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PART I .  T H E  G E O M E T R I C  P R O B L E M  

1. Preliminaries 

A mapp ing  ~:M1-->E 2, with M 1 an  oriented 1-manifold (differentiable 1-mani- 

fold), is called a representation (regular representation if i t  possesses a continuous non- 

vanishing tangent  ~'); such a mapp ing  will be described b y  complex valued funct ion 

(t) = ~ ( t )+ i~  (t). An image point  ~o of a regular  representa t ion  is a simple crossing 

point if there exist  exac t ly  two dist inct  points  to and  to' such t h a t  

(to) = ~ (to') = r 

and  the tangents  ~' (to) and  ~' (to') are l inearly independent .  A regular  representa t ion  

is normal (Whi tney [12], p. 281) if it has a finite number  of simple crossing points  

and  for every  other  image point  ~ has but  one pre- image point  t. A pair  of repre- 

sentat ions (regular representat ions)  ~1 ~nd ~2 are equivalent if there exists a sense- 

preserving homeomorph i sm ~ of M 1 onto M 1 such t ha t  ~ e = ~ l o ~  (and if ~ ' ( t )  is 

cont inuous wi th  ~0' (t)=~0). Wi th  this equivalence relat ion one m a y  define a regular 

(normal) Curve as an oriented curve with a regular  (normal) representat ion.  

A mapp ing  F : M 2 - ~ E  2, with M 2 a 2-manifold,  is open if for every  open set U 

in M 2 the set F(U) is open in E2; F is light if the pre- image of every  point  is 

to ta l ly  disconnected; F is interior if F is l ight and  open. 

THEOREM (Stoilow [8], p. 121). For every interior mapping F o/ a mani/old M e 

into the complex plane there exists a homeomorphism H o/ M e onto a Riemann Sur/ace 

R and an analytic /unction W o/ R into the complex plane such that F = W o H. 
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In  this paper the manifold M 2 will always appear as the oriented interior of a 

Jordan curve and will be denoted by  D. In  this context, with the use of the Rie- 

mann Mapping Theorem, one has 

THEOREM 1. Let F be a sense-preserving interior mapping o/ D into the complex 

plane such that F (D) is bounded then there exists a sense-preserving homeomorphism H 

o/ D onto D and an analytic /unction on D such that F =  W oH. 

THEOREM. (Caratheodory [2], p. 86). A con/ormal mapping W (D)=D* (D and 

D* each the interior o/ a Jordan curve) has a continuous univalent extension to the 

closure o/ D. 

A mapping F will be called properly interior if F is continuous on D ( =  closure 

of D), F is interior and sense-preserving on D; a mapping W will be called properly 

analytic if W is continuous on /~ and is analytic on D. 

The Caratheodory Theorem and Theorem 1 combine to give: 

T HEORE~ 2. Let F:D---~E 2 be properly interior and F ] b d y  D locally topological 

then there exists a sense-preserving homeomorphism H o/ D onto D and there exists a 

properly analytic mapping W such that F = W oH.  

A mapping ~ :bdy  D-->E 2 will be called an interior boundary (analytic boundary) 

if there exists a properly interior mapping F [properly analytic mapping W/ such 

tha t  F [ b d y  D = ~  [W[bdy  D=~].  A consequence of Theorem 2 is tha t  every locally 

topological interior boundary is equivalent to a locally topological analytic boundary. 

2. Statement of  the Main Problem 

The problem probably first arose in the study by  Picard of the Schwarz-Chris- 

toffel mapping function for non-simple polygons and, in this context, was formulated 

essentially as follows: 

Let Z0, Z1, ..., Zn-1 be a sequence of complex numbers in general position. By 

connecting these points by  directed line segments consecutively from Zk to Z~+I, 

mod n, a closed oriented polygon is formed. Let  a~z be the signed angle from 

Z k - Z k - 1  to Zk+l--Zk with - - l < ~ k < l .  For any set of n real numbers a 0 < a  1 . . .  

< a ~ - i  and any non-zero complex number A t h e  function 

�9 = A  ( z - a o ) - ~ ( z - a l )  -~I ... ( z -an_ l )  -~n-1, 

with - � 8 9  < arg ( z -  a~)< �89 z,  is an analytic function in the upper half plane. Assume 
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( ~ 0 + ~ l + . . . + ~ = _ ~ ) z = 2 ~ r  and then, with B an arbi trary complex number, the 

function 

f 
z 

W =  O d z + B ,  I m % > 0 ,  
Z0 

besides being analytic in the upper half plane, maps the real axis onto a possibly 

different polygon with, say, W (at) = Z'k, but  with Z~ = Z '  ~_~ having the same direc- 

tion as the given Zk--Zk-1. 

P~O~LEM A (Picard [7], p. 313). Find necessary and sufficient conditions on 

an oriented polygon so that  there exists a mapping function W such tha t  W(ak)= 

Zk; thus tha t  the real axis is mapped onto the given polygon. (Picard and others 

near the time were also concerned with the problem of finding an effective method 

for computing the ak.) 

Some time ago, circa 1948, a clearly related problem was suggested by  C. Loewner 

which will be stated in the following form. 

PROBLEM B. Given a normal representation ~ of a closed oriented curve find 

necessary and sufficient conditions tha t  ~ be an interior boundary. 

Problem A is a corollary, by  a simple limiting process, of a special case (with 

the tangent winding number  of ~ equal to one) of Problem B. In  this paper a 

complete answer, from the point of view of combinatorial topology, is given to 

Problem B. 

3. Basic Concepts and Techniques 

In  what  follows ~ will always be a representation of a closed curve and the 

simple crossing points will be called vertices. Let v(~) be the tangent  winding number 

of ~ and let o)(~, z) be the winding number (index) of ~ about a point z which is 

not on the point set [~]. 

LEMMA 1. I /  ~ is an interior boundary then eo(~, 7r)~>0 ]or all ~r i] ~ is 

also regular then v (~) ~ 1. 

Proo/. By Theorem 2 and the fact tha t  both properties of are invariant  under 

the equivalence of locally simple representations of the proof reduces to the case in 

which ~ is an analytic boundary. The proof then follows easily by standard Cauehy 

Integral  type theorems. 
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The proper ty  of ~ tha t  co (~, ~)>~0 for all z ~  [~] is called non-negative circula- 

tion (Loewner [5], p. 316). A corollary of the principal theorem of this paper  will 

be, by  the way, t ha t  there exist curves with any  pre-assigned tangent  winding num- 

ber, which are of non-negat ive circulation and which are nevertheless no t  interior 

boundaries. 

The outer boundary of ~ will be the subset of [~] which is contained in the 

closure of the unbounded  component  of the complement  of [~]; an outer  point  7e is 

a point  on the outer  boundary  such tha t  ~-1 (Te) is a single point.  Also, for normal  

and  such a point  7~ one can define o) + (~, ~) and co-(~, 7~)as the larger and  smaller 

winding numbers  of point  ~ '  near ~ bu t  not  on [~]; an outer  point  7~ is positive if 

o~ + (~, ~) = § 1; the outer boundary  is called positive if every outer point  is positive. 

The following Lemma follows easily f rom these notions and  Lemma 1; the proof is 

omitted. 

LEMMA 2. I /  ~ is normal and is an interior boundary then, /or any outer point 

7e, co + ($, 7~ )= § 1. 

Let  ~ be normal  and let z = $ ( 0 )  be an outer point  with $ given by  the com- 

plex valued function ~(t) and t the usual angle parameter ,  0 ~ t < 2 ~ .  Index  the n 

vertices (it is clear there can only be a finite number)  in the natura l  way  by  tra- 

versing the curve with increasing t and using consecutively the integers 0, 1, ..., n - 1 ;  

thus ~0, $1 . . . . .  ~n-1 (see Fig. 1). Let  the 2 n  preimages of the vertices be denoted by  

. . .  8 "  sk and index so tha t  0 < s 0 < s l <  <S2n-l<2:~. Denote sj also by  s* if $ ( s j ) = $ ( k ) ,  

j ~ k ;  thus ~(s*)=~(sk) for all k. Define the funct ion v, with ~ ( t ) = ~ ( t ) + i ~ ( t ) ,  b y  

sgn ~'(s *) ~',(s*) 
(s~)  = ~ = ~ '  ( s~)  ~ (s~)  " 

Let  t~ be yet  another  name for the smallest pre-image of Ck and let t~' be the other  

pre-image of Ck; thus given any /c there is always a j such tha t  

Define the funct ion 

O < t'k = sj < s* = t'~' < 27e. 

(t~) = sgn ~' t . . . .  t ' ' ' l  

Given a normal  ~ with ~ =  ~(0) a positive outer  point  the intersection sequence 

of ~ with respect to  ~ is defined by  the sequence {sk}, the values of s* and the 
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~3 

Fig.  1. 

values of vk for each k. A pair of normal representations ~ and ~ have isomorphic 

intersection sequences if they have the same number of vertices, s* =sk if ~ = ~k, and 

TH~ORFM 3. Let ~ and ~ be normal with ~(0) and ~(0) positive outer points. 

I /  ~ and ~ have isomorphic intersection sequences then there exists a .sense preserving 

homeomorphism H o/ the plane onto itsel/ such that the representation H o ~ is equivalent 

to the representation ~; thus the property that a normal representation be an interior 

boundary depends only on its intersection sequence. 

Proo/. A proof can be constructed in a straightforward manner from work of 

Adkisson and MacLane [1]. However, par t ly  for completeness and par t ly  because of 

naturalness in this context, a different proof will be sketched. 

The proof is by  induction on the {sin} for each given ~. I f  ~ has no vertices 

(but has a positive outer point) the Theorem is true. 

I f  {sin} is not empty  the following proposition will be proved (let ~ have n 

vertices): For each m, 0 <~ m <~ 2 n - 1, the partial intersection sequence so, 81, ..., Sm 

determines a normal representation ~m (t), 0 <~ t <~ sin, with ~ (0) on the boundary o/ the 

unbounded component o/ the complement o/ [~] ,  up to a sense-preserving homeomorphism 

o/ the plane and an equivalence o/ the representation. The Proposition is clearly true 

for m =  0. If  the Proposition is true for an m > 0 then, because of the condition on 

(0), it is true for m +  1. 

Now, to prove the Theorem, one has only to show tha t  the representation is 

sufficiently well determined on the interval from s2n-1 to 2~(~(2~r )=  ~(0)). But  this 

follows easily from the condition tha t  ~ (0) is a positive outer point of ~. 

4--  61173055 106. Ac ta  mathematica. Imprlm6 le 26 septembre 1961. 
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4. Some Simple Necessary Conditions on the Intersection Sequence 

The results in this section are logically independent  of the rest of the paper 

and are presented here so tha t  the reader can get some intermediate feeling for the 

kinds of conditions satisfied by  an intersection sequences tha t  belong to interior 

boundaries. 

LEMMA (Whitney). Let ~ be a normal representation with ~ = ~ ( 0 )  on the outer 

boundary and with (o + (~, 70 = + 1 then 

,(~)= Z ~ k + l .  
k=O 

Proo/. See Whi tney  [12], Theorem 2, p. 281 or [10], L c m m a  3, p. 1086. 

Let Ck={ lso<sk<s  <s*} and L ~ = { a l s ~ < s k < s * < s *  }. 

LEMMA ([10], Theorem 4, p. 1090). Let ~ be a normal representation with ~ = ~(0) 

on the outer boundary and with o) + (~, ~ ) =  + 1 then ~ is o/ non-negative circulation i/ 

and only i/ 

~ ,~o+~,~>~0  /or all Is. 
Ck Lk 

These Lemmas  together  with Lemma 1 and 2 combine easily to give 

THEOI~EM. I /  ~ is normal and an interior boundary then there exists an equiva- 

lent representation ~ so that ~ = ~ ( 0 )  is an outer point, ~o + (~, ~ ) =  + 1, 

n 

ZZk>~O and Z,~o+Z$a~o ]orall k. 
k = 0 Ck Lk 

5. Sketch of the Proof of the Main Theorem 

By Lemma 1 every normal  interior boundary  has v0= + 1. Now choose the 

index k to be the smallest integer such tha t  v k = - 1 ;  such a k exists since vk = 

One has then the following list of all possible cases for a normal  
2 n - 1  

- ~, 7~ ~ = 0 .  
k = O  

with Vo= + 1: 

Case I s* k < sk, Case I I  sk < s*; 

in the later case one has for each ?', sj < sk, the subeases: 
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Case l I '  (j) sk<s* and  s j < s z < s * < s * ,  

Case I I "  (]) sk<s*k and  s j<sk<s~<s* .  

F o r  each k and  j chosen as above  (j is chosen only in  Cases I I )  a " c u t "  will  

be defined.  E a c h  such " c u t "  will l ead  to  a pa i r  of no rma l  represen ta t ions  ~1 and  ~2 

def ined using the  or iginal  no rma l  ~ and  the  na tu r e  of the  Case. I t  will  t hen  be 

shown t h a t  if a no rma l  ~ is an  in ter ior  b o u n d a r y  there  exis ts  a "cut"  so t h a t  bo th  

~1 and  ~2 are  in te r io r  boundar ies ;  conversely  if there  exists  a " c u t "  so t h a t  ~1 a n d  

~2 are  in ter ior  boundar ies  then  ~ is an  in ter ior  bounda ry .  Also i t  will be shown t h a t  

the  ~1 and  ~2 have  less ver t ices  t h a n  the  or iginal  ~. These resul ts  will form the  basis  

of a comple te  a lgor i thm for deciding whether  or no t  a no rma l  ~ is an  in ter ior  bounda ry .  

6. Definition o f  the Cuts 

F o r  a no rma l  ~ def ined on a circle of circumference c, define the  cuts  ~* and  

defined on or ien ted  circles of circumference c* and  c** respect ively ,  as follows: 

Cut o/ Type I 

~* (t) = ~ (t + s *), 

{ ~ (t), 
~** (t) = 

( s t -  s* + t), 

0 ~< t ~< s k -- s* = c*; 

O<~t<~s*, 

s* <~t<~c--sk + s* =c**.  

Cut o/Type I1' (j) 

{~(t+sA, 
~* (t) = (sj + s , , -  s~ + t), 

O <~ t <~ s k -  sj, 

s ~ - s j  ~<t ~<sk-s j  + s~ - s~ =c*;  

Fig. 2. 



52 C H A R L E S  J .  T ITUS 

Fig. 3. Fig. 4. 

~** (t) = / r (t), 

(sk - s~ - t), 

(sj + s* - s ~ -  s* + t), 

o<~t<~sL 

~ ~ t ~ sk + sk -- Sj, 

S~ + Sk--Sj<<.t<c+ s j+ S*--Sk--S~ =C**. 

Cut o / T y p e  L I "  (j)  

{ ~ ( s * + t ) ,  

~* (t) = (s* ~-' s*~ + s ~ -  t) 

o-<<t< s ~ - s * ,  

8~ * --~ ~ * -- sj ..~.t-.~ s~ + sj + s~ -- s* = c*; 

/ F (t), 

~** (t) = ~ ( s j -  s* + t), 

[ ;  (sj - s* - ~ + s~ + t), 

O<~t<~s*, 

s* <~ t <~ s* - s~ + sk, 

s7 - sj + sk <- t ~ c + s* - sj + s~ - s~ = c**. 

These three Cases are illustrated, in order, in Figs. 2, 3 and 4 (the curves in 

3 and 4 actual ly traverse on interval three times and this fact  is indicated in a 

usual manner).  

7. Properties of the Cuts of Type I 

Some more lemmas will be needed. 

L E ~ M A  3 ([11], Theorem 9). Let  U be a domain  in  the plane and X a subset 

that is closed in U and contains no open sets. I /  F : U - - > E  ~ is such that F I U - X  is 

sense-perserving and  interior and  i f  F I X  is light then F :  U--->E 2 is interior. 

Define p c  q if tq ~ t~ < t~' < t~' and read ~ contained in ~q: ~ l inks  ~q on the le/t 

i f  t~ < t'~ < t'p' ~ t'q' and write p E Lq; ~p l inks ~q on the right i f  t'q < t~ < t'q" < t'p' and write 

p E R ~ .  
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LEMMA 4 (Corollary 1, [10], p. 1087). Let T be the interval t~,,<~t<~t~: choose j 

so that sj =t~ ;  choose um so that ss_l < U,n <sj <t'~ and assume that ~ (urn) is in the un- 

bounded component o/ the complement o/ [~[Tm] then 

E o= E 
( r E L m  ~ r e R m  

LEMMA 5. I] a normal ~ determines a cut o] Type I (Ic chosen as in 5 ) i t  ]ollows 

that s* =sk-1; thus one has that ~1T~=$* represents a positively oriented Jordan curve 

and also that [~*] intersects [~] only in the point ~ (s~)= ~ (sk). 

_ t I t  Proo]. Choose u~ as in Lemma 4, with then S k _ l < U m < S ~ -  m (t~n s* = ~). First, 

(urn) mus t  be in the unbounded  component  of the complement  of [~]T~] for, if 

not,  there would exist an  s~ such tha t  s~ < s~ = t~ < s* < sk = t:,: which, since v (s~) = 

- ~ ( s * ) ,  contradicts  the choice of /c. One can now apply  Lemma 4 to $1T~. 
* * 

I f  Lemma 5 is false then there must  exist an  sp such tha t  (i) s v < s k < s p < s ~  

or (ii) s* < s~ < s* < s~ or (iii) s~ < s~ < sk < s*. Now (i) and  (ii) are impossible by  the 

choice of /c and the fact  t h a t  v ( s ~ ) = - ~ ( s * ) .  Lemma 4 now gives 

E  (so) =0; 
s~ <sa<sk<s~ 

and thus if there were any  sp of case (iii) there would have to be an sq with ~ (sq)= 

- 1  contradict ing the choice of sk. The proof is complete. 

Let  ~ be a locally simple representation. When  there exists a point  ~ E [~] such 

t h a t  ~-x (az) contains bu t  one point  one can make  the following definition. An  arc 

(homeomorph of a closed interval) is an interior arc with endpoint at zg if z~ is one 

endpoint  of y, y - ~  is contained in a component  of the complement  of [~] and 

points  ~ '  on y - z  are such tha t  eo(~, z ' ) = w + ( ~ ,  az); see Fig. 5. 

Let  ~ aug y, read ~ augmented by ~, be a representat ion locally topological except 

at  ~-1 (~z), which traverses [~] U y in the following way:  f rom ~(0) to ~ in the same 

direction as ~, f rom z to  the other endpoint  T of y along y, f rom y to  z along y 

and  finally f rom z to  ~ (0) along [~] in the direction of ~; see Fig. 5. 

L ] ~ A  6. Let ~ be a locally simple representation and y an interior arc with 

endpoint at ~z. A necessary and sufficient condition that ~ aug y be an interior boundary 

is that ~ be an interior boundary. 

Su//iciency proo/. Let  2'  be the properly interior mapping  of a disk t h a t  extends 

(i.e., F [ b d y  D = ~ ) .  Select y and note that ,  f rom the properties of 7, F - ~ ( F ) = A  

is an  interior arc of the circle t ha t  bounds D with one endpoint  at  say p = ~ - i  (~). 
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Fig. 5. 

aug ~, 

I t  is well known tha t  there exists a eonformal mapping H of the closure of the disk 

D such tha t  H ( D ) = D - A ;  (let h = H l b d y  D), h(bdy  D ) = ( b d y  D) tJ A; h is locally 

topological except at  one point. (The proof is but  a slight variat ion on the Cara- 

theodory Theorem in Section 1.) One now sees tha t  the mapping F = F o H is properly 

interior and tha t  F lbdy D is equivalent to ~ aug 7" 

Necessity Proo/. The mapping H above will also be used here; let H - I ( A ) = B  

and note tha t  B is an interval and tha t  H IB is at  most 2 to 1. Let  G b e t h e p r o -  

perly interior mapping tha t  extends ~ aug y. I t  can be arranged tha t  B =  G -1 (7)" 

Now form G = G o H  -1 and one sees by Lemma 3 tha t  G is properly interior; tha t  

G I bdy  D is locally topological and is equivalent to ~. 

THEOREM 4. I /  ~ is normal and has a cut o/ Type I and i/ ~* and ~** are 

interior boundaries then ~ is an interior boundary. 

Proo/. Because of Lemma 5 there exists and arc 7 which is an interior arc with 

respect to ~, ~* and ~** (at the same time) with endpoint at  z=~(sk) .  I t  follows 

by  Lemma 6 tha t  both ~** aug 7 and ~* aug 7 are interior boundaries. 

Let  D* and D** be the right and left halves of a disk D. There exist properly 

interior mapping F* and F** on D* and D** which extend representations equivalent 

to ~* aug 7 and ~** aug y respectively and with the extra properties (with d = / 5 "  

N/)**) tha t  F * l d = F * * l d  and F* (d) = F** (d) = 7. Let F be defined by F I D * = F *  

and F I D * * ~ F * * .  Since F is at  most 2 to 1 on d, Lemma 3 applies and F is seen 

to be a properly interior mapping. Also it is clear from the construction of F tha t  

it extends a representation equivalent to ~ and the proof is complete. 

THEOREM 5. I /  ~ i8 normal and has a cut o/ Type I and i] ~ is an interior 

boundary then ~* and ~** are interior boundaries. 

Proo/. By Lemma 5, ~* represents a positively oriented Jordan  curve and thus 

~* is an interior boundary. Let  F be the properly interior mapping of the disk D 
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tha t  extends ~. By Lemma 5 [~*] intersects [~] only in the point ~ =  ~ (s~)= r (s*). 

From these properties of ~* and from the fact tha t  s*<8~ with v(s*)= §  it fol- 

lows that  F 1([~,])N D = C  is the interior of the closed arc C and tha t  C connects 

sk to s*. Let  R be the open 2-cell bounded by C and the interval from s~ to s~. 

One mapping G is called topologically equivalent to another ~ if there exists sense- 

preserving homeomorphisms H '  and H "  (the compositions making sense) so tha t  

G = H ' o G o H " .  One sees that  F I R  is topologically equivalent to w = z  2 on the disk 

(see, e.g., Whyburn [13], Theorem (4.3), p. 86); there exists therefore an open are 

B ~ R  such tha t  F ( B ) = y  is an interior arc of ~* with endpoint at  ~ = $  (sk). Let  

D* be the open 2-cell bounded by  the arc B and the interval s~ ~< t ~< sk; let D** = D - / 3 * .  

By these constructions one sees tha t  F* = F I/3* and F** = F 1/3** are properly interior, 

that  they extend ~* aug 7 and ~** aug y and that ,  by  Lemma 6, both ~* and ~** 

are interior boundaries. 

When ~ is normal and leads to a cut of Type I one can modi/y ~* and $** by  

simply smoothing each near ~ (sk) (denote these modified representations by  mod ~* 

and mod ~**) so tha t  each is normal; mod ~* is simple; mod ~**, with rood ~** (0) = ~ (0), 

has the same intersection sequence as the intersection sequence of ~ with sk and 8" 

deleted. 

For reference purposes one can gather together these remarks together with 

Theorems 4 and 5 to obtain: 

T H ~ O R ~  6. Let ~ be a normal representation with ~ (0) a positive outer point. 

I /  ~ has a Cut o/ Type I,  then ~ is an interior boundary i/ and only i/ the normal 

representations mod ~* and rood ~** are both interior boundaries. I /  ~ has n vertices 

then mod ~* has no vertices and mod ~** has n - 1  vertices. 

8. Properties of Cuts of Type II 

Recall, see Section 5, tha t  with a normal $ with ~ (0) a positive outer point, a 

Cut of Type I I  implies the existence of a k and ?" such tha t  sk < s* and 

sj<s~<s~<s7 or sj<s~<sT<s~; 

also one has tha t  v(sm)= + 1  for m < k  and that  v ( s k ) = - 1 .  

T g ~ o l ~ M  7'. Let ~ be a normal representation, with ~ (0) a positive outer point, 

which has a Cut o/ Type I I '  (j). I /  ~* and ~** are both interior boundaries then i8 an 

interior boundary. 
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Proo/. Let  D* and D** be the right and left open halves of a disk D and let 

d be the diameter d = / ) * ( ] / ) * * .  Let  F* and E** be the properly interior mappings 

tha t  extend ~* and ~** respectively. Let  T* and T** be the intervals O<~t<~sk-sj 

and s~ ~< t-~<s~ + s k - s  s on the positively oriented circles of circumferences C* and C** 

which in turn bound the disks /)* and /)** respectively. Let  H* and H** be sense- 

preserving homeomorphisms of the closures of /)* and ~** onto the closures of D* 

and D** so tha t  H* ] T* = H** [ T**, and thus tha t  H* (T*)=H** (T**), respectively. 

Define the mapping F of D =  (/) D/)**) by F [ / ) *  = F *  oH* and F[ / )**  =F**  oH**. 

By use of Lcmma 3, F is seen to be properly interior and by  construction an ex- 

tension of ~. 

THEO~]~M 7". Let ~ be a normal representation, with ~ (0) a positive outer point, 

which has a Cut o/ Type 11" (j). I /  ~* and ~** are both interior boundaries then ~ is 

an interior boundary. 

Proo/. The proof is essentially the same as the proof of Theorem 7' and is left 

to the reader (the main difference is in the choice of T* and T** which in this case 

are chosen as the intervals s* k--s~ <t<~sk +si+s~--S~ and s* <~t<~s*- ss+sk respec- 

tively). 

THEOREM 8. Let ~ be a normal representation with ~ (0) a positive outer point; 

suppose also that ~ does not have a Cut o/ Type I. I /  ~ is an interior boundary then 

there exists a j ,  j < k, and the corresponding Cut o/ Type I1" (j) or H "  (j) such that 

~* and ~** are both interior boundaries. 

Proo/. Let  F be the properly interior mapping tha t  extends ~. By the choice 

of k it follows tha t  so, s 1 . . . .  , sk are equal to to, t~, . . . ,  t~ (the smallest pre--images of 

~0, ~1, . . . ,  ~k), respectively; thus ~ (sin)=~m for m</~. I t  is not difficult to show tha t  

if ~ = ~ (urn), sin-1 <um < s~, 0 < m </c (identify s_~ with t = 0), then ~-1 (z) consists of 

precisely m points in D with one of these points on bdy (D) and the other m points 

in D. The proof of this fact is left to the reader (a formal proof can be constructed 

easily using the proof of Theorem 4 [10], p. 1090, and the fact tha t  for an interior 

mapping F the number of points in a point inverse ~-1 (7~) is equal to the winding 

number of ~ about  the point ~z). Let  T~ be the interval sm-l<t<sm; then the pre- 

image of Tin, m ~ k ,  consists of m intervals in /);  exactly one of these intervals lies 

on the boundary of D and the other m -  1 such intervals lie in D. Furthermore,  all 

but  one of these intervals in D have both endpoints in D and the other one has 

exactly one endpoint on bdy (D). By the choice of /c, ~ is topological on the interval 
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0~<t<sk+l.  Let  Is be the interval O<~t<s. Consider It as t increases. A new pre- 

image interval is created each time t passes through an s~, m </c with one endpoint 

at  sin, but  after t passes through sk, since ~ ( s k ) = -  1, there are only ]c -  1 points in 

the pre-image ~-1 (t) and, therefore, some one of the previously created pre-image in- 

tervals must  have an endpoint at  s*; choose j so tha t  s* is the other endpoint of 

this interval; call this interval A. Let  D* and D** be components of D - A  with 

D** the region with t = 0  on its boundary. By this construction F*-FID* and 

F** = F I D * *  are properly interior and extend ~* and ~** respectively. The proof is 

complete. 

Next,  modifications of ~* and ~** (similar in purpose to those introduced at  the 

end of Section 7) must  be introduced; they must  be normal and must  have intersec- 

tion sequences closely related to the original ~, ~* and ~**. The situations for the 

$* and for the ~** are quite different and will be t reated separately. First, $** will 

be modified. 

Let  Ij~ be the interval sj ~< t < sk. By the choice of /c, ~ is topological on Ijk; 

let ~Jk be the oriented arc which is the image ~ (Ijk). Now ~** traces over the arc 

~Jk exactly twice; if the cut is of Type I I '  (j), ~Jk is traced in opposite directions; if 

the cut is of Type I I "  (j), ~sk is traced in the same direction. Define the modifica. 
tions o/Type I I  of $**, written mod ~**, as follows (precise definition of $** in Section 6): 

Type I1' (j) (see Figures 3 and 6). For each e > 0  let J :  be the interval 

s*-e<t<s* +sk-sj+e.  

Let  mod ~** I C (J:) = ~** (C (A)) = complement of A); on J '  replace $** b y  an arc 

which lies in a left-hand neighborhood of ~* (J:); make sure tha t  the resulting mod 

~** is normal and tha t  for each sm such tha t  smEIj~ and s~EC(Ik,j,) (note mg:j 
or k) there are exactly two vertices on mod ~**; these two vertices have opposite 

signs. 

Fig. 6. Fig. 7. 
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Type / / "  (2") (see Figures 4 and 7). For each ~ > 0  let J : '  be the interval 

s * - s < t < s ~ - s i + s k  +s. 

The construction is now the same as before except tha t  for each s~ such tha t  Sme Ijk 

and s~ ~ (Is*k*) the two associated vertices of mod ~** have the same sign. 

To define the modifications of the ~* proceed as follows: 

First smooth ~* at  the only two points, ~ (sj) and ~ (sk), at  which ~* fails to be 

regular; obtain a normal representation ~* arbitrari ly close to ~* which has no new 

vertices. But  for later purposes more must be done (to develop a well defined al- 

gorithm); one must  find a way of selecting an outer point of ~*. Let /9 be the smallest 

index such tha t  s~ ~< sj and such tha t  s~ is in the closed interval between s~ and s*. 

I t  follows tha t  ~ (%) is not a vertex of ~* and tha t  it is an outer point of ~*. Thus, 

mod $* is defined as a representation equivalent to ~* for which rood ~* (0 )=$  (s,). 

This concludes the definitions of the modifications of the ~* and the ~**. From 

the nature of the construction of these modifications one can obtain the following 

Theorem; its proof is geometrically clear by  previously developed techniques and is 

left to the reader. 

TKEOlZEM 9. The representations ~* and ~** are interior boundaries i/ and only 

i/ rood ~* and mod ~** are interior boundaries. 

9. Further Properties of the Cuts of Type II 

For later purposes (to obtain a finite algorithm) one must  show tha t  the num- 

ber of vertices of mod ~* and of mod ~** are each strictly less than the number  of 

vertices of the original ~. Let, as before, Ijk be the interval, sj < t < sk; do not distinguish 

between ljk and Ik~. Let  R be the class of vertices ~(Sm)such that  sm6Ijk and 
, 

s,n ~ Ij ,  k*; these arc the vertices of ~ tha t  lead to pairs of vertices on rood (**. Let  

P be the rest of the vertices of mod ~**; these are the vertices ~ (sin) such tha t  

neither s~ nor s* belongs to Ijk(3 Ij ,  k,. Let  Q be the vertices ~ ( s~)such  tha t  

* 6 I j ,  these are the vertices of ~ tha t  do not give rise to Sm ~ Ijk t) Ij, k, and sm k*; 

vertices on either mod (* or mod ~-**. Let  19, q, r be the number  of vertices in 

P,  Q, R respectively; let N, ~V*, N** be the number  of vertices on ~, mod ~*, mod 

(** respectively. Recall that ,  by the choice of /~, there does not exist an s~ such tha t  

s 0 < s m < s * < s k  and obtain the equality: N = / 9 + q + r + N * + 2 ;  obtain also tha t  

N * * = p + 2 r .  
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L~MMA 7. Let ~ be normal with ~ (0) a positive outer point. I] ~ has a cut o/ 

Type I I  then r <~ q. 

Proo/. Consider the oriented J o r d a n  Curve B which is the outer  boundary  of 

and  the oriented (Jordan) arc A which is ~ restricted to the interval s o ~< t~< sk. B y  

the choice of /c, ~ can cross over A only to the right. A vertex in R is such a point  

(Sm) but  with Sm E It~ and Sm r lj ,  k*; there is therefore a pair  of disjoint classes R 1 

and  R 2 tha t  make up R. These are the following: R 1 contains $ (sin) when 

R e contains ~ (8m) when 
8 i<8m<sk<8*m <8*'k~ 

s1 <Sm < S~ and s* > max (s*, s*). 

Let  C be the oriented curve represented by  ~ [11, k, (oriented by  increasing t). For  

each ~ (Sm) in R 1 let D~ be the oriented curve given by  ~llkm, and for (sin) in R~ 

let D~ be the oriented curve given b y  ~ I l i ,  m*; this construct ion is only valid for a 

Cut of Type  I I '  (j) bu t  a similar construct ion can be made for a Cut of Type I I "  (j). 

I t  is taken as geometrically clear, see Figures 8 and 9, t ha t  for each vertex in R 

there is an intersection of the curves C and D~ or C and D~ as the case m a y  be. 

Bu t  such intersections are vertices in Q. Since, clearly, no pair  of vertices in R can 

correspond to a single vertex in Q it follows tha t  r~< q. 

~; ' , , ' , ; ;  

(% S~ ,' \ , , , 

, , \ . . ,  , , : ( s .  �9 

', ~ ~ ' "  " ," ~ (s,O D;  ' ( , , -  " 

,. _ .  - ~, (%) " . , . ,  " ~ (%) 

Fig.  8. F ig .  9. 

(s~) 

(s~) 

T ~ F O R n M  10. Let ~ be a normal representation with ~ (0) a positive outer point. 

I /  ~ has a Cut o/ Type I I  then N * < ~ N - 2  and N** ~ N - 2 .  

Proo/. From the equal i ty  N = p + q § r + N* + 2 one has immedia te ly  tha t  

N* = ( N - 2 ) - ( p + q + r ) < . N - 2 .  

Using Lemma 7 one has 

N** = p + 2  r < , p + r §  ( N - 2 ) - N *  ~ < N - 2 .  
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10. The Principal Geometric Result 

Theorems 5, 7', 7",  8, 9 and 10 can be pu t  together  to form 

T H e O r E M  11. Let ~ be a normal representation with ~ (0) a positive outer point. 

Then 

(i) Either there exists a Cut o/ Type I or o/ Type I I  or ~ is not an interior 

boundary. 

(iV) I /  the cut is of Type I ,  ~ is an interior boundary i/ and only i] rood ~* and 

mod  ~** are both interior boundaries. Furthermore, N* = 0  and N** = ! V - 1 .  

(Vii) I /  the Cut is o/ Type I I  then ~ is an interior boundary i/ and only i/there 

exists a j ,  0~<j<]c,  and the corresponding Cut o/ Type' (]) or I I "  (j) such that rood ~* 

and ~** are both interior boundaries. Furthermore, /or any j ,  O<~j <k, the corresponding 

Cut o/ Type I I '  (j) or I I "  (j) satis/ies the inequalities !V* <~ N -  2 and N** ~ N -  2. 

Theorem 11 forms the basic reduction step of a finite algori thm for the reduc- 

t ion can be applied to the cuts themselves. Call the operat ion leading f rom a nor- 

mal ~ to the rood ~* and rood ~** a cut operation. One has then a solution to  

Problem B : 

T~EORI~M 12. Let ~ be normal with ~ (0) a positive outer point. Then ~ is an 

interior boundary i[ and only if there a succession o] cut operations that eventually leads 

to a collection o/ representations each o] which describes a positively oriented Jordan 

curve. 

Remarks. (1) Since at  any  stage in a succession of cut  operations all the cuts 

mus t  satisfy any  known necessary conditions tha t  a normal  representat ion be an  

interior boundary ,  the algori thm can be s ta ted in considerably more efficient forms. 

(2) If  follows easily f rom the definitions tha t  for cuts of Type  I I ,  

T (~) - 1 = [T (mod ~*) - 1] + [v (rood ~**) - 1]; 

for cuts of Type  I,  

(~) - 1 = [~ (mod ~**) - 1] + [T (mod ~**) - 1] + 1. 

Thus, with ~ a normal  interior boundary ,  �9 (~)= 1 if and  only if there are no cuts 

of Type  I.  One has therefore tha t  a normal  ~ with ~ (0) a positive outer  point  has 

an extension b y  a sense-preserving local homeomorphism if and  only ff the complete 

cut  sequence contains only  cuts of Type  I I .  

(3) Le t  a normal  ~ be called an interior boundary  of degree n ff there exists a 

polynomial  of degree n, w = P ~  (Z), such tha t  Pn (e~t) is equivalent  to ~. I t  would be 
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interesting to classify the interior boundaries of given degree n. For  example, as a 

beginning, it is p robably  true tha t  the max imum number  of vertices of a normal  

interior boundary  of degree n is ( n - l )  ~. 

(4) The analogous problem when the interior mappings are defined on manifolds, 

bounded by  a Jo rdan  curve, but  other  than  a disk, is completely open. 

(5) For  certain sub-classes of normal  curves one can obtain a complete solution 

to Problem B in terms of inequalities satisfied by  the intersection sequence and thus 

no algori thm is necessary. See [9]. 

P A R T  I I .  T H E  A L G E B R A I C  P R O B L E M  

11. Preliminaries 
The purpose of Pa r t  I I  is to  show tha t  the geometric algorithm, Theorem 12, 

can now be developed in a completely algebraic form. The main  connection between 

the geometric objects (the normal  representations with a positive outer point) and the 

algebraic objects (the intersection sequences) is given in Theorem 12. The develop- 

ment  and nota t ion  will parallel the geometric t rea tment  closely; for technical pur- 

poses m a n y  concepts will be reformulated.  

Consider a set of p points on an  oriented circle S. Begin with an initial point 

of the set; traverse S in the direction of its orientation; thus index the points 

ao, a 1, . . . ,  a~-i with a 0 the initial point;  a set of points so indexed will be called 

ordered and  will be wri t ten ~ =  (a0, a 1 . . . .  , ap-1). 

A collection (a, r ~ ) = S  (~) will be called an intersection sequence provided tha t  

*=r i s a l - 1  is an ordered set containing 2 n  points (% the initial point); am 

mapping of ~ onto ~ with no fixed points and such tha t  r 162  is the ident i ty  

mapping;  rm = u~ (am) is a mapping  of ~ onto the set ( +  1, - 1 )  such tha t  u~ o r = - r ~ .  

An  intersection sequence S (zr will be called an interior boundary sequence if 

there exists a normal  interior boundary  ~, with $ (0) a positive outer point,  t h a t  

possesses S (~) as its intersection sequence. An  intersection sequence will be called 

realizable if there exists a normal  representat ion $, with ~ (0) a positive outer  point, 

t ha t  possesses S (~) as its intersection sequence.  Tha t  no t  all intersection sequences 

are realizable was noted b y  Gauss; in fact  he conjectured t h a t  if S (~) is realizable 

then the number  of points  between am and * am, for any  m, is always even ([3], pp. 

272 and 282-286). I n  1927 N a g y  continued the s tudy  and showed tha t  this was the 

case, ([6]). The condition is, however, far f rom sufficient for, among other things, it 

takes no account  of the ~ mapping (that  signs the vertices). A stronger necessary 

condition, t ha t  is also no t  sufficient, was derived in [10], Theorem 1, p. 1087. 
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Problem B can be reformulated in this context  as follows: 

Problem B. Find necessary and sufficient conditions on a realizable intersection 

sequence S (~) t ha t  S (co) be an interior boundary  sequence. 

The following definitions will be useful. 

Wi th  the ordered sets ~ and  /~ disjoint define the union of S ( ~ ) a n d  S(/~), 

wri t ten S ( ~ U f i ) = S ( ~ )  by  defining: y = ~ U f i ;  C r ] a = r  and  r162 v,l =v  and  

v~[fl =v~. Let  S (0) be the empty  intersection sequence. Wi th  S (~) and S (8) inter- 

section sequences and with fl c ~ define S (~ [fi) = S (y) by  defining; ~ = 8; r  = ~ [8; 

vr=v~[fi. Let  Pm(~)=f l  be the permuta t ion  defined by  b~=am+~ (modp) ;  fi is then  

the ordered set containing the same points as ~ bu t  with aa = b 0 as its initial point.  

Let  Pm : S (~) = S (8) be the intersection sequence defined by  fl =Pm (0r CZ =Pm o r o p ~  ; 

12. Definition of  the Cuts 

Given a realizable S (~) let k be the smallest index such tha t  rk = - 1. I f  v0 = - 1 

then, by  Lemma 1, S (~) is not  an interior boundary  sequence; if ro = + 1 cuts of 

Type  I and I I  are defined as follows: 
a * - -  Type I (a* <ak) .  I n  this case, by  Lemma 5, it follows tha t  s - a k - 1 .  Define 

the cuts S* (~) and S** (~) with fl the ordered set (s*, ss), by  

s* (~) = s (0), 

~** (~) = s (~ I ~ -  8) .  

Type I I  (ak<a*) .  I n  this case there are for each ? ' ,O~<]<k,  two subcases: 

Type I I '  (j) and I I "  (j). Here the definition of the cuts is considerably more com- 

plicated. I n  the first case let fl be the ordered subset of ~ containing all a m such 

* * a* < a* < a* (these points correspond to tha t  either a s < a m < a s < a s < a m < a *  or s < a m  

the vertices of mod  ~*). Let  C be the set of points in ~ containing all am such tha t  

am <--.aj<as < a~ <a* <~a*; let p be the smallest index of a point  in C; let q be the 

smallest index of the points in fi such tha t  aq>ap, select a permuta t ion  Pr (8) so 

tha t  aq becomes the initial point  of Pr (8); define 

S* (~)=P~ :S(f l )  (Cut of Type  I I '  (j)). 

I n  case Type  I I "  (]) define fl as above and define C as the set of am such tha t  

am ~< aj < ak < aj ~< am < a*; choose p~ (8) as above; define 

S*( . )=Pr ( f i )  (Cut of Type  I I " ( ] ) ) .  
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To define the cut S** (a) of Type I I '  (j) let /~ be the ordered subset of c~ con- 

taining all a m such tha t  neither am nor a* is between either aj and a~ or a* and a* 

(these correspond to the vertices of tha t  lead to single vertices on mod ~**); the 

initial point of ~ (=b0) is then the point in the subset with the smallest "~ index". 
$ 

Let S (fi)= S (a]fi). Let  7 be the ordered subset of a containing all am and am such 

tha t  aj<am<a~ <a~ <a~; let ~ be the ordered subset of a containing all a~ and a*m 

such tha t  a j < a m < a k < a ~ < a * < a * ;  the initial points of 7 ( = % )  and of 3 (=d0)  are 

chosen as the points in the respective subsets with the smallest "~ index". Let 

S ( 7 ) = S ( a 1 7 )  and S ( 5 ) = S ( ~ 1 6 ) .  Let  s be the ordered subset of 71)~ containing 

all a~ such tha t  aj<am <a~; the initial point of e (=%)  is the point in the subset 

with the smallest, "o~ index". Next,  four sets of points will be defined by  selecting 

the points according to certain inequalities. Let  (arn)'=C~m+l. Choose C to be the 

unordered (indexing implies nothing about  order on S) set given by  choosing points 

on S satisfying 

* < 5 " < ( c * ) '  for as<cm<az<c* < a * ;  Cm m 

choose /)* to be an unordered set given by  

d* <d*~<(d*)' for a j<d ,n < a k< a ~< a * < d ~;  

this choice and indexing establishes a 1 - 1  mapping f of s onto C*U/)*  such tha t  

/(C,n)=5 * and / ( d i n ) - - *  -din. Define the unordered sets C and / )  by  choosing 5m and dm 

between a~ and a*; define the 1 - 1  mapping g of CUJD onto s by  defining g(Sm)= 

j-1 (6") and g(c~,~)=f-i(6*); select the points in C and / )  so tha t  this mapping g of 

C U I3 onto s inverts the natural  order on S (i. e., with ~ the ordered set composed 

of the points C tJ / )  one has ff (Q) = ev-i > g (el) = e~_2 > ... > g (~p-1) = e0). Let /~ be the 

ordered set composed of C U D O C* U/)*; define S (#) by  defining ~b, to be the mapping 

which sends 5m-->5~, C*"+5m, dm-->dm, dm'-~dm; v,( m)= -- V r (Cm), % (d*.~) = -- V~ (d*) 

d* and then vr = - v . ( 5 * ) ,  %(~m) = - v ~ (  m)- Finally, define 

S**(g)=S( f iUTU~U/ .~  ) (cut of Type I I ' ( j ) ) .  

The last case, the definition of S** (~) for a cut of Type I I "  (j), can be done 

in a similar fashion; the main difference being tha t  the signing function % on C* U/)* 

has the same (instead of the opposite) sign as the v~ and v~ on the corresponding 

points in 7 O 6. 
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13. The Algebraic Algorithm 

A realizable intersect ion sequence S (~) has a complete cut sequence provided t h a t  

there exists an  i tera t ion  of cuts of Types I a nd  I I  such tha t  the intersect ion se- 

quences so generated u l t imate ly  all t e rmina te  in  empty  intersect ion sequences. 

TH]~Ol~I~M (Algebraic Analogue of Theorem 12). A realizable intersection sequence 

S (~) is an interior boundary sequence i /  and only i /  there exists a complete cut sequence. 
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