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Preface. 

In the present paper we shall study some types of functional spaces, t h e  SP- 

spaces ,  t h e  WP-spaces a n d  t h e  BP-spaces  (p_--__I) as well as t h e  a l m o s t  

p e r i o d i c  s u b s p a c e s  of these spaces which were met with when generalising 

the theory .of the almost periodic functions. The spaces of S-type, W~-type and 

B-type will be treated separately. 

In a later paper FeLNER will study the ,~ensemble~ of all the types of spaces 

mentioned. In  the investigation of this ensemble certain methods of constructing 

examples, developed in the present common paper, will be employed, though in 

a modified and generalised form as in different respects more properties have 

to be demanded of the constructed functions. In order to avoid repetitions and 

to make the latter paper more perspicuous, these generalisations of the examples 

will be treated by F~L.~ER in an appendix to the present paper. 
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Intl~duetion. 

Throughout the paper we operate with (complex) L~B~sGu~ measurable func- 

tions of a real variable; therefore in the following by the word >>funetion~ we 

shall always mean a L~.BESQVE measurable function. By the p-integral of a 
b 

function f (x )  from a to b we shall mean f i r ( x ) I  p dx, whether this integral is 
f~ 

finite or infinite. We call a function f(x),  defined on the whole x-axis, p-integrable 

if the p-integral of f ( x )  extended over any finite interval is finite. 

The different types of g e n e r a l i s e d  a l m o s t  p e r i o d i c  f u n c t i o n s ,  the 

Sv-a. p., W~-a. p. and BP-a. p. functions, can on the one hand be interpreted as 

generalisations of the ordinary almost periodic functions and on the other as 

generalisations of the p-integrable periodic functions. 

An o r d i n a r y  a l m o s t  p e r i o d i c  f u n c t i o n  (in the following often shortly 

denoted as an o. a. p. function) is a continuous complex function f (x), defined for 

oo < x < oo, which, corresponding to every ~ > o, has a relatively dense set 

of translation numbers ~----~(e). A set is called relatively dense if there exists 

a length L such tha t  any interval a < x < a + L of this length contains at least 

one number of the set, and a number v is called a translation number belonging 

to ~ if it  satisfies the inequality ~f(x + ~ ) -  f(x)  l ~ �9 for all x. 

The main theorem in the theory of the almost periodic functions states that  

an almost periodic function can also be eharaeterised as a function which may be 

approximated, uniformly for all x, by trigonometric polynomials, i. e. ~trns of the form 

N 

~ an e ~ ~n z 
n = l  

where the a, are arbitrary complex numbers and the 2~ are real numbers. 

I t  is this last property of the almost periodic functions which is used at  

their generalisation, the uniform convergence being only replaced by other limit 

notions. These limit notions are introduced by means of a distance notion; to 

two arbitrary functions a distance is ascribed, and a sequence of functions f~ (x) 

is called convergent to the function f (x) ,  if the distance of f,,(x) and f (x )  tends 

to zero for n-* ~ .  Incidentally we remark that  the uniform convergence for 

all x originates from the (ordinary) distance 

Do[f(x),g(x)]= u. b. I f ( x ) - g ( x ) l  
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Concerning the p-integrable periodic functions with a fixed period b -  a > o  

a similar main theorem is valid as for the almost periodic functions, f(x) and 

g(x) being two arbitrary periodic functions.with the given period, we define the 

p-distance for p _~ z by 
P 

V / D, [/(~), 9(~)]-- b - ~ 
a 

and we call a sequence f~(x) of periodic functions with the given period p-con- 

vergent to f(x),  if Dp If(x), f~ (x)] -* o for n -~ or. Then the main theorem states 

that  to any p-integrable periodic function f(x) with the period b -- a a sequence of 
trigonometric polynomials with the period b--a can be found which p-converges to f(x). 
(The converse theorem is here obvious.) 

A comprehensive treatment of the generalised almost periodic functions was 

given in a paper by B~sicovir  and BOHR: Almost Periodicity and General 

Trigonometric Series, Acta mathematica, vol. 57. We shall use some facts de- 

duced in that  paper, in each case quoting in detail the results we shall employ. 

On the one hand we shall use some simple relations for the different distances 

- -  they will be quoted in this introduction - -  and on the other hand certain 

properties of the generalised almost periodic functions which will be cited in 

Chapter I. In the following the paper in question will be quoted as I. 

While the periodic functions may be considered as functions given in a 

f i n i t e  i n t e r v a l ,  the period interval, in the theory of the almost periodic func- 

tions we principally have to operate with (i. e. in some way or other to take 

mean values over) t h e  i n f i n i t e  i n t e r v a l  --av < x < ~ .  Desiring to transfer 

the :p-distance mentioned above from a finite to an infinite interval we may 

choose among several different possibilities each of which presents its special 

peculiarity and its special interest. Within the set of all (measurable) functions 

we introduce for every p ~  z three such distances which we denote, after 

STEPANOFF, WEYL and BESICOVlTCH, by 

Ds~ [ / (x) ,  g (x)], D..p [/(x),  g (x)] 

Sr distance is given by 

Ds~ If(x), g (x)] =- u. b. 

and D~v If(x), g (x)]. 

V x+L 

L f If(~)- a(~)[ v d~. 
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Here L is a fixed positive number; its value is unessential (L may for instance 

be chosen equal to I) since given the two positive numbers L~ and L z there 

exist two positive numbers lca and k~, depending only on L 1 and L~ and not  on 

f (x )  and g(x), such that  (I, p. 22I) 

lq Ds~, If(x), g(x)] ~ Dsf  ' [f(x), g (x)] ~ k~ Ds~, [f(x), g (x)]. 

On account of these latter inequalities the distances DSL~ corresponding to different 

L axe said to be e q u i v a l e n t .  

Concerning the BESlCOWTCH distance the mean value is at once extended 

over the whole interval - - ~  < x < ~ ,  viz. 
p 

V/ D~,, [f(x), g(x)] = lira I T--|  2~2 I f (x)  - -  g (x)[P d x .  
--T 

Finally the W~.YL distance is an *intermediate thing* between the two 

distances cited above. Like STEPANOFF, W~.YL considers a fixed length L which 

he however lets increase to ~ ,  viz. 

P 

Dwp[f(x), g(x)l = l i m  u . b .  L If(~)--g(~)[Pd~ 
x 

= lim Ds[ If(x), g (x)]. 
L ~  

I t  is easy to prove that  the limit always exists for L--,Gv. 

As immediately seen, all these distances are generalisations of the distance Dp; 

for, if f (x)  and g(x) are periodic functions with the period h, we have 

D~ [.f(x), g(~)] = D ~  [/(x),  g(x)] = 9 wp [/(x), g (x)] = D~p [f(~), g(x)]. 

Instead of S~ we simply write Sp, and similarly we omit p, if p =  I, in the 

symbols S~, W~ and Bp. Frequently it is convenient to use a symbol which 

may represent an arbitrary one of the symbols S~, W p and BP; in this case we 

use the symbol G or, if we want to emphasise the exponent p, the symbol Gp. 

We observe that  the common symbol for SL, W and B is G x. 

A sequence of functions f,,(x) is called G - c o n v e r g e n t  to the function f(x), 
if Da [f(x), f~(x)]--, o for n--, no, and we write 

f,~(x) ~ f (x ) .  l 

l fn(x)----.f(x ) means the same as f•(x)---;f(x), the distances Ds. p being equivalent for 
different va lues  of L. 



36 Harald Bohr and Erling Folner. 

A function is called a G-a. p. f u n c t i o n ,  if there exists a sequence of 

trigonometric polynomials which G-converges to the function. The set of G-a. p. 

functions is called the G-a. p. set .  ~ For every p ~ I we have thus introduced 

the three important sets: 

the SP-a. p. set, the WP-a. p. set and the BP-a. p. set. 

Concerning particular GP-a. p. functions, besides the o. a. p. functions and 

the p-integrable periodic functions, we mention the GP-limit  p e r i o d i c  f u n c -  

t i o n s ;  a function f (x)  is called GP-limit periodic, if there exists a sequence 

of p-integrable periodic functions (generally without a common period)which 

GP-converges to f(x).  

For every p ~ I the inequalities 

Do If(x), g(x)] ~/)SLP If(x), g(x)] ~ / ) r~  If(x), g(x)] ~ DBp If(x), g(x)] 

are valid (I, p. 222); hence denoting the set of o. a. p. functions as the o. a. p. 

set, we have for each p ~ I: 

the o. a. p. set ~ the SP-a. p. set ~_~ the WP-a. p. set ~ the BP-a. p. set. 

Fur ther  we have for I_---<p1 < Pz (I, p. ~2~) 

Da~ , [fCx), g (x)] ~ Dam If(x), g (x)]. 

(This inequality is a consequence of ttSLD~,R'S inequality quoted below.) Hence 

it holds for x ~ p~ ~ p~ that  

the GV,-a. p. set _~the G~-a. p. set. 

Jus t  as the distance Do If(x), g (x)] originates from an 0-norm Do If(x)] = 

Do [f(x), o], and the distance Dp If(x), g (x)] from a p-norm Dp if(x)]----D3, If(x), o], 

every one of our distances Da [f(x), g(x)] originates from a G-norm DG [ f ( x ) ] -  

DG If(x), o]. Obviously the G-norm satisfies, like the 0-norm and the p-norm, 

the relation 

(I) Da[af(x)] = [a[.Da[f(x)] (a a complex number); 

further  it satisfies the inequality (I, p. 222) 

(2) If(x) + g(x)] _-< 9 .  If(x)] + b (x)] 

The S~l-a. p. set is identical with the S~-a.  p. set, as the distances ])S~ are equivalent for 

different values of L,  and it is called the ~ - a .  p. set. The functions in the SP-a. p. set are called 
SP-a. p. functions. 
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which is equivalent to the T r i a n g l e  R u l e  

])0 If(x), g (x)] ~ Do If(x), h (x)] § Do [h (x), g (x)]. 

(This inequality is a consequence of MISKOWSKI'S inequality quoted below.) 

As a trigonometric polynomial is bounded, its G-norm is finite, and in 

consequence of the Triangle Rule the same is valid for any G-a. p. function. 

A function with finite G-norm is called a G-function. The set of all G-functions 

is called the G-se t  ~, and we have 

the G-a. p. set ~ the G-set. 

I t  is important to observe that  the SP-set and the W#-set are identical for each 
p ~ i; that  the SP-set ~ the WP-set is an immediate consequence of the inequality 

D s ~  D ~ ,  and the converse is involved by the equation D w p =  lira Ds~ which 

shows that if Dwp is finite then Dsn L will be finite for sufficiently large L 

(and therefore for aU L). We emphasise that  the analogue is not valid for the 

a. p. sets; in fact the SP-a. p. set is a proper subset of the W~-a. p. set. 

The G-sets satisfy similar relations as the G-a. p. sets, and on account of 

the same distance relations: 

For every p_--__ I is 

the ,~-set (WP-set) % B~-set, 
and for I ~ p l ~ p z  is 

the Gn,-set ~ the G~-set. 

In our G-sets we shall have to consider the so-called G - f u n d a m e n t a l  se- 

q u e n c e s .  A sequence of functions fn(x) from the G-set is called a G-funda- 

mental sequence, if Da[f,~(x), f,~(x)]---,o when n and m, independently of each 

other, tend to ~ .  Further  we shah use the notion G-c losed .  We call a set 

of functions G-closed, if each function which is the G-limit of a sequence of 

functions from the set belongs itself to the set. On account of the Triangle 

Rule the G-set and the G-a. p. set are obviously G-closed. 

Leaving out of account that  the G-distance between two different functions 

may be zero, the G-set is organised as a l i n e a r  m e t r i c  s p a c e  because of (I) 

and (~). I t  is easily shown that  the same holds for the G-a. p. set. Firstly, 

the product of a G-a. p. function f(x) by a constant is again a G-a. p. function; 

1 The SPLI-set is identical with the S~-set ,  as the distances Ds~ are equivalent  for different 

values of L, and i t  is called the  ~'-set .  The functions in the ~ ' - se t  arc called ~ '-functions.  
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for, if s,,(x) is a sequence of trigonometric polynomials G-converging to f(x),  the 

sequence a.s~(x) of trigonometric polynomials will G-converge to a . f (x) ,  since 

De [af(x), as.(x)] = [a 1" Do [f(x), s.(x)]. 

Secondly, the sum of two G-a. p. functions f m  (x) and f(2)(x) is again a G-a. p. 

function; for, if s~ ) (x) is a sequence of trigonometric polynomials G-converging 

to fro(x), and s~)(x) is a sequence of trigonometric polynomials G-converging to 

f(l)(x), the sequence s~)(x)+ s~)(x) consisting of trigonometric polynomials will 

G-converge to f m  (x) + f(z)(x), as 

Da [f(" (x) + f ( "  (x), sl'l (x) + s~l (x)] = DG [(f"' (x) -- s~ I (x)) -r (f("  {x) -- s~ ! (x))] 

= ~ (x ] If(" < Do if'" (x), % ) + Do 

In  the proofs of theorems on G-a. p. functions it is often convenient, instead 

of, as above, using the definition itself, to employ the following simple theorem: 

A G-a. t~. fitnction can also be charaeterised as a function which is the G-limit of 

o. a. p. functions (and not just of trigonometric polynomials). The proof is immediate. 

In fact, a function which can be approximated by o. a. p. functions must belong 

to the G-a. p. set, as the o. a. p. set ~ G-a. p. set, and the G-a. p. set is G-closed. 

To pass from the G-set to a proper linear metric space where the distance 

between two different points is > o (and not only ~_ o), an equivalence relation 

(~) between the G-functions is introduced in the following obvious way: 

f (x )  ~ g(x) if Do [f(x), g(x)] = o. 

Then the G-set falls into classes of equivalent functions. Each of these classes 

is called a G-point .  Evidently two functions of the G-set belong to the same 

G-point, if and only if they differ from each other by a function of the G-norm o. 

Such functions of the G-norm o are called G-zero f u n c t i o n s .  Now a distance 

(again denoted by Da) is introduced in the following manner: Let ~1 and ~ be 

two arbitrary G-points; then we define Do [~[, ~] by the equation 

Do [92, ~] = De If(x), g (x)], 

where f (x )  and g(x) are arbitrary representatives of 9~ and ~ ;  this definition 

is evidently unique. The multiplication of a G-point by a constant, and the 

addition of two G-points being defined by means of representatives, it is plain 

that  (I) and (2) are still satisfied, if we consider G-points instead of G-functions. 

And moreover the G-distance between two different G-points is always > o. 
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Thus the set of G-points is organised as a l inear metric space by the distance De.  

We  denote i t  as t h e G-s p a c e. 

I f  one funct ion in a G-point  is G-a. p., all funct ions of the point  are G-a. p. 

functions,  and the point  is called a G-a. p. p o i n t .  The set of the G-a. p. 

points, organised by the distance DG, forms a l inear subspace of the G-space. 

I t  is called t h e  G-a. p. s p a c e .  

Now we have introduced all the spaces which we shall investigate in the 

following, viz. for every p ~ I: 

the SP-a. p. space ~_ the SP-space, 

the WP-a. p. space ~ the WP-space, 

the BP-a. p. space ~ the BP-space. 

I f  one funct ion in a G-point is G-limit periodic, so are all funct ions of the 

point, and the point  is called a G - l i m i t  p e r i o d i c  p o i n t .  

I f  a G-point contains a periodic funct ion,  i t  is called a p e r i o d i c  G - p o i n t  

(but of course it is not  true, t h a t  all the functions of a periodic G-point are 

periodic functions). 

We say tha t  a sequence 921, 92~, �9 �9 �9 of G-points G - c o n v e r g e s  to the G-point 

92 if Do [92, 92~]-~ o or, what  is equivalent, if an (arbitrary) sequence of represen- 

tatives f l  (x), f~ (x), . . . of 921, 92~ . . . .  is G-convergent to a representative f (x)  of 92. 

A sequence ~[i,92~,- . .  of G-points is called a G - f u n d a m e n t a l  s e q u e n c e  

if  Do [~[n, 92~] -* o for n and m tending to oo or, what  is equivalent, if a sequence 

of representatives fl(x), f~ (x ) , . . ,  of 92D 92~, �9 �9 �9 is a G-fundamental  sequence. 

As well known, a metric space is called c o m p l e t e  if every fundamenta l  

sequence of the space is convergent;  otherwise i t  is called i n c o m p l e t e .  

A subset of a metric space is called c l o s e d  (relatively to the latter) if  

every point of the space which is the limR of points of the subset belongs itself 

to the subset. Evidently,  the G-a. p. space is closed (relatively to the G-space). 

Concerning the STEPANOFF distance, it  is easy to see that ,  for any p ~ I, 

a funct ion is a SP-zero funct ion only in the trivial case when it  is o >>almost 

everywhere~ (i. e. except in a set of measure o); consequently,  for every p, an 

SP-point consists of essentially only one function. In  the two other cases (the 

WP and B~) the set of zero functions is considerably more comprehensive, and 

most  comprehensive for  p -  i; thus,  while i t  is only a mathemat ica l  subtlety 

to speak of SP-points instead of SP-functions, it is of decisive importance to 

dist inguish between G-points and G-functions in case of the tVP- and BP-spaces. 
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To deduce the  relations for the different distances (about which we re- 

ferred to I) two very important  inequalities are used, HSLDE•'S inequality and 

MXN~OWSXi's inequality. As we later on shaU apply these inequalities repeatedly, 

we quote them here in the introduction. 

H61der's  inequal i ty .  

eondition 

Let p and q be two positive numbers satisfying the 

I I 
- + - ~ I ,  
P q 

and f (x)  and g (x) two complex functions, defined in the interval (a, b); then we have 

p q V i  VJ f I g(x) I ~ dx. b I a  I f ( z ) g ( x ) l d x <  I- If(x)]pdx. x 
a -= b a a b-- a a 

I 
As the inequality can be reduced by b-~-a--a' the corresponding inequality for 

integrals (instead of mean values) is also valid. 

We emphasise a special case of ttSLvER'S inequality (which is obtained by 

replacing f (x) ,  g(x) and p by If(x)l p,, i and p-~ respectively), viz: 
Pl 

F o r  I ~ p l  < p2  i8 

Pl Pt 

ViVJ b I-a Jf(x)l"dx < I a = b':-aa I f ( x ) l ~ d x "  

Minkowsk i ' s  inequal i ty .  Let f (x)  and g (x) be two complex functions, defined 

in the interval (a, b), and p > I; then the inequality 

P p p 

b--a if(x) + g(x)]Pdx< I ]f(x)]Pdx+ ]g(x)]Pdx 
a = b a a b--a a 

holds. As before the corresponding integral inequality is also valid. 

Obviously the inequality can also be written in the form 

P p p Vs Vi Vi, I x i f ( x ) lPdx_  i g(x)lPdx. b = a  If(x) + g(x)I p dx  > b--a  b- -a  
a a a 
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Besides trivial facts concerning LEs~.sGu~. integrals we shall have to use 

Fatou 's  theorem. Let f ( t ,  n) be a non-negative function, given for all t in a 
finite interval (a, b) and for all positive integral values of n. Then we have 

b b 

/ / l imf(t ,n)dt<~ lim f ( t ,n )d t .  
a a 

Before passing to a summary of the paper we will here gather different 

remarks of a general character which, like the inequalities and the theorem above, 

will be of importance later on. 
To begin with we introduce the notion of m i n i m u m  of  t w o  c o m p l e x  

f u n c t i o n s  f (x )  a n d  g(x), defined for all x, viz. 

= ~f(x) for the x satisfying If(x) l<_lg(x)l 
rain I f(x),  g(x)] (g(x) for the x satisfying Ig(x) l  < I f (x) l -  

The little ))laek of beautyr that min [f(x), g(x)] is not symmetric in f(x) and g(x) 

is of no importance whatsoever. 
The definition of rain [f(x),g(x}] involves immediately the following in- 

equalities 

min If(x), g (x)] I < If(x) l, 
and 

I min If(x), g(x)]--f(x)l < Ig(x)- - / (x) I ,  

I min If(x), g (x)] I ----< I g (x) I 

[ rain [f(x), g (x)]--g(x)[ <~ If(x)--  g(x)[. 

A G-point considered as a set of functions is G.etosed, since, fx(x), f~(x) , . . .  
being a sequence of functions of a G-point with the G-limit f(x), we have 

DG [f(x), f l  (x)] ---- DG [f(x), f .  (x)] -~ o, 

so that Da [f(x), f ,  (x)]----o, i. e. f(x) belongs to the G-point. 
A G-point considered as a set of functions is closed with respect to the minimum- 

operation, since, ~ (x) and f~ (x) being two functions of a G-point, we have 

[ min [f~ (x), f~ (x)] --f~ (x)[ ~ [f~ (x) -- f~ (x)[ and consequently 

DG [min [f~ (x), A (x)], Z (x)] _--< De [A (x), f~ (x)] ---- o, 

so that rain [fl (x), f~(x)] lies also in the G-point. 
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Frequently it is convenient to use the distance 

D~p If(x), g (x)] ~- 
P 

/ i ip 
max I f(x)- dx, 

0 

P 

T-- V --T 

instead of the distance Ds~ IS(x), g(x)]. The two distances are equivalent, as 

P 

y ~ .  D;p [f(x), g (x)] _--< D.p [f(x), g (x)] --___ D;~ [f(x), g (x)]. 

The new distance originates from the norm D*Bp[f(x) ] -~ D*~[f(x) ,  o] which 

satisfies (I) and (2). 

Finally we give a summary of the content of the paper. 

In  Chapter I the needed p r o p e r t i e s  o f  t h e  g e n e r a l i s e d  a l m o s t  

p e r i o d i c  f u n c t i o n s  are quoted, inter alia certain translation properties and 

the approximation by BOCH~R-F~.J~R polynomials are treated. 

In  Chapter I I  the c o m p l e t e n e s s  or i n c o m p l e t e n e s s  of the different 

spaces is investigated. I t  is shown, what has been known in the main, that  the 

SP-space and the S~-a. p. space as well as the BP-space and the BP-a. p. space 

are complete for every p ~ I, and, what has not been known before, that  the 

WP-space and the WP-a. p. space are incomplete for every p -->__ I. I t  is of special 

importance that  the B~-a. p. space is complete, as this involves the validity of 

BESlCOVITCH'S Theorem which is the analogue of the famous theorem of RIEsz- 

FISCHF, R on 2-integrable periodic functions. 

In  Chapter III ,  which has the character of an insertion, t h r e e  t h e o r e m s  

are proved which will be applied in the following Chapters. 

Chapter IV deals with the mutual relations of the SP-spaces and the 

S~-a. p. s p a c e s ,  Chapter V with the mutual  relations of the WP-spaces  and 

the W#-a. p. s p a c e s ,  and Chapter VI with the mutual relations of the BP- 

s p a c e s  and the B#-a. p. s p a c e s .  The investigations of the spaces of W-type 

and those of B-type are essentially similar in some respects, but show also 

characteristic differences. 

The paper consist partly of t h e o r e m s  and partly of c o u n t e r  e x a m p l e s .  

Many of the examples are simple and more or less trivial. The especially strong 

and substantial examples are called main examples. Most of the functions 
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constructed in our examples are piecewise constant and change between the value 

o and values ~ o .  Hence they have a graph like the function outlined in Fig. I. 

The graph thus consists of rectangles 

which stand with one side on the x-axis. 

These rectangles are called t o w e r s, and 

the function is given by indicating the 

size of the towers and their position on 

the x-axis. The size of a tower may be 

given by its ~height(< k and >~breadth<~ b, 

ill 
F i g .  a 

but it is often given by prescribing the p-integral of the tower for two different 

values Pt and i~ ( ~  I); from these values k and b can immediately be calculated; 

for the pj-integral of the tower is It----b k p, and the p~-integral I s =  bk ~, and 

hence 
1 1 

l/~Ip,-p, [ l~ ' Iprp, .  
/c --~ ~ / , f  and b = ~-/-~p,/ , 

for an arbitrary Pa ( ~  I) the pa-integral becomes 

P~--Pa Ps--Pt 

I s = bkV. = I ~ - p ,  �9 I p - p , .  

When indicating a tower by the values of its p-integral for two different values 

of p, the integral corresponding to the smaller of these ~alues is always chosen 

less than the other integral (i. e. the height k of the tower is always chosen ~ I); 

then the p-integral is a steadily increasing function of p which tends to co for 

p--* ~ .  The position of a tower is generally indicated by the number with 

which the center of the lowest side coincides. The tower is said to s t a n d  on  

this number. Sometimes we speak about a tower as placed or standing on an 

interval. This means that  the tower stands on the centre of the interval and 

does not  protrude beyond the interval. 

All our examples of G-a. p. functions are chosen among the G - l i m i t  

p e r i o d i c  f u n c t i o n s .  
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C H A P T E R  I. 

The Generalisod Almost Periodic Functions. 

In this chapter some well known properties of the generaUsed almost periodic 

functions are quoted which will be applied in our later investigatio~as. We also 

remind of the proofs of some of the theorems. 

Already in the introduction we have mentioned that the product of a 

G-a. p. function by a constant and the sum of two G-a. p. functions are again 

G-a. p. functions. Moreover it is valid that  the product of a G-a. p .  function 

by an ordinary almost periodic function is again a G-a. p. function. 

If  f ( x ) i s  G-a. p., the modulus If(x)  l and the function 

[f(x)  for If(x)l -~ N 
/ 

(f(x)),v --~ ~ _W f (x )  
( ~ - ~  for [f(x) l > N 

which originates from the function f (x)  by ~cutting it off, at the positive 

number N are again G-a. p. This is a corollary of the following theorem: Let 

f (x)  be a G-a. p. function and ~)(z) be a function defined in the whole complex plane 
(or, in case of a real function f(x),  on the real axis) with a bounded difference 
quotient; then ~}(f(x)) is G.a.p. The proof is immediate: Let fn(x) be a sequence 

of o. a. p. functions which G-converges to f (x) ;  then q)(fn(x)) too is a sequence 

of o. a. p. functions on account of the uniform continuity of qY(z); further 

ff~ (f,(x)) 2. ff~ (f(x)) 
since the inequality 

[ a~(f(x)) - �9 (f.Cx)) I =< K l f ( x )  --f. (x) l 
involves 

Da [O(f(x)), O(.f,(x))] _--< KDa [f(x), A(x)]-~ o. 

I f  f (x) is G-a. p., the function (f(x))lv will G-converge to f (x )  for N - }  oo. 

P r o o f .  Let ~ > o  be given. We choose a trigonometrical polynomial s(x) 

such that  Do [f(x), s (x)] < -~, and use the estimation 
2 

Da [fCx), (f(x))u] _~ Do If(x), s(x)] + Do Is (x), (f(x})~v]. 

For N__> u. b. Is(x)[ = K we have s(x) = (s(x))s, and hence on account of the 

inequality 
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I(f(x)),v - -  (g (x))~. I < I f (x )  - -  g (x) I 

(the validity of which is seen by help of a simple geometrical consideration) 

we get 
Do [s(x), (f(x))~-] = Da [(s(x)),v, (f(x)),,,] < Da [s (x), f(x)]. 

Thus we have for N-->__ K 

D e  [f(x), (f(x))sl _-< 21)o if(x),  s (x)] < ,. 

Jus t  as for the ordinary almost periodic functions and the p-integrable 

periodic functions there exists a t h e o r y  o f  F o u r i e r  s e r i e s  for the G-a. p. 

functions. Each G-a. p. funct ion f(x) has a mean value 

T T 0 

M Is( )l = lira i fs( )d  = lira ' ' f 
- - T  0 - - T  

and the function 
a (it) = M {f(x) e - ' ~ }  

of the real variable it is different from o for at most an enumerable set of 

values of it; ~hese are called the Fourier exponents of f ( x )  and denoted in one 

order or another by -//1, A , , . . . .  The values of a(it), belonging to the Fourier 

exponents 1/1, A 2 , . . . ,  are called the Fourier coefficients of f ( x )  and denoted by 

A 1, A 2 . . . .  respectively. With  the function f (x )  is associated the Fourier series 
i A n ~  2~A,e , and we write 

f ( x )  ~ 2 A ~  e ~a'~. 

Sometimes it is convenient to include cer t~n >)improper~ terms An e ianx (at most 

an enumerable number) where A n = M { f ( x ) e - e a n ~ } =  o. For such a term z/,~ is 

called an improper Fourier exponent and A.  ( =  o) an improper Fourier coefficient 

belonging to the exponent z/,,. 

All the functions in a G-a. p. point have the same Fourier series which is 

called the Fourier series of the G-a. p. point. Corresponding to the uniqueness 

theorem of the o. a. p. functions the following u n i q u e n e s s  t h e o r e m  is 

valid for the G-a. p. functions: Two d~fferent G-a. p. points cannot have the same 

Fourier series. 

We emphasise that  the Fourier series is formed in exactly the same way 

for all our types of generalised almost periodic functions. For a p-integrable 

periodic function it is easy to prove that  it has the same Fourier series in the 

ordinary sense as in the G-a. p. sense. 
4 
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Concerning the connection between a G-a. p. function and its Fourier series 

the usual rules on addition, and on multiplication by a constant are valid. I f  

fro(x) is a sequence of G-a. p. functions G-converging to the G-a. p. funct ionf(x) ,  

the Fourier series of f (x )  can be obtained by a formal limit lzrocess from the 

Fourier series of f,n(x). 
The BOCHNER-FEJI~R method of summation, of great importance in the 

theory of the o. a. p. functions, can be transferred to the G-a. p. functions 

(I, w I2--I3). Starting from the Fourier series of a G-a. p. function f (x)  a sequence 
of trigonometric polynomials aq (x), the Bochner-Fejdr polynomials, can be found which 
G-converges to f(x). By means of kernels Kq(t) which are non-negative trigono- 

metric polynomials with the mean value i these BOCr~NER-FfiaEB polynomia ls  

oq(x) can be represented in the form 

Oq(X) = M { f ( z  + t)Kq(t)}. 
t 

To establish the approximation-properties of the BOCH~rER-FEJ~R polynomials the 

following inequality which can be deduced from the representation above is of 

decisive importance: 
De [ao(x)] < Da If(x)]. 

I t  is essential for our later applications that  this inequality holds even if G does 

not just denote the type of almost periodicity of the function f(x). Certainly, 

in the proof of the inequal i ty in question given in I, where G has an arbitrary 

fixed meaning, it was assumed that  f (x)  was a. p. in the G-sense, but in fact it 

was only used in the proof that  f (x)  was almost periodic in one sense or another 

and not just in the G-sense. 

Concerning a WP-a. p. function f (x)  the BOCHNER-F~.~ER sequence aq (x) does 

not only WP-converge to f(x), but this WP-convergence takes place with a certain 

�9 uniformity(~; in fact, to every e > o there can be determined an Lo and a Q 

such that  
If(x), ___< for L L0 and q Q. 

In the case of the W~-a. p. functions, R. SCHMIDT (Math. Ann. Bd. Ioo) was 

the first to indicate approximating trigonometric polynomials with this property. 

The BOCHNER-F~#~R polynomials aq(x) have the form 
~'(q) 

= k )a,,e 
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where the z/~ are Fourier exponents and the A~ the corresponding Fourier coeffi- 

cients of f (x) ,  and N(q)---, 00 for q -~ oo. The factor /~q) satisfies the inequality 

o </c~) < x and tends to I for fixed n and q--* ~ .  

For a B~-a. p. function f ( x )  with the Fourier series 2~A,,e ~An~ the P a r s e v a l  

e q u a t i o n  holds: 

M {If(x)['} = :~]A, 12 

As cited in the introduction, for the B~-a. p. functions the theorem of 

BESlOOVITOI~ which is the analogue to RIEsz-FxscHER'S Theorem on 2-integrable 

periodic functions is valid: An arbitrary given trigonometric settles ~ A,, e i an ~ is 

the Fourier series of  a B~-a. p. function i f  and only i f  T,] An] ~ is convergent. The 

proof of this theorem relies on the completeness of the BZ-a. p. space; we shall 

return to it  in Chapter II.  

Just  as the o. a. p. functions, also the generalised almost periodic functions 

can (as shown in I) be characterised in two different ways, viz. on the one 

hand by their approximation by means of trigonometric polynomials, and on the 

other by translation properties. In the present paper the generalised almost 

periodic functions have been defined by their approximation properties. As to 

the SP-a. p. and WP-a. p. functions, however, also their translation properties 

will be needed for some of our investigations. In the two following theorems 

we shall state these translation properties which can easily be deduced from our 

definitions of the SP-a. p. and WP-a. p. functions. 

Theorem 1. An 8P-a. p. function f (x )  possesses, to every ~ > o, a relatively 

dense set of  S~,-translation numbers (Z, arbitrary fixed), i. e. o f  ~mmbers z with the 

property 
Ds[,. [ f (x  + z), f(x)] =< ~. 

P r o o f .  Let r be an o. a. p. function such that  

and let �9 be 

we have 

.D,~[f(x), r < -*, 
�9 3 

an (ordinary) translation number of i f (x )  belonging to ~-. 
3 

3 

for all x and hence a fortiori 

Then 
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[90 (x + 90(x)] _-< 
3 

By means of the Triangle Rule we obtain 

Ds~. �9 [ f (x  + ~), 90 (x + ,)] + Ds~. [90 (x + ~), 90 (x)] + Dz~�9 [90 (x), fCx)] _--< ,. 

Consequently �9 is an SLP-translation number of f (x )  belonging to ~. As the , ' s  

form a relatively dense set, the theorem is proved. 

Theorem 2. A IVP-a. p. function f(x)  has, to every ~>o and for L su.ffieiently 
large (i. e. L >--_ Lo(e)), a relatively dense set of S~-translation numbers. 

P r o o f .  Let 90(x) be an o. a. p. function so that  

[f(x), r < 
3 

Since Dwp ~-lira Ds~, we have for a sufficiently large L, i. e. for L_-->Lo(,), that 

If(x), 90(x)] < 
3 

I t  follows as in the proof of Theorem I that  every (ordinary)translation number 

of 90(x) belonging to e " - is an S~-translation number of f (x )  belonging to e for 
3 

any L >_--- Lo. 

In this paper, among the G-a. p. functions, we shall particularly consider 

t h e  G - l i m i t  p e r i o d i c  f u n c t i o n s ,  as all our G-almost periodic examples will 

be chosen among the latter functions. Therefore we finish this Chapter I by 

some remarks on G-limit periodic functions. 

We begin by showing that a G-limit periodic function can also be eharac- 

terised as a G-a. p. function whose Fourier exponents are r a t i o n a l  m u l t i p l e s  

of one and the same real number. 
o I . Let f (x )  be a G-a. p. function with Fourier exponents which are ra- 

tional multiples of a number d. Since the exponents (in finite number) of any 

BOCKN~.R-FEJ~,R polynomial aq(x) are Fourier exponents of f ( x ) a n d  therefore 

integral multiples of a number dq, it is evident that  each aq(x) is a periodic 

function (with period 2-~o~) �9 Hence f (x)  being the G-limit of the sequence aq(x) 

is a G-limit periodic function. 
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2 ~ Let  then / (x)  be a G-limit periodic function and f~(x), f ~ ( x ) , . . ,  a 
sequence of $-integrable periodic functions, with periods h~, h i , . . . ,  which G-con- 

verges to f(x).  We shall prove that  all the Fourier exponents of f (x)  are rational 

multiples of a single number d. 

We  may assume that the Fourier series of f (x)  does not  only consist of 

the constant term, since in this particular case the theorem is obviously valid. 

Then there exists a Fourier exponent ,4~ =~ o. I f  A~ (=~ o) denotes the Fourier 

coefficient of f (x )  belonging to this exponent ll~, and A~ ~) the (proper or im- 

proper) Fourier coefficient of f,~(x) belonging to the exponent ,4~, the coefficient 

A~ ~} tends to An for m -* ~ .  Hence A~ ~) ~= 0 for m sufficiently large, i. e. for 

m ~ too----m0(n ). The exponent Jl~ thus being a proper Fourier exponent of 

f,~(x) for m-->__ rno, we have 

2 ~  
J/~ ~ ~ -  ~m ( ~  integral) and thus h~ ~ 2 ~  for m ~ m o. 

CoIisequently for m ~ m o the 

2 ~  
g----~-~, i .e .  

periods hm are integral multiples of the number 

hm ~- ~ g for m ~ m 0. 

The Fourier exponents of f,~(x) for  m ~ mo are thus to be found among the 

2 ~ 2 ~.. /~ (p integral) so that  they are all rational multiples of numbers ~ -  ~ -  g ~ 

2 ~  
the number d - -  Finally the same must be valid for the Fourier exponents 

g 

of the function f (x )  itself, since the Fourier series of f ( x )  can be obtained as 

the formal limit of the Fourier series of f,~(x) for m-~  ~ .  

R e m a r k .  We saw in I ~ that  the BOCH~En-FFZ~.R polynomials of a G-limit 

periodic function are periodic functions. We shall add a remark concerning the 

p e r i o d s  of the BOCH~ER-FEz~a polynomials of a G-limit periodic function f (x)  
which, as in 2 ~ is given as the G-limit of a sequence of p-integrable periodic 

functions fl(x), fs(x), �9 �9 �9 with periods hi, h i , . . . .  In  fact we shall show that 

any BocH~ER-F~.z~.n polynomial of f (x)  

a(x) = no+ ale ~'~ + a~ e ~A'-~ + . . .  + a~g "~'~ 
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has the number ha as a period for m sufficiently large. For, as we saw in 2 ~ 

for each //= # o we have for m ~ m o ~ mo(n ) 

2 lr (v~, ~ integral); -" /n  ~ - - ~ n  r n  
h m  " 

hence for m >_-- max [me(I), me(2), . . . ,  m0(N)] each of the exponents of our a(x) 

2 g  
is an integral multiple of ~-~, and h~ therefore a period of o(x). 

For the generalised limit periodic functions the theorems I and 2 can be 

sharpened; we choose a formulation which is just  adapted to our applications. 

Theorem 1 a. Let f (x)  be an SP-a. p. function, and f ,  (x), f~ (x), . . .  a sequence 

of I-integrable periodic functions, with the periods hi, h~ . . . . .  which Gkconverges to 

f(x).  Let further e > o be arbitrarily given. Then for fixed L, and m sufficiently 

large, i. e. for m ~_ me (~, L), all integral multiples of h,n are S~-translation numbers 

o f f ( x )  belonging to ~. 

We observe at once tha t  f(x), as a Gl-limit periodic function, has a Fourier 

series of *limit periodic form(, and is therefore not only SP-a. p., but also St-limit 

Let  a(x) be a BOCHN~.R-FEJ~ polynomial of f (x )  for which 

If(x), a(x)] < 
2 

In  consequence of the remark above, o(x) has the period hm for m sufficiently 

large. Then, for each such m, every integral multiple ~hm of hm will be an 

8~4ranslation number of f (x )  belonging to ~, since on account of the Triangle 

Rule 
Ds[ [ f (x  + ~, hm), f(x)] 

Ds[[ f ( x  + ~h,~), a(x + ~h~,)] + Ds[ [a(x + ~h~), o(x)] + Ds~[o(x),f(x)] = 

~Dsf[fCx),  a(x)] < ~. 

Theorem 2 a .  L e t  f (x)  be a Wt-a. p. function, and f l ( x ) , f , ( x ) ,  �9 �9 �9 a sequence 

of I-integrable periodic functions, with the periods hi, h~ , . . . ,  which Gl-converges to 

f (x) .  Let further ~ > o be arbitrarily given. Then for m and L sufficiently large, 

i. e. for m >~ mo(e ) and L ~ Lo(e), all integral multiples of hra are S[-translafion 

numbers o f f ( x )  belonging to ~. 

periodic. 

P r o o f .  
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We observe at once that  f (x) ,  as a Gklimit periodic function, has a Fourier 

series of limit periodic form and is therefore not only WP-a. p., but also W#-limit 

periodic. 

P r o o f .  Let a(x) be a BOCRN~.R-FE#~.R polynomial of f (x )  for which 

Dwp [f(x), a(x)] < _8. 
2 

Since Dwn----lira DSPL, we have for L sufficiently large (L _~ Lo = Lo(e)) 

[f(x), o(x)l < 2 

For m sufficiently large (m~_ mo=mo(~) ) the BOeHNER-FE#~R polynomial ~(x) 

has the period hm, and as in the proof of Theorem I a we conclude that  every 

integral multiple of h~ is an S~-translation number of f (x)  belonging to ~. 

CHAPTER II.  

The Completeness or Incompleteness  of  the Different Spaces. 

The Completeness of the ~qP- and the SP-a. p. Spaces. 

In this paragraph we prove the following 

Theorem. The SP-space and fhe SP-a. p. space are complete for every p ~ I. 

P r o o f .  I t  is sufficient to show that  the SP-space is complete, since this 

involves, the SP-a. p. space being a closed subspace of the SP-space, that  every 

S#-fundamental sequence of the SP-a. p. space S#-converges to a point of the 

SP-space and therefore also to a point of the SP-a. p. space. Thus we only have 

to show that  every SP-fundamental sequence of SP-points is SP-convergent or, 

what is equivalent, that  every S#-fundamenta] sequence of S#-functions is SP-eon- 

vergent. Let then fl(x), fs(x) . . . .  be an SP-fundamental sequence of S#-functions, 

i. e. a sequence of SP-functions for which 1)sp [fn(x),f,n(X)]-* o when n and 

m tend to or. We shall prove that  there exists a function f (x )  such that  

Dsn[f(x), f~(x)]-* o for m-* oo. This function f (x )  will automatically be an 

S#-function, as the SP-set is S~-closed. 
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We begin by determining an increasing sequence of positive integers nl < ns < ' "  

so that  
I Dsp[f,,(x),f,~(x)]<=-~ for n > . . , m > n .  ( y - ~ - I , 2 , . . . ) .  

Hence in particular 

Let 

I 

D ~  [f. ,  (x), / . . . ,  (~)1 _-< 2~ Y ~ -  I ,  2 ,  . . . ) .  

q 

g~(~) = ~ If~.+, (~) - f . . (~)  I, 

then we have o ~ gl(x) ~ g~(x) ~ . . .  so that  lira gq(.~) exists (as finite or infinite) 
q ~ m  

for every x. Fur ther  we have for each q, on account of the Triangle Rule, 

D~,~ [g. (~)] =< . 0 ~  [I/..(:~) - -  f . ,  (x) I1 + "  + D~.  [ I f .~+, (x) -- / , ,~(x) I1 = 

Dsv [.f., (x), f..(x)l + " "  + Dsp [f.q(X), f"q+l (x)l 

in particular 

is valid for every integer /t. 

~ + ~ + . . . +  '] 
4 ~<~; 

p + l  

f (gq(X))P dx < I 

Then we have for every integer u 

p + l  # + 1  

f l im(gq(x)) 'doc=lim 
J q'-'=~ q ~  

P # 

Hence lira gq(x) is finite for almost all x. Thus the series 
q--~ oo 

~, (f..+,(x) - f..(x)) 

is absolutely convergent, in particular convergent, for almost all x, which shows 

that  the sequence re(x) ,  fro(x), . . . is convergent (to a finite l imit)for almost all x. 

We shall see that  the function 

f(x) = lim| (x) 
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fulfils our demands. Let e > o be arbitrarily given. Then rn 0 can be determined 

such that  DsP[f~(x), f ,(x)]  ~ ~ for n ~ m o and m _~ too; if further ~o is chosen 

so large that  n,o ~_ mo we have Dsp [f,,(x), f~(x)] _~ e for �9 ~ ~0 and m ~ too, and 

consequently 
=r 

�9 f I / . . ( f )  - f = ( ~ ) l P d ~  _-< : fo r  al l  x, �9 => "o, m ~ "o .  
x 

Since If.,(~)-f.(~)l-~lf(~)-f.(~)l for almost all ~ when ~ - ~ .  we get for 

every x and m ~_ mo by FATou's Theorem 

x4-1  ee.~- 1 

f If(f)-f,~(f)I' df _ ~ lira f If-.(f)- .f-(f)I' df _-< :; 
a~ X 

hence Dsp[f(x),f=(x)] ~ ~ for m _~mo, i. e. Dsp[f(x),f,~(x)] ~ o for m-~ •. 

This proof of the completeness of the SP-space is an immediate transferring 

of a well-known proof of the theorem that  s fundamental sequence of p-integrable 

periodic functions f~ (x), f2 (x) . . . .  with the period h is p-convergent. Besides, 

this last theorem can on its side easily be derived from the theorem above con- 

cerning SP-functions. Indeed, such a sequence of periodic functions f , (x)  is at 

the same time an St-fundamental sequence and will therefore 8P-converge to an 

8~-function f(x),  and from this function f(x) we can immediately find a function 

g (x), periodic with the period h, which is the p-limit of our sequence f,,(x). We 

can simply use the periodic function g(x) which in the period interval o ~ x < h  

coincides with f (x) .  In fact this function g(x) is a p-integrable function with 

the period h, and 

D~ [g (x), : .  (x)] = 

f o r  ~ --~ 0 0 .  

P 

V~ h Ig(x) 

P 

V~ h If(x)--f,,(x) I p dx ~ Ds~ [f(x), fn(x)] ~ 0 
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w 2. 

The Completeness of the Bp.  and the BP-a. p. Spaces. 

In  this paragraph  we prove the fol lowing 

The o re m.  The BP-space and the B~-a. p. space are complete for every p >-_ I. 

P r o o f .  As the BP-a. p. space is a closed subspaee of the  BP-space, i t  is 

sufficient (just as in the S-case in w x) to  prove the  theorem for  the BP-space. 

Thus  we have to show tha t  every BP-fundamental  sequence of BP-points is 

BP-eonvergent or, which is equivalent,  tha t  every BP-fundamental  sequence of 

BP-funetions is BP-convergent. Le t  then  f ,  (x), f~ (x), . . . be a BP-fundamental  

sequence of BP-functions, i. e. a sequence of BP-functions so t h a t  there  exists a 

sequence of positive numbers  ~n t end ing  to o for  which the  inequal i ty  

(D;p  [fn (x), f,~+q(X}])* < ,,, 

holds for  all n and q > o. (We prefer  here  to use the distance D i p  instead of 

the  distance DBp). W e  shM1 prove t ha t  a funct ion f(x)" can be found  such tha t  

DB~ [f(x),fn(x)] -+ o for  n --* ~ .  

This funct ion  f (x )  will automat ical ly  be a BP-function, as the BP-set is BP-elosed. 

Our const ruct ion of f (x)  is principal ly the  same as t h a t  which BESlCOVITCH used 

in the proof  of his theorem concerning the Four ie r  series of B~-a. p. funct ions;  

the  fol lowing a r rangement  of the proof  is due to B. JzsszN. W e  will cons t ruc t  

a funct ion  f (x)  such tha t  

(D;~ If(x),/,(x)])P _--< 2 e~ for  all n. 

As the cons t ruc t ion  is analogous for  x > o and x < o, we confine ourselves to 

s tate  i t  for  x > o. S ta r t ing  f rom the assumptions 

T 

(I) l im I f T~| ~ , ,  ]f , , (x)--fn+qCx)]$dx<,, ,  fo r  all n and q > o ,  

0 

the  task is to const ruct  f (x )  so tha t  

T 

;f 0 
2 ~ for  all n. 
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The construction of f ( x )  is indicated in Fig. 2, and we shall show that the 

occurring positive numbers T1 < Ts < " "  can be chosen so that 

Z(x) A(~) f.(x) $,(~) A(x) 
', I I I i 

o T, T, T, T, T5 
Fig. 2. 

/ i  
(3) r / IS(x) - f .  (x)I p d x < 2 ~,, f o r  T > T,, a n d  a l l  I I  

l i #  

0 

which obviously involves (2). To this purpose we first set up a number of condi- 

tions, arranged in certain groups, for the numbers Txi T ~ , . . .  which involve 

(3) (and thereby (2)); afterwards, by help of (I), we shall show that these condi- 

tions can be satisfied simultaneously. 

G r o u p  x. 

and further 

The inequality (3) is satisfied for n -  I, if 

T 

< . ,  for T >  T, 
O 

T 

r f l s  for T > ~  
O 

T 

for 1 ' > r ,  
O 

etc. etc. 

D 

D 

T ~ -  T x I f 2 ( x ) - - Z ( x ) l P d x < e l  
7,, 

x T, 

T. - r ,  f I f ,  (x) - . f ,  (x)I' dx < ~, 
T~ 

etc. etc. 

For, if T >  T 1 lies between T~ and T~+I, we have 

T Ti T~ Tm T 

flf(x)-f,(x)pdx=f +f +...+f + f[f(x)-f,(x)pdx< 
o o T, T,n--1 r ~  

o 

o ( T  1 -  o) + $1 (T,  - -  TI) - [ - ""  + $, ( T i n - -  Tin-l)  + $1 T < 251 T. 
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G r o u p  2. 

and further 

The inequality (3) is satisfied for n = 2, if 

T 

.~ I / , (x)-f ,(x)l~'dx<** for T > T ~  

0 

T 

0 

e tc .  e tc .  

ga 

ga 

T~ 

,f T~ Ik(~)-f ,( . ) l ,  d~ < , ,  
0 

T, , /  T,-r, IA(x)-.f,(x)pdx < ,, 
Ts 

T, , j  2,-- T, IA(x)--A(x)lPdx < ~' 
v, 

e tc .  e tc .  

For, if T > T s  lies between Tm and Tin+,, we have 

f lf(.)--f,(x)lOdx= f + f +..,+ f + f l f ( . ) - f , ( . )Pd . '~  
o o T, r~_ I r m 

q(r, -o) + ,,(T,- f,) + ... + ,,(T, -- 2~-~) + ,,T< =,,r. 

G r o u p  3. Correspondingly it is seen that the inequality (3) is satisfied for 

n ----3, if 
T 

6 

T 

~f] fa(x) - - f , (x )[ t 'dx ,<, ,  for T >  /'4 
0 

e tc .  e tc .  

and further 
TI T, 

o T, 
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etc. 

i /  
T8 

~s 

, f  T,. IA(x)-A(xllPdx< 
T4 

e tc .  e tc .  

After each condition the Tn concerned are indicated in a rectangle. A com- 

posed indication like ~ (T~) means that  the condition be understood as a claim to 

T~ after T 1 having been chosen. We observe that, in conse.quence of (I), every 

condition is satisfied for all sufficiently large values of the number Tn in question. 

Since we have only a finite number of conditions for every T., and since the 

composed conditions have the form Tn( . . . )  where the T's  in the bracket have 

lower indices than n, it is obvious that  the numbers T 1, T j , . . .  can be chosen 

successively so that  all the conditions are satisfied. 

We finish the paragraph by showing how the theorem of BEsicovi~c~ con- 

cerning BZ-a. p. functions can be deduced from the completeness of the B~-a. p. 

space. From the PARSEVAL equation for a BLa. p. function it results immediately 

~Anz that  a necessary condition for a trigonometric series ~ ~ e to be the Fourier 
1 

ao 

series of a BS-a. p. function is that  ~ ]A , [  S is convergent. B~SICOVITCH'S 
1 

Theorem states that  this condition is also sufficient. 

Let  then A~ e ~n ~ be a trigonometric series for which ~ [ A,~ [ ~ is convergent. 
1 ! 

We shall prove that  the series is the Fourier series of a B2-a. p: function. We 

consider the sum of the first n terms of the series 

s,~(x)-~ A l  e~ '~  + A2e  ~A'~ + ""  + A,~e ~'d'~. 

From the PARS~.VAL equation for an o. a. p. function in the (trivial) case where 

it is a trigonometric polynomial we have 

V n+q 
D ~  [~r 8,+q(x)] == D~[An+I ~ tAa+i~ -~-...-~- An+qe'An+q~l = ~ IA, I'; 

~ n + l  



58 Harald Bohr and Erling Folner. 

therefore, 21A~I ~ being convergent, the sequence s,(x) is a B~-fundamental 

sequence and thus (on account of the completeness of the B~-a. p. space) B 2- 

converges to a B~-a. p. function f(x). The given series ~ A , e  i'l"~ must be the 
1 

Fourier series of this function f(x), since the Fourier series of f (x)can be 

obtained as the formal limit of the Fourier series of sn(x) (i. e. s,(x) itself) for 

Incidentally the proof shows that  the Fourier series of a B~-a. p. function 

B~-converges to the function. 

w 

The Incompleteness of the Wp. and the WP.a.p. Spaces. Main Example 1. 

In this last paragraph we finally prove the following 

Theorem. The WP-space and the WP-a.p. space are incomplete for every p ~  I. 

As the WP-a. p. space is a closed subspace of the WP-space it is sufficient 

to show that  the WP-a. p. space is incomplete, since a WP-fundamental sequence 

of WP-a. p. points which is not WP-convergent to any WP-a. p. point is neither 

WP-convergent to any WP-point. Thus we have to prove that  for every p _--_ I 

there exists a WP-fundamental sequence of WP.a.p. points which is not IVP- 

convergent, or, in other terms, that  there exists a WP-fundamental sequence of 

WP-a. p. functions which is not WP-convergent. We give a s i n g l e  e x a m p l e  

which can be used f o r  a l l  p by constructing a sequence Fl(x), F~(x), . . .  of 
WP-a. p. functions which is a WP-fundamental sequence for every p ~ I, but which 
is not WP-eonvergent for any p. In order to show that  the sequence is not 

WP-convergent for any p, it is sufficient to show that  the sequence is not 

lVP-convergent for p--~ I; for a sequence WP-converging to /~'(x) for some p or 

other would also W-converge to F(x), since Dw[F(x), F~(x)] _--Dwp [F(x), Fn(x)]. 

Main example 1. Let nh, m~,. . ,  be a sequence of integers ~ 2, and let 

hi ---- m~, h~ ~ mlm2, h s- -  ml m~ ms, . . . .  

For n ~ I , 2 , . . ,  we put 

{Io for ~ h n - - I ~ x ~ h n +  I (~ :0 ,  +I, +2 , . . . )  
/ . ( x )  = 2 = = 2 - - 

for all other x. 
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The funct ion f l  (x) thus consists of towers  of breadth  i and height  I placed on 

all the  numbers  ----o (rood hL), the funct ion f~(x) of towers  of the  same kind 

placed on all the numbers  ~ o (rood h~), e t c .  The funct ion fn(x) is periodic 

with the  period hn. 

Fur the r  we put  

Fn (x) ----- f l  (x) + f~ (x) + ' "  + f~ (x) 

(see Fig. 3 where n h =  m~---- m a 

FAx) 

= 2  and n = 3 ) .  

--h, ~3  hi --.h~ --hi o hi h2 3 hi hs 

Fig. 3. 

Fl(x ) thus  consists of towers  of breadth  I and height  I placed on all the 

numbers  - - o  (rood hi). 

F~(x) consists part ly of towers  of breadth  I and height  I placed on all the 

numbers  - - o  (rood hi) but  ~ o (rood h~), and part ly  of towers  of breadth  I and 

height  2 placed on all numbers  ------o (rood h~). 

F3(x ) consists part ly of towers  of breadth  "I and height  I placed on all 

numbers  ~= o (rood hi) but  ~ o  (rood h~), par t ly  of towers  of breadth  i and 

height  2 placed on all the numbers  ----o (rood h2) but  ~ o (rood hs), and finally 

of towers  of b read th  I and height  3 placed on all numbers  ~ o (meal hs). 

The funct ion Fn(x) is not  only a WP-a. p. funct ion for  every p, but  moreover  

a b o u n d e d  p e r i o d i c  f u n c t i o n  w i t h  t h e  p e r i o d  hn. 

W e  begin by showing t h a t  Fl(x), F ~ ( x ) , . . .  is a W P - f u n d a m e n t a l  

s e q u e n c e  f o r  e v e r y  p = > I ,  i .e .  tha t  to any e > o  there  exists an N = N ( e , p )  
such that  Dwp [F,~(x), ~'n+q(X)] < ~ for  n ~ N and q > o. Since (t~+q(x) -- Fn(x))P 
is periodic (with the  period h,~+q), we have 

p 

D . , p  (x) ,  (x)] = (x) - = 

p 

1/-~l{(f,,~+l(x) + fi~+~(x) §  + A+q(X))P I. 
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Hence in consequence of Mx~xowsKx's inequality 

P P P 

D~[F,~(x), F.+~(x)] ~_ VM{(f,,+,(x))~} + VM{(A+,(x},} + . . - +  VM{(f.+q{X))P} = 
p p p 

KT;+, + + " "  + h.+, 
p p P 

m I m~. . .  mn+l m I m j . . .  r a n + 2  m 1 m~... mn+q 

p P P 

_< 

where the right-hand side is less than the remainder /~n after the nth term of 

the convergent geometrical series 

I 

1 2 I~ 

and hence is < s for n. ~ N = N(s,p). 
Next, we shall prove t h a t  t h e  s e q u e n c e  F,~(x) is  n o t  W - c o n v e r g e n t .  

Roughly speaking, the reason is that  the periodic function F,~(x) (of the increasing 

sequence Fn(x)) has arbitrarily high towers for n sufficiently large which prevents 

its W-distance from a fixed W-function from tending to o. Indirectly, we assume 

that  there exists a function F(x) such that  

F.(x)-~ F(x). 

F(x) being a W-function or, what is equivalent, an S-function, the norm Ds[F(x)] 
is finite, i. e. a constant K can be found so that  

We choose a fixed N > K ,  

Dw[F(x), ~',~(x)] we have 

z + l  

f lF( t ) ld t  < K 
x 

for all x. 

and consider F,, (x) for n ~ N. For the distance 

z) w i F  (~), F .  (x)l = Z ) .  IF(x)  - -  F .  (x)l _>--- Z)~ I F ( . )  - -  ~ .  (~)l = 

- - T  

dx >--_ ~--| (2 m + I) hlv 
J 

-- (. +-~)h~, 
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and 

dropping the non-negative contributions from the rest of the interval, we get 

hN+ �89 

f "Dw[F(x)"Fn(x)] ~ls174 + I)h~ ~' [F(x)-- F'*(x)ldx" 
"Y m 

Now, since n ~ - N ,  we have F n ( x ) ~ N  in every one of the 2 m +  I intervals 

- - - ,  ~'h~v + �9 .hN 2 

and hence 

~hN+�89 

f lF(~)--P,,(x),dx>- f P.(x)dx-- f lF(~)ldx>N--K. 
�9 ~-�89 ,h~-�89 ,~-�89 

Thus we finally get for n ~ h r 

Dw IF(x), ~.(x)] >_- ~ ( N -  g), 

where the right-hand side is a (perhaps *very smallr positive constant indepen- 

dent of n, and this contradicts the assumption that  

Dr [F(x), F.(x)] --,o for n -~ ~v. 

As in main example I, in all the main examples of the paper (as well as 

of the appendix) a sequence of functions Fl(x), Fs(x) . . . .  of bounded periodic 

functions with the periods h l~ml ,  hz----mlz%, . . . is considered where ml, m s , . . .  

are integers _--_ 2. In most of the main examples further claims are put to 

these numbers concerning the rapidity with which they tend to ~ .  In main 

examples I and 2 (and main example IV of the appendix), however, no such 

claim is made to the numbers ml, m ~ , . . . ,  and we might as well have chosen 

them all equal to 2; in order to get the greatest possible analogy between our 

main examples, we have preferred not to make such a specialisation. 
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CHAPTER I l I .  

T w o  T h e o r e m s  on G p - F u n c t l o n s  and a T h e o r e m  on P e r i o d i c  G - P o i n t s .  

We begin by stating two theorems on the behaviour of GP-functions for 

fixed G and variable p (of course p ~ I), the first theorem dealing with GP-a. p. 

functions, the other with GP-zero functions. 

Theorem 1. I f  a function is GLa. p. and belongs to the GP~ for a Po > I, 

it is GP-a. p. for p < Po. 

A bounded function being a GP-function for all p, the theorem has the 

following 

Corollary.  A bounded GLa. p. function is GP-a. p. for all p. 

We next  turn to the GP-zero functions. As regards the SP-zero functions 

we have already mentioned the (trivial) fact tha t  these functions for each p are 

just  those functions which are equal to o almost everywhere. In reality, the 

following theorem on GP-zero functions therefore only deals with the cases 

G = W and G----B, but of course it also holds for G =  S. 

Theorem 2. I f  a function is a Gl-zero function and belongs to the G~'-set 

for  a Po > I, it  is a G P-zero function for p < Po. 

Evidently we have (of the same reasons as above) the following 

Corollary.  A bounded Gl-zero function is a GP-zero function for all p. 

The proofs of the two theorems are based on HSLDSR'S inequality. Let  Pl 

be an arbitrary number, I<p~<po, and f ( x )  an arbitrary function. In I tSLD~'S 
] Po 

inequality we replace f ( x )  and g(x) by I f (x)I  ~ and I f (x ) I  ~, where the two positive 

numbers p and q are determined so that  x + p o  p~ and I + I . . . .  = I ,  i .e .  
P q P q 

We then obtain 

b 

I 

_ f if(x)I p' dx~_ 

I Pn--Pl  l p ~ - - I  
p p o - - I  q p o - - I  

b Po--Pl b pa~ l  

f f 
g a 
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and, le t t ing  the in terval  (a, b) vary and *passing to the limitr in accordance 

with the  definitions of the different  dist~,nces, we get  for  G = S, W or B the 

inequal i ty  
P"--P~ P~7-1 Po 

(I) (DAY, [f(x)])v, <____ (Do, [f(x)])P~ (DG P, If(x)])P~ 

P r o o f  o f  T h e o r e m  x. Le t  f (x)  be a funct ion sat isfying the assumptions  

of Theorem I, i. e. a G~-a. p. funct ion and a Gpo-function for  a Po > I. Le t  

aq(x) be a BOCHNER-Fsz~ sequence of f(x).  Then DG,[f(x),  aq(X)]--* o for  q-~ Qc 

and las ment ioned  in Chapter  I) 

[.q(x)] < D. o 

For  an a rb i t ra ry  2h between I and iOo we have because of (x) 

Po--Px Pt - -  1 

(Do,, If(x), aq(x)])P, < (Do, [f(x), aq(x)]) "o-~. (Dovo [f(x), a,(x)])po-' p" < 

Po-"Pt Pt - -  1 

(DG' [ f ( x ) ,  O'q(X)]) p ~  (DGPo [ f ( x ) ]  + Dop,[aq(x)]) W:i-~v~ <~ 

P . - - P t  l h - -  1 

(Do, [f(x), aq(x)]lP.--~. (2 Day. [f(x)]) v ' - '  vo 

where the r ight -hand side tends  to o for  q--* oo, since D~,[f(x), aq(x)] ~ o. 
Consequently De;p, If(x),  aq(x)] ~ o so tha t  f(x) is a GV,-a. p. funct ion.  

P r o o f  o f  t h e o r e m  2. Le t  f(x) be a func t ion  sat isfying the assumptions 

of Theorem 2, i .e .  a Gt-zero funct ion  and a G~-funct ion  for  a Po > I. F o r  an 

a rb i t ra ry  p~ between I and Po we have because of (i) 

Po--Pt p l - - 1  

(Dop, [f(x)])v, < (Do, If(x)]) p~ (DG~ [f(x)])~--' Vo �9 ~ 0 ~  

i .e .  DGp, I f ( x ) ] - -  o. 

R e m a r k .  Using the  theory  of Four i e r  series (in par t icular  the uniqueness 

theorem) we may consider  Theorem 2 as a special case of Theorem I. In  fact ,  

a GP-zero funct ion being the same as a GP-a. p. funct ion with the  Four ie r  series o, 

the funct ion  f (x)  of Theorem 2 is on account  of Theorem I a GP-a. p. funct ion  

for  p <P0,  and having the Four ie r  series 0 it  is there fore  a G~-zero funct ion  

for  p < Po. 

Now we pass to a theorem of a somewhat  different  charac te r  which will 

be useful for  us la ter  on. 
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Theorem on the periodic points.  I f  f (x) is a x-integrable periodic function, 
and i f  (for a p > I) the GIToint ~around~ f (x)  contains any GP-function at all, 
then the function f(x)  itself is p-integrable. 

In other words: A I-integrable periodic function f (x)  is a Gt-function for all 

those p for which there exist Gt-functions in the (periodic) GX-point around f(x). 

P r o o f .  Since D~p~ Dan, a GP-function is also a BP-function, and the G 1- 

point around f (x)  is contained in the B-point around f(x). Therefore it is suffi- 

cient to prove the theorem for G----B. Hence we assume that there exists a 

B-zero function j(x) such that  f (x)  + j(x) is a B~-function, and we have to prove 

that  f (x)  is p-integrable. Let  the period of f(x) be b -  a, and let T = ~ ( b -  a) 

where ~ is a positive integer. Using first the inequality 

If(x) + 9 (x) l _- l (ffx)).~ + (g(x))#l 

and afterwards MINKOWSKI'S inequality, we have for an arbitrary fixed .N> o 

P 

V T 
--T 

P 

V: I 
+ j(x) l~dx> 2-~r I(f(x))~ + (j(x))ul~ dx >= 

P 
V T 

--T 

dx -- 
V T 

~T 

N o w ,  as I(J(x))~-I is ~ N as w e n  as _<-- I j (x ) l  we have  I(j(x))ul~ <-- ~ r ~ ,  I j ( x ) l .  
Hence 

P V'; 
~T If(x) 

--T 
+ j(x)I~ d x  > 

P 

V :  I 
b -- a l(f(x))~v I p 

a 

P 

V; d : -  ';(=)' 
~T 

dx. 

Letting ~-~ ~ ,  we get, since j(x)  is a B-zero function, 

DBp If(x) + j (x)] _---- 1/ / I l (f(x))~V l # d x. 
b - - a  a 
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Finally, letting N-~ oo, we get the inequality 

65 

Dnp If(x) + j (x)] >_- 

P 

/ I If(x) l p dx  
b -- a = / ) , p  If(x)] 

which shows in particular that  f(x) is p-integTable. 

We add two remarks on the periodic G-points. 

I ~ A periodic G-point contains essentially only one periodic function, or 

precisely speaking: Two periodic functions in a G-point are identical almost every- 

where. For they have the same Fourier series in almost periodic and therefore 

in periodic sense; consequently they have a common period, and further they are 

identical almost everywhere because of the uniqueness theorem on p-integrable 

periodic functions with a fixed period. A period of some periodic function in a 

periodic G-point is called a period of the G-point. 

2 ~ Every periodic G-point with the period h has a Fourier series of the form. 

Za.;v"', 

where all the Fourier exponents are integral multiples of the number -~-- We 

shall prove that  the converse is also true, i .e.  that every G-point which has a 

Fourier series of the form 

is a periodic G-point with the period h. ],et aq(x) be a BOCH~.R-FgJ~i~ sequence 

of the Fourier series. All the Fourier e~:ponents being integral multiples of the 

2g  
number ~ , the BOCHNEs-F~.J~R polynomials are periodic with the period h. 

The sequence aq (x) being G-convergent is in particular a G-fundamental sequence. 

As all the oq(x) are periodic with the period h, we have 

.D~ [,,,,(x), ,,~,(x)] = .D~ [,~,,C~), ,,~,(x)] (a  = Sg, W~, .BP). 
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Thus aq(X) is also a p-fundamental  sequence and therefore /~converges to a 

p-integrable periodic function f(x)  with the period h. Since, on account of 

DG [f(x), aq(x)] = D, If(x), aqCx)l (G -~ 8~, WP, BP), 

the BOCHNER-FEJ~R sequence aq(x) also G-converges to f(x), the function f (x)  
belongs to our G-a. p. point. 

We remind in this connection of the fact (stated in Chapter  I), that the 

G-limit periodic functions can be characterised as G-a. p. functions with Fourier 

series of the form 
~. An e~drn z 

where all the Fourier exponents are rational multiples of a number g. Evidently 

the same characterisation holds for the G-limit periodic points. 

The theorem on the periodic points involves in particular that the upper 

bound P, for the p for which ~the periodic representative, f ( z )  of a periodic 

Gl-point is p-integrable is equal to the upper bound Ps of the ~v for which the 

Gl-point contains GP-functions. It may be of interest to show that this (more 

special) result can also be derived by help of Fourier series. Indirectly, we 

assume that the first upper bound t)1 i s  less than the other P,. We choose Pl 

so that Pl <p~  < P2. Then there exists a G~,-function g(x) in the Gl-point. 

I, et now p~ be chosen so that P, < p ,  < p , .  The function g(x), lying in the 

periodic Gl-point, is G~-a. p. and, being also a Gp,-function, is simultaneously 

a GP,-a. p. function in consequence of Theorem i. The _Vourier series of the 

function g(x) being that of the periodic Gl-point has the form 

~t 2~tna: 
~A,~e T 

The G~-a. p. point  around g(x) having the same Fourier series is therefore, in 

consequence of Remark 2 ~ a periodic G~po in t  and thus contains a ps-integrable 

periodic function h(x). The two periodic functions f (x)  and h(x) both lying in 

our Gt-point must, in consequence of Remark I ~ be equal almost everywhere. 

Consequently f (x)  (as h (x)) is a p2-integTable function, in contradiction to p2~  P~ 
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CHAPTE R  IV. 

The ~ u t u a l  Relations of  the  Sp-Spaees and the  Sp.a .p .  Spaces. 

Introduetion. 

Since Da~ ~_ D ~  for p ~ x, every G#-function is also a Gl-function, and 

every GP-zero function is also a Gl-zero function. Consequently every GP-point 

is entirely contained in a Gl-point. In the S-case however, as mentioned above, 

the SP-zero functions have an especially simple character, being the same for 

every p, namely the functions which are o almost everywhere. Consequently 

every SPTOInt is i tself  an S-point (and not only contained in an S-point). We 

start  from an S-point and will investigate its behaviour as regards the SP-spaces 

and the S#-a. p. spaces. We call an S-point a l i v e  a t  t h e  t i m e  Pl as  to  t h e  

S~-spaces ,  if the S-point is an SP,-point. Otherwise it is said to be d e a d  at 

the time pl as to the SP-spaces. I f  we know, whether an S-point is alive or 

dead at the time Pr as to the SP-spaces, we say that  we know the b e h a v i o u r  

of the S-point at the time p~ as to the SP-spaces. I f  an S-point is alive at one 

date, it is also alive at all the previous dates. The upper bound P of all p 

for which the S-point is alive is called the l i f e t i m e  of the S-point as to the 

SP-spaces. Beforehand, nothing can be said about the behaviour of the S-point 

at its moment of death (i. e. at the time P). If  the S-point is 8-a. p., we can, 

analogously, consider its lifetime as to the SP-a. p. spaces and its behaviour as 

to the SP-a. p. spaces in the moment of death. In consequence of Theorem x, 

Chapter I I I  an S-a. p. point has the same lifetime as to the S#-spaees and as to 

the SP-a.p. spaees. In the following two paragraphs we shall state all the 

possibilities which may occur. 

2 .  

S-Points  which are not S-a. p. Points.  

We consider an arbitrary S-point which is not S-a. p. and denote, as above, 

its lifetime as to the SP-spaces by P. I t  will be proved by examples that  the 

following possibilities (which are all those imaginable beforehand) may occur: 
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I ~  

2 .  

The  l i fet ime P ~  oc. 

The l i fet ime P is a rb i t ra ry  finite, I ~ P < ~o. 

2 a. The  point  is dead at  the t ime P as to the SP-spaces ( P > I ) .  

2 b. The  point  is alive at  the  t ime P as to the S~-spaces ( P ~  x) 

E x a m p l e  t o  I. 

W e  define f(x) for  --Qo < x < ~ v  by 

I for  O < X  < I 

f(x)-= I 0 for  all o the r  x. 

Obviously, f(x) being bounded is an SP-function for  every p_~ I. And  tha t  f(x) 
is not  S-a. p. is an immedia te  consequence of Theorem I of Chapter  I, as f(x) 

I 
has no relat ively dense set of S- t ranslat ion-numbers  belonging for  instance to - ,  

2 

the  equali ty Ds [f(x + 3), f(x)] = I being valid for  I~ ]_~ I. 

Thus  the S-point a round f(x) is not  S-a. p. and has the l i fet ime P = co. 

E x a m p l e  t o  2 a. 

P being an a rb i t ra ry  number ,  I < / ) <  ~r we define f(x) f o r - - ~  < x < r 1 6 2  by 

for  o < x  < I 

fo r  all other x. 

The funct ion  f ( x )  is an SP-function for  p < P  bu t  not  fo r  p = P, since 

1 

o 

not  S-a, p., as 

1 P 

:--:,.I>,= l OP'd, j \x/ 

is convergent  for  a ( x  and d ivergent  for  a ~ I. 

1 1 

o 

F u r th e r  f(x) is 

for Izl ~x. 

Thus  the S-point a round f ( x )  is not  S-a. p., has the l i fe t ime P and is dead 

at  the  t ime P. 
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E x a m p l e  t o  2 b .  

P being an arbi t rary  number,  I ~ P < w ,  we define f (x )  for  - - w  < x < w  by 

f ( x )  = log x) ~ for o < x _--< a < I 

o for all other  x. 

The funct ion f (x )  is an SP-funetion for  p -~ P, but  not  for  p > P, since 

a p 

(Ds~[f(x)])" = a.  X(logx)']  a x  
0 

a 

/ (  , and x(lo~x)~ d x  is convergent  for  a = I and  divergent  for a > I, Fu r the r  
0 

.f(x) is no t  S-a. p. as 
a _1 

Ds. [ f (x  + ~), f(x)] = . x (1o x) '  ---- 
0 

Thus the S-point around f (x )  is no t  S-a. p., has the lifetime P and is alive 

at  the  t ime P. 

w  

S-a.  p. Points.  Main Example 2. 

Next  we consider the S-a. p. points. As ment ioned in w I, each such point  

has the same l ifet ime as to the  SP-spaces and  the SP-a. p. spaces. We  will show 

tha t  the fol lowing possibilities (which are all those imaginable beforehand) may 

o c c u r :  

i .  

2. 

The lifetime P = ~ .  

The l ifetime P is arbi t rary  finite, I ~ P <  ac. 

2 a. The point  is dead at  the t ime P as to the St-spaces ( P >  i). 

2 b. The point is alive at  the time P as to the S~-spaces. 

2 ba.  The point is alive at  the t ime P as to the SJ'-a. p. spaces 

(P_>_ i). 

2 b l .  The point is dead at  the time P as to the b'l'-a, p. spaces 

( P •  I).  

The ease 2 b 1, .i.e. t ha t  of an S-a. p. point which is an S~-point but  no t  an 

S"-a. p. point, is the only not  trivial one. 
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E x a m p l e  t o  I. 

Let  f (x )  be a bounded periodic function.  Then the S-point around f (x)  has 

the demanded properties. 

E x a m p l e  t o  2 a .  

Let  P be arbitrari ly given, I < P < ~ .  We consider the periodic funct ion 

f(x) with the period I, g i v e n i n  the p e r i o d i n t e r v a l o < x ~ 1  b y f ( x ) = ( I )  - ~ . -  

Then the S-point a round f(x) has the demanded properties. 

E x a m p l e  t o  2 b a .  

Let  P be arbi trar i ly given, I ~ P < oo. We consider the periodic funct ion 

f(x) with the  period a < I which is given in the period interval  o < x ~ a by 
1 ( . f ( x )  = x(l . Then the S-point around f(x) has the demanded properties. 

E x a m p l e  t o  2 b 6 .  Main  example  2. 

P being an arbitrari ly given number,  I < p < o o ,  we shall indicate a function 
F(x) which is S-a. p. (even S-limit periodic) and an S~-function, but not an SP-a. p. 
function. The S-point around F(x) is then of the type desired. 

Le t  ml, m 2 , . . ,  be arbi trary integers ~ 2 ,  and ( I > )  6 1 > r ~ > . . .  a decreasing 

sequence tending to o. In  this main example, by a tower of type n we shall 

unders tand  a tower w i t h  t h e  I - i n t e g r a l  r ,  a n d  t h e  P - i n t e g r a l  I. The 
p 

?-1 so tha t  b,-*o for n-~ oo and b , <  I breadth b, of a tower of type n is then ~ 

for all n. 

We put  
h t = m~, h~ ---- m I m~, h s --~ m~ m~ m s, . . . 

and, as in main example I, we construct  a sequence Fi  (x), Fs (x), . . . of bounded 

periodic funct ions with the periods hi, h~ . . . . .  The construction appears from 

the  following array (compare with main example I). 

Fl(x):  On aU numbers ~ o  (rood hi) is placed a tower of type i. 

F2(x): On all numbers ----o (mod hi) bu t  ~ o  (rood hs) is placed a tower of type I. 

. . . . . . .  - -o  (mod h,) . . . . . . . . . . .  2. 

Fa(x): On all numbers ------o (rood hi) but  ~ o  (rood h~) is placed a tower of type I. 

. . . . . . . .  - - - o  (rood h~) but ~ o  (rood hs) . . . . . . . . . . .  2. 

. . . . . . .  ~ 0  (mod h3) �9 '. . . . . . . . . .  3. 
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On all numbers  ~ffio (rood h~) but  ~ o  (rood h2) is placed a tower  of type x. 

. . . . . . .  ----o (mod h~) but  ~ o  (mod hs) . . . . . . . . . . .  2. 

. . . . . . .  ~ o  (mod hs) but  ~ o  (mod h4) . . . . . . . . . . .  3. 
: 

. . . . . . .  ----o (rood hn-1) but  ~ o  (rood h,,) . . . . . . . .  n - - I  

. . . . . . .  - - o  (rood h~) . . . . . . . .  n. 

(See Fig. 4 where ml----ms----ms:2 and n=3). Since b, < I ~ hA < hi, two towers 
2 

never  overlap. 

F, (x) 
--hs  - - 3 h l  --I l l  --141 o 111 h2 3h~ hs 

Fig. 4- 

The  func t ion  F,,(x) is obviously a bounded periodic funct ion  with the 

period h~. W e  shall  show tha t  F,,(x) S.converges to a funct ion  F(x) whose con- 

s t ruc t ion  appears  f rom the fol lowing array. 

F(x) :  On all numbers  - - o  (Inod hi) but  ~ o  (rood h2) is placed a tower  of type  ]. 

. . . . . . .  ~-o (rood h2) but  ~ o  (rood ha) . . . . . . . . . . . .  2. 

. . . . . . .  = o  (rood hs) but ~ o  (rood h, )  . . . . . . . . . . . .  3.  
: 

. . . . . . .  ----o (rood hn) but  ~ o  (rood b,,+l) . . . . . . . . . . .  n. 
: 

The func t ion  F ( x )  differs f rom F~(x) only as regards  the towers on the 

numbers  ~ o (rood h,,+l). As the breadth  of the tower  placed on o in F~(x) tends 

to o for  n - - , ~ ,  while in F(x) there  is no tower  on o, i t  is plain tha t  

We  shall prove tha t  

F(x) = lira F~(x) for  all x 4: o. 
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On the numbers -- o (mod h,+l), in F,(x)  there are standing towers of the type n, 

while in F(x), with exception of the number o, there are standing towers of the 

types n +  I , n . +  2 , . . . .  Hence, denoting by n + q ( m )  (q(m)~ I) the type of 

the tower in F(x) placed on a number m ~ o (rood hn+1) but * o, we have for 

m ------ 0 (mod h,n+l) 

m + hi ht __ - -  m +  m +  hi 
2 2 2 

f IF(x) - F.(x)I dx <= f F(z)dx + fFn(z)dx = 
m n, m-- a~ m-- 

2 2 2 

~ $n f o r  m = 0 

[ e n + q ( m )  + ~n f o r  m ------ 0 ( r o o d  h . + l )  b u t  ~ = 0 ,  

while for  m ~ o (mod h~) but ~ o (rood h~+~) 

m +  h...t 
2 

flF(x)--F,~(x)ldx 
ira,-- -h-t- 

2 

Thus we have 

~---0. 

h31 
m +  

2 

f lF(x)- F, , (x ) ldx  < 2,,~ 
m ~ h . J  ~ 

2 

for all m ------- o (rood hi). 

Since an arbitrary interval of the length h 1 is contained in an interval 

we get 

m - - h t ~ x _ - - < m +  3hl ( m - - o  (rood hi)), 
2 2 

2 

fl F(t)-- F, , ( t ) ld t  < 4~,~ 
h~ x - - - -  
2 

for all x, 

4 ~n so that Dsa~ [F(x), Fn(x)] _-<-hT which tends to o for n - - , ~ .  Hence Fn(x) ~ F(x), 

and F(x) is therefore an S-a. p. f u n c t i o n .  

The function F(x) is obviously an S P - f u n c t i o n ,  as all the towers of F(x) 
have the P-integral I and therefore 

m-I- h-it 
2 

f (F (x ) )  " d x  ~ I for all m - -  o ( m o d  h:) 

m__h.., t 
2 
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x + ~  hI 
2 

f(F(t))Pdt _--< 2 for all X,  

2 

so that  
P 

1 /  2 . 

Finally F(x) is n o t  an  8P-a. p. f u n c t i o n .  Otherwise by Theorem I a, 

Chapter  I, the function F(x) being the &limit function of the periodic functions 

Fa(x) with the periods ha, the number hn should be a ,~fine~ 8~-translation 

number of F(x)  for ~qarge~ n. This, however, is impossible. In  fact, by the 

translation h~ the interval - - h ~  x ~ h~ containing o is translated into the 
2 2 

interval --h~ + h~ ~ x ~ h~ + hn containing kn, and in the first interval F (x) has 
2 2 

no tower while in the second it has a tower with the P-integral I, so that  

P 

for every ha. 

Besides, in order to prove tha t  F(x) is not Se-a. p., we could have confined 

ourselves to apply the general Theorem I of Chapter I instead of the Theorem 

I a (dealing with limit periodic functions). In  fact, for every �9 with a modulus 

___ hi - -  we have 
2 

+ F(x) ]  _--> 

P 

since the interval - - - 3 h l ~ x < 3 h l  of length 3 4 = 4  ~ hi in which F(x) has no tower 

will be translated by ~ into an interval containing at least one of the towers 

of 

We remark, that the function F(x)  constructed above is of similar character 

as a type of examples of o. a. p. functions treated by TOEeLtCZ (Mathematische 

Annalen, Bd. 98). 
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CHAPTER V. 

The Mutual Relations of the Wp-Spaces and the Wp-a. p. Spaces. 

{~ I.  

Introduction. 

In this Chapter we shall study the mutual relations of the Wr-spaces and 

the WP-a. p. spaces, p ranging over all values _-- I. Of all the WP-points (p ~ x) 

the W-points are the most comprehensive, and every WP-point is contained in a 

W-point. We therefore consider an arbitrary W-point and shall investigate how 

this W-point behaves as to the WP-spaces and the WP-a. p. spaces. First we 

consider the WP-points (p > I) contained in our W-point, but subsequently also 

the single functions of the W-point. In our characterisation of the WP-points 

and of the functions in the W-point only the WP-spaces and the WP-a. p. spaces 

are applied (and not the other types of spaces). Before carrying out our in- 

vestigations we must have some knowledge about the W-zero functions. 

2. 

W-zero Functions. 

Let  f ( x )  be a W-zero funct ion.  We  denote  the upper  bound of the p for  

which f ( x )  is a WP-function by P. In  consequence of Theorem 2, Chapte r  I I I  

the funet iou f ( x )  is a WP-zero funct ion  for  p < P  so t h a t  P can also be defined 

as the upper  bound of those p for  which f (x )  is a W~-zero fuuct ion.  We will 

show tha t  the fol lowing possibilities (which are all those imaginable beforehand) 

may be realised: 

I. P ~ .  

2. P a rb i t ra ry  finite, I < P <  oc. 

2 a. f (x )  is not  a WV-function ( P >  I). 

2 b. f (x)  is a WP-function. 

2 b~. f (x)  is a WP-zero funct ion  (P  ~ I). 

2 b~. f(x) is not  a WP-zero funct ion  ( P >  I). 
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E x a m p l e  t o  x. 

A quite obvious example  is f(x) = o  for  all x. Ano the r  example  is a func t ion  

which is bounded and  tends  to o for  x--* + 00. 

E x a m p l e  t o  2 a .  

E x a m p l e  t o  2 b a .  

f (x )  = 

0 

for  o < x _ - -  < I 

for  all o ther  x. 

.f(x) = ~x (log x)'] for  O < x __--< a < I 

O for  all  o the r  x. 

E x a m p l e  t o  2 b~. 

W e  cons t ruc t  a funct ion f ( x )  in the  fo l lowing way:  Le t  ~i, ~z . . . .  be a 

sequence of posit ive numbers  < I which tends  to o. On the n u m b e r  n (n = I, 2 , . . . )  

a tower  with the  I - in tegra l  ~n and  ~he P- in tegra l  I is placed. As the  b read ths  

of the  towers  are  ~ I, they  do not  overlap,  f ( x )  is a W-zero func t ion  as 

x + l  

f f ( t )  d t - ,  o for  x ~ co. 
z 

Fur the r  f (x )  is a We-funct ion,  bu~ not  a We-zero func t ion  as 

n+�89 

J(f(x))edx= x f o r  n =  I, 2 , . . . .  
n - -  1 

There  exists  an infinite n u m b e r  of  such func t ions  which do not  differ by 

We-zero func t ions  (i. e. do not  be long ~o the  same We-point),  for  ins tance  the  

funct ions  a .f(x), where a is an a rb i t r a ry  complex  n u m b e r  # o and  f ( x )  the  

func t ion  cons t ruc ted  above. 

I t  may  be observed tha t  a funct ion f (x )  which is a W-zero func t ion  and  a 

W e- but  no t  We-zero func t ion  can never  be a We-a. p. funct ion.  I n  fact ,  if  i t  

was We-a.  p., i t  would, as i t  has  the  Four ie r  series o, be a We-zero funct ion.  
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w  

W-Points in General. 

In this paragraph we shall state the laws for the W~-points (p > I) and 

the functions in a W-point. A single proof belonging to this investigation will 

be postponed to w 6 because of its particular character. Iu  w 4 and w 5 examples 

are given which serve as existence proofs for the different types of W-points. 

We consider an arbitrary W-point. We call the point a l i v e  a t  t h e  t i m e  

Pl as  to  t h e  W~-spaces ,  if it contains at least one WP,-point, or, what is 

equivalent, if it contains at least one WP,-function; otherwise the W-point is said 

to be d e a d  at the time p~. I f  the W-point is W-a. p., we define in an analogous 

way the meaning of the point being alive or dead at the time Pl as to the 

WP-a. p. spaces. If  we know, whether the W-point is alive or dead at the time 

Pl as to the WP-spaces (WP-a. p. spaces) we say that we know its b e h a v i o u r  

at the time p~ as to the WP-spaces (WP-a. p. spaces). I f  the W-point is alive at 

one date, it is alive at all the previous dates. By the l i f e t i m e  P of the 

W-point as to the WP-spaces we understand the upper bound of those p for 

which the W-point is alive as to the WP-spaces. I f  the W-point is W-a. p. in 

an analogous way its lifetime as to the WP-a. p. spaces is defined. In consequence 

of Theorem I, Chapter I I I a  W-a. p. point has the same lifetime as to the WP-spaees 

and as to the WP-a. p. spaces. Beforehand, we cannot say anything about  the 

behaviour of the W-point at the moment of death as to the WP-spaces and 

eventually the WP-a. p. spaces. 

At first we study t h e  W P - p o i n t s  in our W-point. Let  p ~ x  be arbitrarily 

given. The set of all the W~-functions in the W-point, if such functions exist, 

divides into a set of W~-points. These WP-points are called the p - d e s c e n d a n t s  

of the W-point. In consequence of example 2 b E of w 2, if there is one p- 

descendant, there will be an infinite number of them, since the sum of any function 

af (x) ,  a~=o, of this example with p instead of P (or rather the WP-point around 

this function) and a fixed p-descendant is again a p-descendant. Let Pl and Pz be 

two numbers, I ~ p t  ~Pz. We consider a pl-descendant of the W-point. The set 

of W~funct ions  in the pl-descendant, if such functions exist, divides into a set 

of W~-points which are called the pz-descendants of the pl-descendant. They are 

at the same time pz-descendants of the W-point. We will prove that only one of 

the pl-descendants of the W-point can have pz-desce~dants for any p~ >Pl ,  so that  
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all the p~-descendants of the W-point (if existing) are p~-descendants of one and 

the same pl-descendant. In  fact, the difference of two functions, each taken 

from its pz-descendant, is a W-zero function and a WP~-function, and hence, in 

consequence of Theorem 2, Chapter I I I ,  a WP-zero function for p <:P2, in par- 

ticular for P----P1. This ~generating~ WP,-point is called the p l - g e n e r a t o r ;  

all the other pl-descendants die at the time p~ at the moment they are ~born~ 

(i. e. come into existence as points) and are therefore called the s t i l l b o r n  

b r o t h e r s  of the pl-descendant. The p~-generator is defined for I ~ p ~  P. 

I f  the W-point from which we are starting is a W-a. p. point the p~-generator 

(I < p~ ~ P) will be W~,-a. p. In  fact, the p~-descendants of the pl-generator 

(P~>Pl) consist of WP-*-functions which are simultaneously W-a. p. functions; 

thus, in consequence of Theorem I, Chapter l I I  these functions are W~,-a. p. 

and, lying in the p~-descendants of the pj-generator, they also lie in the p~-ge- 

nerator itself, which is therefore WP,-a. p. In a W-a. p. point at most one of the 

p-descendants ca~ be W~-a.p. (so that  for p < P the p-generator is the only 

W~-a. p. p-descendant). For a WP-a. p. point in the W-a. p. point has the same 

Fourier series as the W-a. p. point itself, and, in consequence of the uniqueness 

theorem, there exists only one WP-a. p. point with a given Fourier series. 

In the preceding we have used ~)biological(, phrases. We will also give 

another methaphor of the situation. We speak of a W - r o c k e t ,  the ,)compo- 

nents~ of which at the time p are the p-descendants of the W-point; the p-ge- 

nerator is called the p - n u c l e u s  and the still-born brothers of the p-generater 

are called the p - s p a r k s  of the rocket (see Fig. 5, which suggests the ~evolution~ 

of the W-point ~in the course of time~, i.e. for increasing p). 

In connection with the figure we remind of certain facts given above: I f  

the W-point is W-a. p., the p-generator is WP-a. p. for every p, I < p  < P, 

whereas no one of its still-born brothers is. Further, if the W-a. p. point is alive 

at the moment of death P as to the W~-spaces, so that  there exist P-descendants, 

at most one of them is WP-a. p. As we shall set, in w 5, some of those W.a.p.  

points have a WP-a. p. P-descendant, whereas others have not. 

Next  we consider t h e  s i n g l e  f u n c t i o n s  in the W-point. A function f (x )  

is called a l i v e  at the time Pl as to the W~-spaces, if f (x )  is a Wp,-function; 

otherwise f (x )  is said to be d e a d  at the time Pl- If  the W-point is W-a. p., we 

define in an analogous way what is to be understood by f (x )  being alive or 

dead at the time pj as to the W~-a. p. spaces. The upper bound of the p for 

6 
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which f (x )  is alive as to the W~-spaces is called the l i f e t i m e  of f (x)  as to the 

WP-spaces. I f  the W-point is W-a. p., the lifetime of f (x )  as to the WP-a. p. 

spaces is defined in the analogous way. In this case, in consequence of Theorem 

I, Chapter I I I ,  the function f (x )  has the same lifetime as to the WP-spaces and as 

to the W~-a. p. spaces. 

We start our investigations about the functions in a given W-point by 

mentioning, without proof, that  in every W-point there exists a t h r o u g h  

1V-point 

Fig. 5. 

f u n c t i o n  as to the W p- and the WP-a. p. spaces, i. e. a function which is a 

WP-function for just those p for which the W-point contains WP-functions and 

a W~-a. p. function for just those p for which t h e  W-point contains WP.a.p. 

functions. I f  the W-point is alive at the time P as to the WP-a. p. spaces, or 

is not alive at the time P as to the WP-a. p. spaces but is alive as to the W ~- 

spaces, it is obvious that  there exists a through function; in fact an arbitrary 

one of the WP-a. p., respectively WP-functions contained in the W-point will be 

a through function. The problem is to show that  there exists a through function 

also in the case where (if P <  ac) the W-point is dead at the time P as to the 

WP-spaces. In order to prove this, it is of course sufficient to show that  there 

exists a through function as to the WP-spaces, since such a function, if the 



On Some Types of Functional Spaces. 79 

W-point be a W-a. p. point, will at the same time be a through function as to 

the WP-a. p. spaces. We postpone the proof to w 6. Taking the existence of 

a through function for granted, we shall now give a complete account of the 

functions lying in our arbitrarily given W-point, whose lifetime P (x ~ P_----~) 

and behaviour at  the moment of death P (if P < ~ )  as to the W~-spaces and 

the WP-a. p. spaces are assumed to be known. (What possibilities may occur for a 

W-point in this respect will, as mentioned in w I, be discussed in w 4 and w 5). 

By the investigation of the functions in our W-point we distinguish between the 

W-point not being W-a. p. or being W-a. p. 

I. T h e  W - p o i n t  is n o t  W-a. p. Denoting the lifetime of a function f (x )  

in the W-point as to the WP-spaces by P1, there are the following possibilities. 

The H.fetime P1 may be an arbitrary number', I ~ P I ~ P  , and for any fixed choice 

of P1 there are, if P I < ~ ,  the two possibilities: 

I. f (x )  is dead as to the WP-spaces at the time P1, 

2. f (x )  is alive as to the WP-spaces at the time /)i, 

with exception, however, of the case /)1 ~-x where of course only 2. can occur, 

and the case P1--~ P where 2. can only occur if the W-point is alive as to the 

WP-spaces at the time P. 

P r o o f .  Let g(x) be a through function in the Fir-point as to the WV-spaces. 

In the special cases where P~ ~ -P- - - -~ ,  or P1-----P < ~ and moreover the given 

W-point and the desired function f (x)  have the same behaviour as to the W ~'- 

spaces at their common moment of death P=P~,  we may as f (x)  simply use the 

function g(x) itself. In all other cases we obtain, on account of the linearity 

of the WP-sets, a function f (x )  of the type wanted by adding to g(x) a W-zero 

function of lifetime P~ which in case of I. is not a WP,-function, and in case 

of 2. is a WP,-function. 

We observe that  for I < / )1  < P all the functions in the P~-sparks are of 

the type 2. 

II.  T h e  W - p o i n t  is W-a. p. The lifetime PI of  a fit~ction f (x )  in the 

W-a. p. point as to the W p- and the |VP.a.p. spaces may be an arbitrary number 

in the ~'nter~'al I ~ P1 ~ P, and for every fixed choice of /)1 there are, if/)1 < ~ ,  

the following three possibilities: 
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I. f (x)  is dead as to the W~-spaces a t  the t ime /)1, 

2. f(x)  is alive as to  the  WP-spaces, bu t  dead as to the  WP-a. p. spaces at  

the t ime /)1, 

3. f(x) is alive as to the WP-a. p. spaces a t  the t ime /)1, 

with exception, however,  of the case P~ ~ I where of  course only 3. can occur, 

and the case /)1 ~ P where .~. can only occur  if the W-a. p. point  is alive as to 

the WP-a. p. spaces at  the  t ime P,  and 2. can only occur  if the W-a. p. point  is 

alive as to the  WP-spaces at  the  t ime P.  

P r o o f .  Le t  g(x) be a th rough  funct ion  in the W-a. p. point  as to the 

W p- and the W~-a. p. spaces. I f  / )1~  P- - -  ~ ,  or /)1 ~ P ~ Qc and moreover  the 

given W-a. p. point  and the  desired func t ion  f (x)  have the same behaviour  as 

to the WP-spaces and the  tVP-a, p. spaces a t  the i r  common m o m en t  of death  

P----/)1, we may as f (x)  simply use the  t h rough  funct ion  g (x) itself. In  all 

o ther  cases we obtain,  on account  of the  l ineari ty  of the WP-sets, a funct ion  f (x)  
of the  type  wanted  by adding to  g(x) a suitable W-zero funct ion:  W e  get  a 

funct ion  f (x)  of the  type  I., by add ing  to g(x) a W-zero func t ion  with the life- 

t ime PI  as to the WP-spaces which is not  a WP'-function.  Similar ly we get  a 

func t ion  f (x)  of the  type  2. by adding  to g(x) a W-zero func t ion  which is a 

WP,-function but  not  a WP~-zero funct ion  (since, in consequence of the  uniqueness  

theorem, two WP,-a. p. funct ions  in our  W-a. p. point  mus t  differ by a W~-zero  

fanction).  Final ly  we get  a func t ion  of the type  3. by adding to g(x) a W.zero 

func t ion  which has the l ifetime PI as to the  W~-spaces and is a ~VP,-zero 

funct ion.  

W e  observe tha t  for  I ~ 101 ~ 1 D all the  funct ions  in the Pl-sparks are of 

type 2. 

w  

W-Points which are not  W-a. p. Points. 

In  this paragraph  we shall consider  the W-points which are not  W-a. p. 

points,  a n d  we shall invest igate  what  possibilities may occur  for  such points  

concerning as well the l i fet ime P as the  behaviour  a t  the  moment  of death  as 

to the W~-spaces. We shall show that all posMbilitie~ which are imagi~able before- 
hand may occur, viz. 
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I~  

2. P arbitrary finite, I _ ~ P <  ao. 

2 a. The point is dead as to the W~-spaces at the time P ( P > I ) .  

2b .  The point is alive as to the WP-spaces at the time P (P~_x). 

A (trivial) example to I. with the lifetime oo is first given. Next, in order 

to get examples of W-points which are not  W-a.. p. and have an arbitrarily given 

finite lifetime p and a given behaviour at the moment of death as to the W p- 

spaces, we add the W-point of the first example to a periodic W-point with the 

lifetime P and the desired behaviour at the moment of death as to the W r- 

spaces. (In consequence of the theorem of Chapter I I I  on the periodic G-points, 

the point ~behaves~ entirely as the periodic function contained in it). By this 

addition, the almost periodicity of the periodic W-point is destroyed, whereas i~s 

lifetime and behaviour at the moment of death as to the WP-spaces are preserved. 

E x a m p l e  t o  I.  

Let 
I I for o < x < o o  

f(x) = _ for - - a o < x < o .  

The function f(x) being bounded is obviously a W~-function for every p; further 

f (x)  is not W-a. p., as 

T 0 

r--= T f ( x ) d x - ~  I while lira I /(z)dx=-1 (# 
0 - - T  

The W-point around f(x) is thus not W-a. p. and has the lifetime P----~ as to 

the WP-spaces. 

E x a m p l e  to  2 a. 

Let P be an arbitrary number, I < P < oo. Let  f(x) be the function of 

example z, and h(x)~  periodic function which is p-integrable for p < P  but 

not P-integrahle. Denote by 2 the W-point around f(x)  and by ~ the W-point 

around h (x). Then the point ~ ~ 2 + ~ will not be W-a. p., will have the life- 

time P as to the WP-spaces and be dead at the time P. That ~ is not W-a. p. 

results from the linearity of the W-a. p. space, ~ being W-a. p. and 2 not 

being W-a. p. Further  the point ~ contains the function f(x) + h(x) which is a 
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WP-function for p<P. Finally no WP-function lies in the point 5; in fact the 

functions in 5 can be obtained by adding to f(x) all the functions in ~ ,  and 

f (x)  is a WP-function, whereas, in consequence of the theorem on the periodic 

points, no function in ~ is a WP-function. 

E x a m p l e  to  2 b. 

Let P be an arbitrary number, ] < P < ~ .  Let f(x) be the function of 

example I, and h(x)a periodic function which is P-integrable but not  p-inte- 

grable for p > P .  Denote by 71 the W-point around f(x) and by ~ the W-point 

around h (x). Then the W-point 5 = 71 + ~ will not be W-a. p., will have the 

lifetime P as to the WP-spaces and be alive at the time P. The proof is quite 

analogous to that  of example 2 a: From the linearity of the W-a. p. space it 

results that  5 is not W-a. p., the point ~ being W-a. p. and 71 not being W-a. p. 

Further the point 5 contains the function f (x )+ h (x) which is a WP-function. 

Finally for p > P  no W~-function lies in the point 5, as this latter point consists 

just  of the functions obtained by adding f(x) to all the functions in ~,  and f(x) 
is a WP-function, whereas, by the theorem on the periodic points, no function 

in ~ is a W~-function. 

w 

W-a. p. Points. Main Example 3. 

In this paragraph we consider an arbitrary W-a. p. point, whose lifetime as 

to the W p- and the W~-a. p. spaces is denoted by P, and shall show that also 
here all possibilities which are imaginable beforehand may occur, viz. 

I ,  

2 .  P arbitrary finite, I ~ P < ~ .  

2 a. The point is dead as to the WP-spaces at the time P (P > I). 

2 b. The point is alive as to the WP-spaces at the time P. 

2 b~. The point is alive as to the WP-a. p. spaces at the time 

P (P _ I). 

2b~ .  The point is dead as to the WP-a.p. spaces at the time P 

(P> 1). 
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E x a m p l e  t o  1. 

The  W-point a round a bounded periodic funct ion.  

E x a m p l e  t o  2 a .  

Let  P be an a rb i t ra ry  number,  1 < P < 0% and h (x) a periodic func t ion  

which is p . in tegrable  for  10 < P bu t  no t  P-integrable.  Then  the  W-point  a round 

h(x) has  the  desired properties.  First ly,  i t  is obviously W-a. p., h ( x ) b e i n g  W-a.p.  

Secondly, i t  contains  a WP-a. p. funct ion  for  Io < P,  viz. h(x). And thirdly,  by 

the  theorem on the periodic points, i t  does no t  conta in  any We-funct ion.  

E x a m p l e  t o  2 b ~ .  

Le t  P be an arb i t rary  number ,  I <: P < 0% and h(x) a periodic func t ion  

which is P- integrable ,  but  no t  10-integrable for  19 > P.  Then  the W-point a round 

h(x) has the  wanted  properties.  First ly,  the  W-point is W-a. p., h(x) being W-a. p. 

Secondly,  it  contains a We-a. p. funct ion ,  viz. h (x). And thirdly,  by the theorem 

on the periodic points,  i t  does no t  contain any WP-function for  10 > P.  

The  case 2 b ~ remains.  A r a the r  complicated const ruct ion is necessary in 

order  to show tha t  this case can be realized. 

E x a m p l e  t o  2 b~.  Main e x a m p l e  3.  

Let  P be arb i t ra r i ly  given, I < P < o0. W e  wish to const ruct  a functio~ 

E(x) which is a W~-a. 1o. f i ,  nction for 19 < P and a We-function, but such that the 

W-point around le(x) does not contain any We-a. 1o. function. Then  the W - p o i n t  

a round E(x )  will be an example to 2 b ~. 

Le t  ma, m s . . . .  be a sequence of odd numbers  >---_ 3, inereasing so s trongly 

tha t  the p roduc t  

I I I I (, 
is convergent (> o). As usually we put 

h I = ml, h s = n] I n~s, h$ = n| I m~ re_q, .... 

Fur the r  let  ~, ~s, �9 �9 �9 be a sequence of numbers  such tha t  I > ~t > ~2 ' ' ' - ~  o. By 

a tower  of type n we unders t and  a tower  w i t h  t h e  1 - i n t e g r a l  ~n a n d  t h e  

P - i n t e g r a l  I. Since ~ < x, the  breadth  of a tower  of type  n is less t han  I. 

I n  the following, the  let ters  v,/~, ~ denote  integers.  We cons t ruc t  a sequence 

of  funct ions  F~(x) , /~(x) ,  . . . in the  fol lowing way: 
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F~(x): In  every in terva l  r h~ _--< x < (v + I)h~ a tower  of type  I is placed on 

the cent ra l  one of the  subintervals  /~ _--< x < fe + ~. 

F~(x): Is  obta ined  f rom F~(x) by ~filling up(< the central  ~ one of the sub- 

intervals  ph i  _--< x < (p + I) h~ of every in terva l  v h~ ~ x <  (v + I) h~ by towers of 

type  2, i. e. by placing a tower  of type  2 on every subinterval  V =< x < ~ + I of 

the  ment ioned  cen t ra l  in terval  where no tower  of F~ (x) is s tanding.  

Fs(x) :  Is  obta ined  f rom F~(x) by ,filling up(~ the centra l  one of the sub- 

intervals  ph2 ~ x < (/~ + I)h~ of every in terval  vhs ~ x < (v + I)ha by towers o f  

type  3, i .e .  by placing a tower  of type  3 on every subinterval  ~ ~ x < ~ + I of 

the  ment ioned  centra l  in terval  where no tower  of F~ (x) is standing. 

Fn+l(X): Is obta ined  f rom F,~(x) by ,)filling upr the  cent ra l  one of the sub- 

intervals  t~ h.  =< x < ~u + I) h .  of every in terval  v hn+ ~ ~ x < (v + ]) h.+ 1 by towers  of 

type  n +  i, i .e .  by placing a tower  of type  n +  I on every subinterval  V_--<x<~+ I 

of  the ment ioned  central  in terval  where no tower  of F,~(x) is s tanding.  

(see Fig. 6, where m 1 - -  m~ = 3 and n----2). 

F,(x) 
-h~ --8 - -7--2h~--5 --4 --h~ --2 --I o I 2 h~ 4 5 2h~ 7 8 

Fig. 6. 

I 

ha 

F~(x) is a bounded  periodic func t ion  with the  period hn. F u r t h e r  Fn (x)=F~+l(X) 
for  --h~_-----x< h,  and moreover  F,~(x)= F,~+t(x)=F~+2(x) . . . .  for  the same x, 

since hn < hn+l < h,,+~ < . . - ;  consequently,  as h n -* ~ ,  a l imit  func t ion  

F ( x )  = lim ~;, (x) 
R ~ Q 0  

exists for  - -  ao < x < ~ ,  and 

= f o r  - -  =< x < 

s Here and in the following ins tead of the  central  one of the  subintervals  we could have chosen 

any  one of the  subintervals  with exception of the  first and the  last, bu t  in order to be able to use 
main example  3 to further purposes in the  appendix  we have made the  specialisafion mentioned.  
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The function F~(x), differing from Fn+q(x) only by towers of the types n + I, 

n + 2 , . . . ,  . n + q ,  differs from F(x)  only by towers of types n +  I, n + 2 , . . . ;  

hence (as *n+l >*,,+2 > .... ) 

and thus 

i~ e~ 

m + l  

for each integer m 

x + l  

f (F(t)- F,,(t))dt < 2,,+~ for all x, 

D ,  F ,,(x)] _--< 

Since e,,~ o, we have ~ ( x )  --s F(x); thus the function F(x) is an S-limit periodic 

function, in particular an  S-a. p. f u n c t i o n .  All our towers having the P-inte- 

gral I, obviously F(x) is simultaneously an SP-function (or, what is equivalent, 

a WP-function) and therefore, in consequence of Theorem I, Chapter I I I ,  also 

an SP-a. p. function for p < P .  Hence our function is not only a W P - f u n c t i o n  

a n d  a WV-a. p. f u n c t i o n  f o r  p < P ,  as desired, but moreover an SP-a.p. func- 

tion for p < P. 
We have to prove that the W-point around F(x)  does not contain any 

WV-a. p. function. As a preparation we prove that  t h e  f u n c t i o n  F(x) i t s e l f  

is n o t  a WP-a. p. f u n c t i o n .  

We begin by some preliminary remarks: 

By di ( i =  I, 2 , . . . )  we denote the relative density of all the ~places~ 

_--< x < '7 + I on which there are standing no towers in Fe (x), exactly speaking, 

ee 
the ratio de=  hi between the number ei of the ~empty~ places in a period interval 

he <--__ x < (l~ + I) hi of Fe(x) and the total number hi of places in such an interval. 

I t  is easy to see that  ( i) 
di+x= I di. 

m['+l 

In fact, when passing over from Fi(x) to F~+x(x) we fill out just  one of the 

mt+l period intervals ~ht<=x < (g + I)h~ of .Fe(x) of which a period interval 

vhi+l < x < (v + I) he+l of F~+l(x) consists, so that ee+l : (rot+l-- I) ei and hence 

e l + l  _ ( r J l i + l -  i )  e~ 
= I - -  - 7 - =  I - -  d i .  

rot4 m 
d i  +1 - -  

ht+l mi+lhl 
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e ( , )  
Especially we get (by induction), as d , = ~ =  I--m-~x , 

(,- ( n  ~ 1, 2, . . .). 

We emphasise that, on account of the convergence of the infinite product 

the relative density d~ of the empty places in the function 2",, (x) keeps greater 

than a positive constant when ~ c~, so that  after each construction of one of 

our functions F.(x) an >>essential~ part of the x-axis is kept free from towers. 

We can now easily show that  our function F(x)  is not WP-a. p. To 

this purpose we consider, for an arbitrary fixed n, among the mn+l intervals 

#hn ~ x < (#+ 1)h~ of the interval ~h~+~ ~ x < ( ~ +  I)h.+~, the central one which 

we denote by a. f f i < x < a ~ + h ~ .  Then we have 

(,) 
P 

I I I I =V (' <)('- < )  ( - 
For, in the interval a. + hn _--< x < a . +  2 h~ (to the right of the central interval), 

Fn+l(x) has the same towers as F,~(x), whereas, in consequence of the above, in 

the central interval a. ~ x < a. + h. itself F,,+l(x) has the same towers as F,~(x) 

I I I I 

Yhn+l  a~, t~,-]- hn 

Fig. 7. 

towers of type n + I (see Fig. 7), 

al, '~ 2 ha ($"~ I) ]~n + 1 

and all our towers have the P-integral I. Now, however, F(x)=F.+a(x)for 
--  hn+l _-< x < h~+x. Hence we have (a o ~ x < a o + hn denoting the central one 

of the intervals #h .  -<_ x < (# + I)hn in o ~ x < h.+l) 
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(2) 

P 

V ao 

By help of (2) we conclude that  F(x) is not WP-a. p. 

87 

(, 
Otherwise, in consequence 

of Theorem 2 a, Chapter I, since F~(x) is a sequence of periodic functions with 

the periods h~ which S-converges to F(x), we should have 

P 
i V i ) ( , ,  -~f~(~ § ~), ~(~)1 ~ s~, ~ (, ;,  - J  

for L>= some L 0 and n ~> some No, and therefore, choosing n so large that  

hn ~ L 0 and n _>-- hro, 

I 
Ds~ n [F(x + h.), F(x)] =< 

which contradicts the relation (2). 

V (I- -~]--a)( ' - -~)  "'" 

More generally, however, we have to show t h a t  in  t h e  w h o l e  W - p o i n t  

a r o u n d  F(x) t h e r e  l i e s  no  WP-a. p. f u n c t i o n ,  i .e. that  a function G(x )=  
F(x )+J (x )  where J(x) is a W-zero function can never be a WP-a. p. function. 

Assuming, indirectly, that  6 (x) = F (x) + J(x) be a WP-a. p. function, the func- 

tion J(x), being a W-zero function and a WP-function, would (on account of 

Theorem 2, Chapter I I I )  be a WP-zero function for p < P. I t  might be supposed 

that, in a similar way as above, we could arrive at a contradiction by considering, 

for sufficiently large n, only the ,,first(< of the central intervals, ao<=X< a o + h,, 
and by concluding from the fact that  

a~+ h n 

ao 

is ~large(( (i. e. not vanishing) that  

ao+ h n 

d x  
q.o 

for p < P and near to P would also be ~large~. This would namely involve, as 

DsPh,, [e (x + h,), G (x)] and therefore Ds[ n [G (x + h~), a (x)] for p < P should be 
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*small,, that Ds~. [J(x + h,), J(x)] and hence 2 Ds~ n [J (x)] would be *large,, in 

contradiction to J(x) being a WP-zero function for every p < P. However, this 

attempt of argumentation fails for the following reason: The larger n is chosen, 

the nearer to P we have to choose the number p, so that  we must operate with 

a variable p, while on the other hand the carrying out of the idea indicated 

would claim a fixed p < P. In the real proof we are forced to consider a l l  the 

central intervals a, < x < a, + h, (for sufficiently large n), and not only the first 

one; this means a certain complication, as F(x) is not equal to F,+l(x) in all 

the intervals a, < x < a~ + 2 h,  (as in the first one a o < x < a o + 2 ha). But except 

that,  the reasoning is still the same as in the above attempt. Besides, in this 

way it is as easy to prove that even in the B-point and not only in the W-point 
around F(x) there is no W~'-a. p. function, and this we are therefore going to do. 

Denoting, as before, the central one of the intervals ph~ < x < (It + I)h,~ in 

v h , + l < x < ( v +  I)h~+l by a , < x < a , + h ~  we can, to 

~ s a y  ~ I - -  I . . . .  

and an arbitrarily fixed n, determine Po(n)< P such that  the inequality 

P 

(3) V 
a~, + h n p 

_ _  I - -  I I I 

ay  

is valid for every ~ and for Po(n) < p < P. This results, through continuity reasons, 

from the relation (i) using that  for p -~P  the p-integral of a tower of type n +  I 

tends to its P-integral ( ~  I). 

The problem is to pass from Fn+l(x) to F(x), or more conveniently to F~+q(x) 

(which for a large q is identical with F(x) in the large interval --h,+q<=x <h~+q). 
To this purpose, for an arbitrary q > o, we consider a period interval (of length 

ha+q) of ~n.. l-q(X) consisting of h,,+q h,+l ( =  mn+~m~+3.., ran+q) period intervals of 

F,,+l(x) and ask: What  is the relative density rZr of those of the latter inter- "~n+q 

vals in which F,~+q(x) is identical with F~+l(x), or exactly speaking, what is the 

ratio dt=+~) between the number of those of the intervals in which l"~+q (x) is - v n +  q 

h~t+q 
identical with ~;,+,(x) and the total number ~ of these intervals? 
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Above, we have met a similar question, viz. that  of determining the relative 

density d~ of the empty places in the function F~ (x). By a similar reasoning we 

find that  the answer to our present question is 

d(n+ U I I I 
~n+q 9~/n+2 I . . . .  I �9 

I t  however be observed that in order to this for d(.+l) may get expression we V- n-i. q 

need not carry out this similar reasoning as we can directly establish the relation 

d(n+~) = d,~+q from which (using the expression for d~.) we just  get the expression 
~ 'n+q  dn+l 

for d ("+~1 given above. The relation in question may be obtained in the following n + q  

way: We consider the empty places of the function F~+q(X) in one of its period 

intervals. On the one hand, the number of those places is, per definition, en+q. 

On the other hand however, as such empty places only occur in the d(,~+~), hn+q 
~ n + q  hn+l 

intervals ~h.+a _--< x <  (~ + x)h.+~ in which F,~+q(x) is identical with F.+x(x), the 

number in question may also be expressed by d (n+x) h,,+q -~+q hn+1 " en+l. Putt ing this 

last expression equal to en+q and using that ~ -  we just  get the relation 

d{n+l) ~ dn+q 1 . 
n+q d,,+lA 

Since 
F(x)  = F~+q(X) for --h~+q < x < h.+q 

h.+q 
the function Fn+I(w) is identical with F(x)  in 2 d  (~+1)h~+q- of the 2 intervals 

,,+q h.+l h.+~ 

�9 h~+l _--< x < (~ + I) h~+l of which the interval --  ]~+q <= x <h~+q consists. By (3) 

in every one of these 2 d ('+1)/~+q intervals uhn+1 _--< x < (u + I) hn+l there is lying 
" n + q  hn+l 

an interval a, _--< x < am + hn such that  

V a~+h u P 

a~ 

holds for P o ( n ) < p  < P, where Po(n) is independent of q. 
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We shall show that  this involves that  no WV-a. p. function can lie in the 

B-point around F(x). Indirectly, we assume that such a function G(x) exists. 

Then F ( x ) -  G(x)~ J(x) is a B-zero function and a BP-function and there- 

fore, in consequence of Theorem 2, Chapter I I I ,  a BP-zero function for p ~ P. 

Further, Fn(x) being a sequence of periodic functions, with the periods h~, 

which S-converges to F(x) and hence B-converges to G(x), the number h~, in 
P consequence of Theorem 2 a, Chapter I, is an SL-translahon number of our 

WP-a. p. function G(x) belonging to our 

I 
4 

for L_>-- some L o, n_--_ some No, i.e. 

Dsf[G(x+h~) ,G(x)]~  for n ~ N o ,  L_--_Lo. 

We choose IV so large that  hN _--_ Lo and IV-->_ No. Then we have 

D,~ffN[G(x + h~,), G(x)] ~ 

and therefore a fo r t i o r i  

(5) Ds~,v[G(x + h~,), G(x)] ~ ~ for p < P. 

j(N+I), h_~+q 
Now we consider F(x) in the interval - -h .v+q~X • h~+q. In 2-~r h~+l 

hN+ q 
of the 2 ~ intervals �9 k~.+l ~ x ( (u + I) h~v+l of which the interval 

--hlv+q ~ x ~ h~..q consists, there is, as we have seen above (at (4)), an interval 

a, ~ x ~ a, + h~ such that  

i f a,,+ h~, V l I I {6) [ /  f (F(x)- F(x + dx > (,-- (i-- ~) ''" IX-- ~ )  -- '$ 

for Po(2V) < p < P, where Po(N) is independent of q. 

For every p satisfying Po(N) < p < P the inequalities (5) and (5) involve by 

help of MISKOWSKI'S inequality 
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P 
~///F a~/ h N 

1 
] J ( x )  - -  J ( x  

P 

V 
V'f 

+ h.,c)]Pdx -~ 

/ I a~+hN 
f i(~(~)- ~(~ + ~.,)) - ( o ( x ) -  G(x + h~v)) l" dx  >----_ 
g~ 

P P 
a~'+hN V I a~'ihN 

(F(x)  - -  F r  + h.))" d ~  - -  ~ .  I V (x) - -  ~ (~ + h~-)I" d x  > 

P 
- -  I I �9 I I 

l / ( I  roll)(I"-- ~ )  "" ( - - ~ )  --2. > 

I I I I I = k  

where k is a constant (independent of q). 

Finally, p being a fixed number, P o ( N ) < p < P ,  we get (using the expression 
.7(n+1)~ for the relative density ~.+q j 

hN+ q 
I f ] j . ( x ) _ J . ( x + h N ) [ , d x >  - 2 h_~%q 

I ~ ~(iv+1) h~v+_.___q, kPh~ " ~- 
2hN+q" z~+q hN+l 

- -  ~ N + q  ~ -  I . . . .  I ~  h,,~+l m~,,+2 m-~+3 m~v+q 

km~ (,_ I )( ,_ ' ) =k'>o 
where k ' ~  k'(N) is independent of q, Hence 

P 
P 

(7) D~P [J(x), J ( x  + h~)] = lira J ( x ) - - J ( x  + h l v ) l P d x  ~ V F >  o. 
T ~ o o  --T 

On the other hand, J(x) being a BP-zero function, we have DB~ [J(x), J(x+h~)] 
< 2 DsP [J(x)] ---- o, i .e.  

DBP [J(x), J(x + h,v)] ---- o, 
in contradiction to (7). 
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w  

Through Functions. 

Already in w 3 we used the following 

Theorem. Let  9.{ be a W-point with the lifetime P, I < P ~ r as to the 

WP-spaces which is dead at the time P ( i f  P < ov ). Then there exists a through 

function f *  (x) in 9.{ as to the WP.spaces, i .e.  a function which is a WP-function for  

every p < P. 

We shall now p r o v e  this theorem. Roughly speaking, the method is as 

follows: In our W-point we choose functions ft(x), f ~ ( x ) , . . ,  whose lifetimes 

approach P more and more. Starting from these functions we shall arrive at a 

through function. The first idea might perhaps be to consider the function 

which is equal to f~(x) say for Ixl  < i, t o f , ( x )  for i_-<lxl < 2 ,  tofa(x) for 

q- =< ]xl  < 3 etc. This function, however, is far from being a through function; 

it needs not even to be p-integrable for larger p than is fl(x). However, it 

proves possible to modify the functions fl(x), f ~ ( x ) , . . ,  in such a way that, 
* X  applying the above method on the modified functions f ,  ( ) ,  f * ( x ) , . . . ,  we really 

get a through function f *  (x). By our modification of the functions f~(x), f~(x) . . . .  

we wish to obtain, firstly, that the modified functions f*(x) ,  f* (x )  . . . .  be p-inte- 

grable for all p < P, and secondly, that  each function of the modified sequence 

f *  (x), f *  (x), . . . differs ~so little(, from its successor that  the ))eomposed~ func- 

tion f * ( x )  differs ~little(( from each of the functions f *  (x), f *  (x), . . . in the 

following sense: f * ( x )  is a WP-function ))almost as far~( as each of these func- 

tions f * ( x )  (and is therefore a WP-function for a l l p < P ) ,  and like these functions 

it belongs to the W-point. 

We begin with the two following remarks. 

R e m a r k  I. Let  f ( x )  be a i-integrable function. Then we can always by 

adding a W-zero function obtain a function g (x) which is p-integrable for  every p, 

and such that Io(x) l <  I f(x)lfor all x. 

This may be done in the following way. For n = o ,  __+ I, _ 2 , . . .  we 

determine ~Vn so large that  

n-bl 

f ( x )  - -  ( f (x))~,  I d x < I n [ + I '  
n 
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(f(x)):v, denoting,  as usually, the funct ion cut off a t  N~, and define 

Then we have 
g(x)~-(f(x)).~;,  for n _ - - < x < n +  i 

/),~ If(z), a(x)] = o, 

( ' / 2=0 ,  ! I ,  "1"2 . . . .  ). 

since the mean value of I f ( x ) -  g(x)l over a sufficiently large interval  is arbi trar i ly 

small wherever on the x-axis the integrat ion starts. Fur ther ,  the funct ion g(x), 

being bounded in every interval  n _--_< x < n + I, is p-integrable for  every p. 

Final ly [g(x) l -< [f(x) l since I(f(x))~v. I 5 If(x)I-  

R e m a r k  2. As easily seen, for an SP-function i t  does not  always hold 

(as in the case of a p-integrable periodic function) t h a t  D ~  If(x), (f(x))~]-+o for  

N---,oo. But, i f  I <=Px < P, and i f  f ( x )  is an S~-funetion, it does hold that 

Ds,, [S(x), (f(x)),~']--, o for _AT-+ ~ ,  

i .e .  to a given ~ > o the inequali ty 

P,  

V 
~ + I  

f l Y ( t )  - (/(t))~ I r' d t  < 

is valid for  all x provided N is chosen sufficiently large. 

This may be seen in the following way. We have for a l l  t 

I 
If(t) - (f(t)),v I t', <= N~--p, " If(t)I"; 

in fact, the inequali ty is obvious for those t for which If(t) l ~ 2v as the left- 

hand  side is o, and for those t for which I f ( t ) l ~  N we have 

l ipt 
If(t)  - -  (f(t))~. I p, =< If( t )I  p, _--< N~-p ,  If( l)  

Hence for  all x 

z-I-1 

f I.f(t) - (f(t))j. I" d t 

which tends to o for  _AT--, oo. 

x + l  

<= Nf,--~, f ( t )  d t  < )2, 
gg 

Now, we pass to the proof of the theorem. Le t  I < p l < p ~ <  . . . .  P. Then 

in the W-point 9.I there exists a WP,-function ]~(x), a WP,-function f ~ ( x ) , . . . ,  and, 
7 
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in  consequence  of  R e m a r k  I, we  may assume  that  all the  funct ions  f~(x)  are 

p-integrable for  every p. Let  

f~ (x) - - f l  (x) = j ,  (x) 

f , (x) - . f ,  (x) = j:(~) 

A(~) - A ( x )  = j ,(x) 

Then jl(x), j , (x) , . . ,  are all W-zero functions,  and Jr (x) is a WrY-function i .e .  

an 8~,-function, j2(x) an SP,-function . . . . .  Let  fur ther  

j r  (x) = j ,  (x) - -  (j, (x))~, 

j~ (x) =- j ,  (x) -- (]3 (x))~; 

j~ (x) = s (x) - -  if8 (x))~.., 

where h~, hrj . . . .  will be chosen below. All the  funct ions  j r  (x), j~(x) . . . .  are 

W-zero functions,  since Ijt(x)l ~ I.h(x)l, Ij~(x)l--< Ij ,(x)l  . . . . .  Fo r  the  same 

reason the  func t ion  jr(x) is an SP,-function, j~(x) an S ~ - f u n c f i o n , . . . .  Le t  
aD 

am be a convergent  series of positive t~rms. In  consequence of Remark  z it 
1 

is possible to choose A~, N ~ , . . .  such tha t  fo r  all x 

x + l  

f ls < ~, 

Pl 
V Z4-1 

f l j~(t)p.dt  < ~, 

Pt 
1 / z+l 
V f Ij~(t)l~dt < "8 

gg 

W e  can now indicate the  ~modified~ funct ions  ft(x), f~ (x), . . . .  They are sue- 

eessively de termined by 
f t  (x) =Z(x) 
f ;  (x) = I t  (x) + j t  (x) 

f~ (x) = f~ (x) + j~ (x) 
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I t  m a y  be  ob s e rved  t h a t  t h e s e  f u n c t i o n s  f ~  (x), j ~  (x), . . . are  c o n s t r u c t e d  starting 
from f l (x)  by help of the functions f l  (x), j~(x) , . . ,  in exactly the same way as 
f l (x) , fz(x) , . . ,  may be obtained starting from f l (x)  by help of the functions 
j,(x), j ~ ( x ) , . . . .  We find 

f r  (x) = f ,  (x) 

(1) f ~  (x) = fz(x) - -  (jl(x)Lv, 

f~' (x) = A ( ~ )  - (.i, (x))~-, - (.i,(x))~,; 

All the functions fl(x), j~(x), . . ,  being W-zero functions, the functions f [ (x ) ,  
f~(x ) , . . ,  will (on account of their definitions) belong to it. Further, an the 
functions (jl(x))~;, (jz(x))2~, . . . .  being bounded, it results from the equations (I) 
that f[(x) is a W~-function, f~(x)  is a W~-function . . . . .  and that they are all 
p-integrable for every p. From the way in which NI, N z , . . .  are determined, 

we conclude that for all x and all n = I, 2 , . . .  (putting P0 = I) 

(2) 

since 

Pn--1 

IOn~ 1 
/-z+l 

f l . f$( t ) - -  f~,(t)l p'~--~ dt<~,,  + e, ,+t+"" for r e > n ,  

Jgn-- I 

V z-t.l f 17;: (t) - f : ( t ) l " - '  d t  

1 / x + l  
V f If, ,'+~(t)-f:(t)lp~-~dt + 

x 

Pn~l 

V 
Z+I 
f l j : ( t ) l  '~-~ at + 
x 

P n ~ l  

V T Ifr (t) - f:+~ (t) I"-'  dt + . . .  + 
Prt--1 

V ~ + ~  - - f g - , ( t )  I dt -=  + f If*if) * P ' - '  
x 

Pn--1 Pn--1 

V X + I  V x + I  
f lj,%,(t)l~'.-~dt + .... + f l;,'._,(t)lP'-' dt < 

IJn~ 1 

V z+l 
f l f . ( t ) l '~ ,d t  + 

23~ 

1 ~'- t - '1 

I /  fljZ+~(t)l~',,dt + . . . +  

P~rl--2 
V x:F t 

f [j~_, (t)[pro-2 dt < 

~n + ~n+l + "'" + ~m--1 < ~n + ~n+l + " " .  
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Finally we define f *  (x) by (see Fig. 8) 

f* (X) = / ; + 1  (X) 

+ ' ( , = o ,  ,, 2, . . . ) .  

fs* (X) f~* (X) f*t (x) f*l (X) f~  (x) fs* (X) 

I o I 1 I I I 
--3 --.7 --t o t 2 3 

Fig. 8. 

The funct ion f *  (x) is p-integrable for  each p, all f.* (x) being p-integrable. We  

consider the difference f *  (x) - -  fn* (x) for an arbi trar i ly fixed n, and shall est imate 

D , , . . _ ,  I f .  (.), fg (.)]. 

The inequali ty (2) tells us, how much f *  (x) differs from f~. (x) for all x outside 

the finite interval  --  n _--< x < n. Since for the determinat ion of Dwp~-i the values 

of the funct ion in an arbi t rary finite interval  are i rrelevant  if only the funct ion 

is pn-x-integrable in this interval,  we get  from (2) 

(3) D . . , , _ ,  [f*(x),  f*  (x}] <: ,,, + ,.+~ + . - .  

which tends to o for n-~ Qv. From (3) i t  results ill part icular  t h a t  

D w [ f*  (x), f,~* (x)] -" O for n -~ Qc; 

hence f *  (x) belongs to ~{, a G-point considered as a set of funct ions being 

G-closed. Fur the r  we get from (3) t ha t  

D,: , ,_~ [ /*  (x)] < D,,.p,-,  [/;: (~)] + ~,, + ~,,+~ + . . . ,  

so t ha t  j r , ( x )  is a W~n-l-function for every ,s~ = I, 2 , . . .  and therefore a W I'- 

function for p < P. 
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CHAPTER VI. 

The l~utuai Relations of  the Bp- and the Bp-a. p. Spaces. 

Introduction. 

In this Chapter we shall consider an arbitrary B-point as to the BP-spaces 

and the BP-a. p. spaces. We proceed in quite the same way as by the corres- 

ponding investigation in Chapter V of the behaviour of a W-point as to the 

IV p- and the WP-a. p. spaces. On the one side we investigate what BP-points 

belong to our B-point, and on the other side we consider the single functions 

in the B-point. Both the BP-points and the functions are characterised by means 

of the B p- and the B~-a. p. spaces. In many respects also the results of our 

investigations will prove to be analogous to those of Chapter V. The results of 

Chapter V, w 2 on W-zero functions may even be transferred verbally to the 

B-zero functions, for by a retrospective glance we see immediately that  we may 

replace ~W~ by ,~B~, everywhere in the text without changing the examples. 

Also the general investigation in Chapter V, w 3 of the WP-points in a given 

W-point can be transferred word for word; here too we may replace ~ W, by 

~B~ everywhere. Whether the investigation of the single functions in Chapter V, 

w 3 can also be transferred, obviously depends on the question whether (analogously 

to the W-case) in a B-point there is always a through function as to the B ~'- 

spaces and the B~-a. p. spaces, i. e. a function which is a BP-function for those 

p for which the B-point contains BP-functions, and a BP-a. p. function for those 

p for which the B-point contains BP-a. p. functions. As we shall see, such a 

general theorem is really valid. Evidently, to establish this theorem it is, just 

as in the W-case, sufficient to prove that  every B-point with the lifetime P 

which (if P <  o~) is dead at the time P contains a through function as to the 

BP-spaces. By means of this theorem the investigation of the single functions 

in a given W-point can be transferred word for word to the given B-point. The 

proof of the theorem on the existence of a through function, however, is not 

analogous to that  ill the W-case, and it will be postponed to w 5. 

But there is an interesting difference between the W-a. p. points and the 

B-a. p. points. In the W-case we gave an example of a W-a. p. point which is 
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alive at the time P as to the WP-spaces but is dead as to the W~-a. p. spaces 

(Main example 3, Chapter V, w 5); in the B-case, however, such an example 

does not exist, the theorem, being valid that  a B-a. p. point which is alive at 

the time P as to the BP-spaces is also alive at the time P as to the B~-a. p. 

spaces. Hence, if a B-a. p. point with the lifetime P possesses P-descendants at 

all, one (and of course only one) of them will always be a Be-a. p. point. 

As to the B-zero functions, we simply refer to the treatment in Chapter V, 

w 2 of the iV-zero functions where, as mentioned above, the letter �9 W~ may 

right away be changed to ~B~(. From systematical reasons, however, we shall 

(in spite of the complete analogy with the W-case) in w 2 give a brief account 

of the behaviour of the BP-points and the functions in a given B-point as to 

the B p- and the BP-a. p. spaces. In w 3 we give the proof of the theorem on 

B-a. p. points indicated above. Next, in w 4 and w 5 we state all the possibilities 

for a B-point which is not a B-a. p. point, respectively is a B-a. p. point. Finally 

in w 6 we prove the theorem on the through function. 

w 2. 

General Remarks  on B - P o i n t s .  

Already in w I we spoke about a l i f e t i m e  P of a B-point as to the B p- 

spaces and eventually the BP-a. p. spaces, and used the fact that a B-a. p. point 

has the same lifetime as to these spaces. As in the ~-case, we say that  we know 

the b e h a v i o u r  of a B-point at the time Pl as to the BP-spaces and (eventually) 

the BP-a. p. spaces, if we know whether the point is a l i v e  or d e a d  at the 

time Pl as to the B~-spaces and the BP-a. p. spaces. Further we speak of the 

p - d e s c e n d a n t s  of our B-point (or of the ,>components~ of our B-rocket) and 

for every p, I < p < P ,  of a p - g e n e r a t o r  (p-nucleus). The p-generator is the o~ly 

one of the p-descendants which has descendants itself, all the other p-descendants 

(the still-born brothers, or p-sparks) dying at the time p in the moment they 

are born. I f  the B-point is B-a. p., the p-generator is BP-a. p. As to the general 

situation we may refer to the Fig. 5 (with >> W~ replaced by ~B~). 

We now pass to the s i n g l e  f u n c t i o n s  in a B-point. We speak about a 

function being alive or dead as to the BP-spaces and the B~-a. p. spaces at a 

definite date, and we speak of its lifetime /)i. I f  the B-point is B-a. p., a func- 

tion in this point has the same lifetime as to the B p- and the BP-a. p. spaces. 
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If  t h e  B - p o i n t  (with the lifetime P) is n o t  B-a. p., there are the following 

possibilities for a function f(x)  with the lifetime PI contained in the B-point. 

The lifetime PI may be an al:bitrary number, I <= P1 <= P, and for each fixed P1 

there are, if P I <  ~ ,  the two possibilities: 

I. f (x )  is dead as to the B~-spaces at the time 391, 

2. f (x)  is alive as to the BP-spaces at  the time /)1, 

with exception, however, o f  the case /)1 = I where of course only 2. can occur, 

and the case PI = P where 2. can only occur if the B-point is alive as to the 

BP-spaces at the time P. 

I f  t h e  B - p o i n t  is B-a. p., the lifetime P1 of a function in the point may be 

an arbitrary number in the interval x <~ Pj <= P, and for each fixed PI there are, 

if P1 < ~ ,  the three possibilities: 

i. f (x )  is dead as to the B~-spaees at the time /)1, 

2. f (x)  is alive as to the BP-spaces, but dead as to the BP-a. p. spaces at 

the time P1, 

3. f ( x )  is alive as to the B~-a. p. spaces at the time P1, 

with exception, however, of the case P1 ~ I where of course only 3. can occur, 

and the case /)1----P where 3. can only occur if the B-a. p. point is alive as to 

the BP-a. p. spaces at the time P, and 2. can only occur if the B-a. p. point is 

alive as to the BP-spaces at the time P. 

w 

A Theorem on the Behaviour of B - a .  p. Points in their Moments of  Death. 

In this paragraph we prove the following theorem concerning the B-a. p. 

points which has no analogue in the W-case. 

Theorem. A B-a. p. point which contains a BP-function f (x )  contains also a 

Be-a. p. fu,etion g (x). 

The general proof of this theorem uses the notion of asymptotic distribution 

function of a real B-a. p. function. In the special case P--~ 2, however, the 

theorem can be proved in another and more simple way, namely by help of 

BESICOVITCH'S Theorem on Fourier series of BS-a. p. functions. We shall begin 

by giving this proof which is only applicable in the case 19 __ 2. 
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T h e  s p e c i a l  c a s e  P =  2. Le t  our B-a. p. and BS-funetion f ( x )  have the 

Fourier  series ~A,~eiA~ ~. We first show tha t  

(,) 

Let 

Z I A~ I s _--< ( D r  [f(x)D'. 

,v (q) 

be a BOCHNER-FEJ~R sequence of f (x) .  Then 

X{q) 
y, {klY'}' IA:I' 
7 t ~ l  

-~ M {[a~(x)[ ~} -- (D~ [aq(x)]) 2 

Hence on account  of the inequali ty (Chapter I) 

we get  

Dj~ [aq(x)] N D ~  [f(x)] 

.v(q) 
{k~)}' [ A , [  z _--< (Vs, [f(x)]) z. 

As o ~ k~ ) "< i, and  ~1)_+ I for fixed n and q -+ c~, we immediately get  for q --> oo 

the desired inequali ty (I). In part icular  ~[A~[  j is convergent  and thus, in 

consequence of BESIeOVITCH'S Theorem, ~A,,e~A, ~ is the Fourier  series of a 

B~-a. p. funct ion g(x). As the two funct ions  g (x) and f (x )  (considered as B-a. p. 

functions) have the same Four ier  series, the  funct ion g (x) lies in our B-a. p. 

point  around f (x) .  

As mentioned above the proof of the theorem in the general case uses the 

not ion of a s y m p t o t i c  d i s t r i b u t i o n  f u n c t i o n  of a real B-a .p .  function.  

The asymptot ic  distr ibution funct ions for the different types of almost periodic 

functions are dealt  with by JESSFm and WIN~NER in their  paper: Distr ibution 

Funct ions  and the Riemann Zeta Funct ion,  Trans. of the Amer. Math. Soc., 

vol. 38. We  shall only apply a single theorem of this  paper, and as we shall 

not  assume the knowledge of the paper we shall not  merely state the theorem 

but also give a direct  proof of it  (communicated to us by JESSEN). 

TO begin with we remind of two well known and elementary facts con- 

cerning real monotonic funct ions (in the wide sense) defined on the whole axis. 
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I ~ A monotonic function has at most an enumerable number of discon- 

tinuity points. 

2 ~ Let ~0(a) and ~0~(a) be increasing functions with the following two 

properties: 

~ , ( a ) ~ ( a )  for all a, and ~0 l ( ~ ) ~ ( a )  for {~>a.  

Then ~(a) and ~l(a) have the same discontinuity points, and ~l(a)-~-~(a) in 

all the continuity points. (For, if a is a continuity point of ~(a) ,  it results 

from ~/h(~) ~-- ~(a) for ~ > a that  ~0~(a) ---- ~01(a +)  _--_ ~(a) which together with 

~01(a) ~ ~(a) gives ~01(a)= ~(a)). 

We say that a real function f (x )  defined on the whole x-axis has an asymptotic 

distribution function, if there exists an increasing function ~0(a)(in the wide 

sense) defined on the whole a-axis so that: 

I) In a continuity point a of ~(a) the two ~relative measures<< 

m,~ {[f(x) < a]} = lim ~ rn {[ f (x)  < a] • [-- T < x <= T]} 
T ~  2 "/' 

and 
I 

m,~,{[f(x) < a]} = lira ~--T m {[f(x) < a] • [-- T ~ x ~ T]} 
T ~  

both exist and are equal to ~0(a) (then obviously o---_< ~p(a)~ I). 

2)  0(a) i for for a 

By the distribution function of f{x)  we then understand the function ~0(a) in 

its continuity points. 

We can now state the theorem of JESSEN and WXNTNER: 

Auxil iary  theorem. Every real B-a. p. fi~nction f ( x )  possesses an asymptotic 
distribution function. 

P r o o f .  Let 
! 

~p(a) = m r e l  {If(x) ~ a]} = lira - -~m {[f(x) =< a] X [-- T =< x ~ r ] .  
T ~ =  2 7" 

Obviously the function ~(a) is an increasing function of a (in the wide sense) 

defined on the whole a-axis. We shall show that  the two relative measures 

m,e~ {[f(x) ~ a]} and m,,~ {[f(x) < a]} exist in every continuity point of ~0(a) and 

are both equal to ~(a), and that  ~0(a)-+ I for a "+ ~ and ~(a)-~ o for a - ~ - - ~ .  

Then, according to. our definition, the function ~0(a) considered in its continuity 

points is an asymptotic distribution function of f(x).  
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Together with ~p(a) we consider the other increasing function 

I 
~Vt(a) = m_,o, {[f(x) <a]} = lim 7 ~ m  {If(x) < a] • [-- T < x < T]}. 

First we shall show by help of 2 ~ that  ~p(a) and lpl (a) have the same dis- 

continuity points and are equal in their  continuity points. Obviously ~(a )< tp(a ) ;  

hence it is sufficient to show that  lp~(~)> ~p(a) for 8 > a. In order to do that  

we introduce the auxiliary function (see Fig. 9): 

I for  z < a ' J ~  

____8--z for a<z<f l= = o(z)= 8 - "  
o for z > 8. a fl 

Fig. 9. 

This continuous function ~(z) (which for 8 ~near to~ a differs unessentiaUy 

from the function which is I for z<a and o for z>a) has a bounded difference 

quotient. Hence ~ (f(x)) is a B-a. p. function (Chapter I). In  particular, what 

is of decisive importance in the proof, ~(f(x)) has a mean value M{q~(f(x))}. 
As (~) (f(x)) ~ I for f(x) < 8 and �9 (f(x)) = o for f (x)  > 8, we have 

~,  ~) = _mr,, {If(x) < fl]} > M {a)(f(x))}, 

and as ~ ( f ( x ) ) = x  for f ( x ) < a  and ~ ( f ( x ) ) > o  f o r f ( x ) > a ,  we have 

W(a) = ~,0, {[f(x)_--< a]} =< M {O(f(x))]. 

From the two latter inequalities the desired inequality tPl (fl) > ~P (a) results. 

Further,  in an arbitrary one of the (common) continuity points for ~p(a)and 

~pj (a) we have 

Imp1 {[f(x)=< a ] } } <  m,~l { [ f (x )<  a]} ~p(a), ~,(~) = _mr,, { I f ( x )  < "l} < - = = = 
(~re l  {[f(x) < ~]} 

and as the first and the last term in this chain of inequalities are equal, all the 

terms must be equal. Consequently m~l{If(x) ~ a]} and ~el{[ f (x)  < a]} both 

exist and are equal to ~(a). 

I t  remains to prove that  

(a)-~I for a - ~  and ~(a)-~o for a - ~ - - ~ .  
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We begin by proving the first of these limit relations. As ~O(a) is increasing 

and < I, the limit lira ~p(a) exists and is < I. Proceeding indirectly we assume 
a ~ o D  

that  lim ~ ( a ) = g <  I and hence ~O(a)<g< I for every a. In the following we 
a ~ o v  

may let a avoid the discontinuity points of ~O(a). Obviously 

re,e, {[f(x) >- a]} = I --  ~(a). 

From our assumption it would follow that  for every a 

rn,e, {[f(x) => a]} --~ I - -  g > O, 

and hence for arbitrary large a (indeed for every a > o )  

T 
I f . .  . I f DB[f(x)] ~. lim --m t l f ( x ) l d x >  am ~ f ( x ) d x  > 

J 
- - T  [ftz)~a] X [ - - T ~ x ~ T ]  

I 
T~| a.  ~ m  {If(x) => a] X [ - -  T __~< x ffi< T ] }  = a mrel {[f(x) = > it]} _ ~> a ( i  - -  g) 

in contradiction to DB [f(x)] being finite. The other limit relation ~p(a)-* o for 

a-~--Qo follows immediately from the first limit relation ~0(a)-* I for a-~ ~ by 

applying the latter to the function - - f ( x )  and using that 

~/~rel { I f ( x )  < a ]}  = I - -  mre l  { [ f ( x )  :>  a ]}  = I - -  mre l  { [ - -  f ( x )  "~ - -  Ct]}. 

Having proved the auxiliary theorem, we now pass to the p r o o f  of  o u r  

t h e o r e m  in  t h e  g e n e r a l  c a s e  i .e.  f o r  an a r b i t r a r y  P > I .  This proof 

may be formulated in the shortest way by help of STXELTJES' integrals, but 

not having to use STIELTJES' integrals elsewhere in our paper we prefer to 

accomplish the proof in a more elementary manner. 

Let f (x)  be the B-a. p. and BP-function of the theorem. Then If(x) l is a 

real B-a. p. function and hence possesses an asymptotic distribution function ~(a). 

For the sake of convenience we will assume that no point of the, at most 

enumerable, set of discontinuity points of ~0(a) is a positive integer; otherwise 

we might consider the function kf(x),  instead of f(x),  where k is a suitably 

chosen positive constant. ( I f  ~(a) has the discontinuity points dn, the function 

[kf (x) l  has the distribution function ~P(-~)with the discontinuity points k dn, 

and disposing of k in a suitable way we can of course provide for none of these 

being a positive integer~. latter numbers 
/ 
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For  n~---1, 2 , . . .  we pu t  

~,. = re,o, l[ , ,  < - - I f ( x ) l  < , ,  + I11; 
then  

~. = ~(n + 1) - , ( , ) .  

We  begin with two remarks  which easily resul t  from the  fact  t ha t  ] f ( x ) l  has 

the dis t r ibut ion funct ion  ~p(a). 

I ~ I t  is evident  tha t  

re.o, {[n < [ f ( x ) [  < ~ ]1  = g .  + ~$n4-1 "3 L'" "; 
for  on the one hand  

re.e, {[n < I f (x ) [  < ~ ] }  = i - ~/(fl) 

and on the  o ther  hand  

g n  -t- ~ tn+l  -t" . . . .  ( ~ ] ( n - ~  I) - -  ~)(n)) -t- ( ~ / ( ~ / - t - 2 ) -  l f / ( "  -~ I)) 3 L . . . .  

lim ~p (v) - -  q~ (n )  - -  I - -  ~p (n ) .  

2 ~ Fur ther ,  the serias. 

[~t " I P  "1- ~t~" 2 P -~- " '"  -]- [~n" N P q- " ' "  

i.~' convergent w i th  a sum < ( D # '  If(x)]) P, in o ther  words, the  inequal i ty  

#,"  I ~ + # ,"  2 p + "" + l.t,," n P <= (DsP[f(x)])  p 

holds for  an arb i t rary  fixed n. In  order  to prove this la t te r  inequal i ty  we 

est imate  ( D # ' [ f ( x ) ] )  P from below in the fol lowing way: Tak ing  only those x for  

which I < I f (x)]  < n + I into considerat ion,  we get  

T 

" ' f  (D,~P [f(x)]) P = 7 I f (x)  ]e d x  > l i r a  ~ I f (x )  ]P dx .  

- - T  [ - - T < z <  T] • [1 .< I f ( x ) I < n + l ]  

There fore  we consider, for  a fixed T, the in tegral  

f F 2 T I f (x )  d x .  
[--T ~;~=~ T] x [1~ I f (x)  I <:n+l] 

W e  divide the range  of in tegra t ion  [ - - T < = x < T ] •  < ] f ( x ) l < n +  I] into the n 

subsets [--  r ~ x < T] X Iv _~ I f (x) ]  < v + I] (v---- I, 2, . . . n), and correspondingly 

the in tegral  into the n integrals  

if 2 r I f ( x )  I P d x  (y  = i ,  2 . . . .  r l ) .  

[ - - T f i  x-g T] X [~' ~i I . f (*) l  < ,+11 
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For  each of these  in tegra l  we have 

,j" 
]f(x)l e d x  >~,e 'ml[ - -  T < x <  T ] •  

[--Ta �9 -~ T] • [, ~ If(*) I < ,+1] 

where  the  lef t -hand side tends  to ~e . l t ,  for  T - ~  o~. Thus  we get  

lira I f f--| I f ( x ) l P d x  > = ~ " I P + f ' * " 2 P + " + t * " ' " P  
[-- T~z_~ TI • [1~ I$(~) I <n+l] 

and  hence the  wan ted  inequal i ty  

f t  I �9 I p ~- f t$" 2 P "1- "'" "~- I ~ n ' ~ P  "~ ( D B P  I f ( x ) ] )  P. 

Now we pass to the  p roper  proof.  The  sal ient  point  is to d e m o n s t r a t e  tha t  

t h e  s e q u e n c e  (f(x)),, i s  a B P - f u n d a m e n t a l  s e q u e n c e .  To this  purpose  we 

have  to es t imate  
T 

(DB1,[(f(x)), , (f(x))~]) P - -  lira I f y--| 2 I----' I(f~'x))"--(f(x))"lP dx  
- - T  

for  n < m. For  those  x for  which I f(x)l  < n we have  ( f (x) )~-- ( f (x) ) ,  = o ,  
for  those  x for  which , ~ l f ( x ) l < u +  I ( ~ = n , n +  z , . . . ,  m - - x )  we have  

I ( f * ) ) . -  (f(*)) .  I < �9 + ,  - ~, and for  those  x for w h i c h  I f (* ) l  >-- ~ we have  

I ( f ( x ) ) .  - ( f ( x ) ) .  I = ~ - , .  Thus we get 
T 

(DBv[(f(x)), , (f(x))m]) P-~ lira z f r ~  | ~ ;  I ( f (x)) .~  - -  (f{,x))n I",t. <__ 
- -T  

WI--1  

F, ,  (~ + ~ - , , F  + (,,, - , , )"  , , , . ,  {[m < I f ( * ) l  < ~ ]1 = 
~ v ~ n  

Z "" (~ + ' - " ) "  + ( ~ -  ")" Y, ~" 

to ~ in the  first sum, and ( m - - n ) P t t ,  to vP~t, in the  last  E n l a r g i n g  ~ + i - -  ~ 

te rm,  we ge t  

(D,,,,[(f~x)),,, (0"~))..1)" = < ~ , , ' , *  

where the  r igh t -hand  side is independen t  o f  m and tends  to o for  ,~ -~ m since, 

according to 2 ~ the series 2 / t . . ~  e is convergent .  Consequent ly  (f(x)), is a 

Be - fundamen ta l  sequence. 
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As f (x)  is B-a. p., the function (f(x))n is also B-a. p. (Chapter I) and, being 

bounded, it is therefore B~'-a. p. for all p, in particular it is BP-a. p. Hence the 

sequence (f(x))n is a Be-fundamental sequence of BP-a. p. functions. The BP-a. p. 
space being complete, the sequence (f(x)),, thus BP-converges to a BP-a. p. func- 

tion g (x). This function g(x) must lie in our B-a. p. point around f (x)  as the 

sequence (f(x)),, B-converges to g(x) and B-converges to f(x), the latter because 

f(x) is B-a. p. (Chapter I). 

We observe that  the ~reason(~ why no corresponding theorem holds for the 

W-a. p. points is the incompleteness of the W~-a. p. spaces; for as regards the 

distribution functions a wholly analogous notion exists for W-a. p. functions, only 

a relative measure in the W-sense being used instead of a relative measure in 

the B-sense. In  the S-case we have completeness of the S~-a. p. spaces but the 

notion asymptotic distribution function has no meaning in the S-case (and as 

we have seen in Chapter IV a function f (x)  may very well be an S-a. p. and 

SP-function without being SP-a. p.). 

w 

B - P o i n t s  which are no t  B-a.  p. Poinls. 

In this paragraph we shall consider  the B-points which are not B-a. p. 

points, and we shall investigate what possibilities may occur for such points 

concerning as well the lifetime P as the behaviour in the moment of death as 

to the BP-spaces. We  shall show that  (as in the W-case) all possibilities which 
are imaginable beforehand may occur, viz. 

I~ 

2 .  P arbitrarily finite, I ~ P ~ ~ .  

2 a. The point is dead as to the BP-spaces at the time P (P ~ I ) .  

2 b. The point is alive as to the BP-spaces at the time P ( P ~  i). 

The examples which we shall give are quite similar to those used in 

the corresponding investigation in Chapter V, w 4 on W-points which are not 

W-a. p. 
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i f o r  x > o 
f (x )  

- I  for x < o .  

The function f(x) being bounded is a BP-function for all iv. Further f (x) is  no 

B-a. p. function as 
T 0 

hm = ( f  .x. dx=1 while lira f (x)dx =--I  (:4:1). 
T ~  | " 1 ' . ]  r ~  | 

0 - - T  

Thus the B-point around f(x) is not B-a. p. and has the lifetime P - ~  ~ .  

E x a m p l e  to  2 a. 

In order to get a B-point (not B-a. p.) with an arbitrary finite lifetime 

xo(>I)  which is dead at the time P we add to the B-point of the first example 

a B-point around a periodic function h (x) which is p-integrable for p <z P but 

not P-integrable. The B-point thus constructed is not B-a. p. as the B-point of 

the first example is not, while the B-point around h(x) is. Fur ther  the point 

contains the function f(x) + h (x) which is a B~-funetion for p <~ P, but it does 

not contain any BP-function, as the functions of the point can be obtained by 

adding to f(x) all the functions in the B-point around h(x), and f (x ) i s  a 

BP-function whereas, in consequence of the theorem on the periodic points, the 

B-point around h(x) does not contain any BP-function. 

E x a m p l e  to  2b .  

In order to get a B-point (not B-a. p.) with an arbitrary finite lifetime 

P ( ~  I) which is alive at the time P we add in an analogous way to the B- 

point from the first example a B-point around a periodic function h(x) which is 

P-integrable but not p-integrable for p > P. 

w  

B-a .  p. Points. 

In this paragraph we consider an arbitrary B-a. p. point whose lifetime 

as to the B I'- and the BP-a. p. spaces is denoted by P. In consequence of the 

theorem in w 3 it holds (in contrast to the W-case) that  every B-a. p. point 

~behaves in the same way<< as to the B p- and the BP-a. p. spaces in the following 
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sense: I f  a B-a. p. point contains a BP-funetion, it contains also a BP-a. p. fitnetion. 

We shall prove that  there are the following possibilities for a B-a. p. point as 

regards its lifetime P and behaviour in the moment of death. 

i. P ~-- oo. 

2. P arbitrary finite, I ~ P < ~ .  

2 a. The point is dead as to the B ~- and the BP-a. p. spaces at the 

time P ( P >  I). 

2 b. The point is alive as to the B J'- and the BJ'-a. p. spaces at the 

time P (P ~ I). 

E x a m p l e  t o  I. 

The B-point around a bounded periodic function. 

E x a m p l e  to  2 a. 

The B-point around a periodic function which is p-integrable for  1~ < P but 

not  P-integrable. 

E x a m p l e  t o  2 b. 

The B-point around a periodic function which is P-integrable but not/9- 

integrable for p > P. 

w 

Througll Funetions. 

Finally in this paragraph we prove the following theorem which has already 

been used in w 2. 

Theorem. Let 9[ be a B-point with the lifetime P, I <= P ~ or, which 

( i f  P <  ac) is dead at the time P. Then there exi~'ts i~ ~[ a through .functio~ f *  (x) 

as to the BP-~Taees, i .e.  a function in ~A which is a BP-j'unetion for every p < P. 

In  the proof of this theorem we use a remark made in the proof of the 

corresponding theorem on W-points, viz. that  a I-integrable function can always 

be modified by a W-zero function, and hence still more by a B-zero function, so 

that  it becomes p-integrable for all p, and so that  its modulus is not  enlarged 

f o r  any x. Fur ther  we shall use the operation of forming the minimum of two 

functions, in the sense indicated in the introduction. 
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Let I _~ Pl < P~ < "  -* P. We choose in 9~ a//Pl-function fl (x), a B~-function 

/~(x) . . . .  and in consequence of the remark above we may assume these functions 

to be p-integrable for all p. We replace f~(x), fl(x) . . . .  by other functions 

f~(x), f ~ ( x ) , . . ,  in ~[ where f~(x) like f~(x) is a BP.-funetion and p-integrable 

for all io and so that  moreover the chain of inequalities 

lYE (x) I >-- I/~ (x) I > =  

* X * holds for every x. As such functions f l ( ) ,  f 2 ( x ) , . . ,  we may use 

f~(x)--~fl(x), f ~ ( x ) =  rain [f~(x),f~(x)], f .~(x)= rain [f~(x),fs(x)], . . .. 

In fact, firstly If'(x)l--< IA(~)I for every x which involves that  f ~ ( x ) l i k e  f~(x) 
is a //P,-function and p-integrable for all p, secondly Ifr(x)l--I /~(~)1>= --. 
for every x, and thirdly f~(x), f ~ ( x ) , . . ,  are all contained in 9~, as a G-point 

considered as a set of functions is closed with respect to the minimum-operation. 

The functions f7  (x), f~  (x) . . . .  lying in ~[ form in particular a / / - fundamental  

sequence. Now we make use of the special method of constructing a B-limit 

function of a B-fundamental sequence indicated in Chapter I I  in the proof of 

the completeness of the //P-spaces. Constructing by this method (see Fig. 2) 

a //-limit function of our //-fundamental sequence f~(x), f ~ ( x ) , . . ,  we get a 

function f *  (x) which is a through function for our point 9~. On the one hand, 

this function f*  (x) lies in ~, as a G-point considered as a set of G-functions 

is G-closed. On the other hand, as I f , * ( x ) l ~  I f ~ ' * ~ ( x ) l - > - - w e  have 
~f*(x)~<~[f~(x)~ for x > T n - 1  (and analogously for negative x with a large 

modulus) which, together with the fact that  f [  (x), f~  (x), . . . are p-integrable for 

all p, shows that  

D,,,,,, [f*(x)] =< D,,,,~ [f*(x)] ; 

hence f* (x )  is a BP*-funetion for every n and consequently a Be-function for 

every 19 < P. 
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A P P E N D I X .  

BY 

ERLING FOLNER. 

In the proper paper the reciprocal interaction between the G ~- and the 

GP-a. p. spaces was treated in every one of the three cases G ~-S, G ~ W and 

G ~ B. As mentioned in the preface the reciprocal interaction between all the 

spaces will be investigated in a later paper. For this investigation a new series 

of main examples will be needed. In every one of these main examples the 

problem is to construct a B-a. p. ,point (represented by a B-a. p. function F(x)) 
with certain particular properties, and each example deals with an *extreme case~. 

The main examples serve as bricks in the construction of all the types of B-a. p. 

points, as the ~medium cases* can be obtained by addition of different extreme 

cases. Naturally these main examples are more varied and complicated than our 

former main examples x, 2 and 3, but on the other hand they are more or less 

analogous to them. Therefore we have preferred to indicate t h e m -  with 

exception of a single especially complicated one - -  in an appendix to the 

present paper. The examples in this appendix are numbered by Roman numerals 

I, II ,  . . .  with subsequent letters a, b, . . . .  Every main example numbered by 

one of the Roman numerals I, I I  or I I I  is nearly associated with the main 

example with the corresponding Arabian numeral in the paper itself. In 

connexion with main example I I  some lemmas concerning integral-estimations 

are proved which also will be used in the later paper. We shall not here try 

to give a comprehensive view of the examples, as such a view can first be 

properly gained in the course of the later paper where the examples are put in 

their natural places as counter examples to the general theorems. 
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Main Example I. 

In the main example I we constructed a sequence Fj(x). F~(x), . . . of bounded 

periodic functions with periods h i=mr,  h~----m I mt . . . .  which is a WP-fundamental 

sequence for every p, but not W-convergent. We shall now prove that  there 

exists a function F(x) such that  the quoted sequence F~ (x) is BP-convergent to F(x) 

for every p (~_ I) and such tha t  the B-point around F(x) does not contain any 

~V-function. We remark that  these latter properties involve in particular that  

the sequence E~ (x) cannot W-converge to any W-function, as an eventual W-limit 

function of ~'~ (x), being a B-limit function of Fn (x), would lie in the B-point 

around F(x). We empha~ise, and this is the real content of the example, that  

we hereby get a function F(x) which is BP-a. p. for all 19, wlm'eas the B-point around 

F(x) does ~ot contain W-functions. 

For ~ x = < � 8 9  our sequence F,,(x)=n tends toar while for - - ~  < z < - - � 8 9  and 

~ < x < ~  the limit lira Fn(x) exists and is finite. In fact for ~ h , , + ~ + ~ < x < - - ~  

and � 8 9  we have Fn (x) ----- l';,+1(x) and hence for the same x (as 

h, < h2<"-) 

F,, (x )=  z,',,+~ (x )=  F,,+~(x) . . . .  

and for n sufficiently large every x < -  ~ and x > ~ is caught in the quoted 

intervals. For - - /h , . l  + ~ < x < - - . ~  and . ~ < x < h n + ~ - - ~  we get 

lira F. (x)= F,,(x). 
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We shall see t ha t  as our F(x) we can use the funct ion 

say o for 
F(x)  [ 2ir/, ,  (x) 

Thus F(x) consists of: 

--~__<x__<~ 

for --or  < x < - - ~  and � 8 9  

Towers of the breadth I and the height  I placed on all the numbers  

----o (rood hi) but  ~ o  (rood h~), 

towers of the breadth I and the height  2 placed on all the numbers 

-------o (mod h~) but  ~ o (mod hs), 

towers of the breadth I and the he igh t  3 placed on all the numbers 

- - o  (rood hs) but  ~ o (rood h~), 

We shall first show t h a t  F,,(x)~F(x) f o r  e v e r y  p-->_I, so t ha t  F(x) is 

BP-a. p. for all p. 

We have 
T 

(DBP[F(x), F~(x)]) p = lira _~ l-IF(x)-- F,~(x)l p dx. 
- L . L  J 

- -  T 

Thus we shall est imate 
T 

,f 2 r I F ( . )  - F~(x) l ,  dx  
- - T  

for fixed n and large T, say T___>h,,. For  a given T ~ h ~  we  determine first q_-->o 

such tha t  hn+q ~ T < hn+q+l and then  v among the  numbers I, 2 , . . . ,  mn+~+l--I 

sueh tha t  ~h~+~ =< T < (~ + I)h~+q. 

To begin with we dist inguish between the  ease ~ m , + q + l - - 2  and  the ease 

~ m n + q + l  ~ I .  

In  the first ease we get  

('+l)hn+ q T i/  
2 r I v ( . )  - F,,(x) I p 

- - T  

d . <  -' = 2~hn+q 
- - (* '+1~ hn+ q 

1 ( v + l )  hn+ q 

__ ~ -- (~,+I) hn+ q 
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(as F ( x ) = F , ~ + q ( X )  for - - ( ~ +  1) h . + r 1 8 9  and for � 8 9  I) h ,+q,  

v ---- I, 2 . . . .  , rnn+q+l-- 2). Since (F,,+q(X) ~ Fn(x)) p is periodic with the period 

h~+q, the last term of the inequality is equal to 

n p I t +  I 
2yhn+----q + - M{(Fn+q(x )  - -  F,,(x))P}. 

In the second case (~-----mn+q+l- I) we get, as F ( x ) = F n + q + l ( x )  for 

- -  hn+q+l <--__ x < - -  �89 and �89 < x < hn+q+l, 

T hn+q+l 

, f 2 I F ( x ) -  F,,(x)Fdx _--< 2,~,,+~ IF(x)-- ~'~(~)Fdx=< 
- - T  - -hn+q+ 1 

1 hn+q+l 

-- ~ - -hn+q+l  

As (F~+q+x(x)--F,,(x)) p is periodic with the period /~+q+1, the last term of the 

inequality is equal to 

n p ~ ' +  I 

2,,h~+------~ + ~ M{(F~+~+,~x)-- F~(x)),}. 

Using the estimation of M {(F,,+q(x)--.Fn(x)) p} from main example I (see pages 

59~6o)  we get in both eases, as �9 ~ I and ~ + I ~ 2, 

T 

F ( x )  - -  F,, (x)[P d x  < - -  + 2 
2 ~ 2 hn+q 

- - T  

where R~ is the remainder after the n-th term in the geometrical series 

| I 

1 2 p 

i. e. 

We let now T and consequently q - ~ .  Then we get 

T 

lim i f r~| ~ IF(x)--  F~(x)lPdx< 
- - T  

2R~, 

P 

D ~  [F(x), F~ (x)] _-< Y 2  R~. 

The last inequality shows that  F ~ ( x ) ~ F ( x )  for every p ~ i. 
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Next we shall show t h a t  t h e  B - p o i n t  a r o u n d  F(x)does  n o t  c o n t a i n  

a n y  W - f u n c t i o n .  The proof runs in a similar way as the proof (given in 

main example i ) o f  the more special fact tha t  the sequence F.(x) is not W-con- 

vergent. Proceeding indirectly we assume that  there exists a B-zero function 

J(x) such tha t  the function 

F(x) + J(x)= G(x) 

is a |V-function (i. e. an S-function). Let 

Ds [G(x)] = K < ~ .  

We choose a fixed integer N >  K. In F(x) on all the numbers m -  o (rood h~.) 

except the number o there are standing towers of the breadth I and a height 
z + l  

----_ N. As ]'[G(t)[dt~ g for all x, the inequality 

m+~ m+ 1 ,m+~ 

f IF(x)- G(xll >--_ f IG( )ldx>= N--K 
~_i~ ,.-~ ~-i 

is valid for every one of the quoted m. Hence 

T 

I 
DB [J(x)] = D~ [G(x)--F(x)] = lira --m f 

T~2 1g 
--T 

I F ( x ) - -  G ( x ) [ d x ~ - -  
N - - K  

> o, 

and consequently DB[J(x)]>o, in contradiction to J(x) being a B-zero function. 

Finally we observe tha t  as in main example 2 we might have chosen all 

the numbers ml, n~, . . .  equal to 2. 

]Wain Examples II  a, II b and II c. 

In main example 2 we constructed a function F(x) which is an S~-a. p. 

function for p < P ,  an SP-function, but not an SP-a. p. function. The following 

three main examples I I  a, I I  b and I I  c are generalisations of this main example. 

In main example I I  a the B-point around the function F(x)  of main 

example 2 is considered, the numbers m~, m~ . . . .  occurring in it being only 

assumed to increase suitably strongly to or In this way we get, as we shall 
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see, a function F(x) which is SV.a.p. for p < P, WP-a. p., BV-a. p. for all p, and 

such that the B-point around F(x) does not contain any SV-a. p. fi~netion. Here P 

is an arbitrarily given number, I < P < oo. 

In the main examples l I  b and I I  c other types of towers are used than in 

main example 2, but apart from this the construction is quite the same. 

In  main example I [ b  we construct a function F(x) which is SP-a. p. for p < P ,  

BV-a.p. for all p and such that the B-point around F(x) does not contain any 

SV.function. Here P is an arbitrarily given number, I < P <  Qc. 

Finally in main example I I  c we construct a function F(x) which is SP-a. p., 

BV-a. p. for all p and such that the B-point around F (x) does not contain any 

SP-function for any p > P. Here P is an arbitrarily given number, I _--< P < ~ .  

Main Example I!  a. 

As mentioned, in main example I I a  we consider the B-a. p. point around 

the function F(x) of main example 2. In this latter example we saw that  F(x) 

is an SP-a. p. function for p < P and an SP-function, but not an SP-a. p. function. 

From this it can easily be concluded t h a t  t h e  B-a.p. p o i n t  a r o u n d  F(x)  

d o e s  n o t  c o n t a i n  a n y  SP-a. p. f u n c t i o n .  Indirectly we assume that  the 

point contains an SP-a. p. function G(x). Then G(x) has the same Fourier series 

as F(x), and both F(x)  and G(x) are S-a. p. functions; in consequence of the 

uniqueness theorem they can therefore only differ by an S-zero function, which 

is also an ~P-zero function, and G(x) being SP-a. p., F(x) would also be SP-a. p., 

which is not the case. 

Next we show t h a t  F(x) is  a WP-a. p. f u n c t i o n .  As mentioned in main 

example 2, the function F(x) differs from Fn(x) only at the numbers m--=-o 

(rood h,+l). Therefore for all m -  o (rood h3) but ~ o (rood h~+l) we have 

P 

I - F. = o ;  

h~ 
m 

and further, as all our towers have the P-integral I, we get in consequence 

of MINKOWSEdS inequality for all m----o (rood hn+l) 
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1) 

V 
Hence 

m+ h-At 2 
f IF(~)--F.(~)Vd~ S 

2 1) 

IF(x) I P d x  
h ~ m----ff 

P 

V ' y / I  lqgi -~ + I F ~ ( x ) V d x  <= 2. 
ha 

2 

2 
DwP[F(x) ,  F,,(x)] _--< v 

I/ran +I 

where the right-hand side tends to o for n-* ~ .  

Finally we shall show that  by letting the numbers ml, m~ . . . .  increase 

sufficiently strongly to infinity we can obtain t h a t  F(x )  b e c o m e s  BP-a. p. f o r  

a l l  p. However, as it  will be convenient to prove this property of F(x) ,  which 

is common for the main examples I I  a, l I b  and I I  c, simultaneously for all 

three main examples, we postpone the proof. 

In the main examples I I  b and I I  c we shall use the following 

Lemma 1 a. Let  f ( x )  be a function, defined in a finite interval a -<- x <= a + L, 

which consists of  a number of  eongruent towers placed in some way or other in the 

interval. Then every function t(x), satisfying the inequality 

t ) 1) 

I I f (x)  + t(x)n~'dx <= i ( f (x))Pd x 
a 

where o < k < i and x <= P < zr , will satisfy the inequality 

a + L  a + L  

L = 
a a 

for an arbitrary a, I <= a ~ P. 

In the main examples I I  b and I I  c, however, the lemma will only be applied 

in the case where a = x and f (x)  consists of only one tower. 
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P r o o f .  L e t  the  towers of f(x) have the b read th  b and the  he ight  h and 

le t  the i r  number  be ~. We may assume tha t  It(x)[ ~ h; otherwise we consider 

(t(x))h which in consequence of the  inequal i ty  

If(x) + (t(x))h[----I (.f(x))~ * (t(x))h [ __--< I f (x)  + t(x)[ 

satisfies the  same assumption as t(x); on account  of It(x)l>-_l(t(x))~l the  con- 

elusion for  t(x) results  f rom the  conclusion for  (t(x))a. Then  ~i. e. for  I t(x)l _-< h) 
we have for  every a, I_--< a ~ P,  

P 

Z It(x)ladx>=he--"Z It(x)leax-= L:~ It(x) I e d x  _-> 
a fl 

P P 

I e ' I f ( x ) + t ( x ) l e d x  > he_a If(x) dx - -  L = 
a a 

a + L  

a 

a4-L 

a 

Main Example II b, 

W e  const ruct  a sequence Fl(x) ,  F z ( x ) , . . .  and a func t ion  F ( x )  in exactly 

the  same way as in main example I I  a. Only by *a tower  of type  n(, we shall 

now unders tand  a tower  with the  p~-integral ~ and the  P- in tegra l  n where 

the  sequence Pl, P~ . . . .  is chosen such t h a t  x ~ Pl < P9 < ""  "* P.  As before 

I > e I > ez > - . - - -*  o. The  n-th funct ion Fn (x) is a bounded periodic func t ion  

with the  per iod h~. 

First,  we shall show t h a t  t h e  s e q u e n c e  F . ( x ) i s  S P - c o n v e r g e n t  t o  

F(x) f o r  e v e r y  p < P,  so tha t  F(x) is an SP-limit periodic func t ion  for  p < P.  

For  every m-------o (rood hi) and ~ o  (rood h.+z) the quant i ty  

Pn 

I - 

,~ -~  
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is equal to o (cp. page I l S) and for m - - o  (rood h~+l) we have 

Pn Pn Pn 

I F(x)--F~(x)IPndx __< [ F(x)l p" dx + [ $;(x) lP" dx, 

which for m = o  is equal to ~ f~ ,  while for m=~o, denot ing by n+q(m); q ( m ) ~ l ,  

the type of the tower placed on the number  m in F(x),  it  is 

Pn+q (m) Pn 

m +  h~ m +  2- 
2 Pn+q (m) Pn 

--< I F(x)l~'+~(-) d x  + I F,,(x)I p" dx  = 1/ ~,,+q(,,) + l / -~.  

a, m-- m-- ~ 2 

As I > e: > ~ > . . . ,  we have consequently for  every m -- o (rood hi) 

P n  V./h-, 
IF(x) -- F.(x)I  ~'~ dx  <= 

~n ht 
2 

and hence for every x 

Thus 

~hl R 

V 

P 

2 V ~ ,  

~ +  h l 

2 Pn P 

f IF(t)--F,,(t)lPndt < V ~ .  e l / -~ .  
h~ 
2 

Ds~,, IF  (x), F,, (x)] _--< 

which tends to o for  n-~ ~ .  

Pn 

2 �9 2V~.  =< 2V~: ,  

From this it  results t ha t  

Ds~, [F(x), F~(x)] -* o for p < P ,  

as for  sufficiently large n we have p,, > p and therefore 

IF(x), F~(x)] _--< Dsp,~ [F(x), F~(x)] -~ o. Ds~, h, 
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Next we show t h a t  t h e  B - p o i n t  a r o u n d  F(x) d o e s  n o t  c o n t a i n  a n y  

S P - f u n c t i o n .  Proceeding indirectly we assume that  the B-point around F(x) 
contains an Se-function G(x). Then Ds~,[G(x)]-~K<~. Let N be a fixed 

P 

number so that  V N  ~ 2K. In F(x) on all numbers m----o (rood hlv) but ~ o  

(rood hN+l) towers of type N are standing and these towers have the P-integral )V. 

Thus we have for the m in question 

e 

I F(~) l 'dx  = VN--- -  2K .  

At the same time the inequality 

P 

V 7+ I G(x)lPdx < K 
~an-1- 

2 

is valid so tha t  for the quoted m we get the inequality 

P P VJ' Vi' I G(x) IPdx < ~- IF(x) lPdx. 
2 

- - ~  m- -  ! 
2 

Thus we have, on account of the lemma I a above, for these m 

,~+�89 .+�89 

._�89 . _ 1  
dx---- k' > o, 

where k' denotes the I-integral of a tower of type N. Hence 

DB[G(x), F(x)]----- lira I f r - - = - ~  I (;-(x) --_F(x)ldx > 
= h , ~ ' +  1 

- - T  

which contradicts the fact tha t  F(x) and G(x) lie in the same B-point. 
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Main Example II c. 

In  jus t  the  same way as in the  main examples I I  a and I I  b a sequence 

Fl(x) ,  F ~ ( x ) , . . .  and a func t ion  F(x) are constructed.  0 n l y  by a *tower of 

type  nr we shall now unders tand  a tower  with the P- in tegra l  e~ and the  

p~-integral n where  the  sequence of numbers  p~, p~ . . . .  is chosen such t h a t  

p ~ > p ~ >  . . . .  *P .  As before  I > e ~ > ~ s > . . . - ~ o .  The  n-th funct ion F~(x) is a 

bounded periodic funct ion with the  period hn. 

First ,  we shall show t h a t  t h e  s e q u e n c e  F~(x) is  S P - c o n v e r g e n t  t o  

F(x) ,  so tha t  F(x) is an SV-limit periodic funct ion.  The  quant i ty  

P Vm+  
f !F(~)--F.(.)l" d. 

m - - -  i 

is equal to o for  every m------o (rood hi) but  ~ o  (mod h~+l), whereas for  m ~ - o  

(rood h.+l) we have, denot ing  for  m ~= o by n + q(m), q(m)--_> I, the  type of the  

tower  which stands in F ( x )  on the  number  .2, 

P P 

I ~' ( x ) -  ~;, (x)I" e x __< I F (x)I - d x + 

P 

for  m----o 

P P 

�9 ] ~ q  (~1 -k 1/ t,, r -  for  m 4 = o 

which is 

Hence  for  every m----o (mod hi) 

~ 2 W~'n. 

P 

1/J :2 I F (~) - 1 .  (x) I ~ ~ x  _-< 
la, 

m 2 

P V./h: 
I~(~)1" 

h~ 

d x -~- 

P 
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and hence for every x 

Consequently 

P 

V 
x + h  

2 

f P I F(t)-- F~, (t)I P dt <= V2" 2 ]/-~n. 
ht 
2 

P 

D~f, [F(x), Pn (x)] < 3.2 V~, 

which tends to o for n -> o~. 

Next we shall prove t h a t  t h e  B - p o i n t  a r o u n d  F(x) d o e s  n o t  c o n t a i I ~  

S T - f u n c t i o n s  f o r  a n y  p > P. Proceeding indirectly we assume that  the 

B-point around F(x) contains an SV-function G(x) for a p > P. Then 

P 

Let N b e  a fixed number so that  ~ / N ~ 2 K  and~0~c_~p. In F(x) on aU the 

numbers m ~-o  (rood h~,) but ~ o  (mod hlv+l) there are standing towers of type 

N and these towers have the p~-integral ~ and therefore a p-integral which is 

i~/. Hence for the m in question 

P 

[ / 7  ~ 
At the same time the inequality 

I G(x)l"dx < K 
m _ l .  

2 

holds, so thar for the quoted m 

P P 

2 
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Consequently, by the lemma, we have for these m 

,n+~- ,~+~ 

.-�89 
k ' > O ,  

where k' denotes the I-integral of a tower of type _h r. Hence 

DB[G(x), F(x)] ----r--lim| ~ I  f ,  v ( ~ ) - F ( ~ ) , ~ x > =  > o 
- - T  

which contradicts the fact that  F(x) and G (x) lie in the same B-point. 

>>Spreading~ of the Towers in the Main Examples II a, II b and II c. 

Finally we show, simultaneously for all three main examples, that  by letting 

ml, ~n2, . . .  increase sufficiently strongly 

FI(x),F2(x),... is B P - c o n v e r g e n t  to  

BP-limit periodic for every p. 

Let 

we can obtain t h a t  t h e  s e q u e n c e  

F(x)  f o r  e v e r y  p, so that  F(x) is 

We put (cp. m ~ n  example I) 

f l  (x) = 15 (x), f~ (x) -= F2 (x) --  T% (x), f3 (x) = F3 (x) --  F ,  (x), . . .. 

r 

d,, ~ , , . . .  be a sequence of positive numbers so that ~ d~ is convergent, 
1 

and let P1, P ~ , . . .  be a sequence of numbers, I < / ) 1  < P~ < ' " ,  tending to ~ .  

Successively we may choose ml, m 2 , . . ,  so large that  

DBPn[f~(x)] < 6. for n = I, 2 , . . . .  

In  fact  fi,(x)= F.(x)--F.-a(x) differs from o only at the numbers - -o  (mod h~), 

and on these numbers in F . - I  (x) there stand towers of type n -  I, whereas in 

F.(x)  towers of type n are standing, so that  
Pn P,n 

h? t  ' 

where 1~ denotes the P~-integral of a tower of type n -  I and /,, denotes the 

P,-integral of a tower of type n; assuming the numbers ml, m~ , . . . ,  ran-1 already 
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fixed, the number  mn and therewi th  h.---- m~ m~ . . . m.  may evident ly  be chosen 

so large tha t  the  r ight-hand side of the  inequal i ty  and therefore  DBP,~[f,,(x)] 
becomes < ~ .  

Af te r  this choice of m~, m_ , , . . ,  we can prove tha t  

for 

From this we get  immediately the desired relat ion DBp[F(x), F~(x)] ~ o fo r  

every fixed p, as fo r  n sufficiently large Pn>p and therefore  DBp[F(x), Fn(x)] 

DBPn [F  (x), F .  (x)] -~ o. 

In  o rder  to prove tha t  

P n  

p , I 
D .  n [~ (x), F,, (x)] ---- lira F(x) -- Fn (x) l p€ dx ~ o for  n -~ 

- - T  

we est imate  (cp. main  example I) 

T I/ 
2T IF(x)--F (x)l "dx 

- - T  

for  fixed n and large T, say T___--hn. Fi rs t  we determine  q ~ o so tha t  

hn+q~ T <  hn+q+l, and then u among  the numbers  I, 2 , . . . ,  mn+q+l--I so t h a t  

vhn+q ~--_ T < (~ + I) hn+q. 

To begin with we dis t inguish between the  two cases ~ ~ m . + q + l - - 2  and 

~ ~ ~ l n + q + l  - -  I .  

In  the  first case we have 

T (~+1) an+ q i/ , /  
2-T IF(x)--F'~(x)lendx<------ 2~,h,,+q I F ( x ) - - F n ( x ) l P " d x ~  

- -  T - -  (~+1) hn+ q 

+ f 2 v h n + q  
--{~+1} hn+ q 

where, as before,  In denotes  the Pn-integral  of a tower  of type  n; fo r  on o there  

is s tanding  no tower  in F(x) ,  whereas a tower  of type  n is s tanding in Fn(x), 

and F ( x )  ---- Fn+q(x) fo r  - -  (~ + I)hn+q < X < - -  hA and for  hA < x < (u + I ) h n + q ,  
2 2 
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t ~ = I ,  2 , . . . ,  m n + q + l - - 2 .  A s  IF=++(x)--F.(x)l ~- is periodic with the period h,+q, 

the right-hand side is equal to 

In ~ + I  - - +  
2 It hn+q I t 

M {I F.++(x)  - -  F ,  (x)I++"l. 

In the second ease (v = m.+q+x--  t) we get 

T 

f i +'(+) -++,.(+)r",+++,+ 
- -T  

hn + q+l 

< i f = 2yh,,+q IF(~ )  - F.(x)le"dx <= 
--hn+q+l 

hn + q+ l 

I [ 1 . +  flF.+q+,.(x)__F.(x)I+~.d.], 
2 vhn+q 

--hn+q+l 

as F(x) -~ F.+q+l(X) for - -  h,,+q+x < x ' < - -  h-! and for h~ < x < hn+q+x. Since 
2 2 

I F,,+q+l (x)--F,,(x)l v- is periodic with the period hn+q+l, the last term is equal to 

I. +it+X M{iF,,+q+~(x)_F.(x)le,}" 
2 P h n + q  

An estimation of M {I F.++(x)--F.(x)I P-} is got in the following way: 

-Pn Pn 

VM{IF.++(x)" F.(~)I~I  = VM{lf ,+l(X ) +f,,+2(x) +.. .  + f.+~(~) I ~ ]  

Pn Pn Pn 

V M{IZ,+,(z)I v"} + V MIIZ.+,(x)I +'.} + ... + V M { I f . + + ( x )  IV~ =< 

�9 Pn+l 'Pn+2 Pn+q 
P VMllf.+1(x)l P"+' } + VMllI.+.+(x)I "+"} + ... + l/M{I/...,-,+(x)IP"+'q _-< 

Thus we have 

dn+l + dn+2 + "'" + dn+q ~ dn+l + dn+2 + " " .  

M{I F.++ (x) -- F.(+)I~+"} =< (n.+, + ,~.+~+ ..-)++". 

Using this estimation in each of the two above cases, we get 

2' 

f lF (x )_  F.(:~)Ip.d+ < s. 2 ~P = 2h,+----] 
- - T  

+ 2 (d.+,. + &,++,~ + ...)P"+. 
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For T-*  ~ and therefore q--* ~ ,  we have - -  
/ .  

2 h n + q  --4 O; hence 

o r  

which shows that  

T 

lira I f ~_ - ~  IF(xl--F.(x)lP"dx<= 
- - T  

2 (cY,,+~ + cY.+2 + "  ")P" 

P?$ 

Dd~. [F(x), F.(~)] < V~-(,v.+, + ,v.+, +...),  

DeP. IF (x), Fn (x)] --* o for  n ~ Qc. 

125 

In connexion with the lemma x a we insert here two lemmas of similar 

character which will be applied in the later paper. 

Lomma 1 b. Let f(x)  be a function, defined in a finite interval a ~ x ~ a +  L, 
which consists of a number of congruent towers placed in some way or other in the 

interval. Then every function t(x) satisfying the inequality 

t" P 

If(x) + t(x)IPdx ~ k f(x))Pdx, 
a a 

where o < k < I and I ~ P < o0, will sati,~q the inequality 

a + L  a + L  

~ .  It(x) dx >- (I --  k)" ( f (x) ) 'dx  
a a 

for an arbitrary a, P ~ a < ~ .  

P r o o f .  We may assume that  t ( x ) ~  o where f ( x ) ~ - o .  Otherwise we may 

consider the function t* (x) which is equal to o where f ( x ) =  o and equal to 

t(x) where f (x)~=o; like t(x) this function t*(x) satisfies the assumption of the 

lemma I b, since I f(x)+t*(x)l  <= [f(x)+t(x)[ ,  and the conclusion for t(x) results 

from the conclusion for i*(x), as ]t(x)]~]t*(x)[ .  Let the towers of f (x )  have 

the breadth b and the height h, let the number of the towers be ~, and denote 

by e(x) the function which has towers in the same places and with the same 
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breadth as the towers of f(x) but with the  he ight  I. In consequence of HSLDER'S 

inequality we have for every a _>--P 

a+L  

;f 
a 

a+ L  

,f It(x)lP d x =  z It(x)lPe(x)dx -< 

a 

a+L P a+ L  1 l__p_ l _ P _  a +L  p 

(' f lt(~)l~ l f ) ~ (;) " (; f ) N L (e(x))'-[dx = b It(x)l~dx a. 
a a 

Hence  

a+L  

~ (;~)~' ~ 

P [Va; I I 

t" 

I I ( f ( x ) )  P dx - 
(;0 ~-' ~ 

P 
a+L ] a 

a+ L  a 

P V a;L ]a If(x) + t(z)lPdz >--- 
a 

a (~)~, 
a 

a + L  

a 

L e m m a  2. Let  the function f ( x )  be defined in a finite interval a <- x <= a + L 

and let P be a number, I <= P <  ~ .  Let  further A >-o be given so that 

P 

a < ~ "W(*)F d.. 
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Then there exists a constant e > o such that every function t(x) which satisfies the 
inequality 

P 

x If(x) + t(x) l," dx <= A 
a 

also satisfies the inequality 
a + L  

I fl t(x) ldx _=c> 
tl 

P r  o o f. We determine N so large that  

P 

1/; I p 
.L I(f(x))~-I dx=Ax>A.  

a 

Then 

a + L  a + L  

i f  i f l(t(x))Nldx > Z It(z)ldx>=~ 
fl a 

P 

N ' - '  I ( t ( x ) ) x l P d x -  - t ( x ' ) ' l P d x  > N l"-t L 
fl 

P P 

IV/  V ;L 2 i ( f ( z ) ) . , , i P d x _  .x I ( f x ) )~ , .+( t : z ) )x l "dx  >--_ N e - I  L L 
R 

P 1" 

I I 
Np_l I(f(x))~lP d x  - ~ If(x) + t(xl lP d x  

tl  a 

I 
N p _ l  {At - -  A} P -~ c > o. 

It  may be observed that  lemma 2 is of a somewhat, other character than the  
a + L  

,f two lemmas I a and x b. In fact the lower bound e indicated for ~ I t (x ) [dx  
a 

in lemma 2 depends on the funct ion f (x ) ;  it is easily seen that  there exists no 

form of lemma 2 corresponding to the  lemmas I a and I b (where the indicated 

lower bounds are independent  of f(x)). 
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Main E x a m p l e s  I l I  a and I I I  b. 

Main Example I I I a .  

In main example 3 we constructed a function F(x)  which is an SP-a.p. 

function for p < P, an SP-function and such that the B-point around F(x)  does ~ot 

contain WP-a. p. functions. Now we shall show that F(x)  becomes BP-a. p. for all p, 

if the numbers ml, m 2 , . . ,  increase sufficiently rapidly to oo. We remark, that  

it  was in order to be able to obtain this property that  already in main example 

3 we chose to fill out just the c e n t r a l  subintervals. 

Let I ~ Px < P~ < " "  -~ Qr and let ~, ~n be a convergent series of positive 
1 

numbers. We put (cp. main examples I and II) 

. . . . .  

The function fn(x) is periodic with the period h n and consists in a period 

interval ~hn~  x <(~ + I)h~ of the towers of type n which by the transition 

from F~_l(X) to Fn(x) we filled into the central one of the subintervals 

~ h n - l ~ x ~ ( p +  I)hn-l.  We have calculated the number of these towers exactly, 

but here we need only observe that  it is (of course) at most equal to the total 

number of subintervals ~ ~ x < )7 + x in the mentioned central interval, viz. 

h,~-l. The Pn-integral of a tower of type n being de'noted by /n we have the 

estimation 

Pn i'n P~ 

Now we choose m~ so large that  

P. 

n ~  8n, n ~ I, 2, . . . .  

In particular we have 

V M { ( f . ( x ) )  l"} < ~,,, n = I, 2 . . . . .  
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We shall prove that 
D ~ .  IF(x), F,,(x)] ~ o 

for such a choice of ml, m~, . . . ,  which involves (on account of Pn-~ o:, ep. main 

example II) that Dsp IF(x), F,~(x)] -~ o for every fixed p, so that F(x)  is BV-a. p. 

for all p. 

We have 

V;, DBPn [F  (x), F .  (x)] = lira I T~ | ~-~ F(x) - -  F,(x)) Pn d x .  

--T 
Thus we shall estimate 

T 

- - T  

for fixed n and large T, say T >  h, (cp. the main examples I and II). We 

choose first q ~ o such that hn+q ~_~ T < hn+q+l and then �9 among the numbers 

I, 2 , . . . ,  mn+q+1--I such that yhn+q <~ T <(y'4-I)hn+q. As F ( x ) ~ F n + q + l ( x )  for 

VJ = ~ T  (F.+q+l 
--T 

(x) - -  F .  (x)) P'~ d x -~ 

, f  ~-T (F,,+q(X) - -  F,,(x) + fi+q+l (x)) P" d x  <--_ 

- -  hn+q+l ~< x < hn+q+l, we have 

Pn 

V - - T  
Pn 

- -T  
Pn Pn 

V i V I F ( . + ~ ( x ) -  F.(x))P"dx + 

and a s  f~ t+q+l  (x)  ---- o f o r  

we plainly have 

~ n +  q + l - -  I 

2 
hn+q <-~ x < 

-Pn 

T 

if ~-2 (f . - ,  q+l(z)) P" dx;  

--T 

2 

~ , n + q + I - - I  

hnq-Q.t- I 

hn+q f (fn+q+l(X)) Pn d x ,  

--hn-t-q-I-! 
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and the above quantity is thus 

{~+ 1) tin+ q 

I f (F,,+q(X)- Fn(x))V'dx + 
2 ~' hn+q i /  

--(~+1) hn+ q 
Pn 

' ~ n n + q + l -  I 

hn+q*l 

hn+q f ('fn+q+l (x))Pn dx" 

--hn+q+l 

As (En+q(x)--.b;,(x)) vn is periodic with the period hn+q and 

periodic with the period hn-~q+l, the latter quantity is 

Pn Pn 
"F/Zn+q+ 1 

(.f.+q+l (x)) P" is 

9~$n+q+l -  I 

2 

Pn Pn 

M {(f.+q+x (x)) v~} ---- 

V 2 M {(Fn+q(X) - -Fn(X)) Pn} + V 4 M {(fn+q+x (x)) Pn} 

Pn "Pn "Pn 
v ,P (V-M {(/"n+q(x) --/~,, (x)) "} + V M {(f.+q+a (x))P"}). 

By an estimation of 

V M {(F.+ q (x) -- F,~(x))!" } 

in a way quite analogous to that on page x24 we see that the right-hand side is 

Pn Pn+l Pn.i-2 Pn+q+l 

<- V ~  (V " _ M{(f,,+,(x)) ~+~} + VM{(f~+~(x)) vn+2} + .--+ VM{(A+q+,(x~)V'~+q+i}) <-_ 

Hence 

Pn Pn 

V ~ ( ~ . + ,  + ~.+~ + -. .  + d,+q+,)  = < V ~ ( 0 , + i  + ~.+.. +.--) .  

Pg~, 

V; I 
~ - ~  (F(~> - 

- - T  

F.(x))';'dx_<__ }/~(~,,+1 + ~.+~ + . . ' )  

Pn 

for T ~ hn. 

I t  resu l t s  f o r  T -> oo t h a t  DBen IF(x) ,  F,,{x)] ~ ]/f4(d,~+l + tin+2 +" ") so 

D : .  IF(x) ,  F . ( x ) ]  ~ o for. ~ ~ .  

that 
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Main Example I I l  b. 

This main example is formed in a manner  quite analogous to main example 

I I I  a, but  is somewhat  simpler in so far  as all the towers are taken to be 

congruent,  viz. with the breadth  I and the height  I. The funct ion F(x)  thus  

constructed will have the same properties corresponding to P----- : as the func- 

tion F(x)  of main example I I I  a (where P was > I ) -  with exception of course 

of the funct ion being Sv.a.p.  for p < P -  and the proofs can directly be 

transferred.  I t  may be remarked, however, that ,  on account of F(x)  here being 

bounded, in order to prove tha t  F(x)  is BP-a. p. for all p, we need only to show 

t h a t  F (x )  is B-a. p.; hence in the proof we may put  Pt  = P~ . . . . .  I. In  this 

way we get  a function F(x) which is an SV-function (even bounded) and a BV-a. p. 

function for all p and such that the B-point around F(x) does not contain any 

W-a. p. function. 

~iain Example IV. 

We construct  a function F(x) which is Wr'-a. p. for all p and such that the 

B-point around F(x) does not contain any S-a. p. fu)wtion. 

Throughout  this main example by a >)tower<< we shall always unders tand 

a tower with the height  I and the breadth  i. Le t  ml, m ~ , . . ,  be arbi trary 

integers _-->2. As usual, we put  h 1 = m l ,  h 2 = m~ m~ ,  h a ~ m  sm~m s . . . .  , and 

construct  (cp. ma in  examples I and II) a sequence of funct ions F1 (x), F2 (x), . . . 

in the fol lowing way: 

F 1 (x): On all numbers --= o 

F~(x): On all numbers = o 
>) >) >) ~ 0  

F~,(x): On all numbers ~ o  

) >> ~'~-0 

F2n+I(W): On all numbers ~0 

>> >> >> -~-0 

>) :a >> ~ 0  

(mod hi) a tower is placed. 

(mod hi) but  ~ o (mod hz) a tower is placed. 
(mod h~) no �9 >> �9 

(rood hi) but  ~ o (rood h~) a tower is placed. 
(rood h~) >> ~ o  (mod hs) no , )> 

(rood h2,-1) �9 ~ o  (modh2~) a ~ * >> 
(mod h2,) no �9 >> >> 

(mod hi) but  ~ o (mod h~) a tower is placed. 
(rood h~) , ~ o  (mod h3) no , >> 

(rood h2.) >> ~ o ( rood h2n+l) n o  >> * >> 

( rood h ~ , . )  a ,, >, ,, 
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(see Fig. Io  which represents  Fs(x ) for  ml=m2~--ms= 2). 

FAx) 
--h, --3 hz --h2 --hi o hi ]i~ 3 hi ha 

Fig.  IO. 

Obviously Fn(x) is a bounded periodic func t ion  with the period b,,. 

W e  begin by proving t h a t  Fn(x) i s  ~ : c o n v e r g e n t  t o  t h e  f o l l o w i n g  

f u n c t i o n :  

On all numbers  --~ o (mod hi) 
~7 7) , ----o (mod h2) 

), ~ 7, ~ 0 (mod hart-l) 
~, ,7 ,, ----o (rood h2,,) 

but  ~ o (rood hz) a tower  is placed. 
~ o  (mod ha) no * �9 ~ 

~ o ( m o d  h 2 . )  a ~> >7 >7 

~ o ( m o d  h 2 . + ~ )  n o  ~) �9 )7 

I f  we leave the in terval  - -  �89 < x < I out  of account,  obviously F ( x )  can also 

be defined as lim F,,(x) (cp. the  main examples I and II). F (x)  is a bounded 

func t ion  and differs f rom F,,(x) at  most  on the numbers  m------o (mod h,~+l), and 

we have for  each such m 
m + � 8 9  

f lF(x)--F.(x)[dx<=,, 
,,,-�89 

viz. e i ther  o or I. Hence  

IF(x),  F . (x) l  < hn+l 

which tends to o for  n - ~ ,  so tha t  F,, (x) W t" (x) for  n - , ~ .  Thus  the funct ion 

F(x) is a W-limit periodic funct ion,  and F ( x )  being bounded is therefore  

WV-a. p. for  all p. 

Nex t  we show t h a t  t h e  B - p o i n t  a r o u n d  F(x) d o e s  n o t  c o n t a i n  a n y  

S-a. p. f u n c t i o n .  Indirect ly ,  we assume tha t  G(x) is such a funct ion.  Then  

we have 
G (x) = 1,'(x) + 

where J(x) is a B-zero funct ion.  Fur ther ,  Fn(x) being a sequence of periodic 

funct ions  with the periods h~ which B-converge to G(x), the period h~ is, in 
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consequence of Theorem I a of Chapter  I, for n sufficiently large, an S-translation 

number  of G(x) belonging to an arbi t rary  given e > o. We choose e----�89 and 

determine a fixed N so large tha~ 

(i) Ds[G(x + hx), G(x)] =< ~. 

Le t  now m' denote n u m b e r s -  o (mod h~-) but  ~ o (mod h~+~), and let 

m" denote numbers - - o  (mod h~'§ but  ~ o (mod h.~-+2). Either,  in F(x), there 

are towers on all numbers m' and none on the numbers m", or conversely. By 

a t ransla t ion hx all m"-points are t ranslated into certain of the m'-points, as 

and 

Hence 

m" + h x - - o  + h ~ - ~ o  (mod h~-+j) 

m" + hN -- o + o =- o (rood h~-). 

~lt" + i 

(2) f l F ( x + h ~ v ) - - _ F ( x ) l d x =  I 
m " - -  ! 2 

for all the numbers m". In  consequence of (I) we have in part icular  

(3) flv(  + h , , , ) -6 (x ) l  ex  < i 
~ r p  1 

$ 

By (2) and (3) we get for the function J(x)= G(x ) -  F(x) 

mtt .~. ! - - $  

f lJ(x + > ~. 
~ l t  t r  - -  

"2 

Hence 
T 

,f D,[J(x + hx), J(x)] = l i m  - ~  IJ(x + h:+-)--J(x)ldx> ~-m`v+rI 
2 h~+2 

- - T  

> O .  

Consequently D~ [J(x + hiv), J(x)] > o which contradicts the fact  tha t  J(x) is a 

B-zero function.  

We observe tha t  in this  main example we were not  forced to impose 

addit ional  conditions on the sequence ml, mz, . . .. 
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Main Examples V a, V b and Vl. 

In  main example V a a function F(x) is constructed which is an 8V-a. p. 

function for  p < P, not a Be-function and such that the B-point around F(x) con- 

tains a function G (x) which is BP-a. p. for  all p. Here P is an arbitrari ly given 

number,  I < P < ~ .  

In main example V I a  function F(x) is constructed which is an SP-a.p. 

function for p < P ,  an Se-function, but no BP-a. p. function and such that the B-point 

around F(x) contains a fi~nction G(x) which is BV-a. p. for  all p. Here P is an 

arbitrari ly given number,  I < P < oo. 

In  main example V b a function F(x) is constructed which is an Se.a.p.  

function, but not a BV-funetion for any p >  P and such that the B-point around F(x) 

contains a function G(x) which is BV-a. p. for all p. Here P is an arbitrari ly 

given number,  I _--< P < oo. 

Main Examples V a and Y b. 

The two main examples V a and V b are constructed in an analogous way. 

In  both cases we s tar t  from a positive funct ion t(x) defined for --  ~ ~ x < 

which is bounded in every interval  - - }<=x<=a < ~ ;  in main example V a 

t h i s  function .t(x) is p-integrable for p < 19 but  no t  for p = P, while in main 

F i g .  I I .  

/i 

a4 _~ 

example V b the funct ion t(x) is P-integrable, but  

not  p-integrable for p > P. 

Let  - - � 8 9  l < a  s < . . . 4 � 8 9  (see Fig. II). For  

- - ~ = < x < }  we define 

It(x) for --  �89 x < a l  

tl (x) = "[ o elsewhere, 

t(x) for  a l _ - < x < a  s 

t~(x) = { o elsewhere, 

t (x) = { t(x) for _-< x < 
o elsewhere. 
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Le t  m~, rn 2 . . . .  be a sequence of integers ~> 2 and let hi := m~, h.~ = rn~ m,, 

h 8 = m~ rn, m s . . . . .  By f,,(x) we denote the funct ion arising from the funct ion 

t~(x) by repeat ing it periodically with the period h~, n =  I, 2 , . . . .  We  put  

(cp. main example I) 

fig(x) = f~ (x )  + f t .(x) + . . .  + f , ( x )  

(see Fig. i2 where rn l : m , - - m  s = 2  and u : 3 ) .  

A I: r ' , :  <11 
i t ! i,~1 ! �9 I , "  I , "  I 

rl"' : rl"' rf" " ": 
--hs --3 lq --h~ --hi o h.L h~ 3 hi h8 

F i g .  12. 

Fur ther  we put  
F(~) = A  (x) + A(x) + . . . ;  

convergent for every x, since at  most  one of the terms is 

The funct ion ~k(x) is bounded and periodic 

this  last  series is 

different  from o for a given x. 

with the period h~. 

I t  is easily seen tha t  

F,, x) ~ F (x) 

for p < P ,  respectively f o r p - ~ P ,  so t h a t  F(x)  is  SV-a. p. f o r p < P ,  r e s p e c t i v e l y  

f o r  p =  P ;  in fact  for an arbi t rary e > o we have 

D sv[ f~(x  ) + f , , + , ( x )  + ...] < ,  

for p < P, respectively for p = P ,  when ,Jr > some N =  N(e, p), as for n - -  

1 g 

J (t(x)) p d x  --> o 
aR 

for p < P, respectively p = P. 

T h e  f u n c t i o n  1,'(x) i s  n o  B * ' - f u n c t i o n  f o r p = P ,  r e s p e c t i v e l y  f o r  

p > P, since F ( x )  = t(x)  for --  ~ ~ x < ~ and t(x) is not  p-integrable for p -~ P, 

respectively for p > P. 

Finally we shall show t h a t  t h e  B - p o i n t  ( e v e n  t h e  W - p o i n t )  a r o u n d  

F ( x )  c o n t a i n s  a f u n c t i o n  G(x)  w h i c h  is BV-a. p. f o r  a l l  p, if we only let 

the numbers rnl, m 2 , . . ,  increase sufficiently rapidly to ~ .  
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Let  i <= p~ < p~ < ... ~ ~ 

numbers.  We choose the number  m~ so large tha t  
P~ 

number  m~ so large t h a t  V M {(f~(x)) P'} < (~ . . . . .  

Subt rac t ing  from F(x)  the  W-zero funct ion 

t(x) for  --~x<~- 
J 

o elsewhere 

and let  ~ d,, be a convergent  series of positive 
1 

P~ 

VM{(J I ( x ) )  P,} < $,, the  

we get  a funct ion  G ( x ) ~ - F ( x ) - - j ( x )  which will prove to be BP-a. p. for  all p. 

P u t t i n g  
t(x) for - -  l <_ x < a,, 

t o elsewhere, 

and G~ (x) = F,, (x) - -  j~ (x), we have 

DsPn [G (x), F,(x)]  ---- DBP,, [G(x), G,  (x)], 

since jn(x) is a WP-zero funct ion for  all p. F u r t h e r  

Pn V i  I 
/ ) . P .  [G(x), G.(x)] ---- lim ~ ( G ( x ) -  Gn(x)) p'~ dx,  

- - T  
and we shall therefore  est imate 

T 

G (x) - -  Gn (x)) P" d x  
2 

- - T  

for  fixed n and large T, say T ~ h~, proceeding in a similar  way as in the main 

examples I, I I  and I I I .  We determine  first q ~ o  so tha t  hn+q~ T <  hn+q+1 and 

then  u aJnong the numbers  I, 2 , . . . ,  mn+q+l - - I  s o  tha t  vhn+q~ T < (v + I)hn+q. 
To begin with we dist inguish between the  two cases v ~ r n n + q + l - - 2  and 

Y --~ in+q+1 -- I. 

In  the first case we get  

T O'+llhn+q 

I f (('(X)--" Gn(x)) Pn d x  < I f (G(:I;)- (~,,(.%.))Pn dx, --: 
2 T.~ ~ 2uhn+q tv' 

- -T  - - (~+l)  hn+ q 
(~+1) h,l+q 

I f (Gn+q(X) --  Gn(X)) Pn dx,  
2 v hn+q i t /  

- -  ( ~ + 1 )  hn+ q 



On Some Types of Functional Spaces. 137 

as e (x) = G , .  ~ (~) for 

- - ( V  + I ) h n + q  ~ x < (v + I)hn+q, v = I ,  2, . . . ,  ~ n + q + l  - -  2.  

Here the right-hand side is 

(,+1) hn+ q 
/ .  

I 
t (Fn+q(X) --  F~,(x)) P" dx, 

- -  2 v hn+q a ]  

- -  (~+I) hn+ q 
as  

o <= G,,+q(x) - -  G.(x) = F,,+q(x) - -  F ,~ ( x ) -  (j.+q(x) --in(x)) <= Fn+q(X) - -  F.(x) ,  

and this quantity is 

v + I  
- - -  M { ( F ~ + 4 x ) -  F.(x))~"}, 

as (Fn+q(x)--F~(x)) ~'~ is periodic with the period h,,+q. 
In the other ease we get 

T hn+q+l 

,f( f 2 T a(x) - -  G,,(x))P'~dx < - -  ( G ( x ) -  G,,(x)) P" dx  = 
-~ 2 v h n + q  

--T --hn+q+ 1 
hn+q+l 

I f (Gn+q+l(x) - -  Gn(x)) Pn dx,  
2 vhn+q q /  

--hn+q+l 

aS G(x)~-- - (~n+q+l(X)  for "-hn+q+1 ~----x <h,,+q+l. Here the right-hand side is 

h n + q + l  

2vhn+q (Fn+q+l(x)--Fn(x))Pndx' 
--hn+q+l 

as o ~ (;n+q+~ (x) - G,,(x) ~ Fn+q+j ( x ) -  Fn(x), and this is further 

as (l ';+q+l(x)--F,,(x)) e" is periodic with the period h,~+q+l. 

Es t imat ing  M{(F~+(I(x)-- 1,~(x)) vn} in the  same manner  as on page I24 we get  

I~l Pn + l Pn + 2 

V M {(F~+q(X) --  ~ (x)) vn} <= V M {(fn+l(x)) vn+l} + ] / M  {(fn+,,(x)) v~+~} + . . .  

P.n+q 

+ V M { ( f , , + q ~ X ) )  v"+q} <= ~,+~ -i ~,+2 + . . .  + ~,,+q <= ~,,+~ + ~n+2 + " .  
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Thus we get in both cases, a s -  ~ 2, 

P B  

- - T  

for T ~  h,,. Letting T -~ r we get 
P~ 

DsP,,[G(x), G,(x)] _~ ~f~-(J,,+, + &,+~ + ...). 

Since DBP,, [G(x), ~ (x ) ]  = Dsv,, [G(x), G,,(x)], it results that  Dsv,~ [G(x), F,(x)]-*o 

for n - ~ .  Hence 

F.(x) G for p, 

and consequently G(x) is a BP-a. p. function for all p. 

Main Example u 

This main example is construcSed in a similar way as main example I I I a .  

As in that  example we construct a sequence Fl(x), [ z(x) . . . .  of bounded periodic 

functions with the periods hi ~-ml, h~-~ ml mz . . . .  and consider F(x)= lira F,~Ix). 

In main example I I I a  we obtained F,,+~(x) from ~;,(x) by filling out the centrM 

one of the subintervals v h n ~ x  < (7+ 1)h~ of every interval ~h, ,+l~X<(~+ I)h,+l 

by towers of type n +  I, i. e. by towers with the x-integral ~+~ and the P-inte- 

gral I. Now, however, instead of filling out the central one of these subintervals 

we fill out the first, i. e. that  farthest to the left (see Fig. I3 where m ~ n 2 - ~ 3  

a n d  n = 2) .  

--h 2 - -8  --7 --2h~ --5 - -4  -- lq --2 - - l  o I 2 h t 4 

F ig .  13- 

, [--I  , I 
5 -. h~ 7 8 h~ 

4 ~ 41 As in main example I I I a  we denote the added function 1,,+1(x)- [ , , ( x ) b y  

f~+,(x) (f~(x)-~Fl(x)) and assume that  
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is convergent.  Since this  t ime we fill out the first interval  instead of the 

central  one, i t  does not  hold t ha t  F(x)= F.(x) for --h,,~ x<h., but  only tha t  

F(x)=F.(x) for - -hn<=x < h.-1; but  obviously i t  is still valid tha t  F . (x)  -C F(x) 
so t h a t  F(x) i s  S-a. p., a n d  t h a t  F(x) i s  a n  S P - f u n c t i o n .  

Whi le  F(x) of main example I I I a  is BP-a. p. for all p for a suitable choice 

of ml, m2 , . .  �9 we shall now show tha t  in the present case F(x) is  n o t  BP-a. p. 

We prove this by showing tha t  
P 

V(  
I I I 

D ; ~  IF(x) ,  (F(x))~]  _>_ ~ , - I . . . .  > o 

for every N > o ;  this involves tha t  F(x) is not  Be-a. p., as otherwise (see Chapter  I) 

D'Bp[F(x), (F(x))~]-~ o for N-~  oo. 

Let, then, _AT be an arbitrary number > o. The height ~, of a tower of 
1 

type n being equal to (__1)p_, (see page 4 3 ) t e n d s  to ~ for n-~ov. We  choose 
/_\  
\e . /  

AT~ so large tha t  h , ~ = > 2 N f o r  n ~ N ~ .  I f  t(x) denotes a tower of type u for  

n >_-- xV~ s tanding  on the interval  V ~ x < V + I we have 

P 

V 'f i' (3C)- (' (X)).~') P d x >  1 

We consider F(x) in the interval o ~ x < h.-1. In this interval F ( x ) =  F.(x), 

k ) ( ' )  and F.(x) contains hn-1 I -  I . . . .  I m~: - - i  towers of type n, namely 

all the towers of type n which were filled into the first of the subintervals 

�9 h.-1 ~ x  < (v + I)h.-~ of the interval  o _--<x < h. when passing from F,,-~(x) to 

F.(x) (ep. page 86). Therefore for all n >_--N1 we have 

V 
h/--1 

' ( F ( = )  - (F(~) )~)  ~ d x  _-> 
h.-1 o 

P 

(,-;,)( I q 

P 

oL,) - 
P 

I > I _ _  I .,:_,)= ;V ( - 
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and thus 

P 

lim F(x) (F(x) e dx  > I I i - -  = -  I - -  I . . . .  . 

T ~  2 

Hence 
.P 

'V( D ; p  [ ~ ' ( x ) ,  ( F ( x ) ) x ]  ~ 2 I - -  I . . . .  . 

Finally we shall prove that ,  by le t t ing m~, m~, . . . increase sufficiently rapidly 

to ao, we can obtain, t h a t  t h e  B - p o i n t  ( e v e n  t h e  W - p o i n t )  a r o u n d  F(x)  

c o n t a i n s  a f u n c t i o n  G(x) w h i c h  is  BP-a. p. f o r  a l l  20. 
00 

Let  i < / ) 1  < P,~ < "  -~ oo and let ~ ~ be a convergent series of positive 

numbers. We  denote the P , - in tegra l  of a tower of type n by I,, and choose 

m~, n =  I, 2, . . . ,  so large tha t  

V I'--L < ~,, 

a, nd thus (see page 128) 

V M {(fi,(x)) P"} < ~,~. 

Let  

{rio(X) for --  hn < x  < hn 4. 

f n  (x) = elsewhere ' 
Jt ~ I~ 2~ . . . .  

Corresponding to F (x) = f~ (x) + f.~ (x) + ... we form the funct ion 

j ( x ) = f ~ ( x )  + f~(x) + . . -  

(the series is convergent,  since for a given x at  most  one of the terms is =4 = o). 

We shall prove tha t  j (x)  is a W-zero funct ion and tha t  the difference 

G(x) = F ( x ) - - j ( x )  is BP-a. p. for all p. 

I t  is easily seen tha t  j (x)  is a W-zero funct ion;  for  outside the interval  

- -  h,, ~ x < h,~ the towers of j(x) are all of types => n + I and such towers have 

I-integrals ~ e,+l.  
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Next  we prove tha t  G (x) = _F (x) --  j (x) is BP-a. p. for all p by showing tha t  

Fn(x)~G(x)  for all p. To this purpose, corresponding to 

F.(x) = f l ( x )  +f2(x)  + "" +f,,(x) we put  j .  (x) ---- f t  (x) + f ~ ( x ) +  ... + f* (x )  

and consider the funct ion G. (x) = F .  (x) -- j , ,  (x), n = I ,  2 ,  . . . .  

is a WP-zero funct ion for all p and G(x)---- lira G.(x). Fur ther  

G,,+~ (x) = (;. (x) + fi,+l (x) --  f~*+i (x), 
since 

Obviously j .  (x) 

4 ~ (.~,14-1 (,L')= FB+ 1 (x)--jtlTl(X)=J~ n(X) "4-f~tA-1 (X)--j.(x)--f*+, (X)= G.(X) + f.+~ (x)--f*+a(X). 

Hence we have, on account  of the definition of f,*~+l(x), 

G,,+~(x)= G.(x) for - - h . + l < x < h . + ~ ;  

uceessively applying this equation,  we get 

G(x)= G.(x) for --h.+l ~ x  <hn+l. 

As jn(x) is a WV-zero funct ion (and hence a f o r t i o r i  a BP-zero function) for  

all p, we have 
Pit 

DzP,, [a(x), 1,;,(x)] D . p .  [(_~(x), 6 .  (x)] lira (G(x) G.(x)) P" dx. 
- - T  

Thus we shall estimate 
T 

- - T  

for fixed ~ and large T, say T > h,  (cp. the main examples I, I I ,  I I I ,  V). 

Firs t  q > o  is determined so tha t  hn+q <_~ T <  ha+q+1, and next v among the 

numbers I, 2, . . . ,  mn+q+1 --  I so t ha t  vhn+q _~---T < (v § I)hn+q. Then we have 

T 

--T 

10 

dx < - -  

( ~ t l )  hn+ q 

i f  (G(x) -- G.(x)) P" dx  = 
v hn+q 2 

- -  (*'+1) a n +  q 

(~+l)  h n +  q 

I f 2 vhn+q ( G n 4 q ( x ) -  Gn(x)) t'n d x ,  

- ( ~ + 1 )  hn+ q 
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since 

G(x) ~- G,,+q(x) for --  hn+q+l ~< x < ha+q+1. 

As o ~ Gn+q(X) --  Gn(x) ~ F,,+q(x)--_F,,(x), the r ight-hand side is 

and this is 

< - -  

(~+1) hn+ q 

2 vh,~+q (Fa+q(x) -- F,(x)) P" dx, 
- - ( l '+1)hn+ q 

v + I  
- -  - -  M { ( / ~ + q  (x) - - / ~ ( x ) ) P " } ,  

as (F~+q(X)- F.(x)) Pn is periodic with the period hn+q. Further ,  in consequence 

of the est imation on page I24 the last  quant i ty  is 

Pn + 1 P~ + 2 Pn+ q 

_-< ~ ( V-~-i(f,+,(x))"-+,} + V~l(f,,+.~(x~}",,+~/+... + V--~I(fL~(x>}"+~)""<= 
2 (,L,+~ +,L,+~+ ... + ~,,+q)P" _-<2 (~,+~ + ,~,+~ + ...)P-. 

Hence for T ~ h,~ we have 

Pn 

1 /  T 
~ T  

G,dx))endx =< ]/'2-(~n+, + d~+2 + . - . ) ;  

le t t ing T-~ r we get  

Pn 
1~ Y + .  . .  

D ~ .  [~(~:1, ~,,(~1] =< V~(~.+,  + ~.+2 + -). 
Since 

D.v,, [G(x), ~ ( x ) ]  = V.P,, [G(x), G,~(x)], 

we conclude tha t  D~ n[G(x), F,,(x)] ~ o for n - +  o~ and consequently tha t  

F.(x)~ <;(~) for all p. 
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Main Examples VII a, VII b and YII  e. 

The number a, I < a < ~ ,  being arbitrarily given, in all the three main 

examples we construct a fit~wtion F(x) which is an SP-a. p. function for p<a,  an 

S"-function a~d such that the B-point aroused F(x) contains a fitnction G(x) which 

is BV-a. p. for all p. 

In main example VII  a the number P being arbitrarily given such that  

a < P < ~ ,  and in the main examples V I I b  and V I I e  the number P being 

arbitrarily given such tha t  a < P < ~ ,  in the different examples the function 

F(x) has further the following properties. 

In main example VII  a: F(x) is BP-a. p. for p < P ,  m~d the W"-point around 

F(x) co~tain~ no Be-functions. 

In main example VII  b: /?'(x) is a Be-function, and the W"-point around F(x) 

contains no Be-a. p. functions. In the case P ~ - a  it results already from the 

above that  F(x) is a B~-function; in fact it is even an S~-function. 

In main example VII  c: F(x) is a BP-a. p. fitnction, and the W~-point around 

F(x) contains no BV-functio~2s for p > P. 

We remark that  in the later paper, where the examples of the appendix 

will be used, we shall see that, on account of general theorems, the B-points 

around the functions F(x) of the three main examples cannot contain W"-a. p. 

functions. 

The main examples VII  a, VII  b and VII  c are constructed in an analogous 

way, and they are of a similar type as the main examples I I I a  and VI. Jus t  

as in these examples, we construct a sequence Fl(x), F~(x) . . . .  of bounded 

periodic functions with the periods h 1 = nh, h~ = m 1 m~ . . . .  where 

I I I -J... 
is convergent and consider F(x) ---- l ira/~, (@. In main example I I I  a, respectively 

VI, we passed from F~,(x) to F,+l(x) by filling out the central, respectively the 

first, of the subintervals g h,_--<x<(ft+ I)h,  of every interval ~h ,+ l<  x < ( ~ +  I)h,,+l 

by towers of type nA-I, i. e. towers with the I-integral ~,+1 and the P-integral I. 

In the present construction, however, a takes the place of P, so tha.t a tower 

of type n means a tower with the I-integral ~,, and the a-integral I. Further, 
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by the t ransi t ion from F. (x)  to F.+l(x) we do not  fill out  jus t  the central  or 

the first of the subintervals #h,, _--< x < (# + I )h .  by towers of type n + I, but  

another  of the subintervals, la ter  precisely indicated. The subintervals to be 

filled out  shall of course as usual lie periodically with the period h,,+l. As we 

shall see, by a suitable choice of these intervals, we can obtain tha t  F(x) gets 

the desired ,,B-properties(,. Le t  the subinterval ~h~ _--< x < (. + I) h~ of the  interval 

o_--<x<h,,+l which is filled out  at  the t ransi t ion from F,,(x) to 2",,+~(x)be 

denoted by v,,+~h. < x < (vn+l + I )h . .  For  the sake of convenience we shall  

choose 

~ / n + l  

2 

so t ha t  the interval  v,,+lh, ~ x < (~,~+~ + I)h. is tha t  (or eventually one of the two) 

of the subintervals filled out  at  the mentioned t ransi t ion which lies nearest  to o. 

I t  is plain t h a t  F, (x )~F(x )  for  n - ~ ,  as the I-integral  ~, of a ~ower of 

type n tends to o for n - + w ,  and thus  t h e  f u n c t i o n  F(x)  is  a n  S-a. p. f u n c -  

t i o n .  Fu r the r  all towers of F(x)  having the a-integral I, t h e  f u n c t i o n  F(x)  

i s a n  S ~ - f u n c t i o n .  

We  introduce similar notions as in main example u  We  put  f~(x)=F~(x), 
f ,(x) = .F,(x) --  F,(x),  fs(x) - -Fs (x )  --  F,(x) . . . .  , so tha t  F , (x )  ----f,(x) +ft.(x) + 
�9 .. + f,, (x) and F(x)  = ]~ (x) + f~ (x) + . . . .  r 'ur ther  we put  

F o r  

on pages Iz9- - I3o)  

�9 / f~  (x) for  - -  h,, < x < h,, 

f,,(x) = ( o elsewhere, 

j,,(x) =f*,(x) + f*,(x) + ... + f,*(x), j ( x )=f*(x )  + f*(x) +. . . ,  

G.(x) = F,,(x)--j,,(x), G(x) -= F(x)- - j (x) .  

h.+q < T <  h.+q+~ we get the est imation (cp. the  analogous est imation 

P F 
- - T  

P p P 

< V'2 ( V M  {(fi,+l (x))~} + . - -  + 1 / M  {(fi,+q (x))~}) + 

P 

I (JT~*+ q+ 1 (X)) p d x  
2 y n + q + l h n + q  

- -hn+q+l  
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( ) if ~n+q+l----o we put z - ~  Qv or, introducing the notion 
O 

AT(n) = ]// 
--hi, 

the estimation 

(i) 

P 

V; I (F(x) - -F , , (x ) )  p d x  <-- ~ - 

- - T  
P P P 

V ~- (V M {(fn+l (x)) p} + " "  + V M {( f n + q  (x))'}) + Ap (. + q + I). 

Further we have (cp. page x37) 

P 
P P 

(2) (G(x)-- G,,(x))Pdx <--_ ] /~  M {(fn+z(x))n}+... + V M  {(fn+q(x))'}).  

r 

Let I N Pt < P~ < " ' - ~  r and let ~ &~ be a convergent series of positive 
1 

numbers. We let ml, m~ . . . .  increase so strongly that (cp. page I28) 

Pn 

(3) V M {(f,,(~,))~,,} < ~.. 

For h~+q ~ T < hn+q+l we get from (2) and (3) 

P~ 

V" ~T 

Hence 

Pn Pn Pn 

D . ~  [G(x), G.(x)]--_< V~(~.+, + ~.+~ + - . ) ,  
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and, j~(x) being a WP-zero function for all p, we have 

1).~. [G(x), F .  (x)] = D~, ,  [G(x), G,(x)] _--< V ~ ( ~ . + , +  d.+~+ ...) 

so that  DBPn[G(x), Fn(x)]-*o for n-+ or. Thus G(x) is  a BP-a. p. f u n c t i o n  

f o r  a l l  p. Since j(x) is a W-zero function (cp. main example VI), G(x) l i e s  

in the W-point around F(x) and in particular i n  t h e  B - p o i n t  a r o u n d  F(x). 
Having discussed the common properties of the main examples VII  a, VII  b 

and VII  c we now pass to consider these examples separately, as regards their 

mutual differences. 

Main Example VII a. 

We wish to choose the numbers ~1, ~ J , . . .  defined above so t h a t  F(x) 
b e c o m e s  BP-a. p. f o r  I ~ < P  a n d  so t h a t  t h e  W a - p o i n t  a r o u n d  F ( x ) d o e s  
n o t  c o n t a i n  a n y  B P - f u n c t i o n .  

We shall first show that  we can choose ~1, ~ z , . . .  so that  

and 
Ap(n)--+o for p < P  and n - + ~  

A ~ ( n )  -~ ~ f o r  n - ~  ~;  

later we shall show that  F(x) then gets the desired properties. 

A necessary condition for A~(n) -~ ~ is that  --~n o. For, as 
~ n  

P 

V A~(n)  - -  

P 

P 

m,~. I__ (.f~*(x))" dx = m,, . VMl(fn(x))p} 
Yn 2 hn 

mh n 

the relation Ap(n)-~ao obviom .y involves the relation m~ - -  -, o% since, on account 
~n 

Pn p 

of ]/M{(fn(x)) P~} -* o, we hav~ ]/M{(fn(x)) p} -~ o. 
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a - - p  

a - z  we have As the  p- integral  of a tower  of type  n is e ual to ~. 

p p 

V ] a"-p V [ d, l(i/~_.~_ ~ 

where dn-z has the  same meaning  as in main exl mple 3, i. e. indicates the  relat ive 

density of the  empty  intervals  ~ _--< x < ~7 + z in ~he func t ion  F . - z  (x). Thus ,  
p--a 

P 

Obviously we can choose a sequence of numl ~rs (a < ) P l  < P~ < " "  -~ P which 

converges so slowly to P tha t  

B,,.(n) = - -  = for  n-~ ~ .  

We  shall show tha t  as our  r .  we may,  f rom ~ certain step _N (to be indicated 

below), use 

og B~. (~) 

(where [x] denotes the  greates t  in teger  ~ x). I~ fact  we shall show that , ' choosing 

�9 . in this manner,  .~p (n) -~ o for  p < P,  Ap(n) - m and (for N sufficiently large) 

rnn 
2 

W e  s tar t  by observing t ha t  ~.-~ ~ (and t ms especially u, ~ I fo r  n suffi- 

ciently large). This  results  f rom 

Be(-)  B e ( . )  = _ p :  ~ d.-1 7, t ~ -  d.-1 

L " - - I  ~n L ~'---  I 
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where 

and 

In particular 

Then we have 

since 

p b p n  

a - - I  
~ 0  

- -  --~ QD.  

I 
log - -  

$n 

I B_p(n) for n -~oo .  

log Bp,, (n) 

Pn ~ n  

VI:,.(.) - ~ T ~  ~ , - ~  ~ o ,  

Be (n) 

so that Av,(n) ~ o. Now, for a fixed p < P and n being chosen so large that 

p~ > p  (and 1',,--~ I), we have 

Ap(,,) _-< Ap. (n); 

A v ( n  ) --= 

in f~.ct, as 
P 

V ; x (f:(x))p dx, 
2 Y s  h n - I  

- h  n 

the inequality Av(n)~Ap~(n) follows from HSr.v~.R's inequality, since f~*(x)is 
different from o at  most  on intervals with total  length < 2h~-1 and a fortiori 

with total length ~ 2~h~-1.  Thus, as Av,~(n)-~ o, we have 

Further we have 

so that 

Ap(n) -~ o for p < P. 

P P 

V~] / -I  BP(n) l /'. BI"(.) Ae(n) 
= ~ v l o g  B p ~  

A~,(n)-~ ~ .  

--~ O0 
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As mentioned above this involves ~n - - ~  o, and therefore we can determine our 
m n  

N s o  large ~hat the last  claim ~n<m--? for n : > N i s  satisfied. For  n < N  we 
2 

choose the ~n arbitrari ly so tha t  merely ~,~ < m-2~. 
2 

We shall now show tha t  by this choice of the numbers ~,~ the function F(x) 
gets the desired properties. 

F i rs t  we shall see t h a t  F(x) is  BP-a. p. f o r  p < P. This results from (x) 

and (3), since for h,~+q_< T<N~+q+I and n so large tha t  P ~ + I > P  we have 

1//, I 
F(x) -- F,~(x))P dx 

- - T  

P P 

V 2  (]/ M {(f,,+~ (x))p} + ... + V M {(fi,+q(x))~}) + Ap(n + q + I) 

p P,~+~ Pn+q 
~ ( ~ M  {(J;+, (x)) Pn*l} + ... + V-M {(fn+q(x))Pn+q}) + Ap(n + q + I) <= 

P 

V?(e,,+, + ~.+~ + + ~.+q) + Ap( .  + q + i), 

and hence, le t t ing q -+ ~ ,  

P 

9.~ IF(x), F,,(x)] < V ?  (~.+, + ~.+~ + ""). 

Thus DBp[F(x),Fn(x)] "--'o for n -*  ~ ,  and consequently F(x) is a BP-a. p. 

funct ion for  p < P. 

Next  we show t h a t  t h e  W ~ - p o i n t  a r o u n d  F(x)  d o e s  n o t  c o n t a i n  

a n y  B P - f u n c t i o n .  Proceeding indirectly, we suppose t ha t  there is a W~-zero 

funct ion J(x) so tha t  D*Bp[F(x ) -b J(x)] < ~ .  Denot ing by J*(x) the funct ion 

which is equal to J(x) where j (x)=~ o and equal to o elsewhere, we have 

D*BP [j (X) + J* (x)] _--< DBp IF(x) + J (x)] < ~ ,  

since F(x)~-j(x)  where j ( x )~o .  Let  D*Bp[j(x ) + J*(x)] = K. 

sufficiently large N1 we have 

P 

(~,,+ I )h , -1  ]j(x) + J*(x)l~dx<=2K; 
0 

For n ~ some 
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in particular we have, denoting by J : ( x )  the function which is equal to J * ( x )  

where f,~* (x)=t = o and equal to o elsewhere, 

P 
V (~n+/) hn--1 I 

(Vn + I) hn--1 I f :  (x) + J~* (x)11" dx  <= 2 K" 
~n hn--1 

we have also F o r  n . ~  

1" 
V (*,n + 1/hn_ 1 

I 

('n + I )hn- - ,  ( f * ( x ) ) 1 " d x  = 
~'n hn--1 

P 1" 

b #' + "l hn-i f " V hn-1 f 
hli h n 

I (f*(x))1" d x  ~ I ( f * ( x ) ) P d x  = A1"(n) -~ 
2 (v.  I) 2 v .  

--h n --h n 

so that for n > some sufficiently large N~ 

1" 

V "+i I (fn* (X))1" d x  > 4 K .  
(~. + x) h.-1 

r hn--1 

Thus for n > max (N1, N~) 

P P 

' f " V ' ' - -  1.17 (x) + J"  (x) d~  < - ( f : ~ ) F  d x. 
h,~-i ,~ = 2 hn-1 

*'n hn--1 'Vn hn--1 

Hence, by help of the lemma on page 116, we get 

('t' n+ 1) hn__ 1 (~n + 1) hn__ 1 

I I I I I ~._, f ix(.),o ~. ~ (~)'h--~_~f (f:~.))~ >__ (~1"( -<)( --~)... 
~n hn--1 "t' n hn-- 1 

and therefore further 

(~n+l) bn-- l 

i_. f ,  ~,.,v~. => (:)" ( . -~)( I -  m~)"'" 
,v n hn_ 1 

This inequality, holding for every sufficiently large n, contradicts the fact that 

J(x )  is a W"-zero function. 
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Main E x a m p l e  V I I  b. 

Here  we wish to choose the numbers  ~1, ~ , - . .  so  t h a t  F(x) b e c o m e s  a 

B e - f u n c t i o n  a n d  so  t h a t  t h e  W " - p o i n t  a r o u n d  F(x) d o e s  n o t  c o n t a i n  

a n y  BP-a. p. f u n c t i o n .  

W e  begin by proving tha t  ~,  us . . . .  can be chosen so tha t  

Ae(n)-'.'k for  n ~  

where k is a cons tan t  > o. I n  a similar way as in main example V I I  a it is 

seen tha t  a necessary condit ion for Ap(n)~k is t h a t  ~'_L _+ o. For  all n f rom a 
~rn n 

certain step N (which will be indicated below) we pu t  

[( 
~"---- [_ d . - 1 J  ~ " 

We  observe immediately tha t  ~. => I. I f  P = a, we have Be(u) ---- d~-i, ~ ~ I, and 

hence 
P 

�9 p 

A (W = 

I f  P >  a, we have 

so tha t  

P 

.P--ct 

d n - 1  flo 

Be (.) 
d n - 1  

I -- 

and therefore  
P P 

. . . .  . 

As mentioned we have then ~n - -  -~ o and therefore our  above _N can be determined 
m n  

so tha t  the claim ~. < m_n is satisfied for  n _--> N. For  n < N the numbers  ~. are 
2 

chosen arbitrari ly so tha t  merely ~,, < m__~ is satisfied. 
2 

We shall show tha t  by this choice of the numbers  ~. the funct ion F(x) gets 

the desired properties. 
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Firs t ly  F (x) i s a B P- f u n c t i o n. In  fact  for hn+q ~ T < hn+q+x and sufficiently 

large n we have 

P 

V/  I (F(x) -- F,~(x)) P dx < 
- - T  

P P P 

V 2  (Y M {(f,~+ , (x)) v} + " + V M {(fn+q(x))V dx} ) + ae  (n + q + ,)<--_ 

e Pn+~ Pn+q 
]'/-2 (V M {(fn+,(X)) Pn+l} +''" + V M{Cfn+q(X))Pn+q}) + Ap(n + q + I) 

P P 

V ~  (~.+, + ~.+~ + . - .  + ~.+q) + 2 k < V ~  (~.+x + ~.+~ + )  + 2 ~. 

Let t ing  q -~ ~ ,  we get  
P 

DB.[F(x), F.Cx)]--_< V~(~.+, + ~.+, + "") + 2k 
and thus  

P 

D ~  [F(x)] __< D ~  [F.(x)] + V ~  (~.+1 + ~.+2 + "  ) +  2 k. 

Secondly we shall show t h a t  t h e  W " - p o i n t  a r o u n d  F ( x ) d o e s  n o t  

c o n t a i n  a n y  BP-a. p. f u n c t i o n .  Proceeding indirectly we assume tha t  there 

exists a W~-zero funct ion J(x) so tha t  _F(x)+J(x) is a Be-a. p. funct ion or, 

which is equivalent (as F(x)  is B-a. p.), t ha t  

(F(x) + J(x))~B-~F(x) + J(x). 

Denoting by J*(x) the funct ion which is equal to J(x) in the points where 

j (x)@o and equal to o elsewhere, we 'have  

(j(x) + g*(x))~s-,ej(x) + Z*(x), 

since F(x )= j ( x )  in the points where j ( x ) ~  o. J(x) being a W~-zero function,  

J*(x) is also a W~-zero function.  Then j (x)+ J*(x) is a W-zero function, in 

part icular  a B-zero function.  Consequently (j(x)+ J*(x))lv is a Be-zero funct ion 

for  all p and especially a Be-zero function.  As the Be-point around o, considered 

as a set of functions,  is Be-closed, the funct ion j (x)+ J*(x) is also a Be-zero 

function.  Consequently we have 

P 

x k l i (x )+J*(x) lPdx<=~ for n >  some N .  

o 



On Some Types of Functional Spaces. 153 

in par t icu lar  

P 

V 
(*n+ 1) hn-- 1 

I.f,*,(x)+J*(x)lPdx<=i for  l,____.hr,, (,.+ i)h._, 
~'n hn--I  

where J * ( x )  denotes  the  
$ 

f~  (x):~ o and o elsewhere. 

P 

func t ion  which is equal to J ( x )  in the points where 

Fur ther ,  fo r  sufficiently large ~, 

V ~n+ I f  hn__ 1 
I (J'~* (x)) P d x  

(,,,, Jr I)hn-, 
~n hn--1 

i f" = 2 (.n + l ) h . - 1  ( f * ( x ) ) e d x  ~- 
- -  h n 

P 

V Yn I Yn �9 n + i 2 ~,, h~-i (x)) P d x  = - -  Ap (n) ~ - Y n +I  4 
- -  h n 

P 

V 
(I,n--t- i) h n ~  1 

i f ( f :  (x)),> d .  >= k_ for 
(l 'n -t- I )  h i , -1  . - -  4 

vn hTl--1 
n :> some _N i. 

and  thus  

Hence  for  n ~ max (/VI, N~) 

P P 

V <'+'>'-' ,s V <'+'/"-' h,,_, If:(x) + J~*(x ) lPdx  <= I I ( f : ( x ) )  e dx .  
2 hn-1 

I'll. hn--1 ~n hn--I 

By help of the lemma of page i i 6  we get  

(~n+l) hn-- 1 (~n+l) h n ~  1 

~'n ha--1 ~'n hn--I 

Hence,  for  sufficiently large n, 

(~n+l) hn--1 

hn-1 
~'n hn--1 

d x ~  

which contradicts  the fac t  t h a t  J ( x )  is a W~-zero funct ion.  
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Main Example VH c. 

Finally, in this main example, we wish to choose the numbers ~1, ~2 , . . .  

s u c h  t h a t  F(x) b e c o m e s  BP-a.p. a n d  so t h a t  t h e  W ~ - p o i n t  a r o u n d  

F(x) d o e s  n o t  c o n t a i n  B P - f u n c t i o n s  f o r  p>P. 
We shall show that  we can determine ul, ~2 , . . .  such that  

Ae(n)~o for n-~r162 
and 

A p ( n ) - ~  for p > / )  and n - ~ .  

A necessary condition for this last relation is that ~__E _~ o. 
mn 

P 

v A,(~) = ,.• d.-1 ~ /  = B, (~). 

We have 

First we choose p~ > ps > .-. -~ P converging so slowly to P that 

Then from a certain step N (which will be indicated below) we put 

l~ B-;(-~ j 

Then on the one hand, as Pn-~ ~ and therefore 

we have 

~n 
I 

B~. (n) B~. (,). 
log Be (n) 

P 

V B~.(,) B~(,) log, B~ (n--~ Bp. (,) 
while on the other hand 

Pn Pn 

V]-Bp.(.) V B~.(,) Ap. (n) ---- ~- ~ log ~ -~ ~ ,  
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which involves t ha t  Ap(~) -~ ~ for  p ~ P.  F rom this i t  follows as ment ioned  tha t  

~ - ~ o  for  n-~ ~ ,  and we can therefore  de termine  our  above N so tha t  the 
m n  

claim ~n ~ m_~ for n ~ N is satisfied. For  n ~ N we choose ~ arbi t rar i ly  so tha t  
2 

merely ~n ~ m~. 
2 

Now it  results  (in a way quite analogous to main example V I I  a) t ha t  F (x )  

is BP-a. p. and tha t  the  W~-point a round F (x )  does not  contain BP-functions 

for  p > P. 

T 


