QO) w

Now let «(t, ) denote 1 when f(¢, x) belongs to E and o elsewhere. TLet
us write =2, as usual. Then we have f({,z) = f(x + ut), g(t, 2)=g(x + ut)
and also «{f, z)==e{x + ut). It therefore follows from Weyl's theorem that

uniformly in «x

¢(B)=Mlelt,2)) and p(EB)=DMlalt,d)lgt, ).

We formulate this result in the following way:

The distribution functions @ (E) and w(E) of f(x) and of f(x) with respect to
lg@)|® are also for any fixed x the distribution functions of f{t, %) and of f(t, z)
weth” respect to |g(t, z)|* <n the sense that, for any set I which is measurable in
the Jordan sense, @(E) is the relative Jordan measure of the set A on 1 in which
S{¢, ) belongs to £ and (E) is the mean value in the Riemann sense of |g (¢, x)|
over this set A. Furthermore these relative measures and mean values exist uni-
Jormly in x for any fived E.

This way of combining Weyl's theorem with results concerning the distri-
bution of the values of functions of an infinite number of variables in order to
obtain results for almost periodic functions is due to Bohr.!

! Bee for the latest exposition H, Bohr-B. Jessen [2], [3]. The simplification obtained by the
use of the theory of integration in v is more essential in the case of analytical almost periodic
functions with which we shall deal in § 28 than in the case considered here.
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§ 27. Distribution of the Values of Certain Classes of Analytic Functions.

We consider as in § 21 a class of functions

Ik (8) e?n‘ixk

(27.1) - fls, @)=

M s

k=1

where the functions gi(s) are regular in a fixed domain D in the z-plane, but
this time we suppose that for any set A the series

bound | g (s)]
A

1

/i 8

I

k

converges. In this case the function f(s, x) will exist as a regular function in
D for any point x in @, the series (27.1) being uniformly convergent in any
set A. The function f(s, z) is obviously continuous considered as a function in
the space (D, Q.) where (s, x) is the variable point. If s denotes a fixed point
in D, we may consider f{s, ) as a function in @,; it is a function of the class
H. The derivatives

y;c (8) e‘Znin'k
1

M e

S s, @) =

k

Il

form. clearly a class of the.same kind by the familiar fact that if A, and 4, are
as in § 21, there exists a constant C, depending only on A, and A,, such that

bound [f'(s)] = C bound |£(s)]
Az Ay

for any function f(s) which is regular in D.

We shall assume that none of the functions f(s, x) reduces to a constant
in D; then it follows in a familiar way that there exists, corresponding to any
set A, a number N = N(4) which is greater than or equal to the number of
z-points of f(s, z) in 4 for any complex z and any z in @,. Here and later on
z-points are always counted in their multiplicity.

Finally we shall assume that in any point s of D at least 5 of the func-
tions gi(s) are not zero. This means that for any s the function f(s, x) con-
sidered as a function in Qv belongs to the class H*. The distribution function
of this function in the sense of § 24 will be denoted by ¢ (s, E) and its density
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by F(s,2). We shall also consider the distribution function (s, E) of f(s, z)
with respect to the weight function |f”(s, z)|?; its density will be denoted by
G (s, z2). These functions F(s, z) and G (s, z) are continuous, not only considered
as functions of z for a fixed s, but also considered as functions of (s, 2) in the
space (D, Z) where Z is used to denote the complex z-plane; this follows from the
remark at the end of § 24. For any set A we have F(s,2)=0 and G (s,2)=0
for all s in A when 2 is outside the set S = S(4) of values attained by all the
functions f(s, z) in A; this set § is either a closed circle or a closed circular
ring about the origin in the ¢-plane.

We will now consider the distribution of the values of the functions f(s, x)
from another point of view. Let & be any complex number and B an arbitrary
measurable set belonging to a set A in D. We denote by # (B, ¢, «) the number
of z-points of f(s,x) in B; this function #(B, 2, x) takes for a fixed B only a

finite number of values; if it is measurable over @, we call its integral

Qy

the average frequency with which the functions f(s, x) take the value z in the
set B. We wish to prove the following theorem:
The function 3 (B, 2) is always defined for all measurable sets B belongmg to

a set A in D and we have

(27.2) X(B,z):f(}(s, 2) dws.

B

Thus the same function G (s, z) which for a fixed s determines the density of the
distribution of fls, x) with respect to |f (s, z)|* will for a fixed z determine the
density of the average frequency of the z-points of the functions fls, x).

Behind this theorem lies a familiar function-theoretic lemma which we shall
formulate later on. The proof of the theorem is complicated by the fact that
the measurability properties of the function = (B, ¢, «) are not trivial.

It is clearly sufficient to prove the theorem in the case where B is measurable
in the Jordan sense. We first prove that in'this case the function » (B, ¢, ) is even
integrable sn the Riemann sense over )., for any z. This will be of importance for
the applications. From Rouché’s theorem it follows that if for a given 2 the func-
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tion f(s, ) has no e&points on the boundary € of B, then there exists an
interval I, in @, swrounding z and in which »(B, #z, ) is constant; it is there-
fore sufficient to show that the set I'" of points z in @, for which f(s, z) has
" z-points on' C is a null-set.

We choose a set A4 which contains the set C in its interior; let ¢ > o
be given; then since the set C is a nullset we may cover it by a (finite or)
enumerable number of circles (), belonging to 4 such that the sum of the measures
m O, of these circles is less than &, We denote the mid-point of C, by s, and
the radius of €, by 7.. Now let K denote a constant such that |/’ (s, )| = K
for all s in A and all x; then if x belongs to I', the inequality

| fsn, ) = 2| < Krn

must be true for at least one value of n. This means that the set I'is covered
by the sets I, where I'y is the set of points z in ., for which f(s., z) belongs
to the circle £, in the 2-plane which has its mid-point in the fixed point 2z and
the radius K7,. By the definition of the functions ¢ (s, E) and F'(s, ) we have

mIy, = (s, En) =fF(sn, 2) dws,.
£ .

T

Now let M denote a constant such that F(s, z) = M for all s in A and all z.

Then we obtain
mI, = MmE,= MK>mC,.

Consequently the sumn of the measures of the sets I, is less than MK*¢ and
since - M and K depend only on A and not on ¢, it follows that I" is a null-set.

This result has some further applications which are of importance for the
proof. We know now that y(B, ) exists for any z; we shall prove that it is
a continuous function of z. This follows from Rouché’s theorem which shows
that if 2z, 2, 23, ... I8 a sequence of points converging to z, the sequence
n{(B, zn, x) will converge to n(B, 2, x) except perhaps in the set I'; since the
sequence is uniformly bounded in @, this implies yx (B, zn) — x (B, 2).

Another consequence is that the function »({B, 7z, z) is measurable not only
as a function in @, for a fixed ¢, but also as a function of (z, x) in the space
(Z, Qo); we shall even prove more: namely, that the function is integrable #n
the Riemann sense. From Rouché’s theorem it follows that if f(s, ) has no
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z-points on (), then % (B, z, z) is constant in an interval in (Z, ,) containing
(s, ); it is therefore sufficient to prove that the set I'* of points (z, x) for
which f(s, ) has ¢points on C is a null-set. Now C is closed; consequently I'*
is eclosed and therefore measurable; furthermore its intersection with any set
.(2‘, Qo) is a set I' of the kind considered above and this implies by Fubini's
theorem that I'* must be a null-set.

After these preparations, we now begin the proof of the formula (27.2).
Since both sides of this formula are continuous functions of z, it is sufficient

to prove the formula in the integrated form

f%(B,z)dwz:fdwsz(s,z)dws
# B

E

and we may of course restrict ourselves to the case where F is measurable in
the Jordan sense. Upon inversion of the order of integration on the right-hand
side, by virtue of the definition of G (s, z) this relation takes the form

(27.3) fx(B,z)dzvz%fw(s,E)d@us.
E B

We base the proof on a familiar function-theoretic lemma::
Let f(s) be any regular function in D and let n(B, 2) denote the number of
z-points of f(s) in B. Then

f #(B, 2) dw. — f )17 (I dun,

K

where a(s) is 1 when f(s) belongs to E and o elsewhere.
1f we apply this lemma to the functions f(s, x), we obtain for each z the

relation

fn(b’,z,x)dwz :fa(s, )| f (s, ) |? dews
F ,

E

where «(s, x) is 1 when f(s, z) belongs to E and o elsewhere. Now this function
a(s, ) is integrable, even in the Riemann sense, over the set (B, (,); this
follows in the usual way when we observe that the boundary of the set of points
(s, x) in (D, Q) for which f(s, x) belongs to E is contained in the set of points
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for which f(s, ) belongs to the boundary of F, which is closed and has the
measure zero since its intersection with any set (s, {.) has the measure zero.
Consequently, we may integrate the last relation over @, and we may also invert
the order of integration. This gives immediately the relation (27.3).

§ 28. A Class of Analytic Almost Periodic Funetions.

If an analytic function is almost periodic in a strip [e, 8 and has linearly
independent exponents, then its Dirichlet series is absolutely convergent in (e, 8).
We may therefore base the study of such functions directly on their representa-
tion by means of an absolutely convergent exponential series.

We consider as in § 21 a whole class of series

f(s,x)=2 ay e27E% el (s=0+1t,

k=1

but now the series

Iaklelkd

M

k

Il

1

is supposed to converge in a certain interval ¢« <o <. We do not yet suppose
that the exponents 1; are linearly independent, but only that they are real and
all different. We make the assumption that at least § of the coefficients ax are
not zero. Then the functions f(s, x) satisty all the conditions of § 27 when D
denotes the strip («, 8). The result of § 27 takes in this case a particularly
simple form.

Let us write 4 = 27zu;. Then we have f(o + ¢, x) = f(o, x + ut). Since

]N(S, .’Z’): 2 A ap, €275 ezk37

k=1

we have also f (o +it, z)=f (6, + nt). This, however, implies that for a
given s =0 + ¢t the distribution of f(s, ) with respect to |f’ (s, z)|* depends on
o only and not on ¢; that is, we have Y(s, E)=y(o, E) and G (s, 2) = G (o, 2)

for any ¢. Now let B be a rectangle o <o<<g,, —é<t<—; where

e <<a <fB, <B. Then the result of the last section takes the following form:
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If nla,, 8,, 2, x) denotes the number of z-points of fls, x) in ey <o <g,

— % <t< —; , then the integral

Z(“n 1817 Z):fﬁ(al) 1311 Z) x>dw03)

Qo

which measures the average frequency of the z-potwts of the functions f (s, x) in

I . . . . ,
o, <o<fB, — é <t < 5 exists as a Riemann integral over Q. and s value is
given by

B1
(28.1) 2l b, = [ Glo ) do

31

where G (0, 2) ¢s the density of the distribution of f(o, x) with respect to | /" (o, x)|*.

We now make the further assumption that the exponents 4z, or at least
those of them for which the corresponding coefficients @ are not zero, are
linearly independent. In this case we have by the theorem of Weyl

%(“1, By, 3) = Mt{n(al, B, 2, x+ ;u't)}

uniformly for all z. This result takes a simpler form if we introduce the
following notation: '

Let f(s) be regular in (¢, §) and let N(e,, 8,7, 0, 2) denote the number of
z-points of f(s) in the rectangle ¢, <o < B, y <t<d. We say that the funec-
tion f(s) takes the value z with the average frequency (e, 8y, £) in the strip
(¢, B8,) if there exists, corresponding to any &> 0, a number 7' such that the
number N{«,, 8,7, 9, 2) when divided by d —y differs by less than ¢ from
% (e, B8,,2) as soon as d —y > T. Tt is clear when for a class of functions f(s)
the frequency shall be said to exist uniformly for all functions in the class.

Now the number #(e,, g, 2z, x + ut) is merely the number of z-points of

fls, 2+ ut)=Ffls +it,x) in ¢, <0<By, — ; <t< ; or, what amounts to the
same thing, the number of z-points of f(s, z) in the rectangle obtained from
o, <0<, — ; <t < ;IJ by the vertical translation ¢¢. From this interpretation

of n(«,, B,, 2z, z + ut) follows at once the following theorem.
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The average frequency x (e, 8., 2) with which the functions f(s, ) take the
value z in o, << 0 < g, —; <t< ; us also for each fixed x the average frequency

with which fls, x) takes the value z in the strip (e, 8,). Furthermore we have
uniformity in x in the existence of this average frequency for fixed (a;, B,) and z.

The previous theorem gives for x (e, 5,, 2) the expression (28.1). It is not
uninteresting to observe that in the present case the function G (g, 2) can also
be determined in another way. This follows immediately from the result of § 26,
which shows that G (o, z) for each fixed x is the density of the distribution of
Jlo+ <t, x) with respect to |f' (¢ + ¢, 2)|®>. This additional remark gives a
formulation of the last theorem which makes no use of the theory of integration
in ¢, and in which the point x plays only the rble of a parameter with respect
to which we have a certain uniformity. As this theorem is perhaps the most
interesting result of our discussion we formulate it explicitly.

If the serdes

-]

f(é’, SU) — Z ay 2710 elks,

k=1

where at least 5 qof the numbers ap are not zero, is absolutely convergent in («, 5)
and if those of the numbers Ay for which the corresponding ay are wot zero are
linearly independent, then there exists for any x an average frequency y(a,, B, 2)
with which the function f(s, x) takes the value z in the strip (@ <)e; < o <8, (<p).
The function y(a, 8,2 defined in this way is independent of x and may be
represented wn the jform

B

x(al,ﬁl,a:fa(a,z)da,

@y

where G (o, 2) is a continuous function defined for e« << o< B and all z. In ther
dependence on z the functions (e, B,,2) and G (o, 2) are functions of |2] only.
The function G (o,2) may also be determined as the density of the distrabution of
Sflo+ it, x) with respect to | f' (o + it, 2) | for any fixed z.

Finally, we have uniformity with respect to x in the existence of y(ay, B, 2)
as well as in the existence of the distribution of f(o + ¢t x) with respect to

|/ (o + it, 2) 2.

41-—34198. Acta mathematica. 63. Imprimé le 11 juillet 1934.
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The distribution of the z-points for arbitrary analytic almost periodie func-
tions has been studied by the author in a previous paper'; it would be easy by
means of the theory of integration in ., for the case here considered to re-
establish the main result of that paper. ‘ ‘
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