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Preface.

In the present paper we shall study some types of functional spaces, the S?-
spaces, the W?.spaces and the Bf-spaces (p=1) as well as the almost
periodic subspaces of these spaces which were met with when generalising
the theory of the almost periodic functions. The spaces of Stype, W-type and
B-type will be treated separately.

In a later paper FoLner will study the »ensemblec of all the types of spaces
mentioned. In the investigation of this ensemble certain methods of constructing
examples, developed in the present common paper, will be employed, though in
a modified and generalised form as in different respects more properties have
to be demanded of the constructed functions. In order to avoid repetitions and
to make the latter paper more perspicuous, these generalisations of the examples
will be treated by ForLxgr in an appendix to the present paper.
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Introduction.

Throughout the paper we operate with (complex) LEBEscUE measurable func-
tions of a real variable; therefore in the following by the word »function« we
shall always mean a LEBESGUE measurable function. By the p-integral of a

b
function f(x) from a to b we shall mean f |f(@)|?dx, whether this integral is
a

finite or infinite. We call a function f(z), defined on the whole z-axis, p-integrable
if the p-integral of f(x) extended over any finite interval is finite.

The different types of generalised almost periodic functions, the
8P-a. p.,, WP-a. p. and BP-a. p. functions, can on the one hand be interpreted as
generalisations of the ordinary almost periodic functions and on the other as
generalisations of the p-integrable periodic functions.

An ordinary almost periodic function (in the following often shortly
denoted as an o.a.p. function) is a continuous complex function f (), defined for
— o <z < o, which, corresponding to every ¢ >0, has a relatively dense set
of translation numbers v =17(c). A set is called relatively dense if there exists
a length L such that any interval ¢ <z < a + L of this length contains at least
one number of the set, and a number v is called a translation number belonging
to ¢ if it satisfies the inequality | f(z + 7) — f(z)| < & for all =.

The main theorem in the theory of the almost periodic functions states that
an almost periodic funclion can also be characterised as a function which may be
approximated, uniformly for all x, by trigonometric polynomials, 1. e. sums of the form

N
Z Qn eil"n:
n=1

where the a. are arbitrary complex numbers and the An are real numbers.

It is this last property of the almost periodic functions which is used at
their generalisation, the uniform convergence being onmly replaced by other limit
notions. These limit notions are introduced by means of a distance notion; to
two arbitrary functions a distance is ascribed, and a sequence of functions f, ()
is called convergent to the function f(x), if the distance of f.(x) and f(x) tends
to zero for » -+ . Incidentally we remark that the uniform convergence for
all z originates from the (ordinary) distance

Dol (&) 9l ~_u. b. |f@)—o()].
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Concerning the p-integrable periodic functions with a fixed period b—a >o0
a similar main theorem is valid as for the almost periodic functions. f(z) and
g(x) being two arbitrary periodic functions-with the given period, we define the

p-distance for p=1 by
b4

D, [/ (@), g(a)) = l/” L [1r@) =gl aa

a

and we call a sequence fn(z) of periodic functions with the given period p-con-
vergent to f(x), if Dp[f(z), falx))— 0 for n > ©. Then the main theorem states
that fo any p-integrable periodic function f(x) with the period b— a a sequence of
trigonometric polynomials with the period b— a can be found which p-converges to f(x).
(The converse theorem is here obvious.)

A comprehensive treatment of the generalised almost periedic functions was
given in a paper by Besicovirca and Bonr: Almost Periodicity and General
Trigonometric Series, Acta mathematica, vol. 57. We shall use some facts de-
duced in that paper, in each case quoting in detail the results we shall employ.
On the one hand we shall use some simple relations for the different distances
— they will be quoted in this introduction — and on the other hand certain
properties of the generalised almost periodic functions which will be cited in
Chapter I. In the following the paper in guestion will be quoted as I

While the periodic functions may be considered as functions given in a
finite interval, the period interval, in the theory of the almost periodic func-
tions we principally have to operate with (i. e. in some way or other to take
mean values over) the infinite interval —o <2 <. Desiring to transfer
the p-distance mentioned above from a finite to an infinite interval we may
choose among several different possibilities each of which presents its special
peculiarity and its special interest. Within the set of all (measurable) functions
we introduce for every p=1 three such distances which we denote, after
SteeaNorFr, WEYL and BesicovirTch, by

D [f(z), 9()l, Dyyplf(z). g(z)] and Dy(f(z), g ().

StepaNorF's distance is given by

b4

Dy /(@) 9@ = u. b._ l/fi f1re—o@pas.
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Here L is a fixed positive number; its value is unessential (L may for instance
be chosen equal to 1) since given the two positive numbers L, and L, there
exist two positive numbers £, and %,, depending only on L, and L, and not on
f(x) and g(z), such that (I, p. 221)

b, Dsp [ f(@), 9(z)] = Dsp [f(), 9 ()] = ks Dsp [f(=), g (=)].

On account of these latter inequalities the distances Ds}j corresponding to different
L are said to be equivalent.
Concerning the Besrcovircu distance the mean value is at once extended

over the whole interval —w <z <, viz.
?

Dylfa) ol = |/ 5 [ 1@ - g@lede.

T—®

Finally the WeyL distance is an sintermediate thing« between the two
distances cited above. Like Stepanorr, WEYL considers a fixed length L which
he however lets increase to o, viz.

P

pr[f(x)‘,‘y(x) =lim u b l/iflf(§)-—y(§)|”d§=Ll§}gJ° Dgp [ f(x), g ()]

Le—s® —gp<g<w

It is easy to prove that the limit always exists for L —o0.
As immediately seen, all these distances are generalisations of the distance Dy;
for, if f(x) and g{(x) are periodic functions with the period h, we have

Dy [f(@), g(x)) = Dsp[f (), ()] = D yp [f (@), g (z)] = Dy [ (), g(a)].

Instead of S? we simply write S?, and similarly we omit p, if p=1, in the
symbols 82, W? and B”. Frequently it is convenient to use a symbol which
may represent an arbitrary one of the symbols 82, W? and B?; in this case we
use the symbol G or, if we want to emphasise the exponent p, the symhol G?.
We observe that the common symbol for Sy, W and B is G

A sequence of functions f,(x) is called G-convergent to the function f(x),
if Delf(x), fulx)] >0 for n — o, and we write

ACEVIOR

S%, s?
e ~=' f(x) means the same as S () -=f(x), the distances Dsf being equivalent for

different values of L.
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A function is called a G-a.p. function, if there exists a sequence of
trigonometric polynomials which G-converges to the function. The set of G-a. p.
functions is called the G-a. p. set.! For every p =1 we have thus introduced
the three important sets:

the S?-a. p. set, the Wt-a. p. set and the Bf-a. p. set.

Concerning particular G?-a. p. functions, besides the o. a. p. functions and
the p-integrable periodic functions, we mention the G#-limit periodic funec-
tions; a function f(x) is called G?limit periodic, if there exists a sequence
of p-integrable periodic functions (generally without a common period) which
G?-converges to f(x).

For every p=1 the inequalities

Dol f(x), g(x)] Z Dsp[f(x), 9(@)] Z Dy [f (@), 9(%)] Z Dy [f (), 9 ()
are valid (I, p. 222); hence denoting the set of o.a. p. functions as the o. a. p.
set, we have for each p=1:

the 0. a. p. set = the S?-a. p. set = the W?-a. p. set = the Bf-a.p. set.

TFurther we have for 1< p, <p, (I, p. 222)
Dy, [ f(), 9 (@)l £ Dy, [ f (), 9 ()]

(This inequality is a consequence of HoLDER's inequality quoted below.) Hence
it holds for 1 =< p, < p, that

the G™-a. p. set =the G?-a. p. set.

Just as the distance Do[f(x), g(x) originates from an O-norm Do[f(x)] =
Do [f(x), o], and the distance D,{f(x), g(z)] from a pmnorm D, [f(z)]=D,[f(x),0],
every one of our distances Dg[f(x), g(x) originates from a G-norm Dg|[f(z)] =
Dg{f(x),0]. Obviously the G-norm satisfies, like the O-norm and the p-norm,
the relation

(1) D¢laf(x) =|a|- De[f(x) (2 a complex number);
further it satisfies the inequality (I, p. 222)
(2) Dq [f(x) + g(x)] = Da|f(x)] + D¢ g ()]

! The Sfi-a. p. set is identical with the SLps-a. p. set, as the distances Ds{ are equivalent for

different values of L, and it is called the SP-a. p.- set. The functions in the 8?-a. p. set are called
§?-a. p. functions.
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which is equivalent to the Triangle Rule

Dq[f(2), g()) = Do [f(x), k(z)] + Deih(z), g(=)].

(This inequality is & consequence of MiNkowsk1l's inequality quoted below.)

As a trigonometric polynomial is bounded, its G-norm is finite, and in
consequence of the Triangle Rule the same is valid for any G-a. p. function.
A function with finite G-norm is called a G-function. The set of all G-functions
is called the G-set', and we have

the G-a. p. set = the G-set.

It is important to observe that the St-set and the W#-set are identical for each
p=1; that the SP-set = the W?-set is an immediate consequence of the inequality
Dy=D,,, and the converse is involved by the equation D, =L1im Dgp which

shows that if Dg, is finite then Dsf will be finite for sufficiently large L

(and therefore for all L). We emphasise that the analogue is not valid for the
a. p. sets; in fact the S*-a. p. set is a proper subset of the W?-a. p. set.

The G-sets satisfy similar relations as the G-a. p. sets, and on account of
the same distance relations:

For every p=1 is

the St-get (W?-set)< Bf-set,
and for 1 = p, < p, is

the GPi-set = the GP-set.

In our G-sets we shall have to consider the so-called Gfundamental se-
quences. A sequence of functions f,(z) from the G-set is called a G-funda-
mental sequence, if Dg[/fi(x), fm(x)) = 0 when » and m, independently of each
other, tend to o. Further we shall unse the notion G-closed. We call a set
of functions G-closed, if each function which is the G-limit of a sequence of
functions from the set belongs itself to the set. On account of the Triangle
Rule the G-set and the G-a. p. set are obviously G-closed.

Leaving out of account that the G-distance between two different functions
may be zero, the G-set is organised as a linear metric space because of (1)
and (2). It is easily shown that the same holds for the G-a. p. set. Firstly,
the product of a G-a. p. function f(x) by a constant is again a G-a. p. function;

! The Sﬁl-set is identical with the Sﬁ’-seli, as the distances D p are equivalent for different
L

values of I, and it is called the SP-set. The functions in the SP-set are called SP-functions.
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for, if s.(x) is a sequence of trigonometric polynomials G-converging to f(x), the
sequence a-s,(z) of trigonometric polynomials will G-converge to a-f(z), since

De af(z), asa(a)} =|al- Da[f(z), sa()].

Secondly, the sum of two G-a.p. functions /™ (z) and f*®(x) is again a G-a.p.
function; for, if s (x) is a sequence of trigonometric polynomials G-converging
to f@(x), and s¥(x) is a sequence of trigonometric polynomials G-converging to
f®(z), the sequence s{(x)+ s (x) consisting of trigonometric polynomials will
G-converge to fV(x) + f®(x), as

De[fV(x) + ¥ (), sW(x) + 2 (2)] = De [(f" @) — s @) + (f* @) — s@ (@)
< Do (f” (), s ()] + Da [f® (), sF ().

In the proofs of theorems on G-a. p. functions it is often convenient,instead
of, as above, using the definition itself, to employ the following simple theorem:
A G-a. p. function can also be characterised as a function which is the G-limit of
0. a. p. functions (and not just of trigonometric polynomials). The proof is immediate.
In fact, a function which can be approximated by o. a. p. functions must belong
to the G-a. p. set, as the o. a. p. set = G-a. p. set, and the G-a. p. set is G-closed.

To pass from the G-set to a proper linear metric space where the distance
between two different points is > 0 (and not only =o0), an equivalence relation
(~) between the G-functions is introduced in the following obvious way:

Sx)~glx) if Delflx), glx) =o.

Then the G-set falls into classes of equivalent functions. Each of these classes
is called a G-point. Evidently two functions of the G-set belong to the same
G-point, if and only if they differ from each other by a function of the G-norm o.
Such functions of the G-norm o are called G-zero functions. Now a distance
(again denoted by Dg) is introduced in the following manner: Let % and B be
two arbitrary G-points; then we define Dg [, B] by the equation

D¢ (¥, B] = De [ flx), g()),

where f(x) and g(xr) are arbitrary representatives of 9 and B; this definition
is evidently unique. The multiplication of a G-point by a constant, and the
addition of two G-points being defined by means of representatives, it is plain
that (1) and (2) are still satisfied, if we consider G-points instead of G-functions.
And moreover the G-distance between two different G-points is always > o.
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Thus the set of G-points is organised as a linear metric space by the distance Dg.
We denote it as the G-space.

If one function in a G-point is G-a. p., all functions of the point are G-a. p.
functions, and the point is called a G-a.p. point. The set of the G-a.p.
points, organised by the distance Dg, forms a linear subspace of the G-space.
It is called the G-a.p. space.

Now we have introduced all the spaces which we shall investigate in the

following, viz. for every p=1:

the S?-a. p. space < the Sf-space,
the W?-a. p. space < the W?-space,
the B?-a.p. space = the Bf-space.

If one function in a G-point is G-limit periodic, so are all functions of the
point, and the point is called a G-limit periodic point.

If a G-point contains a periodic function, it is called a periodic G-point
(but of course it is not true, that all the functions of a periodic G-point are
periodic functions).

We say that a sequence U, s, . . . of G-points G-converges to the G-point
A if Dg|¥, As) =0 or, what is equivalent, if an (arbitrary) sequence of represen-
tatives f, (z), f(®), . .. of A;, Ay, . . . is G-convergent to a representative f(x) of .

A sequence U, ¥,,. .. of G-points is called a Gfundamental sequence
if D¢ (An, An]—~ o0 for n and m tending to ® or, what is equivalent, if a sequence
of representatives f,(z), fo(x), ... of U, s, ... is a G-fundamental sequence.

As well known, a metric space is called complete if every fundamental
sequence of the space is convergent; otherwise it is called incomplete.

A subset of a metric space is called closed (relatively to the latter) if
every point of the space which is the limit of points of the subset belongs itself
to the subset. Evidently, the G-a. p. space is closed (relatively to the G-space).

Concerning the Srtrpanorr distance, it is easy to see that, for any p =1,
a function is a Sf-zero function only in the trivial case when it is o »almost
everywhere« (i. e. except in a set of measure 0); consequently, for every p, an
St-point consists of essentially only one function. In the two other cases (the
W? and B?) the set of zero functions is considerably more comprehensive, and
most comprehensive for p=1; thus, while it is only a mathematical subtlety
to speak of OSP-points instead of S?-functions, it is of decisive importance to
distinguish between G-points and G-functions in case of the W?- and B?-spaces.
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To deduce the relations for the different distances (about which we re-
ferred to I) two very important inequalities are used, HoLDER's inequality and
Minkowskr's inequality. As we later on shall apply these inequalities repeatedly,
we quote them here in the introduction.

Hoélder's inequality. Let p and q be two positive numbers satisfying the
condition

+

=I‘

1
g

LW

and f(x) and g(x) two complex functions, defined in the interval (a, b); then we have

q

4
s [ V@@ dz = ]/b_‘aﬂf(x)]pdx.‘/ 5 [1o@)leds.

a

As the inequality can be reduced by E_i—&’ the corresponding inequality for

tntegrals (instead of mean values) is also valid.
We emphasise a special case of HOLpER's inequality (which is obtained by

replacing f(x), g(x) and p by |f(z)|”, 1 and % respectively), viz:
For 1=p, <p, s

21

' )
b b
]/ = [17@)Iraz = ]/ = [ @ da.

Minkowski’s inequality. Let f(x) and g(x) be two complex functions, defined
in the interval (a, b), and p=1; then the inequality

b 4 P P

. b , b / b
]/ s [17@) + gk de s ]/ s [Ir@baz+ ]/ (1o az

holds. As before the corresponding integral inequality s also valid.
Obviously the inequality can also be written in the form

p

l/ e [ 1@ + @b doz l/—b—{—a [ir@pas- I/ = [lopaz.
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Besides trivial facts concerning LEBEsGUE integrals we shall have to use

Fatou’s theorem. Let f(t,n) be a non-negative function, given for all t in a
finite interval (a, b) and for all positive integral values of m. Then we have

b b
[ timt,mar = tim [ st ma.

Before passing to a summary of the paper we will here gather different
remarks of a general character which, like the inequalities and the theorem above,
will be of importance later on.

To begin with we introduce the notion of minimum of two complex
functions f(z) and g(z), defined for all z, viz.

flx) for the x satisfying |f(x)| = |g(2)]

min [f(z), g(z)] = {g(x) for the z satisfying |g(x)| < |f(2)].

The little »lack of beauty< that min [f(x), g(x)] is not symmetric in f(z) and g()
is of no importance whatsoever. ‘

The definition of min [f(x), g(x)] involves immediately the following in-
equalities

[min [f(z), @)= [f@)],  [min (), g@)]]=]9()]

and
| min [ f{x), g(a)]—f(2)| = | g(x) — FR)], | min [f(2), g (%) —9{x)| = | f(x)— g ()]

A G-point considered as a set of functions is G-closed, since, f(x), fo(x), . ..
being a sequence of functions of a G-point with the G-limit f(x), we have

De [fla), /1 (@)] = D¢ [ f (@), fu(@)] >0,

so that Dg[f(x), f,(x)] =o0, i. e. f(z) belongs to the G-point.
A G-point considered as a set of functions is closed with respect to the minymum-
operation, since, f;(x) and f;(x) being two functions of a G-point, we have

| min [£(z), f; (#)] — f1(2)| = 1/i(x) — fs ()] and consequently

Dg [min[f; @), fy@), fi@)] = Ds[f,(x), fi(2)] = o,

so that min [/ (), /; ()] lies also in the G-point.
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Frequenﬂy it is convenient to use the distance

D3 [ f(@), 9(=)] =

»
max hm I/ Tf]f(x g(x)p de, EI:D %,[lf(x)~—g(x)|?dx

instead of the distance Dy [f(x), y(x)]. The two distances are equivalent, as

]f D3 (£ (@), 9@)] = Dy [f(a), 9(a)) < Dip £ @), 9 (@)

The new distance originates from the norm Djs{f(x)] = Dj»[f(x), 0] which
satisfies (1) and (2).

Finally we give a summary of the content of the paper.

In Chapter I the needed properties of the generalised almost
periodic functions are quoted, inter alia certain translation properties and
the approximation by Bocuner-FEstr polynomials are treated.

In Chapter II the completeness or incompleteness of the different
spaces is investigated. It is shown, what has been known in the main, that the
St-space and the S?-a.p. space as well as the B?-space and the Bf-a. p. space
are complete for every p =1, and, what has not been known before, that the
Wt-space and the Wt-a. p. space are incomplete for every p = 1. It is of special
importance that the B%a. p. space is complete, as this involves the validity of
Besicovircn’s Theorem which is the analogue of the famous theorem of Rigsz-
Fiscerr on 2-integrable periodic functions.

In Chapter III, which has the character of an insertion, three theorems
are proved which will be applied in the following Chapters.

Chapter IV deals with the mutual relations of the Sf-spaces and the
S?-a. p. spaces, Chapter V with the mutual relations of the W#spaces and
the W?a.p. spaces, and Chapter VI with the mutual relations of the B?-
spaces and the Bfa.p. spaces. The investigations of the spaces of W-type
and those of B-type are essentially similar in some respects, but show also
characteristic differences.

The paper consist partly of theorems and partly of counter examples.
Many of the examples are simple and more or less trivial. The especially strong
and substantial examples are called main examples. Most of the functions
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constructed in our examples are piecewise constant and change between the value
o and values >o0. Hence they have a graph like the function outlined in Fig. 1.
The graph thus counsists of rectangles ]
which stand with one side on the z-axis. '
These rectangles are called towers, and
the function is given by indicating the

size of the towers and their position on

the z-axis. The size of a tower may be
given by its »height« £ and »breadth« b,
but it is often given by prescribing the p-integral of the tower for two different

Fig. 1.

values p, and p, (= 1); from these values & and b can immediately be calculated;
for the p,-integral of the tower is I, = bkP and the psintegral I,= bk, and
hence

1 1
_ é Ds—D _ & Pe—P1,
e= () = ()

for an arbitrary p, (= 1) the py-integral becomes

Ps—P PP
I, = bkvs = TP [ P11,

When indicating a tower by the values of its p-integral for two different values
of p, the integral corresponding to the smaller of these values is always chosen
less than the other integral (i. e. the beight % of the tower is always chosen >1);
then the p-integral is a steadily increasing function of p which tends to o for
p—>». The position of a tower is generally indicated by the number with
which the center of the lowest side coincides. The tower is said to stand on
this number. Sometimes we speak about a tower as placed or standing on an
interval. This means that the tower stands on the centre of the interval and
does not protrude beyond the interval.

All our examples of G-a. p. functions are chosen among the G-limit
periodic funetions.
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CHAPTER 1.

The Generalised Almost Periodie Functions.

In this chapter some well known properties of the generalised almost periodic
functions are quoted which will be applied in our later investigations. We also
remind of the proofs of some of the theorems.

Already in the introduction we have mentioned that the product of a
G-a. p. function by a constant and the sum of two G-a. p. functions are again
G-a. p. functions. Moreover it is valid that the product of a G-a. p. function
by an ordinary almost periodic function is again a G-a. p. function.

If f(x) is G-a. p., the modulus | f(z)| and the function

f(z) for |f@)| = N
(fah=| 7l
¥ 7@

which originates from the function f(x) by »cutting it off«< at the positive

for |flx)|= N

number N are again G-a. p. This is a corollary of the following theorem: Let
flx) be @ G-a. p. function and ®@(z) be a function defined in the whole complex plane
(or, in case of a real function f(x), on the real axis) with a bounded difference
quotient; then @ (f(x) 13 G-a. p. The proof is immediate: Let f,(z) be a sequence
of o. a. p. functions which G-converges to f(x); then @(f,(x)) too is a sequence
of 0. a. p. functions on account of the uniform continuity of @(z); further

O (/@) O(f @)
since the inequality

|o(f(@) — @(fa@)| = K| flx)—fal2)]
De[0(f@), ®(fa@)] = K De[f(2), fulz)] ~o.
If f(x) is G-a. p., the function (f @)~y will G-converge to f(x) for N— oo,

involves

Proof. Let ¢ >0 be given. We choose a trigonometrical polynomial s(x)

sach that Dg[f(x), s(z)] < g, and use the estimation

De[f(x), (f@)n) = Delfla), s{x)] + Dals(z), (f@)a].

For N=u. b. |s(x)]= K we have s(z) = (s@)~, and hence on account of the
inequality



On Some Types of Functional Spaces. 45

|(F@)s — (g@dn| < | Fl2) — 9 @)
(the validity of which is seen by help of a simple geometrical consideration)
we get

De s (), (f@)s] = Dealls@)x, (f@)s] = Do [s (), f(x)).
Thus we have for N= K

De[f(x), (f@)y] = 2 Da[f(x), s (@)] <&

Just as for the ordinary almost periodic functions and the p-integrable
periodic functions there exists a theory of Fourier series for the G-a. p.
functions. Each G-a. p. function f(z) has a mean value

T—w P T

T 0
M{f(x }—hm ff Ydx = lim ?;,jf(x)dx:——lim il,ff(x)dx
o T

and the funetion .
a(d)= M{flx)ei*}

of the real variable 4 is different from o for at most an enumerable set of
values of 1; these are called the Fourier exponents of f(x) and denoted in one

order or another by 4,, A, .... The values of a(l), belonging to the Fourier
exponents .4, A,, ..., are called the Fourier coefficients of f(x) and denoted by
Ay, A,, ... respectively. With the function f(x) is associated the Fourier series

SA,¢ " and we write
flx) ~ Z4né "

Sometimes it is convenient to include certain »improper« terms A,e “** (at most

an enumerable number) where 4, = M {f(z)¢ ‘“*"}=o0. For such a term 2, is
called an improper Fourier exponent and 4. (= 0) an improper Fourier coefficient
belonging to the exponent .4,.

All the functions in a G-a. p. point have the same Fourier series which is
called the Fourier series of the G-a. p. point. Corresponding to the uniqueness
theorem of the o. a. p. functions the following uniqueness theorem is
valid for the G-a. p. functions: Two different G-a. p. points cannot have the same
Fourier series.

We emphasise that the Fourier series is formed in exactly the same way
for all our types of generalised almost periodic functions. For a p-integrable
periodic function it is easy to prove that it has the same Fourier series in the

ordinary sense as in the G-a. p. sense,
4
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Concerning the connection between a G-a. p. function and its Fourier series
the usual rules on addition, and on multiplication by a constant are valid. If
Jfn(x) is a sequence of G-a.p. functions G-converging to the G-a. p. function f(z),
the Fourier series of f(x) can be obtained by a formal limit process from the
Fourier series of fn(x).

The Bocuner-FEstr method of summation, of great importance in the
theory of the o. a. p. functions, can be transferred to the G-a.p. functions
(I, § 12—13). Starting from the Fourier series of a G-a. p. function f{(x) a sequence
of trigonometric polynomials dq(x), the Bochner-Fejér polynomials, can be found which
G-converges to f(x). By means of kernels K?(t) which are non-negative trigono-
metric polynomials with the mean value 1 these BocuNEr-FEsEr polynomials
0q(x) can be represented in the form

ala) = M f(a + ) Ko(0)
To establish the approximation-properties of the BocuNER-FEJER polynomials the
following inequality which can be deduced from the representation above is of

decisive importance:
Dg [04(%)] = De [ f ().

It is essential for our later applications that this inequality holds even if G does
not just denote the type of almost periodicity of the function f(x). Certainly,
in the proof of the inequality in question given in I, where G has an arbitrary
fixed meaning, it was assumed that f(x) was a. p. in the G-sense, but in fact it
was only used in the proof that f{(x) was almost periodic in one sense or another
and not just in the G-sense.

Concerning a W?-a. p. function f(x) the Bocuner-FEsir sequence o, (xz) does
not only W?-converge to f(x), but this W?-convergence takes place with a certain
»uniformity«; in faet, to every ¢ >0 there can be determined an I, and a @

such that
Dg» [f(@), og(z)] = ¢ for L= 1L, and q = Q.

In the case of the W%a.p. functions, R. Scumipr (Math. Ann. Bd. 100) was
the first to indicate approximating trigonometric polynomials with this property.
The BocHNER-Frikr polynomials oq(x) have the form

N{g) ”
0q(x) = D\ k9 4 gt

n=1
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where the .4, are Fourier exponents and the A, the corresponding Fourier coeffi-
cients of f(x), and N(g)— o for ¢ > . The factor k{9 satisfies the inequality
O=FK?=1 and tends to 1 for fixed » and ¢— .

For a B%a. p. function f(x) with the Fourier series 34, ¢ “"* the Parseval

equation holds:
MALf(=) P} = Z|4a ]

As cited in the introduction, for the B%a.p. functions the theorem of
Besicovitca which is the analogue to Riesz-Fiscure's Theorem on 2-integrable
periodic functions is valid: An arbitrary given trigomometric series = A, én® gs
the Fourier series of a B*a. p. function if and only if 3| An|® is convergent. The
proof of this theorem relies on the completeness of the B*a. p. space; we shall
retarn to it in Chapter II.

Just as the o. a. p. functions, also the generalised almost periodic functions
can (as shown in I) be characterised in two different ways, viz. on the one
hand by their approximation by means of trigonometric polynomials, and on the
other by translation properties. In the present paper the generalised almost
periodic functions have been defined by their approximation properties. As to
the S?-a.p. and W?-a. p. functions, however, also their translation properties
will be needed for some of our investigations. In the two following theorems
we shall state these translation properties which can easily be deduced from our

definitions of the S#-a. p. and W?-a. p. functions.

Theorem 1. An St-a.p. function f(x) possesses, to every &€ > 0, a relatively
dense set of Si-translation numbers (L arbitrary fixed), i. e. of numbers © with the
property

DSZ flx+1), flo)) < e

Proof. Let ¢(x) be an o. a. p. function such that

Dy f (), gla)) <

and let 7 be an (ordinary) translation number of @ (x) belonging to g Then

we have

N

lplx + 1) — pla) | 3

for all x and hence a fortiori
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iA
W im

Dgplg(z+7), (=)
By means of the Triangle Rule we obtain

Dp [ f(x + 7), fl=) =
Dgp[flaw + 1), plo+ 1)) + Dsplo (= + 7), ()] + Dsp o), fl@) =

Consequently z is an Si-translation number of f(x) belonging to & As the ©'s
form a relatively dense set, the theorem is proved.

Theorem 2. A W?-a. p. function f(x) has, to every £>0 and for L sufficiently
large (i. e. L= Ly(®), a relatively dense set of Si-translation numbers.

Proof. Let @(x) be an o. a. p. function so that

Dwe [ f(@), p(@)] < ; :

Since Dyp = lim DS}," we have for a sufficiently large L, i.e. for L=L,(¢), that

Lo

W ilem

It follows as in the proof of Theorem 1 that every (ordinary) translation number

7 of @(x) belonging to —; is an SI-translation number of f(x) belonging to & for
any L= L,

In this paper, among the G-a. p. functions, we shall particularly consider
the G-limit periodic functions, as all our G-almost periodic examples will
be chosen among the latter functions. Therefore we finish this Chapter 1 by
some remarks on G-limit periodic functions.

We begin by showing that a G-limit periodic function can also be charac-
terised as a G-a. p. function whose Fourier exponents are rational multiples
of one and the same real number.

1°. Let f(x) be a G-a.p. function with Fourier exponents which are ra-
tional multiples of a number d. Since the exponents (in finite number) of any
BocrnEr-FEJER polynomial ¢,(x) are Fourier exponents of f(x) and therefore
integral multiples of a number d,, it is evident that each g,(z) is a periodic

function (with period il—n) Hence f(x) being the G-limit of the sequence d,(x)
q

is a G-limit periodic function.
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2°. Let then f(x) be a G-limit periodic function and f,(z), fi(x),... a
sequence of p-integrable periodic functions, with periods &, ks, . . ., which G-con-
verges to f(x). We shall prove that all the Fourier exponents of f(z) are rational
multiples of a single number d.

We may assume that the Fourier series of f(x) does not only consist of
the constant term, since in this particular case the theorem is obviously valid.
Then there exists a Fourier exponent 4, +0. If A, (< 0) denotes the Fourier
coefficient of f(x) belonging to this exponent 4., and 4™ the (proper or im-
proper) Fourier coefficient of fu(x) belonging to the exponent .4, the coefficient
Al™ tends to Ay for m > . Hence A™ =0 for m sufficiently large, i. e. for
m = my = my(n). The exponent .2, thus being a proper Fourier exponent of
JSu(x) for m =m,, we have

2

4,;=—”7,,, (vm integral) and thus by, = Ejf,,m for m = m,.
hm Aﬂ'

Corisequently for m = m, the periods h, are integral multiples of the number

=27 e
_ T . .
A

hm‘:’”mg fOl‘ mvao.

The Fourier exponents of fn(z) for m = m, are thus to be found among the

numbers z_":_r = 27” . 5— (u integral) so that they are all rational multiples of

the number d= 27” Finally the same must be valid for the Fourier exponents

of the function f(x) itself, since the Fourier series of f(x) can be obtained as
the formal limit of the Fourier series of fn{z) for m— .

Remark. We saw in 1° that the BocaNer-Frstr polynomials of a G-limit
periodic function are periodic functions. We shall add a remark concerning the
periods of the Bocaner-Frskir polynomials of a G-limit periodic function f(x)
which, as in 2°, is given as the G-limit of a sequence of p-integrable periodic
functions f)(x), fz(x), ... with periods %, hs,.... In fact we shall show that
any BocuNER-FETER polynomial of f(x)

i T4y
o(x) = gyt a, 4% + gy bZ 4 - + gy e VT
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has the number h» as a period for m sufficiently large. For, as we saw in 2°,
for each 4,4+ 0 we have for m = my, = my(n)

2
h_m"'n,m

Ap= (vn, m integral);

hence for m = max [m,(1), my(2), . . ., my(N)] each of the exponents of our o(x)

is an integral multiple of 2%, and hm therefore a period of o(x).
m

For the generalised limit periodic functions the theorems 1 and 2 can be
sharpened; we choose a formulation which is just adapted to our applications.

Theorem 1 a. Let f(x) be an St-a. p. function, and f,(x), f,(x), . . . a sequence
of 1-integrable periodic functions, with the periods hy, hs, . . ., which G'-converges to
Slx). Let further e > 0 be arbitrarily given. Then for fixed L, and m sufficiently
large, 1. e. for m= my (¢, L), all integral multiples of hm are Si-translation numbers
of f(x) belonging to &.

We observe at once that f(z), as a Glimit periodic function, has a Fourier
series of »limit periodic form« and is therefore not only S?#-a. p., but also S#-limit
periodic.

Proof. Let o(zx) be a Bocaxer-Feskr polynomial of f{x) for which
&
Dsplf (@), o) < -

In consequence of the remark above, o(x) has the period hn for m sufficiently
large. Then, for each such m, every integral multiple »hn of hn will be an
Sf-translation number of f(x) belonging to &, since on account of the Triangle

Rule
Dsp[f(e + vh), fl2)] <

Dsg [f@ + vha), 6l + vhg)l + Dgp [6(x + vhy), o(x) + Ds{ lox), flx)] =

2 Dyp /@), olo)] < e.

Theorem 2 a. Let f(x) be a Wr-a. p. function, and f,(2), f,(x), . . . & sequence
of 1-integrable periodic functions, with the periods hy, hs, . . ., which G'-converges to
S (). Let further ¢ > o be arbitrarily given. Then for m and L sufficiently large,
i. e for m=Zmyle) and L = Ly(¢), all integral multiples of hm are Si-translation
numbers of f(x) belonging to e.
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We observe at once that f(x), as a G'-limit periodic function, has a Fourier
series of limit periodic form and is therefore not only W?*.a. p., but also W#-limit
periodic.

Proof. Let o(x) be a Bocaxkr-Fsir polynomial of f(x) for which
Dw» [f(a), ola)] < -

Since Dyr=lim Dsl’f) we have for L sufficiently large (L = L, = L,(e)

IL—x

Dy f(@), ol)] <

NiM™

For m sufficiently large (m = m,= my(¢)) the BocuNER-FEJER polynomial ¢ (x)
has the period hn, and as in the proof of Theorem 1 a we conclude that every
integral multiple of A, is an Si-translation number of f(r) belonging to e.

CHAPTER 1I.

The Completeness or Incompleteness of the Different Spaces.

§ 1.
The Completeness of the §7- and the SP-a. p. Spaces.

In this paragraph we prove the following

Theorem. The S?-space and the S*-a. p. space are complete for every p = 1.

Proof. It is sufficient to show that the S?-space is complete, since this
involves, the &?-a.p. space being a closed subspace of the Sf-space, that every
S?-fundamental sequence of the S?-a. p. space S?-converges to a point of the
S?-space and therefore also to a point of the S?-a. p. space. Thus we only have
to show that every S?-fundamental sequence of S?-points is SP-convergent or,
what is equivalent, that every S?-fundamental sequence of S#-functions is S#-con-
vergent. Let then f,(z), f;(z), . . . be an S?-fundamental sequence of S?-functions,
i. e. & sequence of S?-functions for which Dgp[fn(x), fu (x)) > 0 when » and
m tend to . We shall prove that there exists a function f(z) such that
Dsp[f(x), fu(x)) >0 for m . This function f(x) will automatically be an
8?-fanction, as the S?-set is S?-closed.
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We begin by determining an increasing sequence of positive integers n, <ny<<:--
so that
Dgv[fule) fa@) < for nzm, mzn G=12..).
Hence in particular |
Dso [fo, @), Fon @] = b=1,2..).
Let

Zlﬁ'y-{-l f"g( )l

v=1

then we have 0 < g,(x) < go(x) <--- so that lim g,(x) exists (as finite or infinite)

g

for every . Further we have for each g, on account of the Triangle Rule,
Dg» [gq(w)] = Dsp[lfn,(x) "‘fm(x)” R DS"[Ifnq+1 fnq )” =
Dsp| fo, (@), fa(@)] + -+ + Dsp [ fog (@), Sy, (@) =

Fi4 o<
27

N |-

!
4
in particular

u+l
f g dx <1
"

is valid for every integer x. Then we have for every integer u

u+1 ntl
f lim (go (&) d = lim f(gq(x))" de<t.
“

Hence lim g,(x) is finite for almost all . Thus the series

G

Z (o 11 @ — S, (@)

=1
is absolutely convergent, in particular convergent, for almost all x, which shows
that the sequence fy,(x), fn,(2), . . . is convergent (to a finite limit) for almost all .
We shall see that the function

Sla)= lim fo, ()

v 0
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fulfils our demands. Let ¢>> o be arbitrarily given. Then m, can be determined
such that Dgp(fa(x), fu(x)) < ¢ for n = m, and m = m,; if further », is chosen
so large that n,, = m, we have Dsr|[fn (2}, fn(x)} =< & for v=», and m Zm,, and

consequently
z+1

SO — fa@®lrdE< e for all x, v =, m=m,.

Since |fn, (&) — fm(&)| = |F(§) — S (§)] for almost all £ when »-»>o. we get for
every # and m = m, by Farou’'s Theorem

z+1 z+1

f I @) —fn® P dE < lim [ |, () — /m@)]r dE = e*;

y—+ ©
z

hence Dsp [ f(x), fm(x)) = & for m = my, i. e. Dgr[f(x), fm(x)] > 0 for m - o,

This proof of the completeness of the S?-space is an immediate transferring
of a well-known proof of the theorem that a fundamental sequence of p-integrable
periodic functions f,(z), f;(z),... with the period % is p-convergent. Besides,
this last theorem can on its side easily be derived from the theorem above con-
cerning S?-functions. Indeed, such a sequence of periodic functions fa(x) is at
the same time an S?-fundamental sequence and will therefore S?-converge to an
St-function f(z), and from this function f(x) we can immediately find a function
9(x), periodic with the period k, which is the p-limit of our sequence f,(z). We
can simply use the periodic function g(xj which in the period interval o<z <h
coincides with f(x). In fact this function g(x) is a p-integrable function with
the period k, and

P

Dy [g(x), falz)] = l/ iflg(x) — fal@)|Pdx =
1 3
l/ (170~ @l de 5 Dy [£0), ol =+ 0

[]

for n » oo,
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§ 2.
The Completeness of the B?- and the BP-a. p. Spaces.

In this paragraph we prove the following
Theorem. The B?f-space and the Bf-a. p. space are complete for every p = 1.

Proof. As the Bf-a.p. space is a closed subspace of the Bf-space, it is
sufficient (just as in the S-case in § 1) to prove the theorem for the Bf-space.
Thus we have to show that every DBf-fundamental sequence of BP-points is
Bt-convergent or, which is equivalent, that every Bf-fundamental sequence of
Bt-functions is Bf-convergent. Let then f;(z), f3(x), ... be a Bf-fundamental
sequence of Bf-functions, i. e. a sequence of B?-functions so that there exists a
sequence of positive numbers ¢, tending to o for which the inequality

(DI.-”’ [fn(x), fn+q(x)])p < én

holds for all » and ¢>o0. (We prefer here to use the distance D3 instead of
the distance Dpr). We shall prove that a function f(x) can be found such that

Do [ f (@), fulx)]) >0 for n — o,

This function f(zx) will automatically be a Bf-function, as the B?-set is B?-closed.
Our construction of f(z) is principally the same as that which BesicovircH used
in the proof of his theorem concerning the Fourier series of B®-a. p. functions;
the following arrangement of the proof is due to B. Jessen. We will construct
a function f(x) such that

(Dpp [f@), fa@))P = 260 for all n.

As the construction is analogous for x>0 and x <o, we confine ourselves to
state it for z >o0. Starting from the assumptions

T
(1) Tﬁw il,flﬁ,(x)—f,.+q(w)|f’dx<en for all #» and ¢ > o,
0
the task is to comstruct f(x) so that

T
(2) lim %flf(x) —fal@)|tdx <26, for all =
T— ®
0
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The construction of f(x) is indicated in Fig. 2, and we shall show that the
occurring positive numbers 7', < T, <--- can be chosen so that

Si(@) Sa(x) Ss(@) FAC) J5(@)
> + ' — ' :
o T, T, Ty T, T,
Fig. 2.
T
(3) %flf(x)—fn(x)lf dx < 26 for T > T, and all »
1]

which obviously involves (2). To this purpose we first set up a number of condi-
tions, arranged in certain groups, for the numbers T, 7,, ... which involve
(3) (and thereby (2)); afterwards, by help of (1), we shall show that these condi-
tions can be satisfied simultaneously.

Group 1. The inequality (3) is satisfied for » =1, if

T
%flﬁ(x)~,ﬂ(x)|ﬁdx<s, for T>T, |T)|
0
T
I
Tflf,,,(x)-—fl(x)lf’dx<al for T>T,
J

T

I 1

Tflf;(x)——fl(x)lf’dx<s, for I'>T,
0

ete. ete.
and further
T,
I Al
Tz—T1f|'ﬁ(x)~ﬁ(x)|de<el T2(11)|
T,
TR
I
T.—T, Tgflfs(x) —file)|Pdx <, T,(T,)|
T,
ete. ete.

For, if T> T, lies between Iy and T'p+1, we have

0f|f(x)—ﬁ(x)|fdx=f'+Tfl +fm+]f|f(x) —f@lds<

Tm—1 T

o(Ty—o)+(Ty—T)+ -+ &(Twn— T1) + 6, T < 28, T.
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Group 2. The inequality (3) is satisfied for » = 2, if
flf,, (@) de < & for T> 1T,

%flf,(w)—-j;(a:)lf’d:zz<492 for T>1T, |1y
0

ete. ete.
and further
. T,
I 7
7 [li—s@lkde<a T,(T)
0
Z)|Pdz < g Ty (Ts)
TA
7o | e = Alalrdz <a AVA
Ty
ete. ete.

For, if T>T, lies between T\ and Tn+1, we have

flf(w fs(wl"dﬂc-—f+f+ +f flf — fil@) |t de <

Tpoy Ty

8(2’ "‘0)+82(T T)+ +£g( _Tm—1)+83T<2EST

Group 3. Correspondingly it is seen that the inequality (3) is satisfied for
n =3, if

T
Er,flj;(w)—j},(x)li’dx<e3 for T> T,
¢

T
s (e -s@lda<e  for 7> 1, [I]

ete. ete.
and further

T, T
| [1r0 -s@ras+ [Ine—swka| <o [EELT
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T4
7 [V =A@l do < o oA
Ty
T
I
=7 [l —hlbiz<e, o)
Ty
ete. ete.

ete.

After each condition the 7, concerned are indicated in a rectangle. A com-
posed indication like T,(7,) means that the condition be understood as a claim to
T, after T, having been chosen. We observe that, in consequence of (1), every
condition is satisfied for all sufficiently large values of the number T, in question.
Since we have only a finite number of conditions for every 7, and since the
composed conditions have the form 7T,(...) where the 7I’s in the bracket have
lower indices than #, it is obvious that the numbers T, T, ... can be chosen
successively so that all the conditions are satisfied.

We finish the paragraph by showing how the theorem of BesicoviTcm con-
cerning B%a. p. functions can be deduced from the completeness of the B*-a. p.
space. From the PirsEvay equation for a B®-a. p. function it results immediately

o«
s . . . {4
that a necessary condition for a trigonometric series ) dne’“n”

1

to be the Fourier

-

series of a B®a.p. function is that > |4a|* is convergent. Besicovircr's
1

Theorem states that this condition is also sufficient.

Let then D\ 4n ¢'“"% be a trigonometric series for which D144 |? is convergent.
1 1

We shall prove that the series is the Fourier series of a B%a. p. function. We
consider the sum of the first » terms of the series

on(2) = A, 4% + A 4% ... 4+ 4,607

From the Parsevar equation for an o. a. p. function in the (trivial) case where
it is a trigonometric polynomial we have

. n+q
DB' [&n(w), Sn-l-q(x)] == Dpe [An+1 eiA,,_Hx + -+ An+q C‘A"-"qﬂ = I/ Z IAVIQ;

v=n-+1
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therefore, 3| A,|® being convergent, the sequence s.(x) is a B*-fundamental
sequence and thus (on account of the completeness of the B*a. p. space) B*

converges to a Ba. p. function f(x). The given series ZA,. ¢*"" must be the
1

Fourier series of this function f(x), since the Fourier series of f(x) can be
obtained as the formal limit of the Fourier series of s,(x) (i. e. s(x) itself) for
n— .

Incidentally the proof shows that the Fourier series of a B?a. p. function
B.converges to the function.

8§ 3.

The Incompleteness of the W»- and the W?-a. p. Spaces. Main Example 1.

In this last paragraph we finally prove the following
Theorem. The Wt-space and the Wt-a. p. space are incomplete for every p=1.

As the W?-a. p. space is a closed subspace of the W?-space it is sufficient
to show that the W?*.a. p. space is incomplete, since a W?-fundamental sequence
of W?-a. p. points which is not W?.convergent to any W?-a. p. point is neither
W#t.convergent to any W?-point. Thus we have to prove that for every p=1
there exists a W?-fundamental sequence of W?a. p. points which is not W?-
convergent, or, in other terms, that there exists a W?#-fundamental sequence of
Wt-a, p. functions which is not W?-convergent. We give a single example
~which can be used for all p by constructing a sequence F(x), Fy(z), ... of
Wt.a. p. functio'ns which is a WP-fundamental sequence for every p = 1, but which
is not Wr-convergent for any p. In order to show that the sequence is not
Wet-convergent for any p, it is sufficient to show that the sequence is not
Wet-convergent for p=1; for a sequence W?-converging to F'(z) for some p or
other would also W-converge to F(z), since Dw [F(x), Fr(x)] < Dw» [F(z), Falx)].

Main example 1. Let m,, m,, ... be a sequence of integers = 2, and let
hy=m; hy=mym, hy=mmymg,....

For n =1, 2,... we put

1 1
1 for vhn—zgxgvh,,+5 =0, t1, *2,..)

Sulx) =

o for all other «.
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The function f;{(x) thus consists of towers of breadth 1 and height 1 placed on
all the numbers =0 (mod A,), the function f,(z) of towers of the same kind
placed on all the numbers =o0 (mod h,), etc. The function f,(z) is periodic
with the period hs.

Further we put

Fuolx)=fi(x) + folx) + - + fulx)

(see Fig. 3 where m, = m,=my; =2 and n = 3).

Fy@) —1- . : - ' - A :
—hy —~3h, —hy —h, o hy hy 3h, hs
Fig. 3.

F (x) thus consists of towers of breadth 1 and height 1 placed on all the
numbers =0 (mod &,).

Fy(x) consists partly of towers of breadth 1 and height 1 placed on all the
numbers =0 (mod k,) but =0 (mod h,), and partly of towers of breadth 1 and
height 2 placed on all numbers = o (mod &,).

Fy(x) consists partly of towers of breadth 1 and height 1 placed on all
numbers =0 (mod k) but=o0 (mod k), partly of towers of breadth 1 and
height 2 placed on all the numbers = o0 (mod %,) but = 0 (mod %), and finally
of towers of breadth 1 and height 3 placed on all numbers = o0 (mod ).

The function F(x) is not only a W?-a. p. function for every p, but moreover
a bounded periodic function with the period h,.

We begin by showing that F,(x), F,(x),... is a W?.fundamental
sequence for every p=1, i.e. that to any &> o there exists an N= N (e, p)
such that Dyr [Fy(x), Fase(x)) <e for n = N and q>o0. Since (Fniq@) — Fp@)P
is periodic (with the period h.ni4), we have

p

Dye [Fy (@), Fate(@)] =V M {(Foiq @) — Fa@)p} =

P
VMU fas 1@ + fota@ + -+ farg@)P}.
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Hence in consequence of MiNkowskr's inequality

Dwe [Fa(x), Fasqlx)) = II}M{(ﬁxH(@)’} + 1jﬂ/M{(.ﬂun(x))”} +--+ ]I}M{(qu(@)"} =

l / ' / I
ha+1 hn+2 hn+q

) 4 p

V ! + ! - |/__~_I___,_
mlmz...mn-i-] mlmg...mn+2 mlmg...mﬂ-l-q
p r p
1 I 1
‘I/zn+1+l/2n+2+'”+ I/ ante’

where the right-hand side is less than the remainder R, after the nth term of
the convergent geometrical series

IA

I

1 2?
and hence is <& for n = N = N (e,p).

Next, we shall prove that the sequence F,(z) is not W-convergent.
Roughly speaking, the reason is that the periodic function Fy(x) (of the increasing
sequence F)(x)) has arbitrarily high towers for » sufficiently large which prevents
its W-distance from a fixed W-function from tending to o. Indirectly, we assume
that there exists a function F(x) such that

Fn( ) F(x).

F(x) being a W-function or, what is equivalent, an S-function, the norm Ds[F(x)|
is finite, i. e. a constant K can be found so that

z+1

le(t)|dt<K for all .

We choose a fixed N> K, and consider F,(x) for n = N. For the distance
Dy [F(z), Fu(x)] we have

Dw (F(z), Fu(z)l = Dw[F(x) — Fu(@)| = Ds(F(z) — Fu(@)) =

(m+%)hN
— I
—_— ’ wm > 3 — N 7\
}mlw |F — Fulz)| dx _'&m; Gt 1w le(x) Fulx)|de.

—(m+3)ry
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Integrating only over a part of the interval (—-— (m + ;) hy, (m + ;) kN), and
dropping the non-negative contributions from the rest of the interval, we get
vhy+}

Dw|F(a), Fala) %@(Eﬁi—mé [ 170 - F@laa.

" vhN—%

Now, since n = N, we have F,(x)= N in every one of the 2m + 1 intervals

(’l{hN—'-;a ‘l'hN'f'i);

and hence
vhy+1 vhy+} vhy+}
f|F(x)-F,.(x)|dxgfF,.(x)dx—f|F(x)|dx>N—K.
vhy—1 vhy—}% vhy—%

Thus we finally get for n = N

Dw|[F(z), Fulz)] = -—(N—K),

I
il
where the right-hand side is a (perhaps »very small«) positive constant indepen-
dent of 7, and this contradicts the assumption that

Dw[F(x), Fa(x)) >0 for n—>»,

As in main example 1, in all the main examples of the paper (as well as
of the appendix) a sequence of functions F,(x), Fy(x), ... of bounded periodic
functions with the periods h,=m,, hy=m,m,, . .. is considered where m,, m,,...
are integers =2. In most of the main examples further claims are put to
these numbers concerning the rapidity with which they tend to . In main
examples 1 and 2 (and main example IV of the appendix), however, no such
claim is made to the numbers m,, m,, . .., and we might as well have chosen
them all equal to 2; in order to get the greatest possible analogy between our
main examples, we have preferred not to make such a specialisation.
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CHAPTER III

Two Theorems on G?-Funetions and a Theorem on Periodic G-Points.

We begin by stating two theorems on the behaviour of G?-functions for
fixed G and variable p (of course p = 1), the first theorem dealing with G?-a. p.
functions, the other with G#-zero functions.

Theorem 1. If a function is G'-a. p. and belongs to the GPo-set for a p,> 1,
it is Gt-a. p. for p<p,

A bounded function being a G?-function for all p, the theorem has the
following

Corollary. A bounded G'-a.p. function is G*-a. p. for all p.

We next turn to the GP-zero functions. As regards the S*-zero functions
we have already mentioned the (trivial) fact that these functions for each p are
just those functions which are equal to o almost everywhere. In reality, the
following theorem on G?-zero funections therefore only deals with the cases
G =MW and G = B, but of course it also holds for G =S8.

Theorem 2. If a function is a G'-zero function and belongs to the GP-set
Jor a py>1, it is a GP-zero function for p < p,.

Evidently we have (of the same reasons as above) the following

Corollary. A bounded G'-zero function vs a Gt-zero function for all p.

The proofs of the two theorems are based on Houper's inequality. Let p,
be an arbitrary number, 1<<p,<p,, and f(z) an arbitrary function. In HoLpbER's

1 Pa
inequality we replace f(x) and g(x) by | f(#)|? and | f(x)]?, where the two positive

1 .
numbers p and g are determined so that ;;-*-&:pl and i + é= I, i.e.

=
I

We then obtain

b PP »—l

e LI P f |f(x)|dx]p°_ll-[b—£:l [ b|f(x)|”°dx];':

a
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and, letting the interval (a, ) vary and »passing to the limit« in accordance
with the definitions of the different distances, we get for G = 8§, W or B the
inequality

Po— D 1

(I) (DG"' [f(x)])p. é(Del [f(x)])F. (DGPv [f(w)])—’_’—': 1’0.

Proof of Theorem 1. Let f(x) be a function satisfying the assumptions
of Theorem 1, i. e. a G'a.p. function and a GP-function for a p, > 1. Let
0.(x) be a Bocuxgr-FrsEr sequence of f(x). Then De[f(z), g,(x)] >0 for g o=
and (as mentioned in Chapter I)

Dem [0(x)] = Daro [ f()).
For an arbitrary p», between 1 and p, we have because of (1)

—1
Po—P: P Po

(Do [f@), 0,@))? < (Dgr [ f@), 0,@))P—1 - (Damo | f@), o, @)Po—1 " <
Po—P p—1

(Den [ f@), 05@))P" - (Da [ f@)] + Domlo,@))»—1" =<

PP p—1

(De [f@), 63@))»" - (2 D [ fl])rt ™

where the right-hand side tends to o for ¢ — o, since Dg[f(x), 6,(x)) - 0.
Consequently Den [ f(x), 0,(x)] ~ 0 so that f(x) is a G?-a. p. function.

Proof of theorem 2. Let f(x) be a function satisfying the assumptions
of Theorem 2, i.e. a G'-zero function and a GP-function for a p, > 1. For an
arbitrary p, between 1 and p, we have because of (1)

Po—P 1

(Do [f@)) < (Dot [ f@))P— - (Dam [ f@)Jp1 =0,
i.e. Dgn [f(x) == o.

Remark. Using the theory of Fourier series (in particular the uniqueness
theorem) we may consider Theorem 2 as a special case of Theorem 1. In fact,
a Gf-zero function being the same as a G?-a. p. function with the Fourier series o,
the function f(x) of Theorem 2 is on account of Theorem 1 a G?-a.p. function
for p<p,, and having the Fourier series o it is therefore a G?f-zero function
for p < p,.

Now we pass to a theorem of a somewhat different character which will
be useful for us later on.
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Theorem on the periodic points. If f(x) is a 1-integrable periodic function,
and if (for a p>1) the G'-point >around<« f(x) contains any GP-function at all,
then the function f(x) itself is p-vntegrable.

In other words: A 1-integrable periodic function f(x) is a G#-function for all
those p for which there exist G?-functions in the (periodic) G'-point around f(x).

Proof. Since Dpr = Dgr, a G?-function is also a Bf-function, and the G-
point around f(x) is contained in the B-point around f(x). Therefore it is suffi-
cient to prove the theorem for G = B. Hence we assume that there exists a
B-zero function j(z) such that f(x) + j(x) is a Bf-function, and we have to prove
that f(x) is p-integrable. Let the period of f(x) be b —a, and let T=1»(b — a)
where v is a positive integer. Using first the inequality

| /(@) + g @) | = | (f@)v + (g@)x]

and afterwards MiNgowskl's inequality, we have for an arbitrary fixed N>o

l/z_lf'flf(x) + j(@)|Pdx gl/ ﬁ'fl(f(x))ﬁ'"’ (@)t dz =
oy T

» r

T
3T Hf@)x|tdxe — ]/ ﬁ,fl(j(ﬁ))le' dx.
=T

Now, as |(j@)x| is < N as well as < |j(x)] we have |(j@)n|? < N*—|j(z)].
Hence

1
= | |fl@) + j(@)|?dz =
|/ 1
? T
l/—_-—fl (fa)w|tde— N _51/ ﬁ»[lf(x‘)ldl‘

Letting » >, we get, since j(x) is a B-zero function,

Dan[f(@) +j (@) 2 %i 2 [ 1@l de.

| -
|
N -
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Finally, letting N - o, we get the inequality
p

/T F
Dar [flx) + j (@) = l/ f |f(@)|# dz = Dgp [ ()

b—a
£t

which shows in particular that f(x) is p-integrable.

We add two remarks on the periodic G-points.

1°. A periodic G-point contains essentially only ore periodic function, or

precisely speaking: Two periodic functions in a G-point are identical almost every-
where. For they have the same Fourier series in almost periodic and therefore
in periodic sense; consequently they have a common period, and further they are
identical almost everywhere because of the uniqueness theorem on p-integrable
periodic functions with a fixed period. A period of some periodic function in a
periodic G-point is called a period of the G-point.

2°. Every periodic G-point with the period . has a Fourier series of the form:

—0

where all the Fourier exponents are integral multiples of the number 277r We

shall prove that the converse is also true, i.e. that every G-point which has a
Fourter sertes of the form

w0

=|\

T
nx

2 An e:!

is a periodic G-point with the period h. liet o,{x) be a Bocuxner-FEsir sequence
of the Fourier series. All the Fourier exponents being integral multiples of the

number 2—1:5' the Bocuner-FEsir polynomials are periodic with the period h.

The sequence o,(x) being G-convergent is in particular a G-fundamental sequence.
As all the o, (x) are periodic with the period h, we have

Dy o, (), 06 (®)] = D [0,(®), 0, (x)] (G= Sh, W, B?).
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Thus o,(z) is also a p-fundamental sequence and therefore p-converges to a
p-integrable periodic function f(x) with the period k. Since, on account of

D¢ [f(2), 0(@)) = Dy [f(2), o)) (G = 8%, W?, BY),

the Bocunkr-FEskr sequence g,(x) also G-converges to f(z), the function f(r)
belongs to our G-a. p. point.

We remind in this connection of the fact (stated in Chapter I), that the
G-limit periodic functions can be characterised as G-a. p. functions with Fourier

series of the form
zAneidrﬂz

where all the Fourier exponents are rational multiples of a number d. Evidently
the same characterisation holds for the G-limit periodic points.

The theorem on the periodic points involves in particular that the upper
bound P, for the p for which »the periodic representativec f(x) of a periodic
G'-point is p-integrable is equal to the upper bound P, of the p for which the
G'-point contains G?-functions. It may be of interest to show that this (more
special) result can also be derived by help of Fourier series. Indirectly, we
assume that the first upper bound P, is less than the other P,. We choose p,
so that P, <p, < P,., Then there exists a GP-function g(x) in the G!'-point.
Let now p; be chosen so that P, < p, <p,. The function g(z), lying in the
periodic G'-point, is G'-a. p. and, being also a GP-function, is simultaneously
a GPea. p. function in consequence of Theorem 1. The Fourier series of the
function g (x) being that of the periodic G'-point has the form

n
ta—-nz

Zd,e *
The GP:-a.p. point around g(x) having the same Fourier series is therefore, in
consequence of Remark 2° ) a periodic GP-point and thus contains a p,-integrable
periodic function A(x). The two periodic functions f(z) and k(z) both lying in
our G'-point must, in consequence of Remark 1°, be equal almost everywhere.
Consequently f(x) {as h(x)) is a p,integrable function, in contradiction to p,> P,
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CHAPTER 1V.

The Mutual Relations of the S»-Spaces and the S7-a. p. Spaces.

8 1.

Introduction.

Since Dgr = D for p=1, every G?function is also a G'-function, and
every G?-zero function is also a G'-zero function. Consequently every G?-point
is entirely contained in a G'-point. In the S-case however, as mentioned above,
the S?-zero functions have an especially simple character, being the same for
every p, namely the functions which are o almost everywhere. Consequently
every St-point is itself an S-point (and not only contained in an S-point). We
start from an S-point and will investigate its behaviour as regards the Sf-spaces
and the S?-a. p. spaces. We call an S-point alive at the time p, as to the
Stspaces, if the S-point is an SPr-point. Otherwise it is said to be dead at
the time p, as to the S?-spaces. If we know, whether an S-point is alive or
dead at the time p, as to the S?-spaces, we say that we know the behaviour
of the S-point at the time p, as to the S?-spaces. If an Spoint is alive at one
date, it is also alive at all the previous dates. The upper bound P of all p
for which the S-point is alive is called the lifetime of the S-point as to the
St-gpaces. Beforehand, nothing can be said about the behaviour of the S-point
at its moment of death (i.e. at the time P). If the S-point is S-a. p., we can,
analogously, consider its lifetime as to the S?-a. p. spaces and its behaviour as
to the S?-a. p. spaces in the moment of death. In consequence of Theorem 1,
Chapter III an S-a.p. pornt has the same lifetime as to the S*-spaces and as to
the S?-a.p. spaces. In the following two paragraphs we shall state all the
possibilities which may occur.

§ 2.
S-Points which are not S-a. p. Points.

We consider an arbitrary S-point which is not S-a. p. and denote, as above,
its lifetime as to the S?-spaces by P. It will be proved by examples that the
following possibilities (which are all those imaginable beforehand) may occur:
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1. The lifetime P= oo,

2. The lifetime P is arbitrary finite, 1 = P <.
2 a. The point is dead at the time P as to the S?spaces (P>1).
2b. The point is alive at the time P as to the Sf-spaces (P=1)

Example to 1.

We define f(x) for —o <zx<® by

I foro=x=1
Sle)=

- lo for all other .
Obviously, f(x) being bounded is an S?-function for every p=1. And that f(z)
is not S-a.p. is an immediate consequence of Theorem 1 of Chapter I, as f(x)
has no relatively dense set of S-translation-numbers belonging for instance to ;—,
the equality Ds[f(x + 1), f(x)] =1 being valid for |z]|= 1.

Thus the S-point around f(x) is not S-a. p. and has the lifetime P = oo,

Example to 2 a.
P being an arbitrary number, 1<P<, we define f(r) for —c <x<oo by
1

1\p
(—)' foro<z=1
X

flz) =

o for all other x.

The function f(z) is an S?-function for p <P but not for p = P, since

(Dgr [ flx ]}t = fl (i)ll:dw

1
and f (i) dx is convergent for ¢ <1 and divergent for « = 1. Further f(z) is
0

not S-a. p., as
1 1

Ds(flx + 1), f(:r)]=f(:—;)pdx(> o) for |z|=1.

1]

Thus the S-point around f(x) is not S-a. p., has the lifetime P and is dead
at the time P.
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Example to 2 b.
P being an arbitrary number, 1< P< o, we define f(x) for — o <x<wo by

1
I

Fla) = (m)P foro<ar=sac<i
o for all other x.

The function f(x) is an S?-function for p = P, but not for p > P, since

(Dsplf@lp == [ (W)"dx

«
and f (——I———;) dz is convergent for ¢ =1 and divergent for ¢ > 1. Further
x(log x)
0

f(x) is not S-a.p. as

¢ 1
=2 {—L1_)* >
Ds,[f (@ + ), f(@)] af (x (log.r)”) dz(>0) for |¢]2a
0
Thus the S-point around f(x) is not S-a. p., has the lifetime P and is alive
at the time P.

§ 3.
S-a. p. Points. Main Example 2.

Next we consider the S-a. p. points. As mentioned in § 1, each such point
has the same lifetime as to the SP-spaces and the SP-a. p. spaces. We will show
that the following possibilities (which are all those imaginable beforehand) may
occur:

I. The lifetime P=ow,

2. The lifetime P is arbitrary finite, 1 = P<oc,

2a. The point is dead at the time P as to the Sr-spaces (P> 1).
2 b. The point is alive at the time P as to the SP-spaces.
2ba. The point is alive at the time P as to the SP-a. p. spaces
(P=1).
2bB. The point is dead at the time P as to the SP-a. p. spaces
(P>1).

-The case 2 b, i.e. that of an S-a. p. point which is an SP-point but not an
SP.a. p. point, is the only not trivial one.
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Example to 1.
Let f(x) be a bounded periodic function. Then the S-point around f(z) has
the demanded properties.

Example to 2 a.

Let P be arbitrarily given, 1< P<< . We consider the periodic function
1

f(x) with the period 1, given in the period interval o <z =< 1 by f(z) =(;%)P'

Then the S-point around f(x) has the demanded properties.

Example to 2 ba.
Let P be arbitrarily given, 1 < P <. We consider the periodic function

flx) with the period @ < 1 which is given in the period interval o < x =a by
1

Sfla)= (———I—,)ﬁ. Then the S-point around f(x) has the demanded properties.
z (log )

Example to 2 bf. Main example 2.

P being an arbitrarily given number, 1<P< o, we shall indicate a function
F{x) which is S-a. p. (even S-limit periodic) and an SP-function, but not an S¥-a. p.
JSunction. The S-point around F'(z) is then of the type desired.

Let m,, mg, . .. be arbitrary integers =2, and (1>) &>¢&>--- a decreasing
sequence tending to o. In this main example, by a tower of type » we shall

understand a tower with the 1-integral ¢, and the P-integral 1. The
r
breadth b, of a tower of type » is then &£~ so that b,~0 for n—>o and b, <1

for all =.
We put
hy =my, hy = my my, hg=m, my my, . ..
and, as in main example 1, we construct a sequence F; (), Fo{x), . . . of bounded
periodic functions with the periods &y, %y, . ... The construction appears from

the following array (compare with main example 1).

F,(x): On all numbers =o (mod h,) is placed a tower of type 1.

Fy(z): On all numbers =0 (mod &,) but =0 (mod h,) is placed a tower of type 1.
=0 (mod hy) . 2.
Fy(z): On all numbers =0 (mod h,) but =0 (mod h,) is placed a tower of type 1.
=0 (mod h;) but =0 (mod &g . . . . . . . . . . .2
=0 (mod h,) . 3.
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Fu(z): On all numbers =0 (mod k,) but =20 {mod &,) is placed a tower of type 1.

=0 (mod h,) but =0 (mod hg) . . . . . . . . . . . 2.
=0 (mod k) but 0 (mod ). . . . . . . . . .. 3.
=0 (mod An—1) but =0 (mod k) . . . . . . . . n—I
=0 modky) ... ... ..o

ee Fig. 4 where m;=mg=my=2 and n=3). Since b, <1= — <A, two towers
(See F h d3Sb<’;‘Iltt

never overlap.

ﬂﬂﬂJLﬂﬂHJL

~—h, —3h, —hy —h, Ty 3h,

Fig. 4.

The function F,(x) is obviously a bounded periodic function with the
period h,. We shall show that F,(x) S-converges to a function F (x) whose con-
struction appears from the following array.

F(x): On all numbers =0 (mod &,) but =20 (mod h,) is placed a tower of type 1.
=0(mod h;) but =0 (mod k) . . . . . . . . . . .. 2.
=0 (mod k) but =0 (mod 2y) . . . . . . . . . . .. 3.
=0 (mod k) but =0 (mod Ayi1) - . . - . . . . . .. n.

The function F(x) differs from IF,(x) only as regards the towers on the
numbers =0 (mod %,.+1). As the breadth of the tower placed on o in Fy(x) tends
to o for » — =, while in F(x) there is no tower on o, it is plain that

F(x) = lim Fy(z) for all x = o.

n—o

We shall prove that
Fo(x) 2 F(a).
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On the numbers =0 (mod hn+1), in Fn(x) there are standing towers of the type n,
while in F(x), with exception of the number o, there are standing towers of the
types =+ 1,2+ 2,.... Hence, denoting by = + ¢(m) (qim)= 1) the type of
the tower in F(x) placed on a number m =0 (mod A,+1) but =0, we have for
m=0 (mod hny1)

m+ % m + ';‘ m+ %
le(x) — Fo(@)]|dz = fF(x) dx + an (@) dx =
h by I
m— -2— m—;— m——‘;

[en for m=o
l8n+q(m) + én fOl‘ m=o0 (mod hn+1) but =*=0,

while for m =0 (mod %,) but = 0 (mod hn+1)

Thus we have

le(x) — Fu(x)|dx < 2¢&x for all m =0 (mod h,).

Since an arbitrary interval of the length h, is contained in an interval

m——%‘__{xém + % (m=o0 (mod k),
we get
m+%‘
f|F(t)—E.(t)|dt < 48, for all z,
hy
s

so that Dg, [F(x), Fa(x)] = ihi" which tends to o for n— . Hence F,(z)~ F(x),
1

and F(z) is therefore an S-a.p. function.
The function F'(x) is obviously an SP-function, as all the towers of F(x)
have the P-integral 1 and therefore

)
m+ 2

f (Fa)dez=1 for all m=o0 (mod k)

2y

me—
2
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and hence
Ry
z+ Y

f (F®)Pdt<2 for all z,

3

&Le——

2

Dyp [F (ol él/i -

Finally F(z) is not an SP-a.p. function. Otherwise by Theorem 1 a,
Chapter- I, the function F'(z) being the S-limit function of the periodic functions
Fo(z) with the periods hn the number &, should be a »fine« S;-translation
number of F(x) for »large« n. This, however, is impossible. In fact, by the

so that

translation h, the interval —%é z é%l containing o is translated into the

interval —-% +th=x=s % + ha containing k., and in the first interval F'(x) has

no tower while in the second it has a tower with the P-integral 1, so that

P
Dshp [Flx + h), Flx)] = ‘/hl
1 1
for every hs.
Besides, in order to prove that F'(x) is not SP-a. p., we could have confined
ourselves to apply the general Theorem 1 of Chapter I instead of the Theorem
1 a (dealing with limit periodic functions). In fact, for every z with a modulus

h
= —21 we have

DgpFle+9), Faz |/ 5

since the interval — :—"hl =x= ihl of length ghl in which F'(x) has no tower

will be translated by z into an interval containing at least one of the towers
of Fl(z).

We remark, that the function F'(x) constructed above is of similar character
as a type of examples of o.a.p. functions treated by Torprirz (Mathematische
Annalen, Bd. 98).
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CHAPTER V.

The Mutual Relations of the W»-Spaces and the Wr-a. p. Spaces.

§ 1.
Introduction.

In this Chapter we shall study the mutual relations of the W?-spaces and
the WP?-a. p. spaces, p ranging over all values = 1. Of all the W?-points (p = 1)
the W-points are the most comprehensive, and every WP-point is contained in a
W-point. We therefore consider an arbitrary W-point and shall investigate how
this W-point behaves as to the Wr-spaces and the Wr-a. p. spaces. First we
consider the W?-points (» > 1) contained in our W-point, but subsequently also
the single functions of the W-point. In our characterisation of the W?-points
and of the functions in the W-point only the W?-spaces and the W?r-a. p. spaces
are applied (and not the other types of spaces). Before carrying out our in-
vestigations we must have some knowledge about the W-zero functions.

§ 2.
W-zero Functions.

Let f(x) be a W-zero function. We denote the upper bound of the p for
which f(r) is a WP-function by P. In consequence of Theorem 2, Chapter III
the function f(x) is a WP-zero function for p<<P so that P can also be defined
as the upper bound of those p for which f(x) is a W?-zero function. We will
show that the following possibilities (which are all those imaginable beforehand)
may be realised:

1. P=w,
2. P arbitrary finite, 1 < P < o,
2a. f(x) is not a WPfunction (P> 1).
2b. f(z) is a WP-function.
2ba. f(x) is a WPzero function (P = 1)
2bB. flx) is not a WP-zero function (P> 1).
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Example to 1.

A quite obvious example is f(z)=o0 for all . Another example is a function
which is bounded and tends to o for x >+ .,

Example to 2 a.
1

fla) = (i); foro<z=1
o for all other x.

Example to 2 ba.
1

I 1
)P foro<z=a<1

Slo) = (w (log z)*

o for all other x.

Example to 2 b§.

We construct a function f(z) in the following way: Let &, &, ... be a
sequence of positive numbers =1 which tends to 0. On the number n(r=1,2,...)
a tower with the 1-integral &, and the P-integral 1 is placed. As the breadths
of the towers are =1, they do not overlap. f(x) is a W-zero function as

z+1

[rrdt>0 for - .

Further f(z) is a WP-function, but not a W¥-zero function as

3

+

(f@)Pdx=1 for n=1,z2,....

1
K]

[

| —

n

There exists an infinite number of such functions which do not differ by
WP.zero functions (i. e. do not belong to the same WP-point), for instance the
functions a-f(x), where a is an arbitrary complex number = 0 and f{z) the
function constructed above.

It may be observed that a function f(x) which is a W-zero function and a
WP. but not WP-zero function can never be a WP-a. p. function. In fact, if it
was WP-a, p., it would, as it has the Fourier series o, be a W”-zero function.
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§ 3.

W-Points in General.

In this paragraph we shall state the laws for the W?-points (p > 1) and
the functions in a W-point. A single proof belonging to this investigation will
be postponed to § 6 because of its particular character. In § 4 and § 5§ examples
are given which serve as existence proofs for the different types of W-points.

We consider an arbitrary W-point. We call the point alive at the time
P, a8 to the W?Pspaces, if it contains at least one W?-point, or, what is
equivalent, if it contains at least one W7 -function; otherwise the W-point is said
to be dead at the time p,. If the W-point is W-a. p., we define in an analogous
way the meaning of the point being alive or dead at the time p, as to the
W?.a. p. spaces. If we know, whether the W-point is alive or dead at the time
p: a8 to the WP-spaces (WP-a. p. spaces) we say that we know its behaviour
at the time p, as to the WPspaces (WP-a. p. spaces). If the W-point is alive at
one date, it is alive at all the previous dates. By the lifetime P of the
W-point as to the W?-spaces we understand the upper bound of those p for
which the W-point is alive as to the W?-spaces. If the W-point is W-a. p. in
an analogous way its lifetime as to the WP-a. p. spaces is defined. In consequence
of Theorem 1, Chapter III a W-a. p. point has the same lifetime as to the WP-spaces
and as to the WP?-a. p. spaces. Beforehand, we cannot say anything about the
bebaviour of the W-point at the moment of death as to the WP-spaces and
eventually the W?-a. p. spaces.

At first we study the W?-points in our W-point. Let p>1 be arbitrarily
given. The set of all the W?-functions in the W-point, if such functions exist,
divides into a set of W?-points. These W?-points are called the p-descendants
of the W-point. In consequence of example 2 bf of § 2, if there is one p-
descendant, there will be an infinite number of them, since the sum of any function
a f(@), a+o0, of this example with p instead of P (or rather the W ”-point around
this function) and a fixed p-descendant is again a p-descendant. Let p, and p, be
two numbers, 1 <p, <p,, We consider a p,-descendant of the W-point. The set
of Wr-functions in the p,-descendant, if such functions exist, divides into a set
of Wr.points which are called the p,-descendants of the p,-descendant. They are
at the same time p,-descendants of the W-point. We will prove that only one of
the p-descendants of the W-point can have py-descendants for any p, > p,, so that
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all the p,-descendants of the W-point (if existing) are p,descendants of one and
the same p,-descendant. In fact, the difference of two functions, each taken
from its p,-descendant, is a W-zero function and a W?P-function, and hence, in
consequence of Theorem 2, Chapter III, a WP-zero function for p < p,, in par
ticular for p =p,. This »generating« Wr-point is called the p,-generator;
all the other p,-descendants die at the time p, at the moment they are »born«
(i. e. come into existence as points) and are therefore called the stillborn
brothers of the p,-descendant. The p,-generator is defined for 1< p, < P.

If the W-point from which we are starting is a W-a. p. point the p,-generator
{(1<p <P) wil be WP-a.p. 1In fact, the p,-descendants of the p,-generator
(ps > p,) consist of WP-functions which are simultaneously W-a. p. functions;
thus, in consequence of Theorem 1, Chapter IIl these functions are Wr-a. p.
and, lying in the p,-descendants of the p,-generator, they also lie in the p,-ge-
nerator itself, which is therefore W».a. p. In a W-a. p. point at most one of the
p-descendants can be W?a.p. (so that for p < P the p-generator is the onmly
W?.a. p. p-descendant). For a W?”-a.p. point in the W-a. p. point has the same
Fourier series as the W-a. p. point itself, and, in consequence of the uniqueness
theorem, there exists only one W”-a. p. point with a given Fourier series.

In the preceding we have used »biological« phrases. We will also give
another wethaphor of the situation. We speak of a W-rocket, the »compo-
nents¢< of which at the time p are the p-descendants of the W-point; the p-ge-
nerator is called the p-nucleus and the stillborn brothers of the p-generator
are called the p-sparks of the rocket (see Fig. 5, which suggests the »evolution«
of the W-point »in the course of time«, i.e. for increasing p).

In connection with the figure we remind of certain facts given above: If
the W-point is W-a.p., the p-generator is W?a.p. for every p, 1 <p <P,
whereas no one of its still-born brothers is. Further, if the W-a. p. point is alive
at the moment of death P as to the W?-spaces, so that there exist P-descendants,
at most one of them is WPa.p. As we shall sec in § 5, some of those Wea. p.
points have a WP-a. p. P-descendant, whereas others have not.

Next we consider the single functions in the W-point. A function f(x)
is called alive at the time p, as to the W?-spaces, if f(z) is a W?-function;
otherwise f(x) is said to be dead at the time p,. If the W-point is W-a. p., we
define in an analogous way what is to be understood by f(x) being alive or
dead at the time p, as to the W?”-a. p. spaces. The upper bound of the p for

6
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which f(x) is alive as to the W7-spaces is called the lifetime of f(x) as to the
WP-spaces. If the W-point is W-a. p., the lifetime of f(x) as to the W"-a. p.
spaces is defined in the analogous way. In this case, in consequence of Theorem
1, Chapter TII, the function f(x) has the same lifetime as to the W?-spaces and as
to the W?-a. p. spaces. ‘

We start our investigations about the functions in a given W-point by
mentioning, without proof, that in every W-point there exists a through

W-point

function as to the W?”- and the W?”-a. p. spaces, i. e. a function which is a
W?-function for just those p for which the W-point contains W?’-functions and
a W?”a. p. function for just those p for which the W-point contains W?"a. p.
functions. If the W-point is alive at the time P as to the W?™a. p. spaces, or
is not alive at the time P as to the W?-a. p. spaces but is alive as to the W’-
spaces, it is obvious that there exists a through function; in fact an arbitrary
one of the WPa. p., respectively WP-functions contained in the W-point will be
a through function. The problem is to show that there exists a through function
also in the case where (if P < oc) the W-point is dead at the time P as to the
W?r.spaces. In order to prove this, it is of course sufficient to show that there
exists a through function as to the W?”spaces, since such a function, if the
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W-point be a W-a. p. point, will at the same time be a through function as to
the W?*-a. p. spaces. We postpone the proof to § 6. Taking the existence of
a through function for granted, we shall now give a complete account of the
functions lying in our arbitrarily given W-point, whose lifetime P (1 < P <o)
and behaviour at the moment of death P (if P <) as to the W”-spaces and
the W?-a. p. spaces are assumed to be known. (What possibilities may occur for a
W-point in this respect will, as mentioned in § 1, be discussed in § 4 and § 3).
By the investigation of the functions in our W-point we distinguish between the
W-point not being W-a. p. or being W-a. p.

I. The W-point is not W-a.p. Denoting the lifetime of a function f(z)
in the W-point as to the W?”-spaces by P,, there are the following possibilities.
The lifetime P, may be an arbitrary number, 1< P,< P, and for any fixed choice
of P, there are, if P,<oc, the two possibilities:

1. f(x) is dead as to the W?-spaces at the time P,
2. fl(x) is alive as to the W7”-spaces at the time P,,

with exception, however, of the case P, =1 where of course only 2. can occur,

and the case P,= P where 2. can only occur if the W-point is alive as to the
W?-spaces at the time P.

Proof. Let g(z) be a through function in the W-point as to the W”-spaces.
In the special cases where Py= P=, or P,= P < and moreover the given
W-point and the desired function f(x) have the same behaviour as to the W?-
spaces at their common moment of death P=P,, we may as f(z) simply use the
function g(x) itself. In all other cases we obtain, on account of the linearity
of the W?sets, a function f(x) of the type wanted by adding to g(x) a W-zero
function of lifetime P, which in case of 1. is not a W ».function, and in case
of 2. is a W P.function.

We observe that for 1 < P, < P all the functions in the P,-sparks are of
the type 2.

II. The W-point is W-a.p. The Ufetime P, of a function fl(x) in the
W-a. p. point as to the W?- and the W?.a. p. spaces may be an arbitrary number
in the interval 1 = P{ < P, and for every fixed choice of P, there are, if P, < oo,
the following three possibilities:
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1. f(x) is dead as to the W?-spaces at the time P,,

2. f(x) is alive as to the W?"spaces, but dead as to the W”-a. p. spaces at
the time P,

3. flx) is alive as to the W?P-a. p. spaces at the time P,

with exception, however, of the case P,=1 where of course only 3. can occur,
and the case P,= P where 3. can only occur if the W-a. p. point is alive as to
the W?*.a. p. spaces at the time P, and 2. can only occur if the W-a. p. point is
alive as to the W?-spaces at the time P.

Proof. Let g(x) be a through function in the W-a.p. point as to the
W?- and the W?”.a. p. spaces. If P,=P=oc, or P,= P < oc and moreover the
given W-a.p. point and the desired function f(x) have the same behaviour as
to the W?-spaces and the W?”a.p. spaces at their common moment of death
P=P, we may as f(x) simply use the through function g(x) itself. In all
other cases we obtain, on account of the linearity of the W7-sets, a function flx)
of the type wanted by adding to g(z) a suitable W-zero function: We get a
function f(x) of the type 1., by adding to g(x) a W-zero function with the life-
time P, as to the WP”spaces which is not a W¥.-function. Similarly we get a
function f(x) of the type 2. by adding to g(x) a W-zero function which is a
W B-function but not a Wrizero function (since, in consequence of the uniqueness
theorem, two WP.a. p. functions in our W-a. p. point must differ by a W¥i.zero
function). Finally we get a function of the type 3. by adding to g(x) a W-zero
function which has the lifetime P, as to the W?-spaces and is a WP -zero
function.

We observe that for 1 < P, < P all the functions in the P,-sparks are of
type 2.

§ 4.
W-Points which are not W-a. p. Points,

In this paragraph we shall consider the W-points which are not W-a.p.
points, and we shall investigate what possibilities may occur for such points
concerning as well the lifetime P as the behaviour at the moment of death as
to the W?”-spaces. We shall show that all possibilities which are imaginable before-

hand may occur, viz.
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1. P=oc.

2. P arbitrary finite, 1 =P < .
2 a. The point is dead as to the W?-gpaces at the time P (P>1).
2b. The point is alive as to the W?spaces at the time P (P =1).

A (trivial) example to 1. with the lifetime o is first given. Next, in order
to get examples of W-points which are not W-a. p. and have an arbitrarily given
finite lifetime P and a given behaviour at the moment of death as to the W?-
spaces, we add the W-point of the first example to a periodic W-point with the
lifetime P and the desired behaviour at the moment of death as to the W?*-
spaces. (In consequence of the theorem of Chapter IIT on the periodic G-points,
the point »behaves« entirely as the periodic function contained in it). By this
addition, the almost periodicity of the periodic W-point is destroyed, whereas its
lifetime and behaviour at the moment of death as to the W*-spaces are preserved.

Example to 1.

Let
1 for ofz<w
flz)=
—1 for ~w<z<o.
The function f{x) being bounded is obviously a W?-function for every p; further
flz) is not W.a. p., as

T ]

.1 . .1 _

Tl_xflm T ff(z)dx =1 while Thflw T ff(x)dx— 1(F1).
[0 -—T

The W-point around f(z) is thus not W-a. p. and has the lifetime P= o as to

the W?”.gpaces.

Example to 2 a.

Let P be an arbitrary number, 1 < P <o. Let f(x) be the function of
example 1, and h{z) a periodic function which is p-integrable for p <P but
not P-integrable. Denote by % the W-point around f(z) and by B the W-point
around h(z). Then the point & =% + B will not be W-a. p., will have the life-
time P as to the W”spaces and be dead at the time P. That € is not W-a. p.
results from the linearity of the W-a.p. space, B being W-a.p. and ¥ not
being W-a. p. Further the point € contains the function f(z) + h(x) which is a
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WP function for p<P. Finally no WP»-function lies in the point €; in fact the
functions in € can be obtained by adding to f(z) all the functions in B, and
f(x) is a WP-function, whereas, in consequence of the theorem on the periodie
points, no function in B is a WP2-function.

Example to 2 b.

Let P be an arbitrary number, 1 < P <. Let f(z) be the function of
example 1, and h(x) a periodic function which is P-integrable but not p-inte-
grable for p>P. Denote by ¥ the W-point around f(x) and by B the W-point
around h(x). Then the W-point € =% + B will not be W-a. p., will have the
lifetime P as to the W?-spaces and be alive at the time P. The proof is quite
analogous to that of example 2 a: From the linearity of the W-a. p. space it
results that € is not W-a. p., the point B being W-a. p. and U not being W-a. p.
Further the point € contains the function f(x) + h(x) which is a WP-function.
Finally for p> P no WP”-function lies in the point €, as this latter point consists
just of the functions obtained by adding f(x) to all the functions in B, and f(x)
is a W”-function, whereas, by the theorem on the periodic points, no function
in B is a W”-function.

§ s

W-a. p. Points. Main Example 3.

In this paragraph we consider an arbitrary W-a. p. point, whose lifetime as
to the W?- and the W?-a. p. spaces is denoted by P, and shall show that also
here all possibilities which are tmaginable beforehand may occur, viz.

1. P=o,
2. P arbitrary finite, 1 £ P < .
2a. The point is dead as to the W”-spaces at the time P (P >1).
2b. The point is alive as to the W?”-spaces at the time P.
2ba. The point is alive as to the W?”-a. p. spaces at the time
P(Pz=1).
2bB. The point is dead as to the W*-a. p. spaces at the time P
(P> 1)
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Example to 1.

The W-point around a bounded periodic function.

Example to 2 a.

Let P be an arbitrary number, 1 < P < o, and h(x) a periodic function
which is p-integrable for p < P but not P-integrable. Then the W-point around
h(z) has the desired properties. Firstly, it is obviously W-a. p., h(z) being W-a.p.
Secondly, it contains a W?”-a. p. function for p < P, viz. h(z). And thirdly, by
the theorem on the periodic points, it does not contain any W¥-function.

Example to 2ba.

Let P be an arbitrary number, 1 < P < o, and kh(z) a periodic function
which is P-integrable, but not p-integrable for p > P. Then the W-point around
h(x) has the wanted properties. Firstly, the W-point is W-a. p., h(x) being W-a. p.
Secondly, it contains a WPF-a. p. function, viz. h(x). And thirdly, by the theorem
on the periodic points, it does not contain any W?-function for p > P.

The case 2 bf remains. A rather complicated construction is necessary in
order to show that this case can be realized.

Example to 2 bB. Main example 3.

Let P be arbitrarily given, 1 < P<o. We wish to construct a function
F(x) which is a W*-a. p. function for p < P and a WP-function, but such that the
W-point around F({x) does not contain any WP-a. p. function. Then the W-point .
around F'(x) will be an example to 2 bf.

Let m,, m,, ... be a sequence of odd numbers = 3, increasing so strongly

that the product
( : )( : )( : )
I——Jr—=){r—) -
ny Mg myg

is convergent (> 0). As usually we put
hy=m;, hy=mym, hy=mmems, ....

Further let ¢,, ¢, . .. be a sequence of numbers such that 1 >¢ >¢,---—0. By
a tower of type n we understand a tower with the 1-integral & and the
P-integral 1. Since ¢, < 1, the breadth of a tower of type » is less than I.
In the following, the letters », u, 7 denote integers. We construct a sequence
of functions F,(x), F,(x), . . . in the following way:



84 Harald Bobr and Erling Fsiner.

F,(x): In every interval vh, =z < (v + 1)k, a tower of type I is placed on
the central one of the subintervals pu =2 < p + 1.

F,(x): Is obtained from F,(x) by »filling up« the central' one of the sub-
intervals puh, < x <(u + 1)h, of every interval vh, =< =< (v + 1)h, by towers of
type 2, i. e. by placing a tower of type 2 on every subinterval n=x <7+ 1 of
the mentioned central interval where no tower of F,(x) is standing.

Fy(x): Is obtained from F,(x) by »filling up« the central one of the sub-
intervals phy <z < (u + 1)h, of every interval vhy < x < (v + 1) h; by towers of
type 3, i.e. by placing a tower of type 3 on every subinterval n <z <9 + 1 of
the mentioned central interval where no tower of F,(x) is standing.

Fri1(zx): Is obtained from F,(x) by »filling upe« the central one of the sub-
intervals ph,<x<(u+1)hs of every interval vhns =z <(»+ 1)hai1 by towers of
type n+1, i.e. by placing a tower of type »-+ 1 on every subinterval g =x<n+1
of the mentioned central interval where no tower of Fy(x) is standing.

(see Fig. 6, where m; = m, =3 and n = 2).

ﬂﬂJ’LﬂﬂﬂMﬂ

~hy —~8 —7 —2hy —§ —4 —hy —2 —1 o 2 hy

Fig. 6.

F,(x) is a bounded periodic function with the period k.. Further Fy(z)=Fu+1(x)

for —hy <z < h, and moreover Fy(x) = Fypt1(x) = Fpi2(x)=--- for the same z,
sinee hay < Bn+1 < Anse <---; consequently, as h, - o, a limit function
F(x) = lim F,(z)
n—r o

exists for —0 <z < oo, and

Flx)= Fulx) for —ha=x <bhn.

! Here and in the following instead of the central one of the subintervals we could have chosen
any one of the subintervals with exception of the first and the last, but in order to be able to use
main example 3 to further purposes in the appendix we have made the specialisation mentioned.
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The function F,(x), differing from F,..(x) only by towers of the types n + 1,
n+2,..., n+q, differs from F(z) only by towers of types n + 1, n + 2,.. ;
hence (as én+1 > €nya >--°)

m+1
f (Fo) — Fa@)dx < en+1 for each integer m

m

and thus
a+1
f (Fi) — Fp(®)dt < 2 e441 for all z,
&

i.e.
‘DS [P'(x); ‘n (.’.t)] =2 En+1.

Since &, — 0, we have Fy(zx)> F(z); thus the function F(z) is an S-limit periodic
function, in particular an S-a. p. function. All our towers having the P-inte-
gral 1, obviously F(x) is simultaneously an SP-function (or, what is equivalent,
a WP-fanction) and therefore, in consequence of Theorem 1, Chapter III, also
an S”-a. p. function for p<P. Hence our function is not only a WF-funection
and a W?a.p. function for p <P, as desired, but moreover an S?-a. p. func-
tion for p <P.

We have to prove that the W-point around F'(x) does not contain any
WP-a. p. function. As a preparation we prove that the function F(x) itself
is not a Wta.p. funetion.

We begin by some preliminary remarks:

By di ({=1,2,...) we denote the relative density of all the »places«
7=z <7 +1 on which there are standing no towers in F;(x), exactly speaking,

the ratio d;= %i' between the number e; of the »empty« places in a period interval

phi <z <(u+1)h; of F;(x) and the total number %; of places in such an interval.
It is easy to see that

di+1=(l— ! )di.
Mmi 41

In fact, when passing over from Fi(x) to F;;1(x) we fill out just one of the
w41 period intervals uh; <z <(u + 1)h; of Fi(x) of which a period interval
vhigi Ex <@+ 1)hit1 of Fyyi(x) consists, so that ;11 = (m;41— 1)e; and hence

digr= 5 =(mi+l_l)e‘=(l_ : )ﬁ=([_”i—)dt.

hiv1 M +1 by m;11] ks
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Especially we get (by induction), as d,=;i= (1— ~—),
1

the relative density d. of the empty places in the function F,(x) keeps greater
than a positive constant when n— oc, so that after each construction of one of
our functions F,(x) an »essential« part of the x-axis is kept free from towers.

We c¢an now easily show that our function F(x) is not WPa.p. To
this purpose we consider, for an arbitrary fixed », among the my4, intervals
pha = <(u+1)hs of the interval vhyi1 < 2<(v+ 1)hyy1, the central one which
we denote by e, =x < e, + h,. Then we have

ay+hy
VﬂanH(x) F,.+1(x+h,.)1’dx—l/ 1—;';) I_—mig)m(l—i—,.).

For, in the interval @, + hy < x < @,+ 2 hy, (to the right of the central interval),
Fui1(x) has the same towers as Fy(x), whereas, in consequence of the above, in
the central interval o, < z < a, + hy itself F,i1(x) has the same towers as Fi(x)

plus kndn—k,,(l——i) (I—-L) (x—%) towers of type » + 1 (see Fig. 7),

my My

nnﬂjﬂﬂnﬂ

vhati avthn av-t2hn v+ Dhn+1

Fig. 7.

and all our towers have the P-integral 1. Now, however, F(x) = Fni1(x) for
—bha+1 =« < hay1. Hence we have (¢y < x < @, + hr denoting the central one
of the intervals uh, <2 <(u + 1)hy in 0 = 2 < hayy)
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apthy,
]/ fF(x) F(ac+hn)Pdac—V1—— I—L)"-(I——I-)-
hn my My

By help of (2) we conclude that F(x) is not WP-a. p. Otherwise, in consequence

of Theorem 2 a, Chapter I, since Fu(x) is a sequence of periodic functions with
the periods h, which S-converges to F'(x), we should have

P

DSP[ (x + hy), F(x)] < say i]/(l—mil)(l_;nl_z)

for L= some L, and % = some N,, and therefore, choosing # so large that
h, = L, and » = N,,

P

Dgp [Fle + ), Flo)) = ;]/ (1— ;n’-l) (1- i;)

which contradicts the relation (2).

More generally, however, we have to show that in the whole W-point
around F(z) there lies no WP-a.p. function, i.e. that a function G(x)=
F(x)+J(x) where J(x) is a W-zero function can never be a WP-a. p. function.
Assuming, indirectly, that G (z) = F(z) + J(x) be a WP-a. p. function, the func-
tion J(x), being a W-zero function and a WP-function, would (on account of
Theorem 2, Chapter III) be a W?zero function for p<P. It might be supposed
that, in a similar way as above, we could arrive at a contradiction by considering,
for sufficiently large », only the »first« of the central intervals, ay=x <eay+ hn,
and by concluding from the fact that

vt by,
. {(F(x) Fx+ h)Pdx

LY

a
is »large« (i. e. not vanishing) that

gt hy,

h (Fx) —F@ + ho)? dx

a

for p <P and near to P would also be »large<. This would namely involve, as
Dgp [G(z + hu), G(x)] and therefore Dgp [G(x + hn), G(z)] for p < P should be
In n
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»small«, that Dgp [J(x + ha), J(x)] and hence 2 Dgp [/ ()] would be »large¢, in
n n

contradiction to J(z) being a W?-zero function for every p < P. However, this
attempt of argumentation fails for the following reason: The larger » is chosen,
the nearer to P we have to choose the number p, so that we must operate with
a variable p, while on the other hand the carrying out of the idea indicated
would claim a fixed p <P. In the real proof we are forced to consider all the
central intervals @, = x < @, + hn (for sufficiently large %), and not only the first
one; this means a certain complication, as F(z) is not equal to Fyii(z) in all
the intervals a, =« < @, + 2k, (as in the first one ¢, < z < oy + 2 hn). But except
that, the reasoning is still the same as in the above attempt. Besides, in this
way it is as easy to prove that evern wn the B-point and not only in the W-point
around F(x) there is no WP-a. p. function, and this we are therefore going to do.

Denoting, as before, the central one of the intervals uh, =<z < (u+1)h,. in
Yhasi =2 <@+ 1)hnsa by ¢, £ 2 < e, + h, we can, to

£ — sa 1(,_1.)(1__1_)...
y4 my ms

and an arbitrarily fixed », determine P,(n) < P such that the inequality

p

ay+hp p

I ! . :
(3) Ef(FnH(x)—FnH(m +hn))”dx>]/(1— ;,7]) (‘“‘ @) (I“an) —f

is valid for every » and for Py(n) < p < P. This results, through continuity reasons,

from the relation (1) using that for.p—>P the p-integral of a tower of type n+1
tends to its P-integral (=1).

The problem is to pass from F,:(x) to F(x), or more conveniently to Fiq(x)
(which for a large ¢ is identical with F(x) in the large interval —h,4o < <hni).
To this purpose, for an arbitrary ¢ >0, we consider a period interval (of length

n+qQ

hniq) of Friq(x) consisting of (= Mnramings . .. Mnyq) period intervals of

hn+l
Foy1(x) and ask: What is the relative density d{"}! of those of the latter inter-

vals in which F,.(xz) is identical with F,ii(x), or exactly speaking, what is the
ratio d‘\n"jq‘) between the number of those of the intervals in which 17,4, (z) is

identical with F4,(x) and the total number Fueg of these intervals®

hn+1
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Above, we have met a similar question, viz. that of determining the relative
density dp of the empty places in the function F,(x). By a similar reasoning we
find that the answer to our present question is

I 1 1
- (- oa) (-
My 42 Mn+3 Mp+q

[It may however be observed that in order to get this expression for d,‘l"jq” we

need not carry out this similar reasoning as we can directly establish the relation

dnrl) = %:ﬁ from which (using the expression for d;j) we just get the expression

for di»t! given above. The relation in question may be obtained in the following
way: We consider the empty places of the function Fyri¢(x) in one of its period
intervals. On the one hand, the number of those places is, per definition, e,1,.

On the other hand however, as such empty places only occur in the di}? -%ﬂ"—t"
41

intervals vhy1 =2 <(¥ + 1)has1 in which Faig(x) is identical with Fypy1(z), the

number in question may also be expressed by d{fl —Z—"—"L—q * én+1. Putting this
n+1

last expression equal to e;4q (and using that §'=d¢) we just get the relation

dn+1) = d_"t‘l] .

nte dn+l

Since
F(z) = Fuiqofx) for —harq=x <hniq

the function F,i:(x) is identical with F(x) in zd(”“’lliﬂ of the 2h"+q intervals

"9 Bar hatt
Vhus1 =& <(v + 1) hay1 of which the interval — hniq <o <haiq consists. By (3)

d(n+1)h"+‘?
n+q hn+l

an interval e, =<2 < a, + h, such that

»
@y tly »
(4) .—I—f(F(x)—F(zc-}» ha)? dac >l/ (1——‘—)(1——1—) (I—L) —
ha " my my Ma

holds for P,(n) < p < P, where Py(n) is independent of g.

in every one of these 2 intervals vhni1 <z <(v +1) Ay there is lying
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We shall show that this involves that no WPF-a. p. function can lie in the
B-point around F(z). Indirectly, we assume that such a function G(x) exists.
Then F(x)— G(x)= J(x) is a B-zero function and a BP-function and there-
fore, in consequence of Theorem 2, Chapter ILI, a B?-zero function for p < P.
Further, F,(x) being a sequence of periodic functions, with the periods Ay,
which S-converges to F(x) and hence B-converges to G(x), the number h,, in
consequence of Theorem 2 a, Chapter I, is an S¥-translation number of our
WP.a, p. function G (x) belonging to our

for L = some L, n = some N, i.e.
Dsi’[G(x + hy), Gx)]=e for n=N, L=L,
We choose N so large that hy = L, and N= N,. Then we have

Dst[G(x + hy), GX) = ¢

and therefore a fortiori

(5) Dgp [G(x + hy), Gx)) =& for p<P.
N
Now we consider F(z) in the interval —hyiq=a <hy+q. In 2d{JH0. ZN“L"
N+1
of the 2 ZN“' intervals » hyyy < o < (¥ + 1) hy+1 of which the interval
N+-1

— hy+q = x < hx+q consists, there is, as we have seen above (at (4)), an interval

oy = x < a, + hy such that

e, +hy p
f (F@x)— F(a:+hN))”dx>V 1—L)(1_L)...(1_J_)_8
my My my

for P,(N) < p < P, where P,(N) is independent of g.
For every p satisfying Py(N) <. p < P the inequalities (5) and (6) involve by

help of Minkowskl's inequality
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b ayt+hy
(196~ I + bl da=

%y

a,t+hy

! fl(F(x)—— Flx+hy)—(Gx)— G@ + hw)|fdx =

hy

. a,thy aythy
/ f F@)— Flx + hy)? dx — I/ f"’ (@ + by)|? de >

-2)-2) o= (-2)

where % is a constant (independent of g).

Finally, p being a fixed number, Py(N)<p<P, we get (using the expression

for the relative density di,))

"N+q k
J () — Py = c2diry T e hy —
2hl\’+qf| (@) — I (x+ ha) | dx_thM Neg N
~hNtq
hx kP 1
-2 () (ot
N+1 mN+ 1 MN+2 my+s MN+q

) 74 I I
1— 1— =k >0
MmN +1 my+2 my4+3

where &' = &'(N) is independent of q. Hence

g
—— ¥
(7) Dgt[J(z), J (x + hy)] = lim ]/ Zl_f'flJ(x) —J(x +hy)|?dx =ViE>o.

T s

Sr
On the other hand, J{z) being a B?-zero function, we have Dg? [J (x), J (x+ hy)]

=2Dpt [J(x)) =o0, i.e.

Dgt [J (), I (x + ha)] =0,
in contradiction to (7).
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§ 6.
Through Funections.
Already in § 3 we used the following

Theorem. Let A be a W-point with the lifetime P, 1 < P = o, as to the
W?-spaces which is dead at the time P (if P < ). Then there exists a through
Sfunction f*(x) ¢n A as to the WP spaces, <. e. a function which is a W?-function for
every p < P.

We shall now prove this theorem. Roughly speaking, the method is as
follows: In our W-point we choose functions f(x), f;(z), ... whose lifetimes
approach P more and more. Starting from these functions we shall arrive at a
through function. The first idea might perhaps be to consider the function
which is equal to f,(x) say for |x| <1, to fi(z) for 1 =|z| < 2, to fy(x) for
2 <|x| < 3 ete. This function, however, is far from being a through function;
it needs not even to be p-integrable for larger p than is f,(z). However, it
proves possible to modify the functions f,(x), f;(z), ... in such a way that,
applying the above method on the modified functions f7}(x), f(z), . .., we really
get a through function f*(x). By our modification of the functions f,(z), f;(x), . ..
we wish to obtain, firstly, that the modified functions f}(x), /:(x), ... be p-inte-
grable for all »p < P, and secondly, that each function of the modified sequence
Si(x), fe(x), ... differs »so little« from its successor that the »composed« func-
tion f*(x) differs »little« from each of the functions f}(x), f3(2), ... in the
following sense: f*(x) is a WP”function »almost as far« as each of these func-
tions f4(x) (and is therefore a W”-function for all p<P), and like these functions
it belongs to the W-point.

We begin with the two following remarks.

Remark 1. Let f(x) be a 1-integrable function. Then we can always by
adding a W-zero function obtain a function g(x) which is p-integrable for every p,
and such that |g(z)| = | f(x)| for all .

This may be done in the following way. For n=o0, + I, X 2,... we
determine N, so large that

n+1

f |/ (@) — (f@)n, | dx < |7»|I—+7

n
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(f@)y, denoting, as usually, the function cut off at N, and define

gl@)=(f@)x, for n=zx<n+1 (n=o, t1, t2,...)
Then we have

Dw[f(=), g(@) = o,

since the mean value of | f(x) — g(x)| over a sufficiently large interval is arbitrarily
small wherever on the x-axis the integration starts. Further, the function g(x),
being bounded in every interval n =< x < n + 1, is p-integrable for every p.
Finally |g(z)| = [f(z)| since [(f@)x,| =[S ()]

Remark 2. As easily seen, for an S”function it does not always hold
(as in the case of a p-integrable periodic function) that Dgr[f(x), (f@)nr]—0 for
N—oow. But, if 1< p,<p, and if f(x) is an SP-function, it does hold that

Dgn [f(z), (f@)y] >0 for N- oo,

i.e. to a given ¢ > 0 the inequality

l/x]:if InlPdt < e

is valid for all « provided N is chosen sufficiently large.

This may be seen in the following way. We have for all ¢

I

in fact, the inequality is obvious for those ¢ for which | f({)| = N as the left-
hand side is o, and for those ¢ for which |f(f)] = N we have

1£0 = Ol S 17O S o LA O
Hence for all x

x+1

f L£t) — (fOx P dt < 55 f |£(8) |7 dt < o (Dsmn L f @)

z

which tends to o for N— .

Now, we pass to the proof of the theorem. Let 1<p <p,<:--->P. Then

in the W-point U there exists a Wr-function f;(x), a Wr-funetion f,(z),. .., and,
7
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in consequence of Remark 1, we may assume that all the functions f,(x) are
p-integrable for every p. Let

fal@) — f1(z) =i ()
Sala) — falw) = js (@)
fi(@) — fslx) = js(2)

Then j,(x), js(z), ... are all W-zero functions, and j,(z) is a Wr-function i.e.
an S?-function, jy(z) an SP-function, . ... Let further

It (@) =gy (x) — (j; @),
J3 (@) = js () — (s @),
78 (x) = gy () — (45 @),

where N,, N;, ... will be chosen below. All the functions jf(x), 73 (x), . . . are
W-zero functions, since |j1(z)| < |7, @), |A @] =1j:®)],.... For the same
reason the function ji(x)} is an SP~function, j3(x) an SP-function,.... Let

o

Zs,. be a convergent series of positive terms. In consequence of Remark 2 it
1

is possible to choose N,, N,, ... such that for all x

z+1

fljf(t)ldt < g

P

z4+1
[l @)t <&

£
P2

z+1
V [l @)Pdt < &

We can now indicate the »modified« functions f1(z), f3(z),.... They are suc-
cessively determined by
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It may be observed that these functions f1(x), /2 (), . . . are constructed starting
from f,(xz) by help of the functions ji(z), j2(z), . . . in exactly the same way as
fi(@), felx), . .. may be obtained starting from f(x) by help of the functions
51(@), jelx), . . .. We find

Sf1(@) = f(2)
(r) i) =folx) — (@),

S (x) = fol@) — (7 @)y, — (s @)n,
All the functions ji(z),s3(x), ... being W-zero functions, the functions f1(x),
fix),... will (on account of their definitions) belong to . Further, all the
functions (j,@)x,, (js@)n,, - . . being bounded, it results from the equations (1)

that fi(x) is a Wn-function, f3(x) is a Wr-function, . . ., and that they are all
p-integrable for every p. From the way in which N, N,, ... are determined,

we conclude that for all = and all » =1, 2, . .. (putting p, =1)
Pp—1
/ z+1
(2) ‘/ flfr;(t)—f:(t)lp”"l dt<e, + eny1+ -+ for m>mn
since
Pp—1
z41
Vflfm() — AP dat <
T
Pp—1 Pn—1
z+1 x+1
l/f|f,.+1 ~ @ tdt + I/ flfn‘+2(t) — @ Pde+ o+
Pp—1
z+1
+ )/ iso - s rac -
Pp—1 Pp—1 Pp—1
z+1 x+1 x+1
l/f 201t + Vf tespraes v )/ flisopars
x x

Pp—1 Pn Pm—2

z+1 z+1 z+1
Vflj:(t)l”"“‘dt + I/fljr‘wl(t)lp”dt +oet l/flj;._,(t)|"m—2dt<

e+ eppr bt <ent Entrto.
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Finally we define f*(x) by (see Fig. 8)

S @)= fir+ (@)

for
n=|z|l<n+1 m=o0,1,2,...).
fi ) Si@ Sftx) fi@ B¢ 160 i
—t -+ : o $ $ t
—3 —2 —1 o 1 2 3
Fig. 8.

The function f*(x) is p-integrable for each p, all f; (x) being p-integrable. We
consider the difference f*(z) — f () for an arbitrarily fixed », and shall estimate

Dypn—s [/ * (@), f2 ().

The inequality (2) tells us, how much f*(z) differs from fa (z) for all x outside
the finite interval —n =< < n. Since for the determination of D »,— the values
of the function in an arbitrary finite interval are irrelevant if only the function
i8 pn—r1-integrable in this interval, we get from (2)

(3) D 41 [f* (@), fr (@) = en + 41 + -
which tends to o for n>cw. From (3) it results in particular that
Dy (f*(x), fif ()] >0 for n-—>oxc;

hence f*(x) belongs to A, a G-point considered as a set of functions being
G-closed. Further we get from (3) that

D"vpn—l [f* (x)] = l)u-l’n—l [,fn. (.’ZJ)] + e+ eng1 + -0,

so that f*(x) is a W' Lfunction for every » =1, 2, ... and therefore a W"-
function for p < P.
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CHAPTER VI

The Mutual Relations of the Br- and the Br-a. p. Spaces.

§ 1.
Introduction.

In this Chapter we shall consider an arbitrary B-point as to the I’-spaces
and the B7-a.p. spaces. We proceed in quite the same way as by the corres-
ponding investigation in Chapter V of the behaviour of a W-point as to the
W?. and the W?a.p. spaces. On the one side we investigate what B?-points
belong to our B-point, and on the other side we consider the single functions
in the B-point. Both the BP-points and the functions are characterised by means
of the B’- and the B*-a.p. spaces. In many respects also the results of our
investigations will prove to be analogous to those of Chapter V. The results of
Chapter V, § 2 on W-zero functions may even be transferred verbally to the
B-zero functions, for by a retrospective glance we see immediately that we may
replace »W« by »B« everywhere in the text without changing the examples.
Also the general investigation in Chapter V, § 3 of the W*-points in a given
W-point can be transferred word for word; here too we may replace » We¢ by
»B» everywhere. Whether the investigation of the single functions in Chapter V,
§ 3 can also be transferred, obviously depends on the question whether (analogously
to the W-case) in a B-point there is always a through function as to the B’-
spaces and the B?-a. p. spaces, i. e. a function which is a B?-function for those
» for which the B-point containg B?-functions, and a B*-a. p. function for those
» for which the B-point contains BP”-a. p. functions. As we shall see, such a
general theorem is really valid. Evidently, to establish this theorem it is, just
as in the W-case, sufficient to prove that every B-point with the lifetime P
which (if P < oc) is dead at the time P contains a through function as to the
B’.spaces. By means of this theorem the investigation of the single functions
in a given W-point can be transferred word for word to the given B-point. The
proof of the theorem on the existence of a through function, however, is not
analogous to that in the W-case, and it will be postponed to § 6.

But there is an interesting difference between the W-a. p. points and the
B-a. p. points. In the W-case we gave an example of a W-a. p. point which is
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alive at the time P as to the W?.spaces but is dead as to the W?-a. p. spaces
(Main example 3, Chapter V, § 5); in the B-case, however, such an example
does not exist, the theorem. being valid that a B-a. p. point which is alive at
the time P as to the BP-spaces is also alive at the time P as to the B”-a. p.
spaces. Hence, if a B-a. p. point with the lifetime P possesses P-descendants at
all, one (and of course only one) of them will always be a BP.a. p. point.

As to the B-zero functions, we simply refer to the treatment in Chapter V,
§ 2 of the W-zero functions where, as mentioned above, the letter » W« may
right away be changed to »B«. From systematical reasons, however, we shall
(in spite of the complete analogy with the W-case) in § 2 give a brief account
of the behaviour of the B”-points and the functions in a given B-point as to
the B*- and the B?a.p. spaces. In § 3 we give the proof of the theorem on
B-a. p. points indicated above. Next, in § 4 and § 5 we state all the possibilities
for a B-point which is not a B-a. p. point, respectively is a B-a. p. point. Finally
in § 6 we prove the theorem on the through function.

§ 2.
General Remarks on B-Points.

Already in § 1 we spoke about a lifetime P of a B-point as to the B*-
spaces and eventually the B*-a. p. spaces, and used the fact that a B-a. p. point
has the same lifetime as to these spaces. As in the W-case, we say that we know
the behaviour of a B-point at the time p, as to the B”-spaces and (eventually)
the B?”-a.p. spaces, if we know whether the point is alive or dead at the
time p, as to the BP-spaces and the B?-a. p. spaces. Further we speak of the
p-descendants of our B-point (or of the »components« of our B-rocket) and
for every p, 1<p<P, of a p-generator (p-nucleus). The p-generator is the only
one of the p-descendants which has descendants itself, all the other p-descendants
(the still-born brothers, or p-sparks) dying at the time p in the moment they
are born. If the B-point is B-a. p., the p-generator s B?-a.p. As to the general
situation we may refer to the Fig. 5 (with » We replaced by »B«).

We now pass to the single functions in a B-point. We speak about a
function being alive or dead as to the B”-spaces and the B*-a. p. spaces at a
definite date, and we speak of its lifetime P,. If the B-point is B-a. p., a func-
tion in this point has the same lifetime as lo the B?- and the B?-a. p. spaces.
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If the B-point (with the lifetime P)is not B-a. p., there are the following
possibilities for a function f(x) with the lifetime P, contained in the B-point.
The lifetime P, may be an arbitrary number, 1 < P, = P, and for each fixed P,
there are, if P, << o, the two possibilities:

1. f(x) is dead as to the B”-spaces at the time P,
2. f(z) is alive as to the B?-spaces at the time P,,

with exception, however, of the case P, = 1 where of course only 2. can occur,
and the case P,=P where 2. can only occur if the B-point is alive as to the
B?-gpaces at the time P.

If the B-point is B-a. p., the lifetime P, of a function in the point may be
an arbitrary number in the interval 1 < P, < P, and for each fixed P, there are,
if P, < oo, the three possibilities:

1. f(x) is dead as to the B”-spaces at the time P,,

2. f(z) is alive as to the B”-spaces, but dead as to the Bfa. p. spaces at
the time P,

3. f(x) is alive as to the B-a. p. spaces at the time P,

with exception, however, of the case P,=1 where of course only 3. can occur,
and the case P, =P where 3. can only occur if the B-a. p. point is alive as to
the B?”-a. p. spaces at the time P, and 2. can only occur if the B-a.p. point is
alive as to the B’-spaces at the time P.

§ 3.
A Theorem on the Behaviour of B-a. p. Points in their Moments of Death.

In this paragraph we prove the following theorem concerning the B-a. p.
points which has no analogue in the W-case.

Theorem. A B-a. p. point which contains a BP-function f(x) contains also a
BP-a. p. function g(x).

The general proof of this theorem uses the notion of asymptotic distribution
function of a real B-a. p. function. In the special case P =2z, however, the
theorem can be proved in another and more simple way, namely by help of
Besicovirce’'s Theorem on Fourier series of Ba. p. functions. We shall begin
by giving this proof which is only applicable in the case P = 2.
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The special case P=2. Let our B-a. p. and B*function f(x) have the
Fourier series 3 A,e'4n*. We first show that

(1) S| 4.]® < (Dp[f@)).
Let

Ny
0g(a) = D Auetn

nesl
be a Bocuner-Fesir sequence of f(x). Then

Ng)
B Al = M {loy(@)I*} = (Do)

n=

Hence on account of the inequality (Chapter 1)

Dy (0,(x)] = D fx)]

we get
N
DB | 4al* = (Dl @)

n=1

Aso=Hk' < 1, and 2”51 for fixed n and q - », we immediately get for ¢ > »
the desired inequality (1). In particular 3|A4.|* is convergent and thus, in
consequence of Besicovircu’'s Theorem, I A,eéf4n* is the Fourier series of a
Bta. p. function g(x). As the two functions g(x) and f(x) (considered as B-a. p.
functions) have the same Fourier series, the function g¢(z) lies in our B-a. p.
point around f(x).

As mentioned above the proof of the theorem in the general case uses the
notion of asymptotic distribution function of a real B-a. p. function.
The asymptotic distribution functions for the different types of almost periodic
functions are dealt with by JEssExn and WINTNER in their paper: Distribution
Functions and the Riemann Zeta Function, Trans. of the Amer. Math. Soc.,
vol. 38. We shall only apply a single theorem of this paper, and as we shall
not assume the knowledge of the paper we shall not merely state the theorem
but also give a direct proof of it (communicated to us by JESBEN).

To begin with we remind of two well known and elementary facts con-
cerning real monotonic functions (in the wide sense) defined on the whole axis.
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1°. A monotonic function has at most an enumerable number of discon-

tinuity points.
2°. Let w(e) and w,(a) be increasing functions with the following two
properties:

Y () = Y(e) for all @, and Y, (8) = w(e) for 8> a.

Then (o) and w,(e¢) have the same discontinuity points, and v, (e) =y (e) in
all the continuity points. (For, if a is a continuity point of ,(a), it results
from ¢, @ =Y for 8>ea that Y, (a) =y, (e +)= Wla) which together with
P, (@) = Yla) gives Y, (a) = yP().

We say that a real function f(x) defined on the whole z-axis has an asymptotic
distribution function, if there exists an increasing function y(e) (in the wide
sense) defined on the whole a-axis so that:

1) In a continuity point ¢ of () the two »relative measures«

mea /(@) S ) = lim o ((f(@) S o] X [~ T S 2 < 1))
and

mea ([f(@) < al} = lim —zm{[f(a) < o] X [~ T S < T))

both exist and are equal to y(e) (then obviously o < (@) = 1).
2) Y(a) > 1 for a—> o, and W(e)—o for a > — .

By the distribution function of f{(z) we then understand the function ¥(e) in
its continuity points.

We can now state the theorem of Jessen and WINTNER:

Auxiliary theorem. Every real B-a. p. function f(x) possesses an asymptotic
dzstribution function.

Proof. Let

W(e) = mea {[f (@) S o} = Tim Zom{[ /@) S o] X [~ TS 2 =T
Obviously the function (a) is an increasing function of « (in the wide sense)
defined on the whole «-axis. We shall show that the two relative measures
mea {[f(x) = a]} and mwa {[f(x) <e]} exist in every continuity point of (a) and
are both equal to y(e), and that ¥(e) ~1 for « > o and W(a)—> o0 for a >— .
Then, according to- our definition, the function 1(e) considered in its continuity
points is an asymptotic distribution function of f(x).
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Together with 1(e) we consider the other increasing function

1

sz{[f(ac)<a] X[—T=z=TJ}.

wl(a) = Mre {[f(il,) <a]} = ]ilﬂ

T—»

First we shall show by help of 2° that y(e) and y,(e) have the same dis-

continunity points and are equal in their continuity points. Obviously y,(e) =y (a);

hence it is sufficient to show that y,(8) = ¢(e) for 8> e. In order to do that
we introduce the auxiliary function (see Fig. 9):

1 for 2=«

fores=z=g8

S
33,
I
I'Cb
| I

o for z= 6. a B
Fig. 9.

This coutinuous function @(z) (which for 8 snear to« « differs unessentially
from the function which is 1 for z<e and o for z>a) has a bounded difference
quotient. Hence @ (f(x) is a B-a. p. function (Chapter I). In particular, what
is of decisive importance in the proof, @(f(x)) has a mean value M {®@(f)}.
As O(f@) =<1 for f(x) <B and @ (f(@)=o0 for f(x) =, we have

V1 (8) = mea {{ f() < B} =2 M {@(f @)},

and as @(f@) =1 for f(x) <a and @(f @)= o for f(z) > e, we have
'(/J(a) = Mral {[f(l‘) = a]} = M{w(f(x))]

From the two latter inequalities the desired inequality y, (8) = ¥ (a) results.
Further, in an arbitrary one of the (common) continuity points for v (e) and
Y, (¢) we have
le) = mea {1/ (e) <) 5 {

Mrel {[f(x) = a]}

mea {[ flx) < a]}}é meat {(f () = o} = (o),

and as the first and the last term in this chain of inequalities are equal, all the
terms must be equal. Consequently mea{(f(x) =< a]} and m.a {[f(x) < a]} both
exist and are equal to V().

It remains to prove that

Yle)—~1 for a > and Yle)—o for a > —cx.
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We begin by proving the first of these limit relations. As 1(a) is increasing
and =1, the limit lim v (a) exists and is =<1. Proceeding indirectly we assume

a—> ®

that lim (e)=g <1 and hence Y(a)<g<1 for every a. In the following we

a— ®

may let a avoid the discontinuity points of y(e). Obviously
mea {[f(x) Z a]} = 1— (o).

From our assumption it would follow that for every «
mea{[f(z) 2 al} 21 —9>0,

and hence for arbitrary large « (indeed for every a>o0)

T
Dy fla) = Jim 17 [ I/l doz Tim 24 [ flelaa =
=7

[fXlza] X [~Tsz=T)

Tlinla-z—li,m{[f(x);a] X[—Tsx=T)}=amal[flz)=e]}=a(1 —g)

in contradiction to Dp[f(x) being finite. The other limit relation ¥ (e)—> o for
a—~— o follows immediately from the first limit relation y(a) > 1 for a > o by
applying the latter to the function — f(x) and using that

mra {{f(#) < a]} =1— mpa {{ f) = a]} =1— mpa1 {{— [x) = —0]}.

Having proved the auxiliary theorem, we now pass to the proof of our
theorem in the general case i.e. for an arbitrary P>1. This proof
may be formulated in the shortest way by help of StieLTsEs’ integrals, but
not having to use STiELTIES' integrals elsewhere in our paper we prefer to
accomplish the proof in a more elementary manner.

Let f(x) be the B-a. p. and BP-function of the theorem. Then |f(x)| is a
real B-a. p. function and hence possesses an asymptotic distribution function ¢ (a).
For the sake of convenience we will assume that no point of the, at most
enumerable, set of discontinuity points of ¥(a) is a positive integer; otherwise
we might consider the function kf(2), instead of f(x), where k is a suitably

chosen positive constant. (If Y(a) has the discontinuity points d., the function

|kf(x)| has the distribution function w(%) with the discontinuity points & dn,
and disposing of % in a suitable way we can of course provide for none of these

latter numbers being a positive integer).
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For n=1,2,... we put
= mea {ln < [ f@)] < 0 +1)};
pn=Y(n +1)—p(n).

We begin with two remarks which easily result from the fact that | f(z)| has
the distribution function ¥ (e).

then

1°. It is evident that

mea {[n < | fl@)| = o)} = pn + pnsr + -5
for on the one hand

Mrel {[” = If(T)I Sojf=1— w(")
and on the other hand

fn+ tarr + - =Wn+ 1) —yYm) + Wn+2)—Pn+1) +
lim ¢(») —y(n) =1 — y(n).
2°. Further, the series
B 1P+ g 2P 4 0P
s convergent with a sum = (Dpr[f@)])?, in other words, the inequality
w12 4 pg 2P 4+ g nP < (DpP | f@))P

holds for an arbitrary fixed ». In order to prove this latter inequality we
estimate (Dgr[f@)])f from below in the following way: Taking only those x for
which 1 < |f(z)] <n + 1 into consideration, we get

(Dpr{f@])f = hm —flf Ve dx = hm — f |f(@)|F d=.

[——-Téng] X[1={flz)|<n+1]

Therefore we consider, for a fixed 7, the integral

o [ s
[~TsrsT)X (1s]f(x)]| <n+1)
We divide the range of integration [—T=z=< T|X[1 =Z|f(z)|<n+ 1] into the =
subsets [~ T =z =T|Xp=|fl@)]<v+1] (v=1, 2, ... n), and correspondingly
the integral into the » integrals

| f(@)|P dx (v=r1,2,...0).

[-TszsTIX[vslflx)|<v+1]
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For each of these integral we have
|f Wdx 2w mi—T=x=T|XP2|f(@)]<y+1]},
[-—T/z.. T1)< rslflal<v+i]

where the left-hand side tends to »”:u, for T'—> . Thus we get

hm ——flf Wede Zp - 1P+ pye2P + -+ py-nf

[—TSzS’I‘]X[lslf(:r)lxn+1]
and hence the wanted inequality

Yy 1P + .u,°2P + -+ y.,,-n” = (an[f(x)])l’.

Now we pass to the proper proof. The salient point is to demonstrate that
the sequence (f(@). is a BP-fundamental sequence. To this purpose we
have to estimate

(Dyr (@, (f@hul)” = Tim 1 f /@~ @n]? de

for » <m. For those x for which |f(x)] < »n we have (f@)m — (/@) =0
for those x for which » <|f(@)|]<v+1 w=n,n+1,..., m—1) we have
|(f@hm — (f@)n]| <»+ 1 —mn, and for those x for which |f(x)] =m we have
[ f@)m — (f@)]|=m—nThus we get

(D [(f@hns (fDml)” = Tim 2—’1;_ [ |(f@)m — (f)a P dz <

m—1

2 @+ 1 =0 + (m— )P mpa {[m < | fl@)] =]} =
SITRET )

Enlarging v+ 1—u to » in the first sum, and (m — #)Pp, to »"u, in the last
term, we get

(D@ (f@Nn)” = w7

where the right-hand side is independent of m and tends to o for » — o since,
according to 2°, the series Zu,-»? is convergent. Consequently (f(x), is a
BP-fundamental sequence.
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As f(x) is B-a. p., the function (f(x)s is also B-a. p. (Chapter I) and, being
bounded, it is therefore B’-a. p. for all p, in particular it is BP-a.p. Hence the
sequence (f(@). is a BP-fundamental sequence of BP-a. p. functions. The BP-a. p.
space being complete, the sequence (f(x))» thus BP-converges to a BF-a. p. func-
tion g(x). This function g(x) must lie in our B-a. p. point around f(x) as the
sequence (f(x)s B-converges to g(x) and B-converges to f(x), the latter because
f{z) is B-a. p. (Chapter I).

We observe that the »reason¢« why no corresponding theorem holds for the
W-a. p. points is the incompleteness of the W?-a. p. spaces; for as regards the
distribution functions a wholly analogous notion exists for W-a. p. functions, only
a relative measure in the W-sense being used instead of a relative measure in
the B-sense. In the S-case we have completeness of the S”-a. p. spaces but the
notion asymptotic distribution function has no meaning in the S-case (and as
we have seen in Chapter IV a function f(x) may very well be an S-a. p. and
SP-function without being SP-a. p.).

§ 4

B-Points which are not B-a. p. Peints.

In this paragraph we shall consider the B-points which are not B-a. p.
points, and we shall investigate what possibilities may occur for such points
concerning as well the lifetime P as the behaviour in the moment of death as
to the B?f-spaces. We shall show that (as in the W-case) all possibilities which
are tmaginable beforehand may occur, viz.

1. P=o.

2. P arbitrarily finite, 1 = P < o,
2 a. The point is dead as to the BP-spaces at the time P (P >1).
2 b. The point is alive as to the B”-spaces at the time P (P=1).

The examples which we shall give are quite similar to those used in
the corresponding investigation in Chapter V, § 4 on W-points which are not
W-a. p.
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Example to 1.

Let
1 forzx=o

sl =1

—1 for x < o.

The function f(x) being bounded is a B?-function for all p. Further f(z) is no
B-a. p. function as

I

7 0
lim f,ff(w)dx=1 while Jim —;—,ff(x)d.r=—l (#+1).
J =T

f—w T @
Thus the B-point around f(x) is not B-a. p. and has the lifetime P = co.

Example to 2 a.

In order to get a B-point (not B-a.p.) with an arbitrary finite lifetime
P(>1) which is dead at the time P we add to the B-point of the first example
a B-point around a periodic function h(x) which is p-integrable for p < P but
not P-integrable. The B-point thus constructed is not B-a. p. as the B-point of
the first example is not, while the B-point around h(x) is. Further the point
contains the function f(z) + h(x) which is a B’-function for p <P, but it does
not contain any BP-function, as the functions of the point can be obtained by
adding to f(x) all the functions in the B-point around h(x), and f(z) is a
BP-function whereas, in consequence of the theorem on the periodic points, the
B-point around k{z) does not contain any BP-function.

Example to 2 b.

In order to get a B-point (not B-a.p.) with an arbitrary finite lifetime
P(=1) which is alive at the time P we add in an analogous way to the B-
point from the first example a B-point around a periodic function h(x} which is
P-integrable but not p-integrable for p> P.

§ 3.
B-a. p. Points.
In this paragraph we consider an arbitrary B-a.p. point whose lifetime
as to the B’ and the B”-a. p. spaces is denoted by P. In consequence of the

theorem in § 3 it holds (in contrast to the W-case) that every B-a.p. point
»behaves in the same way« as to the B?- and the BP-a. p. spaces in the following
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senge: If a B-a.p. point contains a B?-function, it contains also a B?-a. p. function.
We shall prove that there are the following possibilities for a B-a. p. point as
regards its lifetime P and behaviour in the moment of death.

1. P=om.
2. P arbitrary finite, 1< P<< .
2 a. The point is dead as to the B?- and the B”-a. p. spaces at the
time P (P>1).
2b. The point is alive as to the B”- and the B’-a. p. spaces at the
time P (P=1).

Example to 1.

The B-point around a bounded periodic function.

Example to 2 a.

The B-point around a periodic function which is p-integrable for p < P but
not P-integrable.

Example to 2 b.

The DB-point around a periodic function which is P-integrable but not p-
integrable for p > P.

§ 6.

Through Funetions.

Finally in this paragraph we prove the following theorem which has already
been used in § 2. ‘

Theorem. Let A be a B-point with the lfetime P, 1 < P = ®, which
(¢f P< ) is dead at the time P. Then there exists in U a through function f*(x)
as to the DBP-spaces, 1. ¢. a funetion in N which is a B”-function for every p < P.

In the proof of this theorem we use a remark made in the proof of the
corresponding theorem on W-points, viz. that a 1-integrable function can always .
be modified by a W-zero function, and hence still more by a B-zero function, so
that it becomes p-integrable for all p, and so that its modulus is not enlarged
for any x. Further we shall use the operation of forming the minimum of two
funetions, in the sense indicated in the introduction.
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Let 1 = p, <p,<---> P. We choose in ¥ a BP-function f,(x), a BP-function

fslx), . . . and in consequence of the remark above we may assume these functions
to be p-integrable for all p. We replace f,(x), f3(z),... by other functions
Si(), fi(x),... in A where fa(x) like fu(x) is a Bfnfunction and p-integrable

for all p and so that moreover the chain of inequalities

It @]z f3@)] =

holds for every x. As such functions f7(x), f2(x),... we may use

Siz) =fi(z), f3(x) = min [f1(z), f4(z)], f3(x) = min [f3(z), /()] .. ..

In fact, firstly | fn(x)] =|fu(x)| for every x which involves that fa(x) like fu(x)
is a BPs-function and p-integrable for all p, secondly |ff(x)]=|/f3(x)|="--
for every z, and thirdly f1(z), f2(x), ... are all contained in U, as a G-point
considered as a set of functions is closed with respect to the minimum-operation.

The functions f7(z), f3(x), ... lying in A form in particular a B-fundamental
sequence. Now we make use of the special method of constructing a B-limit
function of a B-fundamental sequence indicated in Chapter II in the proof of
the completeness of the BP-spaces. Constructing by this method (see Fig. 2)
a Blimit function of our B-fundamental sequence f7(z), f3(x),... we get a
function f*(x) which is a through function for our point ¥. On the one hand,
this function f*(x) lies in U, as a G-point considered as a set of (F-functions
is G-closed. On the other hand, as | fa(z)| = | fa+s1{x)| = -~ we have
|f*@)| = | falz)] for > Tw—1 (and analogously for negative x with a large
modulus) which, together with the fact that /% (), f3 (), . .. are p-integrable for
all p, shows that

Dyon [ f*(@)] < Dyoa [£2(2));

hence f*(x) is a BPnfunction for every » and consequently a B-function for
every p < P.
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APPENDIX.

By

ERLING FOLNER.

In the proper paper the reciprocal interaction between the G?- and the
G?-a. p. spaces was treated in every one of the three cases G =5, G =W and
G = B. As mentioned in the preface the reciprocal interaction between all the
spaces will be investigated in a later paper. For this investigation a new series
of main examples will be needed. In every one of these main examples the
problem is to comstruct a B-a. p..point (represented by a B-a.p. function F(x))
with certain particular properties, and each example deals with an »extreme case«.
The main examples serve as bricks in the construction of all the types of B-a. p.
points, as the »medium cases¢ can be obtained by addition of different extreme
cases. Naturally these main examples are more varied and complicated than our
former main examples 1, 2 and 3, but on the other hand they are more or less
analogous to them. Therefore we have preferred to indicate them — with
exception of a single especially complicated one — in an appendix to the
present paper. The examples in this appendix are numbered by Roman numerals
I, II, . .. with subsequent letters a, b, .... Every main example numbered by
one of the Roman numerals I, IT or I1IT is nearly associated with the main
example with the corresponding Arabian numeral in the paper itself. In
connexion with main example II some lemmas concerning integral-estimations
are proved which also will be used in the later paper. We shall not here try
to give a comprehensive view of the examples, as such a view can first be
properly gained in the course of the later paper where the examples are put in
their natural places as counter examples to the general theorems.
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Main Example L

In the main example 1 we constructed a sequence F(z). Fy(x), . . . of bounded
periodic functions with periods h,=m,, hy=m,m,,... which is a W?-fundamental

sequence for every p, but not W-.convergent. We shall now prove that there
exists a function F(x) such that the quoted sequence F,(x) is B*-convergent to F(z)
for every p (=1) and such that the B-point around F(zx) does not contain any
W-function. We remark that these latter properties involve in particular that
the sequence F(x) cannot W-converge to any W-function, as an eventual W-limit
function of F,(x), being a B-limit function of Fj,(x), would lie in the B-point
around F(r). We emphasise, and this is the real content of the example, that
we hereby get a function F(z) which is BP-a. p. for all p, whereas the B-point around
F(z) does not contain W-functions.

For —}=<xz=<1} our sequence F,(x)=n tends to o, while for —% <zx<—} and
l<x< o the limit lim F,(x) exists and is finite. In fact for —h,++i<ax<—}

n— o

and } <2 < lnt1—% we have Fu(x)= F,i(x) and hence for the same z (as
hy< hy<---)

Fn( ) I'n+l( )=Fn+2(x)=

and for n sufficiently large every x <— ! and z >} is caught in the quoted
intervals. For —hyy1 ti<z<—13}and } <2 < hatr —} we get

lim F, (x) = Fy(x).

¥-—> ®©
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We shall see that as our F(x) we can use the function

Flx)=
(@) lim F,(x) for —o <r<—} and {i<z<w.
n—w
Thus F(x) consists of:
Towers of the breadth 1 and the height 1 placed on all the numbers

=0 (mod &,) but =20 (mod h,),
towers of the breadth 1 and the height 2 placed on all the numbers

=0 (mod hy) but =0 (mod ),
towers of the breadth 1 and the height 3 placed on all the numbers

= 0 (mod &,) but =0 (mod h,),

?
We shall first show that F,(zx)% F(x) for every p=1, so that F(x) is
B”-a. p. for all p.
We have

T—>r®

T
(D2 (@), Fa@))? =T 4 f | F(2) — Fal)|? d.
—7

Thus we shall estimate
T
;!i,le(;r) — Fo(x)]? dx
-7

for fixed » and large T, say T=h,. For a given T=h, ‘we determine first g=0
such that Ap+q = T < huyg+1 and then » among the numbers i1, 2,.. ., Marg1—1
such that vhniq = T < (¥ + 1) hatq.

To begin with we distinguish between the case » =mn+q+1 —2 and the case
V= Mptq+1 — 1.

In the first case we get

(v+l)h,n+q

T
L P gy < f b o
Tf — Fu@)]P dae < hn | Flz) — Fulz)|? dx =
T —(v+1)hn+q
3 (v41) fiy g
—n|? x) — F, »
21'hn+q[ fo—nl"dx-+ f( wtq (1) — B (@) dw]

? -—-(v+l)hn+q
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(as F@)=Fpiq@) for —@ + Dhpq<Sx < —1}% and for } <z =0+ 1) husq,
v=1,2,... Matqr1— 2). Since (Fnyq@x) — Fr@)® is periodic with the period
ha+q, the last term of the inequality is equal to

n? v+ 1
2"hn+q

M{(F"+Q(T) Fn(af))’,}.

In the second case (¥ = mniqe1 — 1) we get, as F(x) = Fuiq+1(x) for
—_ hn+q+1 ==x <"‘% and % <x= hn+q+1;

h

T n+q+1
s e < o
[ 1F@ - R@rar s i [ 1F0) - Rldes
- “hatq+1
hntq+1
ZVh + [f|°—”|"dx+ f(Fn+q+1((L') F,,(af))”dx]
n+q
—hntg1

As (Fpig+1@) — Fp(@)? is periodic with the period As+q¢+1, the last term of the
inequality is equal to

n? v+1
2vhnyg v

M {(Futq+1(@ — Frx)?}.

Using the estimation of M {(Fp1q(x)— Fy(x)?} from main example 1 (see pages

59—60) we get in both cases, as ¥ =1 and % =2,

L E AP de <
szlF(a:) Fo)|Pdos —p—+ 2B
~r

n+-q "

where R, is the remainder after the =n-th term in the geometrical series

We let now T and consequently ¢—x. Then we get

—— P
Tlflszfw Fale)|?de< 2 R>,

Dypr [F (), Falx )]<V2 Ea.

The last inequality shows that Fn(x)éf F(x) for every p=1.
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Next we shall show that the B-point around F(z) does not contain
any W-function. The proof runs in a similar way as the proof (given in
main example 1) of the more special fact that the sequence Fy(x) is not W-con-
vergent. Proceeding indirectly we assume that there exists a B-zero function
J (x) such that the function

F(x) + J(x) = G ()
is a W-function (i. e. an S-function). Let

Ds[G(x)) = K <x.

We choose a fixed integer N> K. In F(x) on all the numbers m =0 (mod hx)

except the number o there are standing towers of the breadth 1 and a height
z+1

=N. As f|G(t)|dt§ K for all z, the inequality
z

m 4 1 m+% m+1
frF(x)—G(x)Idxg j F(x)dx—fliG(deng—K

m—1} m=1 m-1

is valid for every one of the quoted m. Hence

K
> o,

DglJ (x)) = Dp[G (z)—F (x)] = Eﬁﬁj‘lF(m) — G(x)|dz= N,;

and consequently Dp[J(x)]>o0, in contradiction to J (x) being a B-zero function.
Finally we observe that as in main example 2 we might have chosen all
the numbers m,, my, . . . equal to 2.

Main Examples IIa, IIb and Il c.

In main example 2 we constructed a function F(x) which is an S”a. p.
function for p <P, an SP-function, but not an SP-a. p. function. The following
three main examples I a, IIb and II ¢ are generalisations of this main example.

In main example II a the B-point around the function F(x) of main
example 2 is considered, the numbers m,, m,, ... occurring in it being only
assumed to increase suitably strongly to «. In this way we get, as we shall
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see, a function F(x) which is S*-a.p. for p < P, WP-a.p., B?a. p. for all p, and
such that the B-point around F(x) does not contain any SFP-a.p. function. Here P
is an arbitrarily given number, 1 < P <.

In the main examples 1II b and II ¢ other types of towers are used than in
main example 2, but apart from this the construction is quite the same.

In main example Il b we construct a function F(x) which is 8*a. p. for p<P,
B?-a.p. for all p and such that the B-point around F(x) does not contain any
SP.function. Here P is an arbitrarily given number, 1 <P< o,

Finally in main example II ¢ we construct a function F(x) which is SP-a. p.,
B?-a.p. for all p and such that the B-point around F (x) does not contain any
S*-function for any p > P. Here P is an arbitrarily given number, 1 = P < o.

Main Example II a.

As mentioned, in main example IT a we consider the B-a. p. point around
the function F(x) of main example 2. In this latter example we saw that F'(z)
is an S”a. p. function for p<P and an SP-function, but not an §¥-a. p. function.
From this it can easily be concluded that the B-a.p. point around F(z)
does not contain any SPa.p. function. Indirectly we assume that the
point contains an SP-a. p. function G(x). Then G(x) has the same Fourier series
as F(zx), and both F(x) and G(x) are S-a. p. functions; in consequence of the
uniqueness theorem they can therefore only differ by an S-zero function, which
is also an SP-zero function, and G(x) being SP-a. p., F'(z) would also be SP-a. p.,
which is not the case.

Next we show that F(x) is a WP-a. p. function. As mentioned in main
example 2, the function F(x) differs from F,(z) only at the numbers m =o
(mod %n+1). Therefore for all m = o (mod h,) but =0 (mod ks+1) we have

f |F — Fa(@)|? dz=o;

and further, as all our towers have the P-integral 1, we get in consequence
of Minkowskr's inequality for all m = o (mod hn41)
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P
m+%
[ 1F@ -F@iras <
hy
iy
P P
m+% m+%
[ 1F@Iras+ [1R@Fizs..
m—lt -l
2 2
Hence
2
DWP [F(:L’), Fﬂ(x)] = r !
l hn+l

where the right-hand side tends to o for » - oo.

Finally we shall show that by letting the numbers m,, m,, ... increase
sufficiently strongly to infinity we can obtain that F(x) becomes B*-a. p. for
all p. However, as it will be convenient to prove this property of F'(z), which
is common for the main examples IIa, 1I b and II ¢, simultaneously for all
three main examples, we postpone the proof.

In the main examples 1I b and II ¢ we shall use the following

Lemma 1a. Let f(x) be a function, defined in a finite interval a<x<a+ L,
which consists of a number of congruent towers placed in some way or other in the
interval. Then every fumction t(x), satisfying the inequality

P P
a+L

l/%fmx) +t@)|Pde <k I:if(f(x))"dx

where o <k<1 and 1= P <o, will satisfy the inequality

a+L a+L

i [ltelacz o -pe ] [(fayda

a
Jor an arbitrary e, 1< e < P.

In the main examples II b and II ¢, however, the lemma will only be applied
in the case where @« = 1 and f(x) consists of only one tower.
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Proof. Let the towers of f(x) have the breadth » and the height h and
let their number be ». We may assume that |¢(x)| < h; otherwise we consider
(t@)n which in consequence of the inequality

/(@) + t@h]=|(f@h + t@h] = |flx) + t ()]

satisfies the same assumption as ¢(z); on account of |¢(x)| = |(¢@)s| the con-
clusion for #(x) results from the conclusion for (¢(x),. Then {i. e. for |t@)] = h)
we have for every ¢, 1= ¢ < P,

P
a+lL a+l a+1L r

I 1 I
—~f|tw|“ TETLP—_—Lflt(x)Ide=F—:; qu(xnmx >

a
r

a+ 1L T L »
P—a l/ flf\x Ipdx—l/iflf(x)"'t(x)lpdx =

p——a(l—k)“fl @ P dz = 15—,

(1 ——Ic)P bh?P = (1 — BP = bhe =

h”— L

a+L

(1B f (f@) dz.

Main Example II b,

We construct a sequence F,(x), Fy(x), ... and a function F(z) in exactly
the same way as in main example ITa. Only by »a tower of type n« we shall
now understand a tower with the p,-integral & and the P-integral n where
the sequence p,, p;, ... is chosen such that 1 <p, <p,<:--—> P. As before
I1>¢ >¢ >--—0. The nth function F,(x) is a bounded periodic function
with the period hn.

First, we shall show that the sequence Fn(x) is 8”-convergent to
F(x) for every p <P, so that F(x) is an S*limit periodic function for p < P.
For every m=o0 (mod k,) and =0 (mod h,4+1) the quantity

Dy

| 17@ - R az
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is equal to o (cp. page 115) and for m = o (mod hyi1) we have

pn ﬂn pll
m+ %! m+ .21 m+ %!
[1F@—Fue)max = [1r@|raz + [15@ma,
- m— m—n
2 2 2
Pn

which for m=o0 is equal to }/ e, while for m=o0, denoting by n+g¢(m), g(m)=1,
the type of the tower placed on the number m in F(x), it is

P+ g (m) Pn
m+ % m+ % » .

n+q (m) In_

= f lF(x)Ipn+Q("l) d + f |F"(-’”) |p"dx =V entqm + Vé'n-
m—-h—' m—ll1
2 2

As 1> ¢ >¢, >, we have consequently for every m =0 (mod k)
Py
m -+ Ll

P
[1F@-Fi@azs2Va,

and hence for every =

Pn

z+ %
Pn P

f |FO)—F.@)Idt<V2-2V e
L3

r—

2
Thus

Py
P P
DgalF @), ) = |/ 22V e s 2V,
h 1
which tends to o for » > . From this it results that
Dyr [F(x), Fa(x)) >0 for p<P,

as for sufficiently large » we have p,> p and therefore

Dgp [F (), Fu(z)) = Do [F(x), Fa ()] ~ o.
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Next we show that the B-point around F(x) does not contain any
SP-function. Proceeding indirectly we assume that the B-point around F(x)
contains an SPfunction G (x). Then DG (x))=K < x. Let N be a fixed

P
number so that Y N =2K. In F(x) on all numbers m=o0 (mod hy) but =o
(mod hxyi:1) towers of type N are standing and these towers have the P-integral N.
Thus we have for the m in question

P

m+§

[1F@ |de—1/1_v> 2K.

—1
m—g

At the same time the inequality

P

/n:+; _
l/ f|(7 @|Pde < K

m—%

is valid so that for the quoted m we get the inequality

P
m+§ 'm+-L
f|a )P do < ! f|F |7 da.

m—— m—-—

Thus we have, on account of the lemma 1 a above, for these m

'm+1 m+§-

j|c, F(x)ldxg(;) f|F ) do= H ¥>o,

m—._

where %’ denotes the 1-integral of a tower of type N. Hence

(E)Pk' (my41—1)

2

>0

- b

T—ox 2

D2[6 (@), Fiz) = Tim Tf"’ Fl)|dz =

hx\'+ 1

which contradicts the fact that F(x) and G(x) lie in the same B-point.
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Main Example II c.

In just the same way as in the main examples IT a and II b a sequence
F,(z), Fy(z),... and a function F(x) are constructed. Only by a »tower of
type »¢ we shall now understand a tower with the P-integral &, and the
pr-integral » where the sequence of numbers p,, p,, ... is chosen such that
P>py>--->P. As before 1>¢ > g >--—>0. The nth function Fr{x) is a
bounded periodic function with the period k.

First, we shall show that the sequence F,(x) is SP-convergent to
F(x), so that F(x) is an SPlimit periodic function. The quantity

is equal to o for every m =0 (mod &,) but =0 (mod hs+,), whereas for m=o
(mod hn+1) we have, denoting for m 4o by n + g(m), g(m) = 1, the type of the
tower which stands in F{x) on the number m,

1)
Ve for m=o

r P
] Entqim) T -'//—g for m 4o
which is
1)
=2V e.
Hence for every m = o (mod h,)

P

Iy
m + 3

P
f | Flo) — Fn(@)|P die < 2V ¢a,

L]
m—-

2
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and hence for every z

P

[1Fo-Forasys Ve

Consequently
P

Dy Fe, Bl s |/ 22V,

which tends to o for #» —» .

Next we shall prove that the B-point around F(x) does not contain
S?-functions for any p > P. Proceeding indirectly we assume that the
B-point around F'(x) contains an SP-function G(x) for a p > P. Then

Dy [Gl@) = K <.

Let N be a fixed number so that ];K’; 2K and py<p. In F(x) on all the
numbers m = o (mod hy) but =20 (mod hy+:) there are standing towers of type
N and these towers have the p,-integral N and therefore a p-integral which is
= N. Hence for the m in question

»

m+ 3
p
[(Fa)pdz=VNzzK.
-

At the same time the inequality

4

'm+1
I/ f|G (@)|rde < K
m—}

holds, so that for the quoted m

p
m+1 m+1
l/ flG Pde < I/ fF(x)de.

m—_
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Consequently, by the lemma, we have for these m

m+d m+
I\? 1\? ,
f| G ) — Flz)] dz = (5) fF(x)dx= (5) ¥>o,
m—} m—1
where %’ denotes the 1-integral of a tower of type N. Hence
»
L (o ine=s
Dg[G (z), F(x) = lim —, | | G(x) — Flx)|de = >0

T—wo2 T ” hN+1

which contradicts the fact that ' (x) and G (x) lie in the same B-point.

>Spreading> of the Towers in the Main Examples Il a, II b and II c.

Finally we show, simultaneously for all three main examples, that by letting
my, Mg, . .. increase sufficiently strongly we can obtain that the sequence
F,(z), Fy(x),... is BP-convergent to F(x) for every p, so that F(z) is
B?.limit periodic for every p.

We put (cp. main example 1)

file) =Fi(@), filx)=Fx)— Fi(@), filz)=Fs@@) —Fx) .. ..

©0

Let 6,05 ... be a sequence of positive numbers so that 2 d» is convergent,
1

and let P, P,,... be a sequence of numbers, 1 = P, < P, <---, tending to .

Successively we may choose m,, m,, . . . so large that

DBP"[fn(x)] <d, for mn=1, 2,....

In fact fn(x) = Fulx)— Fu—1(x) differs from o only at the numbers =o (mod k),
and on these numbers in F,_;(x) there stand towers of type » — 1, whereas in
F,(x) towers of type n are standing, so that
Py Py
i | L+VIL
Dyl fulel] = Dyea Fale) — s ) 5 VIV I,
where I, denotes the Py-integral of a tower of type n — 1 and I, denotes the
Py-integral of a tower of type #; assuming the numbers m,, m,, . . ., ma.—1 already
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. my, may evidently be chosen

fixed, the number m, and therewith h, = m,m,
so large that the right-hand side of the inequality and therefore D P, [ fn(x)]

becomes < d,.
After this choice of m;, m,, ... we can prove that
Dypy [Flz), Fa(x)] 50 for n—oo.

From this we get immediately the desired relation D, [F(x), Fu(z)] > o for
every fixed p, as for » sufficiently large P,>p and therefore D, [F (z), Fa(2)] <

D2 F (@), Fal@) > o.
In order to prove that
Pﬂ

7
Dyry [F(x), Ful)] =TE l/ 2—11—,[|F(x)—-Fn(x)|P” dx—o for n—>o
=T

we estimate (cp. main example 1)

T
_I_._ ._4' P‘n
25 [ 176 — B ™ da

=r

for fixed » and large T, say T = h,. First we determine ¢ = o so that
hniq=T < hniq+1, and then v among the numbers 1, 2, ..., My.qr1—1 80 that

vhn-}—q é T < (” + I) hn-}-q.
To begin with we distinguish between the two cases » < min4¢+1 — 2 and

Yy=Mntq+1— I.
In the first case we have

3 (r+D by g
_t _ Ppa 1 B o
szlF(x) Fu(2)] dz = —a— | | F@) = Fala)|™ de =

7 — @+ hy g
v+ Ay g
- 2 o\ 1Pn
m[m f | Pt o(2) — Fala)] dx],
— (vt hyy g

where, as before, I, denotes the Pintegral of a tower of type n; for on o there
is standing no tower in F(x), whereas a tower of type n is standing in F,(x),

and F(x) = Fniq(z) for — (o + Dhpig< 2z < — % and for ;‘ <z <@+ 1)huisg,
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¥=1,2,..., Matgr1—2. A8 |Fpiqo(x)—Ful(z)|® is periodic with the period Aaq,
the right-hand side is equal to

In Al
+ 2L M| Fasol0) — Ful@)| ).

29 hn+q v

In the second case (v==my1q41— 1) we get

hn+q+1
2Tf|F (@) rdx = 21'h'thf|F(a.:) Fo@)|dax =
—hntgit
Bt g1
2vh,,+q [I" len+q+1(x) —Fn(x)lp"dx] ,
hntg+1

as F(x)= Funtq1(x) for —h,.+q+1<ac<—kzl and forl;—‘<x<hn+q+1. Since

| Futqi1(@) —Fa(x)]™ is periodic with the period hy;q41, the last term is equal to

In y4+1
+
2%hniq v

M {an+q+1 (x)_Fn(x) IP"}-

An estimation of M {| Fuio(z) — Fu(2)|"} is got in the following way:
Py Pp
VM Farolt) = Fa@)™ =V M| fars (1) + faral@) + - + fara @)} =

Py Py Py,

VUl fprs @ + VM| frrs@) [+ + Vil foro @™ <

Ppiy Ppya Pﬂ+q

VM fuca @11 + VM| fara@) 7242+ + VM| frro@ P9} <

5n+l + dn+2 + -+ dn+q 6n+1 + dn+2 + -
Thus we have

M| Faiq @) — Fal@) |} < (Gns1 + Gnsat )

Using this estimation in each of the two above cases, we get

+ 2 (6n+1 + 6n+2+ )

Pay. <
2Tf[F — Folx)| rdax = hn+q
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For T - o and therefore ¢ — o, we have h —0; hence
n+q
}'lj’n‘”ﬁflﬁy l "dx<2(6ﬂ+l+dn+2+"')Pn

or
Pn

DBP”[ ( ) Fn <V2 6n+1 + 6n+2 4+ )

which shows that
Dy [F(z), Fu(x)] >0 for n— o

In connexion with the lemma 1 a we insert here two lemmas of similar

character which will be applied in the later paper.

Lemma 1b. Let f(x) be a funclion, defined in a finite interval a<zx=a+ L,
which consists of a number of congruent towers placed in some way or other in the
wnterval. Then every funclion t(x) satisfying the inequality

P
- a+L
I/Lf]f + tx |de<k

where 0 <k <1 and 1 = P < o, will satisfy the inequality

a+L

7 f (f@)Pdax,

a

a+L a+L

Z]—flt(x)l"‘ iz = (1 — B)e Zlf(f(x))“d,c

for an arbitrary @, P< a < o,

Proof. We may assume that ¢(x) =0 where f(x) = 0. Otherwise we may
consider the function ¢*(x) which is equal to o where f(z) =0 and equal to
t(x) where f(x) +0; like t(z) this function t*(x) satisfies the assumption of the
lemma 1b, since | f(x)+#*{z)| < | f{x)+ ¢(x)|, and the conclusion for t{x) results
from the conclusion for *(x), as |¢(x) |> |*(x)|. Let the towers of f(x) have
the breadth b and the height A, let the number of the towers be », and denote
by e(x) the function which has towers in the same places and with the same

9
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breadth as the towers of f(x) but with the height 1. In consequence of HOLDER's
inequality we have for every o = P

a+L a+L

Iilflt(“’)lpdx="£f|¢($)|"e(x) dz <

e+L a+L —

(3 [t o) (3 fror—as) ™= =(30) ™ (; [raas)

a

Hence

a+L a+L

flt I“dw>(z )1( flt |de) =

= ]/ fILt I"de =
()
—I"é: ]/ L]:”‘ @) dx — ]/ 1%]+|I:f(x) + t(x)lpdxjag
(2 "
. -(1—70) a+(;(x\)de]a= (1 — &) ( th)

(1 ——k)“(%b) he=(1 — k)”‘%j?ff(x))“dm

Lemma 2. Let the function f(x) be defined in a finite interval a<x<a+L
and let P be a number, 1 < P< o, Let further A= 0 be given so that

P

A<l/%f|f(x)|”dm.
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Then there exists a constant ¢ > o such that every function t(x) which satisfies the

tnequality
P

V%f”(w) + t@)jPdz= 4

also satisfies the inequality

a+ L
1
Eflt(x)ldxz c

Proof. We determine N so large that

P

a+L
V I—I.Jfl(f(x))xl”dx=A1> A.

a+L a+L

iflt(x)ld:czLlfl(t(m))yldxg

P

a+L a+L r
1 I 1 I
NF— Zf|(t(x))s|”dx=N},_l l/zfl(t(x))xlf’dxl =

P Pr

~ a+L a+ L P
N——L_x /fifl(f<m))xl”dx~ l/%fl(f(m))y+(t(x))_\-|”dx =

P P

T atL a+L I 4
= /ifl(f<x>)ulpdx~l/iflf(x) +t@)|Pda =

I
A,YP—I

Then

{A,—A})P=c>o0.

It may be observed that lemma 2 is of a somewhat other character than the
a4-L

two lemmas 1a and 1 b. In fact the lower bound ¢ indicated for I—I.J f |t(@)]|dx
in lemma 2 depends on the function f(r); it is easily seen that there exists no

form of lemma 2 corresponding to the lemmas 1a and 1 b (where the indicated
lower bounds are independent of f(x)).
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Main Examples III a and III b.
Main Example III a,

In main example 3 we constructed a function F(x) which is an St-a.p.
function for p<P, an SP-function and such that the B-point around F(x) does not
contain WP-a. p. functions. Now we shall show that F (x) becomes B*-a. p. for all p,
if the numbers m,, m,, . . . increase sufficiently rapidly to . We remark, that
it was in order to be able to obtain this property that already in main example
3 we chose to fill out just the central subintervals.

@®

Let 1=P,<P;<---—> o and let Z 0. be a convergent series of positive
1

numbers. We put (cp. main examples I and II)
fi(@) = Fy(x), fo{x) = Fy(@) — Fy(x), folx) = Fy(x) — Fy(x), . . ..

The function f,(x) is periodic with the period A, and consists in a period
interval vho <z <(» +1)h, of the towers of type » which by the transition
from F,_;(x) to F,(x) we filled into the central one of the subintervals
phn1<x<(u+1)hs—1. We have calculated the number of these towers exactly,
but here we need only observe that it is (of course) at most equal to the total
number of subintervals  <x <5+ 1 in the mentioned central interval, viz.
< hy—1. The P,-integral of a tower of type n being denoted by I, we have the

estimation
‘Pﬂ

Pp P, -
VM (@) = Vﬁ—;‘—f - | / iT :

Now we choose m, so large that

Py

1,
]/—»Z<6n, n=1,2,....
"iin

Pn
VMifi@)™ <d.,, n=1,2,....

In particular we have
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We shall prove that
Dyeu[F(x), Fulx)] >0

for such a choice of m,, m,, . .., which involves (on account of P,-> oc, cp. main

example II) that D, [F(x), Fy(x)] > o for every fixed p, so that F(z) is BP-a. p.
for all p.

‘We have

Py

T
Dypn I (), Fu(x)] =Ti—_i§;wl/ ﬁ’ f(F(x) - Fﬂ(x))Pndw-
—T

Thus we shall estimate

LT (F@) — Fy@)™ da

%Ss

for fixed » and large T, say 7 = h, (cp. the main examples I and II). We
choose first g =0 such that hyyy = T < hnygs1 and then » among the numbers
I,2,... Mnsqr1 —1 such that A q S T<(+1)hnigq. As F(x)=Fniqs1(z) for
—hutgs1 =2 < huig+1, we have

f (F(a) — Fo@): "dx—l/ f Frigri@— Fr@)rdz =

l/ L [(Frrs@— @ + frrgn @) da s

]//7 (pm(x) Fu(@) “dx+V2Tf (for g1 @) " de
=7

and as futq+1(x) =o0 for

Pﬂ

My 4 g41— 1 ’ Ma+g+1—1T
—*q—z——hn+q§x<_n‘q—2—hn+q:

we plainly have

/ | Attt
L 2Tffn+q+1(x))"dx< ———I——————f(f,,+q+1(w))P" dx,

Mpt+q+1 — 1
2 —————;———m«;

—hn+q+1
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and the above quantity is thus

Pn

41 hypq
I ’,
29 it f(FHq(w) F,@)mdx +

—(»+1) h"+q

IA

l/ m"+<1+1 }3 +
n+q

hyptq+1

(fn+q+1 (x))P" dx.

—hppqt1

As (Fnrq@) — Fo@)™ is periodic with the period hn+q and (fatq+1 @)™ is

periodic with the period hu.igq+1, the latter quantity is

_ Ma+g+r
'n+q(x)_ Fn(x)
mn+q+1 — I

P?l

V2 M {(Fary@) — Fal@)™ +V2M’ﬁwwmm"}é

P, Py Py,

V—Z (VM {(I‘n+q(x) — I, (x))l)n} + VM {'(fn+q+l (x»Pn}) .

By an estimation of
Pn

V MA{(Fory@) —Fo@)™}

M{(frrqri@) ™} =

in a way quite analogous to that on page 124 we see that the right-hand side is

P, Pat1 Ppia Prig+1

= VZ (VM{(ﬁi+l($))1)ﬂ+l} + VM {(fn+2(x>)9"+2} +t Vﬂf {(fn+q+l(l’})Pn+q+l}) =

Py Py

ﬁ(dn+l + 6n+2 + -+ 6n+q+l) V_ (6n+1 + 6n+"

Hence
P

Py,
]/ > Tf(F(x/ Fn(x) Pa dx = V— an+1 + 6n+2 + -

Py

It results for T — o that Dy [ () F.(x V4 (Ons1 + Onia +

DBP” [F(x), Fn(.r)] -0 for n - oo.

=)

T _Z_ k,)v

--) so that
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Main Example III bh.

This main example is formed in a manner quite analogous to main example
IIl a, but is somewhat simpler in so far as all the towers are taken to be
congruent, viz. with the breadth 1 and the height 1. The function F(x) thus
constructed will have the same properties corresponding to P==1 as the fune-
tion F(x) of main example 111 a (where P was >>1) — with exception of course
of the function being S?Pa.p. for p < P — and the proofs can directly be
transferred. It may be remarked, however, that, on account of F(x) here being
bounded, in order to prove that F(x) is B?-a. p. for all p, we need only to show
that F(z) is B-a. p.; hence in the proof we may put P,= Py=---=1. In this
way we get a function F(x) which vs an SP-function (even bounded) and a BP-a. p.
Sunction for all p and such that the B-point around F(x) does not contain any
W-a. p. function.

Main Example IV.

We construct a function F(x) which is Wr-a. p. for all p and such that the
B-point around F(x) does not contain any S-a. p. function.

Throughout this main example by a »tower« we shall always understand
a tower with the height 1 and the breadth 1. Let m,, m, ... be arbitrary
integers =2. As usual, we put h, =m, hy=m, my, hg=m; mym, ... and
construct (cp. main examples I and II) a sequence of functions F,(x), Fy(x), . . .
in the following way:

Fy(x): On all numbers =o0 (mod k) a tower is placed.
Fy(x): On all numbers =0 (mod %) but =0 (mod h,) a tower is placed.
> » » . =0 (mod hy) no » » »

&"(x) On all numbers =0 (mod ;) but =0 (mod hy) a tower is placed.
0 (mod hy) » =20 (mod ky) no » » »

» > > =

> > » 3

0 (mod hyn—) » 20 (mod hsx) a > » >
O (mod hzn) no » » »

i

> > »

Fynii(x): On all numbers =0 (mod %) but =0 (mod h;) a tower is placed.
> > » =0 (mod h,) » 20 (mod h3) no » » »

0 (mod hss) » =0 (mod hanti)no » > >
o] (mod h2n+1) a » » »

¥
¥
¥

» » »
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(see Fig. 10 which represents Fy(x) for m, = m, = m; = 2).

l L l e I 1 1 L l
—ky =3k —h,y ~h, o k, hy 3h, hy

Fig. 10.

Obviously F,(x) is a bounded periodic function with the period h,.
We begin by proving that F.(x) is W-convergent to the following
function:

F(x): On all numbers =0 (mod k) but = o0 (mod k) a tower is placed.
> » =0 (mod k) » 20 (mod hy) no » » »

o (mOd hﬂn—l) » =0 (mod hgn) a » » »

(o) (mod hgn) » 20 (mod h2n+1) no » » »

If we leave the interval —} < x <} out of account, obviously ¥(z) can also
be defined as lim F,(x) (cp. the main examples I and II). F(x) is a bounded

function and differs from F),(x) at most on the numbers m = o0 (mod ha.41), and
we have for each such m

m+%
J1P@)— Fu@ldz =1,
n=i

viz. either o or 1. Hence

Dy [F(z), Falz) = h—.,,l -
+1
which tends to o for n—~, so that F,(z) % F (z) for n-. Thus the function
F(x) is a W-imit periodic function, and F'(z) being bounded is therefore
W?.a. p. for all p.
Next we show that the B-point around F(x) does not contain any
S-a.p. function. Indirectly, we assume that G (z) is such a function. Then

we have
G(x) = Flx) + J(x)

where J(z) is a B-zero fuunction. Further, F,(z) being a sequence of periodic
functions with the periods h, which B-converge to G (x), the period h, is, in
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consequence of Theorem 1a of Chapter I, for » sufficiently large, an S-translation
number of G (x) belonging to an arbitrary given ¢ >o0. We choose ¢ =} and
determine a fixed N so large that

(1) Ds[G(x + hy), G(z) = L

Let now m' denote numbers =o (mod Ay) but =0 (mod hxy+1), and let
m” denote numbers =o (mod hx41) but =0 (mod hyis). Either, in F(x), there
are towers on all numbers m" and none on the numbers m”, or conversely. By
a translation hy all m”-points are translated into certain of the m’-points, as

m” + hy=0 + hy =0 (mod hx;)

and

m”’ + hy =0+ 0=0 (mod hy).
Hence -

wm'+ 4
(2) f F(x + hy) — F(z)|dx =1

for all the numbers m”. In consequence of (1) we have in particular

m' + %

(3) | [16(@ + ha) — G@)] dz

m,,_%

IA

By (2) and (3) we get for the function J(z) = G(z) — F(x)

Hence

Do+ ) Ja) = Tm S [ 1700+ ) = T @) doz § 750" >

Consequently Dg|J(x + hy), J(x)] >0 which contradicts the fact that J(x) is a
B-zero function.

We observe that in this main example we were not forced to impose
additional conditions on the sequence m,, m,, . . ..
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Main Examples Va, Vb and VL

In main example Va a function F(x) is constructed which is an SP-a. p.
Junction for p <P, not a BP-function and such that the B-point around F(x) con-
tains a function G (x) which is BP.a. p. for all p. Here P is an arbitrarily given
number, 1 < P < o,

In main example VI a function F(x) is constructed which is an SP-a.p.
Sunction for p<P, an SP-function, but no BP-a. p. function and such that the B-point
around F(x) contains a function G(x) which is BP-a. p. for all p. Here P is an
arbitrarily given number, 1< P <.

In main esample Vb a function F(x) is constructed which is an SP-a. p.
Junction, but not a BP-function for any p>P and such that the B-point around F(x)
contains a function G(x) which s BP-a.p. for all p. Here P is an arbitrarily
given number, 1= P <o,

Main Examples Va and V b.

The two main examples Va and Vb are constructed in an analogous way.

In both cases we start from a positive function #(x) defined for —} =z <}
which is bounded in every interval —{ <z =<e¢ <}; in main example Va
‘this function #(x) is p-integrable for p < P but not for p = P, while in main
example Vb the function t(x) is P-integrable, but

/ not p-integrable for p > P.
/ Let —1<a, <ay<--—>1} (see Fig. 11). For
— 3=z <} we define
t(x)
(tx) for —i=x<e
t(x) =,
l 0 elsewhere,
[t(x) for e, =x <a,
ty(x) =
1 0 elsewhere,
t(x) for ey <z <ay
e} o - 2% o oy % ts (1‘) =
O elsewhere.

Fig. 11.
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Let m,, my, ... be a sequence of integers =2 and let k= m,, hy = m, m,,
hy=m,mym,, .... By fulx) we denote the function arising from the function
ta{x) by repeating it periodically with the period hn, n=1,2,.... We put

(ep. main example I)
Fo(@)=filz) + file) + - + fula)

(see Fig. 12 where m; = my=m;—2 and n = 3).

A A A ' ’ 4 " 4

_rT A A s A A A !
NN ot N | AR o R RO e I I o O (R !
—hy —3h, —h, —h, o hy hy 3h hy

Fig. 12.

Fuarther we put
F(a) =fi(®) + filw) + -

this last series is convergent for every x, since at most one of the terms is
different from o for a given 2. The function F,p(z) is bounded and periodic
with the period k.
It is easily seen that
Fy )% F(2)

for p<P, respectively for p="P, so that F(x)is SP-a.p. for p<P, respectively
for p= P; in fact for an arbitrary ¢ >0 we have

Dy fale) + farr(@) + -] < e

for p < P, respectively for p=P, when » > some N = N (g, p), as for n— o

¥
[ t@pdz o

for p < P, respectively p=P.

The function I'(x) is no Br-function for p=P, respectively for
p > P, since F(x)=t(x) for —} =<2z <} and ¢(x) is not p-integrable for p = P,
respectively for p > P.

Finally we shall show that the B-point (even the W-point) around
F(x) contains a function G(z) which is BPa. p. for all p, if we only let
the numbers m,, m,, . . . increase sufficiently rapidly to .
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L]

Let 1=P, <Py<--->% and let 26,, be a convergent series of positive
1

P,
numbers. We choose the number m, so large that V M {(f,(x)!} < d,, the

P,
number m, so large that V M {(f@)>}<d,. .. ..

Subtracting from F'(x) the W-zero function
J tx) for —l=<x<}
l o elsewhere

we get a function G(x) = F(x)—j(x) which will prove to be B?-a. p. for all p.

Putting
) [t(x) for —1<<r<an
xX) =

in l o elsewhere,
and Gplx) = Fu(x) — ju(x), we have
D7, (G (@), Fu(x)] = Dypu [G(2), Gu()],

since jn(z) is a WP-zero function for all p. Further

D, P, [G (), Gulx ]—hm l/ [(I(:c) Gu@) ™ d,

and we shall therefore estimate

2T

-7

T
L f (G@) — Gu(@)™ da

for fixed » and large T, say T = hy,, proceeding in a similar way as in the main
examples I, II and III. We determine first ¢=0 so that hniq<T <hniq+1 and
then » among the numbers 1, 2, ..., Matqs1—1 80 that vhurq =T < (v + 1) haaq.
To begin with we distinguish between the two cases » < mai¢+1— 2 and
Y = Mn4g+1 — 1.
In the first case we get

T (v+l)h"+q
ﬁ f (@)~ Ga@) ™ do = — — | (G- @) de =
—T —rtlhy 4 q

(v+1) hn+q
1

Pﬁ y
v hor (Griq@) — Gu@) ™ du,

—(v+1) hn+(]
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as G(z) = Gpy4(x) for
_('V+ I)hn+q§x<('y+ I)hn+q, 721,2,..., Mytq41 — 2.

Here the right-hand side is

(v+1) hn+q
I

Py
2 'th+q f (EHq(x) - E:(x)) dx',

— (p4+1) "n+q

=

as
o= Gn-)-q(x) — Gha (x) = Fn+q(x) - El(x) - (jn-{-q(x) —Jn(x)) = Fhuyg (x) - Fn(x)7

and this quantity is

= d + ! M{(Fn+q<x) - Fn<$))P7l}s

4

as (Fpiq@— Fo@)™ is periodic with the period Au+q.
In the other case we get

T hptge1
r YN Py g, YN (Y Pnog.
-T ~ntgi1
hntq+1
1 P,
21’hn+q f(G'n+q+l(x>_‘ Gn(x)) dz,
gt '

as (7 (x) = Ghurgr1(®) for —hnpqi1 = 2 <huyg+1. Here the right-hand side is

h1l+q+l
I

2,,}ln+qf(Fn+q+1(:c) F,x) *dex,

~hatg+1

=

a8 0 = Gnygr1(®) — Gu(®) £ Frygr1(x) — Fo(x), and this is further

__v+I
v

M A{(Fprqr1 @ — Fo@)™},

as (Fryger () — Fn(x))P" is periodic with the period hpyq+1.
Estimating M {{(I'y+q(@) — F,@)"} in the same manner as on page 124 we get

Py Ppiq Ppig

V M A(Foso@) — Ful@)™) £V M fars@) ™) + VM fara@) 2] + -

Pniq
+ VM {(ﬁl+q(x))l’n+q} § 6n+1 + dn—{-‘.’ + -+ 6n+q é Jn+l + dn+2 + .-




Fe ()

—~hy, —8 —97 —2h, —§5 —4 —h, —2 ~—1 o 1 2 h
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v+1I

Thus we get in both cases, as =2,

Pﬁ

T Py
l/ z—IT f (G@ — Ga@) ™ dz SV 2(Gas1 + dnsa + )
—T

for T= h.. Letting T ->© we get

P,

D2, [G(x), Ga(@)] S V2 (Busr + usa + ).

Since D2, [G(z), Fu(x)] = DyPu[G(x), Gu(x)], it results that Dpr. [G(z), Fulz)] -0
for n >, Hence
F,‘(x)—Bf G (x) for all p,

and consequently G (x) is a BP-a. p. function for all p.

Main Example VI.

This main example is constructed in a similar way as main example III a.
As in that example we construct a sequence F,{x), Iy(x), . . . of bounded periodic
functions with the periods A, ==m,, hy=m,m,, . . . and consider F(z)= lim Fy(x).

P
In main example IIl a we obtained I'n4i(x) from Fy(x) by filling out the central
one of the subintervals nh,<x < (n+1)h. of every interval vh,11Sz<(v+1)hni1
by towers of type m+1, i. e. by towers with the I1-integral &1, and the P-inte-
gral 1. Now, however, instead of filling out the central one of these subintervals
we fill out the first, i. e. that farthest to the left (see Fig. 13 where m;=my,=3

and n=2).
I, . |I . I, A ‘I —l
v 45 2h

7 8 hy

Fig. 13.

As in main example 11l a we denote the added function I i:(x) — F.(x) by
Sor1{x) (fi@)= F,(x)) and assume that
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is convergent. Since this time we fill out the first interval instead of the
central one, it does not hold that F(x) = F,(x) for — hs = x <h,, but only that

F(x)=Fa(x) for — hy=<x <hu.—; but obviously it is still valid that F(z)> F(x)
so that F(z) is Sa.p., and that F(z) is an SP-function.

While F(x) of main example III a is BP-a. p. for all p for a suitable choice
of my, ms, ... we shall now show that in the present case F(z) is not BP-a. p.

We prove this by showing that
P

D% [Fla), (Fa)] = ;I/(x—mil) (I—miz) >0

for every N>o; this involves that F'(x) is not BP-a. p., as otherwise (see Chapter I)
D;;P[F(x), (F@)n] = o for N> o,

Let, then, N be an arbitrary number >o. The height %, of a tower of
1

type # being equal to (%)F:l (see page 43) tends to o for n—~>o. We choose

N, so large that %k, =2 N for » = N,. If {(x) denotes a tower of type = for
n = N, standing on the interval y =z <5+ 1 we have

l/"ﬁt — (@) dz = 4.

We consider F(z) in the interval 0 <z < hy—. In this interval F(x)= Fq(x),
and F,(x) contains h,—; (1 - —I—) (1 — —-I—)(I —

"y Mp—1
all the towers of type » which were filled into the first of the subintervals
vhe1 =2 <(v + 1) ha—s of the interval o <x < h, when passing from F, ;(x) to
F,(x) (cp. page 86). Therefore for all = N, we have

) towers of type », namely

P

]/ - fn (—11“ ‘F(x) v de=
TS | B R R
o e e Y e e
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and thus

T r

E’L %f(F(x)—(F(x))x)deZ§ ‘/(1—;;—1)(1—%)

0

D [F (@), (F)s] = ;—]/(I — ) (=)

Finally we shall prove that, by letting m,, m,, . . . increase sufficiently rapidly
to o, we can obtain, that the B-point (even the W-point) around F(x)
contains a function G(x) which is BPa.p. for all p.
Let 1= P <Py<:--—- and let Z dn. be a convergent series of positive
1

numbers. We denote the Py-integral of a tower of type » by I, and choose

Hence

Mg, n==1, 2, . .., 80 large that

Py

I,
i o
My

and thus (see page 128)

PTL

V M{(fo@)™} < b
Let

Sulx) for —h=x<h,
y, N=1,2,....

sl =1

0 ' elsewhere
Corresponding to F'(z) = f,(x) + fy(x) + --- we form the function

J@ = @)+ f3lx) + -

(the series is convergent, since for a given x at most one of the terms is ==o0).
We shall prove that j(x) is a W-zero function and that the difference
G (x) = F(x)—j(x) is BP-a.p. for all p.
It is easily seen that j(x) is a W.zero function; for outside the interval
— hn < 2 < h, the towers of j(x) are all of types = # + 1 and such towers have
I-integrals = &,4;.
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Next we prove that (r(z) = F(x) —j(x) is BP-a. p. for all p by showing that

Fn(x)ip G(x) for all p. To this purpose, corresponding to
Fulz)=fiz) + fo(x) + - + fale) we put ja(2)=f1{a) +fi(x) + -+ fa(2)

and consider the function G,(x) = Fyu(x) — ju(x), =1, 2,.... Obviously j.(z)
is a W?-zero function for all p and G(x)= lim G.(z). Further

Gur1(x) = Gulx) + for1(x) — fai(2),

since
Ga+1(0)=Fpi1(2)—jusr(w) =Tl )+fn+1( )—Jul@)—fa+1(2) = Gu(®) + fas1(2)—f241(2).
Hence we have, on account of the definition of fai:(x),
Guiilx) = Gyulx) for —hur1 = <hpir;
uccessively applying this equation, we get
Gx)= Gu(x) for —hpy1 =2 <hpir.

As j,(z) is a WPr-zero function (and hence a fortiori a BP-zero function) for

all p, we have

D7, [G (), Ful)] = Dyra[(G(2), Gulz)) = lim l/ — Gp) " da.
I

Thus we shall estimate

T

ﬁf((%(%) e G?L(.%))Pn dx

—-T

for fixed » and large 7, say T = h. (cp. the main examples I, II, III, V).
First g=o0 is determined so that Aniq =< T < hn+4g+1, and next » among the

numbers 1, 2,..., Muyq+1 — 1 50 that vhurq =T < (v + 1) husq. Then we have
T (1) hy g
1 P . P
= | (G@) — Ghlw) "dx = G@)— G "dx =
ZT,/(I() 2 (1) dx_zvh”qf( @ — Ga@) "dx
- -("'H)hn+q
(‘V+1)’In+q
I . .
f (Gt o@— Gn@) ™ da
2'”hn+q
—(v+l)hn+q

10
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since

G(-Z) = Gn+q(x) for — hn+q+1 sx< hn+q+1-

As 0 = Guyolx) — Gu(x) = Furglx) — Fou(x), the right-hand side is

(v+l)hn+q
1 P
= Friqw)— Fal@) "da
21’hn+q f( n+q\b) n ) )
—(‘v+1)hn+q

and this is

v

T M (Fuyg @ — Fa@)'™),

14

as (Friql@) — Fo@)™ is periodic with the period hu4, Further, in consequence
of the estimation on page 124 the last quantity is

Pyt Pyyo Pyig

= 2( .ﬁ{(ﬁ»+1(x))P"+l} + VM{(‘}(;‘+2($>)P11+2} 4ot VM{(fnJrq(x))P”*'q})P”é

2 (6n+1 + 0ot Jn+q)Pn =2 (Jn+1 + Opyo + -+ ')Pn-
Hence for T = h, we have

Py

T Pn
l/ Elf,f(G(w) — Gu@) Pz SV 2 (Onsr + Onia+ - );
-T

letting 7' oo, we get

Py

'DBP" [(}('1)1 Gn(ﬁ)] = V—;(dn_}.l + Opyo + - )
Since

Dpp, [G (), Fu(@)) = Dya[G (), Gal)],

we conclude that D,r,[G(x), Fu(z)] >0 for » - o and counsequently that

»
Fu(@)% G (@) for all p.
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Main Examples VII a, VII b and VII ¢,

The number @, 1 < ¢ < oo, being arbitrarily given, in all the three main
examples we construct a function F(x) which is an SP-a. p. function for p<e, an
Sefunction and such that the B-point around F(x) contains a function G (x) which
ts BP-a. p. for all p.

In main example VII a the number P being arbitrarily given such that
¢ < P<®, and in the main examples VII b and VII ¢ the number P being
arbitrarily given such that ¢ < P < o, in the different examples the function
F(z) has further the following properties.

In main example VII a: F(z) ¢s BP-a. p. for p<P, and the Wepoint around
F(x) contains no BP-functions.

In main example VII b: F'(x) ¢s a BP-function, and the W *point around F (x)
contains no BP-a.p. functions. In the case P=a it results already from the
above that F'(x) is a B*function; in fact it is even an S*function.

In main example VII ¢: F(x) 45 a BP-a. p. function, and the W *point around
F(x) contains no BP-functions for p > P.

We remark that in the later paper, where the examples of the appendix
will be used, we shall see that, on account of general theorems, the B-points
around the functions F'(x) of the three main examples cannot contain W*a. p.
functions.

The main examples VII a, VII b and VII ¢ are constructed in an analogous
way, and they are of a similar type as the main examples III a and VI. Just
as in these examples, we construct a sequence F,(z), F,(x),... of bounded
periodic functions with the periods h, = m,, hy =m, m,, ... where

is convergent and consider ¥(z) = lim ¥, (2). In main example I1I a, respectively

n—r 0

VI, we passed from F,(x) to Fy.i(x) by filling out the central, respectively the
first, of the subintervals ph, <z <(u-+1)h, of every interval vh, 1<z <(r+1)hns1
by towers of type »-1, i. e. towers with the 1-integral ¢n41 and the P-integral 1.
In the present construction, however, ¢ takes the place of P, so that a tower
of type » means a tower with the 1-integral &, and the a-integral 1. Further,
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by the transition from F,(x) to F.i:(x) we do not fill out just the central or
the first of the subintervals uh, =< x < (u + 1)h. by towers of type n + 1, but
another of the subintervals, later precisely indicated. The subintervals to be
filled out shall of course as usual lie periodically with the period %.,:1. As we
shall see, by a suitable choice of these intervals, we can obtain that F(x) gets
the desired »B-properties<. Let the subinterval vh, <z <(» + 1)k, of the interval
O0=<x <hy4; which is filled out at the transition from F,(x) to Fu41(x) be
denoted by ¥uj1bn =2 < (¥ar1 +1)h,. For the sake of convenience we shall
choose

Mn+1
2

Ynt1

so that the interval v,11hs < <(vy41 + 1)k, is that (or eventually one of the two)
of the subintervals filled out at the mentioned transition which lies nearest to o.

It is plain that Fn(z)> F(x) for » >, as the 1-integral & of a tower of
type » tends to o for » >, and thus the function F(z) is an S-a.p. fune-
tion. Further all towers of F(x) having the c-integral 1, the function F(x)
is an S%function.

We introduce similar notions as in main example VI. We put f;(z) = F(x),
file) = Fy(x) — F(2), fylo)=T3x) — Fy(), . .., so that Fulx)=f(x)+/f(z) +
-+ fulx) and F(z) = f,(z) + folx) + --. Further we put

falm) = { Jolx) for —ha=ax<h,
o elsewhere,

Jnle) =1+ frle) + -+ fale), j)=r10) + 1)+,
Gu(x) = Fy(x) — jnl), Gx) = I'(x) — j ().

For huoyq =T < huiq+1 we get the estimation (cp. the analogous estimation
on pages 129—130)

»

i |
. P L
l/ o7 j (F@—F@Pde s Vz (VI @ + -+ VI (arg @) +
—7

4

"n+q+1
1 . ,
P o1 dx
27n+q+lhn+qf(f;l e

—hntq+1
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(if Ynig+1 ==0 We put é= oo), or, introduecing the notion

4

Ap(n) N VZ Q’nlhn——l f (f”. (x))p dw’

_hﬂ-

the estimation

b4

T
(1) ‘/;,I(F(x)—Fu(x))”dxé
—T

Vz (Vp H (o @Pl +-+ VE {(Fore@P)) + 4p(n+a+1).

Further we have (cp. page 137)

? T
(2) ]/ ﬁ f (G@— G.@)Pdz <V 2 (&er AV {(Fara@)?}).
-7

Let i1 =P <Py<--->o and let 26,, be a convergent series of positive
1

numbers. We let m,, m,, ... increase so strongly that (cp. page 128)
Py

(3) V M {(fa@)™} < da.

For hn+q= T < hutqs1 we get from (2) and (3)

Py

Py Py,

7 oom -
l/ﬁ’f (6 @—Gu@)de = V2 (V M {fori@)™ + o+ V M {(fas) ™) =

Py Prig

Py
Ve (VUH{(fors @+ + VM fore@) ™) <

Py Py,
V2 @urr -+ 0atd S V2 (Gntr + Gaga + ).
Hence
P

Do [G (), Gula)] = V%(dn+l + Onya +--0),
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and, jn(x) being a WP-zero function for all p, we have

DB}')ﬂ [G(x)) Fﬂ(x)] = DBPn [G((L‘),. Gn(x)] = Vn;(dn+1+ Onsot - )

so that D P,[G(z), Fu(x)) >0 for n > . Thus G(z) is a BP-a.p. function
for all p. Since j(x) is a W-zero function (cp. main example VI), G(z) lies
in the W-point around F(z) and in particular in the B-point around F(z).

Having discussed the common properties of the main examples VIIa, VII b
and VII ¢ we now pass to consider these examples separately, as regards their
mutual differences.

Main Example VII a.

We wish to choose the numbers »,, %, ... defined above so that F(x)
becomes BPa.p. for p<P and so thatthe Wepoint around F(x) does
not contain any BP-function.

We shall first show that we can choose v, 7, . . . so that

Apyn)>0 for p<P and n->w
and
Ap(n) > for n— oo;

later we shall show that F(x) then gets the desired properties.

A necessary condition for Ap(n) > « is that 7% —o0. For, as
n

P
by
Ap(n)=VTLﬂ f(fy.‘((l Pdx=
P - » ]
l/ ?..: . 2I—hﬂ f (f,’:(x))P dx = l/% . M{(fn(x))P}v

_hn

the relation Ap(n) > obvious y involves the relation — — oo, since, on account
Yn

of V M{( fu@)F®} >0, we have Pl/ M{(fa@)?} - o.
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a—?r
As the p-integral of a tower of type » is e mal to ¢! we have

4 P -

1 e—p ( 1\

Ay(n) = —dp— &% = -d_l('— T
P( ) Py n n ' n: n

where d,—; has the same meaning as in main ex: mple 3, i. e. indicates the relative
density of the empty intervals y =z < g+ 1 in the function Fpn—;(z). Thus,

p—a

denoting dn— ('EL)“—"1 by B,(n), we have
»

40=]/LB0)

Obviously we can choose a sequence of numl 2rs (¢ <)p, < py <:-- > P which
converges 80 slowly to P that

P—a

| 4 Pyt
s | — ot
Bp(n)= n_l(sn) =(L}* 7 s for mow
B,, () Pp—a &n .

dn—l (i) a—1
&n

We shall show that as our », we may, from ¢ certain step N (to be indicated
below), use

I
Bp(n)
log 3, ()

Bp'l

Vp =

—

(where [x] denotes the greatest integer =< x). In fact we shall show that, choosing
¥ in this manner, 4,(n) > o for p < P, Ap(n) = © and (for N sufficiently large)

Mp
vy < —2.
"2

We start by 6bserving that », -~ o (and t wus especially », = 1 for » suffi-
ciently large). This results from

P=a
1 I o= 1 (l) -

_ = e} — &n
" loge B2(7) Beln) P—pu, Ld”"l(&’ P—p, ! lo (L)
ngn(n) a—1 8, ¢—1 E\en
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where
P___&»O, dn—l"')(l_i)(l—i)"'>o
a—1 ml m’
and
P—a
&)~
En - o0,
lo 1
4 &

In particular
I

¥n ~W Bp(n) for n -,
Bp,. (")
Then we have
Pn Pn
_ I - 1 BP (n) . BP,; (") -
O N s A e

gince
BP (n) - 0
Bp,. (”) '

so that 4p (n) >0. Now, for a fixed p < P and n being chosen so large that
Pn>p (and v, = 1), we have
4p(n) = 4y, (n);

in fact, as
P

Ap(n) = ]/2 'ulhn_l f (fr@)P de,

_hn

the inequality A,(n) < A, (n) follows from HOLDER's inequality, since fy (x) is
different from o at most on intervals with total length = 2h,—, and a fortiori
with total length =< 2w,h,;. Thus, as Ay (n)—> 0, we have

Ap(n) >0 for p<P.
Further we have

P P
I Bp(n)
Ap(n) = l/’,—ﬂ Bp(n) ~ |/ log B, (n) o
so that
Ap(n) -+ ®,
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As mentioned above this involves ;vnﬁ — 0, and therefore we can determine our
n

N so large that the last claim », < @21' for n = N is satisfied. For n < N we

choose the », arbitrarily so that merely », < ?

We shall now show that by this choice of the numbers », the function F(x)
gets the desired propefties.

First we shall see that F(z) is B?-a. p. for p < P. This results from (1)
and (3), since for hni¢ = T < hntq+1 and n so large that P,y >p we have

?

T
Vﬁ f (Flx)— Fom)? dx <
—-T

h(,, W (o @]+ + M {(farg@)P}) + 4pln + g+ 1) =

p Pnia Poig

V2 (VE{(frrs @)+ + VU (farg @) + Ao+ g+ 1) =

P
V;(dn+l + dnva + 0+ Onig) + Ap(n + ¢ + 1),

and hence, letting ¢ >,
P

Dy F@), Fa@) <V 2 (But1 + Onea + ).

Thus Dy [F(x), Fu(x)) > 0 for # - o, and consequently F(x) is a B?-a. p.
function for p < P.

Next we show that the W%point around F(z) does not contain
any BP-function. Proceeding indirectly, we suppose that there is a W<ezero
function J(x) so that Dyp[F(x)+ J(z)] < . Denoting by J*(z) the function
which is equal to J(x) where j(x)=+ 0 and equal to o elsewhere, we have

3p (@) + J* ()] = Dyp [Fla) + J ()] <o,

since F(x)=j(x) where j(x)+0. Let D}p[j(x) + J*(x)) = K. For n= some
sufficiently large N, we have

P

log+D) hypy
I -«
]/(mfly(x) + J*(x)|Pde =2 K;
0




150 Harald Bohr and Erling Fglner.

in particular we have, denoting by J, (z) the function which is equal to J*(z)
where f; (x) =0 and equal to o elsewhere,

P

(v +1) Ay y
I
l/mflf” )+ Ja (@) |Pde =2 K.
A

n lp—1
For n +>o we have also

P
(vpt+1) hyyy
I * NP .
ont 1) T f (/i @)* do
¥n hn—1
P P
/ iy, P
—r NP d o~ ! $ NP N
V 2(710+I)hn—1 f (ﬁ (x)) dx 2V hn—-l f(ﬁl (x)) dx A-P(n) *
—hy —hy
so that for » = some sufficiently large N,
P
(vp+1) Ay
_.__I___. * . N\P >
(o0 + 1) by f (i @) dow = 4 K.
*n hp—1
Thus for » = max (N;, N,)
P P
(v,,+1) hp—1 (rp+1) by
f /2 @) + I @) dw < L ' | ()P da.
hn—l hn—
hp—1 ¥ hn—i
Hence, by help of the lemma on page 116, we get
(vn+l) hp—1 (:yn+1) hp—1
[IJ,. |“dx>( f(f (@) dx—(l)Pd,,_lz 1) —— I-—L)"'
hn—l hn— " 2 —\2 m, My
¥nhn—1 va hp—y
and therefore further
'vn+1) hp—1
aar=( (-2)(-2)
my My
"n n—1

This inequality, holding for every sufficiently large #, contradicts the fact that
J(x) is a Wezero function.
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Main Example VII b.

Here we wish to choose the numbers »,, 7;, ... so that F(x) becomes a
BP-function and so that the Wepoint around F(z) does not contain
any Bfa. p. function.

We begin by proving that »,, v, . .. can be chosen so that

Ap(n)->k for n—>o

where k is a constant > 0. In a similar way as in main example VII a it is
seen that a necessary condition for Ap(n)—% is that ”’—,n"— - 0. For all » from a
n

certain step N (which will be indicated below) we put

L[

We observe immediately that »,= 1. If P=¢, we have Bp{n)=dun_1, ¥»=1, and
hence

If P> «a, we have

P—a
BP(n)= (l)a-—l o
dn—l &n
so that i
Bp ('n)
b dn-—l
and therefore
Ap(n) = L].’?p(n)~]/—d‘nj1—» (1—_1_)(1__,1_)....
Vn m, My

As wmentioned we have then ﬁ—>o and therefore our above N can be determined
n

so that the claim vn<”~£' is satisfied for n=N. For » <N the numbers », are

chosen arbitrarily so that merely », < %’ is satisfied.

We shall show that by this choice of the numbers », the function F(x) gets
the desired properties.
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Firstly F(x) is a BP-function. In fact for hniq= T < hnq+1 and sufficiently
large n we have

P
Vil
I
— — P <<
]/zT f (Fa) — Fa@)P dx <
—-T

P P r
Ve (VM forr@PF} + -+ VM fas@)P da}) + Adp(n + g +1)=

Ppt1 Priq

Vi (VM {(furs@)™1} + -+ VM {(for @) + dp(n + g+ 1) S

P P
V2 @1+ Snrat o+ Onpg) + 26 <V 2 (Batr + Gnra+ ) + 2k

Letting ¢ - o, we get

P
Dy [F(@), Fal@)| S V7 (Guer + dusa + ) + 2
and thus

Dyp[F (@) = Dye[Fal2) + ];;(dﬂ+l + Opi2+ ) + 2k

Secondly we shall show that the W%point around F(z) does not
contain any BP-a.p. function. Proceeding indirectly we assume that there
exists a Wezero function J(xr) so that F(z)+ J(x) is a BF-a. p. function or,
which is equivalent (as F(x) is B-a. p.), that

(F@ + J@)x® Flz) + J ().

Denoting by J*(x) the function which is equal to J(z) in the points where
jlx)#=o0 and equal to o elsewhere, we have

(o +J *(x))NIfj (@) + J*(x),
since F(x)=j(x) in the points where j(z) +=0. J(x) being a W=zero function,
J*(x) is also a W%zero function. Then j(x)+ J*(x) is a W-zero function, in
particular a B-zero function. Consequently (j(@) + J*@)y is a BP-zero function
for all p and especially a BP-zero function. As the B”-point around o, considered
as a set of functions, is BP-closed, the function j(x) + J*(x) is also a BF-zero
function. Consequently we have

pP

) (vp+1) by gy
l/ : fll(x)*‘ J*(x)|de§Z; for » = some N,,

(’Vn + I) hn_l

o



On Some Types of Functional Spaces. 153

in particular

P

(v +1) hyq
____E____ * » P <E )~
(7n+ I)hn—l f If;' (x) + J" (x)l dx: 8 for n= N])
h

*n An—1

where Jn(x) denotes the function which is equal to J(x) in the points where
Ja(x)+0 and o elsewhere. Further, for sufficiently large =,

P
. (vp+1) by / I 7n
m‘[(‘f;(ﬁ))l’dxz: mhn_lf( s ()P dax =

vy —hy

l/"‘n +1 2V, hn—l fn

_hn

P

and thus
P

(v t1) by oy
(7n+11)hn—1 [(f,,'(ac))Pd —>_=£ for »nz= some N,.

Vp hp—1

Hence for n = max (N,, N,)

P

(w,,+ N by vn+l) hp—1
[ for (@) + I (e |de< f (fr@)? dz.
hn—-l hn—l

vy lip—1 Vp Pp—

By help of the lemma of page 116 we get

wa+1) hp_q (1) Ay

= [1eraz () 5 [ reraz () (- ) (i-4)

¥n Mn—1 vphp—1

Hence, for sufficiently large =,

(vp+1) hpq

h,l_lfu a2 (2 (1= 2) (1= 2) -

Y

which contradicts the fact that J(x) is a W%zero function.
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Main Example VII c.

Finally, in this main example, we wish to choose the numbers v, v, . .
such that F(x) becomes BPa.p. and so that the Wepoint around
F(x) does not contain B?-functions for p> P.

We shall show that we can determine #,, », . . . such that

Apn)>o0 for n—->o
and
Ay(m)>o0 for p>P and #-> .

A necessary condition for this last relation is that % —+0. We have
n

P p
p—a
- |/ Lo () =)/ L
= Vn dn—l(en) Y BP (n)

First we choose p, > p; >--- - P converging so slowly to P that

T (2]

Then from a certain step N (which will be indicated below) we put

VY —

I
B, ) By, (n)

log Br)

Then on the one hand, as », - o and therefore

VYo ~ | Bpn ( n) Bpn (1’!) )
€ Br(n)
we have
Ap(n)=|/ > Br(n) Bonr) Bl

n “V 8B B,

SR VEwaeil Vo =00

while on the other hand
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which involves that A,(#) > o for p > P. From this it follows as mentioned that

VYn

.0 for »—> oo, and we can therefore determine our above N so that the
n

claim », < —2—" for » = N is satisfied. For » <N we choose », arbitrarily so that
m
merely v, < ?" .

Now it results (in a way quite analogous to main example VII a) that F ()
is BPa.p. and that the W*point around F(x) does not contain BP-functions
for p> P.



