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Introduct ion 

The Minkowski problem is to find a convex polyhedron from data  consisting of normals 

to the faces and their surface areas. The corresponding problem for convex bodies with 

smooth boundaries is to find the convex body given the Gauss curvature of its boundary 

as a function of the unit normal. There is a natural notion of variation of a convex 

domain introduced by Minkowski, which is essentially variation of the boundary of the 

domain in the direction normal to the domain. Under this definition, the first variation 

of the volume of a convex body is the surface area measure on its boundary. The purpose 

of this paper is to develop a theory analogous to the one for the Minkowski problem in 

which volume is replaced by electrostatic capacity and surface area is replaced by the 

first variation of capacity. This theory was proposed in the paper [J]. 

Let N~>3 and let ~ be a bounded, convex, open subset of R N. Let fl~ be the 

complement of the closure of ft. The equilibrium potential of fl is the continuous function 

U defined in ~ satisfying 

A U = 0  i n ~ '  and U = I  o n 0 ~ '  

and such that  U tends to zero at infinity. Let n = N - 1  and define the dimensional 

constant 
1 

a N  ~- ( N - 2 )  vol(Sn) ' 

where vol(S n) is the volume of the unit sphere S n in R g.  Then ag[x[  2 - N  is the tim- 

damental solution to Laplace's equation, i.e., /kag[X[2-N=--~O. I t  is well known that  U 
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has the asymptotic expansion 

U(x) ="/aNlXI2-N +O(Ix]I-N ) as X-~O0 (0.1) 

for some positive constant 7. The constant 7 is known as the electrostatic capacity of ~2, 

7 = cap ~. 

Let P be a support plane of ~, that  is, a hyperplane tangent to 0~2. We will always 

use the convention that  the unit normal ~ to P points away from ~t and into ~t'. The 

Minkowski support function of ~2 is the function u(~) given by 

for any point xePAO~. In other words, u(~) is the (signed) distance from P to the origin. 

Let g: O~-*S ~ be the Gauss map, that  is, the mapping from x60~ to the outer unit 

normal. The mapping g is defined almost everywhere with respect to surface measure 

da on 0~2. We will frequently identify the boundary of ~ with the unit sphere by the 

Gauss map. In particular, we will abuse notation by considering the support function as 

a function on 0Q: u(x)=u(g(x)) is defined almost everywhere on 0ft. 

The starting point for this article is a formula due to Poincar4 [P], 

cap~2-  N-21 foeUlVU[2da" (0.2) 

In the case of a smooth domain, the formula can be proved by integration by parts. We 

will show in the first section that  it is valid for arbitrary convex domains. This formula 

bears a strong resemblance to the formula for volume of ~t, 

vol~2=l fo uda. (0.3) 

The analogy extends to the first variation. Let ~21 be another bounded, convex domain 

with Minkowski support function ul.  The algebraic sum 

~t+t~tl = {x+ty : x 6 ~ and y �9 ~1} 

gives a region whose boundary is the variation of 0~ by the distance tul(g(x)) in the 

outer normal direction g(x) at x. We then have [BF] 

d vo l (~+ t~ l )  t=o = 9fo da d-t a ul 
(0.4) 
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and Hadamard's variational formula [GS] 

d =~o UlIVU[2 da. (0.5) cap(~t + t ~ l )  t=o 

Consider the measure d#=g, (da) defined on the unit sphere by 

f.q da for Borel set E C S '~. (0.6) # ( E ) =  -l(g) any 

This is well-defined because g is defined almost everywhere with respect to da. Note, 

however, that  the measure # need not be continuous with respect to the uniform measure 

on S n. For example, when ~t is a polyhedron the measure is a sum of point masses at 

the normals to each of the faces and the coefficient at a normal is the surface area of 

that  face. Minkowski posed the problem of discovering which measures arise in this 

way. Comprehensive existence, uniqueness and regularity results for this problem can be 

stated as follows. 

THEOREM 0.7. Let N>~2. Let # be a positive measure on the sphere S n. There 

exists a bounded, convex domain ~ such that g.(da)=d# if and only if it satisfies 

f s  ~k dit(~) =0 ,  k = l , . . . , N ,  
n 

and it is not supported on any equator (the intersection of the sphere with any hyperplane 

through the origin). Moreover, the domain ~ is unique up to translation. Suppose that 

k is a nonnegative integer and 0 < a < l .  If, in addition, dit=(1/K) cI~ for some strictly 
positive function KECk'a(sn),  then ~ is C k+2'c~. 

The case of polyhedra was solved by Minkowski and existence was proved, in general, 

by Alexandrov. C ~ regularity was proved by Pogorelov, Nirenberg, Cheng and Yau [CY]. 

The precise gain of two derivatives and the treatment of small values of k is due to 

Caffarelli [C1], [C2], [C3], [C4]. The function K is the Gauss curvature of the boundary 

0~2, which explains why, in the smooth case, the Minkowski problem can also be phrased 

in terms of Gauss curvature. 

The main result of this paper is the analogous theorem to Theorem 0.7 with the 

density [~U[ 2 da in place of da. The theorem of Dahlberg [D] implies that  [VU[ 2 da is 

mutually absolutely continuous with da. It follows that  g.([VU[ 2 da) is a well-defined 

measure on the unit sphere. The main result is stated as follows. 

THEOREM 0.8. Let N>~4. Let it be a positive measure on the sphere S n. There 

exists a bounded convex body ~ such that g.(IVU[ 2 da)=dit if and only if it satisfies 

~ k d i t ( ~ ) = 0 ,  k = l ,  N, p Q P ~ 
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and # is not supported on any equator (the intersection of the sphere with any hyperplane 

through the origin). Moreover, the body ~ is unique up to translation. Suppose that k is 

a nonnegative integer and 0< c~ < 1. If, in addition, d#=R d~ for some strictly positive 

density RECk,~(Sn), then ~ is C k+2'a. 

If N---3, then the theorem has a slightly different statement because the problem 

is not only translation invariant, but also dilation invariant. For each # satisfying the 

necessary conditions of Theorem 0.8, there is a unique A> 0 such that g. (IVUI 2 da)=A# 

for some convex body ~. The body ~ is unique up to translation and dilation. We have 

not treated the case of logarithmic capacity (N=2).  

The theorems described here fail into three parts: existence, uniqueness and regular- 

ity. The basic outline of the proof is closely linked to Minkowski's original ideas, the work 

of Cheng and Yan [CY], Pogorelov, and the direct approach of Caffarelli. However, most 

of the details are different. We will describe the main steps in the proof of Theorem 0.8 

and this description will serve as an outline of the contents of the paper. 

In w we review the properties of the equilibrium potential U, including its boundary 

behavior in the nonsmooth case. We deduce formula (0.2) in the nonsmooth case. In w 

we prove formulas for the first and second variation of capacity in the smooth case. In 

w we prove a delicate continuity property for the first variation that is used later in the 

existence part of Theorem 0.8 and also to extend the validity of the first variation formula 

to nonsmooth convex domains. In w we prove a priori estimates on the inradius and 

diameter of ~ needed for the proof of existence. In w we prove existence for polyhedra by 

formulating a variational problem. Existence for general convex bodies is then deduced 

from the polyhedral case by a weak limiting procedure. We emphasize that on the one 

hand, the a priori estimates of w depend on the fact that the power of IVUI is at least 2, 

and on the other hand the limiting procedure does not work and the definition of the 

density does not even make sense for a power of ]VU I greater than 2. 

In w we begin the proof of regularity by proving new estimates for the density IVU] 2 

on the boundary of a convex domain. As in the treatment of the interior problem in [J] it 

is necessary to estimate this density on "slices" of the region by any hyperplane. However, 

in contrast to the case of interior estimates, the doubling condition fails. Instead there is 

a weaker estimate (Theorem 6.5). We then develop a stronger version of the regularity 

theory of the Monge-Ampbre equation (Lemma 7.3) that can make use of this weaker 

estimate on the right-hand side. The conclusion of Theorem 6.5 and the hypothesis of 

Lemma 7.3 are in the nature of best possible, and it is lucky that they are the same. 

w illustrates this lucky coincidence by giving examples to show that the estimates of 

the paper are sharp and several reasons why the exponent 2 of ]VUI 2 is the only one 

possible. 
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The a priori inequalities used in the proof of existence depend on an isoperimetric 

inequality due to Christer Borell. (Note, however, that we do not need the exact constant 

in the isoperimetric inequality.) This isoperimetric inequality is a consequence of Borell's 

Brunn-Minkowski inequality for capacity: 

THEOREM 0.9. Let f ] t= t~ l  + ( 1 - t ) ~ o  be a convex combination of two convex re- 

gions in R N. Then 

(cap ~'~t) 1/(N-2) ~ (1 --t)  cap ~-~1/(N-2) Jrt cap ~-~ll/(N-2) 

for 0~.<t<,.1. 

(Theorem 0.9 was conjectured in the paper [J, p. 398]. It was pointed out to us 

by G. Philippin and L.E. Payne that the theorem had been proved long before in [B].) 

We will also use the Borell inequality to assist in the calculation of the first variation of 

capacity in w This is more a matter of convenience than essence. However, the Borell 

inequality is essential for uniqueness. 

As we will show in [CJL]: 

THEOREM 0.10. There is equality in the inequality of Theorem 0.9 if  and only if  121 

is a translate and dilate of f~o. 

Theorems 0.9 and 0.10 imply the uniqueness part of Theorem 0.8 in essentially the 

same way that the case of equality in the ordinary Brunn-Minkowski inequality implies 

uniqueness in the classical Minkowski problem. The details will not be carried out here: 

we refer the reader to [CJL]. 

1. Capacity and the equilibrium distribution 

In this section we review properties of surface measure, harmonic measure and the equi- 

librium potential U. Our main goal is to confirm formula (0.2) for capacity. We will first 

prove it for smooth domains. We will deduce it for general convex domains by taking a 

limit. We will use the abbreviation 

IVU(x)l=h on 0f~. 

PROPOSITION 1.1. Let ~ be a smooth, bounded convex domain in R N. Let V be a 

harmonic function in f ~ = R N \ ~  that is continuous in ~ and tends to zero at infinity. 

Then there is a number V~ such that 

Y ( x )  = gooaNlXl2-N--}-O(lx] l - N )  a8 x---+c~ 
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and 
g .  

V~ = / ~  V h da. 

Proof. A standard removable singularities theorem implies that  the Kelvin transform 

of V, Ixl2-NV(x/]x]2), is infinitely differentiable at the origin. It follows that  

V(x)= V~aglxl2-N +O(]xr l-N) as x---*cc, 

x.~7g(x) = VccaN(2--g)lx]2-N-I-O(]xl l-N) as x--+(:x~. 
In particular, these asymptotics are valid for U. Let BR be the ball around the origin of 

radius R. Choose R sufficiently large that  fi C BR. Green's formula implies 

0 = / B R \  (V(x)A (1 - U(x)) - AV(x)(1 - V(x))) dx 

/OOBn (V(X) RV(1-U(x))-RVV(x)(1-U(x))) do'(x) 

- -v./~ Y(x)g(x). V(1 - U(x)) da(x). 

Taking the limit as R tends to infinity, we find the formula in Proposition 1.1. 

The value Voo is the value at the origin of the Kelvin transform of the harmonic 

function V. In that  sense, h da can be viewed as harmonic measure at infinity. However, 

as the special case V=U shows, 

gt = vv/~ h da. (1.2) c a p  

In other words, the total  mass of the measure h da is normalized to be cap ~t rather 

than 1. 

The second important special case of Proposition 1.1 is the case V=x.VU. In that  

case, V ~ = - ( N - 2 ) c a p ~  and V(x)=-u(~)h(x) for xeO~t, where ~=-VV(x)/h=g(x) .  
Thus we have 

cap ~2 -- _~lN_2/ogt uh2 da. (1.3) 

Capacity is translation invariant, but the function u is not. Note that  translation ~--~ 

f l + x  ~ changes u to u(~)+x~ It follows that  

jfoX~ 2 da(x) -~ 0 

Since the equation holds for all x ~ we have the vector equation 

og(x)h(x)2 da(x) = 0. (1.4) 

This gives N linear constraints on the measure d#=g, (h 2 dr 

f s ~  d#(~) = 0. (1.4') 
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PROPOSITION 1.5. Proposition 1.1 and (1.2), (1.3) and (1.4) are valid for arbitrary 
open, bounded convex domains. 

Proof. The natural distance between convex domains is the Minkowski metric 

dist(f~0,121) = mcax [u0(~)-Ul (x)l 
~ES 

where u0 and Ul are the support functions for 120 and 121, respectively. Thus, the distance 

we have defined is invariant if both domains are translated simultaneously. It is easy to 

see that  this metric is the same as the Hansdorff metric, which is defined on any pair of 

compact sets of R g by 

distH(~0, ~ 1 ) = m a x { m a x  min Ix--yl, max min lx--yl}. 
xE~o YE~I xE~l yC~o 

Let 12 be a convex domain that  is not necessarily smooth. Suppose that  the origin 

is contained in ft. Then x.g(x)~>c>0, with a constant depending only on the diameter 

of ~ and the distance from the origin to 0~.  The surface area can be written in polar 

coordinates O=x /tx I as 

da(x)= IxlN dO 

where dO is the uniform measure on the sphere. 

Remark 1.6. Define ~: S '~--~0f~ as the radial projection mapping Q(0)--r(0)0, where 

r(0) is the unique positive number such that  r(0)0 E 012. If we identify the surface measure 

da with the measure on S n induced from 0Q by 6, then 

r N 
da= dO. 

Moreover, suppose that  12j converges to f~ in the Minkowski metric, then with the anal- 

ogous notations ~j, rj, and daj and uj associated to f~j, we have 

day rj(O)Nu(g(Q(O))) 
da (8) = r(O)2vuj (gj (gj (8)))" 

This density is bounded above and below by positive constants and tends to 1 almost 

everywhere with respect to dO as j tends to infinity. 

The remark is proved by noting that  almost every point g(Q(0)) of 0fl  has a unique 

tangent plane. At those points, gj(~j(O))) tends to g(g(0)) as j tends to infinity. 

Green's function for the domain fY, with pole at infinity, is G(x)=l -U(x) .  A con- 

vex domain is a Lipschitz domain and the Lipschitz constant depends only on the ratio 

of the diameter to the inradius of the domain. Because a convex domain is a Lipschitz 

domain, V U = - V G  has nontangential boundary values and maximal function estimates. 

Indeed, for xEO~, let F(x) denote the nontangential cone 

F(x) = {y e fY :  Ix-yl  < C dist(y, 012')}. 
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THEOREM 1.7 ([D], [JK1]). Let f~ be a convex domain and let U be the equilibrium 
potential defined in f~ as above. Then the nontangential limit 

lim VU(y), y �9 r(x),  
y'--*x 

exists for almost every xEOl2 with respect to surface measure da. (This limit is denoted 
VU(x).) Furthermore, the nontangential maximal function ]VU]* belongs to L2(012, da): 

]VUI*(y)-  sup IVU(x)I �9 L2(Of~, da). 

Let ~ be a convex domain that is not necessarily smooth. Let 

~J (t) = {x  �9 ~'  : U (x) < t} ,  

~ ( t )  = { x :  x �9 ~ or x �9 f~' and U(x)  > t} .  

The theorem of Gabriel [Ga], [CS] says that the regions ~(t) are convex. Without loss of 

generality we may assume that the origin belongs to ~. (This assumption is for notational 

convenience only, as in Remark 1.6.) It follows from the maximum principle that x.VU 
is strictly negative in f~J. Thus, by the implicit function theorem, the domains f~(t) are 

C r162 for all t < l .  Proposition 1.1 implies that for t < l ,  

Voo = fo~(t)Y(x)lVU(x)I dcrt (x). 

Since the left- and right-hand sides are translation invariant, we can choose the origin 

in ~. Continuity of U at 0fl implies that fl(t) tends to 12 in the Minkowski metric as 

t tends to 1. Therefore, it follows from Remark 1.6, Theorem 1.7 and the dominated 

convergence theorem that 

lim fo V(x)iVU(x)idat(x)= /oa V(x)lVU(x)lda(x)" 
t--.1 •(t) 

Thus we have proved Proposition 1.1 without the smoothness hypothesis and (1.2) fol- 

lows. However, the extension of (1.3) to the nonsmooth case requires an extra argument 

because the function V=x.VU is not, in general, continuous up to the boundary. 

The function U(x)/t is the equilibrium potential for ~(t) and its asymptotics show 

that cap f~(t) ~ ( l / t )  cap 12. Thus, (1.3) implies that for t < 1, 

cap~  ---capl2(t)= [ (x.VU(z))lVV(z)ldat(x). 
t JO~(t) 
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T h e  desired formula follows from the dominated convergence theorem. (Note that  in this 

case we need the full strength of Theorem 1.7, namely, that  the square of the gradient 

IVUI 2 has an integrable nontangential maximal function, rather than just the first power.) 

Now we have confirmed (1.3) in general, and (1.4) and (1.4') are immediate consequences. 

The physical interpretation of the equilibrium potential is that  it is the potential 

energy (voltage) of the electrical field induced when the body ~ is a conductor, normal- 

ized so that  the voltage difference between ~ and infinity is 1 (see Kellogg [K]). The 

equilibrium distribution is the distribution of charge on ~ in equilibrium. 

The mathematical formulation of this physical model is as follows. (None of the facts 

from this discussion are needed later in the paper, so they are stated only.) Consider 

a positive measure u supported on ~ interpreted physically as a distribution of charge. 

The induced electrical potential is 

V~(x) = f aglx-Yl 2-N du(y). 

It is well known that  among all positive measures u with V~<I, there is a unique u 

of largest total  mass. Moreover, for this measure tJ, V~ is continuous in all of a N 

and V~(x)=l for all x E ~  (see [C]). The extremal measure u is called the equilibrium 

distribution. Since V~ is harmonic in ~ ,  we see that  V~=U in IT. From this it is not 

hard to prove that  

dr,= h da 

and that  the total mass of tJ is the capacity of fL Thus the capacity can also be defined 

as the largest charge that  can be carried by a body ~ if the voltage drops by at most 1. 

2. The first and second variation of  capacity 

In this section we calculate the first and second variation of capacity for smooth do- 

mains. Following [J], [CY], let el, ..., en be an orthonormai frame for S '~, and let covariant 

derivatives with respect to this frame be denoted Vi and Vii. Denote II=(uEC~176 
V~ju+u~ j  >>0}. For each uEb/,  define the domain ~ = { x E R N :  x-~<u(~) for all ~ES~}. 

Then u is the support function of ~2. This correspondence gives a one-to-one correspon- 

dence between C ~ convex domains with strictly positive Gauss curvature and functions 

of/A. Let bER N. Translation of the domain ~ to f2+b corresponds to the change in u to 

u+b.~. Denote the N-dimensional space 7~l=span{~l .... , ~N}. The Gauss mapping g is 

a diffeomorphism and we denote the inverse mapping by F: Sn--*Ol2. It is given by the 

formula F=Vfi, where ~2 is the extension of u from S ~ to R N as homogeneous function 

of degree 1: ~t(r~)=ru(~) for all ~ES ~. The Gauss curvature K can be defined as a 
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function of the unit normal by g. (da)= ( l /K({))  d~, where d~ is the uniform measure on 

the Gauss sphere. The density 1 /K  can be computed in terms of u and written 

1 
g(~)  = det(Viju(~) +u(~)6ij). (2.1) 

K is unchanged by translation of 12. In fact, each individual entry of the matrix whose 

determinant is 1 /K  is unchanged by translation: if vEt~ then 

(Vijv(~)+v(~)5ij) =0 for a l l i , j .  (2.2) 

Define the coefficients c~j of the cofactor matrix of Viju+uhij  by 

6i~ (2.3) cij (V jzu + u6jl ) = 6~t det( VpqU+ U6pq) = -~. 

Here and in subsequent formulas we follow the convention that repeated indices are 

summed. Define the density SeC~176  n) by g.(IVUl=dcr)=Sd~, define the mapping 

~: Lt--*C~176 by 5r(u)=S. We have the formula 

S(~) = h(F(~))2 (2.4) 
K(~) ' 

where h(x)=lVU(x)t for xEO~. The Hessian of U is given by 

LEMMA 2.5. (a) V2U(F(~))(ei, e j )=-Khc i j ,  

(b) V2U(F(~))(~, ~) = K h  Tr(c~j), 

(c) V2U(F(~))(ei, ~) = - K c i j V j h .  

(V2U(x) is the Hessian in R N as a bilinear form on R g and the vectors ei are vectors 

in R g orthogonal to ~, i.e., tangent vectors to O~ at x=F(~).) 

Proof. Let G = I - U .  Then G is a harmonic function that vanishes on 0~ and 

~.VG=h.  Thus the formulas of Lemma A of [J] for the Hessian of G are valid. The 

formulas given here have the opposite sign because ~72U-~-V2G. 

Let fEC~176 and let w be the harmonic function in KU that vanishes at infinity 

and has boundary values f(~) at x=F(~)  on 0~'. Define the operator A acting on 

C~176 by A(f)=~.Vw(F(~)) ,  the normal derivative of the harmonic extension. Let 

vEC~176 For t sufficiently small, u+tvEbt.  Furthermore, if v is the support function 

of a domain l~l, then u+tv  is the support function of 12+t~l. 

PROPOSITION 2.6. The directional derivative of jr  is given by 

d f ( u + t v )  t=o = Lv, 
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where L=Lu is defined as 

2 2 Lv = Vi(h c i j V j v ) - - ~ h A ( h v ) - h  2 Tr(cij)v. 

Proof. We follow the proof of Proposition 2 of [J]. There are a few sign changes and 

h 2 replaces h. For each t sufficiently small, we define the functions U, and F correspond 

to the support function u+tv. Let "dot", as in U, F ,  etc., denote the derivative with 

respect to t at t-=0. Then formulas (3.10) of [J] becomes 

h = -~-VU,  (2.7) 

and (3.11) and (3.12) become 

&+VU.P=o, F =  (Vde~+v~. 

We deduce the variants of (3.13) and (3.14) 

gI=hv and ~.VU=h(hv) .  

Next, taking the t derivative of (2.7) as in (3.15) of [J], we obtain 

h = - ~ - V U - V ~ U ( ~ ,  F)  = -h (hv )+Kc~j (V ih) (V jv ) -ghTr(c i j ) v .  

Recall also that  

(1/g)'=c~(V~jv+v~j) = V~(c~jV~v)+ T~(c~)v. 

The latter equation follows from the fact that V~(c~j)=0 for all j ;  see [CY], [J, p. 386]. 

Combining the last two formulas we have 

d ~(u+ tv) t=0 = 2hh + h2Vi(cij V jv) W h2 Wr(cij )v 
K 

_ 2hA(hv) f_2hcij(Vih)(Vjv)_h2 Tr(cij)v+h2Vi(cijVjv ) =Lv. 
K 

Green's formula implies that  A is selfadjoint on L2(O~, da). It follows that: 

Remark 2.8. L is selfadjoint on L2(S n, d~). 

Dilation gives ~ ( ( l + t ) u ) =  (1 +t)N-3~(u),  SO that 

Lu = ( N -  3)gV(u). (2.9) 

We can now deduce 
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PROPOSITION 2.10. Let ~ and ~1 be C ~176 
functions u and v, respectively. Then at t=0 ,  

d f 
(a) ~-~ cap(f~+tf~l)=Lf da(x), 

(b) ~ eap(a+tal)= vZv cg. 
n 

Proof. Let f(t)=cap(f~+tf~l). Proposition 1.9 says 

Hence, by Remark 2.8 and (2.9), 

f '(O)= 1 ~ vJr(u)d,+ 1 ~ N------2 ~ ~ ~uLv d~ = ~vY(u) d~" 

The same calculation gives 
p 

f ' ( t )  = ]s v~(u+tv) d~. 
Consequently, Proposition 2.6 implies 

strictly convex domains with support 

f (0) =- fs~ vLv cl~. 

3. Continuity of  the first variation 

In this section we will prove the continuity of the first variation h 2 da in the Minkowski 

metric. We will then deduce the first variation formula (0.4) for nonsmooth domains and 

some further consequences. We have already proved (0.4) in the smooth case in part (a) 

of Proposition 2.10. Surface measure varies continuously even when the domain collapses 

to a closed ( N -  1)-dimensional set, provided both flat "sides" of the limiting domain are 

counted. However, as we shall see in w the total mass of h:  da tends to infinity when 

the domain collapses. Thus we will assume here that  the limiting domain is bounded and 

has nonempty interior. Then there are uniform upper and lower bounds on the Lipschitz 

constant of the approximating domains. 

THEOREM 3.1. Let f~j be convex domains tending to an open, bounded convex do- 

main f~ in the Minkowski metric. Let gj denote the Gauss map on Of~j. Let Uj be the 

equilibrium potential on ~ .  Let daj denote surface measure on Ogtj, and let hj=IVUjl 
be the density of harmonic measure on Ol2j. Let g, U, dcr and h be the corresponding 
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objects associated with ~. Then (gj).(h 2 daj) tends weakly to g.(h  2 da) as measures on 

the sphere S'L 

Proof. This continuity would be relatively easy if it concerned the first power h da 

rather than h 2 da. (See [J, w for a such a case.) The extra difficulty of the second 

power requires a convergence theorem due to Jerison and Kenig [JK2]. The theorem 

says that log h is continuous in the BMO norm under C 1 perturbations of the domain. 

We will show first tl~at convergence of convex domains in the Minkowski metric implies 

C 1 convergence except on a set of small measure. We will then use Dahlberg's reverse 

H61der inequality to complete the proof. 

Dahlberg's theorem says: 

PROPOSITION 3.2 [D]. There exist constants p0>2 and C depending only on the 

Lipschitz constant of ~ such that for any r > 0  and any xEO~ 

(z,r)nO~ J S(x,r)nO~ 

In particular, there is a constant C depending only on the diameter and inradius of 

such that 

o hp~ da <. C. 

LEMMA 3.3. For any e>0 ,  there exists 6>0 and a finite disjoint collection of balls 

B(zi, ai)  such that z~EOl2 and for every convex fll for which dist(121, ~ )<6 :  

(a) o(a \G B(z , 
(b) After a suitable translation and rotation, depending on i, we have that O~ and 

0~1 are given in B(zi, ai/c) by the graphs of functions r and r respectively. 

IVr162 

for all x e R  '~ such that ]xi K c~i/e. 

This lemma says that  on a set of large measure, 0fl  and 0i l l  are flat. To prove it, 

we need several observations. It suffices to consider a portion of 012 represented by the 

graph of a single convex function. Let B c R n  be ball and suppose that  

/~nO~ = {(x, r : x E B} 

where r is a convex function and /~  is an appropriate cylinder in R g whose projection 

is B. It is well known that  convex functions (and even Lipschitz functions) are differen- 

tiable almost everywhere IS]. Thus, for almost every x E B  and every el >0  there exists 

51 > 0 such that  

Ir - r  - r e ( x ) .  (Y-X) I < r ly -x l  
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whenever ly-x]<5l and we can assume that  Vr is uniformly bounded on B. By 

Vitali's covering theorem, there exists a finite collection of disjoint balls B(xi, (~i) such 

that  

IB\U B(xi,(~i)l < ~ 

and 

I r 1 6 2 1 6 2  < ~ 

for all xeB(x~,aje). 

Remark 3.4. Suppose that  r is convex and 0~r in ]xl<r. Then 

i r e ( x )  I ~< 2__~ for almost all Ixl < �89 
r 

Proof. Let x be a point where r is differentiable and ]xl<�89 We may assume that  

V r  so that  the unit vector v=Vr162 can be defined. Since ]x+�89 <r ,  

71>/ r189 >~ r Vr189 >/�89162 , 

which proves the remark. 

Remark 3.4 applied to the convex function r162162162 gives 

I r e ( X ) - V r  ~< 2e 2 

for all xEB(xi, ~i/2~). The fundamental theorem of calculus implies 

Ir162 < 21x-x~l~ 2 ~< 2 ~  (3.5) 

for all xeB(x~, ~/~). Now choose ~=min~ r It follows that  for every xEB(xi, ai/2r 

Ir (x) -  r  v r  (~ -  ~)1 -< c ~  

for some constant C depending only on the Lipschitz constant of ~. An application 

of Remark 3.4 to the function r162162162 shows that  for all xE 

B(x~, c~j4r 

I vr (x) - vr I ~< c~  2. 

Finally, rotate the coordinate system so that  Vr In the new coordinate system 

we need to take the graph over a ball B(x~,C~) to be sure to cover the same set as 

before the rotation. On the other hand, in the new coordinate system, 

I Vr (x)l + IVr l ,< C~ ~ 

for all xeB(x~, (~i/4r After a suitable renaming o fe  and hi, we have proved Lemma 3.3. 

Next, we recall (see [JK2, Theorem 2.1]): 
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LEMMA 3.6. For any ~2>0 there exists e>0,  such that for any r<ro, if On is given 
locally in a neighborhood of the origin by 

0n  = {(x, r  I~l < r )  

and r satisfies r  and 

Ivr <~ 

for all Ix[<r, then for every s<er and every {x[<er, there is a constant a(x,s) such that 

s-n f ]log h(y, r  a(x, s)] dy < ~2. 
Jlu -zl<s 

Assume that the origin is contained in ~. Recall the radial projection Q~: S n--+0~tj 

was defined in Remark 1.4. Define hj on S '~ by 

h~(O)=h~(o~(O)) --~ (0). 

Then (Oj).(h~ dO)=h~ d~. Similarly, define ~ so that o , (h  2 dO)=h 2 d~. 

LEMMA 3.7. For any e > 0  and any p<cr there exist numbers s0>0 and 6>0  and 
family of balls B on S n such that: 

(a) Every ball of family 13 has radius so. 

(b) There is a constant C depending only on the eccentricity of ~ such that every 

point of S n belongs to at most C balls of 13. 

(c) fs%F dO<e where F=L.JBet~ B. 

(d) / f  dist(flj ,12)<6, then for any BEB,  

son f ! (O)-tPdO+son f. 
~(o) Jzl  h(O) Pdo<r 

Proof. Note that  the mappings Q and Qj preserve distance up to a factor. Choose 

so < (min ~i), and sufficiently small that  the Jacobians daj/dO and dcr/d~ of the change of 

variables Qj and Q vary by at most ~ when 0 varies by the distance s and ~(0) is contained 

in one of the balls B(zi, ai/e) of Lemma 3.3. Then we can choose B satisfying properties 

(a), (b) and (c), and it follows from Lemma 3.6 that for every S<So and every ball B of 

radius s in the concentric 1/e multiple of any ball of B, there exists a constant aB such 

that 

s - n / I  log h(O)-aBI dO < ~. (3.8) 
JB 
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In other words, log h has small BMO norm in a (1/e)-neighborhood of every ball of B. 

Moreover, as Lemma 3.3 shows, we can choose ~ sufficiently small that  the same estimate 

holds for log hi. 
Next, (3.8) and the John-Nirenberg inequality [JN] imply that  for any p<c~ and 

any c3>0 one can choose 6>0 and So sufficiently small that  for every BEB, there exists 

a constant As  such that  

SOn/s A B ~ - - I  Pdo<~3. (3.9) 

Because of Remark 1.4, we can choose $ sufficiently small and So sufficiently small that  

daj/dO and da/dO are arbitrarily close to the same constant on every ball BEB. In other 

words, for every BEB, 

fs hj(O) dO "1 . . . . .  fej(s) hj(x) daj(x) (3.10) 

In order to get rid of the factor AB in (3.9), we must now fix So and permit ~i to depend 

on So. The ratio on the right-hand side of (3.10) is the ratio of the harmonic measures of 

the sets 0(B) and 0j (B). Using the maximum principle to compare harmonic functions 

in the complement of f~j to harmonic functions in the complement of dilations of f~, or 

using [JK2, Lemma 2.6], we can choose ~f smaller still, depending on So so that  

I fB hj (8) d0 _ 1 O(~3) (3.11) 
fs h(0) d0 

for every B E B. Recall, that  since P0 > 2 in Proposition 3.2, we have the "reverse Schwarz" 

inequality 

(a(~(B) ~(B)h2 da) U2~ Ca(O(B)) j~(S) hda' (3.12) 

valid for all balls B centered on 0f~. There is a similar inequality for 0121. It follows that  

for every BEB, 
(SOn/B h2 dO)l/2 ~ Cson/s h dO (3.13) 

and similarly for hi. We can now show that  A s - I < ~  for all BEB. Using the Schwarz 

inequality, the "reverse Schwarz" inequality (3.13), and (3.9) we obtain 

fB Ashj dO f (Ashj/h-1)hdO <~ (fB(Ashj/h-1) 2 d0) 1/2 (fs h2 d0) 1/2 

fBhd ~ l=& f, hdo fshdo 

< C (So" fs( Ashr /h- X )2 do)l/2 < C~3. 
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Similarly, if we use the analogous statements to (3.9) w i t h  h/ABhj in place of ABhj /h  
we obtain 

f .  
- 1 < Ce3. 

f .  A. j dO 
Finally, using (3.11) we see that  IAB-11<Ce 3. It follows that  we can replace AB by 1 

in the inequality (3.9). This bounds the first term in part (d) of Lemma 3.7, and the 

second term is similar. 

PROPOSITION 3.14. Let 12j tend to f~ in the Minkowski metric. Suppose (for con- 

venience) that f~ contains a ball around the origin. With the notations above, 

~s Ih~-h21 dO --. 0 as j ---* oo. 
n 

Proof. Since p0>2, we can choose q, l < q < o c ,  so that  2q~=p0, where 1/q+l/qt=-l. 

Let e>0  and p=2q, and choose 5 according to Lemma 3.7. Then using Schwarz's in- 

equality, Proposition 3.2 and HSlder's inequality, we find 

\ i / 2  - - 2 \ 1 / 2  

~C(~ h-~_l 2qdo)l/2q(fF~t2q')l/2q'" 
The first factor is bounded by Lemma 3.7 and the second by Proposition 3.2, so 

On the other hand, 

;I h 2-h21 dO <~ Ce. 

j f S n \ F I h  2 -h21 dO ~< fsn\F(h~ +h2) dO. 

H51der's inequality, Proposition 3.2 and Lemma 3.7 give 

and there is a similar estimate with hj in place of h. This proves Proposition 3.14. 

We are now ready to prove Theorem 3.1. We follow the procedure of ICY], [J, 

p. 392]. Let E be a closed subset of S n. We redefine the Gauss map as a set-valued 

function: 

g(x) = {~ e Sn : (x ' -x ) .~  < 0 for every x ' e  f/). 
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In other words, g(x), is the set of all outer normals ~ of the support planes of ~t at x. The 

mapping g is single-valued except on a set of surface measure zero. Define the inverse 

image 

g- l (E)  = {x C 0a :  g(x)nE # z}. 

Then 
f 

#(E) = Ig_I(E) h 2 da 

and similarly for #j. Our goal is to prove that #5 tends weakly to #. Note that the 

densities ~2 and ~2 are the densities of these same measures but with respect to the 

polar coordinate 0 and the radial projections 05 and #, not the Gauss maps. We will try 

to avoid confusion by using the variable ~ to denote the variable on the Gauss sphere. 

Proposition 3.14 implies, in particular, that 

 2(O)dO--O as j- oo. (3.15) 

Recall from ICY], [J] that g-l(E) is a closed subset of 0i2. Moreover, if ~jegj(xj), ~j 
tends to ~, and xj tends to x, then xEO~ and ~Eg(x). Let U be an open neighborhood in 

0~ of the closed set g-I(E). It follows that O;I(g;I(E))cQ-I(U) for sufficiently large j.  

Therefore, 

limsup #j(E)<. .lim [ hi(0): dO <~ [ h(O) 2 dO. 
j--.~ 3 ~ Jo-~(u) Jo-~(u) 

Taking the infimum over all UDg-I(E) we find that 

lim sup #j (E) ~< #(E). 
j - - - , ~  

It then follows from (3.15) that for every open set V c S  '~, 

li m inf #j (V)/> #(V). 
3----~ OO 

Let/5 be any weak limit of a subsequence (or subnet) of #j. Then fit(E)~#(E) for every 

closed set E and 15(V)>~#(V) for every open set V, and since 

and similarly for/3, we have f~=#. 
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COROLLARY 3.16. Let f~o and f~l be open, bounded convex domains. Let go be the 

Gauss mapping for ~o, ho=lVUol where Uo is the equilibrium potential for f~o and let 

dao be surface measure on OQo. Finally let Ul be the support function of Q1. Then 

lira cap(f~o + t g h ) - c a p  Qo fo = ul(go(x))ho(x) 2 dao. 
t---*0+ t flo 

Proof. For any vEC(S "~) and any bounded open convex domain 12, define 

M(v, ~) = fo v(g(x))lvv(x)12 d~(X) 

where U is the equilibrium potential for f~, g is the Gauss map and da is surface measure. 

As a consequence of Theorem 3.1, M is jointly continuous when v varies in C(S n) and f~ 

varies in the Minkowski metric, provided the diameter and inradius of the convex bodies 

are uniformly bounded above and below. Consider a sequence of smooth strongly convex 

domains ~0(k) and ~l(k)  tending to ~o and f~l, respectively, in the Minkowski metric. 

Let 

Note that  

fit = ( 1 - t ) f t 0 + t f t l ,  f~t(k) = (1 - t )120(k)+t f t l (k ) ,  

f(t) =cap(Ft0+tQ1) ,  re(t) =cap(f~t) 1/(N-2) 

fk(t)=cap(f~o(k)+tfh(k)), mk(t)=cap(f~t(k)) 1/(N-2). 

ink(t) = ( 1 - t ) f k ( t / ( 1 - t ) )  1/(N-2). 

Let ut k be the support function of ~tt(k). Proposition 2.10 (a), the chain rule and formula 

(1.3) imply 

m~(t) = ~ - 2  cap ftt(k)-l+l/(N-2)M(uk--u~, fit(k)). 

Because, by Theorem 0.9, mk is a concave function of t, we have 

m~k(t) <~ mk(t)--mk(O) <~ m~(O) 
t 

for 0~<t~<l. Take the limit as k tends to infinity with t fixed. Because M is continuous 

and because capacity is continuous in the Minkowski metric, 

cap ~tl+l/(N-2)M(Ul --uo, f~t) m(t)--m(O) 
<~ 

N - 2  t 

Now take the limit as t tends to zero to find 

lim m(t)-m(O) 
t-~O+ t 

c a p  Qol+I/(N-2)M(Ul - u 0 ,  QO) 

N - 2  

1 
cap ~ol+l/(N-2) M(Ul --uo, ~o). 

N - 2  
(3.17) 



20 D. JERISON 

This is equivalent to the assertion in Corollary 3.16. 

For future reference, we write a dilated version of the first variation formula that  is 

equivalent to the formula in Corollary 3.16. 

lim c a p ' t - c a p ' t 0  = f o  (ul-u~176176176 (3.18) 
t-*0+ t 9to 

We will now deduce an isoperimetric inequality from Borell's theorem. 

COROLLARY 3.19. There is a dimensional constant CN such that for any convex 
domain ~ in R N, N>>.3, 

(cap ~)(N-3)/(N-2) < CN~o h2 da 

and the constant CN can be chosen so that there is equality when ~ is a ball. 

Proof. Note that  if aN is the constant of (0.1), and B is a ball of radius r,  then 

cap B=rN--2/ag. Choose r so that  cap 9t=cap B. Then Borell's theorem implies 

c a p ( ( 1 - t ) ~ + t B )  >1 cap B 

for 0~<t~<l. In particular, the derivative at t = 0  is nonnegative. By (3.18) and Proposi- 

tion 3.16 this can be written as 

o (r-u)h2 da>lO 

with equality if ~ is a ball. But this inequality can be seen to be the same as the one in 

Corollary 3.19 by writing 

r f O~h2 da >~ ~O~uh2 da=(N-2)capa-= (N-2)rN-2aN 

and dividing by r. 

Note that  the analogy with perimeter is valid if one keeps in mind that  the degree 

of homogeneity of capacity is N - 2  and the degree of homogeneity of h 2 da is N - 3 .  In 

particular, in the special case N = 3 ,  

o h  2 da ~> 4 r  = vol S 2 (3.20) 

for any convex domain 9t in R 3 with equality if f~ is a ball. 
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4. E s t i m a t e s  o n  e c c e n t r i c i t y  

The bounds on eccentricity of convex bodies that  we are going to derive will depend on 

comparisons with ellipsoids, and, in addition, on comparisons to a semi-infinite strip. 

LEMMA 4.1. Let ~ be a bounded, open convex domain. There is a translation and 

rotation of ~t and an ellipsoid 

such that 

$~_ x E R N  : E xj - ~ < 1  
j=l b~ 

$ c ~ c N $  

where N $ = { N x : x E E } .  

This lemma is due to F. John; see also the elementary proof of Chrdoba and Gallegos 

[Gu, pp. 133-134]. We will always use the convention that  bl <.b2<....<~bN. Lemma 2.1 

implies in particular that  the diameter of ~t is comparable to bN and the inradius is 

comparable to bl. Thus we can define the eccentricity of ~2 as the ratio bN/bl. 

The equilibrium potential for an ellipsoid has a simple explicit form, which we now 

derive using a separation of variables. (See [K] for the case N=3. )  Let ~ ' = R N \ $ .  For 

xE~' ,  define )~(x)>~0 by 
N 2 

xj (4.2) 
= b~ +~(x) - 1 .  

Note that  A(x)=0 for xEO$. Let 

N 

,(s) = H (b~ +s) 
j=l 

Then one can calculate that  
A)~ 1 r 

IV.Xl e 2 r  

It follows that  AF(A(x))=O if and only if 

r  �89162  = o. 

The solution 
F ( ) ~ ) = ~  ~ ds 

vG~ (4.3) 
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satisfies F(A)--~0 as A-*co. Therefore, U(x)=F(A(x))/F(O) is the equilibrium potential 

for s Next, observe that  

lim Ix}N-2F(A(x)) = � 8 9  
X ---'> C r  

Thus there is a dimensional constant CN such that  

c a p S -  CN 
F(O)" (4.4) 

It is easy to calculate that  if bN<~C, then F(O)>~clog(1/b2). In other words, 

Remark 4.5. If bl <. b2 <~... <~ bN <~ C and b2 < 1, then there is a constant C p depending 

on C for which 
C' 

cap s <~ 
log(i/b2) " 

Consider the conformal mapping 

f(z)= (w+l)l/2(w-1) 1/ aw 

in which the integral is defined in the upper half-plane with the branches of the square 

roots specified by 0~<arg(w+ 1) ~Tr and 0~<arg(w- 1) ~<Tr. The upper half-plane is mapped 

to the complement of a semi-infinite strip 

11 S = {s+i t :s  > 0, Itl < c}, where c = - i f ( i )  = (w+1)l/2(1-w) 1/2 dw. 

If f (x+iy)=s+i t ,  then we define a positive harmonic function in the region C \ S  that  

vanishes on the boundary by F(s+it)=y.  The lemma that  follows gives the size of this 

variant of Green's function at a unit distance from the boundary. 

LEMMA 4.6. There is an absolute constant A such that for every s> l, 

A - i s  -1/~ <~ IF'(s+ic)l <~ As -1/2 and A - i s  1/2 <<. F ( - s )  <~ As 1/2. 

Proof. Note that  

lim f ( i y ) _  1 
y--+ c~ y2 2" 

Thus, by Harnack's inequality, if s=-Tyl 2, F ( - s )  is comparable to y. This proves the 

second estimate. For the first estimate, let x > l  and define 

s ( z ) = f ( x ) - f ( 1 )  = f ( x ) - i c =  (w+1)l/2(w-1)l/2dw. 

Then f (x)=s(x)+ic,  and one can compute that  s(x)/x2---~�89 as x-*co. In addition, 

iF,(s(x)+ic) I_  1 = ( x+I ) -W2(x -1 ) - I / 2=x - I+o(x -1 )  as x-*co.  
[if(x)[ 

This implies the first estimate. 

Next, let us recall several theorems of Dahlberg, which will be used to estimate the 

density h in terms of the equilibrium potential U. 
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T H E O R E M  4.7. Let r  satisfy IVr in Ixi<2r. Let V be a positive 

harmonic function in the region {(x,y):  Ixl<2r, r < y< lOr} satisfying u(x, r  

for Ixl<2r. Let X = ( 0 , r  Then the following are comparable with constants de- 

pending only on the Lipschitz constant L and on the dimension n: 

,,1/2 
r ~ r - n  r - n  

Moreover, if W is a function satisfying the same hypotheses as V, then 

V(Y)  Y (X)  
w(Y) w(x) 

for all Y=( z , r  such that IxL<r and O<t<r.  

For proofs see [D], [JK1]. 

Denote f+(~)=max(f (~) ,  0). Denote 

A I =  ~ d#, A2= infs~n(e.~)+ d#. 

PROPOSITION 4.8. Let fl be a convex domain in R g such that g.(h 2 da)=d#. As- 

sume that A2>O. If N>/4, then the diameter and inradius of f~ are bounded above and 

below by constants depending only on A1 and A2. If  N=3,  then g.(h 2 da) is unchanged 

after dilation of 12, and ~ can be replaced by a dilate for which the diameter and inradius 

are bounded above and below by constants depending only on A1 and A2. 

Proof. Translate fl so that the origin is the midpoint of a diameter. Let e E S '~ be a 

unit vector in the direction of that diameter. Then 

(~.e)+ diam f~ <~ 2u(~). 

Therefore 
g *  

2 cap ~t---- 2 ] s u d #  ~ diam f~ ]s(~.e)+ dtt ~ A2 diam ~. 

This can be rewritten as 
diam ~t ~< 2 cap_____~ (4.9) 

A2 

When N = 3 dilate fl so that  cap f l = l  to obtain an upper bound for the diameter. When 

N ~> 4, apply the isoperimetric inequality (Corollary 3.19), 

A ~ N - 2 ) / ( N - 3 )  
diam f~ ~< 2CN (4.10) 

A2 
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Thus we have an upper bound on diameter in all dimensions. 

To obtain the lower bound on the inradius, we first derive a lower bound on cap ~t. 

When N = 3 ,  the normalization c a p ~ = l  gives the lower bound. When N~>4, note that  

~ c B  for a ball of radius d i a m ~  and hence 

cap ~ ~< cap B ~ CN (diam ~)N-2. (4.11) 

But (4.9) implies A2 diam ~t~<2 cap ~, so 

A2 ~< 2CN(diam ~)N-3.  

Since N~>4, this gives a lower bound d i a m , .  Combining this bound with (4.9), there is 

a dimensional constant c>0  such that  

cA~ N-2)/(N-3) ~ cap ~.  (4.12) 

Thus in all dimensions we have a lower bound on cap ~. 

Let $ denote an ellipsoid with semi-axes bl <. b2 <~... ~ bg such that  $ C ~t C N$.  Since 

bN is comparable to diam ~/ the  upper bound on diam ~, the lower bound on cap ~ and 

(4.11) imply that  bN~l.  Remark 4.5 implies that  if b2 (and hence bl) tends to zero and bN 

is bounded above, then cap N $  tends to zero. But we have just shown that  the capacity 

of ~ is bounded below, so it must be that  b2~>c>0. Finally, if O < C - l < b2~bg~C  and 

bl tends to zero, then we will show that A1 tends to infinity. 

LEMMA 4.13. Suppose that bl ~b2~. . .~bg are the axes of the ellipsoid associated 

to the convex body ~ by John's lemma. Let C be a constant such that C - l  <b2~bg~C.  

There is a constant c>0  depending only on C and N such that 

A1 = ~o h 2 da > clog(1/bl). 

Proof. Rotate and translate ~ so that  s  Denote G (x )= l -U (x ) .  Notice 

that  for points at a unit distance from ~, G(x) is comparable to 1. This follows from 

Harnack's inequality, the fact that  GNE <~G~GE and easy, explicit estimates on the size 

of the equilibrium potential for ellipsoids. 

Let w={xER~:(s ,x)Egt  for some s e R } .  In other words, w is the projection of ~t 

in the direction perpendicular to the xl-axis. It follows that  w is convex and the ellipsoid 

comparable to w has semi-axes comparable to b2, b3, ..., bN. We assert that  the "top" 

and "bottom" of the domain gt as a graph over w are given by Lipschitz functions with 

a uniform Lipschitz bound away from Ow. More precisely, 
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Remark 4.14. ~={(s ,x)ER• for a convex function f l  and a 

concave function f2, and for all x E w such that  dist (x, Ow) > bl, 

IVf~(x)l ~< 2N. 

Proof. A tangent plane P={(f2(x)+a. ( z - x ) ,  z):  z e R  '~} to the graph of f2 through 

(f2(x), x) does not meet the cone of rays from (f2(x), x) through ( f l (z) ,  z) for all z such 

that  ]z-x]<bl. But because ~ C N E ,  If2(x)-fl(z)l<2Nbl. It follows that  the slope 

with respect to the vertical axis x~ of any line of P through (f2(x), x) is at most 2N. 

Let b=Nbl. Consider x as in Remark 4.14 and let z be a point of Ow with r =  

Ix-zl=dist(x, Ow)>2b. We claim that  there is a constant c'>O such that  

G((f2(x)+bl, x) ) > c'br -1/2. (4.15) 

To prove (4.15), translate and rotate w so that  the projection of z onto Ow is the origin 

and the tangent plane to 0~ at the origin is the plane x2=O. (The rotation scrambles 

b2, ..., bN, but we are assuming that  these numbers are all comparable-- the region w has 

bounded eccentricity.) Let b--Nbl. ~ is contained in the region 

S = { x c R N : I x l l  <b,  x2 >0}.  

Let F and c be the function and constant of Lemma 4.6. Then 

u(x) = bl/2 F(cx2/b+icxl /b) 

is positive and harmonic in the complement of S and vanishes on OS. The first bound 

of Lemma 4.6 may be restated to say that  there is an absolute constant cl such that  for 

all xCOS with x 2 > l ,  

IVu(x)l > clx~ '/2 (4.16) 

The second bound implies that  for any constant C there is a constant C1 such that  if 

x e R N \ $  and Ixl<C, then 

u(x) < C1. (4.17) 

Let G =  1 - U ,  then the maximum principle implies that  there is a constant C2 such that  

u < c 2 G  (4.1s) 

for all Ixl < C  in the complement of $.  Let r>2b and consider points 

x~ x3,...,XN), x 1 _-- x~ (b, 0, ..., 0). 
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Let B={xERN:xl=b,  Ix-x~ <b}, the surface ball on 0 5  of radius b around x ~ Recall 

that  the surface area of B is comparable to b ~ with n = N - 1 .  A change of variable of 

Proposition 4.7 from unit scale to scale b yields 

BlVUl da ~ u(xl)b ~-1 

so that  (4.16) implies there is a constant c2 >0 such that  

c2br -1/2 >~ u(xl ). 

Hence, by (4.18), there is a constant c3 such that  

G(x 1) > c3r-1/2b 

which, using Harnack's inequality, is the same as assertion (4.15). Consider the surface 

ball 

B(X) = {Z e 0~2: I Z - X  I < bl} where X = (f2(x), x). 

For x at a distance r from Ow, r>2b, Remark 4.14 says that  f2 is a Lipschitz function, 

so the rescaled version of Proposition 4.7 applies to the function G and implies 

B [VGId(~bn-lG(X-~(b'O'""O))~r-1/2bn" 
(x) 

It follows from Schwarz's inequality that  

s (x)  ]VGI2 da >~ r-la(B(X)).  

Let Ak ={(f2(x) ,  x) : 2kb,.<dist((x2, ..., xy), Ow) <2k+lb}. For 1 <2 k < 1/b, the regions Ak 

have area comparable to r=2kb and 

A IVGI2 da )c4>O 
k 

independent of k. Summing over k we find the estimate of Lemma 4.13. This also 

concludes the proof of Proposition 4.8. 

5. Exis tence  of  so lut ions  

We begin with the case of polyhedra. Consider a collection {~(1), ..., ~(m)} of unit vectors 

in R N with the properties: 

for any unit vector v, there exists j such that  v.~(j) > 0, (5.1) 

I~(j)+~(k)l > 0. (5.2) 



A M I N K O W S K I  P R O B L E M  F O R  E L E C T R O S T A T I C  C A P A C I T Y  27 

Consider any p � 9  m with all nonnegative entries, and define 

~(p) = {x �9 RN: x.~(k) <. Pk, k = 1, ..., m}.  

Then ~(p) is a closed, convex subset of R N and (5.1) implies that  ft(p) is bounded. 

Denote 

J~  = {p E Rm:  Pk ~ 0 for all k, cap(~(p)) ~> 1}. 

Let c1, ..., cm be a sequence of positive real numbers satisfying the compatibility condition 

m 

=0.  (5.3) 
k----1 

(This is a vector equation in R iv, so it imposes N conditions on the numbers ck.) Denote 

m 

r  = 

k~-i  

THEOREM 5.4. Let ~(k) and Pk satisfy the conditions (5.1), (5.2) and (5.3). There 

exists p* E M such that 

min (I) -- (I) (p*) > 0 
2,4 

and the polyhedron ~(p*) has faces Fk with outer normal ~k satisfying 

and these are the only faces. 

IVUI 2 do Ck-- N - 2  

Before we begin the proof let us remark that  while conditions (5.1) and (5.3) are 

necessary, condition (5.2) is not. We have imposed it for our convenience in proving 

that  the minimizing convex body has nonempty interior. Even without (5.2), this can be 

proved using the inradius estimate (Proposition 4.8). There is no need to carry out that  

argument because we can easily approximate any sum of point masses by a sum at points 

satisfying (5.2). Perhaps a more interesting remark is that  if properly formulated, this 

variational procedure gives the solution to the problem in the general (nonpolyhedral) 

case. The proof of this relies on the uniqueness in the Borell inequality (Theorem 0.10) 

and will be carried out in [CJL]. However, this technique does not give an independent 

proof of existence because the proof uses the fact that  the solution has been constructed 

already, by the method given here. 
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Proof of Theorem 5.4. It is obvious that  a minimizing sequence is bounded. So one 

can take a convergent subsequence. The limit will be a minimizer because capacity is 

continuous in the Minkowski metric. Also, we have 

cap a (p*) = 1. 

Furthermore, 

Indeed, assume that  O(p*)=0. 

(5.5) 

min �9 > O. 
M 

Then p* =0 and condition (5.1) implies that  ~(p*) is a 

single point (the origin). This contradicts the fact that  its capacity is 1. Moreover, we 

claim that  fl(p*) has nonempty interior. If ~(p*) had empty interior, then (5.2) would 

imply that  it is contained in a plane of dimension N -  2. But such a set has zero capacity. 

Note that  the vector p* is not unique. Let x~ N. If pEA/I, then the vector q 

defined by iSk =Pk +x ~ ~k satisfies 

~(q)=gt(p)+x ~ and ~ (q )=~(p ) .  

(This is where we use the assumption (5.3).) Because ~t(p*) has nonempty interior, one 

can translate the origin to the interior of ~(p*) so that  

p~ > 0 for all k. (5.6) 

Consider pEP for which pk>~O, then ~(tp+(1-t)p*)=A and the fact that  A is the mini- 

mum of �9 over A/[ implies that  capl2(tp+(1-t)p*)<~l for 0 ~ t ~ l .  Moreover, 

t~(p)+(1-t)~(p*) c ~t(tp+(1-t)p*). 

Since cap~t(p*)=l,  we have 

lim cap(t~(p)+(1-t)gt(p*))-cap ~(p*) <~ O. 
t--~0+ t 

For p near p*, the support function v of ~(p) satisfies 

=pk 

for all k such that  wk>0. Therefore, Proposition 3.16 and (3.17) imply 

lira cap( tg~(p) + (1-  t )~(p* ) ) -cap ~(p* ) = E (pk _pk Wk. 
t- *O + t 

k 

Therefore, 

Y: (Pk--Pl) k 0 
k 

for all pCP near p*. Property (5.6) says that  the values of p for which Pk ) 0  form a full 

open neighborhood of p* in P. Therefore, 

= 0  
k 

for all pEP. In other words, P=P'  and Wk=(N--2)ck/s 



A M I N K O W S K I  P R O B L E M  F O R  E L E C T R O S T A T I C  C A P A C I T Y  29 

LEMMA 5.7. Let # be a positive measure on the unit sphere S n which is a finite 

sum of point masses. Suppose that it satisfies 

(a) u(H) > 0 for eve  hemispher  H =  S n- > 0}, 
(b) if it assigns a positive mass to a point, then it assigns no mass to the antipodal 

point, 

(c) fso  5it(x)=0. 
I f  N = n +  l >~4, then there exists a bounded convex polyhedron ft in R g such that 

g . (h  2 da)=dit ,  l f  N = 3 ,  then there exists t > 0  and ft such that 9.(h 2 da)=td i t .  

Proof. The measure it can be written 

m 

k = l  

for some positive constants ck. Conditions (a), (b) and (c) are equivalent to (5.1), (5.2) 

and (5.3). Therefore, by Theorem 5.4, there is a number t > 0  and a convex body [2 such 

that  

9. (h 2 da) = t dit. 

If N~>4, then one can dilate ~2 to achieve any multiple of it. (If N = 3 ,  then g.(h  2 d~r) is 

dilation invariant.) 

THEOREM 5.8. Let it be any positive Borel measure on the unit sphere S n, satisfying 

(a) and (c) of Lemma 5.7. I f  N = n + l ~ > 4 ,  then there exists a bounded convex domain 

f~ in R g such that g,(h 2dcr)=dit. I f  N = 3 ,  then there exists A>0 and ~2 such that 
g. (h 2 da) = ~ dit. 

Proof. It follows from (a) that  

inf f (e.~)+ dit(~) > 0. 
e E S n  J s n  

Let itj be a sequence of positive measures that  are finite sums of point masses such that  

itj tends weakly to #, each itj satisfies Lemma 5.7 (a), (b) and (c), and 

inf f (e.~)+ditj(~)>jc>O for ally. 
e c S  ~ J S  ~ 

Let N~>4. Lemma 5.7 implies that  there is a convex body f~j associated to each itj 

and Proposition 4.8 implies that  there is a uniform lower bound on the inradius and 

upper bound on the diameter of the domains f~j. Therefore, by the Blaschke selection 

theorem there is a subsequence that  converges in the Minkowski metric to a domain fL 

Finally, Theorem 3.1 implies that  the measure associated to f~ is it. The case N = 3  is 
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similar. Dilate all the domains ~ j  to have diameter 1 and replace ~ j  by a subsequence 

that  converges in the Minkowski metric. The domains ~ j  are associated to measures 

tj#j,  and Theorem 3.1 implies that  the measures t j# j  converge weakly to a measure t# 

associated to ~. 

6. E s t i m a t e s  for  h a r m o n i c  m e a s u r e  

Consider a convex domain ~t of bounded eccentricity. After translation we may assume 

that  

Br0 c c BRo. (6.1) 

The ratio Ro/ro is known as the eccentricity of ~. The boundary of a convex domain is 

represented locally as the graph of a Lipschitz function with Lipschitz constant depending 

only on the eccentricity of the convex domain. 

LEMMA 6.2. Let V, X and r be as in Theorem 4.7. Suppose further that the 

function r is concave. Then the following are comparable with a constant depending only 

on dimension and the Lipschitz constant of r 

Y ( Z )  
- -  ~ min IVY(x,r  I. 

r Ixl<r 

Proof. Fix any point Z=(x,  r  with Ixl < r ,  and choose a new coordinate system so 

that  Z is the origin and Yl < 0 for every y E ~. The half-ball B + = {y E R g :  l Yl < r, Yl > 0} is 

such that  its flat boundary is tangent to the graph at Z. Let Y={yEOB + : lyI =r, yl > �89 

By Harnack's inequality, V(y)~cV(X)  for yEY.  It follows from explicit calculation of 

the Poisson kernel of the half-ball that  if the function v satisfies Av=O in B +, v ( y ) = l  for 

yEY,  and v = 0  on OB+\Y, then (O/Oyl)v(O)>c/r. On the other hand, the maximum 

principle implies Y(y)>~cY(X)v(y). Since v(0)=0,  we have (O/Oyl)Y(O)>cY(Z)/r, as 
desired. 

Note that  when Lemma 6.2 and Theorem 4.7 are applied to the function V = G = 1 - U 

defined on ~ '  we find the following comparability depending only on eccentricity of gt: 

1 h 2 da .~ ~ h da ~ ~ min h 
r s 

(6.3) 

where, as usual h=IVUI=IVG I and S=B(x,r)MO~t for any r< l r o  and xEO~. 

Make a dilation so that  r0--1 and R0 is the eccentricity of ~. We will retain this 

normalization through much of this section. Cover 0 ~  by finitely many balls of radius 
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comparable to ro=l. It then follows from (6.3) that  there is a constant C depending 

only on the eccentricity of ~ such that  

~0 h2da<~C and minh2~>C -1. (6.4) 

The main point of this section is to derive estimates like (6.3) and (6.4) for certain 

"slices" or cross sections of 0~  that  need not be comparable to balls. These slices are 

needed for Caffaretli's regularity theory for the Monge-Amp~re equation. 

Consider a bounded, open, convex subset E of R n. The John lemma can be restated 

to say that  there is an affine linear transformation T (namely the one that  takes the 

ellipsoid E to the unit ball) for which 

B1 C TE C B~ 

where Br denotes the ball of radius r about the origin in R ~. We will call TE the 

normalization of E.  Let S(x, E) denote the family of all pairs of points (x ~ x 1) in OE 
for which x is on the segment joining x ~ to x 1. Define 

5(x, E) = min Ix -x~  
(x~  I x - - x l l  " 

It is invariant under all linear transformations (not just dilations), because x, x ~ and 

x 1 are collinear. On the other hand, it is easy to see that  the distance 5(Tx, TE) is 

comparable to the distance from Tx to O(TE) and also that  it is comparable to the 

radial distance ITx-cTxl  where c is chosen so that  cTxEO(TE). Thus we refer to the 

distance 5(x, E)  as the normalized distance of x to OE. The distance 5(x, E)  is defined 

in exactly the same way if E is a convex subset of an n-plane in R N. 

Suppose that  H is a half-space in R N, and HNBro=O. Denote H=OH and F =  

HnO~t. Define P as the radial projection onto H, that  is, if y E H  and P(x)=y, then 

there is a scalar a(x)  such that  x=a(x)y. Let E=P(F).  Then E is a convex subset of 

(a copy of) R '~. Define a normalized distance to the boundary on F by 

F) = E) 

with 5(x, E) as above. It is easy to see that  this distance is changed at most by a bounded 

factor for different choices of P depending on the location of the origin, provided the 

distance from the origin to 0 n  is bounded below by a fixed constant times the inradius. 

THEOREM 6.5. Let ~ be a convex domain in R N, N>~3. There are constants C 
and ~>0, depending only on dimension and the eccentricity of ~ such that 

/FS(X, da(x) <~ Ca(F) F)l-eh(x) 2 min h 2 
F 
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for every set F of the form F=O~NH for some half-space H. (Recall the notation 

h=lVU] on On.) 

The estimate of Theorem 6.5 is dilation invariant, so without loss of generality, 

we will make a dilation so that  r0=  1 and R0 is the eccentricity of ~. Note also that  

the assumption HMBro =HMB1 =0  is not a significant one: As (6.4) shows, a better  

estimate is true for slices F of unit size. From (6.3) we see that  the only difficulty in 

proving Theorem 6.5 will be that  the shape of the set F can be very different from a ball. 

Let 0 denote the unit normal to II pointing into H.  Because HMBI=O, we have 

l<.x.O<.Ro for all x E E. (6.6) 

LEMMA 6.7. Let a denote the inradius of E. There is a constant C1 depending only 

on eccentricity such that for every xEF,  

]x-Px] ~ Cza. 

Proof. Suppose that  Ix-Px]>Cla.  The convex hull of x with B1/2 is contained 

in ~. The cross section at Px in the direction perpendicular to x is an n-disk centered 

at Px of radius at least Cla/Ro. It follows that  E contains a ball of similar radius and 

for C1 sufficiently large this contradicts the assumption that  a is the inradius of E.  

LEMMA 6.8. I f  X 0 and x 1 belong to F, 5 ( x l , F ) ~ l ,  and a is the inradius of E as 

in Lemma 6.7, then 

min h ~< C min h. 
B~ (x 1 ) N0fl Ba (x 0) N0fl 

Proof. Choose x2EOENOF such that  Px 1 is on the segment joining Px ~ and x 2. 

Then since the normalized distance of Px I to the boundary is comparable to 1, 

Define the dilation 

with s chosen so that  

]Px  0 - P x  1 ] ~ 62  [Px I -x21. 

r = s(x-x2) +x2 

(6.9) 

~(Px  ~ = Px  1 . (6.10) 

It follows from (6.9) that  l>~s>l/(l+C2). The function G(cb-~(x)) is a positive har- 

monic function in the complement of ~ (~)  that  vanishes on the boundary and tends to 

1 at infinity. Since ~ ( ~ ) C ~ ,  the maximum principle implies 

C(x) < a(r  
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for every x E ~Y. We will choose a number L sufficiently large depending on Ro such that  

the points z = ( l + L a ) P x  ~ E~'  and x=O(z )  E~ '  satisfy 

dist(z ,O~).~a and I z - x~  <<.Ca, (6.11) 

and 

dist(x,O t), a and Ix-x l < Ca. (6.12) 

The second assertion of (6.11) is obvious with C=L.  Lemma 6.7 imphes that  the distance 

to E of every point of F is less than a multiple of a. On the other hand, the distance 

from z to H is O . ( z - P x ~  ~ and (6.6) implies O.Px~ Hence the distance 

from z to 0~t is comparable to a. The proof of (6.12) is somewhat similar. First of all, 

x = ~ ( Z )  = P x  I + s L a P x  ~ 

Thus I x -  xl  I <~ I P x l  _ xl  I + s La l P x ~ I <~ Cl a + s La. The distance from x to II is sLaB. P x ~ >1 

sLa. It follows by similar reasoning to the proof of (6.11) that  for L sufficiently large the 

distance from x to 0~  is comparable to a. 

Finally, (6.11), (6.12) and Lemma 6.2 imply that  G(z) is comparable to minB,(~o) h 

and G(x) is comparable to minB,(xl) h. Since G(x)<,.G(z), Lemma 6.8 follows. 

Our main lemma is 

LEMMA 6.13. There are constants C and r  depending only on dimension and 

Ro such that for every x 1EF, 

1 /B  h da ~ C~(x 1, F )  -1+~ min h. 
a(S (x l , a ) )  (~,a) F 

Proof. Let x ~ be a central point, 5(x ~ F ) ~ I .  Choose x 2 EOFNOE such that  P x  1 is 

on the segment with endpoint P x  ~ and x 2. We will use the same dilation as in Lemma 6.8, 

but  note that  this time the factor s may be arbitrarily small. It is x ~ that  is near the 

"middle" of F,  not x 1. Let r=[x~  Then 

~(X 1, F) ~,~ I P x l  -x21 
r 

If 6(X 1, F ) ~ I ,  then Lemma 6.8 implies 

min h <~ C min h ~ C min h, 
Ba (~1)nOn Ba (s o)o0fl F 
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so we are done. Let us assume from now on t ha t  •(x I , F )  is much smaller than 1. In 

particular, we can suppose that  [ x i - x 2 [ < l r .  Let U=ftNB(x ~ lr). Let F denote 

the cone {x2+t(x-x2):xEU, t>0}.  Denote by a r a  positive harmonic function on the 

complement of F that  vanishes on the boundary. The function a r  is unique up to a 

multiple and homogeneous of the form 

ar(x) = Iz-x2]" f ( (x -x2) / ]x -x21)  

with ~ > 0  bounded below by a constant depending only on the eccentricity of ~t. Choose 

a point x 3 at distance r from F and at most 2r from x 2. Normalize a r  so that  Gr(x3)=  

G(x3). We claim that  there is a constant C depending only on eccentricity for which 

a(x) <~ Car(x) (6.14) 

for all xeB(x 2, �88 To prove this, let F1 be the convex hull of U with x 2 and let 

G: be the positive harmonic function in the complement of F1 that  vanishes on 0F: 

normalized by a:(x3)=a(x3). Note that  r : n B ( x  2, �89 2, �89 Because fl is 

convex, it follows that  B(x 2, �89  is a Lipschitz domain. It follows from Theorem 4.7 

that  G1 and a r  are comparable at all points of B(x 2, �88 On the other hand, 

Harnack's inequality implies that  G1 is comparable to G(x 3) on all of OB(x 2, 3r). Since 

F: c~t, we see that  G:/>0 on 0~t. Therefore, the maximum principle applied to the region 

B(x 2, 3r)\~2 implies that  a(x)<.CGl(X) for all xeB(x 2, 3r)\f l .  This proves (6.14). 

Next, the same argument as in the last line of the preceding paragraph shows that  

Gr(x)<.CG:(x) forallxeB(x2,3r)\r. On the other hand, B(x  ~ �89 ~ �89 

so an argument similar to the one above using Theorem 4.7 implies that  G: and Gr  are 

comparable at all points of S(x ~ �88 F. Putt ing these two estimates together, we have 

at(x) < ca(x) (6.15) 

for all xEB(x ~ �88 

For sufficiently large C depending only on eccentricity, the segment S =  { (1 +Ca)x: 
x =tPx~ (1 -  t)x 2, 0 <~ t ~< 1 } has the property that  every point x E S is at a distance com- 

parable to a from F and from ~. This can be seen from the construction of F and 

Lemma 6.7. It follows that  (l+Ca)x 1 e S ( x  2, �88 and by (6.14), 

G( ( l +Ca)x 1) < CGr( ( l +Ca)x: ). 

Similarly, (6.15) implies 

ar( ( l +Ca)x ~ ~ Ca( ( l +Ca)x~ 
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Let z be 5r distance along the ray from x 2 to ( l + C a ) x  ~ In other words, z is at a height 

5a above F and very near P x  1. Hemisphere plus Carleson lemma comparison implies 

Gr(z) 

and homogeneity of degree e implies 

Gr(  (l + C a ) x  1) 

Gr(z )  = 5EGr(( l+Ca)x~ 

Combining these inequalities, we have 

G( (l :~-Ca)x 1) <~ C$-l+~G( (l  +Ca)x~ 

which, by (6.3), is the same as the conclusion to Lemma 6.13. 

Lemma 6.13 is not quite sufficient to prove Theorem 6.5 because a covering of F by 

balls of radius a can fatten F significantly. We take care of this excess with the following 

geometric lemma. 

If Q is a cube in R ~ of sidelength s, denote by Q* the concentric cube of side- 

length bns. (The multiple bn will be chosen later.) Let IS I denote the Lebesgue measure 

of a set S. 

LEMMA 6.16. Let E be a convex subset of R "~ with inradius a. Choose coordinate 

axes parallel to the axes of an optimal inscribed ellipsoid in E. Let Q be a tiling of E by 

cubes with sides of length s parallel to the coordinate axes. Assume that s<a.  For each 

cube Qe Q, denote 

max 
xEQ*NE 

Then, 

[QI ~< C~lE]. 
{Q:~*(Q)<6} 

Proof. The proof is by induction on dimension. The case n = 1 is easy. Let Pk: R ~--* 

R n-1 be the orthogonal projection onto the plane perpendicular to the xk-axis, that  

is, Pk(Xl, x2, ..., xn) =(x l ,  x2, ..., Xk-1, Xk+l, ..., Xn). To prove the induction step we first 

prove 

LEMMA 6.17. There are dimensional constants c~>0 and Cn such that if E c R  ~ 

is a convex set and Q is a cube satisfying 

(a) Q N E ~ Z ,  

(b) for any x E Q * A E ,  5 ( x , E ) < 5 ,  

(c) IQ*~)El<cnlQI, 
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then there exists k such that 

5(x',Pk(E)) <On5 for any x'EPk(Q)*MPk(E). 

Proof. The John lemma and (c) imply that  Q* ME is contained in an ellipsoid of 

volume at most c~nns n. Translate all the sets so that  the ellipsoid is centered at the 

origin. If cn is chosen sufficiently small, then at least one axis of the ellipsoid has length 

less than s. In other words, there is a unit vector v such that  Q*MEc{xER~:Iv.x] <s}. 
There is a component vk of v of length greater than 1/v/n. We will show that  the 

conclusion of Lemma 6.17 is valid for this index k. For notational simplicity, assume 

that  k=n. 
Let x'EPn(Q)*NPn(E), and let I denote the set of all xeE such that  Pn(x):x'. We 

claim that  xEQ*. Suppose not. We will derive a contradiction. Since Pn(x)EP,~(Q)*, it 
must be that  ]x~ ] > b~s. Without  loss of generality we suppose that  x~ > bns. Hypothesis 

(a) says that  there is a point yEE such that  ]y~l<s for all i. Let z=tx+(1-t)y with 

t=bs/xn. Then Izn-bsi<s. Since Pn(x)EP,~(Q)*, we have Ixii<bn_l for all i<n. It 

follows that  

' z i i < ( l + b b n - l ~ s < ( l + ~ )  / 

for all i<n. If we choose b so that  b + l < b n  and l+bbn-1/bn<b~, then zEQ*. By 

convexity, we also have zEE. Therefore, v.z<s. But 

n-1 bs _n ( l  +bb~_l ~s 
v 

i = l  

If we choose b,~=lO(n!) 2 and b=lOn 2, then for n~>2, 

( ~ 1 )  bs _ n ( l + ~ ) s > s "  b s - n  1+ s > ~  

This is a contradiction. Thus we have shown that  IcQ*. 
Hypothesis (b) implies that  $(x, E ) < 5  for every xEI. We will now prove that  this 

implies 5(x', Pn(E)) <CS. Without  loss of generality we can assume that  E is normalized. 

If IMB1/2r then 5>5 ' (x ,  E)  > �89 for some xEI, so the assertion is trivial. Suppose that  

INB1/2=O. Then x' does not belong to P,~(B1/2). For each xeI, denote by c~(x) the 

scalar such that  (l+(~(x))xEOE. Since 5(x, E ) < 5  and a(x)  is comparable to the radial 

distance to the boundary, we have c~(x) <C~i for all xEI. Let x ~ and x 1 be the endpoints 

of I.  Because the segment I is contained in E,  the normal g(x ~ to any support plane 

at x ~ must satisfy g(x~ Similarly, g(xl).en<~O. There is a (not necessarily 



A MINKOWSKI  P R O B L E M  F O R  ELECTROSTATIC  CAPACITY 37 

unique) continuous choice of support plane along the curve g((l+c~(x))x) as x varies 

in I. Moreover, a(x~ so the en component is positive at one endpoint and 

negative at the other. In particular, there exists xEI  such that g((l+a(x))x)'en =0. The 

associated support plane projects to a support plane of P,~(E), so that Pn((l+c~(x))x) 
is a boundary point of Pn(E). Since the distance P~(x) to Pn((l+a(x))x) is less than 

C5 we are done. 

We can now prove the induction step of Lemma 6.16. Define 

Q'={Qe  Q: 5*(Q) <5 and [Q*nEI ~> c,,IQ[}, 

Q" = { Q e  Q: (5*(Q) <5 and IQ*nEI < cnlQI}. 

Then 

~_, ]Q]<~ ~_, c lIQ*nEl=c;l f XQ.(x)dx•C]{xc=E:5(x,E)<5}] 
QeQ, Q~Q, JE Q~C2, 

because a point x can belong to at most finitely many sets Q*. Moreover, I{xEE: 
5(x, E)<5}1 <.CS[E]. This can be checked by reducing by a linear transformation to the 

case of a normalized convex domain. 

Next, define 

Q" = {Q ~_ Q" max 5(x', Pk(E) < CnS}. 
k : x ' e P k ( Q ) *  

Lemma 6.17 says that every cube of Q" belongs to some Q~. Hence, 

72 

E Iol E E siP (o)l 
QcQ" k=l QEQg 

Furthermore, the induction hypothesis implies 

~_, sIPk(Q)l ~ CsbIek(E)]. 
QeQ'd 

Finally, IPk (E)[ is comparable to the product of the lengths of all but the kth axis of the 

ellipsoid associated to E. In particular, IPk(E)l <~C[E[/a where a is the inradius of E. 

But s<a, so, combining the inequalities above, we have 

Q E Q "  

as desired. 
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By summing separately for cubes Q for which 5"(Q)~2 -k, one can deduce from 

Lemma 6.16 that for any c>0, 
O O  

5*(Q)-I+~IQI ~< C ~(2k)l-~2-klEI <~ C~IEI. (6.18) 
QEQ k = l  

If we write ~ : p - l ( Q ) ,  and note that a(~))~[Q[ and a(F)~lEI, then we deduce 

];h2~(x,F)i-'d~ <- ~ ~h~(x,F)~-'do< ~ ~*(O)~-'~h:d~ 
QcQ QEO. Q 

C Z 5*(Q)i-ea(O)~*(Q)-2+2~minh2 
F QEQ 

= C ~ 5*(Q)-l+ea(Q)minh 2 < Cminh  2. 
F F QEQ 

The first and second inequalities are trivial, the third follows from (6.3), the fourth from 

Lemma 6.13, and the fifth from (6.18). This proves Theorem 6.5. 

7. R e g u l a r i t y  o f  s o l u t i o n s  

Let r be a convex function defined on an open set O c R  n. Define the set ~7f(x) as the 

set of all y E R  n such that the plane {(z, zN) ER n • R:ZN=r +y.  (z--x)} is tangent 

to the graph of r at (x,r For a subset F c R n  we define Vr162 }. 
The function r is said to satisfy the Monge-Amp~re equation 

det V2(r = dv (7.1) 

in the sense of Alexandrov if 

vol Vr ---- v(F) (7.2) 

for every Borel set F C O. The set-valued mapping Vr is directly related to the set-valued 

Gauss mapping by 

g((x, r = {~ = (y, -1) /v / l+iYI  2 E Sn: y E Vr 

The coordinate ~ N - - - - - - 1 / / ~  gives the Jacobian of the change of variable: dy= 
]~Ni-Nd~. Thus (7.2) can be rewritten 

v(F) = j~g(~)[~NI -N d~ (7.3) 

where F={(x,  r xEF}. 
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THEOREM 7.1. Let E be a compact, convex domain in R n. Let s>0 and suppose 

that r is a convex function in E that vanishes on OE and satisfies 

det Dij r = dv 

on E in the sense of Alexandrov. Consider a E R  ~ and b E R  such that a.x+b<~O on E. 

Suppose that for  every set F = { x :  r <a-x+b},  

~ 5(x, F) 1-e d~(x) <. C~(�89 

Suppose further that there exist a and b such that V(a,  b)={x: r  contains 

more than one interior point of E.  Then V ( a , b ) A O E  is nonempty. I f  r is strictly 

convex, then r  l't for  some t>0.  

The theorem of Caffarelli is the case ~=1. We need this stronger result for our 

application because in Theorem 6.5, e can be arbitrarily small. The proof follows the 

same outline as [C4], so we only need to explain the details that are different. First, 

recall 

LEMMA 7.2. Let E be an open convex set and suppose that u is a convex function 

satisfying 

det Dij u -~ d# 

in the Alexandrov sense on E and u=O on OE. There is a dimension constant C such 

that 

lu(x)l n < CS(x,  E ) IE I# (E  ). 

Proof. An outline of the proof is given for completeness (see [C4]). After changing 

variables by an affine linear transformation of E, it suffices to prove the lemma in the 

case B1 c E c B n .  After multiplication of u by a suitable constant, we may assume that 

u ( x ) = - l .  It is not hard to check that the image of Vu is a convex set with diameter 

greater than a multiple of 1/5(x,  E)  and inradius greater than 1. It follows that 

= I W ( E ) I / >  - -  
c _ c l , , ( x ) l "  

5(x,E) 

This proves the lemma. 

The next lemma is the new element in the proof. 
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LEMMA 7.3. Suppose that in addition to the hypotheses of Lemma 7.2, B1 c E C B R .  

Let l~>c>0. Then there is a constant C depending on ~ and R such that 

lu(x~ p < c (x ~ 5(x, E)  1-~ d#(x). 

(Note that  Lemma 7.2 is the case E=I.)  

Proof. Without loss of generality, we may multiply u by a constant so that  u(x ~ = 

--1. Define 

sk = s2 -k~ 

with s > 0  and f~>0 sufficiently small that  

oo 

/3n~<~ and E s k ~ < � 8 9  (7.4) 
k--~l 

Denote 

A = 5(x ~ E) ~/E 5(X, E) 1-~ d#(x). 

Our goal is to show that  A is larger than a constant depending on s. Define, for k=0,  1, ..., 

Ek={XEgt:U(X)<, .Ak=--I+sl+. . .+Sk} and 5k=dist(OEk,OE). 

We will prove that  if A is sufficiently small, then 5k tends to zero as k tends to infinity. 

This contradicts the continuity of u at the boundary of E because it follows that  u tends 

to a limit less than or equal - 1  +)-~ sk <<.-1. 

If the sequence 5k does not tend to zero, then there is a smallest value of k for which 

15 5k+l > ~ k. 

Let xkE OEk be a point closest to OE. The segment from x k to OE of length 5k meets 

OEk+ 1, so 

dist(xk, OEk+l) < �89 < 5k+1. 

By Lemma 7.2, applied to the flmction u(x)--)~k+l on Ek+l, 

s~+ 1 = lu(x k) -)~k+ll n • C~(xk, Ek+l)]Ek+l]#(Ek+l). 

Let L be a shortest segment from x k to OEk+l, and let z be the endpoint on OEk+l. 

Since Ek+l is convex, the hyperplane H perpendicular to L at z is a support plane for 

Ek+l. Let ~ be the length of L. Let II' be the support plane parallel to II on the opposite 
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side of Ek+l and suppose that the distance between them is r. Thus there is a constant 

C depending on R such that 

IEk+ll ~< Cr. 

If T is an affine transformation that normalizes Ek+l, then the distance between the 

parallel planes T(H) and T(H') is comparable to 1 and by a similar triangle argument, 

the distance from T(x k) to T(II) is comparable to Q/r. On the other hand, 

tf(x k, Ek + l ) <. C dist(T(xk), T(II)). 

It follows that 
Ce 

r ~< ~(xk ' Ek+l)"  

Combining this with the previous inequalities, we see that 

s~+l <~ CSk+lp(Ek+~). 

But because k was chosen smallest, 

~k+l ~ ~k ~ 2-k(~0 ~ c2-k~( xO, E). 

Therefore, 

Hence, 

6k+l#(Ek+,) <~ C~+1/Ek+IS(X, E) 1-e dp(x) 

< c2-kE~(x O, E) ~ f ~(x, E) 1-~ d#(x) = C2-keA. 
JEk+I 

sn2 -(k+l)~n ~ C2-k~A 

and since f~n~<c, we deduce that s n <~CA. For A sufficiently small, depending on s, this 

is a contradiction. This proves Lemma 7.3. 

PROPOSITION 7.5. Let ~ be a positive measure on S n satisfying 

~_I(E)'VU'2 da = /E d# 

for every Borel set E c S  n. Suppose that d#=S(()  d~ for some integrable function S and 
S(~))c>0.  Let r denote the convex, Lipschitz function defined on an open subset 0 
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of R '~, whose graph {(x, r xEO} is a portion of Of~. Then r satisfies the Monge- 
Ampere equation 

det (r (x)) = (1 + [Vr (N+1)]2 IVV( x, •(x))12" 
s(~) ' 

(-1, Vr 

x/'l+JVC(x)[ 2 

in the sense of Alexandrov. 

Proof. First of all, g-1 is single-valued except on Borel set E1 cS  n of d~-measure 0. 

Let FI=g-I(E1). Because d#<<d~ and da<<[VU[2da, we have a(F1)--0. Next, g is 

single-valued except on a Borel set F2c0f l  of a-measure 0. Let F3=F2\F1, and let 

E3=g(F3). Since g-1 is single-valued on E3, g-I(E3)=F3, so that 

O= fF3'VUl2 '= f 3d, 
Now let V=O~2\(FIUF3) and W=S"\(EIUE3). Then a(V)=a(O~), #(W)=#(Sn),  

g is a single-valued bijective mapping from V to W, and 

/F [VU[2 da = fg(F)S(~) d~ 

for every Borel subset FCV. So far we have only used the absolute continuity of d#. 

Now, we invoke the assumption that S is uniformly bounded from below and [Vr 

defined almost everywhere, is bounded from above. It follows from the Radon-Nikodym 

theorem that the measure 

(1+ ivr ivu((x, r r d~(~, r 

corresponds by g to the measure I~NI-N~. Recall that d~= (1 + IVr 2) dx. It follows 

that 

IF (1 +IVC(x)I2)(N+I)nlVU((~, r -1 dx= f~(~) ICN I -N d~ 

with r ( r e (z ) , -1 ) /X/1  + [re(x)[2 for every Borel subset F of O. This is the statement 

that the Monge-Amp~re equation is satisfied in the sense of Alexandrov. 

Now we recall that we have proved the estimate for slices for the density [VU[ 2 da 
in Theorem 6.5, and in Lemma 7.3 we have shown that the method used by Caffarelli 

in [C4] to obtain C 1,e for Alexandrov solutions applies. Therefore, we conclude that 

under the assumption that S is bounded above and below by positive constants, 0f~ is 
Cl~ ~" 
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Now let us suppose that SEC~(S "~) and S>0. We have already shown that ft is 

a C 1'~ domain for some e>0. Therefore, IVUI is bounded above and below by positive 

constants and belongs to C ~. Thus the right-hand side of our Monge-Amp~re equation 

belongs to C ~, so that by [C2], [C3], CEC 2'c. Finally, this implies that VU belongs to 

C 1,e and the regularity of the right-hand side of the Monge-Amp~re equation is now C% 

The remainder of the regularity estimates of Theorem 0.8 now follow from [C1], [C2], 

[C3]. 

8. F ina l  r e m a r k s  

We show, by example, that Theorem 6.5 is sharp. Let 0<t l  <s. Consider a domain ~ in 

R 3 defined as the convex hull of the square 

lyh<s, z = t l }  

and the segment 

s =  {(x,y,z): < 1, y = z = 0 } .  

(A corresponding example in R 3+k can be obtained by taking the product ft • I where 

I is a unit cube in Rk.) Let 

F =  { (x ,y , z )  e Oa : z < t}. 

Remark 8.1. For every e>0, there exist s and tl such that 

lim fF 6(X, F)l-eh 2 da 
t--*o a(F) minF h 2 

~ (:X). 

Proof. Define the rectangle 

R={(x , y ) : l x l<(1 - t / t l )+ t s / t l ,  lyl<ts/tl}. 

Then (x,y,t) belongs to ft if and only if (x,y)ER. In other words, R corresponds to 

the cross section z=t of ft. Define F1----{(x, y, z)EF:(x ,  y) eR}. Let F denote smallest 

infinite cone with vertex (1, 0, 0) containing f~. As s tends to zero this cone tends to a ray, 

so for sufficiently small s, the positive harmonic function W with zero boundary values 

defined on the complement of F behaves like W(X)~IX-(1,0,O)I v for some ~<�88 

It follows from the maximum principle that 1-U(X)>~CIX-(1,O,O)I ~ as X tends to 

(1, 0, 0) and hence 

Ivv(x)l/> cIx-(1,0,0)1-1+'. (8.2) 
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(Note that  the constant C may depend o n  t l ,  but 77 can be made arbitrarily small 

depending only on how small s is, provided tl  <s.)  From now on s will be fixed. 

Choose tl  sufficiently small that  t l /s< 1-~6~. Then the angle between the two faces 

of f / t h a t  meet at the edge S is within 2tl/S of r Thus the vanishing rate of Green's 

function at the origin is bounded above by Cr 1-~/4. Let Bt (x) be the ball around (x, 0, 0) 

of radius t. Using Lemma 6.2, we have 

and therefore, 

min h ~ Ct -e/4 
Bt(o)nOfl  

a(F) minh  2 ~< Ct 1-~/2. (8.3) 
F 

On the other hand, we have a lower bound for h on each from (8.2), 

min h/> c ( 1 - x )  -1+~  
B~(~)n0t2 

for 0 4 x ~< 1 - 2t/tl. Furthermore, if 0 ~< x ~< 1 -  2t/tl, then 

Therefore, 

min 5(X,F)>/ }(l-x). 
XeBt(x) 

f f 

[.1-2t/tl . _ ~  

/> ct Jo ( l - x )  - l - ~ + z '  dx >1 c't 1-c+2v 

where d > 0  depends on s and tl.  It follows from (8.3) that  the ratio whose limit we 

are evaluating is greater than a positive multiple of t -~/2+2v which tends to infinity as t 

tends to 0. 

We see from Remark 8.1 that  the best that  we could hope for in Theorem 6.5 was 

a power ~(X, F )  1-e for some positive e. Moreover, this power is at the borderline for 

the regularity theory of the Monge-Ampbre equation. The main step there was the 

observation that  there was a scale-invariant control, given by Lemma 7.3 on the rate at 

which a solution u to the Monge-Ampbre equation vanishes at the boundary. The next 

example shows that  there can be no control on the vanishing rate in the case ~--0. 

Let Q={X=(Xl,...,Xn)ERn:]x~[<I}. Let ek denote the standard basis of unit 

vectors. Let F+k be the face of OQ containing :t:ek. Let P = ( 1 - s ,  0, ..., 0). Let Sk be the 

convex hull of Fk and P.  Define the function u as the convex function satisfying 

u(X)=O f o r X E O Q ,  u ( P ) = - i  
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and u is linear on each sector Sk. 

d e t  V 2 u  = d#p 

in the sense of Alexandrov, where the measure d#p is a multiple of the delta function 

at P.  To calculate the total mass of d#p, observe that  u(X)=-- I+yk ' (X- -P) ,  for all 

X E Sk, where 

y• for k = 2 , 3 , . . . , n  

and y l = e l / s ,  Y - l = - e l / ( l + s ) .  The set-valued mapping Vu defined before (7.1) takes 

the point P to the convex hull K of the points yk .  Therefore, 

, p ( { P } )  = vol K Cs  -1 (8.4) 

Let 5( . ,  Q) be the normalized distance to the boundary of Q as in Lemma 7.3. Since 

5(P, Q)=s ,  we have 

Q S ( X ,  Q) d#p < C. (8.5)  

On the other hand, since u ( P ) = - l ,  and the distance s from P to OQ can be arbitrarily 

small, we see that  there can be no estimate on the rate at which u vanishes at the 

boundary in terms the expression (8.4). 

Taken together, our remarks on the limitations of estimates for h 2 and for the 

Monge-Amp~re equation show that  h 2 is the largest power for which the regularity 

theory can work. On the other hand, the existence theory depends on special variational 

formulas, so the power 2 on h 2 is essential. Furthermore, the fundamental inradius esti- 

mate of Proposition 4.8 and Lemma 4.13 that  controls the limiting process for existence 

depends on the fact that  the power of h is at least 2. If p<2 ,  then the convex body can 

collapse to a convex set with empty interior but the integral 

o~ hp da 

remains bounded. The logarithmic divergence in Lemma 4.13 does not arise. This is 

because it is based on the limiting case of a domain slit in R 2, for which h~x  -1/2 and 

hP~x -p/2 is integrable in x. 
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