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Preface

The theory of bounded translation invariant operators between L spaces in several
variables has attracted much interest in the literature during the past decade, partly
due to its applications in some fields such as the theory of partial differential equa-
tions. Through the work of Calderén, Zygmund and others real variable methods
have been introduced which have permitted the extension to several variables of re-

sults originally based on complex methods in the case of a single variable. Further,
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a suitable framework for a general theory is given by the theory of distributions,
for translation invariant operators are essentially convolutions with distributions (see
section 1.1).

The purpose of this paper is thus the study of the spaces L,? of tempered distri-
butions T in R" such that with a constant C

| T*ulle<Cllull,

for all infinitely differentiable # with compact support, the norms being L? and L
norms. In section 1.2 we discuss those properties of these spaces which follow from
M. Riesz’ convexity theorem and the theory of the Fourier transformation in L? spaces.
Some of these results are taken over from Schwartz [13], and others have been used
implicitly in various papers on convolution transforms. In section 1.3 we study homo-
morphisms of the Fourier transform M,? of L,” induced by a mapping in R". It
turns out that if the mapping is twice continuously differentiable and p=2, it must
be linear. This improves a result of Schwartz [13], but for p=1 it is weaker than
known results concerning the algebra M,' of Fourier-Stieltjes transforms. In section 1.4
we prove that the Wiener-Lévy theorem is valid in a certain subalgebra of M ,” whose
relation to M,” is studied. The proof is rather trivial but we have included it because
of its similarity with a result in Chapter II which is essential in Chapter III. (Closely
related results concerning sequence spaces are due to Devinatz and Hirschman, Amer.
J. Math. 80 (1958), 829-842.)

Chapters 11 and III are devoted to the numerous estimates which originate from
Riesz’ theorem on conjugate functions (Riesz [10]). In Chapter II we discuss the real
variable method introduced by Calderén and Zygmund [2] in the study of conjugate
functions in several variables. It has also been used later by Zygmund [18] to prove
the Hardy-Littlewood-Sobolev estimates of potentials and also by Stein [15] in studying
estimates of the kind which we discuss in Chapter III. The main theorem in sec-
tion 2.1 describes the general situation in which such arguments apply. In section 2.2
we show first that our theorem contains the results of Calderén and Zygmund [2]
and Zygmund [18] mentioned above. We then show that it also gives a short proof
and a slight improvement of a theorem of Mihlin [8], [9]. (The proof given by Mihlin
depends on a paper of Marcinkiewicz [7] which is based on the Littlewood-Paley
theory (see Chapter III) and on the properties of Rademacher functions.) We end
the section by proving a theorem of the Wiener-Lévy type for a certain algebra of
homogeneous functions of degree 0 contained in M,P. Closely related results are due

to Calderén and Zygmund [3] but are not sufficient for the applications in Chapter IIL.
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In Chapter IIT we study estimates of convolution transforms involving para-
meters. We do not make a systematic theory similar to that in Chapter I for such
families of transforms but restrict ourselves to results parallel to those of Chapter II.
In sections 3.1.-3.3 estimates involving L? norms with respect to the parameters are
proved. In section 3.4 they are shown to contain the known results concerning the
functions of Littlewood-Paley, Lusin and Marcinkiewicz as well as other estimates
which may be of interest in the theory of partial differential equations. The proofs
are similar to those in Section 2.1. Real variable methods have previously been used
by Stein [15] in studying the Marcinkiewicz funetion in several variables but our
method differs considerably from his. By studying the adjoint transformations which
map functions in the product space of RB™ and the parameter space on functions in
R", we obtain estimates also when 2 < p < co. In that case the results known previously
are rather incomplete when n>1 and the proofs when n=1 seem difficult. We also
obtain simple proofs of general “inverse” estimates. The results concerning M ,” which
follow from the Littlewood-Paley estimates are not studied here so we refer to Little-
wood and Paley [5] and Marcinkiewicz [7].

This paper is essentially self-contained, which may be an advantage to the non
specialist in view of the extensive literature in the field. Necessary prerequisites are
elements of distribution theory, including the Fourier transformation (see [12]); Riesz’
convexity theorem (see [11] and [16]), Marcinkiewicz’ interpolation theorem (see [18]),
and also basic facts concerning bounded operators in Banach spaces. The bibliography
is very incomplete so a reader interested in studying the literature closely should

consult the references given in the quoted papers also.

CuHAPTER I

General theory
L.1. Translation invariant operators as convolutions

We denote by L?, 1<p< oo, the space of measurable functions in R" with
integrable pth power, and write

1/p
||u”1,=(f|u]"dx) . werrq)

(1) Tt is convenient to set formally “u||p=oo if wgL”.
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When p=co this shall be understood as the essential supremum of |f|. By L§° we
denote the space of functions in L* which tend to 0 at co and by C the space of
continuous functions. M will denote the space of bounded measures dy normed by
_Hd u|. When 1<p< oo we shall use the notation p’ for the conjugate exponent
defined by 1/p+1/p =1.

If h€R™ we denote by 7, the operator defined by

(thu) () =u(x—h).

DerinitioN 1.1. A bounded Uinear operator A from LP to L? is said to be transla-

tion invariont if
wAd=A41,, hER"

Such operators which are non trivial do not exist for all p, q.

TaeorEM 1.1. If A is a bounded translation invariant operator from LP to L% and
p>q we have A=0 if p<oco and if p= oo the restriction of A to Lg s 0.

Proof. First note that if p< oo
wtToul,—>2""||u|l,, w€L?; h-—>oo; (1.1.1)
¥4

the same is true for p=oco provided that u€L§. In fact, we can write u=v+w
where v has compact support and ||w||, <e. For sufficiently large |%| the supports of

v and 7,7 do not meet, hence

llo+znvllo=2"" {lvl,-

Since ||lv|l,~|l|ls|<e and |||[o+zsv|s—|lu+Trul,]<2e and & is arbitrary, we
obtain (1.1.1).

Now assume that
NAu|l.<Cllul, weL?, (1.1.2)

with ¢ <p < oo. The linearity and translation invariance of 4 give
lAu+1, Aullg=|4 @+Tru) || <O w+T0u,.
When 2—oco it follows from (1.1.1) that
[ dulle< 274 Clullp, (1.1.3)

which improves (1.1.2) since the exponent is negative. If O denotes the smallest con-
stant such that (1.1.2) holds we thus get a contradiction unless C'=0, that is, 4 =0.
The same arguments apply when p=co >¢q provided that we replace L* by Lg°. The

proof is complete.
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Although somewhat incomplete for p—=co this result will justify us to assume
that p<<q in what follows.

Let § be the space of infinitely differentiable functions « such that
sup |wg D*u| < oo

for all & and 8, and with the topology defined by these seminorms. Here o= (ay, ..., ;)

and §=(f, ..., fx) are multi-indices, that is, sequences of indices between 1 and =,

D*=(—1i0/8xy,,) ... (~i3/8x“j); Xg=1p, ... Ty .

k

We use the notation |a| for the length j of the multi-index «. $ is dense in L? if
p<oo, and its closure in L* is C'NLg°. The dual space of § is denoted by § and

its elements are called tempered distributions. (See Schwartz {12].)

THEOREM 1.2. If A is a bounded translation invariant operator from LP to L2, then

there is a unmique distribution T €§' such that
Au=Txwu, u€S.
For the proof we need a lemma which is a very special case of Sobolev’s lemma.

LEmma L.1. If a function v in R™ and its derivatives of order <n are in LP locally,
the definition of v may be changed on a set of measure 0 to make it continuous. Then
we have with a constant C

1/p
lo@|<c S ( f [D"‘v[”dy) . (1.1.4)

lel<n
ly-z|<1

Proof. The assumptions concerning v are also satisfied with p=1 and (1.1.4)
follows from Hoélder’s ineguality for every p if it is proved for p=1. In the proof
we may also assume that =0 and that v has compact support in the unit sphere.
For let ¢ be a function in C§° with support in the unit sphere and which equals 1
in a neighbourhood of 0. Then w=wv¢ has compact support in the unit sphere, and

Leibniz’ formula shows that

5 fID“w]dy<O s ( f |D°‘v|dy).
lalsm |x|<n

lyi<t
Hence if we prove the statement of the lemma for w, it follows that v is continuos
in a neighbourhood of the origin after correction on a null set and that (1.1.4) is

valid for =0. The general statement of the lemma then follows by its translation
invariance.

7 —60173032. dcta mathematica. 104, Imprimé le 21 septembre 1960
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Now let h(x)=H (x,)... H(x,) where H is the Heaviside function which equals
1 for x>0 and 0 for x<0. We then have

o"h/ox, ...00,=0
in the distribution sence. Hence, since w has compact support,
w=wxd=wx(@"h/0x, ... dx,) = (0"w/dx, ... dx,) % h.

In the right hand side we have a convolution between an integrable and a bounded
function, hence a continuous function. w differs from this continuous function only

on a null set and if its definition is changed there we have

|w (x)l<f|6"w/6x1 e 0y da,
which completes the proof.

Proof of Theorem 1.2. Let A be the operator in the theorem and w € §. We
claim that
D*(Au)=A(D*u) (1.1.5)
in the distribution sense. To prove this it is clearly enough to consider a derivative
of the first order. Put v=Awu and define u,(x)=u(x,+h, x,, ..., %,) and v, similarly.
Since 4 is invariant for translation we have Au,=v, and hence

Up— U _’Uh-U
Aoty s,

When h->0 the difference quotient (u,—u)/h converges to du/dz; in LP, hence
(va—v)/h converges to A (du/dx,) in L norm. Hence (1.1.5) follows.
Lemma 1.1 now shows that 4« is a continuous function after correction on a

nuil set if w€$§ and that, this correction being made,

(4w ©]<0 3 || D%ull,.

Hence (Awu)(0) is a continuous linear form on § so that it may be written
(Aw) (0) =T (i) = (T % u) (0),

where #(x)=u(—2«) and T€S'. In view of the invariance for translation of both

sides we get
(Au) (x) = (T % u) (2)

for every x, which proves the theorem since the uniqueness of T follows immediately

from the proof.
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If p<oo, the space § is dense in L” and the operator 4 is obtained as the
closure of the operator u—T xu. If p=-co and ¢g< oo, we have T'=0 in virtue of
Proposition 1.1; and if p=g¢= co the distribution 7' is obviously a bounded measure.
The case p=-co therefore does not present great interest. Thus the study of the
translation invariant operators is essentially equivalent to the study of the spaces L2

of the following definition.

DreriniTiON 1.2. The space of distributions T in §' such that
NT*ullo<C|lul, w€S, (1.1.6)

where C is a constant, is denoted by L% The smallest constant C' whick can be used
in (1.1.6) will be denoted by L,2(T).

L,? is thus isomorphic to a closed subspace of the Banach space of all bounded
linear mappings of L? into L hence is also a Banach space.

Let F denote the Fourier transformation u—1,
(&) = fe‘z’”(z'@u(x) dx, wu€Ss,

extended to all 7'€ §’ by continuity or, equivalently, the formula
T(w)=T @), ueS,

(see Schwartz [12], Chap. VII). We recall that the Fourier transformation is an iso-

morphism of § and of §'. Then the mapping u—>T %u, 4 € S, can also be written
u—>F (T Fu)
and is thus via the Fourier transformation equivalent to multiplication by 7'

DerinitioN 1.3. The set of Fourier transforms T of distributions T € L,? is denoted

by M, and we write
M° (T) =L,(T).

The elements in M,? are called multipliers of type (p, q).

Sometimes we shall write L,%, and M,%,, in order to emphasize that the number

of independent variables is .
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1.2. Basic properties of M,?

Our first theorem in this section is very well known but we formulate it for

completeness and reference.

TEEOREM 1.3. Let T be a distribution +0. Then the set of points (x, y) € R* such

that T € Ly;;"'Y is a convex subset of the triangle
o0<z<l1, 0<sy<l, y<z, (1.2.1)
which is symmetric with respect to the line x+y=1. In this set log Ly,,"" (T) is a convex

function of (x,y) with the corresponding symmetry property.

Proof. That the set in question satisfies (1.2.1) follows at once from Theorem 1.1.

The symmetry is proved as follows. Let x’, ' be defined by x +a' =y +y'=1. Then if
NT xwly<Cllully., €S,
we get from Holder’s inequality

IT%uxv©)|<Cl|yel|#)lye; w vES.

Since convolution products are associative and commutative we get from the converse

of Holder’s inequality
T 52 e < C |9 s

Hence (»,y) and (y',2') belong to the set in the theorem at the same time, and
Ly, ;MY (T) = Ly, V™ (T) since the role of (z,y) and (y',«’) may be interchanged in the
above argument.

Finally, the convexity follows from Riesz-Thorin’s convexity theorem (see Riesz [11],
Thorin [16]). The proof is complete.

We next list some cases where L,? is easy to describe precisely.

THEOREM 1.4. We have
L,>*=L"=L", p<oo; L,"=L'=M, (1.2.2)
with equality also of the norms.

Proof of the theorem. In view of Theorem 1.3 it is enough to prove that L,” =L"
and that L,* =M. The last fact is essentially the definition of bounded measures
and was already observed after Theorem 1.2. The first follows from the fact that

L¥ is the dual space of L? when p< oo,
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CoroLLARrY 1.1. T€Ly," for all (x,y) in the triangle (1.2.1) if and only if
TeL'nL>.

Proof. In view of Theorem 1.4 we have T € L;,'"¥ for all three corners (x,y) of

the triangle if and only if 7€ L' n L®. But the convexity property in Theorem 1.3

shows that 7T is then in L' for every (, y) in the triangle.
CoroLLARY 1.2. Let p<q and set 1/p—1/q=1—1/a. Then we have L* < L,? and
LA <||flla, feL= (1.2.3)
If a=1, one may replace L' by M.

Proof. In virtue of Theorem 1.4 the corollary is true for p=a’, ¢g=co and for
p=1, g=a. Hence it follows in general from the convexity properties in Theorem 1.3.

Note that (1.2.3) means exactly the well-known inequality
If*ulle<lfllellwll,, feLe, wues.

We next turn to some results which are best expressed in terms of the M ¢
spaces.
TarorEM 1.5. With equality also of the norms we have
Mp2=L~. (1.2.4)
Proof. Let T € L,® so that T € M, Then T %u € L* for all € §, hence the Fourier
transform 74 € L%, and
1Tl = || T % wlly < Ly* (1) ]l = M,* (D) || 4],
for all #€S. This proves first that 7' is a locally square integrable function and then
that |7 (&)|<M2(T) almost everywhere. On the other hand, if |7'(£)|<C almost
everywhere the same argument proves that M,* (7)< C. Hence M,?(T) is the essential
supremum of 7', which proves the theorem.
CorROLLARY 1.3. For every p we have
My <L*, (1.2.5)
1£lleo < M,7 (), f€ M. (1.2.6)

Proof. The convexity and symmetry stated in Theorem 1.3 show that M ,» < M,*

and that
M2 ()< M2 (f).

Hence the corollary follows from Theorem 1.5.
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For p+q we can only prove a weaker regularity result. By L%, we shall mean

the set of functions which belong to L? on every compact set.

THEOREM 1.6. The following inclusions are valid:
MyocLty, if p=2; MOPcL?, if ¢<2. (1.2.7)

Proof. Since M,*=M,” according to Theorem 1.2, it is sufficient to prove the
latter half of (1.2.7). Let T €L,?, ¢g<2. For every w €S we then have T % u € L? and
in view of the Hausdorff-Young theorem on Fourier transforms of functions in L% ¢<2,
(Zygmund [17]), we obtain 74 € LY for every u € §, hence for every 4 € S. This proves
the theorem.

If p>2 or ¢q<2 we thus have M, < L?,. Elements in two such M,? classes
may thus be multiplied together pointwise, giving a locally integrable product. This

gives a sense to the statement in the following theorem.

TaeorEM 1.7. Let 2<p<q<r or p<q<r<2. Then if f€EM,? and g€ M, we
have fg€ M,” and
My (f9) <M, (f) MJ' (9). (1.2.8)

The translation tnvariant operator corresponding to fg is the product of those corresponding
to g and io f.

CoroLLARY 1.4. M,? is for every p a normed ring with the operations of point-

wise multiplication and addition.

This result is partly given by Schwartz [13]. Note that Theorem 1.4 shows that

M'=M.,> is the algebra of Fourier-Stieltjes transforms.

Proof of the theorem. In view of Theorem 1.3 it is enough to consider the case

Pp<qg<r<2. Denote by A, the closure of the mapping
L»> Syu—F 1 (fa) e Lo,

A, is a bounded operator from L? to L% Similarly we define a bounded operator 4,

from L° to L'. Then we have
FA,u)=f4, ueLl?; F(A,v)=gv, vEL. (1.2.9)

In fact, these identities are valid by definition when u and » are in §. To prove
the second identity, for example, we note that the Hausdorff-Young inequality shows

that the mapping L3v—JF(4,v)€L" is continuous. Since g€ L%, the mapping
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L*3v->gv €LY, is also continuous. § being dense in L7, the second formula (1.2.9)

follows. Taking v=A,u we thus have
F(d,4u)=fgd, uelr,

hence in particular this is true when € §. This proves that fg is the multiplier
corresponding to 4,A4,, hence (1.2.8) is valid. The proof is complete.

Without the restriction given on the exponents, Theorem 1.7 would not always
have a sense (see Theorem 1.9). However, we can always prove a much weaker
statement showing that the local smoothness of the elements in M,? increases with p
and decreases with ¢. Combining this with Theorem 1.4 we could also get another

proof of Theorem 1.6.

TueorEM 1.8. If feM,? and g€ S we have
gfeEM? if r<p; gfeM, if s>q.

Proof. Since M %= M,” it is sufficient to prove the first statement. Let f=1T,,
g=T,. Then T,€ S and for u €S we get

T ) e wflo =17 % (T ¢ ) [l < Mo (B || Ty ¢ | < M7 () M g) || -
Hence 7, %T,€ L% so that the Fourier transform gf€ M,? and
M2 (ghH<M?>(g) M (f).

Theorem 1.6 does not give any information when p<2<gq. We shall now study

that case starting with the following lemma.

Lemma 1.2, If w€S and w €S is defined by 4,(£)=14(&) ", we have for p>2
with a constant C,
[, < Cp|¢[17~17, t ER.

Proof. First note that Parseval’s formula gives
llotello = Ml e lla = Nl @[] = ;-
To estimate the maximum of u;, we introduce polar coordinates,
ut(x)=fe”z”“'f“”f'”’d(f)ds=f fei('z"(”‘”)”"’)d(rw)r""ldrda). (1.2.10)
0 |o|=1

We shall integrate by parts with respect to r. Note that
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R

J.ei(Zar+tr') d?‘

0

<Ottt (1.2.11)

for all real R, a and ¢ In fact, a change of variables gives that

R c
Jvei(Zar-ktr?)dr:tu«} e—taﬂ/tJ‘ezrﬂdr
0 b

if t>0, where b=a/Vt and c= RVt +a/Vt. Since fj: ¢!™dr is convergent as a general-
ized Riemann integral, (1.2.11) follows for t>0, hence by complex conjugation for

£ < 0. Integrating by parts in (1.2.10) and using (1.2.11), we obtain
|u,(x)!<0|t|‘*f|8'd/6r+(n—l)r‘lﬁ]r"’ldrdw=ollt|‘%.
From this estimate and the fact that ||u;||, is constant we obtain
f|ut{”dx<(01[t[‘%)”‘zf]utlzdx=0ppltll‘%"

which proves the lemma.

THEOREM 1.9. If p<2<q there exist elements in M, which are distributions of

positive order, that is, which are not measures.

Proof. Assume that the statement were false, so that every f €M ,? is a measure.
Mapping f on the restriction to the set {&;|&|<1} we get a closed everywhere defined
mapping from M,? to the space of bounded measures in the unit sphere, with the
norm defined as the total variation. In virtue of the theorem on the closed graph

the mapping must be continuous. In particular

J.|f|d5<0Mp"(f), f€Ss. (1.2.11)

1&i<1

Take a funection % in § so that #(0)+0 and define u; as in the lemma. With f re-
placed by %, the left hand side of (1.2.11) is independent of ¢ and +0. In virtue of
Theorem 1.4 and Lemma 1.2 we obtain L,* (u,) = L,” (u;) = || u:||,—>0 if p>2, that is

M= (dy) = M,” (#;)—>0 when t—o0 if p>2.
Further, it follows from Theorem 1.5 that

M (i) = || @]
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which is independent of ¢{. The logarithmic convexity of the M,? norm as a func-

tion of 1/p and 1/q which is contained in Theorem 1.3 now immediately shows that
M2 (d4)—0 if p<2<gq, t—oo.

Hence we get a contradiction if f is replaced by #; in (1.2.11), and {—co. This
proves the theorem.

In particular we get the following familiar result.

CorOLLARY 1.5. If p>2 there exist functions w €L such that 4 is a distribu-

tion of positive order.

Proof. Every element in M,” is the Fourier transform of a funection in L?
(Theorem 1.4).

When 1<p<2<g< oo, an important subclass of M ? is given by Paley’s in-
equality:

TaeorEM 1.10. Let ¢ >0 be a measurable function such that
m{& @ (&)=s}<O/s. (1.2.13)

With a constant C, depending on p and on C we then have when 1<p<2

1/p
(fm/(plmpzds)’ <0, (|l we L. (1.2.14)

Note that the integrand may be written |%|”¢® ? so that it is natural that we

define it to be 0 when ¢=0.

Proof. For the sake of completeness we recall the proof, following Zygmund [18].
When p=2 the inequality (1.2.14) follows with C,=1 from Parseval’s equality. Write
du (&)= (p (E)2dE and Tu=14/¢. Note that it follows from (1.2.13) that

pié o) <o}<2Co. (1.2.15)

In fact, writing m (s)=m {&; ¢ (£)>s} we have
s—0

ni& (p(é‘)<o}=f szd(—m(s))<2fm(s)sds+ lim s®m (8)<2Co,
b b

since sm (s) < in virtue of (1.2.13). We now obtain

wi& [(Tw) (§)|=s} <20 ull/s, we L (1.2.16)
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In fact, since |(T'u)(&)|<||u||;/@ (£), the set in question is contained in the set where
@ (§)<||w||;/s. From the validity of (1.2.14) when p=2 it also follows that

wi{& | (Tu) (&) >} <(||ulla/5) we L’ (1.2.17)

We now only have to invoke Marcinkiewicz’ interpolation theorem (Zygmund [18],
Theorem 1) in order to conclude from (1.2.16) and (1.2.17) that (1.2.14) is valid.
If we combine Theorem 1.10 with the Hausdorff-Young inequality

lall <[l 1<p<2, (1.2.18)
and use Holder’s inequality, we obtain the following

CoroLLARY 1.6. If @ sabisfies (1.2.13) and 1<p<r<p <o, we have
r
(f|12<p“"-””’>|'d§) <Ol ullp, weLP. (1.2.19)

This reduces to (1.2.18) when r=p’ and to (1.2.14) when r=p.

THEOREM 1.11. Let | be a measurable function such that, with 1 <b < oo, we have

for some constant C
m{& [ (&)=} <0/s. (1.2.20)

Then f€M? if l<p<2<g<oo, 1/p—1/qg=1/b. (1.2.21)

Proof. Since M,*=M,” we may assume that p<gq’, for otherwise we have
¢ <(p')=p. With ¢=|f|” and r=¢’, the assumptions of Corollary 1.6 are then satis-
fied and since 1/¢'—1/p'=1/p—1/¢g=1/b we obtain

[[£d|le <Collell, we L.

Let T be the distribution with T'=f. When «€$ the Hausdorff-Young inequality
gives since ¢’ <2
| Txulle<|Ifélle < Cpllully

which proves that T€L,? and hence that f€M,%. The proof is complete.
When p<2<gq we can thus give bounds on the absolute value of a function f
which ensure that the function is in M,% That this is not possible for other values

of p and ¢ is shown by the following result.

TrEOREM 1.12. Suppose that there exists a measurable function F >0 which is
not O almost everywhere, such that every measurable function f satisfying the condition
|f| < F belongs to M,%. Then we have p<2<gq.
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Proof. We may assume that F is bounded. The assumption means that Fg€ M ¢
if g€L®”. Thus the mapping

L¥3g—>FgeM*?

is defined everywhere in L® and it is obviously closed since it is continuous for the
topology of L* on the right hand side. Hence the closed graph theorem shows that

the mapping is continuous, that is,
M (Fg)<Clglle-

In view of the definition of M,? this means that for all w and v€§
|[Fassae|<as@pllubiliole<clgllaliul ol

Hence fFlﬁi;ld&éCHquHv”q,. (1.2.22)
More generally, we get for any 7

f FE—m|a@s©]de<cllull v/l (1.2.22)

if in (1.2.22) we replace u (z) by u(x)e *™“" and make a similar substitution for ».
If g is a continuous positive function with jgdn=1 and G=Fxg, we get by multi-
plying (1.2.22)" with g () and integrating

fG{ﬁé|d§<OI|u||p||U||q'yu,ves. (1.2.23)

This inequality has the advantage over (1.2.22) that G is continuous und positive
everywhere. Now take v fixed with -0 when |£|<1. It then follows from (1.2.23)
that

|a]ag<||ull, wes.

lgl<1

Thus, if we replace u by the function w, defined in Lemma 1.2 a contradiction results
unless p<2. Similarly, taking « fixed we obtain ¢’ <2, that is, 2<¢, which com-
pletes the proof.
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1.3. Homomorphisms of M,”

We shall only study homomorphisms of M,” which are induced by a mapping

&—a (E) of R™ into R™. If f is a function in R™ a function «*f in R" is defined by
@ fE)=Ff(a(&), &€R"

We first consider the case where a is an affine mapping
(a(f))j=“fo+kzlajk§k, j=1, ..., m.

TuroreEM L.13. If a is an affine mapping of R™ onio R™, the mapping a* is

an isometric mapping of M P, into M Py, for every p. If m=mn, the mapping is onto.

Proof. The definition of the L? spaces and hence of L, was independent of the
system of coordinates except that it used a particular Lebesgue measure. However,
the norm of an element in L,? is obviously independent of the Lebesgue measure
chosen. Further, if 7 is a distribution whose Fourier transform has a density 7' (&),
this density is independent of the choice of Lebesgue measure. (This is most easily
seen when T is a measure and T (&) the Fourier-Stieltjes transform.) Hence M,? is
invariant for every change of coordinates.

Changing coordinates in R™ and in R™ (considered as different spaces even if

n=m) we may assume that ¢ is given by
@(@)=&+ay =1, ..,m.
Let T €L,"m, and form T,=e 2" TR,

where [ (x) =, 440+ -+ +, @y, and J is the Dirac measure in the variables ,.,, ..., Z,.

The Fourier transform of T, as a distribution in R" is
’_f’1=f’(.§1+am, " Entang),

so that what we have to prove is that 7, €L,%,, and has the same norm there as
T has in L,?.,. Now, if w€ Sy,

Tl*u — ewZnil (T*(e2nil u))’

where the convolution in the right hand side is taken with respect to , .-, @y,
the other variables being fixed. If C'=L,?(T) we have

flTl*ulpdxl dxmgopflulpdxl e day,
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for fixed xpiq, -+, ®,. Integrating with respect to these variables, we get
||T1%u“p<OHqu,

which proves that 7', €L,%,, and has a norm which is at most €. That the norm
cannot be smaller than C is immediately seen be considering functions % which are
products of functions of x;, ---, =z, and a fixed function £0 of xy 1, -+, x,. Since
the mapping « has an affine inverse if n=m, the proof is complete.

We omit the similar but less simple and useful result concerning M ,? when p=gq.
In that case one can only take m=n,

Under certain regularity assumptions it will now be proved that the assumption
in Theorem 1.13 that the mapping @ is affine is necessary. The essential step in the

proof is the following lemma.

Lemma 1.3, €4 is not in M,? for any p=+2 if A is a real constant =+0.

Proof. Suppose that ¢“4¥"€ M, ? and that 4A+0, p=2. Since M,?=M,” we may
assume that p>2, and since M ,? is invariant for conjugation we may also assume that
A<0. In virtue of Theorem 1.13 applied to the mapping &—(—t/A4)} £, the function
e s in M P for every t>0 and M,” (¢ ¥¥) is independent of ¢{. Hence we get
when %€

llwlls < €l wll (1.3.1)

if w, is defined as in Lemma 1.2 by the equation e 14, (&)=4 (£). When t—oo
(1.3.1) contradicts Lemma 1.2 which completes the proof.

LevMA 14. Let A(§) be a real quadratic form. If e*€M,” vhere p=+2, it
follows that A =0.

Proof. Assume that A does not vanish identically. With suitable coordinates

we may write
A& =a, 8+ +a, &

where a,+0. In view of Theorem 1.13 we may even assume that
la,|>|ay]+ - +]a.|- (1.3.2)
If k is a permutation (k;, ---, k,) of the integers 1, :--, n we write
A () =a &2+ +a, & pl

Since ¢4 €M,” we have also ¢¥ € M,? in virtue of Theorem 1.13. Hence Corollary 1.4

shows that
IkT eizlk € Mpp'
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Now > dp=m—1) (a,+ - +a,)|Ef=a|Ef® where a=0 in view of (1.3.2). This
contradicts Lemma 1.3 and hence proves the lemma.

We are now able to prove the main theorems in this section.

THEOREM 1.14. Let f be a real valued function €C*®. Suppose that there exists a

sequence t, of real numbers such that t— + oo and & €M P,
Mp? (%)<, k=1, (1.3.3)

where C is a constant and p=+2. Then | is a linear function.

On the other hand, if f(£)=a+2m<h, & is a real linear function then ¢'‘f
is the Fourier transform of the mass ¢'!® at —th, hence M,?(¢'*)=1 for every p.
(This follows for p=1,2 and oo from Theorems 1.4 and 1.5, and then in general
from the convexity in Theorem 1.3.)

Proof of Theorem 1.14. We shall prove that the second derivatives of f vanish.
It is sufficient to do so for £=0, for every translation of f also satisfies (1.3.3) in

view of Theorem 1.13. Since f€(C? we have
f&)=a+<h, £+ 4@ +o (&), &0,

where @ is a real number, & a real vector, A a real quadratic form. Write

g&)=f(&)—a—<h, &.

It follows from Corollary 1.4 and the remark above after Theorem 1.14 that g satis-
fies the same assumptions in the theorem as f does. But now we have g (&)=4 (&) +
+o0 (&), and writing g, (£) =4, g (§/t}) it thus follows that

9 (£)—>4 (8),

uniformly on every compact set. It followé from (1.3.3) and Theorem 1.13 that
M? () < C.

From the following lemma it follows that ¢4 €M,”. Hence A=0 in view of Lemma

1.4, which completes the proof.

LemMMa 1.5. The unit spheres in M2 and in L, are closed in §'.

Proof. Only the statement concerning L,? needs to be proved, for the Fourier
transformation is an isomorphism of §’ mapping the unit sphere in L, onto that in
M2, Now the unit sphere in L,? is by definition the set {T'; T€$’ and | T xu%v (0)|
<|ullnllolles » v€S}, and since the left hand side of the inequality is the absolute

value of a continous linear form on §’, the assertion is obvious.
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TEEOREM 1.15. Let a be a C* mapping of R™ into B™. Assume that a* maps
M Py into M, and that p+2. Then a is affine and onio.

Proof. Since the mapping a* is obviously closed, it follows from the theorem
on the closed graph that a* maps M,”,, continuously into M,%,, If I is a linear
function in R™, the norm of ¢'*! in M, %, is 1 for every {. In view of the continuity
of a*, it follows that the norm of ¢'***! in M7, is bounded for all ¢. Hence Theo-
rem 1.14 shows that «*! is a linear function. Applying this with I equal to the jth
coordinate in R™, it follows that (a(£));, is a linear function of §€R" for j=1, ---, m.
This proves the theorem. For if a were not onto, its range were a null set and every
function would be in M, ?y,.

For p=1, that is, for the algebra of Fourier-Stieltjes transforms, a much more
precise result has been given by Beurling and Helson [1] (see also Helson [4]). In
particular, it is not necessary in that case to assume that a €% (These authors also
treat more general homomorphisms. However, the proof of Theorem 1.14 immediately
extends to that case if a smoothness assumption replacing the assumption a€C® is
made.) For p=+1 and oo, however, some smoothness assumption is needed in Theo-
rem 1.14. It may be sufficient to assume that ¢ € C* but not merely that a is Lip-
schitz continuous. In fact, using Riesz’ theorem on conjugate functions (see Chapter II),
Corollary 1.4 and Theorem 1.13 it is easily seen that if a is pieceweise linear (and
has only a finite number of pieces) then o maps M,” into itself, if 1 <p< co. For
further details see Schwartz [13].

1.4. Analytic operations in M,?

Our purpose here is to prove an analogue of the Wiener-Lévy theorem con-
cerning M,', or rather the subspace of M,' consisting of the Fourier transforms of
functions in L'. This subset of M,' can also be regarded as the closure of § in M

and we are thus led to introduce the following definition.

DeriNiTrioN 1.4. The closure of S in M,? will be denoted by m,®.

It is clear that m,” is also a normed ring. Since M,?(f)>||f|l. according to
(1.2.6), it follows that m,?< (' n Ly. On the other hand, we can prove an opposite
result which is only slightly weaker.

TureoreM 1.16. If [1/¢—1/2|<]|1/p—1/2| we have M,” N C n LY =m,°.
Remark. If p=1 the result is not valid with g=1 since there are singular mea-

sures with Fourier transforms converging to 0 at infinity. We do not know if it is

possible to take g=p for some other value of p=2.
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Proof of the theorem. Let f€M,” NC and assume first that f has compact sup-
port. Take a non negative function @ €C§° such that j<pd§=1 and form

fe(§)=ff(§~en)<p(n)d7?-

As is well known, f. € C§° and converges to f uniformly when ¢—0, hence M 22 (f—f)—>0
as ¢—>0 (Theorem 1.5). The convexity of the norm in M,? and Theorem 1.13 also
give that M,?(f.)<M,?(f), hence M,?(f—f.)<2M,?(f). Replacing if necessary q by
¢’ we may assume that 1/g=o/p+(1—a)/2 where 0<x<1. Hence the logarithmic

convexity of the M, norm as function of 1/¢q (Theorem 1.3) shows that
ME(f= ) S (M7 (f = f) (My* (f— 1)) "*—=0 as e—>0,

which proves that f€m,% Next let f be an arbitrary function in M,? N C nL§. Let
p€CF be equal to 1 when |£|<1 and set f,(§)=f(£)y (¢£). Since M,” is an algebra
containing § we get f.€M,?, and from what we have already proved it thus follows
that f.€m,% Since M,?(f.—- <M (fy(1+M,?(y)) and

M2 (f—f)<(1+ sup |y]) 31'1p [f|=0 as £—0,
elgl>1

it follows again from the logarithmic convexity of the M,? norm as a function of
1/q that M2 (f—f.)—~0 as ¢—>0. Hence f€Em.

THEOREM 1.17. The maximal ideal space of the algebra m,® can be identified with
R"; the characters are the mappings f—f (&), £€R™

Proof. The restriction of a continuous character in m,” to m,' is a continuous
character in !, hence of the form f—f(£) since m,' is the Fourier transform of L.
In view of the definition of m,?, the set § and a fortiori m,' is dense in m,”. Hence
all continuous characters on m,” are of the form f—f(£). Since Scm,’<C it is
obvious that the topology of the space of maximal ideals is the usual topology in E™.

Remark. It is not known to the author whether R™ is the maximal ideal space
of M,>nNC for some p=2. That this is not true for p=1 is well known. (Cf.
Sreider [14].)

From Theorem 1.17 and the basic results on commutative Banach algebras (see
Loomis [6], pp. 78 and 79), we obtain the following theorem.

THEOREM 1.18. If f€m,” and ® is aralytic in a neighbourhood of the closed
range of f and ® (0)=0, then ® (f) Em,?.

Combination of Theorems 1.16 and 1.18 also gives
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Turorem 1.19. If fEM,>NCONLY and ® is analytic in a neighbourhood of the
closed range of f and ® (0)=0, then @ (f)eM2 if |1/9—1/2|<|1/p—1/2].
For another subalgebra of M,” we shall in Chapter II discuss similar results,

which are closely related to some theorems of Calderén and Zygmund [3].

CaarpreERr II
Estimates for some special operators

2.1. Main theorem

Corollary 1.2 shows that T'€L* (or T€M if a=1) implies T€L,?if 1 <p<¢< oo and

1/p—1/qg=1~1/a. (2.1.1)

Theorem 1.4 shows that these conditions on 7' are also necessary in order that 7'€L,°
for all p, ¢ satisfying (2.1.1) and 1<p<g<co. The purpose here is to show that
if the condition T'€L* (or M) is slightly weakened we still have T €L,? if (2.1.1) is
fulfilled and 1 <p<g< co.

Let & be a locally integrable function. If k€L, and we set with £>0

k(® (2)=1""1"k (w/1), (2.1.2)
we have also k®€L,? and, if (2.1.1) holds,
L9 (k@) = L7 (k). (2.1.3)

This follows from Theorem 1.10 when p=g¢ and in fact by a trivial computation for
all p and q. It is therefore natural that we now introduce a condition involving the

family of functions %®,

DeriNiTioN 2.1. We shall say that the locally integrable function k is almost in
L and write E€K® if there is a compact set M, a neighbourhood N of 0 and a con-
stant C such that

1ja
((lkt‘“)(x—y)~kt(“)(x)|“dx) <0, y€EN,0<t. (2.14)

M

Remark. When a=1 it would have been enough to assume that £ is a measure
and that the analogue of (2.1.4) is valid. However, we do not consider this simple
generalization in order not to complicate the notations.

.8 —60173032. Acta mathematica. 104. Imprimé le 23 septembre 1960
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Examples of functions in K% will be given in the next section. The main re-

sult we shall prove is

THEOREM 2.1. Let k€K® Then k€LY cither for all p and q satisfying (2.1.1)
with 1<p<g< oo or else for no such p and q.

In the applications we shall use Theorem 1.5 or 1.11 to prove that k€L,? for
some p and gq.

We shall prepare the proof of Theorem 2.1 by rewriting the property (2.1.4) in

a more useful form. Let w€L! vanish outside N and form the convolution
(k¥ %u) (x)=sz‘“) (x—y)u(y)dy (2.1.5)

which exists almost everywhere (and is the density of the convolution in the distri-

bution sense.) If

fudx=0 (2.1.6)
we can also write

(k&%) (@) = f (k< (3= y) = (@) w (y) d . (2.1.5Y

Using Minkowski’s inequality for integrals and (2.1.4) we thus obtain

1/a
EPCxultdx) <O | |u|dy. (2.1.7)
Y

M

That (2.1.7) is practically equivalent to (2.1.4) is seen by letting » in (2.1.7) con-
verge to the difference between the Dirac measures at y €N and 0. (2.1.4) then fol-
lows with C replaced by 2C.

Let I, be a cube = N with centre at 0 and let I§ be another cube with centre
at 0 containing M. If I is an arbitrary cube we denote by I* the cube with the
same centre such that m (I*)/m (I)=m (I)/m (I,)=y. (By a cube we always mean
a cube with edges parallel to the coordinate axes.) When I=1I, it then follows from
(2.1.7) that

1/a
(f|kt‘“’%u|“dx) <C (Iu[dy if fudx=0 and »=0 outside I. (2.1.8)
er* v

This inequality is in fact valid for every cube I. For since (2.1.8) is invariant for

translation we may assume that I has its centre at 0 so that I=s"11, for some s.
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If » vanishes outside I it follows that » (x)=s"u (sx) vanishes outside I, and an easy

computation gives that
(kD% v) () = 8™® (ks V%) (s 2).

Applying (2.1.8) with u replaced by v and I by I,, and substituting z for sz we
thus obtain (2.1.8) with ¢ replaced by st. Since ¢ is arbitrary, this proves (2.1.8) for
all t. In particular, for =1 we obtain the following lemma.

Lemma 2.1. Let k€K® Then with the same constant C as in Definition 2.1,
we have for every cube I with I™ defined as above

1l/a
( f]k%ul“dx) <C f|u|dx of fudxzo and u=0 outside I.  (2.1.9)

Gi* I
For the proof of Theorem 2.1 we also need a fundamental “‘covering lemma”

due to Calderén and Zygmund [2] (see also Zygmund [18] and Stein [15]). We give

it a slightly different form.
Lemma 2.2, Let w€L* and let s be a number >0. Then we can write

u=v+ > w, (2.1.10)
1
where v and all w, €L},
ol + 2 Merlli <3l (2.1.11)
|v(@)|<2"s almost everywhere, (2.1.12)
and for certain disjoint cubes I,

fwkdx=0, and Wy (x)=0 @f x¢];‘;, (2.1.13)
(2.1.14)

m(Ik)<s‘1f|u|dx.

=P8

If w has compact support, the supports of v and all w, are contained in a fixed

compact set.
Proof. Divide the whole space R" into a mesh of cubes of volume >s7 [ |u]da.

The mean value of |u| over every cube is thus <s. Divide each cube into 2" equal
be those (open) cubes so obtained over which the mean

cubes and let 7,;, I,,, I, ...
value of |u| is >s. We have
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sm (1) < fluldx<2”sm(llk). (2.1.15)

Iy

For if I, was obtained by subdivision of the cube I’, the construction gives

sm (L) < f |u|dx< f|u|dx<sm(1’)=2"sm(llk).
I, r

i — I
We set v(x)=m(llk)J udy, €L, wik (x)={g(x) v (@), zZIi: (2.1.16)
Ilk

Next we make a new subdivision of the cubes which are not among the cubes
Lk, select those new cubes I,;, I, ... over which the mean value of |u]is >s, and
extend the definitions (2.1.16) to these cubes. Continuing in this way be obtain dis-
joint cubes I and functions wy,; for convenience in notations we rearrange them as
a sequence. If the definition of v is completed by setting » (¥)=wu (x) when 2¢0 =
U I, it is clear that (2.1.10) holds. To prove (2.1.11) we first note that

f(]v|+|wk|)dx<3f|u|dx.
Iz Ir
Since the cubes are disjoint, w, vanishes outside I, and f w|v]dx:fc olulde, we

immediately get (2.1.11). Further (2.1.12) follows from (2.1.15) if x€0. On the other
hand, if ¢ O, there are arbitrarily small cubes .eontaining x over which to mean value
of |u| is <s. Hence |u(x)|<s at every Lebesgue point in O, that is, almost every-
where. (2.1.13) follows from the construction. To prove (2.1.14) we only note that

since the cubes I, are disjoint we get by adding the inequalities (2.1.15)

sZm(Ik)<f|u]dx.
0

The proof is complete.
We now prove an estimate for the case p=1, ¢=a, which is then a substitute

for Theorem 2.1. Using this result it will be easy to prove Theorem 2.1.

THEOREM 2.2. Let k€K® and assume that k€L, for some p and ¢ satisfying
(2.1.1) with 1<p<g<oco. Then we have, when u has compact support and u €L,

m{z; |kxu (@)|>0} <0 (|#]/0)* >0, (2.1.17)

where m denotes Lebesque measure and C; a constant.
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Proof. We may assume in the proof that ||u|l,=1. To simplify the notations
we write @ (x)=/k*u(x), which exists almost everywhere as an absolutely convergent

integral. Form the decomposition of « given by Lemma 2.2. Then we have
I?Z(x)|<|6(x)|+zl|ﬁ)k(x)|, (2.1.18)

for every x such that [|k(z—y)|(|v(y) |+ |wi(y)|)dy<oo, hence almost every-

where. In virtue of Lemma 2.1 we have

1/a
(f|wk|“dx) <O well; - (2.1.19)
[
and if 0= I, it follows from (2.1.14) that

-1

m(O)<ys7Hul=ys

It we restrict the integration in the left hand side of (2.1.19) to (O and use Min-

kowski’s inequality, we get writing @ =2 | @]

1l/a
( fﬁ)dx) <O [lwel, <3¢ |Jul,=30.
o
Hence the measure of the set of points in O where @ (x)>340 is at most (6C/0)%
Choosing s = ¢® we thus have @ (x) <1 o except in a set of measure at most {y + (6 C)%) /o%

Now the assumption that k€ L, for some p and ¢ means that
| esxulle <O ||ul,, wE€S. (2.1.20)

S is dense in L” since p< co. Hence (2.1.20) follows for every w € L? with compact
support (with the convolution defined in the distribution sense, which however is
well known to be equivalent to the classical sense since k is locally integrable). In

particular, (2.1.20) may be applied to v which gives
5lle<C||vll, < @"s) 7 ||v] P < O sMa-tin — 07 g1~ (2.1.21)

in view of (2.1.11), (2.1.12) and (2.1.1). Hence the measure of the set where [6[>%0
is at most (20")%¢ % Since (2.1.18) shows that the set where |@|>o is contained
in the union of the set where |#|>1¢ and that where @%> o, the inequality (2.1.17)

follows.

Proof of Theorem 2.1. Let k€K® and k€L,* where p, and ¢, satisfy (2.1.1}.
Then it follows from Theorem 2.2 that (2.1.17) holds. But this means that Marcin-
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kiewicz’ interpolation theorem (Zygmund [18], Theorem 1) can be applied, and we
obtain if 1<p<p, and ¢ is defined by (2.1.1)

kxull,<C||lul|l, if v€L? and u has compact support. (2.1.22)
¢ P

In particular, this holds when u € (% and since C§° is dense in § for the L” norm
we obtain (2.1.22) for u € §. Hence k€ L,%. To remove the restriction p <p, we only
have to use Theorem 1.3. The proof is complete.

Remark. It is important in the applications that the proof gives an estimate of
L,%(k) which only depends on p, g, Py, 9o, Lp® (k), the constants C and y connected
with (2.1.4) and the dimension n. This fact is often useful in estimating L% (k) even

when k € L*. (See for example the proof of Theorem 2.5 below.)

2.2. Applications

Our first example is that of Calderén and Zygmund [2], where the methods of

section 2.1 were originally introduced. Thus % is a locally integrable function satisfying
k()=0 if |z]<1, k(x)=t"k() if t>1, |z|>1 (2.2.1)

Assume further that k€ K!. (In virtue of the footnote on p. 95 in Calderén and
Zygmund [2], this follows if k satisfies a Dini condition when |z|=1.) We have to
examine when the Fourier transform £ is in L* so that k€ L,®. First note that if
y €N we have k(x—y)—k(x) €L as a function of z, since k € K'. Hence the Fourier

transform (e 2" ¥ ® —1) £ is continuos. Since this is true for all y in the neigbourhood
N of 0 it follows that £ is a continuous function for £=+0 and bounded when £—oo.

It remains to study the behaviour of £(£) as £&—0. Noting that the Fourier trans-
form of £® is E(t£), we obtain

1
ke —kE)= f fe‘w“w'@k(w)dwdr/r.

Jwl=1 ¢
Hence ?IIOI kegy—kE)= —logtjk(w)dw.

Letting {—>0 we find that if £ is a bounded function we must have

k(w) dw=0. 2.2.2)

jo|=1
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Conversely, if this condition is fulfilled, one can write

1

kg —k@E)= (e 2¥ @O ~ 1) k(w) dew dr/7.

lol=1 ¢

If we take & as a unit vector and 0<¢<1, the right hand side is bounded by
2nﬂk(w)|dw, which proves the boundedness of k for £40. Thus % is the sum of
a bounded function and—possibly—a distribution with support at 0, that is, a linear
combination of the Dirac measure at 0 and its derivatives. A component of that form
is impossible, however. To see this it is sufficient to show that if ¢. (x) =g (x/e),

where ¢ € CF°, it follows that i (pe)—>0 as ¢—>0. Now we have

Using the facts that |@(y)|<C/(]y|+1) since ¢ €S and that [|k(rw)|dw<0/r”,
we get by introducing polar coordinates and computing the integral
|k (po) | < Ce™log (1+1/e),

and this tends to 0 as ¢—0. Hence the following theorem follows from Theorem 2.1.

TarEorEM 2.3. If Lk is in K' and satisfies (2.2.1), it follows that k€ L," for
l<p<oo if (22.2) is fulfilled whereas k is mot in L,? for any p tf (2.2.2) is not valid.

We briefly recall the consequences of this result for the singular integrals corre-
sponding to k. First note that it follows from (2.2.2) that k,® =1lim k. exists in the
topology of §'. In fact, if u € § we have

=]

ke (u) = f u(ro)k(@)dwdr/r,
t |wj=1

and in view of (2.2.2)

fu(?‘w)k(w)dw=f(u(rw)—u(O))k(w)dw=O(r)

ag 7—0. Hence the integral

Ico(l)(u):fdr/rfu(rw)Ic(w)da)
0
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exists and is the limit of k£ as t—0. It is clear that k" is a distribution in §’.
Since ||k® *ull,<Cp||u|l, if w€S, t>0 and 1 <p< oo, the same estimate for t=0

follows in the limit. (Cf. Lemma 1.5.) Hence we obtain

CoROLLARY 2.1. Let k€K' and let (2.2.1), (2.2.2) be valid. Then lim k< exists
t—>0

in § and is an element of L,?, 1 <p< oo,
Next consider the potential kernel

e l<a< oo,

k(x)=|z|"

k is locally integrable and € K* In fact, k=% so all we have to estimate is

1l/a
(J’|kx y)— |dw) . yen,

where N is the sphere |y|<1 and M the set |x{<2. The mean value theorem gives

the estimate

\k@—y) k@) <(y|n/a)/ (=] - 1)

Since the function 1/(|x|—1)"** is integrable over § M, it follows that k € K*. Further,

it is well known that the Fourier transform of |z|™™® is C,|&|™™*

where C, is a
constant. (This may be proved as follows: k is in L? in a neighbourhood of infinity
if a<?2, hence Lk is a function. Considerations of orthogonal invariance and homo-

lgn/a,'

geneity immediately show that £ is proportional to |& . For a>2 the same result

now follows from Fourier’s inversion formula and for a =2 it is obtained as a limiting
case.) Using Theorem 1.11 and Theorem 2.1 we obtain that %€ L,? if (2.1.1) is valid.

Hence
TrEOREM 2.4. If k is a locally integrable function such that
|k@)|<C|z|™™° a>1, (2.2.3)
then k€L if 1<p<g<oco and (2.1.1) is valid.

The proof we have given is essentially the same as that in Zygmund [18]. The
theorem itself is due to Hardy and Littlewood when =1 and to Sobolev when » > 1.
(See the references in Zygmund [18].)

The next application is an improvement of a result proved by Mihlin [8], [9].

TrrEorREM 2.5. Let f€L™ and assume that

|R¥ D,{]Pdé/R"<B, 0<R<oo, |a|<n, (2.2.4)

3 R<|EI<2R
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where B is a constant and » is the least integer >1Ln. Then it follows that f€ M7,

l<p< oo,

Remark. Mihlin’s hypotheses are of the form (2.2.4) with maximum norms instead
of L* norms and involve derivatives up to the order n.

In the proof of Theorem 2.5 we need a simple lemma.

LeEMMA 2.3. There is a function ¢ € O with support in the set }<|&|<2 such that
+oo
29@78=1, £+0. (2:2.5)

Proof. Let ®>0 be a function in Of with support in the set 3 <|&|<2 and
let ®(&)>0 when 1/V2<|&|<V2. Set

+ oo .
=)/ 2078,
Since the denominator is never 0 for &==0 it follows that ¢ €Cg°, and (2.2.5) follows
immediately.

Proof of Theorem 2.5. We shall apply Theorem 2.2 to the inverse Fourier trans-

form of f. To do so we first decompose f into a sum 2 f; by setting

HE =& @2 (2.2.6)

The support of f; belongs to the spherical shell 2! <|£| < 2/*'. Leibniz’ formula gives

D, f;(&)= 5 > 270D, £(8)) (D) (2778)).

+y=a

Using (2.2.4) with R=2 and the fact that the derivatives of ¢ are bounded, we

obtain

21 D, f[2d /2" < OB (2.2.7)
7

|} <

(In the whole proof ¢' will denote constants depending only on n but ¢ may have
different values in different formulas.)

Let g; be the inverse Fourier transform of f;,

~

B = | EED f (&) dg
Parseval’s formula gives in view of (2.2.7)

f (1-+2%|2|?)|g; P de< CB* 2", (2.2.8)
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and hence it follows from Cauchy-Schwarz’ inequality that
t
f lgi|dx<CB (2'”'f dxz/(142%| x|2)") =C'B. (2.2.9)

(The integral is convergent since 2 >n.) Note that this also shows that |f;|=|g;| is
< ("B almost everywhere, hence that |f|=|2f;| <2 ("B since at most two f; can be +0
at any point. Application of Cauchy-Schwarz’ inequality also gives, if we drop the
term 1 in the brackets on the left hand side in (2.2.8),

lg)|dz< CB (@Hdm—, (2.2.10)
|z|=¢
N N
Write FN= zfj, GN= zgi' (2.2.11)
Ry iy &

We then have |Fy|<2C’'B, hence

L2 (Gy)= M2 (Fy)<2('B. (2.2.12)
Further, we shall estimate
|Gy (x—y)—Gy(@)|dz, |y|<t.
Iz|>2¢
To do so we first note that (2.2.10) gives
lg; (x—y) — g, (x)| dx < OB (271)4" 7,
Izi>2¢

which is a good estimate when 2/¢>1, the exponent being negative. Further, (2.2.9)

and Bernstein’s inequality give
J‘Ig,(x—y)—g,(x)[dx<032”1t, ly|<t, (2.2.13)

since the spectrum of g, is contained in the sphere with radius 2*'. (It is also easy
to obtain (2.2.13) by a direct estimation without using Bernstein’s inequality.) Hence,

when |y|<t,

+oc0
|Gy (@ —y)— Gy ()| dz<CB > min (24, (2/£)4"~) (2.2.14)

z|>2t

and since the sum is obviously a bounded function of ¢ we get
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|Gy (x—y)—Gy(x)|dx<CB, |y|<t, (2.2.15)

|z]=2¢t

which is equivalent to

|Gn® (@ = y) — Gu® (@) | dz< OB, [y|<1. (2.2.15)

|z1>2

From (2.2.12) and (2.2.15)" it now follows in view of the remark at the end of
section 2.1 that
MyP(Fy)y=L,L (Gy)<C,B, 1<p< oo, (2.2.15)

where C, only depends on p and the dimension n. Since Fy (&)—F (&) for &0 and
is uniformly bounded, we have Fy—F in §’, N—oo. Hence it follows from Lemma 1.5
that F €M, and that
M (F)<C,B. (2.2.16)
The proof is complete.
Using Theorem 2.5 we shall now prove some results similar to those in section 1.4.

They are modifications of theorems proved by Calderén and Zygmund [3].

DeriniTION 2.2. We shall denote by H,, 1<p< oo, the closure in M,? of the

set h% of functions f which are in C* for ££0 and homogeneous of degree 0, that is,

f&=f(&), t>0.

Note that Theorem 2.5 shows that A* <M ,?, and that H, is obviously a nor-

med ring.

THEOREM 2.6. Let f€M,? be continuous for £+=0 and homogeneous of degree 0.
Then we have f€H, if |1/q—1/2|<|1/p—1/2].

Proof. The theorem is quite parallel to Theorem 1.16 and so is the proof. Let
0, be the orthogonal group, with elements denoted by A, B, ... and let d4 be the
Haar measure in O,. For j=1,2, ... take a function ¢;>0 in O, which is infinitely

differentiable so that any neighbourhood of the identity in O, contains the supports
of all ¢; except a finite number. Let f @;(A)d4=1 and set

ff(x)=ff(Ax) @;(A)dA.
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It is obvious that f; is homogeneous of degree 0 and in view of Theorem 1.13 and
the convexity of the norm M,? we have M,?(f;) < M,? (f), hence M,?(f;—f)<2M,°(f).
Further f,—f uniformly when j—co. It is sufficient to verify this when £ is on the
unit sphere and then it follows at once from the uniform continuity of f. Thus
M2 (f;— )—0, and as in the proof of Theorem 1.16 it follows that M2 (f;—f)—0 as
j—>co. It remains to prove that f; €h*, that is that the restriction of f; to the unit

sphere is infinitely differentiable. But this is obvious since

fj(BW)=ff(ABx) %(A)dA:ff(Ax) ¢ (AB")d4, BEeO,

and the right hand side is an infinitely differentiable function of B.

TaEOREM 2.7. The only continuous multiplicative linear forms on H, are the

mappings f—f (&), |&]=1.

Proof. Let f—T(f) be such a form. If A® is identified with 0% (2), where
2 ={&; |&| =1}, the restriction to A of T can be considered as a distribution 7 in 2.
In fact, Theorem 2.5 or more precisely inequality (2.2.16) shows that M,*(f,)—0,
hence 7T (f,)—0, if f, €A™ and the derivatives of f, of order <} (n- 1) converge to 0
uniformly in 2. Thus 7' (z)=7T (e 2™ ) is continuous and satisfies the equation
T@+y)=T @) T(y). Hence T (x)=¢ 2" for some complex £, but since T has
support in > it follows that &€ 2. Hence

T(f)y=1(&), [er™. (2.2.17)

Since h* is dense in H,, the equality (2.2.17) is valid for every f€ H,, the two sides
being continuous functions of f€ H,. The proof is complete.

The result we need in Chapter III is the following

CorROLLARY 2.1. Let f be continuous for £+0 and homogeneous of degree 0. Further
assume that f€ M,? for all p with 1 <p< oo and that f(£)+0 when E+0. Then 1/f€ M7

when 1 <p<oco.

Proof. Theorem 2.6 shows that f € H, for all ¢ with 1 < ¢ < co. Hence the corollary
follows from Theorem 2.7 and basic facts concerning commutative Banach algebras
(Loomis [6], pp. 78 and 79).
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CrAprER III
Estimates for some families of operators

3.1. Preliminaries

Our aim in this chapter is to supplement the investigation of the convolution
transforms %,“ %« made in Chapter IT by studying these as functions of ¢ also. For
simplicity we only consider the case a=1, but in view of some important applica-
tions we shall admit several parameters. Thus let 7 be a set in R™ such that 0¢ 7'
and T'U {0} is a closed (*) cone. Thus

at€T if >0 and t€T. (3.1.1)

Write B"=X. We shall consider a function K (z,#) defined and measurable in X x 7,

such that
K(xz,at)=a " K (2,t), (2,)€EXxT, o>0. (3.1.2)

With suitable assumptions on K and on % we shall study the convolution
fK(w—y, Huly)dy, (»t)€XXT.

Writing K (z, t)=K (— =, t) we shall also for functions U in X x7T study the adjoint

transformation which maps U on the function
”K(x—y, U (y,t) dydt/|¢|".
X T

In the estimates we shall use norms on measurable functions U in X x7 of the
form (3.1.3) with 1<p< oo, 1<g< o0,

X T (U) = (f (f |U (=, t)]¢ dt/[t|"‘)plqu)llp. (3.1.3)
X T

(3.1.3) has a sense, finite or infinite, in view of the Fubini theorem. (It is clear
how (3.1.3) should be interpreted if p or ¢ is infinite.) We write X?7T? for the set
of measurable U such that the norm (3.1.3) is finite. This is a Banach space. In fact,
the convexity of X?T9(U) follows by repeated use of Minkowski’s inequality in L?
spaces. Similarly one proves the convergence in the X? 7T norm of a series of elements

in X?T% whose X”T? norms form a convergent serics. Hence X?T7 is complete.

(1) This assumption is merely made to get shorter statements.
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We shall also use the notation

1/q
) -( [ 1okayer)

If U€X?T? this function of z is finite almost everywhere.

Holder’s inequality takes the following form.

THEOREM 3.1. Let U and V be measurable in X xT. Then

f(|U||V|dxdt/|t|'"<XﬂTq(U) X7 T (V). | (3.1.4)

v
X x

e

Proof. We may assume in the proof that the factors in the right hand side are
finite. For almost all « we can then use Hélder’s inequality for the integral with
respect to ¢t and another use of Holder’s inequality completes the proof of (3.1.4).

It would be easy to show that the dual space of the set of all measurable U
with the norm X?7T?(U)< oo is the corresponding space with p and ¢ replaced by p’
and ¢, provided that p and ¢ are finite. However, we content ourselves with the
following converse of Holder’s inequality.

THEOREM 3.2. Let U be a measurable function tn XXT and assume that for all
measurable V. with compact support in X xT we have with constant C

“Udedt/w
XxT

which shall mean in particular that the integral in the left hand side exists if the right
hand side is finite. Then it follows that

<OXP T (V), (3.1.5)

X* T (U)<C. (3.1.6)

Proof. We may assume that U>0, that X?7T?(U)< oo and that U has compact
support. In fact, if the theorem is known when this hypothesis is made a priori we
only need to form Uy defined as min (|U|, N) when |z|<N, 1/N<|¢{|<N and as 0
otherwise. Uy satisfies (3.1.5) and our requirements, so, we will get X? 7T (Uy)<C.
Letting N-—>oo, we obtain (3.1.6). Now if the assumptions made above are fulfilled

and p< oo, g< oo, we take

1-p/q
V=U°/U(f U"dt/|t|’")
T

which we define as 0 when a factor in the denominator vanishes. A simple computa-

tion then gives (3.1.6). The case when p or g= oo is easily handled in a similar way.
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The following variant of Lemma 2.2 is important in this chapter.

Leuma 3.1. Let U€X'T? For every s>0 we can then write
U= V+2Wk, (317)
i

where V and all W, €X' T and for certain disjoint cubes I, in X

X7V + S XLT(W,) <3 X179, (3.1.8)
1
(T9(V))(x)<2"s for almost all z, (3.1.9)
fWk(ac, t)dx=0 for almost all t and W, (x,t)=0 ¢f v ¢ 1, (3.1.10)

m (1) <s~ X1T(U). (3.1.11)

=3

If U=0 outstde a compact set, then there is another compact set such that V and all

W, vanish outside that set.

Proof. Let w=T9(U). We have uw€L* so we can form the decomposition of u
given by Lemma 2.2. We take the cubes I, associated with % and s in that lemama

and set

V (x, t)=(m(Ik))_1JU(y, t)dy, x€I, (3.1.12)

I
We@ t)=U(x,t)—V (2,t), z€l (3.1.13)

which has as sense for almost all £. When z¢ I, we set W,=0 and when ¢ U I,
we set ¥V =U. Minkowski’s inequality and (2.1.12) give

1/q
(flV(x, t) |"dt/|t|’")/ < (m (Ik))“lfudy:(m(Ik))—lfvdy< 2%g, xz€l,. (3.1.14)
Ix Iy

When x ¢ U I, we have
1/
(flV(x,t)|‘1dt/|t|'”) =u(x)<s

almost everywhere which proves (3.1.9). (3.1.11) follows trivially from Lemma 2.2 for

the right hand side is s [ d2. Since (3.1.14) gives

f(fw(x’ ”'“dt/ltl'")l/qdmfud'y

Iz I
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we obtain XlT"(W,C)<2fudy, Xqu(V)<fudy.
Ix

This proves (3.1.8).

3.2. L2 estimates

Let K be a locally integrable function in X x7 and form

(K *u) (z, t)=fK(x—y, Hu(y)dy, (3.2.1)

where u is integrable and has compact support. The integral exists for almost ail
(x,t) and is a locally integrable function in X x7 in view of the Fubini theorem.

We shall study conditions in order that the inequality

X7 (K%u)<||u||2 (3.2.2)
shall hold.

THEOREM 3.3. Let K(x,t) be in § for almost all fixed t€T, and assume that
there is a locally integrable function K (£, t) which defines the Fourier transform of K (,t)

as a function of x for almost all t. If
T*(R)<C almost everywhere, (3.2.3)
the snequality (3.2.2) holds for all w € L? with compact suppori.

Proof. For almost all ¢ we get by Parseval’s formula

JlK%u|2dx=J | K (&, t) 4(8)Pdé.
Hence
ff]K*u|2dxdt/|t|m=f|72(§)|2d§f|K(§, t)|2dt/|t|m<02f]zz(§)|2d§, (3.2.4)

which proves (3.2.2).

When (3.2.3) holds, the mapping u—K-xu can thus be extended to a continuous
mapping A of L? into X®7?* To compute the adjoint A* let U €CF (X xT) (1) and
form with » € OF (X), which is a dense set in LZ

ff(K*u)Udzdt/]tr":J‘ “Z-]dxdt/|t|'"fK(x*y, t) u(y) dy.

(!) By this we mean that U is the restriction to X x 7" of a function in C§°(R" x (R™ - {0})).
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The integrations may be interchanged since the integrand vanishes except when

(x, y,t) is in a compact set, and K is locally integrable. Hence
J‘(K%u)dedt/|t|’"=qu%de (3.2.5)

where we have used the notation K (x, t)=i{ (—=, 5 and

(Kx%U) (z)= f K@~y 0)U(y, t)dydt/|t|".

Since an operator between Hilbert spaces and its adjoint have the same bounds,

we have

TeEOREM 3.4. If the hypotheses of Theorem 3.3 are fulfilled it follows that
|ExU|,< ¢ X2T*(U), U€O(XxT), (3.2.6)
where C is the same constant as in (3.2.3) and (3.2.2).

A* is thus the closure of the mapping X*T%> C¢(XxT)3 U—>K*U € L* (X).
We shall now compute A*A. When » € 05°(X) (3.2.4) may be written

(X212 (Aw))?= f |4 (T*(K))2dE,

that is, (A* Aw, u) = f |52 (T2 (R))>?dE, wels (X). (3.2.7)

Polarization of this identity gives since 4* A4 is a self-adjoint operator
(A*Au,v)=J'd5(T2(K))2d§, u, v € 09 (X).

Thus, if F denotes the Fourier transformation, we have

A* Au=F1(T*(R))? Fu), u€CT, (3.2.8)

so that A*A4 is the convolution operator corresponding to the multiplier (7% (K))%.
This will be essential later on. For future reference we also remark here that it

follows immediately from (3.1.2) that 77%(K) is homogeneous of degree 0, that is,

(T*(R)) (&) = (T* (K)) (§), o>0. (3.2.9)

9 —60173032. Acta mathematica. 104. Imprimé le 23 septembre 1960
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3.3. Main theorem on mixed L% estimates

In this section we assume throughout that K is locally in X*7?. By this we
mean that a function K, which is equal to K in a compact subset of X x 7T and

equal to 0 elsewhere in X*7T? Then
(KxU) (x)= HK‘(x—y, U (y, tydy dt/[t" (3.3.1)

exists as an absolutely convergent integral almost everywhere and defines a locally
integrable function, if U is in X'7® and has compact support. To prove this it is
sufficient to study (3.3.1) with K replaced by K;. But then we can apply the Fubini
theorem to the measurable function K, (x—y, t) U(y, t)/[t|™ of (x, y, ¢), for

f”liﬁ(x-y, DUy, | dzdydt/|t]"< ”T (Ky (@ =y, DT (U (y,")) dady =
=X'T? (i) X' T% (U) < .

Also note that the same argument shows that (3.2.5) is valid for all w € CF if U€ X! T?
and has compact support. Thus the operator A* discussed in section 3.2 is defined
by A*U=Kx U and (3.2.6) is valid for all U€X2T? with compact support.

The principal aim of this section is to prove the following theorem.

THEOREM 3.5. Let K be locally in X'T? and satisfy the hypotheses of Theo-
rem 3.3. Further assume that there is a neighbourhood N of 0 in X and a compact
set M in X such that

fdx( f|K(x—y, t)— K (x, t)[zdt/|t|"‘)%<0, yEN, (3.3.2)

oM

where C is a constant. For 1 <p< oo there then exists a constant C, such that if u € L?
has compact support in X
X?T* (K%u) < Gy |[u|fp (3.3.3)

and if UEX?T? and has compact support in XxT.
| KxU|,< Cp X? T (U). (3.3.4)

Proof. It is sufficient to prove (3.3.3) and (3.3.4) when 1<p<2, for (3.3.3) is
equivalent to (3.3.4) with p replaced by p’ in view of the duality used in the proof
of Theorem 3.4. In fact, if (3.3.4) is known with p replaced by p’ we get using
(3.2.5) and Holder’s inequality
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[ w0 azayier i<l 0, x7 72 0)

hence (3.1.5) gives X?7T? (K%u)<C,||u|, The argument may of course be reversed.
Also note that Theorems 3.3 and 3.4 show that the theorem is valid for p=2.
We now prove a theorem concerning the mapping u—T? (K%u) which combined

with Marcinkiewicz’ interpolation theorem gives (3.3.3) for 1<p<2.

THEOREM 3.6. Lef fthe assumptions of Theorem 3.5 be fulfilled. Then there is a
constant Cy such that if w€L' and has compact support we have

m {x; (T* (K*w)) (x) > o} <Cy||u|l,/o, o>0. (3.3.5)

Proof. To prove this theorem we have essentially only to repeat the proof of
Theorem 2.2. There is no restriction in assuming that the sets N and M in (3.3.2)
are cubes with centre at 0; we may write N =1, and M = I,*. We then define a cube
I* for every cube I as in section 2.1 so that m (I*)/m (I)=m (1,*)/m (I,)=v. In view
of (3.1.2) it then follows by a trivial computation that the inequality

fdx(f]K(x~y, t)— K (z, t)|2dt/|t|m)%<0, y€l (3.3.2)

rel*

is valid for every cube with centre at 0. Now let 4 €L' have support in I and
assume that

[ wdx=0. (3.3.6)

Then we have (K*%u) (x, t)= f (K@—y, t)— K (z, ) u(y)dy.
Hence Minkowski’s inequality for the X'7%.norm and (3.3.2) give

T* (K %u) de < C ||ul],. (3.3.7)

T¢l%*

In view of its invariance for translation, (3.3.7) must hold also for cubes with arbi-
trary centre.

In proving (3.3.5) we may assume that ||«|;=1. To simplify the notations we
write w* (x, t) = (Ku) («, t), which exists almost everywhere as an absolutely con-
vergent integral. Form the decomposition of % given by Lemma 2.2 with s=g.

Then we have
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|u® (@, &) <|v* (x, &) |+ 2 | w™ (=, 1)] (3.3.8)
1

for all (x,¢) such that (|K|%(|v|+2>|w]) (x, t)< oo, hence almost everywhere in
XxT. In virtue of (3.3.7) we have

f T () dae <Cllwll,. (3.3.9)

»
el

{(2.1.14) gives an estimate of the measure of the set 0= U,
m(0)<yo||ul=y/o.

Restricting the integration in the left hand side of (3.3.9) to (O and adding, we
get if w*=2 |w"|

fT2(w*)dx<0§”wk“1<30Hu||1=30,
760
where the last inequality follows from (2.1.11). Hence the measure of the set of
points in (O where T? (w*)>1¢ is at most 6 C/o. Thus it follows that 7% (w*)<}o
except in a set of measure at most (y+6C)/o.
Further, since v€I? and has compact support, we may apply (3.2.2) to v and

obtain
X1 (") < Co|l,<C (2" o) o]t <VB C (2" o)t

Hence m{z; T? (v*)>1o} <3 022" /6.

Since (3.3.8) shows that the set where T°(u*)>¢ is contained in the union of the
set where T (v*)>1¢ and that where 7% (w")> 10, the inequality (3.3.5) follows. This
proves Theorem 3.6 and thus (3.3.3) follows from Marcinkiewicz’ interpolation theo-
rem when 1<p<2.

We next prove a theorem from which (3.3.4) follows for 1 <p<2. Since Marcin-
kiewicz’ interpolation theorem has to be somewhat modified in order to be applicable
here, we have to supply an extra argument after Theorem 3.7 in order to obtain
(3.3.4).

TurorEM 3.7. Let the assumptions of Theorem 3.5 be valid. Then there is o
constant C, such that if UEX"T? and has compact support in X xT, we have

m{z; | (K*U) (@)| > 6} <C, X* T*(U)/5, &>0. (3.3.10)
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Proof. The proof is parallel to that of Theorem 3.6 but uses Lemma 3.1 instead
of Lemma 2.2. First we shall prove that if U (z, t)=0 when x ¢ I, where I is a cube,
and if

f U (e, ) dw=0 (3.3.11)
for almost all ¢, then

f | KxUlde<C X' T*(U). (3.3.12)

o
Tel*

To prove this it is sufficient to assume that I is a cube with centre at 0, for (3.3.11)

is invariant for translation. In view of (3.3.11) we can write
(ExU) (x>=f Uy, t) (K (x—y, t)— K (2, £)) dy dt/]t|".

Hence it follows from Cauchy-Schwarz’ inequality that
~ : - - ¥
(Exv)y@l< [ @@ ([ 1R ey 0-K @ ol i) iy
T

Integrating this inequality over (I* and using (3.3.2), we obtain (3.3.12).
In proving (3.3.10) we assume that X*7? (U)=1. To simplify the notations we
write U* (x)=(I€->eU) (x). Form the decomposition of U given by Lemma 3.1 with

=¢ and g=2. Then we have

|U* ()| <| V* (@) |+ %| Wi* ()] (3.3.13)

for all x where (|I~{]*([V|+Z|W,c|)) (x) < oo, hence almost everywhere in X. In

virtue of (3.3.12) we have
f | Wildx< O X1 T (W,). (3.3.14)
241y
(3.1.11) gives an estimate of the measure of the set 0= UI*,
m(0)<ye ' X*T*(U)=1y/o.
Restricting the integration in the left hand side of (3.3.14) to (O and adding, we

get it W*=3|W,*|

fW*dx<C'z X'T*(W)<30X'T*(U)=30,
1

Frxel
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where the last inequality follows from (3.1.8). Hence the measure of the set of points

in (O where W*>1¢ is at most 6 C/o. Thus it follows that W*=§|Wk*|<%a ex-
cept in a set of measure at most (y+60C)/0.

Further, since V€X®7T? and has compact support in X x7', we may apply (3.2.6)
to V and obtain

V¥ l,<CX2T? (V)<C 2o X' T? (V))} <V3 C (2" o).
Hence m{z; | V*|>16} <3 C*2"% /0.
Since (3.3.13) shows that the set where |U*|>¢ is contained in the union of the

set where | V*|>1o and that where > | W,*|>10, the inequality (3.3.10) follows.
1

End of proof of Theorem 3.5. As we have already mentioned, the inequality
(3.3.4) for 1 <p<2 follows from Theorem 3.7 by means of the usual proof of Marcin-
kiewicz’ interpolation theorem although the theorem itself does not seem applicable.
Thus let U €X”T? and assume that U has compact support in X x7. Take a number
s>0 and set U, (z,t)=U(x, t) if (T?(U)) (x)<s and U, (x, t)=0 otherwise. Define
Uy(x,)=U(x, t)—- U, (x, t). Then we have |U*|<| U,*|+|U,"| and hence

m(s)=m{x; |U* (x)|>s} <m {x; |U,*|>Ls}+m{x; |U*|>1s}.
To estimate the terms in the right hand side we use (3.2.6) and (3.3.10) respectively.
This gives
m(s) < (2/s C*(XET*(U,))>P+(2/s) C, X' T* (Uy) =
=(2/s)* C? f (T* (U))Pdx+ (2/s) Cy f T (U)d .

o
T3HU)Ks TU)=s

With a change of the order of integrations we now obtain

=]

flU*"’dx= fm(s)d(s”)<(402p/(2—p)+2Olp/(p—l))f|T2(U)|”dx,
H

which proves (3.3.3) for 1 <p<2. This completes the proof of Theorem 3.5.

Our results easily give ‘‘inverse estimates’ also:
TueoreEM 3.8. Let K;, j=1, ..., J, be kernels satisfying the hypotheses of Theo-
rem 3.5 and assume that

(T* (K,))*

=

._.Mg,



TRANSLATION INVARIANT OPERATORS i 185

18 continuous and =0 when E+0. Then for 1 <p< oo there is a constant C, such that

if w€L? and has compact support
J
05 ully< S X1 (Kyse) <y 3.3.15)
1

Proof. The last inequality follows from Theorem 3.5. Let 4;, be the bounded
mapping of L? into X?7T? obtained by closing the mapping u—K;»u defined for all
w€LP with compact support. In view of the remarks at the beginning of this sec-
tion, the adjoint A}, is the closure of the mapping U—K,»U defined for all U € X? 7"
with compact support. If w€L?NL* we have A,u=A,u and if UEX?T?n X*1*
we have A, U=A4% U. Hence if u€0y it follows from (3.2.8) that

J J
DAL Apu=3 A% Apu=3F" (x Fu). (3.3.16)
1 1

Let 7 be the distribution in §’ such that 7'=x"'. Since it follows from (3.3.16) that
x€M,?, Corollary 2.2 implies that » '€M,?, hence T €L,”. Let B be the closure in
L? of the mapping S3v—Txv. The operator B is then bounded and Theorem 1.7

gives

J
BZA;;, Aj,,u=u.
1

J J
Hence lull, <[ Bl 2| 4% || XP T? (4;,4) < C, > XP T? (K;%u).
) 1 1

This proves (3.3.15) if w€C§ and by approximation (3.3.15) follows for arbitrary u

in L? with compact support.

3.4. Examples of mixed L? estimates

As a first example we shall study the Marcinkiewicz' function (see Stein [15] and
the references given there). Thus let Q (x) be a (positively) homogeneous function
of degree 0, that is,

Qtr)=Q(x), t>0,

which for x=+0 satisfies a Dini condition. By this we mean that there is an in-

creasing funetion & (¢£), £> 0, such that

Q@) - Q@) |<é(z—y]) if |z]>1,|y|>1,
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1
and fa #)dt/t<co. (8.4.1)
0

The homogeneity of Q gives that when = and y are 0

|Q (@)~ Q)] < (x—y|/min (|z], [y]). (3.4.2)
Let a be a positive constant and set T = (0, c0). For t€T we define

Kz, t)=Q @) |x]"t* if |z|<t

(3.4.3)
-0 it |x|>t.

(¢=1 in Stein [15]). Then K satisfies the homogeneity condition (3.1.2). We have
to examine if (3.2.3) holds. First note that K (£, t)=K (£¢, 1). Since K (&, 1) is an

analytic function of &, it is clear that if 72 (K) is finite we must have K (0, 1)=0,
that is,

f Q(w)dw=0. (3.4.4)

lo|=1

Conversely, if this inequality is fulfilled it follows that K (&, 1)/|&| is bounded, hence
|K (& t)|<C|&|t. Thus the integral

f | K (& 1) dt/t (3.4.5)
1}

is uniformly bounded when |&|=1. To estimate the integral from 1 to oo we have
to use the Dini condition. Noting that the Fourier transform of K (x-+%, 1)— K (x, 1)
is (74" O 1)K (£, 1) we obtain

2|sinz <k, E)|| K (£, 1)|<f|K(x+h, 1)-K (2, 1)| d.

Taking h=£/2|&|* and estimating the integral on the right hand side separately for
|z|<|h|, for |k|<|z|<1—|k| and for |#|>1—|h| one easily obtains

|R (& D]|<C (& H+|&]2+ 8 (4]€] ), |€]>1.

The detailed verification may be left to the reader. In view of (3.4.1) it follows that
the integral

o0

JIK(E, t)|2dt/t=f|12(t§, 1)[de/e
1

1
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is uniformly convergent when [£[=1. Hence T?(K) is a continuous function of &
for £40.

It remains to prove that (3.3.2) is valid. We shall do so taking for N the unit
sphere and for M the concentric sphere with radius 2. Let z=x—y. Since |z|>2
and |y|<1 we have |z|>|z|—1>1|2|, hence |Q ()~ Q (x)| <6 (2/|z|). Assuming for
example that |z|<|z| we have

ol 1z}
f|K(z, t)— K (x, t)[zdt/t=|Q(z)[2|z[2“’“"’ft‘l‘z“dt+

0 12|
o0
"~

+|Q @) ] z[*" - Q@) |z " ? J ti 2 g,
||
Since |z|<|z|+1 the first integral in the right hand side is at most |z|™* 2% the

second integral is |z|?%/2«. The mean value theorem gives
Izl =lzl " | <|a=n]| (x| -1)*""

and combining this with the Dini condition for Q0 we obtain
£ b
U | K (2, t) — K (=, t)]zdt/t) <O (2| +82/|x)) | 2| ") (3.4.6)
0

In the same way we also obtain (3.4.6) if |#|<|z|. From (3.4.1) it follows again
that the right hand side of (3.4.6) is integrable over the set |x|>2. Hence Theo-
rems 3.5 and 3.8 give

TaeorEM 3.9. If K is defined by (3.4.3) where Q satisfies the Dini condition
(3.4.1), (3.4.2) and also (3.4.4), then for all u in LP, 1 <p< oo, with compact support

X? T (K %u) < Cp || %]|p-
If K; are a finite number of kernels of this type and if there does not exist any real

E40 such that the integral of all the kernels K;(x, t) over the plane {(x, &> =1 vanishes

for all t, then for 1<p< oo and the same u as above

0;1 ” u”p < Z X? T (K;%u) < Cy ” u”p-
7

We next give an application containing estimates for the Littlewood-Paley and
Lusin functions (see Stein [15]) as well as for similar functions connected with elliptic
partial differential equations other than the Laplacean.

Thus let K be a homogeneous function of degree —n in X X 7' which is Holder con-

tinuous of order «, 0 <ax<1, in XxT except at (0, 0). We also require that
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Kz, 0)=0, z=+0. (3.4.7)

From the Hélder continuity it then follows that | K (x, #)| < C|¢|* if |=|+|t|=1, hence

the homogeneity gives

| K (z, )| <C|tl/(|t]+ | (3.4.8)

in XxT. This means in particalar that K is integrable for fixed ¢ and that the

Fourier transform X (£, t) is continuous in X x7. The homogeneity of K gives
R& t)=K (£ et) e>0. (3.4.9)

If T%(K)< oo we must thus have K (0, t)=0, that is,
J‘K(x, t)ydz=0, teT. ' (3.4.10)

We shall now show that the conditions listed are sufficient to make the results in

section 3.3 applicable. First note that if [¢|=1 the estimate
| B (& t)|=|R (&, t)— K (0, t)|<0f|e*2”f<"5>—1]/(1+;x|)"+“dx<01|§|“
follows if the integrals when |z|<1/|£| and when |z|>1/|£]| are estimated separately.
Hence (3.4.9) gives for all (§, t}€XxT
| K (& ol <O (gl feh (3.4.11)

Further, since the Fourier transform of K (x+h,t)— K (x, ) with respect to x is
(274" 1)K (&, t), we obtain

2|sin 7z (b, & | R (&, t)|<flK(x+k, ty— K (z, )| d.
Now the Holder continuity gives that

|K (x+h, t)— K (z, )| <C|BJ/(||+ ]t |h<i[t]. (3.4.12)

In fact, in view of the homogeneity it is sufficient to prove this when |z|+|t|=1

and then it follows at once from the Holder continuity. Hence we obtain if [¢]=1
[sin 7 <k, &|| K (&, )| <Oy |2, |B] <3
Taking h=&/2|&|* we get | K (£, t)|<C,|&|™* if |€]>1, hence

|R (&, o)< O, |t & if |¢]|£]>1. (3.4.13)
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The estimates (3.4.11) and (3.4.13) together show that [|K (&, t)*dt/|¢|" is uni-

formly convergent when |£]=1. Hence 7% (K) is bounded and continuous, and since

(3.3.2) follows from (3.4.8) we can thus apply Theorems 3.5 and 3.8 and obtain

TurorEM 3.10. If K 4s Hélder continuous in X xT except at (0, 0) and satis-
fies (3.4.7), (3.4.10) then for all w tn LP, 1 <p< oo, with compact support

X T2 (Ksu) < Cypllul,

If K; are a finite number of kernels of this type and if there does not ewist any real
E=0 such that the integral of all the kernel K; (x,t) over the plane {(x, &> =1 vanishes

for all t, we have for the same u

Cot |, < ; XP 12 (K;u) < Oy || v,

A vparticular case in which these conditions are fulfilled is obtained in the fol-
lowing way. Let K (x,t), t€T=(0, ), be a homogeneous function of degree —n
with Holder continuous first derivatives in X x7T' except at (0, 0), which is integrable
and has a non vanishing integral for some t. Then the kernels K; (z, t) =18 K (z,1)/0 ;
satisfy the conditions in the theorem. The verification of this may be left to the
reader. Taking K to be the Poisson kernel P we obtain estimates of the Littlewood-
Paley function. The estimates for the Lusin function follow if we take K (x,t)
=P (xy~t, ..., x,—ty, tn1) and for T the cone |¢ |+ - +][t,|<Ctny1, where C is

a constant.
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