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On CL-spaces and almost CL-spaces 

Miguel Mart in  and Rafael Pay~i(1) 

Abstract .  We find some necessary conditions for a real Banach space to be an almost CL- 
space. YVe also discuss the stability of CL-spaces and almost CL-spaces by co- and/l-sums. Finally, 
we address the question if a space of vector-valued continuous functions can be a CL-space or an 
almost CL-space. 

1. I n t r o d u c t i o n  

A real or complex Banach space is said to be a CL-space if its unit  ball is the 

absolutely convex hull of every maximal  convex subset of the unit sphere. If  the 

unit  ball is the closed absolutely convex hull of every maximal  convex subset of the 

unit  sphere, we say tha t  the space is an almost CL-space. 
The concept  of CL-space was in t roduced by R. Fullerton in 1960 [6]. Later  on, 

A. Lima [12] in t roduced the almost CL-spaces, though  the proper ty  specifying them 

had been previously used by J. Lindenstrauss  [14]. Bo th  definitions appeared only 
for real spaces, but  they extend easily to the complex case. For general information 

on CL-spaces and ahnost  CL-spaces, including the connect ion with intersection 

propert ies of balls, we refer to [8], [9], [11], [13] and the already cited [6], [12] 

and [14]. More recent results can be found in [19]. 

Examples  of real CL-spaces are L I ( g )  for an arbi t rary  measure p, and its 
isometric preduals, in part icular  C(K), where K is a compact  Hausdorff  space (see 

[11, Chap te r  3]). We do not  know of any example of  a real ahnost  CL-space which 

is not a CL-space. 

For complex Banach spaces, the s i tuat ion is different. CL-spaces and ahnost  

CL-spaces have not  received much a t tent ion in the complex case. The only result 

we are able to find in the l i terature is the character izat ion of finite-dimensional (real 

or complex) CL-spaees given by A. Lima in [12, Corollary 3.7]. 

(1) Research partially supported by Spanish MCYT project no. BFM2000-1467. 



108 Miguel Martin and Rafael Payti 

In Section 2 we fix our notation and give some examples, mainly in the complex 

case. We show that the complex spaces C(K) are always CL-spaces, whereas com- 

plex LI(p)  are just almost CL-spaces. Actually, ll and LI[0, 1] are not CL-spaces. 

Section 3 contains some isomorphic results. \Xre show that the dual of an 

infinite-dimensional real almost CL-space always contains (an isomorphic copy of) 

1~. If, in addition, the dual is separable, then the space contains co. 

In Section 4 we discuss the stability of the classes of CL-spaces and ahnost 

CL-spaces by Co- and /1-sums. Our results are as expected, the sum is in one of 

the classes if and only if all the smnmands are. with one remarkable exception: an 

infinite/i-sum of nonzero complex Banach spaces is never a CL-space. 
Finally, in Section 5 we deal with the space C(K, X) of continuous fimctions 

from a compact Hausdorff space K into a Banach space X. We show that C(K, X) 
is an almost CL-space if and only if X is. The analog for CL-spaces remains open. 

2. Notat ion  and examples  

Throughout the paper, X denotes a real or complex Banach space, Bx is its 

closed unit ball, Sx its unit sphere, and X* the dual space. We will denote by T 

the unit sphere of the scalar field. Thus, T =  { - 1 . 1  } when dealing with real spaces, 

while T = { A E C : I A I = I }  in the complex case. Given a subset A c X ,  we write exA 

for the set of extreme points in A and coA for the convex hull of A. Note that 
co TA is the absolutely convex hull of A. The closed convex hull of A is denoted by 

U6A. Finally, for a set BCX*,  we denote by /~*~' and U6 .... B the weak*-closure 

and the weak*-closed convex hull of B. 
It is worth pointing out some basic facts on the definitions of CL-spaces and 

almost CL-spaees. By using the Hahn-Banach and Krein Mihnan theorems, one 

can easily prove that every maximal convex subset F of Sx has the form 

F =  {z E Bx  : z * ( z ) : 1 }  

for some z * C e x B x . .  We denote by m e x B x -  the set of those x*r  with the 
property that the set {xEBx:z*(z)=I}  is a maximal convex subset of Sx. It is 
easy to see that m e x B x ,  is a boundary for X. that is. for every zEX,  there is 

x*CmexBx,  such that x*(x)=ll<l. It follows that 

BX* = Ud u.* mex Bx* �9 

With the above facts in mind, X is a CL-space (resp. an almost CL-space) if and 

only if, for every x*CmexBx. ,  Bx  is the convex hull (resp. closed convex hull) of 
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the set {zEBx: lx*(x) l=l} .  Let us also mention that  maximal convex subsets of 
Sx  are nothing but maximal  faces of Bx.  This accounts for the relation of CL- 
spaces and ahnost CL-spaces to the facial structure of balls. More information on 
this topic may be found in [1] and [11]. 

We shall now comment  on some examples of CL-spaces and almost CL-spaces. 
Real CL-spaces are related to an intersection property of balls, namely the 3.2- 
intersection property. A Banach space is said to have this property if every set 
of three mutually intersecting balls has nonempty intersection. The 3.2-intersec- 

tion property was first investigated by O. Hanner [8] and systematically studied 
by J. Lindenstrauss [14] and ft. Lima [11]. More references on the 3.2-intersection 
property are [9], [12] and [13]. In 1977. A. Lima showed that  every real Banach space 
with the 3.2-intersection property is a CL-space [11, Corollary 3.6], but the converse 

is false even in the finite-dimensional case (see [8, Remark 3.6] or [19, Chapter  3]). 
The real space L1 (Ft) and its isometric preduals satis~" the 3.2-intersection property. 
Therefore, they are CL-spaces. 

To end up with the real examples, let us pose an open question. We do not 
know if there exists a real almost CL-space which is not a CL-space. 

The situation in the complex case is quite different. Not much attention has 
been paid to complex CL-spaces and almost CL-spaces in the literature, so we 
provide the basic examples. As a mat te r  of fact. there are complex almost CL- 
spaces which are not CL-spaces. 

P r o p o s i t i o n  1. (i) For every compact Hausdorff space K. the complex space 
C(K) is a CL-space. 

(ii) For every finite measure it, the complex space L1 (~) is an almost CL-space. 
(iii) The complez spaces l~ and LI[O, 1] are not CL-spaces. 

We need a lemma on the field C whose proof is straightforward. We write 
D----{AEC:IAI<I}. 

L e m m a  2. For every z0ED, there exist two continuous functions c2, g): D - + D  
satisfying I~(z0) l= l~(z0) l= l  and z=�89 for every zED. 

Proof of Proposition 1. (i) By the well-known characterization of extreme 

points in BC(K). , it suffices to show. for each toEK, that  BC(K) is the convex 
hull of the set {fEBc(K):l f ( to) l=l} .  Indeed, given toEK and fEBc(K),  we take 
zo=f(to) and find functions p and ~;, as in the above lemma. Then f=�89  
where f t = F o f  and f2=v)of satisfy Ifl(to)l=lf2(to)l=l. 

(ii) Let F be a maximal convex subset of SLy(,). Up to an isometric isomor- 
phism, we can suppose that  

F = {f  E Ll(/.t): Ilfll = 1 and f > 0 a.e.}. 
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But  the absolutely convex hull of F contains a dense subset of the unit  ball. namely  

the set of simple functions, so BL~(~,)=~6 T F  as desired. 

(iii) I t  is clear tha t  exBr~[0.1]. =mexBLl[0.1]~. so tile set 

F =  { f  E LI[0, 1]: Ilfll = 1 and f _ > 0  a.e.} 

is a maximal  convex subset of SL~[Odl. Then.  it suffices to find a function f E  

BLI[O,1] which cannot  be obtained as an absolutely convex combinat ion of elements 
in F .  Indeed, let f ( t )=e  2~it for every te l0 .1] ,  and suppose that  we could write 
f n = ~ j = l a j A j f j  a.e. in [0,1], where aj>O. I)~jl=l. f i E F  for j = l . 2  .... ,n,  and 

n ~ j = l  aj =1.  Then,  from 

1 = f ( t )e  -2~it d t=  oj aje-2~'~fj (t) dt <_ aj f j( t)  dt = aj = 1, 
= j = l  j = l  

we would get A~e-2~itf~(t)=fl(t) for almost  every t E [0, 1], which is clearly impos- 
sible. The  case of 11 can be t rea ted  similarly and it will become a part icular  case 

of Corollary 10. [] 

3. S o m e  i s o m o r p h i c  r e s u l t s  

Our aim here is to obtain  some isomorphic propert ies of real almost  CL-spaces. 

We s tar t  with an easy but useful lemma. 

L e m m a  3. Let X be an almost CL-space. Then Ix**(x*)l=l for every x**E 
exBx** and every x* E m e x B x * .  

Proof. If  x* E m e x B x . ,  we have B x  =U6{xEBx:lx*(x)l=l} and Goldst ine 's  
theorem gives 

B x . .  = ~ " "  {x e B x :  Ix*(x)l = 1}. 

Now, by the ' reversed'  Krein Mihnan theorem we get 

exBx. ,  c_ {.r c Bx:  I~'*(~')1 = 1} " 

which clearly implies Ix**(x*) l=l  for every x**EexBx-- .  [] 

Remark 4. In  the real case, the converse of the above lemma holds. This follows 

from [12, Theorems 3.1 and 3.4]. 
A useful sufficient condit ion for a real Banach space X to contain (a subspace 

isomorphic to) co or ll was found in [16], namely  tile existence of an infinite set 

A C S x  where all extreme points in Bx .  can only take the values +1.  This fact 

combined with L e m m a  3 yields the main result in this section. 



On CL-spaces and almost CL-spaces 111 

Theorem 5. Let X be an infinite-dimensional real almost CL-space. Then 
X* contains 11. I f  in addition X* is separable, then X contains co. 

Proof. Being a boundary for the infinite-dimensional space X. the set mex Bx* 
must be infinite. Then, we may apply Lemma 3 and [16. Proposition 2] to get that  

X* contains either co or ll. But a dual space contains l~c (and hence 11) as soon as 
it contains co (see, e.g., [15, Proposition 2.e.8]). 

To prove the second part  of the proposition, observe that  Lemma 3 implies that  

II x * - y *  II =2  for distinct x*, y* Emex B x - .  Therefore, if X* is separable, mex Bx* 
has to be countable. But a real infinite-dimensional space which admits a countable 
boundary contains Co by a result due to V. Fonf [5, Remark 2]. [] 

Remark 6. The above result improves those given in [16] for real Banach spaces 
with numerical index 1. A Banach space has numerical index 1 if every bounded 
linear operator T: X - + X  satisfies 

IITII =sup{Ix* (Tx)l : x E S x ,  x* E S~;- and x*(x) = 1}. 

For more references and background we refer the reader to [2], [3], [4], [17] and [18]. 
Almost CL-spaces have numerical index 1 [17, Chapter  4]. and it is proved in [16] 
that  the dual of an infinite-dimensional real Asplund space with numerical index 1 
contains l~. 

The behaviour of CL-spaces or ahnost CL-spaces under duality, is unclear to 
us. It  was shown by A. Lima [12, Corollary' 3.6] that  a real Banach space X is an 
almost CL-space provided that  X* is a CL-space. We are not aware of any relevant 
result in the opposite direction. Next we get such a result, under an additional 
assumption. 

Proposit ion 7. Let X be a Banach space .not containing 11. I f  X is an almost 

CL-space, then X* is an almost CL-space. 

Proof. For x**EmexBx**,  we need to show that  B x - = ~ - 6 H .  where 

H :  {x* �9 B x - :  Ix**(x*)l = 1}. 

We have m e x B x .  C_H by Lemma 3. Moreover, since m e x B x ,  is a boundary for 
a space X not containing ll, we can use [7, Theorem III.1] to get that  B x .  = 
c-6 mex B x . ,  and we are done. [] 

4. Sums of CL-spaces and almost CL-spaces 

This section is devoted to study, the stability" of the classes of CL-spaces and 
almost CL-spaces by Co- and /l-sums. Given an arbitrary" family {Xa:AEA} of 
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Banach spaces, we denote by [(~.xc., Xx]~ o (resp. [(~.xea Xx] h) the c0-sum (resp. 
/1-sum) of the family. In case A has just two elements, we use the simpler notation 

X |  or  X @ I Y .  

With respect to c0-sums, we have the following result. 

P r o p o s i t i o n  8. Let {Xa:AEA} be a family of Banach spaces and let X =  
[(~aEaXa]c0. Then, X is a CL-space (resp. an almost CL-spaee) if and only if Xx 
is a CL-space (resp. an almost CL-space) for every AEA. 

Pro@ For each AcA, we write Ix tbr the injection of X~ into X. and P;~ will be 
the projection of X onto Xx. Under the natural  identification X * =  [(~a~a X~,]l , 

P;~ becomes the injection of X{ into X*. Using the well-known fact that  

AEA 

one can easily check that  a convex subset F of Sx  is maximal if and only if there 
exist AEA and a maximal convex subset Fx of Sx~ such that  

(1) Fx=Px(F)  a n d  F = p ~ I ( F x ) N B x  . 

Suppose first that  every X;~ is an almost CL-space, and fix a maximal convex 
subset F of Sx.  Then, we can find A EA and a maximal convex subset Fx of 

Sxx satisfying (1), so Bx~ = ~ 6 T F a .  Now, given z E B x  and e>0 .  take y a E c o T F a  

such that  Ily~-P~(z)ll<c, and consider y=z- Ix (Px(z ) )+Ix(ya) .  It  is clear that  
y E B x  and P~(Y)=Yx, so y E c o T F .  Moreover, Ily-zll <e, so we have shown that  
B x  =~6 T F  and X is an almost CL-space. If every Xx is a CL-space, then we can 
repeat  the above argument with c = 0  to get that  X is a CL-space. 

Conversely, suppose that  X is an almost CL-space. Fix AEA and let Fx be a 
maximal convex subset of Sxx. Then, the set F given by (1) is a maximal convex 
subset of Sx,  so B x = ~ d T F .  Now, given xxEBx~ and s>0 ,  there exists y E c o T F  

such that  Ily-I~(x,xOll<s. Then 

Px(y) EcoTFx and I I P x ( y ) - x x l l < ~ .  

so Bxx=~-6TFx  and Xx is an almost CL-space. The same argument with c = 0  
gives that  X~ is a CL-space if X is. [] 

The examples in Proposition 1 tell us that  the situation for /1-sums cannot be 
so tidy. Actually, we have the following result. 
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P r o p o s i t i o n  9. Let {X~:AEA} be a family of nonzero Banach spaces and let 
X =  [ ( ~ c a  Xx]h" Then the following statements hold: 

(i) The space X is an almost CL-space if and only if every Xx is. 
(ii) In the real case, X is a CL-space if and only if every X~ is. 
(iii) In the complex case, X is a CL-space if and only if every X:~ is and the 

set A is finite. 

Pro@ Once again we write I~ and P~ for the natural injections and projections. 
Now, X * =  [(~aEa X~]l~, I ;  is the natural projection of X* onto Xl ,  and the 
relationship between extreme points in Bx .  and Bx~ is the following: 

x * E e x B x .  ~ I~(x*)EexBx;, f o r a l l A E A .  

With this in mind, it is easy to check that  maximal convex subsets of Sx are exactly 
the sets of the form 

(2) F = { x C S x  :P:~(x) E IIPA(x)IIFA for all AEA}, 

where FA is a maximal convex subset of Sx~ for all AEA. 
(i) Suppose first that  X is an almost CL-space and. for fixed pEA, let F .  be 

a maximal convex subset of Sx . .  For every ACp we choose an arbitrary maximal 
convex subset Fx of Sxx and consider the maximal convex subset F of S x  given 
by (2). Note that  

P.(x) E IIP.(x)IIF. C c o T F .  

for all x c F ,  so 

P , (co  T F )  C_ co T F , .  

Now, using that  B x  =g-d T F ,  we have 

B x ,  = P~ (Bx)  = P~ (~5 T F )  C_ P/ (co  T F )  C ~-5 T F , ,  

and we have shown that X~ is an almost CL-space. Note that if X is a CL-space, 
then 

B x ,  = P~ (co T F )  C_ co TF~, 

and X~ is a CL-spaee. 
Conversely, suppose that  every X~ is an almost CL-space, and let F be a 

maximal convex subset of Sx.  Then F has the form given in (2) where F~ is a 
maximal convex subset of Sx:~ for each AEA. Since Bxx = ~ T F A  and IA(F~,)CF 
for every AEA, we have 

U I~(Bx~) C U ~ T I ~ ( F ~ )  C~-STF. 
AEA AEA 
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Now, just recall that  Bx  is the closed convex hull of UhEAIh(Bxx), So BXC_ 
~ 6 T F  and X is an almost CL-space. Observe that, if A is finite, then B x =  
co Uhe AIh(Bxx)  and the above argument allows us to obtain B x = c o T F  from 

Bxx =co TFh for all A. Therefore, finite ll-sums of CL-spaces are CL-spaces. 
(ii) One implication has already been proved. For the converse, suppose that 

each Xh is a real CL-space, let F be a maximal convex subset of Sx  and write F 

as in (2). Fix XESx and use that Bxx = c o ( F a U - F x )  to write 

ex(x) = llPh(x)li(thyh--(1--t~)zh). XeA .  

where Yh, zaEFa and O_<ta_<l for all A. It follows that 

x =  Z = u - ~ , ,  
AEA 

where 

y = IlPh(x)llt ,5(Y ,) and  = IIPh(x)Jl(1--th)5( h) 
AEA AEA 

satisfy that  

I lYl l+l lzl l  = ~ IIPh(x)ll = 1. 
hE:\ 

For each A we have PhQY)=llPh(.~)llYhellP~,(Y)llfa and it clearly follows that we 

may write y=llyllyo with yoEF. Similarly, z=llzllz0 with zoCF, and we get 

x = Ilylly0-II llz0 c c o ( f u - F ) .  

We have shown that Sx  C c o ( F U - F ) ,  so Bx  = c o ( F U - F )  and X is a CL-space. 

(iii) We have already seen that every X~ is a CL-space if X is. and that the 

converse holds for finite A. Thus. it only remains to show that X cannot be a 

CL-space if h is infinite. Without loss of generality we just consider the case A = N .  

Indeed, choose an infinite countable subset A0 of A and write X=Y-G1Z with 

Y = IEI~hEAo Xh] h and suitable Z. Were X a CL-space. our above results show that 

Y would be a CL-space as well. Thus. suppose that X = [(~-EN Xk]l~ is a CL-space 
to get a contradiction. 

For each kEN,  we fix e~.EmexBx; and build up the set 

F = {x E Sx :  e~.(Pk(x)) = HPt,(x)H for all k E N}, 

a maxirnal convex subset of Sx.  Now. let 

x = 9~#Ik(ek). 
k=l  
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Og O(2 where ( k)k=l is a sequence of distinct elements in T,  eA.ESx, 
every kEN.  Since B x = c o T F ,  we can write x in the form 

= } 2  
j = l  

where 

/~1, ,22,..., 3rn ~ C, ~ 13j[ : 1 
j = l  

We deduce that,  for every kEN,  

SO 

1 =  ~ =  

and x (1). x (2) .. . . .  x (' ') E F. 

t i t  rrl 

C~ k 2~: = e~(pk(x)) = ~ 35~;(rk(x<J>)) = ~ ~j IIPk(x(J))II, 
j = l  j = l  

j = l  k 1 j = l  k= l  j ~ l  k= l  

It follows that  

(3) ~ZjllPk(x(5))ll = 13jl IlPk(x(J))ll 

for every jE{1,  2, ..., m} and every kEN.  Since 

Tn 

o # P~(x) = ~ 3jP~.(x(J)) 

115 

and e~,,(ek)=l for 

IIx(J) II = 1. 

LI(p)-ll(F)@I [(~ LI([O, 1] ..... )] 
aE.4 I~ 

j = l  

for each k c N ,  there must exist some jE{1,  2 . . . . .  m} such that 3jPk(x(J))7~O, and 
(3) gives ak=/3j/i/3jl. This contradicts the choice of the sequence (ak)~=l. [] 

Let us point out the following consequence. 

C o r o l l a r y  10. Let > be a measure. The complex space LI(#) is a CL-space if 
and only if dim L1 (#) < oc. 

Proof. By [10, pp. 136], we have 
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for some index set F and some set A of cardinal nmnbers m~_>R0. If L1 (/1) is a CL- 
space, Proposition 9 gives us that  F and A are finite and LI([0, 1] ~ )  is a CL-space 

for every c~EA. Now, since Theorem 14.10 of [10] gives 

LI([0, 1]m~ ~ LI([0, 1] m~ , 
- -  l l  

where rnk=rn~, for every k E N ,  another application of Proposition 9 tells us that  

LI([0, 1] " ~ )  is not a CL-space. Therefore, A=0,  L I ( t 0 ~ l l ( F )  for a suitable finite 

set F, and d i m L l ( t t ) < o c .  The converse result is clear. [] 

5. T h e  s p a c e  C(K,X) 
Given a compact Hausdorff space K and a Banach space X. we consider the 

Banaeh space C(K, X)  of all continuous functions from K into X, endowed with 

its natural  supremum norm. 

P r o p o s i t i o n  11. Let K be a compact Hausdorff space and let X be a Banach 
space. Then the following statements hold: 

(i) The space C(K, X)  is an almost CL-space if and only if X is. 
(ii) i f  C(K, X)  is a CL-space, then X is also a CL-space. 

Proof. Let us write Y = C ( K ,  X) and recall that  the extreme points in Bz* are 

functionals of the form f~+x*(f(t)), where x * E e x B x ,  and t E K  (see [20, Theo- 
rem 1.1]). With  this in mind, it is easy to check that  the maximal  convex subsets 

of Sy  are just the sets of the form 

(4) = { f  E Sy:  f( t)  E F}, 

where t E K  and F is a maximal convex subset of Sx.  
Suppose first that  X is an almost CL-spaee. Fix a maximal convex subset ~- 

of Sy and let t and F be as in (4). Since B x = ~ d T F ,  given f E S y  and e > 0  we can 

find z Eco T F  such that  

IIx- f(t)ll < -c 

and build a continuous function ~2: K--+ [0, 1] such that  

~z ( t )= l  and ; ( s ) : 0 ,  if I Ix - f ( s ) l l  ~ .  

If  we define g E Sy by 

g(s) = 9 ~ ( s ) x + ( 1 - ~ ( s ) ) f ( s ) ,  s E K. 
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i t  is easy  to  see t h a t  g E c o T $  r and  IIf-gll<_a. Therefore.  B y = U 6 T . T  and  Y is an 
a lmos t  CL-space .  

Now, suppose  t ha t  Y is an a lmos t  CL-space .  F i x  a m a x i m a l  convex subse t  F of 

S x ,  and  consider  the  m a x i m a l  convex subset  b r of S y  given by (4) for an a r b i t r a r y  

t E K .  Fur the r ,  fix x E B x  and ~>0 ,  consider  f = X X K E B y  and use t ha t  B ~ = K d T 5  c 

to  find g E c o  T9 c such t ha t  Ilf-gll <~- Then  g(t)Eco T F  and IIg(t)-xH <~, so Bx = 

~6 T F  and  X is an  a lmos t  CL-space .  

In  the  case when Y is a CL-space ,  we can r epea t  the  above  a r g u m e n t  wi th  ~:=0 

to prove t h a t  X is also a CL-space .  [] 

To finish the  paper ,  let  us ment ion  tha t  we do not know whe the r  C(K,  X )  is a 

CL-space  whenever  X is. 

Acknowledgement. The  au thors  wish to express  the i r  g r a t i t u d e  to the  referee 
for po in t ing  out  Coro l la ry  10. 
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