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1. Introduction 

One use of the  axioms and  defini t ions of th is  pape r  is found  in the  s t u d y  of cer ta in  

subclasses of r a n d o m  var iables ,  for example  those def ined on a p robab i l i t y  space (R, B, 

P) ,  R real,  t h a t  are  f ini te  and  cont inuous a lmos t  everywhere  as con t ras ted  wi th  f ini te  and  

a lmos t  cont inuous  (i.e. measurable) .  W i t h  this  avenue  open all  expec ta t ions  E X  of some 

i m p o r t a n t  subclasses of r a n d o m  var iab les  can be eva lua t ed  as a symp to t i c  averages:  

I N 
E X = l i m  ~ ~ X (ak) (1) 

on a single f ixed sequence S=~(al, a2, a3 . . . .  ), or  ob ta ined  as s imple extensions of such 

evaluat ions .  I n  order  t h a t  these subclasses can be s tud ied  wi thout  considering the i r  behavior  

off the  f ixed sequence S which behavior  seems inconsequent ia l  from the  probabi l i s t i e  

po in t  of v i e w - - i t  is necessary to  include t hem in a set t ing more  general  t h a n  measure-  

theore t ic  p robab i l i t y  theory .  This is the  ease because the  class of funct ions for which (1) 

converges on a sequence S m a y  be more  general  t h a n  any  class of r a n d o m  var iables  on a 

p r o b a b i l i t y  space of the  form (S, B, P )  for which (1) is the i r  m a t h e m a t i c a l  expec ta t ion .  

The mot iva t ions  for th is  app roach  are as follows. 

His to r ica l ly  and  in tu i t ive ly  the  expec ta t ion  E X  of a r a n d o m  var iab le  X is e qua t e d  

wi th  an  a sympto t i c  average  of the  form (1), the  var iab le  X being considered as a funct ion  

on a sequence S ~  (al, a2, a3 . . . .  ) of e l emen ta ry  events  or sample  points .  This equa l i ty  is 

recovered in the  s t rong law of large number s  a n d  the  ergodie theorem of modern  measure-  

theore t ic  p robab i l i ty .  I n  the  modern  version, of course, the  po in ts  % are ob ta ined  as images  

(1) Acknowledgement: This paper has been made possible by a grant from the Case Research Fund 
and by the added support of the Case Computing Cen~er. 
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of a point a I under a group of transformations on a probability space. The group must 

have special properties to insure that  the equality holds and the initial point a 1 must be 

chosen outside a measurable set M of probability measure zero, where M in general depends 

o n  X .  

The whole modern reformulation of the equality (1) is a natural one once a random 

variable is defined as a finite measurable function on a probability space. There are limita- 

tions, however�9 Primarily, it is intuitively unsatisfactory that the sequence S for which 

(1) holds should be different for different random variables (a consequence of the fact 

that  the exceptional set M depends on X). One quite naturally asks, "Is  there a probability 

space (S, B, P) in which S ~  (a l, a s, a s . . . .  ) is a single abstract sequence and on which 

(1) holds for all random variables X?" The answer to the question is in the affirmative�9 At 

the same time any random variable on such a probability space must have at most a 

countable number of values (because S is countable) and thus a distribution function which 

is at most a step function�9 

Another limitation is the absence of any computable structure in the space S of 

elementary events, leaving only the expectation attainable by computable methods but 

not the sample values of the random variables�9 Again, one quite naturally asks, "Is  there 

a probability space (S, B, P) in which S is composed of a subset of the real numbers com- 

putable in the Turing sense?" The answer is once again in the affirmative. At the same 

time, because there are at most countably many computable numbers, any random variable 

on such a probability space must again be elementary�9 

Thus, while the answers are not trivial--and, in fact, will require a detailed explanation 

- -we  are twice led to answers of limited generality after posing questions of basic interest. 

I t  is our present purpose to find answers of greater generality by asking the same two 

questions with more flexible phrasing. Inevitably this means formulating and accepting a 

flexible probability theory that  augments the measure-theoretic approach. 

2. The elementary case 

Let (S, B, P) be a probability space and let IA be an indicator function of the set A E B 

(i.e., a function defined on S that  takes the value 1 on A and 0 elsewhere)�9 

D E f i n I T I O N  1. (S, B, P)  is called a sequence probability space i/S==-(al, as, a s . . . .  ) 

is an abstract sequence and 
�9 ] 3, 

P A  = l l m ~  IA (ak) (2) 

/or all A E B. 
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T~]~ OREM 1. There exists a sequence probability space ( S, B, P) in which B is uncountably 

in/inite. 

The proof of this theorem is accomplished by  construction and is inspired, as is much 

of this paper, by H. Weyl 's  work on uniformly dense sequences [9]. A sequence S - -  (a 1, a~, 

aa . . . .  ) is uniformly dense in the closed unit interval [0, 1] if for all intervals i contained 

in [0, 1] 

# ( i )= l i m N ~  I~(ak) (3) 

# being the Lebesque measure. Weyl has proved, for example, that  the sequence S ~  

(al, a~, a 3 . . . .  ) defined by ak = ~k (rood 1), ~ irrational, has the property of being uniformly 

dense in [0, 1]. 

To construct a sequence probabili ty space, let S be a uniformly dense sequence in 

[0, 1]. Let  H be a countable parti t ion of [0, 1] composed of non-trivial intervals and let 

B be constructed by intersecting with S the smallest a-algebra, A, of sets in [0, 1] containing 

II: B = ~4 N S. Every  member  A '  of A is at  most a countable union of non-trivial, disjoint 

intervals and A is in one-to-one correspondence with B. Because A'  is a countable union 

of intervals there are for E > 0 two members .4', _A' of A, each composed of finite disjoint 

unions of intervals such that  

i) A '  ~ A'  c ~ i '  

ii) # A '  - / ~ A '  < e. 
Thus, 

l i m N  1~ 1N IA, (ak) < l i m ~  ~ I_A, (ak) + e =/~ A' + e 

1 N ] N _ 

lira ~ 1~ IA, (ak) > lim ~r ~ I~" (ak) -- e =/~ A'  - e 

and it follows tha t  

�9 1 N 
# A '  = h m ~  ~ IA, (ak). 

Because of the one-to-one correspondence between A and B we can define PA =# A' for 

A = A'  N S with the consequence tha t  for all A E B 

I N 
PA = lira ~-, ~ I a  (a~). 

2 u  

]8 is a a-algebra of sets in S and P is a measure�9 (S, B, P) is then a sequence probabil i ty 

space. Q.E.D. 

7 - -  603807 Acta mathematica. I03 .  T m p r i m ~  le 19 m a r s  1960 
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The p r o p e r t y  of one-to-one-ness be tween  A and  B p l ayed  an  essent ia l  role in the  

above  proof  and  p e r m i t t e d  the  t ransfer  of a measure  # on sets in [0, 1], to  a measure  P 

on sets in S. I f  the  a -a lgebra  A had  been genera ted  no t  from YI b u t  f rom the  class of al l  

in terva ls  in [0, 1] t he  a rgumen t  would  have  broken  down. This  is a po in t  which will have  

bear ing  on the  ways  in which one can and  cannot  general ize  the  idea of a sequence pro-  

bab i l i t y  space. 

The  theorem jus t  p roved  te l ls  in w h a t  sense a sequence p r o b a b i l i t y  space is non- 

t r ivial .  The nex t  theorem tel ls  in wha t  sense t he  concept  is l imi ted .  

THEOREM 2. Let X be a random variable de/ined on the sequence probability space 

(S, 73, P)  and let F x ( x  ) be its distribution/unction. 

F x (x) is a step/unction. 

This theorem,  which m a y  be considered obvious,  requires a l i t t le  discussion.  I t  is 

recal led t h a t  in the  proof  of the  las t  theorem the  a-field, B, in a sequence p r o b a b i l i t y  space 

could no t  be  too  rich,  t h a t  is, could no t  include too m a n y  subsets  of S. I n  pa r t i cu la r ,  B 

could no t  include al l  po in ts  ak of an  inf in i te  sequence S of d i s t inc t  points ,  for in such a 

case Pak = 0 for each k, because of (2), and  P S  = ~ P a k  = 0--- a contradic t ion .  

This  proves  t h a t  there  is no r andom var iab le  on a sequence p robab i l i t y  space which  

has  a different  va lue  a t  each po in t  of S, unless S has  f in i te ly  m a n y  points .  

The presen t  theorem says  more,  namely ,  t h a t  each r andom var iab le  on a sequence 

p r o b a b i l i t y  space is equ iva len t  to  one t h a t  induces a pa r t i t i on  of S in to  sets of pos i t ive  

measure ,  the  e lements  of the  pa r t i t i on  being of the  form A = {a k : X = const.}. The  proof,  

on the  other  hand ,  does not  requi re  the  special  form of measure  given b y  (2), b u t  is based  

s imply  on the  fac t  t h a t  the  range  of a r andom var iab le  on a sequence p robab i l i t y  space 

is a countable  set  and  no non- t r iv ia l  cont inuous  d i s t r ibu t ion  funct ion  can have  po in t s  of 

increase only  on such a set. The proof  follows. 

Proo/. Because S is countable ,  X can have  a t  mos t  a countable  number  of values.  F r o m  

the  decomposi t ion  of d i s t r ibu t ion  funct ions  

F x  (x) = F ~  (~) (x) + F x  (s) (x) 

where F x  (~) (x) is a s tep funct ion  and  F x  (~) (x) is a s ingular  funct ion  which is cont inuous  

wi th  poin ts  of increase belonging to  a countab le  set. The  measure  #(~) on the  real  l ine t h a t  

corresponds to  F x  (~ (x) assigns t he  measure  zero to  eve ry  countab le  set  a nd thus  Fx(~)(x) --  O. 

Q.E.D.  
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The two theorems to follow display the special advantages of sequence probabili ty 

spaces�9 For one of these advantages having to do with computability, it is convenient to 

define some notions. 

THEOREM 3. I /  X is a bounded random variable defined on the sequence probability 

space (S, B, P), then 

E X =  l i m l  ~ x (ak). 

Pro@ Let 1-Ix be the partition of S induced by  X. That  is A EHx if and only if for some 

real r, 

A : X : r ) .  

We may  assume without loss of generality that  P A  > 0 for all A. 

There exists for e > 0 a set A~ composed of a finite union of elements of II  x such 

that  PA~ > 1 - e. This can be demonstrated by  letting Ak be the union of all A EIIx  for 

which 

2-(~-1) ~> p A  > 2 ~. 

For each k, A~ i s at  most a finite union sets in l-Ix and O Ak=--S. Because P is competely 
1 

M 

additive, for some M depending on s, P [ U Az] > 1 - r 
1 

Now define for e > 0 

X (ak) = {B X(ak) forf~ ak E A ~ a ~  r 

{ X ; ~ ) f o r a k E A ~  
X(ak) = for akqA~ 

where B is any real number such that  [ X ] < B < ~ .  I t  follows tha t  

ii) E.X - E _X K 2 B e 

and since X and _X have at most a finite number  of values 

�9 1 N - -  

iii) E)~  = hm~.  ~ X  (%) 

iv) 

Therefore, 

�9 1 N 
E X = hm ~ ~ _X (a~). 

T 
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l N 
lim ~ X ( a k ) ~ E X < ~ E X _ + 2 B e < ~ E X + 2 B e  

1 N m 
lim ~ I X ( a k ) > ~ E X _ > ~ E X - 2 B e > ~ E X - 2 B e .  

Q.E.D. 

D E F I N I T I O N  2. A sequence S = (al, a s, a 3 . . . .  ) is said to be computable, i/  it is real 

and there is a Turing machine(1) which,/or any pair o/positive integers M,  •, will print out 

in order the first M digits o/all  ak, k = 1, 2 . . . . .  N in a ]inite number o/steps. 

D E F I N I T I O N  3. A sequence probability space (S, B, P) is called a computable probability 

space, i / S  is computable. 

Because any  Turing machine can be simulated by  a modern  all-purpose computer  

the not ion of a computable  probabi l i ty  space makes possible the investigation of whether  

the sample values of a sequence of statistically independent  r andom variables can be 

computed.  Such an investigation might  yield results for actual  statistical calculations, 

where at  present r andom numbers  generated by  physical  processes or pseudo-random 

numbers  generated by  computers mus t  be used. Such an investigation might  also yield 

results for the type  of processes studied in statistical mechanics. More will be said about  

these implications later. 

D E F I N I T I O N  4. A random variable X de]ined on the computable probability space 

(S, B, P) is called a computable random variable, i/ the sequence o/ sample values X (al) , 

X (a2), X (a3) . . . .  is computable. 

D E F I N I T I O N  5. A sequence o/ random variables X 1 ,  X2 ,  X 3 . . . .  defined on the com- 

putable probability space (S, B, P) is called computable, i] there is a Turing machine which, 

]or any triplet o/positive integers M, N, Q, will print out in some speci]ied order the ]irst M 

digits o/all  X~ (as), ] = 1, 2, 3 . . . . .  N,  i = 1, 2, 3 . . . . .  Q in a ]inite number o/steps. 

THEOREM 4. There exists a computable probability space (S, B, P) in which B is un- 

countably infinite. 

The proof is the same as for the existence of a sequence probabi l i ty  space with the 

added  remark  tha t  the sequence a~ = ~]c (mod 1) /c = l, 2, 3 . . . . .  on which the space is 

(1) For the definition of a Turing machine see [3, 8]. 
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built, is computable if the irrational ~ is computable. Such an ~ might be chosen to be 

~, e ol- ~/2. 

T H E 0 R E M 5. There exists/or each positive integer N a computable sequence o/statistically 

independent random variables X1, X 2 . . . .  X N defined on a computable probability space 

(S, B, P). 

For a proof, it is sufficient to let S ~ (a 1, a 2, aa . . . .  ) be the uniformly dense sequence 

in the unit interval defined by ak = z k  (mod 1). For given integer N, let B be the smallest 

a-algebra containing all sets Ai, N of the form 

Aj ,N= { ak. ~ <~ a~ < J~--~l } , j=  O,1,'" , 2N --1 

and let P be defined by (2). 

The N identically distributed random variables 

2i-I_i 
X~ = ~ IA2j, ,, i = 1,2,..., N 

]=o 

are statistically independent and computable. The independence follows from direct 

computation and the computability follows from the fact that  for each k and each i a 

finite number of digits of ak determines whether X~(ak) has value 0 or 1. Q.E.D. 

As will be seen later it is only for simplicity and not out of necessity that for the proof 

we have chosen to construct random variables which have only two values. In fact, the 

proof of the following theorem will be obvious from later results. 

T~EO~EM 6. For any distribution [unction Fx(t  ) (o/a random variable) with at most a 

finite number o/points o/increase, and/or any positive integer N, there exist N identically 

distributed, statistically independent, computable random variables Xx, X2, . . . ,  X N de/ined on 

a computable probability space (S, B, P) such that Fxk(t ) = Fx(t), k = O, 1 . . . . .  N. 

As a special sequence that  leads to simple computations the following sequence of 

rationals, S ~ ~ (al0 , a20 , aa o . . . .  ) that  is uniformly dense in the unit interval will be found 

extremely useful. S ~ will also be found useful in the proofs of some later theorems. 

a l ~  = 0 

0 1 
a ~  = ai  + 2 N + l  , 

i =  1,2,-. . ,2 N, N = 0 ,  1,2,..- 
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The first few terms of S o are: 

0, 76, 25 
Y6, i~, i~" 

The proof that  S ~ is uniformly dense in the unit interval is accomplished by showing 

first, that  (3) holds for all diadic intervals, that  is intervals whose end points are of the 

form k/2 N, where k and N are positive integers 0 ~< k ~< 2 N. The second part  of the proof 

uses the fact that  all intervals in the unit interval can be approximated arbitrarily closely 

from above and below by diadic ones. 

If  in the proof of Theorem 5 we take as the computable sequence S o instead of S ~  

(z(mod 1), 2z(mod 1) . . . .  ), the sample values of the statistically independent random 

variables defined there can immediately be displayed for any N: 

Table o/ ten sample values, X t (aOk), o] five statistically independent and computable 

indicator random variables 

1 2 

1 0 
1 1 
1 1 
1 1 
1 1 

3 4 5 6 7 8 9 l 0  

1 0 1 0 1 0 1 0 
0 0 1 1 0 0 1 1 
1 1 0 0 0 0 1 1 
1 1 1 1 1 1 0 0 
1 1 1 1 1 1 1 1 

The use of such sample values in monte Carlo calculations will be discussed later. 

3. Probability functional spaces 

I t  was chiefly to obtain theorems of the type 3 and 6 that  computable probability 

spaces were introduced. Yet the random variables appearing in these theorems must be 

elementary as we learned from Theorem 2. Now because of a desire to reformulate Theorems 

3 and 6 in a more general context, we define what is meant by "probability functional 

spaces". The specific use of probability functional spaces in extending the computability 

notions will be left for a later section. 

Before closing this section we will show that the present ideas are completely consistent 

with measure-theoretic probability and, in fact, are more general by  lacking only one 

postulate. The missing postulate is the familiar complete additivity, or continuity, postulate 

for an additive set function. One might look upon the definitions to follow as a system 

for defining a class of random variables without calling upon the complete additivity 

postulate, that  is, without calling upon the whole mechanism of Lebesque theory. I t  is 
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interesting to recall t h a t  the  cont inui ty  ax iom is the  only ax iom introduced by  Kolmogorov  

in his basic paper  of 1933 [4] of which he said, " I t  is a lmost  impossible to elucidate its 

empirical  meaning" .  I t  is because of its ex t reme impor tance  in facil i tat ing the  ma thema t i c s  

t h a t  the  ax iom is kep t  th roughout  mos t  of p robabi l i ty  theory.  

Le t  S ~ (a} be an abs t rac t  collection of elements  a, [0, 1] ~ the closed N-dimensional  

uni t  cube, ~N the extended N-dimensional  real space and  H N a subset  of /~N. We write 

C(H ~) for the  class of all functions defined on H ~ to [0, 1] and  continuous on H ~. We 

will also write R for/~1. 

Le t  /1,/~ . . . . .  /~ be 57 functions, each defined on S to  ~). I f  H N is the  range of the  

vector  funct ion (/1,/2 . . . . .  ]N), a finite composit ion c(/1,/3 . . . .  ,/N) of the  vector  funct ion 

(/1,/~ . . . . .  IN) with the  continuous funct ion c is defined for  each c E C (GN), H N c G N, b y  

c ( /1 , /3  . . . . .  / ~ )  (a) = c (/2 ( a ) , / 3  (a) . . . . .  / ~  (a)).  

A class :~ of functions,  each defined on S to  [0, 1] is said to be closed under all finite 

compositions with continuous /unctions, if c (/2,/3 . . . .  , IN)E ~ for all finite collections/1,/3,  

. . . .  /~ chosen f rom :~ and  for all c E C ([0, lJN). 

Let  us denote  b y  " ~  (:~)" the  smallest  linear space containing a class :~, of functions 

defined on S to [0, 1], t h a t  is, the  space of complex valued functions wi th  domain  S such 

that :  

i) IEs if/E:~ 
ii) klg 1 + k3g3Es ) if gl, g3E~(:~) and  kl, k 3 are finite complex numbers  

iii) s c s  (y)  if s  (:~) is any  other  space satisfying i), ii). 

D E F I N I T I O N  6. Let :~ be a class o/ /unctions de/ined on S to [0, 1] that contains Is. 

A probability/unctional associated with the class ~ is a real-valued/unctional E de/ined on 

(:~) and 8atis]ying the/ollowing three properties/or all/1,/2 E ~ and all/inite complex kl, k~: 

i)  0<E/1<1 

ii) E ! s  = 1 

iii) E ( ]C l / :  -b ]c2/2) : klE/1 § Ic3E/2. 

The following postula te  will be essential for defining a probabi l i ty  functional  space. 

POSTULATE 1. :~ is a non-empty class o/ /unctions de/ined on S to [0, 1] and closed 

under all finite compositions with continuous/unctions. 

D E F I N I T I O N  7. A probability/unctional space is the triplet (S, ~, E) in which S is an 

abstract space, :~ is a class o//unctions de/ined on S to [0, 1] that satis/ies Postulate 1 and E 

is a probability/unctional associated with ~. 
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DE:FINITION 8. A random variable defined on the probability /unctional space 

(S, 5, E) is a real, finite/unction X whose domain is S and/or which 

:~x= {c(X): c~C(~)} c :~. 

Henceforth, we will always use the symbol ":~x2x~ . . . . .  xff '  for the class of composi- 

tions {c(X1, X2 . . . . .  XN) : cEC(RN)). 

EXAMPLE 1. As an example of a probabili ty functional space let S be 

the unit interval [0, 1], :~ the class of continuous functions defined on and to [0, 1] and 

E / t h e  Riemann integral of /E ~:. In  this ease the class of random variables X defined on 

(S, :~, E) coincides with the class of real continuous functions defined on [0, 1]. 

EXAMPLE 2. As another example let S be the unit interval [0, 1], ~ the class of 

Riemann integrable functions defined on and to [0, 1] and El  the Riemann integral of 

/E 5. In  this case the class of random variables X defined on (S, :~, E) coincides with the 

class of real finite functions defined on S which are continuous almost everywhere. 

We know from Lusin's Theorem tha t  the class of real finite functions defined on 

[0, 1] which are almost continuous coincide wiVh a class of random variables (measurable 

functions) defined on a real probabili ty space ([0, 1], B, P). From this fact it is clear how 

the random variables X of this example compare with random variables defined on ([0, l /  

B, P). 

EXAMPLE 3. As another example let (S, B, P) be an abstract  probabili ty space, 

the class of measurable functions defined on S to [0, 1] and El  the integral or mathematical  

expectation of / on the abstract  space (S, 73, P). In  this case the class of random variables 

defined on (S, 5, E) coincides with the class of random variables defined on (S, B, P) and 

if AE]~, then IAE:~ and EIA = P A .  

EXAMPLE 4. As in the proof of Theorem l, let S = (a 1, a2, a a . . . .  ) be a uniformly 

dense sequence in the closed unit interval [0, 1]. Let  ~ be the class of Riemann integrable 

functions defined on and to [0, 1] and restricted to S. For /E :~, let 

E /= l i m l  ~ / (ak). 

A slight extension of the proof of Theorem 1 will show tha t  El, as defined here, equals the 

Riemann integral of any Riemann integrable function on [0, 1] whose restriction to S i s / .  

E can immediately be extended to E(:~) and (S, :~, E) is a probabili ty functional space. 

The class of random variables defined on (S, 5, E) can be obtained by  restricting to S the 

class of real finite functions on [0, 1] which are continuous almost everywhere. 
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An impor tan t  thing displayed in the first two examples is t ha t  the class of r andom 

variables defined on a probabi l i ty  functional space m a y  coincide with a subset of the 

class of r andom variables defined on a probabi l i ty  space. The third  example shows t h a t  

the concept of r andom variables on a probabil i ty functional space, though  a generalization, 

is not  inconsistent with the measure-theoretic concept. The four th  example suggests in 

what  sense probabil i ty functional spaces permit  a generalization of sequence and computable  

probabi l i ty  spaces. More will be said about  this later. 

The following theorem shows in what  sense there is closure of the class of r andom 

variables defined on a probabil i ty functional space. 

THEOR~,M 7. Let X1, X 2 . . . . .  X N be random variables defined on the probability/unc- 

tional space (S, :~, E). The composition 

Y = c (X 1, X 2 . . . . .  XN) 

is a random variable i] c is a /unc t ion  defined on ~N to ~1 /or  which 

i) c is finite on the finite part o/~t~ 

ii) lim c(~) = c(~0)/or ~2, ~oER N. 

x-->x0 

Proo/. Y can be writ ten Y = 5(U1, U~ . . . . .  UN) where Uk = %(Xk), ck is a continuous 

one-to-one function mapping R onto [0, 1] and 5 is the function defined on [0, 1] N to ~N 

tha t  is given by  

c (U  1, U 2 , "  ", UN) = c [ c ;  1 (U1) , c21 (U2), . . .  , CN 1 (UN) ] 

where %-1 is the inverse of %. Thus c(Y), ~EC(R) ,  is a finite composition of the vector  

function (U1, U 2 . . . . .  UN) with the continuous funct ion ~ (5) and belongs to :~ because each 

Uk belongs to ~ and Postulate  1 is satisfied. Q.E.D. 

Theorem 7 can be compared to the more general s ta tement  in measure-theoretic 

probabil i ty theory  tha t  Baire functions of r andom variables are r andom variables. The 

fact  t ha t  limits of r andom variables as defined here m a y  not  be random variables prevents  

the more general s tatement.  I n  fact, in the setting of Examples  1, 2 or 4 r andom variables 

can be displayed such tha t  a composition with some function possessing a single disconti- 

nu i ty  fails to produce a r andom variable. 

TI4EOR~M 8. Let X~, X 2 . . . . .  X N and Y = c(X1, X~ . . . . .  XN) be as in Theorem 7 with 

c satis]ying conditions i) and ii). 

i) ~x, c ~x.  x ..... .  XN 

ii) J r  c ~ x , .  x ,  . . . . .  X N. 
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The Theorem is an immediate  consequence of the  definitions. I t  displays how the classes 

of functions ~ z  behave relative to each other like the algebras of sets t h a t  are generated 

by  random variables defined on a probabi l i ty  space. 

We now wish to extend the functional E to random variables X defined on a probabi l i ty  

functional  space (S, :~, E) so tha t  a mathemat ica l  expectat ion of r andom variables will 

be defined. To do this we consider two cases. 

CASE 1: X is non-negative.  Let  X (~)= / X for X<~n 
[ n  otherwise. 

Each  composit ion in the sequence X r X r . . . .  belongs to  s and, thus,  E X  r exists 

and is finite for each integer n. E X  (1), E X  ~2~ . . . .  is a non-decreasing sequence of finite 

real numbers.  We define the mathematical expectation of X by  

E X = l im  E X r 
n 

CASE 2: X is an a rb i t ra ry  random variable defined on (S, :~, E). 

I n  this case, X can be wri t ten X = X + - X -  where 

{ X  for X>~O { 0  X for X < O  
X + =  , X - =  �9 

0 otherwise otherwise 

By  Theorem 7, X+ and  X -  are r andom variables, and  they  are non-negative.  The ma-  

thematical  expectat ions E X + ,  E X -  are defined by  Case 1. If  at  least one of the numbers  

E X  +, E X -  is finite, we define the mathematical expectation of X by  

E X  = E X +  - E X - .  

If  E X  exists and is finite, X is said to be integrable. Because of Theorem 7 and the  

above definitions all of the following expectat ions are defined in which X and Y are r andom 

variables, defined and integrable on a probabi l i ty  functional  space: 

E ( X  + Y), EIx I,  lXl E x  r > O, E (X  Y). 

iOx-I X I 
- o o < O  < c o ,  belongs to C( :~x)for  real r and e - Ix[  r > 0 ,  is monotonic  B e c a u s e  ~ ~ 

in r, 4Px(0 ) = l i m  E e  , - c ~ < 0  < + c~, exists and is defined for all r andom variables X 

defined on a probabi l i ty  functional space. The formal similarity between (I)x(0) and charac- 

teristic functions of r andom variables on a probabi l i ty  space leads us to  call this the 

characterist ic/unction of X. The question of whether this funct ion has the analyt ic  pro- 

perties of a characteristic funct ion required in the measure theoretic case, t ha t  is, cont inui ty  

and non-negat ive definiteness, remains to be answered by  proof, however. We will answer 

this question later in special cases. 
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The similarity between the way  the above extensions were made and the way  the 

Lebesque integral or the Danicll integral is define~l is obvious. Though E X  can be inter- 

preted as an integral over a measure space for the proper choice of (S, ~-, E) ,  some choices 

of (S, :~, E) prevent  this. Some exceptional cases in which E X  is no t  an integral over a 

measure space and cannot  be extended to be an integral arise because no postulate  cor- 

responding to complete addi t iv i ty  of a set funct ion (such as cont inui ty  of the linear func- 

t ional E) has been assumed. I t  is precisely the exceptional case tha t  is of greatest  interest 

to  this paper.  I t  arises when, in generalizing computable  probabi l i ty  spaces, S is chosen 

to be a sequence. 

EXAMPLE 1. (continuation) I n  this case every random variable, X ,  is bounded and 

E X  is the Riemann integral of X.  (I)x is a characteristic function. 

EXAMPLE 2. (continuation) As s tated earlier the class of r andom variables, X, in 

this example do not  comprise the class of finite measurable functions on the real probabi l i ty  

space ([0, 1], B, P)  bu t  are a subclass of them. On the other hand, E extended to  the 

random variables of this example is such tha t  E X is the Lebesque integral of X over 

([0, 1], B, P)  and is thus a mathemat ica l  expectat ion in the measure-theoretic sense. (])z 

is a characteristic function. 

EXAMPLE 3. (continuation) I n  this case, where the class of r andom variables defined 

on (S, :~, E) coincides with the class of r andom variables defined on (S, B, P),  E X  coin- 

cides with the mathemat ica l  expectat ion or integral of X over (S, B, P),  and (])z with 

the characteristic function. 

EXAMPLE 4. (continuation) Here S is a sequence. Unlike Examples  1 and 2 the 

probabi l i ty  functional extended to  X ,  E X ,  is not  a Lebesque integral of a measurable 

function on a probabi l i ty  space. Take for example the sequence X1, X~ . . . .  where 

1 k < n  
Xn ( a k )  = 

0 otherwise 

Each  Xn is a r andom variable on (S, 5 ,  E)  since it coincides with the restriction to  S of a 

Riemann integrable function whose domain is [0, 1]. E X  n = 0 for all finite n. Thus 

lim E X,~ - O. 

However,  at  the same time, the sequence is monotone  non-decreasing with lim X~ = Is .  

Thus 
E lim X n = 1. 

Monotone convergence does not  hold and E is not  a Lebesque integral. 

Many of the properties of expectat ion as defined in measure-theoretic probabil i ty 
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t heory  are t rue  of expec ta ta t ion  as defined in the  present  context .  Some typical  propert ies  

are s ta ted  in the  nex t  theorem.  

THEOREM 9. Let X and Y be random variables de/ined on the probability/unctional 

space (S, :~, E) and let r, s be real/inite numbers. 

i) X is integrable, i/ and only i/ I X I  is integrable 

ii) 1 / X  and Y are inteffrable, r X  + s Y is integrable and E ( r X  § s Y) = r E X  § s E  Y 

iii) I / X  <~ Y, then E X  <~ E Y 

iv) 1] I X I <~ y and Y is integrable, then X is integrable 

v) IEXI<EIX I 
vi) 1 / I X l "  is integrable, I x I  s i8 integrable /or 0 < s <~ r 

vii) (HSlder Inequality) 1 / 1 / r  + 1Is  = 1, r > 1, 

EIXYI E"r IXI'E 'Sl YI 

vii) (Minkowski Inequality) 1 / r  >~ l, 

E~/rIX § YI r <~ Evr lXt  r + E~'r[ y t  ~- 

The  proofs are similar to  those of the  corresponding theorems found in Lo~ve 's  book [5] 

or Ko lmogorov ' s  monograph  [4]. 

Because in the  present  eon tex t  only the  composit ions c (X) of r a n d o m  variables  defined 

in Theorem 7 can be guaran teed  to  yield r andom variables,  operat ions  like Eltx<t ] for 

real t are undefined unless, as in the  discrete case, Itx<t ] happens  to  belong to  ft. I t  is 

also the  case t h a t  the  weak closure of the  class of r andom variables  on a p robabi l i ty  func- 

t ional  space, as set  for th  in Theorem 7, restr icts  the  t ype  of l imits t h a t  yield r andom 

variables.  

A few of the  mos t  impor t an t  ideas and theorems for probabi l i ty  functional  spaces 

will now be developed.  

D E F I N I T I O N  9. Let X ,  X1,  X 2 . . . .  be random variables de/ined on the probability 

/unctional space (S, :~, E). The sequence X1, X~ . . . .  converges in probability to X and we 

write 
P 

Xn ~ X  

i/ and only i / /or  arbitrary a > O, and/or any/unction h E C ( R) such that h (x) = 0 for I x [ < a 

l im E h  ( X .  - X )  = O. 
n-~oo 
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I t  is easy to  show t h a t  if "probabi l i ty  space"  is subs t i tu ted  for "probab i l i ty  funct ional  

space"  in this definit ion t ha t  the  criterion is equivalent  to convergence in probabi l i ty  of 

r andom variables defined on a probabi l i ty  space. 

Uni/orm convergence and convergence in the r-th mean have  the  cus tomary  definitions 

and for these we write 
u 

X~ ~ X  

T 

X~ �84 ~ X ,  

the la t ter  being defined for r andom variables  with finite r th  absolute  moments .  

For  sequences which are mutua l ly  convergent  in any  of the  above  senses we write 

P 

X~ - X~ ~ 0  

u 

X~ - X~ ~ 0  

r 

X,~ - X.,  ~ 0  

The basic inequalities of p robabi l i ty  theory  can be res ta ted  in the  following form. 

(Compare Kolmogorov  [4] or Lo~ve [5].) 

THEOREM 10. Let X be a random variable defined on the probability ]unctional space 

(S, ~, E) and let g be an even, non-decreasing, %on-negative ]unction satis/ying i) and ii) o] 

Theorem 7, N = 1. Let h E C (R) be such that h (X) = 0 i] I X] < a, a > O. 

i) E g  (X! >~ E h  (X) 
g (a) 

ii) I] g is bounded by K and 1 - g(a)/g (X) <~ h (X), then 

E h  (X) >i Eg  ( X )  - g (a) 
K 

iii) I f  ] X I is bounded  b y  L and  1 -: g (a)/g (X) < h (X), then  

E h  (X) >I Eg  (X) - g(a) 
g (L) 

Proo/. Under  the respective assumpt ions  of i), ii) and iii) of the  Theorem: 

i) Eg (X) >~ Eg (X) h (X) >1 g (a) Eh  (X). 

ii) Eg(X)  = E g ( X ) h ( X )  + Eg(X)[1  - h(X)] < K E h ( X )  + g(a). 

iii) Eg(X)  = E g ( X ) h ( X )  + Eg(X)[1  - h ( X ) ]  ~ g ( L ) E h ( X )  § Q.E.D.  
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THEO~tEM 11. Let X,  X1, X= . . . .  be random variables delined on the probability lunc- 

tional space (S, :~, E). 

r P 

11 X ,  ~ X  then X~ ~ X  i) 

ii) 

iii) 

satislying i), ii) o I Theorem 7, N = 1, such that g (0)= O. 

P 

X= ~ X  i I and only i I E g ( X N -  X) 

P r 

11 the Xn are unilormly bounded and i I X ,  ~ X  then Xn ~ X  

Let g be an even bounded, non-negative 1unction, monotonic increasing on [0, co ], 

~0.  

The proof follows directly f rom the previous theorem. 

COROLLARY. Let X,  X1, X 2 . . . .  be random variables on the probability/unctional space 

(& :~, E). 
P f x n - x l  

i) Xn - - X  i I and only i lE  i + i X  _ Xn I 

ii) X , , - X ~  ~ O i l a n d o n l y i l E i + l X m _ X ~ l - - > O  

1 P 

11 X= ~ X  or i I X1, X2,... are unilormly bounded and X~ ~ X ,  then 

E X~-+E X 

I t  is seen tha t  if a sequence of X~ converges in probabi l i ty  or in the r th  mean  to X 

i i i)  

and 

and also to Y then  

/ X - Y /  
E I + I X - - ~ [  O. 

Thus, as in measure-theoretic probabi l i ty  theory  (see Lo~ve [5]) where convergence is 

convergence of equivalence classes to equivalence classes of r andom variables, we defined 

equivalent  random variables on a probabil i ty functional space in terms of the above metric.  

D E F I N I T I O N  10. Let X and Y be random variables de/ined on the probability lunctional 

space (S, :~, E). X and Y are called equivalent (X = Y) i/: 

E t x - r l  - o  
I + I X - Y  ] 

Of course, this criterion implies t ha t  X equals Y almost  everywhere if they  happen 

also to be random variables defined on a probabi l i ty  space as in Example  3. The definition 
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permits the equivalence classes of r andom variables on a probabi l i ty  functional space to  

be viewed as elements of a metric space in which distance is defined by  

I x - y l  
d ( X , Y ) =  E l  + l X _  y l"  

The question of completeness of these metric spaces arises. Though in some impor tan t  

special cases the space is complete, one can discover counterexamples to  completeness in 

the general case. Any  sequence of r andom variables in Example  1 tha t  converges every- 

where to a discontinuous funct ion converges mutual ly  in the sense of the above metric 

bu t  does not  converge to a r andom variable defined on the space of Example  1. 

T~EOREM 12. Let X and Y be random variables de/ined on the probability/unctional 

space (S, 5, E). 

i) X ~ -  Y, i /and  only i / E  I X -  Y I =0  

ii) X=-- Y implies E X  = E Y and EIX ] = E I r l .  

Proo/of  (i). Using the notat ion following Theorem 8, 

EIX-Yl IX-YI+ < Ix -Yl  
- ~ < E  1 E 0 

l + n  + I X - Y [  (n) "~" I + I X - Y I  

E I X  - Yl = l i m  E I X  - YI <", = 0  
Proo[ of (ii). 

IE IXI  - EI Y[ I <~ EI [X[ - [ Y] ] ~< E ] X -  YI ,  I E X  " E YI <~ E I X  - YI- Q-E'D" 

As will be seen in the following discussion, the concept  of sets of probabil i ty measure 

zero, though  definable in probabil i ty functional  spaces, does not  in general lead to  a stronger 

form of convergence than  convergence in probabi l i ty  or to a useful type  of equivalence of 

random variables as happens in the special case of probabil i ty spaces. 

D E F I N I T I O N  11. Let (S, 5, E) be a probability Junctional space. A set A ~ S is said 

to have probability/unctional measure zero, i/ 

i) IAE:~ 

ii) EIA =0  

Convergence almost surely for a sequence of random variables on a probabil i ty func- 

t ional space can  now be defined in the cus tomary  way, the only difference being tha t  the 

exceptional set where the sequence m a y  not  converge must  have the above definition. The 

nota t ion for convergence to a random variable and mutua l  convergence in this sense is: 
a , 8 .  

X~ ~ X  
a . 8 ,  

Xn - Xm ~0. 
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W e  will  also say  t h a t  a relation between  r a n d o m  var iables  def ined on a p robab i l i t y  funct ional  

space holds almost surely (a. s.) if i t  holds except  on a set of p robab i l i t y  funct ional  measure  

zero. These defini t ions coincide wi th  the  measure- theore t ic  def ini t ions in the  special  case 

d i sp layed  in E x a m p l e  3. 

THa~OR~M 13. Let (S, ~, E) be a probability/unctional space and let A c S be a set o/ 

probability/unctional measure zero. For all random variables X ,  Y de/ined on (S, ~,  E):  

i) ~ l x f i ~ = o  
ii) I]  X =  Y a.s. then X=-- Y.  

Proo] of (i). F o r  an  a r b i t r a r y  r a n d o m  var iab le  X on (S, :~, E),  and  n > 1, 

E [ ] X [ I a ] ( , ) = n E [ I X [  Ia](") n E [ I X ] ( n ) I a !  < ~ n E i A =  0 
n n 

Thus, 
E I X  ] IA = l im E [ I X  I IA] (~) = 0. 

Proo/o f  (ii). I f  X = Y a .s .  t hen  b y  (i): 

E I X -  rI = E I X -  rlI~=O 

a n d  b y  Theorem 12, X ~  Y. Q.E .D.  

I t  is seen how equiva len t  r a n d o m  var iables  are  ob ta ined  from X b y  modi fy ing  X on 

a set of measure  zero. I n  measure- theore t ic  p robab i l i t y  th is  me thod  yields the  ent i re  class 

of var iables  equiva len t  to  X,  I n  the  present  contex t  i t  is easy  to  show, however,  t h a t  two  

r a n d o m  var iables  X and  Y def ined on a p robab i l i t y  funct ional  space m a y  differ every-  

where  on S and  stil l  be equivalent .  Le t  (S, :~, E) be the  space def ined in E x a m p l e  4, 

where for the  sake of the  p resen t  a rgument ,  S is the  special  sequence def ined in  Sect ion 2 

and  labe led  "S  o''. I t  is i m p o r t a n t  t h a t  eve ry  po in t  of S ~ is ra t ional .  N o w  take  for X the  

funct ion  iden t ica l ly  zero on So a n d  for X '  the  following: 

X '  (0) = 1 

X '  (a ~ = 1/n,  a ~ ES ~ a ~ r O, 

where a ~ = re~n, n > 0, and  m and  n are integers  wi thou t  a n y  common divisor.  X '  is the  

res t r ic t ion  to  S o of a well known  pos i t ive  funct ion on [0, 1] which is cont inuous  on all  

i r ra t ionals ,  d iscont inuous  on all  ra t ionals ,  and  whose R i e m a n n  in tegra l  over  [0, 1] vanishes.  

I t  is, thus,  a r a n d o m  var iab le  wi th  E IX'  ] = 0 and  is therefore  equiva len t  to  X.  

I n  a similar  example  t h a t  will come la te r  i t  wiil be seen t h a t  a sequence X 1, X 2 . . . .  

of r a n d o m  var iables  can be def ined on a p robab i l i t y  funct ional  space for which 
p 

Xn ~ a  > 0 
a n d  

t ~ . 8 .  

X , - - - - * O  
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Therefore,  convergence a lmos t  sure ly  on a p r o b a b i l i t y  funct ional  space does no t  imp ly  

convergence in p robab i l i ty .  

EXAMPLE 1. (continued) I n  th is  example  there  are  no sets of p r o b a b i l i t y  func t iona l  

measure  zero. 

EXAMPLE 2. (continued) Here  a set A c S has p r o b a b i l i t y  funct ional  measure  zero 

if and  only if i t  has  R i e m a n n  conten t  zero. 

EXAMPLE 3. (continued) Here  the  concept  of p r o b a b i l i t y  funct ional  measure  zero 

coincides wi th  t h a t  of p r o b a b i l i t y  measure  zero. 

EXAMPLE 4. (continued) I n  th is  case a set A chosen f rom the  sequence S - -  (a I a 2 . . . .  ) 

has p r o b a b i l i t y  funct ional  measure  zero if and  only  if i t  has  dens i ty  zero. 

THEOREM 14. (Domina ted  Convergence) ]/  Y,  X ,  X1, X 2 . . . .  are random variables 

de/ined on the probability/unctional space (S, 5,  E) and i/  

Ixnl  <<- r as . ,  Iil<  Y as . ,  /or some r >  1, 

P 

then Xn ~ X  implies E Xn ~ E  X and ~E IXn t - - ~ E [  X ] .  
1 

Proo/. We shall  p rove  Xn ~ X  and  use the  Corol lary  to Theorem 11. F o r  a r b i t r a r y  

a > 0, le t  h E C (1~) be such t h a t  

i) h ( X ) = O  for IX[<a 
if) 1 - a / [ X ]  < h ( X ) .  

Then,  

m I X  n - X] = E [ X ,  - X[h(X. - x )  + E I X ,  - X[  [1 - h ( X  n - X)] 

<~ E~lr[Xn - X[  r" E1/Sh~(X, - X )  + a  

where 1/r + 1Is = 1 and  r > 1. W e  have  used the  H61der inequa l i ty  of Theorem 9. Because 

[X  n _ / [ r  ~ (2 y)r  a.s . ,  El~fIX n - X[ r is a f inite number ,  say  K.  Consequent ly ,  

EIX. -X] <~KE1/*he(X, - X )  +a.  
P 

Now X ,  ~ X and  h e E C (R) wi th  h e ( i )  = 0 for IX[ < a, and  we have  

E1/e h e ( X  n - X)--> 0 

a is a r b i t r a r y  and  the  theorem is p roved .  Q.E.D.  

D E F I N I T I O ~  12. Let (S, 5,  E)  be a probability /unctional space and X1, X 2 . . . .  a 

sequence o / random variables de/ined on it. 

i) X 1 and X 2 are called statistically independent i/ E / 1 / 2 = E / 1 E [ ~  /or all /I~X~, 
12 e. ~x,. 
8- -  603807 A c t a  m a t h e m a t i c a .  103. I m p r i m 6  le 21 m a r s  1960 
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i i )  X 1 ,  X 2 . . . .  are called statistically independent i /  /or any  / inite subcollection X I '  , X~', 

. . . .  XN' ,  E/1/2" '"  /N = E / 1 E / 2  "'" E / ~  /or a l l / k E ~ x ~ ,  k = 1, 2 . . . . .  N .  

LEMMA. Let X be a non-negative random variable defined on the probabil i ty/unct ional  

space (S, :~, E).  

~-- ,o l imEX(~)=EXwhereX(~ X otherwise.i/X>Je 

Proo/. X(~) = X - X (~) + 

If X is integrable, 0 ~< E X ( o  - E X  = e - E X  (~) <~ e. 

If X is not integrable, the Lemma is true by Theorem 9 (iii). 

THEOREM 15. Let X and Y be statistically independent random variables de/ined on 

the probabil i ty/unctional  space (S, :~, E),  

i) Eg~g 2 = E g ~ E g  2 /or all g~CI2(Jx),  g2Et: (Jr)  

ii) cl ( X  ) and c2( Y) are statistically independent /or  a n y / u n c t i o n s  c 1 and c 2 satis/ying 

i) and ii) o / T h e o r e m  7, with N = 1 

iii) (I)x+ r (0) = Cx(O)Cgr(O) , -c~< 0 < ~ , . i [  X Y >10 

iv) I / X  and Y are integrable, E X  Y = E X E  Y 

v) I / X  and Y are integrable, a~x+ y = ax  2 + ar  2 where ax  e = E [ X  - E X ]  2. 

Proo] of (iv). 

Case I .  X >~ O, Y >~ O. First, 

X(V~) y(v~) <~ [X  Y](~), n > 1. 

Because X (Vn) and y(vn) belong to /2  (~x) and t: (:~r), respectively, and because of (i): 

E XO"n) E Y(v~) ~ E [X  y](n) 
and 

E X E Y < ~ E X Y .  
Next, 

[ X  Vl(n~) ~ y ( n )  v (n )  )> O. 

Again 
X(~) E/2 (~x) and v(~) e E (:~r), (s) ~(e) 

Therefore, 
~ (e) ~(~) 

and 
E X  Y ~ E X ( ~ ) E  Y(~). 

From the Lemma, one obtains after letting e approach zero, 

E X Y  < ~ E X E Y  

and with the above reverse inequality the theorem follows. 
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Case I I .  X and Y are integrable. 

F rom (ii) it is clear t ha t  the pairs (X +, Y+), (X-,  Y-), (X +, Y-),  (X-,  Y + ) ( I X I ,  I YI)  

are statistically independent.  I t  follows tha t  X Y is integrable and we have: 

E X  Y = E [ X  Y]+ -- E [ X  Y]-  

= E [X+ y+  + X -  Y-] - E [X-  Y+ + X + Y-] 

- ( E X +  - E X - )  ( E  Y +  - E Y-) 

= E X E Y .  
Q.E.D. 

I n  this paper  the special case introduced in Example  4 is of part icular  interest and 

will provide the framework for the discussion remaining after the next  section. There are 

a large number  of definitions and theorems with which one could continue the discussion 

of probabil i ty functional  spaces. As one might  suspect, the major i ty  of these are formulated 

by recasting the measure-theoretic ideas in terms of the above notions. Proofs mus t  be 

carried out  in the more general domain bu t  often are suggested by  the measure-theoretic 

ones. 

4. A logical algebra of functions 

I t  is immediately noticed tha t  probabil i ty functional spaces, and random variables 

on them, have been introduced wi thout  any  reference to  logical operations on the class 

of functions f analogous to the logical operations of complementat ion,  union and inter- 

section on a class of sets. This section introduces such operations. 

NOTATZON. The operations /1 + / 2 , / 1 - - / 2  on real valued functions are the usual 

pointwise sum and difference. The relat ions/1 =/2,  /1 ~</2 etc. between functions defined 

on S are understood to hold pointwise for all points in S. The functions min [/1,/2], max  

[/1,/2], where ]1, ]2 are functions defined to [0, 1] are unders tood to be the compositions 

cl [/1,/2], c2 [/1,/2], where Cl, c 2 E C ([0, 1] 3) and c l/x, y / =  min [x, y], c 2 [x, y / =  max [x, y], 

0 < x, y ~< 1. " r  is a symbol for "if and only if". " ~  " is a symbol for "implies". 

DEFIS~ITION 13. A logical algebra of/unctions ( f ,  U, ~ is a non-empty collection f 

o/functions defined on an abstract space S to [t3, 1], a binary operation U de/ined for each 

pair of/unctions in f ,  and a unary operation c defined/or each element in f ,  /or which the 

following eight postulates are satis/ied for all /1,/e,/a Eft. In  the postulates the definitions 

/1 n h = (1,~ u 1/)~ 

1r = Is  ~ 

are used. 
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i) 1/~:~ 
ii) llUlse:~ 

iii) 11 U 11 c = I s  

iv) 11 f'111 c = I~ 

v ) / 1  u ls = Is  u 1~ 

vi)  11 u (Is u 1~) = (11 u 1,) u 1~ 
vii) /1 N Ir = I~ 

v i i i )  1, u l~ = 1, + 1 ~ ~  1, n 1~ = 1 ~ .  

The operations U, N, c will be called union, intersection and complement, respectively. 

I f  the distributive postulates 

ix) 11 U (1~ n ]3) = (1, U 1~) n (h u 1~) 

x) 1~ n (1~ u 1~) = (h n 1~) u (h n 1~) 

were added, (:~, U, c) would be Boolean, with or without postulate (viii). Examples of 

systems satisfying all postulates (i)-(x) can be displayed but  do not include some important  

systems, as the following discussion will show. The formal similarity between postulate 

(viii) and the additivity property of additive set functions is worth noticing and, in fact, 

the postulate is brought in to make probabili ty functionals behave formally on a logical 

algebra of functions like set functions on an algebra of sets. 

A justification for the choice of the axioms will be seen in Theorem 19 and Theorem 21. 

These axioms lead to many  of the properties of Boolean algebra, though the following 

theorems do not emphasis the Boolean characteristics. 

DEFINITION 14. Let (:~, U, ~) be a logical algebra o~/unctions. For all /1,/~E:~ 

T~]~oR~.~ 16. Let { ~ , U, c) be a logical algebra o//unctions.  $' or all 11, ls E ~ 

i )  11 c = I s  - I1 

i i )  (11 + t~) ~ = 11 ~ + 1r - I~  i f  11 + Is e 3 ~ 

i i l )  (11 - 1~)~ = 1 (  - Is ~ + z~ i f  11 - I~ ~ :~ 

iv)  (rain [ / . / ~ ] y  = max / /1  ~, ls c / i f  min[ l~ ,  I s /E3  ~ 

Theorem 16 permits us to state the following principle for a logical algebra of functions. 

PRINCIPLV, OF DUALITY. Let (5,  U, c) be a logical algebra o/ /unctions. A n y  =,  

c or ~ relation that is uniwrsally  true between elements o/ :~ and that is ]ormed with the use 

o/ the  symbols 
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U, N, ~, +,  - ,  Is, Ir = ,  ~ ,  ~ ,  min, max 

l l l  

becomes another true relation when these symbols are replaced, respectively, by 

el, U, c, - - I s + ,  + I s - ,  Ir Is,  = , c ,  ~ ,  max, min, 

complement and equality remaining unchanged. 

T~EOREM 17. Let (:~, U, c) be a logical algebra o/ /unctions. For al l /1 , /2E~ 

i) /1 ~ /2 <::> /1 n / 2  c = /1 - -  /2 ~r = /2 [j (/2 c N/1) 

ii) /1 ~ / 2  * / 1  >~/2 

i i i )  11 U/2  : / 1  -~ (/1 U/2)  N/1 c 

THEOREM 18. Let (:~, U, ~) be a logical algebra o/ /unctions. For all/1,/2 E:~ 

i) /t U/2 ~< min [/t § Is /  

ii)(1) /1 U/2 = / :  +/2 - / 1  N/3 

The proof uses the statements of Theorem 17. 

I t  should be remarked that  Theorem 18 does not require min [/1 +/2, Is/  or/1 +/2 to 

belong to :~. Theorem 18, ii obviously implies 

/=�89 

for all /E :~ which is the replacement for idempotency in this algebra. 

I t  will be of interest for us to investigate in the next theorem conditions under which 

equality holds in Theorem 18, i. 5Tot only will such conditions provide us with an algorithm 

for computing/ t  U/2 but  they will also bring into the algebra other useful properties. 

At this point it may be helpful to  warn the reader of certain desirable properties 

familiar from Boolean algebra which are not in general true in a logical algebra of functions. 

These include among others the distribution, absorption and idempotency laws involving 

union and intersection. 

TtrEOREM 19. There is one and only one/unction h on [0, 1] 2 to [0, 1] such that/or the 

binary operation /1 U/2 = h (/1,/3) and every class :~ satis/ying Postulate I (o/Section 2) /or 

some S, (:~, U, c) is a logical algebra o//unctions. 

The unique binary operation may be written 

/1 U/3 = min  [/1 § /2' Is]" 

Pro@ For any class ~ satisfying Postulate 1, min [/1 +/2, Is] will belong to ~ when 

/i and/2  belong, and it can easily be verified by direct computation that  (~, 0 ,  ~ will be 

(1) This relation has appeared in a number of different studies generally concerned with multivMued 
logies and valuated algebras. 
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a logical a lgebra  of functions.  I t  will suffice to  prove  uniqueness for a n y  pa r t i cu la r  choice 

of the  class 9: sa t is fying Pos tu la t e  1. 

W e  choose for the  sake of the  proof  the  class 9: of all  R i e m a n n  in tegrab le  funct ions 

def ined on [0, 1] to  [0, 1]. (See E x a m p l e  2, Section 3.) F o r  this  class, consider a logical  

a lgebra  of funct ions (9:, U, ~) t h a t  is a r b i t r a r y  except  for the  res t r i c t ion  /1 U ]~ = h(/1,/2) 

for a l l / 1 , / 2  E 9: and  some funct ion  h on [0, 1] 3 to  [0, 1]. Because of Pos tu l a t e  (ii) of Defini-  

t ion 13, h (x, y) mus t  be cont inuous  when considered as a funct ion on [0, 1] 2. We  wish 

to  show t h a t  h(/1,/2) has  the  unique form min  [/1 + /2 ,  I s /  for all  /1,/2 E ~.  This will be 

p roved  if i t  can be shown t h a t  h has  the  s t a ted  unique form for all  cons tan t  funct ions in Y. 

Choose now a n y  two cons tan t  funct ions x, y in 9: such t h a t  x + y = I s .  F o r  those  func- 

t ions Pos tu la te  (iii) impl ies  

x U y = x U x ~ = I s .  

Because y U I s = y and  y U y~ = I s  and  because  y U v, as a funct ion  of cons tan t  a rguments  

v, is continuous,  there  is for each cons tan t  funct ion z ~> y, z E g:, some cons tan t  funct ion 

w E 9: such t h a t  z -- y U w. Therefore,  

x U z  = xU (yUw)  = (xUy)  Uw = Is.  

W e  conclude t h a t  for the  cons tan t  funct ions x and  z in 9: 

x U z - I s  p rov ided  x + z >~ Is.  

Theorem 16 and  the  def ini t ion of in tersec t ion  we have  for F r o m  Pos tu l a t e  (viii), 

x, zEg:  

Adding  the  fact  

xCUz c = x  c ~-zC<=~xUz = I z. 

x c + z  c <~ I s ~ x  + z  >~ I s  

we have  for cons tants  x' ,  z ~ E 9: 

x'  U z' = x '  § z' p rov ided  x' + z' <~ Is.  

Thus, i f / 1 , / 2  are  cons tan t  funct ions  in 

/1 U/2 = min  [11 + f2, Is] 

a n d  this  implies  the  result .  Q.E.D.  

I t  can be seen t h a t  the  inclusion re la t ion  for a logical  a lgebra  of funct ion  implies  the  

>~ re la t ion  and  prov ides  a pa r t i a l  order ing of ~.  I n  the  special  case where the  union opera-  

t ion is chosen to  be 0 ,  the  s t ronger  resul ts  of the  nex t  theorem can be obta ined .  

T~EOR]~M 20. For  a logical algebra o/ /unct ions o/ the type (~,  O, c), in  which 

satis/ies Postulate 1, we h a ve / o r  a l l / 1 , / 2  E :~ 
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i) I~ ~ I ~  I~ < 12 
ii) (:~, 0 ,  c) is a lattice under the partial ordering relation c .  

The following theorem displays in what  sense a logical algebra of functions is consistent 

wi th  a Boolean algebra of sets in the  space S on which the  functions are defined. 

T~T]~O~EM 21. Let (:~, U, ~) be a logical algebra o/ /unctions in which union has the 

special/orm U = O . I / ~  is the class o/all  indicator/unctions in :~ 

i) (~ ,  U, ~) is a subalgebra 

ii) (~ ,  U, c) is Boolean 

iii) All /unctions in ~ are measurable with respect to an algebra (.~, U, c) o/subsets o/ 

S and/or all A,  BE.,4: 

iv) IA, IB E O 

v) I AOIB=IAUB 

vi) I f f  - IAc 

vii) IA D I B ~  A ~ B. 

The proof  of the  theorem follows immedia te ly  f rom the postulates  and  the  previous 

results. The same will be t rue  of Theorem 22. 

The last  theorem of this section unites the  propert ies  of a logical algebra of functions 

with those of a p robabi l i ty  functional.  As ment ioned  earlier, the  definit ion of probabi l i ty  

functional  spaces required no logical s t ructure  within the  collection of functions :~. I t  is 

now seen t h a t  such a logical s t ructure  can a lways  be assumed,  however,  and  used if desired. 

T~EORWM 22. Let (S, 5, E) be a probability/unctional space and (F, U, ~) a logical 

algebra o/ /unctions. For all/1,/2 . . . .  /N ~ 

i) E l  ~ = 1 - El 

ii) /1 c / 2  ~ El1 <~ El2 

iii) E(/1U/2 ) = El1 4- El2 - E(/1N/2 ) 

i v )  E(/1U/2U ...U/N) ~ El1 4- El2 + " "  4 .E ly  

v) E(/~U/2U ... U/N) = El1 4. El2 4 - . . .  4. E/N i /a l l  o/the/ollowing are saris/led: 

11 ~/3 = Ir 

(1: u 12) n 1~ = I~  

(1: U 13 U . . .  U / N - I )  13 IN = Ir 
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5. Computable probability functional spaces 

I t  is of interest to investigate the generalized sequence probability spaces that  result 

by letting S and E, in a probability functional space (S, :~, E), be a sequence and asymptotic 

average, respectively. (Compare Definition 1, Section 2.) Such spaces might be called 

sequence probability/unctional spaces. Within this class of spaces there is the important 

case where S is uniformly dense in [0, 1] and :~ is the collection of Riemann integrable 

functions defined on and to [0, 1] and restricted to S. (See Example 4, Section 3.) I t  is 

this case that we will be concerned with throughout the remainder o/ this paper. We will designate 

a sequence probability functional space in this special case as Riemann.  Furthermore, the 

sequence S in [0, 1] may be computable and, if this is so, (S, :~, E) will be called computable. 

The adjective "computable" will also be applied to random variables and sequences o /random 

variables on (S, :~, E), as in Section 2, with the understanding that  their definitions are 

given by Definitions 4 and 5, modified to read 'computable probability functional space' 

in place of 'computable probability space'. 

The special implications that  a Riemann space (S, :~, E) has for number theory, 

Monte Carlo methods and statistical mechanics will be left for some papers to follow. We 

will now consider what further theorems are true in the Riemann case beside what has 

already been proved true in the general context of Section 3. 

In  Example 4, Section 3, it was seen that  all random variables on a Riemann space 

are the restriction to S of finite functions that are continuous almost everywhere. Moreover, 

this being the case, Theorem 7, Section 3, can be replaced by a stronger statement, namely, 

that  any composition c (X 1, X~ . . . .  XN) of such random variables, X1, X~ . . . .  XN with a 

function c that  is continuous on the finite part of ~N is again a random variable. The 

implications of this statement for characteristic functions of random variables on a Riemann 

space are given in the next theorem. 

In  the next theorem it is also seen that  though random variables on a Riemann 

space are limited in the degree to which they can be discontinuous, their characteristic 

functions form as general a class as do those of random variables on any probability space. 

THEOREM 23. i) _For any random variable X de/ined on a Riemann space (S, :~, E), 

gPx(O)= E e  i~ - ~ < 0 <  oo, 

exists and equals the characteristic/unction o/ some random variable on a probability space. 

if) Conversely,/or any characteristic/unction, gP (0), o / a  random variable on a probability 

space, there is a random variable X defined on a Riemann space (S, 5,  E) such that ~Pz(O) = 

~(0) .  
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~Proo/. (i) follows from the fact that  X is the restriction to S of a finite function that  

is continuous almost everywhere and thus e ~oz is the restriction to S of a Riemann integrable 

function. 

To prove (ii), it is sufficient to show that  for any characteristic function, 4)(0), of a 

random variable on a probability space, there is a random variable X '  on the probability 

space ([0, 1], B,/~) which is continuous almost everywhere and possesses �9 (0) as its charac- 

teristic function. The demonstration is immediate: Let X '  be (except for two points) an 

inverse of the distribution F determined by (P (0). 

X ' ( ~ )  = x ~ F ( x )  < ~ ~< F(x  +0),  ~ r  1 

X'(~) =0 ,  ~ = 0 ,  1 

The special evaluations at the points 0 and 1 simply complete the definition of unbounded 

functions, X',  otherwise undefined there. X '  restricted to S is the desired random variable X. 

Q.E.D. 

Though for each random variable X on a Riemann space, E e  ~~ exists and defines a 

unique characteristic function of a random variable on a probability space and, thus, a 

unique distribution function F (x ) ,  we cannot in general conclude that  E I E x < x ] = F ( x  ). 

Examples to the contrary have been given in Section 3. On the other hand, for any conti- 

nuous function c, 

E c (X) = / c (x) d F (x), 
-oo 

where F is determined by E e  ~~ Thus, all theorems of the Helly-Bray type leading to 

convergence of moments and convergence of characteristic functions are meaningful and 

true in the context of Riemann spaces. 

In  the case of random variables X on a Riemann space, we will speak of the distribution 

function F determined by E e  ~~ as the distribution function of X. 

Before stating what theorems involving statistically independent random variables 

are true in the Riemann case, we find it necessary to prove an existence theorem. This 

theorem, that there exist an infinite number of statistically independent random variables 

would be trivially true in the measure-theoretic context. I t  has content here, because we 

define the random variables on a Riemann space and, thus, limit the degree of their dis- 

continuity. 

THEOREm 24. For  any  sequence o/ distribution /unct ions Fk, Ic = l ,  2, 3, . . . ,  o~ random 

variables on a probability space, there is a sequence o~ statistically independent random variables 

X 1, X 2, X a . . . .  on a R i e m a n n  space such that X k has d i s t r ibu t ion /unc t ion  F k. 
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Proo/ .  I t  is well  known t h a t  a p roduc t  measure  /s x ~2 •  can be def ined on 

the  p r o d u c t  Borel  field B1 • B2 •  of sets in the  infini te  d imensional  hype rcube  

[0, 1] ~ to  yie ld  a measure  space. F o r  an  a r b i t r a r y  sequence of d i s t r i bu t ion  funct ions  F k 

and  corresponding to  each dimension,  k, a r andom var iab le  Yk can be def ined on this  space 

such t h a t  i t  is a funct ion  of the  k th  coordinate  only Y k ( x l ,  x~ . . . . .  xk . . . .  ) =Z(xk )  , i t  has  

a t  most  a countab le  number  of d iscont inui t ies  when considered as a funct ion  of the  k th  

coordinate ,  a n d  i t  has  d i s t r ibu t ion  funct ion F k. The sequence Y1, Y~, Ya . . . .  is made  up  

of s t a t i s t i ca l ly  independen t  r a n d o m  var iables ,  each wi th  the  prescr ibed  d i s t r ibu t ion  funct ion.  

I t  will be sufficient for the  proof  to  show t h a t  these r a n d o m  va r i ab le s  can be t rans fe r red  

to  ([0, 1], B,/s wi thou t  des t roy ing  the i r  independence  or d i s t r ibu t ions  and  w i t h o u t  in- 

t roduc ing  discont inui t ies  outs ide  of a set  of measure  zero. 

W e  now consider  the  mapp ing  T of [0, 1] ~r onto  [0, l ]  def ined b y  expressing each 

coordina te  Xl, x 2 . . . .  of a po in t  x in [0, 1] ~ in some b ina ry  form and  le t t ing  ~(x) be t h a t  

po in t  in [0, 1] whose b i n a r y  rep resen ta t ion  is a l f i l a ~ l f i ~ a a  . . . .  as ob ta ined  b y  summing  

d iagona l ly  over  the  digi ts  of the  a r r a y  

Xl = "  6~1 ~2 6~3 "'" 

X 3 = "~?1~]2Y3 - . .  

This mapp ing  has  been s tud ied  b y  Wiene r  [10] and  has  been shown to be one-to-one up  

to  a set of measure  zero, measurab le  and  measure  preserving.  The set of poin ts  in [0, 1] ~ 

wi th  one or more  ra t iona l  coordina tes  of the  form k /2  ~ w i t h / c  and  n integers,  and  a l ike 

set of po in ts  in [0, 1], mus t  be excluded before T is one-to-one.  

Le t  us define T -1 as the  mapp ing  f rom [0, 1] to  [0, 1] ~ t h a t  is the  inverse of ~ in the  

region of [0, 1] where T is one-to-one,  t h a t  is de t e rmined  on a n y  po in t  wi th  a unique  b i n a r y  

rep resen ta t ion  �9 ~1fil ~2~1fi2 ~a . . .  as t h a t  po in t  in [0, 1] = whose coordinates  have  the  b ina ry  

represen ta t ion  given in the  above  a r ray ,  and  t h a t  is de t e rmined  in like manner  on po in ts  

wi th  non-unique  b i n a r y  rep resen ta t ion  b y  a lways  selecting the  r ep resen ta t ion  t h a t  t e rmi-  

na tes  in zeros. 

W e  now define the  following sequence of r andom var iables  on ([0, 1], B,/s 

X l  (~) = Yl  [ T - i  (~)] 

X2  (~) : Y2 [ T-1 (~)] 

x 3  (~) = r~ [~-~ (.)] 

F r o m  the  proper t ies  of Yk and  T i t  is clear t h a t  X1, X~, X a . . .  is a sequence of s t a t i s t i ca l ly  

independen t  r a n d o m  var iables  and  Xk has  d i s t r ibu t ion  funct ion F k. The  fact  t h a t  each 

X k is cont inuous  a lmos t  everywhere  mus t  now be demons t ra t ed .  
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For  fixed/c, the set of points a in [0, 1] for which 7 -1 (a) is ~ point  of discontinuity o 

Yk constitutes a set of measure zero (being contained in the union of the set where T fails 

to be one-to-one and the image under  ~ of the set where Yk is discontinuous). Le t  ~0 be 

~ny irrational chosen outside this set of measure zero. 

For  fixed k, and for e > 0, there exists an n o such tha t  if the first n o binary digits in 

the kth coordinate of T -1 (a) coincide with those of ~ 1 (a0) then 

i yk( ~ I(7) _ y~(r-1(~o) I <e. 

On the other hand, - - 1  is such tha t  for any  n o there exists a 5 such tha t  ]g - ~o[ < 5  implies 

t ha t  the first n o b inary  digits in the  kth coordinate of ~-~ (~) and ~-1 (z(0) coincide (This 

following from the irrat ionali ty of ~0). Thus, X is continuous at the point  ~0" Q.E.D. 

The following theorem provides a link with measure-theoretic probabil i ty theory  and 

helps us to construct  t rue theorems for Riemann spaces from our knowledge of theorems 

in the measure-theoretic realm. I n  the s ta tement  of the theorem it is unders tood tha t  

independence, convergence, expectat ion and distribution have either the probabil i ty 

functional space or probabil i ty space definitions, the choice being consistent with the 

domain  of the random variables involved. 

T}TEO]{~M 25. Let (S, :~, E) be a Riemann Space. Let Y,  Yl ,  Y2, ]Ta . . . .  be random 

variables de]ined on the probability space ([0, 1], B, P) - P  being the Lebesque measure- -  

which are continuous almost everywhere and whose restrictions to S are X ,  X 1, Xz, X a . . . .  , 

respectively. The ]ollowing are true: 

i) X1, X2, X 3 . . . .  are statistically independent i/  and only i /  Y1, Y2, Y3 . . . .  are sta- 

tistically independent. 
P P 

ii) X ~ - - - ~ X  if and only if Y n - - - - Y  

iii) Xn ~ X  if and only if Y~ ~ Y 

iv) E X = E Y 

v) X has distribution ]unction F i] and only i] Y has distribution ]unction F.  

Proo] of (i). I t  is clear tha t  the independence of Y1, Y2, ]73 . . . .  implies the independence 

of X 1, X 2, Xa . . . .  To prove the converse it is sufficient to show tha t  if YI ' ,  Y2', . . .  YA-' is 

any choice of r andom variables taken  from Yx, Ye, Y3 . . . .  and if ]k s ~Y'k' k = l ,  2 . . . .  ~7, 

then 

(A) Ehh. . .  /~:  E/1Eh... E/~, 

implies independence of Y'I, Y'e, ]z'3 . . . .  ]Z'y. This follows, however, by  extending inde- 
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pendence to the minimal a-fields in B induced by Y'I,  Y'~ . . . . .  Y'N from the corresponding 

fields of sets in B whose characteristic functions, Ik, are of the form 

Ik = lira/k (n),/k (n) 6 :~r'k, /k (n) 4/(~+1). 

These latter fields are independent by virtue of (A) and 

lira E l l  (n) /2 (~n).../~(g) = E I 112.. .I~ 

lim E/1 (n) E/2('n)" 'E/N<~ E I 2 " " E I N .  

Q.E.D. 

From the theorems of this section we can immediately conclude that  all the theorems 

traditionally associated with the central limit problem are meaningful and true for sums 
N 

S~ = ~ X ~  of independent random variables defined on a Riemann space. We refer to 
k = l  

the various forms of the weak law of large numbers, the normal convergence criteria, the 

Poisson convergence, theorems relating to the infinitely decomposable laws and the central 

limit theorem, itself. See Lo~ve [5, Chapter VI] for a discussion of the central limit problem 

in the measure theoretic setting. 

In  view of the fact that  all of the theorems of this section remain meaningful and true 

when S in the Riemann space (S, :~, E) and any random variable X on the Riemann 

space are assumed computable, we can consider the results of this section to be generaliza- 

tions of the results obtained in Section 2 for computable probability spaces. 

6. Implications for number theory 

I t  is recalled that  in Section 2 we constructed, for arbitrary integer N,  a finite collec- 

tion of N statistically independent random variables, the sample values of any one of 

which formed a computable sequence. These random variables were defined on a computable 

probability space. I t  is now clear from the generalizations developed since Section 2 that  

we can construct an infinite sequence of statistically independant random variables, with 

the property that  each generates as its sample values a computable sequence. This can 

be done if we define the random variables on a computable Riemann space. In  either 

the case of a finite collection or an infinite collection of random variables, the construction 

may be made consistent with sample values that  are either 0 or 1 and, as a result, the 

computable sequences of sample values may be regarded as the binary representation of 

computable numbers in the unit interval. 

The converse of this construction, namely, to select an infinite collection of computable 
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numbers  f rom the  un i t  in te rva l  in such a w a y  t h a t  the  digi ts  in thei r  b ina ry  rep resen ta t ion  

coincide wi th  the  sample  values  of an  infini te  col lect ion of s t a t i s t i ca l ly  independen t  r a n d o m  

var iab les  (on a computab le  R i e m a n n  space), is of pa r t i cu l a r  in teres t  in one case. This is 

the  case where the  numbers  selected al ,  as, a 3 . . . .  are  al l  r e l a t ed  to  one ano ther  t h rough  a 

t r ans l a t ion  of digits;  specifically,  a 1 = a21(mod  1), a s = a22(mod  1), a a = :r 1) . . . . .  

for some computab le  a. I n  this  case the  b i n a r y  digi ts  in the  f rac t iona l  p a r t  of 2 ~, namely ,  

a l ,  a~, a s . . . .  (-~la2Zr 3 . . .  = 2 ~ ( m o d  1)) have  m a n y  of the  proper t ies  requ i red  of r a n d o m  

numbers ,  for the  re la t ive  f requency  of occurrence among these  digi ts  of any  specified 

sequence, a l  ~ ~2 ~ . . . . .  ~M ~ of M digi ts  0 or 1 a lways  converges to  2-M: 

l im = 2 -M 
~ (~) 

1 i f  (~k, ~ k + l , ' ' "  , ~ k + M - 1 )  = (~1 O, 6r "'" , ~M O) 

I k =  0 otherwise.  

The quest ion of character iz ing a computab le  number  ~ whose b i n a r y  digi ts  have  the  

p r o p e r t y  expressed b y  (I) is the  basic one. I n  th is  sect ion we will prove  t h a t  a lmos t  all 

numbers  a in the  un i t  in te rva l  have  the  p r o p e r t y  (I) a n d  t h a t  the  b i n a r y  digi ts  of a n y  

such zr p rovide  all the  sample  values  (via t rans la t ion)  of an inf ini te  sequence of s t a t i s t i ca l ly  

i ndependen t  r andom var iables  on a R i e m a n n  space. W e  will also fo rmula te  a necessary  

and  sufficient condi t ion  t h a t  a given number  zr should sa t i s fy  (I). 

I t  is p roposed  t h a t  if the  necessary  and  sufficient condi t ion  can be verif ied for the  

f rac t ional  pa r t s  of ze and  e, t h a t  the  in teres t ing  s ta t i s t i ca l  behav ior  in the  d ig i ta l  s t ruc ture  

of these  numbers ,  as inves t iga ted  on the  high speed comput ing  machines  [1, 6, 7], will be 

expla ined  in t e rms  of s ta t i s t i ca l ly  i ndependen t  r a n d o m  var iab les  on a computab le  R i e m a n n  

space. Moreover,  a posi t ive  resul t  for z or e or a n y  o ther  computab le  number  would  show 

the  w a y  to  a general  ana ly t i ca l  t echnique  for comput ing ,  wi thou t  recourse to  const ruc-  

t ion  methods ,  a t ab le  of digi ts  al ,  a2, a3 . . . .  possessing p r o p e r t y  (I). 

To show t h a t  a lmost  all numbers  a in  the  un i t  in te rva l  have  the  p r o p e r t y  (I), i t  will 

be sufficient to  show t h a t  a lmost  al l  a in the  un i t  in te rva l  genera te  a sequence 

S~ = (al ~ a21(mod  1), a s = a22(mod 1) . . . .  ) 

t h a t  is un i fo rmly  dense there.  H a v i n g  shown this ,  p r o p e r t y  (I) will follow from the  pro-  

per t ies  of t h e  s ta t i s t i ca l ly  i ndependen t  r a n d o m  var iab les  X1,  X2 ,  X 3 . . . .  defined on the  

R i e m a n n  space (S~, 5 ,  E) accord ing  to  

1 if a j+~- i  = 0  

Xj  (ak) = 0 otherwise  

] =  1 ,2 ,3 , . . - ,  k =  1 ,2 ,3 , . . . ,  a~=  ~k~k+l~k+2""- 
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(It should be noticed that  a more elementary and direct proof would be possible if 

we did not wish to relate the sample values of statistically independent random variables 

on a Riemann space with the digits of numbers that possess property (I). I t  should also 

be noticed that  the reasoning of probability functional spaces permits us to define an in- 

finite number of statistically independent random variables all of whose sample values 

correspond to the digits of one number, whereas the reasoning of sequence probability 

spaces limits us to a finite number of random variables. Disregarding the structure in the 

domains of definition, however, the functions X1, X2, X3, ... given here are identical with 

those presented in the elementary case in the proof of Theorem 5.) 

To show that  for almost all ~ in the unit interval the above sequence S~ is uniformly 

dense, we appeal to previous results [2] which show that  the kneading transformation T 

of the unit square onto itself is metrically transitive. If  ('~1~2~a .... "filfi2fi3...) is the 

binary representation of a point (a, b) in the unit square, the kneading transformation 

is defined by 

T('~176 .... "filfi~fl3.. ") = (" ~2~36r . . . .  g l f i 1 ~ 2 ' ' - )  

This important result on metric transitivity implies that for any measurable set A in the 

unit square 
1 N 

lim~v ~ IA [T k (a, b)] = # X #  (A) 

for almost all (a, b) in the unit square, the exceptional set of measure zero for which 

equality does not hold possibly depending on A. In particular, we can let A be any diadic 

interval B in the unit square of the form: 

and obtain, 

27•a< , O~<b~<l, for some],  0 ~ j ~ 2  M 1 

lim ~ ~ I B (ak) = ~ (B), 

with ak= a2 k (mod 1), for almost all a in the unit interval. Though for each diadic set B 

there Corresponds an exceptional set of points :r of measure zero, there is for the totality 

of all such B (the totality being countable) one exceptional set of measure zero for which 

equality might not hold. The last equality, therefore, holds for all diadic intervals, provided 

is outside a set of measure zero, and, thus, can be shown to hold also for all intervals, 

provided ~ is outside the same set of measure zero. This proves that  the sequence S~ is 

uniformly dense in the unit interval for almost all a and we have the following theorem. 



COMPUTABLE I~I~OBABILITY SPACES 121 

THEOREM 26. Almost all numbers o~ in the unit  interval possess property (I). I /  ~ -  

s o ~10~ ...  is the binary representation o/ a particular number possessing property (I) then 

/or positive integer k the digits ~k, ~k+l, ~k+2 . . . .  correspond to the sample values o / a  random 

variable X k de/ined on the Riemann space (S~, :~, E), S~ ~ (~21(mod 1), ~2~(mod 1), ...) 

and X k, ]c = 1, 2, 3 . . . .  are statistically independent .  

The method used in proving this theorem gives no indication of which specific numbers 

have property (I), nor, in fact, whether any computable numbers ~ (of which there are 

at most countably many) possess the property. For this we must  use the stronger results 

of H. Weyl [9]. 

First, let us notice that  the number ~ possesses property (I) if and only if sequence 

S~ is uniformly dense in the unit interval. The sufficiency of the latter condition was 

proved in the last theorem and the necessity follows by similar reasoning. Thus any neces- 

sary and sufficient condition for a sequence S~ to be uniformly dense in the unit interval, 

such as Weyl gives [9], will yield a condition for ~ to possess property (I). In  this way 

we obtain the following theorem. 

THEOREM 27. The number ~ possesses property (I) i / a n d  only i/ 

N 

exp (2 ~ i ] ~  2 ~) = o (N) 
k = l  

/or every positive integer ]. (i - V -  1.) 

As stated earlier, the interesting problem of characterizing the class of numbers 

for which the necessary and sufficient condition of this theorem holds (and, in particular, 

of determining whether the class includes the numbers ~ and e) is left as an unsolved 

problem in this paper. 

We will not investigate in this paper the relationships between numbers a possessing 

property (I) and the Kollektiv of yon Mises, the normal numbers of Borel, the admissible 

numbers of Copeland, the random sequences of Church, and other concepts occurring in 

frequency theories of probability. 
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