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Fundamental solutions of the acoustic and 
diffusion equations in nonhomogeneous medium 

Victor P. Palamodov(: )  

A b s t r a c t .  A fundamental  solution of the acoustical equation with a variable refraction 

coefficient is constructed. The solution satisfies the limiting absorption and radiation conditions. 

The optimal high frequency estimate is proved for square means of the solution. The source 

function for the diffusion equation is a by-product of this construction. 

1. I n t r o d u c t i o n  

Consider the generalized Helmholtz equation 

(1) (A+ w2n  2 + m ) u  = 0 

in a Euclidean space X with time fi'equency w and real variable refi'action coeffi- 
cients n and "mass" m.  The acoustical (wave) equation in fi-equency domain is the 
particular case ( m = 0 ) .  A fundamental solution for (1) is a function S(y,x;w) in 
X x X tha t  satisfies the equation 

(Ax +w2n 2 (x) + m(m))S(y,  x ;,:) = a ( x -  g). 

We say" that  the fundamental  solution satisfies the limiting absorption condition, if 
it admits an analytic continuation to the halfplane C_( , . ' 0 )~{a : : Imw>0,  Iwl>a.'0} 
for some w0>0 that  tends to zero, as la:l--+~c. We call such a flmdamental solution 
a source function of (1). The uniqueness of the source function is easy to check 
(see below). The source function describes a divergent t ime harmonic wave with 
the phase function 0 = - w t .  We here state the existence of a source fimction for a 
smooth medium in the plane X, which is homogeneous outside a compact set. We 
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also give the est imate (Section 3) which shows the rate of decrease of the weighted 
square means of the source function, as l~'l--+~c. This information is applied to the 

analysis of near scattering fields, see [81 . 
The diffusion equation in the plane can be reduced to (1) and we show that  

the decreasing fundamental  solution can be obtained from the source function by 
transformation of the frequency a~,. 

I thank  Frank Natterer  for many stimulating discussions. 

2. Un iqueness  

P r o p o s i t i o n  2.1. If S is a source flmction.for (1), then the integral 

(2) E(y ,x , t ) - -  ~1 frexp(_~a,t)S(y,x;~,)d,," F -  {~':Ima~'=aJ0+7" andT>O}. 

is the forward fundamental solution of the operator []-  A~ - n202t + m. 

Proof. The integral (2) converges in the space of tempered distributions to a 
fundamental  solution of the wave operator. On the other hand. it does not change 
if we replace F by F + m ,  T>0. This gives the factor exp(-7-t)  in an estimate of E. 
which implies E = 0  for t<0 ,  i.e. E is the forward flmdamental solution of the wave 
operator. [] 

C o r o l l a r y  2.2. Any two source functions coincide. 

Proof. This follows from the uniqueness of the forward fundamental  solution. 
To check the uniqueness, we note that  the difference of any two forward funda- 
mental  solutions vanishes for t < 0  and consequently for all t by compactness of the 
dependence domain. [] 

3. The  main  result 

We assume the following conditions: 
(*) n E C 3 ( X ) ,  n > 0 .  and n = n 0  is constant in X \ D .  where D is a compact set 

in the plane X: 

(**) the metric g = n  2 ds 2 is nontrapping in the plane, i.e. any geodesic curve "? 

in D quits the set D in finite time: 

(***) m C C ~  and r e = m 0  is constant in X \ D .  
Denote by t ( - , . )  the distance function in the space (X,g) and by to(y,x) the 
distance for the metric go=min{n2(x), ng} ds 2. 
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T h e o r e m  3.1. Under the conditions (*), (**) and (***) there exist a positive 
wo, and a source function S(y ,x ;w)  in X x X x C §  for (1) that satisfies the 
inequality 

(3) fto(y,~)<_~ texp(Imwto(y, x))S(y,  x:w)l 2 dx <_ ~] Clrq-C2~ -5) 

uniformly for yc  X and T >O, that is holomorphic and continuous with respect to w 
in the closure of C+(w0) for x r  and in the sense of L2doc(X) near the diagonal 
x = y .  

Note tha t  a result of N. Burq [4] contains the estimates IISIl=O(w -1/2) for 

local operator L2-norms in spaces X of arbi trary dimension for w-+oc near the real 

axis. 
Given a forward fundamental  solution E for the wave operator  in a medium 

with velocity n -1 , we could find the source flmction by means of the inverse Fourier 

transform of E,  provided we can control the growth of E as t-+~c. A local con- 
struction of the fundamental  solution E for second order operators with analytic 
coefficients was done by Hadamard  [7]. The case of smooth coefficients was consid- 
ered by Sobolev [9]. Duis termaat  and H5rmander [5] have constructed the forward 
propagator  for arbi trary strictly hyperbolic operators by the method of Fourier in- 
tegral operators. However, this approach is not easy to implement directly, even in 
the situation of Theorem 3.1, since there is not enough information on the growth of 
the fundamental  solution as t--+oo. We here apply a more involved method. First. 
we construct a forward parametr ix  P for the wave equation. For this we choose a 
consistent chain of singular functions start ing from Hadamard ' s  fundamental  solu- 
tion. Our construction is parallel to that  of [5], but we use simple singular functions 
rather than Fourier integrals. The time Fourier t ransform of P will be a parametr ix  

for (1). Finding the correction term, we complete the construction. 

Remark. The condition d i m X = 2  helps to keep the volume of this paper  lim- 

ited. No essential difficulty appears  in the general case, except for that  a more 

detailed analysis of the energy in the caustic area is necessary. 

C o r o l l a r y  3.2. The forward fundamental solution for arbitrary r satisfies the 
inequality 

s 
(y,x)<~ 

where 

E~(y, x, t) _ _1 exp(-wos)E(y, x, s)~ ds 
c 
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and p is an arbitrary function in R with compact support such that 

Proof. By Parsevai's theorem. 

JR [E~12 dt= :--T Jn [~(cw)S(Y.x:~z + ~":o)[2 dco 

and we apply (3). [] 

C o r o l l a r y  3.3. The source function has a symmetric kernel (the reciprocity 
property), i.e. S(y, x; co)=S(x, y; co). 

Proof. Take an arbitrary a~'. such that h n , : > 0 :  then for arbitrary y and x 

s(y,x; co)= [ s(> z; co)~(~-.)d_~-- [ s(> z: ~')G. s(x. ~; co)d-- 
J x  j1 u 

= s S(x, ~; ~ ) <  s(y.-,1 col d_~ = s s ( , .  ~; ~')a(z-v)d~ ~ S(x. y; co/- 

where D,#--A~ +co2n2+m and the fimction S(y, z: .z) is fast decreasing with respect 
to z according to (3). The equation S(y, x: co) =S(x .  y; co) is valid for real co because 
of the uniqueness of the analytic continuation. [] 

C o r o l l a r y  3.4. The function S(y, x; ~') is real for v>coo. 

Proof. The function S(y,x;co)-S(y .x:-s  is also a source function for the 

real operator (1). By uniqueness it coincides with S. [] 

P r o p o s i t i o n  3.5. The source function satisfies the So mmerfeld radiation con- 
ditions: 

S(y,x;co)=O(r-U2) and (~--7-~:no)S(y,x:~')=O(r-3/2),  as r -  lx-y l -+ ~ .  

Proof. Apply the Helmholtz operator []~0-A,:+a~'2n~+m0 for the homoge- 
neous medium 

~ o S ( >  z: co) = 4 ~ ( x ) + T ( >  x; ~,), 

where T(y, x; co)-[m0 -m(x)+co2  (n~-nZ(x)) ]S(y .  x: co) and set 

S(y, x; c~,) = S o ( x - y ;  , . ' ) + f  So(x-z;  o.')T(u, z: a.') dz. 
YD 
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where S0(x; aJ) is the source function in the homogeneous medium. We have 

x:  = +  r(y, x :  

It follows that  []~oU(y,x;a~)=O, where U=S-S.  Note that the function S has 
analytic continuation to the halfplane C+(0) since the function So has such a 
continuation. Apply Proposition 16.1 for the coefficient p0=x/u~'2ng+m0, where 

I ~ l > l m 0 l l / 2 n o  1, a n d  Ilnp_>0. This gives Y=O(I~'I 3/2 e x p ( - h n p 0 l x [ ) )  for large a.,: 
this, together with (3), implies 

(4) f [exp(ImaJto(y,x))U(y,x:,~,)[2 d.r<_ la.,13(CIT+C2TS). 
dto (u,~)<_~- 

The Fourier-Laplace transform 

V(y, x, t) -- Jr exp(-,c~'t)U(y, x: ,:) d,: 

is well defined for the curve F--" {~':hna.'=v}. By (4) the integral converges for 
arbitrary T>0 in the distribution sense and satisfies DoV=0.  It decays to zero for 
t<0,  as m--+oc, but, on the other hand. does not depend on T. Therefore V = 0  for 
t<0;  hence V=0,  by the uniqueness theorem for the wave operator. It follows that 
S = S .  We check that S satisfies the radiation condition. It is true for So and also 
for the term fD So(x-z; aJ)T(y, z; co) dz. since the integral is taken over the compact 
set D. [] 

Remark. For Schr6dinger-type equations, the limiting absorption principle and 
the radiation conditions were studied by D. Eidus [6]. 

4. T h e  d i f fus ion  e q u a t i o n  

The diffusion equation in the optical tomography is 

1 0(I) 
(5) e Ot (V, ~V}(I)+/x(I) = q. 

where (I)=(I)(x, t) - the photon density, q the density of the source, #=p(x) is the 
absorption coefficient measured in the unit metre -1, z ( x ) >  0 is the inverse diffusion 
coefficient measured in metres, and e is the light velocity measured in metre/second. 
This is the Pl-approximation to the transport equation, [1]. In frequency domain 
it appears as 

- ( V ,  ~ . V ) ~ + ~ + ~ - ~  ~ = 0. 
% 

c 
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For the unknown function ~I/=xl/2dP the equation 

A ~ +  ( - - z ~ + n l )  �9 = --~-1/2q 

holds, where m - - x - 1 / 2 ~ x l / 2 - x - l p .  It takes the form (1) for n = ( c x )  -1/2, 

a~2=-zA, where A is endowed by dimension second --~. Define 

SD(y, x;/~) -- -- x-1/2 SZ(y, x; X /7~  ), 

where SH is the source function of (1) and Ima~ ' - Im-x/7~ >0. 

Corollary 4.1. If  the coefficients #EC~ and z E C 3 ( X )  are constant in 
X \ D  for a compact set D and n = ( c x )  -1/2 satisfies the condition (**), then there 
exists a function SD(y, x; .~) defined in X x X x (C \~R. )  that possesses the following 
properties: 

(i) it satisfies 

(- <v, xv> )s,,(y,. ; .-v); 

(ii) it is holomorphie in k, and 
(iii) it decreases fast as to(y, x)-+~c and the .inequality 

~o 2 1 (Clr+C2rS) (y,x)<_rleXp( V ~ - - I m  ;~ to(y,x) )SD(y.x; A)l dx < 

holds for r > 0 ,  where to is the distance function as in Theorem 3.1. 

Corollary 4.2. The function 

1 J~hn SD(y,x;A)exp(zM)d)~ E(y, x, t) = ~ ~=r<0 

is a fundamental solution of the diffusion equation (5). 

5. The parametrix of  the wave equation 

First, we construct a forward parametrix P=P(y ,  x, t) for the wave operator 
D - - A x - n 2 0 ~ + m  in space-time X x R .  \Ve shall use the coordinates x~ t; ~, 7 in the 
phase space 4)- ' (X x R )  x (X xR)* ,  where ~ and r are conjugate to the space-time 
coordinates x and t. This means that a - ~ d x + T d t  is the canonical contact form 
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in q), where { dz=~l dxl +~2 dz2. The function n2(x)5 2 - I~12 is the symbol of this 

operator. Consider the Hanfiltonian flow generated by h(x: ~, w)-  }(n2(x)T 2 --1~12): 

dx 
d~ - n (x )Vn(x ) ,  r > 0 :  T =  (6) ~ = -~ ,  = n z (x), dE 1. 

dr dr - 

Fix a point y c X  and take all the solutions with initial data  

x(O)=y, t ( 0 ) = 0 ,  ~(O) CT~(X) and ]~(0)]=n(y) .  

Let Ay be the union of all trajectories of the flow. This is a smooth surface in ~. We 
have ]~]=n(x) and the contact form a vanishes in Au, by Jacobi 's  theorem. This 

means that  the conic set in �9 generated by Au is a Lagrange manifold. 
Let 7r: ~5-+X be the natural  projection; the image of a solution of (6) is called 

a ray. It  is a geodesic for the metric g. The set Ly-rc(Ay) is the union of rays 
start ing at y; it is called the front of the wave which starts  at y. The set K y -  
Ly+{(O,t):t>O} is called the future conoid of y: the boundary OK~ is the first 
wave front. Consider the union K - U y ~ x ( { y  } x K y ) = { ( y ,  x, t):t>>t(y,x)}. 

L e m m a  5.1. There exists a kernel P in X x X x R+ supported by K such that 
its Fourier transform in C+ (0) satisfies the inequalities 

(7) ~tt( exp(2Imwt(y,z))lP(y,x;a:)[ 2 dx<< ~.~.](CIT+C2TS), 
y,x)<r 

(8) ft(y,~)<_~ exp(2Ima~'t(y,x))lQ(y,x;~')l 2 dx< ~(C, 'r+C2~-5),  

where Q -  [~P-5v,o. 

The notation A is used for the t ime Fourier transform: 

1/. 
fl(cv) - F(A) = 9~ exp(-~a~t)A(t) dt. 

Pro@ We construct the kernel P in several steps. We will let e be a real 
smooth function with compact support  in R that  is equal to 1 in a neighbourhood 
of the origin; it need not be the same in all steps. 

Step 1. Choose T>0  SO small that  the geodesic coordinates are defined in the 
neighbourhood Uo-{(y,x):t(y,x)<_ro} of the diagonal in X x X .  We define the 
parametr ix in U0 by Hadamard ' s  method: 

Ao(y, x, t) - O(t-t(y, x))e( t- t (y ,  x))( t  2 - t 2 (y ,  x))-l/Va(y, x, t), 
(9) 

a(y, x, t) = ao(y, x)+ (t 2 -t2(y,  x))al(y , x). 
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Here t(y,x) denotes the distance from y to x in the metric space (X, 9); it is a 
smooth function in U0. The amplitude a(y. x) is a smooth function with respect to 

the polar coordinates centered in g such that  

(10) DAo(y ,x , t )=~(x-y)+O(t - t (g .x ) ) ( t2- t2(y .x ) ) l /2b(y ,x , t )+B(y ,x , t )  

for some smooth functions b and B: where 0 ( t ) = l  for t > 0  and 0 ( t )=0  otherwise. 

Step 2. We extend Hadamard ' s  construction to Do x Do, where Do is a compact 
neighbourhood of D, by choosing a consistent chain of singular functions Ao start ing 

with A0. The union A - U x ( { y  } x As) is a smooth manifold in X x @. Consider the 
mapping 7r: A - + X  x @-+X x X. that  equals the composition of projections. For an 
arbi t rary yEX we denote by 7r~:A~--+X the restriction of 7r. The rank of 7r~ is 
equal to 1 or 2 in each point, since the projection ~y: ";. - + X  is an immersion for an 
arbi trary t rajectory 2/of the flow (6). 

Take a point (y, A)EA such that  rank d~%(A)=2 and choose a generating func- 
tion for the germ of A in the form o(y ,x , t )=t- .7(y ,x) ,  where ~ is an eikonal 
function. We take the singular function 

(11) A(2)(y, x, t) - o(!1. x. t)~=l/2a(y, x, t). 

that  depends on the phase 0 and the amplitude a. Here and later we use the notation 

s~:- ts l  ~ for • and s ~ = 0  otherwise. The amplitude has the form a(y,x. t)= 
e(r x, t))[ao(y, z)+20(y, x, t)al(y, x)], ,,'here a0 and al are some smooth functions 
and e(T)ET?(R) is a function that  is equal to 1 in a neighbourhood of the origin. 

They are subjected to the system of t ransport  equations 

(12) 2(v , Va0)+A( )a0 =0, 
2(V~, Va,} + [A(~) +re]a1 = Aa0. 

Note that  the function A0 (see (9)) is of type A (2) everywhere in the set {(y, x, t): 

xCy}.  We take the kernel O(Y, x, t)21/2 in (11), if the point (x, t=~(y, x)) belongs 
to the first front, i.e. to the boundary of Ky and also to any regular point of 

L v such that  the ray 2,'(y,x,t) from (y.0) to (x. t )  has even Morse index. The 

kernel O(Y, x, t) 21/~ is used for any regular point of L~ with odd Morse index of the 

corresponding ray 7(Y, x, t). We have 

(13) I~A (2) = o~/2e(O)Aal +B. 

where B is a smooth function. 
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L e m m a  5.2. The function e can be chosen in such a way that suppA(2)CK. 

Proof. The choice of e is not important in the case of the kernel 0~ 1/2, since 
. - -1 /2  supp 021/2 C K for an arbitrary eikonal function ~. The kernel ~_ appears only if 

the Morse index of the corresponding geodesic 2' (Y. x. t) is odd. By Jacobi's theorem 
(see e.g. [3]) this implies that  this geodesic is not the shortest path from y to ~'. 
Therefore the point (y, x, p(y, x))EL u does not belong to the boundary of Ky. We 
can choose the function e in such a way that the function e(o(y,x,t)) vanishes 
on OK. 

Step 3. Take an arbitrary point (y,)~)~A such that rank &ry(A)=l.  We have 
d t r  in A and there exists a Euclidean coordinate system x=(u, v). t in a neigh- 
bourhood of 7r(A) such that  ~ dx~-r] du+O dr for the dual coordinates ~=(q,  0) and 
(y, u; 0) is a local coordinate system in A. We have t= t (u .  0) and v=v(u, O) in A 
for some smooth functions. The phase function 

generates a neighbourhood A' of A in h. i.e. 

a '  = {(y, x, t; ~, r ) :  r /= 0'~ (Y, x, t; 0), o(y, x, t; 0) = 0 and O'o(Y, x, t; 0) = 0} 

is a neighbourhood of k in A. Indeed. the equations t'o+Ov'o=O , t'~,+Ov{, +r /=0  hold 
in A, since a = 0 .  

We shall use the notationp2(s)=slog(s+O~)-s, pl(s)=log(s+Oz) andpk l=p~ 
for k = - l ,  0, 1, 2. Take a singular function of the form 

(14) A (1) (y, x, t) = / R  e(o) Re[p0 (O)ao +PI (o)a 11 dO. 

where the phase function O = t - ~  satisfies the generalized eikonal equation n 2 -  
IV~t2=~a~r where r 1 6 2  0) is a smooth function. It exists and is unique, since 
the left-hand side vanishes as ~'o=V(u,O)-v=O. The amplitude functions ak= 
ak(y,x; 0), k=0,  1, are smooth and have proper supports (that is the projections 
supp ak-~X x X,  (y, x; O)~(y, x) are proper). They are subjected to the transport  
equations 

2(V~, Vao) + (Vao); + ~X(,~)ao = ~;bo, 

2 (V~, Va,  }+ (~a,)~ + [A(p)+  m]al = 2Aao +,/o b, -b'oo 

for some smooth functions bo and b~. Note that (12) and (15) are the only points 
where the coefficient m contributes to our construction. 
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L e m m a  5.3. If  the functions ao and al are supported by X x X x O, where (9 
is a sufficiently small neighbourhood of Oo =O( A ), we can choose a function e in such 
a way that suppA (1) c K .  

Proof. We argue as in Lemma 5.2. The Morse index of the ray 2~(y, x, t) changes 
just when the curve passes a singular point 7T(A)E L~ such that  rank dTry (A)= 1. This 
point does not belong to OKy, due to Jacobi's theorem. Therefore there is a space 
for choosing an appropriate function e. [] 

L e m m a  5.4. We have 

(16) [~A(Z)(x , t )=/Re(6)Re(pa(o) (Aal (X,O)-b~o(x ,O)) )dO+B(x , t ) ,  

where B is a smooth function. 

Proof. We calculate 

rTA (1) (x, t) = / R  Rep_~(O)((V~(x,  0)) 2 - n2 (x))ao dO 

+/R Re p_ 1 (0)[((VP)2 _ n 2)al - 2 (VF, Va0) - Apa0] dO 

+ . / n  Rep0(0)[-2(V~, Val)- A~-r + (A+m)a0] dO 

+ / R R e p l  (o)Aa~ dO+ B. 

The term B contains derivatives of e(o) and is a smooth fimction. We integrate the 
first term by parts using the eikonal equation, 

/RP-2(r fRp-2(O)~'o~'aodO=- fRP-l(O)(Vao)'odO. 
Combining this with the second term we obtain 

/ R p - ]  (6)( ( (V~)2-  n Z ) a l -  A ~ a o -  (c'ao)~) dO Vao) 

= - / R p - l  (o)~'o(~'al +bo) dO = - /RPo(O)(~'al +bo)'o dO. 

This together with the third term gives 

fR  p0(O)[--2(V~, V a l ) - - / ~ a l  +(/k + r e ) a 0 -  (~'o i +b0)~] d O :  - f R  p0 ((~)~obl dO 

s ' = - Pl(O)blo dO 

and so on. [] 
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Step 4. Take a bounded convex set Do that contains a neighbourhood of D: 
we shall specify it later. 

L e m m a  5.5. There exist a finite system of open sets { U i C X x X : O < i < i . }  
that covers D x D o ,  a system of open sets {A~:0<c~<a.} in A, a mapping i=i(c~) 
for 0<ct<ct .  such that lr(Am)cUi(s) for any a>_O, and for any a a function As  in 
Ui(s) such that 

(i) Uo is a neighbourhood of the diagonal in D x Do and Ao is defined by (9); 
(ii) for any c~>0, As is a function of form (11) or (14), where the phase 

function r162 x, t) and r X, t; 0), respectively, generates Aa; 
(iii) for arbitrary j and k the function 

v3k-EAo-EA  
i(s)=y i(2)=k 

can be represented in UyAUk as 

B3k(y, x, t) = ~-~(r x, t))~/2b:(y, x. t) 
(17) 

+ Re(p2(o~,(y,x,t;O))b~(y,x.t:O))dO, 

where the sums are taken over all 2~ such that i(2,) =j,  k: and b~ are smooth functions 
with proper supports. 

Pro@ The function (9) is well defined in U0. The projection 7r:A0-+U0 is 
bijective for A0=Tc-l(U0)nA. Next, we construct the functions A~ for all a =  
1,...,c~1 such that  As has a nonempty intersection with A0. Then we find the 
functions A~ for all /~=c~1+1,... ,a2 such that A ~ n A o r  at least for one c~<c~l 
and so on. The initial conditions for the amplitudes are defined by means of (iii). 
Consider one step of the continuation in detail. If the functions Am and A 3 are 
of type A (2), and the phase functions ~m and ~2 coincide in 7r(Am)Azr(A2). We 
can take a smooth continuation of amplitudes aok to a3k for k=0,  1 preserving the 
equation (12). 

Assume that  As and A2 are of type A (1). Suppose that  there exists a point 
(y, A)EAsAA/~ such that  rank dTry(A)=l. Then there exists a coordinate system 
(v, r/) in a neighbourhood of A such that  0=0(r/), x=x(v ,  r]), 

~s(x(v,~);O(~l))=Cc~j(v;~) and as(x(v'rl);O(fl))=a3(v:fl).  

The integral As is transformed to A~ by the coordinate change. This transformation 
also does not contribute to the sum Bc.v.  If there is no such point A, we can 
transform Am to A~ through a function of type A (~). 
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The most complicated case is the transformation of a function As of type A (1) 
to a sum of functions A s of type A (2). We assume for simplicity that  a~ =0. Take an 
arbitrary point (y, A)EA~NA3 such that rank dTry(A)=2 and set x=Tru(A). We have 
O=Os(x) in a neighbourhood of x. due to the rank condition and Ogp~(x; O~(x))r 
since r is a nondegenerate phase function. Therefore we have 

(18) cpo(x; 0) = ~3(x)• where ~.3(x) = ~ . (x ;  03(x)), 

for a smooth function rl=q(x, O) defined in a neighbourhood of (g, 03(x)) such that 
~/~#0, where the phase function o3(x.t)=t-~(z) generates A3. By means of a 
partit ion of unity we write the above integral as a sum of integrals of the form 

Bs(z, t) =/st Re p~ o3• t; q) drl, 

where b=alO~,l is a smooth fimction with proper support. Write b(x, t; q) =b(x, t; 0)+ 
c(x, t; r])r] for a smooth function c and get 

Bz(x,t)= Re[b(x,t;o) fstPo(O3zt:rl2) dq] + /RRepo(O.3• rl)rldrl 

(19) =zcRe[b(x,t;O)((os)T1/2:Fff03)-l/2)]-~ Rep_l(o~,)c,(x,t:r])dq. 

The first term is the sum of functions A3 of type A (2). The second term is of type 

A(1); we denote it B<a. We have A!~ ) = ~ ( A ~  2) +B(,.~), where the sum is taken over 

all/3 such that  A~NAa#0 and 

B~s(~, t) = / ~  Re p2 (O3(x, t)• t: 7) @ 

for a smooth function b3 with proper support. 
We check that  the system (15) for ~(, is consistent with (12) for P3 in the hyper- 

" X "  surface H'-{(z;rl):(#~o)o( ,q )=0}.  Bv (18), ~ ' ( ~ ) 0 = + 2 q r / ; ,  where q;#O, and we 
have V ~ = V c y , s  in H = { ( x ,  0):q(z, 0)=0}.  From the generalized eikonal equation 
and (18) we also have 

t / = n  2 = n  2 (~)o~ - I V ~ l  ~ - ]V~.312 T4q<Vi;3, Vq>-4~2 IV~I z 

=-@[•  v,7>+,lv,  I =] 

which yields ~ p = - 2 ( ~ ) - 1  (V~3, Vq} = - 2 ( q ~ ) - I  {Vp(,, Vq} in H. Therefore the field 
2 ( V ~ ,  V)+~P0o = 2 ( V ~ ,  V}-2(q~)  -1 ( V ~ ,  Vq}0o annihilates the function ~ in H; 
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hence this field is defined in H. It coincides with 2(V:;.~, 2 7) on functions which do 
not depend on 0, q.e.d. This implies that  we can continue the amplitude functions 
from 7r(Aa) to 7r(Az) and vice versa. Finally we conclude that 

i(c~)=j i( 3) - -k  

and Lemma 5.5 follows. [] 

Step 5. Choose a family of functions {hiED(Ui)} such that ~ i  hi(y,x)=l in 
DxDo. We set PD~-~hi(~)A~; the sum is finite and A~ are functions as in 
Lemma 5.5. We have 

(20) QD "--[]PD=Z Z [hj[]Aa+2(VhJ'VAa)+AhjAa]" 
j a:i(c~)=j 

The term []Aa is of the form (13) or (16). \Ve show that the other terms cancel. 
up to a function of the form (17). Take an arbitrary point (y,x)cDxDo and fix 
an arbitrary index j .  We have at this point 

E ( V h j , V A ~ } =  Z {27hJ'27A3)+Z{27hJ'27Bjk)" 
i(c~)=j i(3)=k k 

Take the stun with respect to j;  the first sum on the right-hand side vanishes, since 
~ j  27hi =0. The second sum is of the form (17) according to Lemma 5.5. Therefore 
the third sum in (20) is equal to the stun of AhjBjk, which yields 

(21) []PD=E Z hj[]A~ 
j i(~)=j j.k j.k 

6. T h e  e n e r g y  n e a r  t h e  s o u r c e  p o i n t  

L e m m a  6.1. The following inequality holds for T<TO, 

fto(y.z)<~ T exp(2 Im ~'t (y, x))([Ao(y, x; aJ)[2+ io,Q~,fio(y ' x: ~')l 2) dx <_ C ~ ,  

where []~o - - A + w 2 n 2 + m .  

Proof. We choose geodesic normal coordinates z in the set {(y, z):to(y, z)_<vo} 
such that  t2(y, x)=lzl2--z2+z2 2. We have by (9), 

rio (y, x; ~) = ao(y, z) [ exp(~,t)( t  2 -Iz]2) - 1/2e(t-Izl) dt 
Jr> Jzl (22) 

fit exp(z~'t)(t2-fz[2)l/2e(t-[zl)dt" +al(y,z) >_E~I 
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By changing s=t-I~1, w e  c a n  write Ao(y, x; w)=exp(~'lzl)[ao(y, z)I +a l (y ,  z)I+], 
where 

/0 I• -- exp(zws)(s2+2lzjs)• ds. 

We estimate I for large w: the only singular point in the integrand is the origin 
of the ray {s>0}. We assume that  e(~-)=l for [vl<_l and continue e as a smooth 
function in C, which equals 1 in the unit disc. Following the Laplace method, we 
replace the ray in (22) by the chain 

3' = 9'1UO'2 UO'3, 

~/, = {s = ' r  exp(17r -a rg  w) : 0 < -r < 1}, 

"72 = {s = exp(~V): 0 < IWl <_ �89 w}, 

"73 = {s _> 1} 

and get I =11+12 +/3,  where 11 gives the main contribution: 

IIx(z)l- A exp(-,~T)(-7-2+2dzlT-) - ' / 2  dT <_ fo ~ exp(--WT)(2TtZI) -1/2 dT 

We have Is+ 2tzlsl>_C(tzl+ l) in "?'2U2,'3 and Re~ws_<0. Integration by parts in 

I2+I3 yields tI2+I31<_Cl~l-l(izl+1)-l/t For the integral /+ the same arguments 
yield the estimate <_ C Iz/wl 1/2. which implies 

~o lexp(Imc~t(Y'x))A~ dx<o'fT- _<~ - I_<~ ~ -  I~'1" 

We can estimate the kernel [7~.~40 in a similar way by means of (10). [] 

7. T h e  e n e r g y  in t h e  p e r t u r b e d  d o m a i n  

We estimate the Fourier transforms of PD and of QD'--rNPD--dy,O. 
AEC, Re A>0 and arbitrary bEI?(R), 

For any 



Fundamental  solutions of the acoustic and diffusion equations 133 

consequently the Fourier transform of a function of type (11) equals 

A(2)(x;aJ) = [ exp(za~t)A(2)(x, t)dt= [ exp(zcot)(t- p)~/2e(t-p)a(x) dt 
R Y~  R 

= • exp(zw~(x) ) [a(x)+O ( 1 )  ] . 

Note that  for the function Aa=A(2) the phase ~(x) coincides with the length of 
a geodesic from (y,0) to (x,t). Therefore r and the exponential factor 
does not surpass e x p ( - I m ~ t ( y ,  x)). By (13) the function D~.A (2) =F([~A (2)) has a 
similar structure; hence 

C exp(-Im~t(y,x)). (23) < 

This inequality agrees with (7) and (8). For a singular function of type (14) defined 
in an open set YCX the estimate 

h exp(2 Imwt(y, x))(IA(U (x; ~z)12 + Iw[:],~A(a)(x; w)l 2) dx < [~z-~[ 

holds for an arbitrary continuous function h compactly supported in Y. It can be 
checked by the method of Lemma 11.1 below. In the same way we can estimate the 
integrals of IVBjkl 2 in (21), since each kernel VBjk is of type (14) or of type (11). 
Summing these inequalities over a and taking into account (21), we get 

(24) hexp(2Im~t(y,x))(lfiD(y,x;w)l~+lW~)D(y,x;~,)12)dx<_ la~ 

for any continuous h compactly supported in Do. 

8 .  P h a s e  f u n c t i o n s  f o r  c o n s t a n t  v e l o c i t y  

Step 6. We extend the above construction for the domain D x X. First, we 
choose a special generating flmction for A s - A N T r  -1 (D x X\D). Denote by Fs the 
solution of (6) with the initial data xs=y and ~ = ( n ( y ) c o s  s, n(y)s in  s), 0_<s<2~r. 
By (*) n = n 0  is constant in X\D; the Hamiltonian system has the form 

dx dt = n2 d~ 
- -  = - ~ ,  . - -  = 0 .  dr dr dr T = •  

and the ray ~(S)-Try(Fs) is a straight line in X\D. We assume that Do is a convex 
neighbourhood of D with smooth boundary ODo. Denote by (xo(s), ~0(s)) the point 



134 Victor  P. P a l a m o d o v  

in P~, where the ray 7(s) reaches the boundary. The vector { ( s ) = - d x / d r  cannot be 
tangent to the convex curve (ODo, because otherwise the ray 2.'(s) could not enter D. 
The conditions ( .)  and (**) imply that  x0 and {0 are C9-funetions in D x S ~. The 

ray 7(s)\Do is parameterized by 

(25) x(s ,r)=-{o(s)r+xo(s)  a n d t ( s , r ) = n 2 r + t 0 ( s )  r > 0 :  

hence the parameter  r vanishes just at ODo. The ray 2. (s) and its direction ~0(s) will 
be called critical if ~ ( s ) = 0 .  The union _E of all critical directions has zero angular 
measure. The caustic set. i.e. the image of the critical set of rr~, is contained in 
VtAG, where V is an arbi trary open conic neighbourhood of -__E and G is a compact 
set. 

Consider the phase function (b(x, t: s )=t -4 (x :  s), where 

(26) ~(~; s) - t o ( s )+  (~o (s). * o ( s ) - x }  = t(s. ,-)+ (r (s). x(s.  r ) - ~ )  

and ( - , . )  stands for the inner product in X. This flmction satisfies the eikonal 

equation IV~12=l~012=n 2. The flmction o vanishes in A~ for t=r(s, r) and 

d~(x; s) = [dto(s)+ ((o(s), dxo ( s ) ) ] -  (~o (s). dx)+ (d~o(S), Xo(S)-x) .  

The first bracket vanishes in the Lagrange manifold A~.  \Ve have p ' ( x ; s ) =  
{~'o(S), Xo(S)-x} and by the eikonal equation, {~D. ~0) =0- Consequently the equa- 
tion 

= ~ = G ( s ) ,  x0(s)-:~'(s,  ,,)> = ~<,%(s), ~0(s)> = 0 

holds in A~  Vice versa, for any noncritical direction, the equation ~ = 0  im- 
plies that  xo(s)-x=r{o(s) for some r_>0 and o(x. t: s ) = t - r ( s ,  r). Moreover, dxo= 
- d x ~ =  {~o, dx}; hence 0 generates the noncritical part of A~.  

Set a - ~ 0 •  then I<-nl~GI. For a vector u~(Vl. V2)we let v * = ( - v 2 , v l ) ;  
then {v*, u} = v  x u, where u is an arbi trary vector u and x denotes the cross product. 

L e m m a  8.1.  

family of rays and 
The quantity j ( s, r )=ra + x' o • ~o is equal to the divergence of the 

' ~ r' l ( - , G + x ; ) *  
(27) sx = =- '  x = �9 

3 3 

Pro@ The divergence equals the Jacobian 

OX 
. . . .  r~r+x ox~o. [] (28) j(s,r)  det o(r,s,) x ' , .xx '~=-~ox(-r~+.r~))= ' 
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It follows that  there is focusing near any critical ray. Calculate the t ransport  

system in (s, r)-coordinates for the phase function (26). \ \~  have V , : ~ = - { 0 ( s )  and 

= -<,~o, ~.~:) : - ]  < 4 - ~ )  = --.~ 

Hence (12) appears  as 

(29) Or(aljl '/2) :0 .  

It  follows that  L,,(lal 2 dx)=0,  where L,- is the Lie derivative with respect to the 
field Or=O/Or. 

Lemma 8.2. The equations x~ x ~0=0 and ~ : 0  have 7~o common solution. 

' is tangent to ODo and the vector ~0 is not. Therefore Proof. The vector x 0 
the first equation is equivalent to x~=0. This together with the second equation 
implies that  s is no more a local coordinate in A for a point (so. r0), which contradicts 
Liouville's theorem. [] 

9. The parametrix in the nonperturbed domain 

Step 7. Choose small numbers e > 0  and 5>0  such that  

(30) [~[_<3e implies [~oXX;l_>O 

and set p-max0<~<2~ ]~0(s)xz~(s) l>0.  \Ve can assume that  the set Do chosen in 
Step 4 contains a 2pnc- l -ne ighbourhood of D where n = n 0 .  Take the covering of 
A~ by the sets 

A> - { ( s ,  ~): I~(s)l _>~}, 
A < -  {(s,r): Icr(s)l_<3c and either rla(s)l < �89 or rla(s)l >_2p}, 
A~ - {(~, ~) : I~(.~)t <_ 3~ and ~ <_ rl~(~)l <_ 3~}. 

By (25), n r  = Ix(s, r) - x0 (s) l> 2 # n c -  1 in X\Do,  which yields r > 2pz -  1. Therefore 

rl~l>2p~>_l~o xx~l+~ and IJl>>rIol-lx'o • in :\>. Hence there is no focusing 
in A> and we can use x as a local coordinate system. \ \~  have by (25), 

(31) nr-do  ~ Ix-y I < n0r+d0,  d o -  max I x - y l .  
-- :rEODo 
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since I~01=n. Take a smooth function h> in R such that  h > ( r ) = l ,  if Irl_>3E, and 
h > ( r ) = 0 ,  if Irl<_2c. Set 
(32) 

A>(x, t ) -  ~ (t-T(s,r))~l/2e(t--v(s.r))a(s,r)h>(~(s)), + l = s g n j ( s , r ) ,  

where the sum is taken over all points (s, r )EA> such that  x(s, r)--{o(s)r+xo(s)= 
x, and the amplitude function a0 is smooth and satisfies (29). We take the initial 
da ta  for a from the consistency condition with the kernel PP. This means that the 
difference A>--PD equals the sum of terms of type (17) in a neighbourhood of ODo. 

L e m m a  9.1. The number N(x) of terms in (32) that are nonvanishing for 
xE X\Do is "uniformly bounded. 

Proof. We call an interval ICS  i univalent if [a(s)[>_e for sEI. The inequal- 
ity I j ( s , r ) l>0  holds for r>>_#e -i  in an arbitrary univalent interval. Consider the 
mapping 

(33) %:I• oc) >x, (s,r), >x(s,r), 

which is affine with respect to r. It is an imbedding, since the aacobian does 
not vanish and I is connected. Hence for any xEX\Do there is no more than 
one solution to the equation x=x ( s ,  r).  If the whole circle S 1 is univalent, the 
number of terms is equal to 1. Suppose the opposite, i.e. there is a point s' such 
that  I~(s')l<e. We call an in te rva l /=(So ,  si) good, if it is univalent and I~(s0)l= 
Ic~(Sl)l=2e. We have I~(s)l<2e, if a point s does not belong to a good interval, 
and the corresponding term in (32) vanishes since h> (0)=0.  If two good intervals 
have a common point, then their union is again a good interval and the number of 
nonvanishing terms in (32) is bounded by the number N of maximal good intervals. 
We show that  N < o c .  Indeed. for arbitrary consecutive maximal good intervals 
(so, sl), (s2, s 3 ) c S  1 such that  sl <s2, there is a point r E  (si, s2) such that t~(r)l <E, 
whereas ]Cr(81)]= IO"(82)1=2E. These relations imply that s u - 8 1 > 2 s / m a x  I~r'(s)l. 
The same inequality holds for s0+2rr - s3 .  Therefore N<r rc  -1 max I~'1. [] 

We have the inequality 

~ la(s,r)h>(G)12dl<_C, r(r)-+-{x:t(y,x)=~-}, 
(7) x(<~)=x 

where dl denotes the arc element of F(r)  and C does not depend on r>_ro. This 
follows from the equation dl=(l+O(r-1)) dx/dr, where the form dr and the density 
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la[ 2 dz are constant along any ray by virtue of (29). The nmnber  of terms in the 
sum is uniformly bounded by Lemma 9.1. By (23) and (32) we find 

(34) /r IA>(z;~)12dl~ ~q ~ Ia(s'r)h>(a)['2dl< C 
(~) (.) -I~'t 

and 

(35) iA>(z;=)12 dl < C 
(,) - i ~ ,  ~ " 

where the constant C does not depend on 7- and w. 

Step 8. Choose a smooth even function h< in R such that  h< =1 in [0, 16] O 
[#+2, oc) and h < = 0  in [ �89 Define the singular function which is similar 
to (32): 

(36) A<(z, t)= E (t-t(s'r))71/2e(t-T(s'r))a(s'r)(1-h>(a(s)))h<(ra(s))' 
~(~,~)=~ 

where + l = s g n j ( s ,  r) and the amplitude a is defined as in Step 7. Note that  j r  in 
supp (1 - h> ) h< ; hence the equation a: (s, r) = z has a locally smooth solution s = s (:c), 
r=r(:c). The function A< is continued to D x (X\Do x R)  by setting A< =0  for 

zEX\(DoUTry(A<)). It  is smooth in D x X .  

L e m m a  9.2. The number of nonzero terms in (36) is uniformly bounded for 
xEX\Do.  

Pro@ We argue similarly to the proof of Lemma 9.1. We call an interval 
J c S  1 critical if Icrl<_3c in J .  Let g be a critical interval. If  s C J ,  the inequality 

j ( s , r )_>16 holds for r_<6/21~1, because of (30), whereas j ( s , r )_> l  for r_>2~l~1-1, 
a # 0 .  Therefore the mapping Jx[0,6(21~l)-l]u[2.1~1-1. ~ ) - + x  like (33) is an 
imbedding and for any :cEX there is no more than two solutions to z(s,  r ) = z ,  if 
sEJ, ( s , r ) c A < .  If 1~l_>2e everywhere in S 1, the sum (36) vanishes since h > ( a ) =  
1. Suppose the opposite. We call a critical interval J = ( s 0 .  sl)  good, if I~(s0)l= 
I~(sl)l =2e. The number of nonzero terms is bounded by" the number N of maximal 
good intervals. We show that  this number is finite. Two different maximal good 
intervals are disjoint. If a point s does not belong to a good interval, we have 

Io-(s)l > 3e and the corresponding term in (36) vanishes since h> (or) = 1. For arbi trary 
maximal good intervals (s0, Sl) and (s2,s3), there is a point r E ( s l , s 2 )  such that  

1~(~)1>3c, whereas 1~(.~)1=1~(~2)1=2~. This yields s2-s l  _>2c(max I~'(s)l) -1 and 
N<Tre - l m a x l a ' l .  [] 
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(37) 

1 0 .  T h e  p a r a m e t r i x  n e a r  c a u s t i c s  

Step 9. The integral 

A~(~, t) - s e(o(x, t; s)) Re(po(o, (x, t; .~))~,(x, ~))h~(~, r) d, 

a function as in represents the parametrix in the focusing area A,. Here e is 
Lemma 5.2, 

, , (x ,  t; .~) = t - ~ ( x ,  ~). 

~,(x, 5) = t0(~)+ (~0(s). x0(s ) -* ) ,  
h~(s, r) 2= ( 1 -  h> @r(s)))(1- h< (~r(s)r)), 

1 
r -- ~7 <~0 (~), x o ( s ) - x ) ,  

and the amplitude a~ is defined below. We have (no){, =0  and :Z's =0  for z = x ( s ,  r). 
Therefore, since Ac2~=0, (15) looks as follows: 

(38) 20,.a, = 2(~o. Va,) = ( ~ ) ' b .  

Introduce the variable u=n -2{o  x ( z - x 0 ) :  we have (~ , )~s=({~ ,z -xo)=au .  The 
function a~ should satis~- (38) in the surface u=0.  We extend this function by set- 
ring a~(x, s, r)-a>(x(s, r), s)g(u), x(s. r )=x0( s ) - r~o (S) ,  where g ~ D ( ( - 1 ,  1)) and 
9=1  in a neighbourhood of the origin. It is easy to see that (38) now is satisfied 
with b=0 for any u. 

Next we find the consistency condition for amplitudes in the set re(A:), where 
A~-(A>UA<)nA~. First we change the integration variable s in (37) to u=u(x, s). 
From ' -2 % = n  ( ~ 0 • 2 1 5  by substituting x=xo-r{o+U{~, we obtain 

1 - 2 -  _<@rl_<2p+2 in A,. u's=n-2(ra-(oXX'o)=n-2j(s.r). \Ve have ~O<_rlcrj<_SO or 1 
Therefore the derivative v'~ is bounded from above and below, the function s =s(x, v) 
is smooth, and we can write 

R h~(s,r) 2- 
& ( x , t ) -  e(d>~(x,t;s))I le(po(O,(x, t:s))a)(x.s))~n au. 

I - -1 Next we calculate this integral as in Step 4. We have 0 , , ~ = 0 , ~ ) ( % )  =n2c~uj-1; 
hence cp,(z,s)=p(x)+)C(s,r)u 2, ~ - n 2 a ( 2 j )  -1. where ~(x)=r(s,r) is the phase 

1 function of A>. The function txl is smooth and bounded from below since IJl-> 5 0 
and laj >_6/2r. As O)(x, t; s)=_t-p,(x; s), we can integrate by method (19), getting 

A~(x,t)= s e(O+Xv 2) Re (po (O+Xt '2 )a~(x , s ) )~n  2 du 

R I (39) = Re((O+*/2+~gzO-1/2)b(x. O)h,(x))- Repl(o~)%(x, v)h,(x) du. 
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where ~=t-~o(x),  c = - s g n  X and 

b(x, v) - 21~2renal(x, s) Ijcy1-1/2 = b(x, 0)+2t'c(x. v). 

Now we can write the consistency condition 

(40) a(s, r) = b(x, O) = 21/2rcna,(x. s(x. O) )ljcrl-U2, 

where x = x ( s , r ) ,  u = 0  and a is the amplitude of A<. We see that the prod- 
uct a(s,r)ljtl/2=2U~rrna~(x,s(x,O))]c~l -U2 does not depend on r, since a, sat- 
isfies (38). 

11. T h e  e n e r g y  in t he  caus t i c  a r e a  

Now we estimate the integral of A~. First calculate the Fourier transform of 
the functions Pk(r where r  We have for a:>O. 

F(po(0))  = - 2 ~  exp(- ,~' ,~) .  
27rz 

F(Pl (0)) = - - -  exp(-,,.'-2), a.' 

V(~o( , ) )  = F(~I (o)) = 0: 

for co<0 we need only to replace Pk by/)k. Therefore 

A~(x; w) = s exp(--,a.'q;, (x, s))f(x,  s) ds+R~ (x; :v'). 

where a(x, s)=2r~zab(x, s)/z, (s, r) and IR,(x: ,:)l<_ Cla.'t -1 exp( -  Im a.,t(y, x)). ~,~ get 

[A~ (x; w)12 < [ [ exp(-z  Re w(h(x; s, s ' ) -hn ,~ '~(x ;  s. s '))a(x: s, s') ds ds' 
aRaR 
+lR,(x,~)l ~. 

where 

�9 (~; ~, , ') - ~ (x ,  ~)-  ~(~,  ~') : to(~)- to (.r ~o (~)(xo ( .~)-x)-  ~o (~')(~o (~')-~), 
�9 (x; ~, s') -- ~(x ,  ~)+~(x ,  s'), 

a(~; ~, ~') - a(~, ~)a(x, s'). 

Integrating over F(r) for r_>r0, yields 

J~ tA,(= ~")1~ dl -< I(~- ~') + m ~  ~") ' 0-) 
where 

I (r,w) -- ~(.~) JR /R exp(-z Re a"4P(x; s, s ' ) -  hn":qd (x: s" s') )a(x: s" s') ds ds' dl" 

R(~, ~) -- a~[(~) IR~ (., ~')I ~ dZ. 
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Lemma 11.1. The following inequalities hold 

C C 
(41) I/(~,'~)1-< ~ T r e x p (  - Ima:r) .  R(r,  a,')< ~ . - T r e x p ( - I m a ; ' r ) ,  

ICOl i~1- 
r > 0 .  

Pro@ We will apply the stationary phase evaluation. The function ~2~ belongs 
to C 2 since ~0, x0 are of this class (see Step 9). Therefore the phase function q5 
is contained in C 2 too. Find the critical set of { ~ t = ~ = ~ ,  =0} in the manifold 
F(T) x S 1 x S 1 . The/-derivative can be written as 0~ -'--Ix- Yl- 1 (x - y )  x 0x. Therefore 

the first equation is equivalent to ((o(S)-(o(s'))• and implies (0(s )=  
~0(s'). The second and third equations give (~(s) .  x - x 0 ( s ) } = ( ( ; ( s ) ,  x-xo(s'))=O 
which imply x=x(s, r) for some r>_0 and xo(s)=xo(S'). It follows that F ( s )=F(s ' ) ,  
hence s'=s. Calculating the second derivatives in s and l on the diagonal A(r)  in 
F(r )  x S 1 x S 1 defined by s=s', we get 
(42) 

-r~2+~0 xx~ ~j I I  I !  I I I I 

%, = ~(~o , ~o) + (~o, *o) = -~ l~;  12 + (~o, Xo) = 

<'~ =0, 

V ~  = 1 o 2 
det ( - 1 + O  ( 7 ) )  n7 , 

since r-lx-->~o, as r--+oc, and r/r=l+O(r-1). \Ve have Iq,",J<4pl<rln -2, since 
]j]_<4# in A~; hence all second derivatives in (42) are equal to O([cr[). We apply 
Proposition 17.1 to the function q) for fixed s and xEF( r ) .  There is only one critical 
point x,=xo(s)-r{o(s). We have ][b-1][=O([~[ -1) for b=�89 s, s). From (42) 
we see that ]Va~[=O(1) .  Therefore the set {(s,x):[s-s'[+]x-x,]<_c[~(s')[} is 
contained in U0. Then we apply Proposition 17.2. All derivatives of first and second 
order of a are bounded in A,. We have #,(x,  s )> t (y ,  x), since the caustic is always 
behind the first front of a wave. This yields ~(:r: s. s')>2t(y,x). Therefore by 
Proposition 17.3 we obtain [/(r, ~,)l_<Cl~:< -~ exp(-hna~ ' r ) .  Taking into account 
that  �89 we estimate I< -1 <_Cr<_C~. This proves the estimate (41) for I(r, ~'). 
The estimate for the remainder R is more simple. [] 

12. The parametrix in the homogeneous  domain 

Step 10. W'e set P~=A>+A<+A,, where we choose the amplitude functions 
in (32), (36) and (37) according to tile rule (40). It follows from (34), (35) and (41) 
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that  

(43) C ~<~) I ~  (x; ~,)l ~ dZ ~ ~ -  e x p ( -  Im xT). 

We estimate Q~-DP~, in D x  (X\Do xR) .  \Ve have Q~=[I](A>+A<)+DA~ and 
(44) 

D(m>(x,t)+A<(x,t))- E e(O)O~/2Aa(1-tb) 

where a is defined in (32) and 

FIAt(x, t) =/R e(O) Re(p,(O)( A +m)a~)h, ds 
(45) 

+2 /R(V(Repl(O)a~)" Vlb} d's+/JR Repl(p)a~Ah, ds, 

where a~ is defined in (38). We want to estimate the Fourier transform of the six 
terms in (44) and (45). Write the sum as Q~c=QO+QI+Q2 where 

Q0- 
x(s,r)=x J R  

Q1 - -2 E (v(e(o)o~/2a), V h , ) + 2  L ( V e ( o )  1Re(p1 (o)a~). Vh~} ds, 

Q2-_ E e(O)Ol~/2aAh~+/RRepl(O)a~Ah~ds" 

First, check the inequality 

(46) fir i@(x;~)12 dl < C Im~-) 09 _ ~ 7  exp(-- . 

For the first term in Q0 this follows from (23). We estimate the second term similarly 
to (41), taking into account that derivatives of the amplitude a~ are bounded. 

The terms Q1 and Q2 contain derivatives of the cutting functions h> and 
h<. The derivatives Vh>@r) and Ah>(a)  are bounded by (27) and (31) since 
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the dominator j has a positive lower bound. By sinfilar argmnents we show that 
Vh<(crr)=O([x[) and Ah<((rr)=O([x[2). as [x[--+~c: hence also 

h~=O(1) ,  Vh)=O(lx]) and Ah)=O(lx[2). (47) 

Therefore 

(48) 9f r i@(x:~,)lSdl < C exp(_~im~, ) (~+T) ,  
(7) - 

The function Q1 is supported in 7r(A:), since Vh~ =0 in the complement. V~'e write 

this function in a different form where no kernel Vo~Z/'2=cV(o)07- 3/2 appears. For 

this we apply (39): 

fRe(r fR Repl(o~)c:,(x;v)du, 

where the first term in the right-hand side contributes to the main term of Q1. 
These terms cancel and the rest is equal to 

Q1 - 2 f  (Ve(o) ' " = Pte(pl(o)cu(3i  : ~t)), V h ) }  dr.  
J R  

We estimate the Fourier transform of this integral as in (46). For this we need an 
estimate for the amplitude. By Step 9. we have c(x: u)=(2u)-X(b(x;u)-b(x; 0)), 
where b(x; u)-21/27rna~(x, s)[jcr[ -1/2, in the second tenn. Therefore 

max I~.(~, ")l < c max Jb;L(~; *')I < CIo,(~. ~)l IJ~l - ' /~  < CI~-YI~/~I~( x" ~)l 
~t t t  

since the factor ]j]-1/2 is uniformly bounded and ]al <C/r in A:, otherwise Vh,=O. 
Finally 

(49) Jr(7) [01(z;~')lSdl<- ~TC e x p ( -  Im~'r) .  

The inequalities (46), (49) and (48) imply (8). 

Step 11. Set U-[.J i UicXxX and take a smooth function hDEI)(U) that is 
equal to 1 in D x Do; define P = h D PD + (1- h D)P~. An estimate for P follows from 
(24) and (43). By applying Lamina 5.5 we obtain (7). Next we find 

(50) Q -- [ ] P -  5g.0 = ( h D Q D  -}- R D )  4- (1 -- hD)Q~c .  

where the term RD=[D, hD]PD+[[], 1-hD]P~=[D. hD](PD--P~) is smooth and 
supported by KAU. The operator PD-P:~ can be represented in the form (17). By 
Lamina 5.5 this implies an estimate for the kernel RD similar to (8). This completes 

the construction for Lamina 5.1. [] 
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13. The Helmholtz  equation with constant velocity 

Step 12. Now we are going to find a kernel W such that the sum S-/3+I1/" is 
a fundmnental function. This equation is equivalent to [7 .IV=-(~. First we solve 
the Helmholtz equation with constant velocity 

(51) C~oWo = -0. 

L e m m a  13.1. There exists a solution 1,I~ of (51) that is analytic in the set 
{w:Imw>_O and wr and satisfies 

(52) f< lexp(Imc~toO4, x))Wo(y,x;~')12 dx~ ~(C~w+CiTa), ,->_,-o. 
y,x)<_r 

Proof. We solve this equation by means of the convolution 

(53) Wo(y,x;cJ) 2 - ~ So(X-Z:,:)(2(y, z;~')dz. 

where So is the source function for (51). This integral does not, however, converge 
absolutely. We regularize it, using the special structure (50) and set (~=L~?D+U~c, 
where U ~ - ( 1 - h D ) ( ~ .  The term UD'--hD(2D+RD is supported by D0, and hence 
the convolution WD--So*UD is well defined. To estimate this convolution we use 
the inequality 

L (54) I exp(ImcJt(y, x))UD(y, x; ~')12 dx <_ i~,1 ~ 
o 

which follows from (8) for s and RD- We have 

lexp(Imwto(y, x))WD(y, x; w)l = ~ exp(hn a,'to(y, x))S0(x--z;,~')~TD(y, z; ~') dz 
,11) o 

<_ f ]exp(Im wt0(z, x))So(Z-Z: ,:) exp(Im ~,'t0(9, z))UD(y, z; a:)] dz 
d D  

o 

since to(y, x)<_to(y, z)+to(z, x). Therefore by Lemma 13.2. 

L(y.~)_<~ ]exp(Im~t0(y,x))WD(y, ~,)]2dx x ;  

<-(fo lexp(hn~'t~176 
(x .z)<r+ro 

XfoaD texp(Im~'t~ z))U.(y, z;~')l 2 dx, 
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where 7-o is the diameter of Do in the metric go. The second factor is bounded by 
Cl~l -a,  due to (54) and the inequality to(y, z)<t(y, z). The first factor is bounded 
by 

2 

- I T ' I  ' 

because of (64) and to(x, z)<_nolx-zl. This implies 

C 3 
J]o(v,x)<_, lexp(Im ~t~ x))WD(y, x: ~')12 dx <_ (~-+~-0 + n )  

since t(y, x)<_to(y, X)+T1, where rl is the g-diameter of Do. 

L e m m a  13.2. The inequality Ila*bll.2<_llall21tblll holds for arbitrary aE L2(X) 
and bELl(X). 

Pro@ A proof can be done by the Fourier transform. [] 

Next, we define the convolution of the functions So and U ~ - ( 1 - h D ) Q , ~ .  For 
this we will use analytic continuation in the variable r. We have 

(55) ~2~ = F([]A> ) + F([]A< ) + F([]A) ). 

We consider the three terms separately. According to (32) and Lemma 9.1 the term 
( 1 - h D ) F ( [ ] A >  (y, x, t)) equals the sum of the functions 

(56) 
U~(y, x; 4') - F[(t-r(s ,  r))~:l/2e(t-r(s, r))(A+m)a(s, r)h> (a)] 

= exp(zWT(S, r))q(a,')(A + m)a(s ,  r)h> (a)(1 - hD) 

for n = l ,  ... ,N,  where q(a~)-F(t~:l/2e(t)) and the right-hand side is a univalent 
(and smooth) function of x=x(s, r). The sign + l = s g n j ( s ,  r) is constant for each 
n and the number N of terms depends on y, t. s and r. \ ~  wish to regularize the 

integral 

(57) 
\Do 

First, note that the integral converges absolutely for Imam'>0, since So(z-z;a~)= 
O ( e x p ( -  Im ~ I z -  zl)) and U ;  (y, z; , : ) = O ( e x p ( -  Im a~'t(y, z))) by (56). According 
to (25) the function 7-(s,r) is linear with respect to r, and a(s,r) is of the form 
ao(s)r -1/2 by (28) and (29). The function ( A + m ) a  is also analytic in r, as can 
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be seen from (27). Therefore the right-hand side has analytic continuation to the 

domain {o=r+w:r>_O and v E R }  and this continuation satisfies 

Iu (v, <- clq( )l exp(-  Im o)) 
(SS) c 

_< 1~13/~ e x p ( -  Im ~'T(s, r) - R e , m ~ v ( r ) ) ,  

since r(s, O)=r(s, r )+n~vz,  r(s, r)--t(y, x). Suppose that  Red: 20.  Then the right.- 
hand side is bounded in the halfplane v_> 0. First, we make the change of variables 
z=z(r, s), where dz=j dr ds, j=j(s,  r). Take into account that  the integrand So(X- 
z; ~)U~ (y, z; w)j(s, r) admits  a holomorphic continuation in r. 

Shift the domain X\Do to the chain X~, defined by the mapping (s: r)~-~z= 
z(s,r)--~o(s)(r+v(r))+Xo(S) from S ' x R  to the complex space Xc=X+~X,  
where v(r) is a suitable continuous function, provided the function So(X-Z; a~) has 
a bounded holomorphic continuation to a 3-chain Z~, in X c  such that  OZ~, =X\Do - 
X,.  The integrals over X\Do and X~. will coincide by" the Cauchy theorem. Ac- 
cording to Proposition 16.1 this condition is satisfied if Im x' x / ( x -  z) 2 _> 0 for z E Z~., 
where 2 2 2 W =Wl+W 2. This follows from the inequality t no Im,~ ' - Imm]<_C.  Take a 
positive number vo, to be specified later, and a continuous function v=v(r) that  

vanishes for O<r<ro(x)-4nol(Ix]+max ]xo(s)l), and equals �88 for r~ro. Set 

Zv--{z=-~o(s)(r+Tv(r)~)+Xo(S):O<T< 1} and show that  

(59) R e ( x - z )  2 _> I r a ( x - z )  2 >_ 0 for z E Z~.. 

This is obvious for r<_ro(x), since v ( r )=0 .  Otherwise. it follows from the equations 

R e ( x -  z) 2 = (~or+x-xo) 2 -(nowv(r)) 2, 

I m ( x - z )  2 ---- 2iRe z - x ,  Im z} = 2m'(r)(n~r+ (x -Xo ,  ~0})- 

This property implies that  Z,~, is contained in the domain { ~: Im a~ x/(x - z) 2 > 0 } for 
Reck_>0; the function So(x-z;~) decreases exponentially in Z~., as r--+oc. Then 
we apply a version of Lemma 13.1 to the integral (57) taken over X~. The last 
factor in (58) is bounded by e x p ( - c R e a J r )  for some c>0.  We have Rea~>0 and 
r>_nolly-zl-rl  for some r l ,  which ensures convergence of an integral like (57) 
taken over X. .  

14. Quasianalyt ic  cont inuat ion  

Next we consider the second term in (55). It is a finite sum of the terms U~ 
that  are similar to (56) with the extra  factor h<( ra ) ,  V h < ( r a )  or A h < ( r a ) .  This 
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factor has analytic continuation for complex o = r + c ~ E C ,  except for the interval 
K(s) - { r: �89 ~_< r I cr (s)t -< 3g }. This set might be unbounded near critical values of 
the variable s. \Ve continue h to the function in the complex plane: 

3 , 

h(~o)-- Z ~ h ( q )  (r). o = r q-t'~,, 
q=0 

such that  0h (o )=  �89 a) and also 

(60) GQ/gk+lh(o)  = O(ca-l-k),  l+k <_ 2. 

Now we regularize the integral 

W~(x;~)=-  So(~-~:~)U~(>~;~')d~. 
\Do 

by means of the Cauchy Green theorem as follows: 

w~ (= ~,) - - [ . .  S o ( x - ~ :  ~,)u~ (>  ~-: ~,)j d~ d~ 
t ,  

- So(x-~_:~)Oog<(~l.z:a~')jd_odeds. 
t 

where Z~={z=z(r+vz,  s):O<v<_v(r)}CXc. The first integral is similar to that of 
the functio~ W~. The inequality I z -  Re z I_< Re x / ( z -  z) 2 holds for z E Z~,, by (59). 
On the other hand, 1ReccIm (xx/~ZT--z) 2 _>0. This yields 

Im cJlx- Y I <_ Im aatx- Re z[ + Im a:ly- Re z I <_ Im a: x/ ( x -  z )2 + Im a:ly- Re zl . 

By this inequality 

exp(Im cono Ix-Yl) __~ So ( x -  z: ,:)OoU'~ (y. z; a,,) j dD do ds 

< sup lexp(.o ~m~'4~7--'t ~ )So(~--';~')I 
zcZ~. 

zl)loqoU<(y, ~)j ldv d.r (Is x exp( tma:noly-Re - " z; 
u 

<<- ~ C  /z~ exp(Ima~'n~176 
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The supremum is finite by Proposition 16.1. Applying an inequality like (58) to U~ 
and taking into account that Re a;n2v>_0, we get 

I~13/2 ~ exp(Imc~'n0 l y - R e  zl)lSoU~ (:9, z: ~)Jl dL' dr ds 
d 2 )  

v (61) 
< C~ (Ij~ohl+ljOoVhl+ljc)eAhl) dt'drds. 

where It=it(at)). To estimate the first term in the right-hand side, we use the 
relations Ooh(~)=O(~41v13), j=~o~+O(1).  Then 

/ z  ljJjtl dv dr ds <_ Cl fsl l(rls /K Jfo~'(~) lvl41jl dv dr ds 

I ts 
1 (s)  

since ~3 log(r/ro) is uniformly bounded, r E K ( s ) ,  and s E S  1 �9 For the third term 
in (61) we use (27) and (60) which gives IjO~A[~(c~g)I<CJ~j4g2v. This estimate is 

sufficient for the finiteness of the integral of IjSoAt~l dr. dr ds over Z,:. The second 
and third terms in (61) are estimated similarly. 

Now we have only to consider the third term in (55). We have 

[~A~(x;w) = ;  exp(za,,~(x, s)) Reqz(w)(A+m)(a)(x, s)h>(r, s)) ds, 

where ql (cJ)=F(pl( t ) )  and the omitted terms contain derivatives of h,. The phase 
function c2b(x , s)=to(s)+n~)r for r--no2(~o(S),Xo(S)-X) admits analytic continua- 
tion with respect to r and Im~(x,s)=n~)v. This function is nonnegative if v_>0. 
According to the choice (38) the function a~(x,s) does not depend on r at all. 
Therefore only the cffr-derivative of the factors (47) appear in cg/N .A). We esti- 
mate the corresponding integrals as in the previous case. In this way we define the 
regularized convolution W~ = S 0 * ~ f i ~ .  Taking the sum W 0 = ~  I V ~ + ~  I,IQ+W~, 
we get a solution of (51) that  admits an analytic continuation at the domain 
{c~:Ima3>0 and Rea:>0},  which satisfies (52). To get an analytic continuation 
to the domain Re ~ <0, we replace v by - v  in the above arguments. This completes 
the proof of Lemma 13.1. [] 

15. T h e  c o m p l e t i o n  o f  the  c o n s t r u c t i o n  

Step 13. We have []~((1-hD)'Wo)+~)=-L. where h D ~D (X )  is as in Step 11. 
By (51) the kernel L=hDQ-(VhD, V l V 0 ) - A h D I l o  is supported in D xDo. We 
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take into account (52) and estimate the derivatives of W0 by the standard energy 
integral method 

o [exp(Ima:t~ z))VW0(g, z; a:)l 2 dz <_ i~,1- ~ .  

This and (8) imply 

(62) l~xp(Im ~t0 (y, x))c(~, z: ~')12 dx <_ I~-'1 ---5 

Now we look for a kernel R such that S=_P+I ' I~+R is a fundamental solution. It 
is now equivalent to [E]~,R=L. The kernel T - / 3 +  W0 satisfies D ~ , T = @ - L .  By (7), 

ft c~ (~_~+~_). (y,z)<_~ ]exp(Im a.'to(y, x))T(g, x; ~')12 dx <_ I~-'1 

The sum S=T+R is a fundamental function, if R is a solution of the integral 
equation 

Write the solution by means of the Neumann series R'-R (1) +R (2) +..., where 

R(k)(Y'X;W)- J[x "'" ~ L(y,z~.;a:)...L(z3.z2:a,')g(z2,zl;a,')T(zl,x;w)dzl,-... dz1. 

For an arbitrary yED, we have by (62), 

/ x  I~xp(~m ~to(y, x))R (~/(y, x; ~.,)1 ~ dx 

-< J x  exp(hn a:to(y, x)) 

(63) -< J/x lexp(hn a.'t0(y, z))L(y, z; ,.')1~ dz 

x ( L  L lexp(hn-'to(z,x))L(z.x;a,')12 dzdx) k l 

x Ix lexp(Im a.'to(z, x))T(z, x; w)12 dz dx 
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CT (v (D)  /~c [exp(Im,:to(y,z))L(g,z;w)[2 dz) k 

< CT(CLV(D)) k 
- 1 12k+l , 

where V(D) stands for the volume of V, since to(y,x)<_to(y,z~.)+...+to(zl,z). 
The series converges if Iw[2>CLV(D), and we obtain the estimate for [a,'[_>a~0--" 
(2CLV(D))I/2: 

lexp(Im ~t0(y, z))R(y, x: ~')l 2 d:c <<_ V(D)I~.I a . 

The inequality (3) follows from (7) and (63). This completes the construction of the 
source function S that satisfies (3) for all yED. The compact D can be magnified, 
consequently the above arguments are valid for arbitrary compact subsets D of the 
plane. The sequence of the corresponding source functions gives the global function 
in X x X because of the uniqueness theorem. To complete the proof of Theorem 3.1 
we only need to check that  the inequality (3) is satisfied with some constants C1 and 
C2 that  do not depend on yEX. Starting from a point yEX\D,  in the first step we 
use the source function So for the homogeneous space. It satisfies (3) with C2=0 
according to Proposition 16.1 of the next section. Moreover. the arc integrals of the 
density lexp(Imwt0(y, x))So(y, x; a3)l 2 dl over F(T) are uniformly bounded. Indeed, 
if y is at the distance r from D, only the portion O(r 1) of the energy is scattered 
on the inhomogeneity of the medium. This, together with the arguments of Steps 
2-13 shows that  the estimate (3) is uniform for yEX. This completes the proof of 
Theorem 3.1. [] 

16. T h e  s o u r c e  f u n c t i o n  in h o m o g e n e o u s  m e d i u m  

Denote by log ( the univalent branch that is defined for larg (I <~r and is positive 
for ~>1. Set x/(=exP(�89 log(). 

P r o p o s i t i o n  16.1. If p is constant and hnp_>0, then the source function So 
of the operator A + p  2 has the for,rrt 

So(X; w) = ~ J o  ( ~ )  log(px)2 +A((px)2), 

1 where Jo is the Bessel function and A is' an entire analytic function of order ~. 
Moreover, it satisfies the inequality 

(64) I S o ( X ; W ) [ - < 8 ~ l ~ l  1 / 2 e x p ( - I m p  .~r2) 

in the domain larg(px)2l<Tc, of the eomplez 2-space Xc .  
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Proof. For real p the d is t r ibut ion Eo (x, t) = - (27r) - 10(t - p lxl) ( t  2 - p 2 l x  I s)  - 1/2 

defined in X x R satisfies the  equat ion ( A - p S 0 t 2 ) K o = d o .  Set o = x / ( p x )  2 and cal- 
culate  

-2 r rSo(x )  = _.f>_r exp(tz)( t  2 -  o 2) 1/2 d t  t=o,s ,.f>l exp(os/)(s 2-1)-1/2 d s  

s 1+~, 9~0 ~c = - z e x p ( o , )  exp ( -oc r ) ( - r r2+2~r , )  -1/2 dcr. 

The  r ight -hand side admi t s  an analyt ic  cont inuat ion  to the halfplane Re ~o>0. The  

second factor  is e s t imated  by means  of the  Cauchy theorem as follows: 

~~ exp(--~oo)(--o2-{-20"t)-l/2 do- --~ ~0~ exp(--ocr)o'-l/2t2,--Cr) -1/2 do- 

o]] ~=Jr exp(--[gl2r)(Or)-l/2(2* - Or) -1/e drl 

/0  ~ exp(-Iol% d~ < m a x  1 2 , -  a~l-1/"1ol */~ 
- -  r ~ " T 1 / 2  

=(�89 ~/'2. [] 

Remark. We app ly  this proposi t ion to the coefficient p=@a~'2n02+mo for pos- 
itive no. Therefore  if Im  w 2 0 and I.JI > l m o l l / 2 n o  1. the coefficient p is also in the 
upper  halfplane. 

17. The quantitative stationary phase method 

In t roduce  a no rm in R r' and denote  by Ila]] the norm of an opera to r  a in R ". 

Proposition 17.1.  Let x 0 E R  ~' be a critical point of a smooth phase function 

and U be a starlike neighbourhood of Xo such that 

(65) I I { ~ j ( x ) - ~ j ( : ~ o ) } l l  " -~  " " II{<j(-~'0)} II < 

for xEU.  Then there exists a smooth coordinate system y=y(x)  in U such that 
; ~ l  x, 1 #l y ( x o ) = 0  and/3(y(x ) )=p(x)  where iy)= ~pij(xo)giy j. 

Proof. Assume tha t  Xo=0 and write ~(x)-3(x)=~-~'i:j= 1 a i j (x)x ix  j, where 

(66) aij (:r) = [p',~ ( s t x ) -  Yij (0)] ds . 
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Look for a solution of form y(x)=x+zx,  where z=z(x) is an unknown matr ix  

function vanishing at the origin, and x is wri t ten as a column. The equat ion 

for z is /3(x, zx)+~(zx,  x)+3(zx,  zx)=x'ax, where x '  means the row of coordi- 

nate  functions and a={aij }. Therefore it is sufficient to solve the matr ix  equat ion 

z+b- l z 'b+b- l z 'bz=c-b- la ,  where b={spij(Xo)}.l " Since the matrices b and a 

are symmetric ,  we have b-l(c')kb=c k for any natura l  k. Write z as a power se- 

ries in c such that  z (0 )=0 .  The  sys tem takes the form 2z+z2=c and we find 

z=z(c)=(l+c) 1/2-1. The  series converges if ttc(x)ll < 1. We have by (66) and (65) 
tha t  

lic(x)ll ~ lib-all Ila(x)ll ~ 211{~(x0)}- l l l  II{~'~(x)-~'~(x0)}ll < 1. [] 

P r o p o s i t i o n  17.2.  Let 3(x)= ~oijxl" ix j be a nondegenerated form of signature 
s and f be a continuous function such that f. gELI (R ' ) .  The integral 

I(w) = f exp(27rTw3(x))f(x) dx. w > O, 
J R  t ~  

can be written in the form 

exp �88 1 f 
I(w) w~* /2~b+Oz  f(O)+ --7rw~ JR,, exp(2~rzw3(x))g(x) dx. 

where 
(67) 

g - - -  ctJ(D)fj, ~ -~xJ f j ( x )=f (x ) - f (O) .  aJ=aJko~.. {aJk}={bjk} -1. 
j = l  j = l  

Pro@ A proof  can be done by the regularization 3~-~ 3+z~2x 2 and partial  inte- 
gration. [] 

An  est imate can be done for the function 9: 

P r o p o s i t i o n  17.3.  If U c R ~ is an arbitrary starlike neighbourhood of the ori- 
gin, then there exists a function g, that satisfies (67) and max, :  Igl < m a x u  l a (D) f ] ,  
where o~( D)=aJk Ojcgk. 

Proof. A proof  follows from the equat ions 

f j ( x )  = 3~(~ 10jf(tx) dt, 

/o g(x) = -  aJ(D)OS(tx) tdt= - a(D)f(tx)tdt .  [] 
2= 1 0 
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