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1°. Introduetion. This work is essentially a continuation of the function-
theoretic developments, which the present author undertook in two extensive
memoirs, iz the sequel referred fo as (Ty)' and (T,)?, respectively. In order to
save space it will be assumed that the reader is familiar with the main ideas
and principles involved in those two works.

We shall first establish a number of theorems relating to the representation
of classes of functions (of a complex variable), characterized by certain deseriptive

properties, by integrals of the form

(1°. 1) jfcé#_z , floo (C—z2)dule) (e =+ dy),

W, J. TritrziNsky, Théorie des fonctions d'une variable complexe définies sur des cnsembles
générawr, Aun. Ec. Nornm, (3), LV, Fasc. 2, pp. 11g—19I.

* W. J. Trarrzixsky, Some general developments in the theory of fumctions of a complex
variable, Acta mathematiea, vol. 70 (1938), pp. 63—163.
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where u(e) is an additive function of sets' and {={ + ¢{" is the variable with
respect to which integration is performed.

Consideration of (T;), (T;) and of the present work will make it clear that
integrals more complicated than or essentially different from those in (1°.1)
are not mnecessary, in so far as our main interest is in functions monogenic
(that is, possessing a unique derivative) in one sense or another over suitable
measurable sets.

Results regarding representation of functions as integrals (1°. 1) are involved
in Theorems I.1, 2.1, 2.2, 2.3, 3.1. Theorem 2.1, of which Theorems 2.2, 2.3
are Corollaries, relates to classes of functions C{g(»)} (Definition 2.1). The in-
troduction of such classes is made plausible and natural in the light of the devel-
opments relating to continuous extension functions and leading to Theorem 1. 2.

In section 4 an investigation is given relating to conditions securing mono-
geneity and existence of derivatives up to any assigned order: monogeneity on
a set that may be without interior points does not necessarily imply analyticity
in the set.

Outside of representation theorems, various problems of uniqueness constitute
the most important and, incidentally, the most difficult part in a theory, such
as developed by the present author. The properties of uniqueness are suggested
by various properties of unigueness which the class of analytic functions possesses.
A non analytic class of functions having a particular property of this type could
appropriately be termed 'quasi analytic’ in a suitable sense. However, traditionally
the term ’'quasi analytic’ has been applied mostly to classes of functions posses-
sing the property of unique determination of the members f of the class, involved,
by the values f (v=o0,1,...) at a point z,. Sections 5,6, 7 relate to uniqueness
properties.

Preliminary to the study of uniqueness properties (P), related to sets of
positive planar measure, we establish a Theorem 5.1 on analytic functions, which
is along the lines of a similar result due to BeurLiNG and utilized by him ina
study of such properties for certain functional classes consisting of limits of
rational functions. In Theorem 5.2 we establish conditions securing properties
(P) for limits of analytic functions. The same problem for integrals (1°.1) is
involved in Theorem 6.1, while for limits of sequences of rational functions,
converging uniformly on a closed set G, the problem is treated in Theorem 6. 2.

! All the sets mentioned are Lebesgue measurable. Unless the contrary is implied integrations
are in the Lebesgue-Stieltjes sense.
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Uniqueness properties (C) relating to arcs are studied in section 7. Con-
ditions securing properties (C) for limits of rational functions are given in
Theorem 7.1. The method is of the type used for a similar purpose by J. Worrry.
We go further and in Theorem 7.2 establish uniqueness properties related to
denumerable sets, the functions studied being expressible as certain limits of
rational functions.

The leading idea in (T,), (T,) and the present work is that we study func-
tions of a complex variable which are not necessarily analytic but which at the
same time are sufficiently specialized so as to come within the scope of classical
analytic tools (like Lebesgue-Stieltjes integration). It appears that conditions of
monogeneity in one sense or another (and, in fact, in a rather generalized sense)
over sets in the complex plane, which may be without interior points, are the
conditions which give the desired degree of specialization. On the other hand,
the classes of functions, so obtained, are of such great vastness and the possi-
bility of classifying these functions according to various uniqueness properties
and of subsequently studying them is so wide that there appears to be on hand
a very extensive field for new investigation.

1t was Borer who, inspired by Cauchy’s point of view in the field of ana-
Iytic functions, developed a theory of functions, now termed 'Borel monogenic’,
for which he .established a fundamental contour integral formula amalogous to
Cauchy’s integral formula. On the basis of his formula Borel developed a theory
of 'Borel monogenic functions; these, incidentally, form a class of functions
quasi analytic in the traditional sense. Borel also gave an indication that two-
dimensional integrals in place of contour integrals may be fruitful for the further
advance of the theory. Under the inspiration of Cauchy and Bovel the present
author was confirmed in the conviction that the foundation for the theory should
be an analogue of Cauchy’s integral formula. Hence the representations in terms
of two-dimensional Lebesgue-Stieltjes integrals (1°.1); theorems relating to such
representations were already given in (Ty), (T,). Accordingly, the representation
theorems of sections 1,2,3 are designed to serve as the basis of our theory,
just as Cauchy’s fundamental formulas serve effectively as the basis of the theory
of analytic functions.

It has been pointed out in (T,) and (T,) that functions representable by
integrals (1° 1) are also representable, under certain rather wide conditions, in
the form
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(A) lim f.(2) (f+() analytic)
for z in suitable sets &, which could possibly have no interior points. In (T,)

conditions have been found under which functions of type (1° 1) are expressible
in suitable sets G as

o v 4 Qy, m,, A
(B) lim[ . i ]

v e — Cy,1 g — Oy, 2 £ — av,m,,,

under certain other conditions functions (1° 1) may be expressed as infinite series

(©) 2 & (] a.} convergent).

In other words, the various classes of monogenic functions for which represen-
tation formulas in terms of integrals (1°. 1) have been established have, for that
same reason, also representations (A), (B), (C), valid under suitable conditions.
These conditions for (A), (B), (C) are of increasing order of restrictiveness — in
the order stated. For this reason, when we study a class of functions with a
certain uniqueness property (X) and note that the study can be based on either
one or all of the four types of representations,

(1°.1), (4), (B), (C),

we at the same time observe that the use of these representations is of decrea-
sing degree of desirability in the stated order. This remark is made from the
point of view of the generality of the results obtained. The study of functions
with a particular uniqueness property requires a specific method. It may happen
that the available method does not conveniently apply to integrals (1°. 1); we
then apply it, if practicable, to the representation (A); if this is not practicable,
we apply it to representation (B), provided the method is suitable for that
purpose — and so forth. Also, as is to be expected, in some instances results
obtainable, for instance, for (B) will be simpler than those obtainable for (A)
and (1°.1).

The above considerations make apparent the connection between the 'uni-
queness’ sections 5,6, 7 and the 'representation’ sections 1,2, 3; these considera-
tions also explain why certain classes of functions have been made a subject of
study in sections 4, 5,6, 7.
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In order to follow the terminology in the use of integrations and of additive
functions of intervals and of sets reference to a book of S. Saks', in the sequel
referred to as (S), will be helpful.

1. Problems of Representation for General Monogenic Funetions of (T;)
and Concerning Extension Functions. In (T,) we introduced functions which we
termed 'general monogenic’. The first development established for such functions
was our representation of them with the aid of a double integral. The definition
of ’'general mronogenic’ fumctions as well as this integral representation will be
now put on a more rigorous basis. With this purpose in view, let us recall

certain pertinent facts about integrals

1

(1) vin= [ [ 1ox(575) pPrazan (=i P=a)

where 2 is a domain (open). If w(P) is continuous bounded then V(M) has
continuous first order partials which can be obtained by differentiating under the
integral sign. If ¥ (P) has continuous first order partials or satisfies Holder's -
condition or the more genera.l Prrrinit® conditions then V., Vy,, exist and
AV =Vyo+ V,y=—2ny(M). A generalized Laplacian 4% is an operator
with the properties: (1°) if ws, s, ty y eXist then Su = ug . + 1y, y; (2°) if Au, Sv
exist then A(hu + kv)=hdu + kdv; (3°) if v has a maximum at P then
Au(P) < 0; (4°) Poisson’s formula holds. The latter condition amounts to the

assertion that, whenever ¢ is continuous in £, one has
1
(1.12) J[fflogmw(l’)dgdn] 2 (M)

for M interior a circle y, whose closure lies in 2. A simple generalized Laplacian

is due to ZamrEmMBAY,

Auw=1lim b2 [u(c+hy) +ule—hy)—2u(e,y)+ ulx,y+h) +ulx,y—h)—2 u(z,y).

h—0

v 8. 8aks, Theory of the Integral, Warszawa-Lwow, 1937.

2 PrrrINt, Les dérivées premitres et secondes du pofentiel, Acta mathematica, vol. 31 {1908},
Pp- 127—332; also Journ. de Liouville (190g), pp. 127—223.

3 See BRELOT, Mémorial des Sciences Math., Fasc. XI; in particular, pages 3, 14, 13.

¢ ZAREMBA, Contribution & la Théorie d'une équation fonctionnelle de la physique, Rendiconti
di Palermo, vol, 19 (1905), pp. 140—150.
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Beevor established that if « has a particular generalized Laplacian A,u,
continuous in a domain w, then all generalized Laplacians of # will coincide with
Ayuw in w. It is also known that Green’s formula

! P
(1.2) ff(¢4w~w499)dCdn+j(w%—wﬁ)ds=0
D

is- valid whenever @, ¥ have generalized Laplacians continuous in a domain D)
containing the closure of D.
Given a function wu(x,y), defined and continuous in a bounded closed set F,

suppose that the derivatives

(1.3) Uy Uy, Uz, Uz, y, Uy,y

exist in F in the sense of WHITNEY' and are continuous in F, while
(1.32) Uz,e + Uy y =0 (in F).

Let 2 be a bounded domain containing F. Let U be a continuous 'exten-
gion’ of # to & with the properties:

U=u, Us=1uz, Uy=uy, Usz=ttg,x, Up,y=the,y, Uy y=1y,y

in F'; on the other hand, U, U,, ... U, , are continuous in L.
We form the function
w:—_ l];r,m + Uq,y;

Y will be continuous in £, while
lp=ux,x+uy’y=:0 (in F).

With o denoting, let us say, the generalized Laplacian of Zaremba, Poisson's
formula (1.1a) will hold, yielding

1 eao | —2ayp(M);
(1. 4) JffIOgMPw(P)dsdn—l by
v
We now form the function
(1.4) bes) = Uy +55 [ [loggrpuw(Pazan
ke

! H. WHITNEY, Analytic extensions of differentiable functions, Trans. Am. Math. Soc., vol. 36
(1934), pp. 63—89.
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On taking o of both sides, in consequence of (1.4) it is inferred that
dh=4T—yp(M)
Now, by hypothesis, Ug,+, Uy, exist in Q. By virtue of condition (1°) one has

4[]: Ua-,z + Uw,y
and, by definition of v,
AU =1y,
thus
4h=o0 (in 9).
Whence h is harmonic in 8.

In consequence of the above considerations we state the following.

' Theorem 1.1. Suppose u is the real part of a general monogenic function;
that is, u s defined in F and has first and second order partials in F, as described
in the statement withe® respect to (1.3), (1.3a). One then will have the following
representation formulas, for (x,y) = M in F,

I I -
(1.5) wley) = b o) =3 [ [roggpwPlatay
vCF
[P=(,n). where h(x,y) is harmonic in K, y is a circle containing (x,y) in its
interior, while 7§ < Q; W{P) is conlinuous in Q and vanishes in F: in fact,
w(P):" []:r,x -+ lry,y,

where U is an extension funclion of u.

We say that a function f(z) of a complex variable z=x + iy is general
monogenie in a closed set F (< a bounded domain ) ¢f

f(Z) = “(xv 9‘) + 7’7/(3"" ?/):
with u(x,y) from the above theorem and v a harmonic conjugate in F of u. The
meaning of the latter expression is that v is defined in I and that the derivatives
(in the sense of Whitney) v, v, exist in F and that one has
Ve == Uy, Ty= U (in I).

In view of (1.35) the foliowing is the representation, in F, of a function f{z)
satisfying the above conditions:

(1.6) fO=al) + = [ [wemlogc—wddy =g+ iny

yCF

here a(z) is a function analytic in .
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We shall have
W (p) — 0N 4 L "y (g, )
(1.6 a) S =ua (6>+2nfj#z%zv Agdn
yOF

at every limiting point of F.

It is of interest to observe the connection between general monogenic fune-
tions and subharmonic functions'. Let £ be open connected: It is known that,
if at every point M of £ one has

1

(1.7 w(tt) == [ [1og g w(p) azan (=),

where cirele y eontains M (j < 9) and where P (P)= 0 is bounded measurable,
then #(M) is continuous and subharmonie.
In (1.5) Y(P)= U.,. + Uy, is continuous; on writing

W@+ wd)). w(P) =2 (—p@ + D),

(SRS

P (P)=
oue has
Y(P) =y (P) — (D), y1(P)=o, y(P)zo.
Accordingly, by (1.4")

U M) = hiz,y) + U2(M) — Up(M),  Us(M)=——= f f log 575 W:(P) dE dn

(in £); here, in consequence of the remark with respect to (1.7), the U[(ZII)
(¢ = 1,2) are continuous subharmonic in Q.
Thus, the real part w(x,y) of a function general monogenic in F is of the form

(1.8) u(M)=h(z,y) + U, (M) — Uy(M) (M = (z, ),

Jor M in F, where hix,y) is harmonic and U,, U, are continuous subharmonic in
Q> F.

In' the remainder of this section we shall study continuity properties of a
continuous extension (over a bounded connected domain K) f*(z) of f(2) when
continuity properties of f(z) (over a closed set F' << K) are given. This study
culminates in Theorem 1.2. This Theorem, as well as the developments leading
to it, will make plausible the definition of an extensive class of functions in
section 2, a class for which we shall establish an integral representation formula.
Without Theorem 1.2 the introduction of the mentioned class of functions might

appear quite artifical.

! Regarding subharmonic functions see, for instance, Brelot's pamphlet in Actnalités Scientifiques
et Industrielles, Paris,



Problems of Representation and Uniqueness for Functions of a Complex Variable. 105

For our purpose of the several known methods of construction of continuous
extension functions the most suitable one appears to be that of H. Bour'. The
pertinent facts with respect to this method may be expressed as follows.

Let h(2) be continuous over F,

(r.9) o=hi{z)=1 (in F);
with S{¢,7) denoting a circle of center z and radius 7, form the function v (z,r)
such that

(1.9) Y (z,7) = upper bound of h in FS§(z,7),

unless F'S(z,7) = o, when w(z,7) is defined as zero; on letting

o(2) = distance from z to F,
one has
ele)#o (in K— F).

For z in K — F define the funection

(33

9(2)

_ L Nd»
(I.Qa) ‘P(~/) QZZ ',U(Z )d ’

{z

which is continuous in K — F'; in fact, one has

(r.9b) leled) p(er) — ) ple)| = 3|2 — 2] (2,21 in K—F),
while g¢(z) is continuous in K-- F and is therein different from zero. Also
(1.9¢) le(e) —eler)| = |2 — 2| (6,2, in K—TF).
Finally, there is defined a function
h{z) (in I")
(r.9d) Hz)= [ ’
AN PTE (iv K — )

and it is shown that H(z) is continuous in K; H(z) is accordingly a continuous
extension of h(e).
Proceeding with the aid of Bohr's developments, as deseribed above in
connection with (1.9)—(1.9d), we write
e(e)(pley — 9@) = (elep pley) — e P(2) — e (21) P (1) + e(2) ple);

thus in consequence of (1.9b) and (1.9 c) we obtain

IQ(Z)(¢(Z1)_¢(3))|§3|3—51| + |¢(51)|[9(3)_9(51)|§3|3*51|+ |99(?1)H3"51|

! See, for instance, CARATHEODORY, Vorlesungen iber reelle Funktionen, 1918, pp. 617—620.
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for 2,2z, in K — F. Inasmuch as o S ¢z, 7)< 1 (cf. (1.9), (1.9)), from (1.9a) it

follows that
o=plz)=1 (for z in K — F).
Hence

(1. 10) lple) — o) =422l (6,2, in K — F).

Inasmuch as h(z) is continuous in F, F being closed, given ¢(> o) there
exists 3% (> o), independent of 2,2, so that

(1.11) [ B(2) — hzg) | < e

for 2,2z, in F such that |z —z,| < 37%. According to Bohr a consequence of
such a hypothesis would be

(r.11") l@(2) —hiz)]| < e (2o & frontier point of F)

for |2 — 2,/ <7 and z in K — F, which on taking account of (1.94d), (1.11)
leads to the conclusion

(1.1148) |H(z) — H{zg) | < &

for all 2z such that |2 — 25| <7 (2, a frontier point of F).

Consider the case when F has interior points. Then a point zy of ¥ which
s not a frontier point is center of a circular domain S(z,,0) (of radius o) such
that

8 (z,,0) < F.

Inasmuch as I" is closed, o in the latter ralation may be taken as the upper
bound of all radii of circular domains with center at 2z, and consisting of points
of F. If ¢ =7, then by (1.11)

(1.12) |H(z) — H(z))| < ¢
for all z such that |z — 2| =<7. Suppose now ¢ < 7. Then in view of (1.11)
(1.124a) [H(z)— H(zg)| = ¢

for all z in F such that |z —¢,| <7 Let z represent a point in S(zy,7) in
K — F (necessarily o < |2, — 2| =<7). Consider the set F. . of points of ¥ on

Ry, &

the segment (z,,2) and designate by 2’ the point of F. . nearest to z. Such a

s ¥

point exists because F}, . is closed; moreover,
lzg—2'| = o

Necessarily 2” will be a frontier point of F, while



Problems of Representation and Uniqueness for Functions of a Complex Variable. 107
|z —z|=n—0<n.

With 2’ playing the role of ¢, in (1.11a), we obtain

(1.12b) |H(z) — H()| e (z in S(,n), in K—F).

Now |H (') — H(z,)| = ¢ in view of (1.12a). Hence by (1.12b)

(1.12¢) |H(z)— H(z)| = |H(e) — H({Z)| + | H()— Hlz))| = 26

for # in K — F such that |z — 2,| < #. Thus in consequence of (1.12a), (1.12¢)
one has

(1.124) |Hz) — Hz)| < 2¢ (ifo < m)

for all z such that |z — z,| <. This, together with (1.12) and (1.11a), ¢émp-
lies that
(1.13) [H(z)— H(zo)| = 2¢ (2o any point of F)
Jor all z such that |z — 2,| < 1.

Continuity of h(2) in F may be expressed by saying that there exists a
function »(u), independent of z,2,, continuous for » > o0 and such that

r(u) > o0 (monotonically as u — 0),
that

(1.14) h(e) = ke | < (]2 — ) (all 2, 2 in F).

The equation v =7(x) has a unique inverse # =7r_; (v), tending to zero mono-
tonically with ». With the aid of the function r(u) we deduce that 5 (involved
in the statement with respect to (1.11)) may be taken as

(1. 13) n=§hdd

In fact, an inequality
le— 2] <39 =r-1(e)
would then imply that
r(|z—z|) S r(r-1®) =-e.

Inasmuch as (1.11) implies (1.13), the following may now be asserted. If
h(2) satisfies in F a continuity condition (1.14), then

(1.16) | H(z) — H(zo)| = 27 (3|2 — 2,)) (2, any point of F)
Jor all z in K.
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To verify this we note that an inequality |2z — z,| < 5 will imply

r(3lz—gl) Srlr@)=¢

80 that (1.16) becomes (1.13).

Let 2,2, be in K — F. Designate by 2z, a point in F nearest to z: then

e(2)=]ez—2,]. We have

H(2) — Hlz) | = | H(2) — H(zo) | + | Hizo) — Hzy)|

and, in view of (1.16).

|H(e) = Hl)| =273z —2l) + 27 (312 — %)),

Since
|2y~ 2| S leg— 2| + |2 — 2|
we have

IH(Z)—H(51H§27'(3|3_30l) +2r(3le =zl + 3le—z])=r

By virtue of (1.9d) and (1. 10)

|H(z)— Hiz) = | 9(e) — p o) =tz =2l

Hence
(1,17) |H{z) — Hz)| = 1,

where ry; is defined as the least of the values 7, 7,.
We define a function ¢(u) (> 0), for o < u =< u,, so that

(1.18) r*(u)zr(g;gi(iu—)) + 7-(35%;)-%3%).2_29(14),
while |
1mﬁb:o

in consequence of (1.18) we then shall have
lim go(u)=o0

For a fixed pair of points 2,2, in K — F one hag either

(19 = olle =g )
or

o . |z — 2|
(=) 2= al<gm=an

(2,2, in K — F),

{as w -~ 0);

(as u —~ o).
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On the case (1°), in view of (1.18) one has
1 = 40u) = 21" (u) (w=[z—2]).

When (2°) takes place we have

r,ézr(;;ﬁ) + 21*(3§%+3u)

and, by .(1.18).
1 = 27" (u).

Hence, in view of the definition of 7, (in (1.17), one has r; < 27*(«) and
(1.19) |H(e) — H(z) [ = 27" (| e — 2,])
Jor all 2,2, in K— F.

Let 2,2, be any pair of points in K. Then either at least one of the
points, say z;, will be in F and accordingly (1.16) will hold with z,=2,; the
alternative is the case when 2,2z, are in K — F; (1. 19) will then take place.
Accordingly
(1. 20) | H(z) — H{z) | =7 (|2 — 2,])

Jor all z, 2z, in K; here v’ (u) is defined for u > o as the greater one of the values
(1.204a) 2r(3u), 27*(u).

Consider the case when
(1.21) r(u) = ku® o< e=1)
Then, in accordance with (1.18), ¢(u) is to be such that

)=k 3%u[om* (u) + (e~ () + 1)°] = 2 0 (u).
If we take

(1.22) ofu) ="buf [ﬁzljcf1b>o],

-

it can be shown that b can be chosen suitably small so that +*(u) = 2¢(u). In
fact, one has

ANe
(1.22a) 7‘*(u)5k3“ua—i~§)2—5%@)—> 2k3%bul.

It will suffice to take b so that the last member above is equal to or is greater
than 2¢(u) (for u > 0). Whence b is to satisfy the inequality

(1.22D) b=0b =[3k]1+a7,
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With ¢(u) thus defined, from (1.22a) it is inferred that
(1.22¢) * () = ko uf {ku=k(z3) [t + (1 + bu(f)“]},
where 4, is from the inequalities
0 < = uy,
one may take u, as the diameter of K. By (1.21)
(1.22¢") 2r(3u) =2k3%u".

In view of the statement with respect to (1.204a) the above relations imply that

[24

(1.224) |H(e)— H(z)| <k (@)| 2 — 2, | (2,2, in K),
this being a consequence of (1.21); here
k(c) = greater one of 2k, 2k3® uoi%.
If a real valued function f(z) is continuous in F we have
(r.23) |f@e) — fled| = elle — 2 ) (¢,2, in F),

where ¢ () is modulus of. continuity (in F) of f(¢). Now

—L=fl) =2 (in F; —A <4,).
On writing "
o flg) + 4,
h(z)—~———————ll+li )
one has
osh{z)=1 (in F)
and v
’ I . .
(1.23) [h(e) —h{z)| = clle —al)=r(le—2l) (¢, in F),
A+ Ay

where the last member is introduced in accordance with (1.14). Let H(z2) be
the extension of k(z), as described above. The function

Fle)= {4+ L) H() —
will be an extension for f(z) and will have the property
(1.232) | Fle) — Fle)l = (4 + 2)0" (|2 — 2,]) (¢,2; in K),

where 1’ (u) is a function constructed on the basis of
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as described previously.
The statement with respect to (1.20), (1.20a) implies, of course, more than
has been inferred above. By definition of »*(u), given in (1.18), one has

(1.24) r*(uw)=2r (z ﬁu—))

for any ¢(u). Hence the inequality (1.18) will hold if

(1. 25) (3 ) = et

There is no essential loss of generality in assuming
r(u) <3 (0 < u = u);

in fact, this can be always secured by taking w,{(> o) suitably small. We

then have
u

3
r(u)

v

U

and, in view of the monotone character of r(u), the function

(1.252) o (u) = r(u)
will be seen to satisfy (1.25). Hence in consequence of (1.18)

o . M — P* = o 3u .
(1.25Db) 7 (u)§21(39(u)+ 3u) R* (u) 27(T(u)+3u)

In accordance with the text in connection with (1.20a) one may then define
r (u), for 0 < u =< u,, as the greater of the values

27(3u), 2 R*(u).

Whence the modulus of continuity involved in (1.20) may be taken as

(1.250¢) r'(u)=4r(73(;—‘)+3u),

which is a perfectly general formula. This is useful only if u/7(u) > 0, as u — o.
With respect to the above result it is to be noted that in special instances
of r(u) better determinations for »'(u) can sometimes be obtained. This is the

case in the situation when
r{u) = ku® o< e=1)
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In fact, if »(u) is such a fuunction, the relation (1.25c) will yield
v (u) = kput—oe (ke > o).

This conclusion is not as good as the one obtained previously. However, for
small values of ¢ the discrepancy becomes, in a sense, negligible.

Theorem 1. 2. If a real valued fumction f(2) has r(u) for its modulus of
continuity in a closed set I' (F' contained in a bounded domain K), then an exten-
ston function F(2), continuous over K, may be formed so that the modulus of conti-
nuity of F(2) over K is of the form

v (u)=c*r (i—li + 3 u)-

7 (u)
In particular, if r(u) = c*u*(o < o < 1) one may take
o) E o B -2 ).
v (u) = " u (ﬂ I+a)

1. Representation Theorems for Continuous Functions. In the sequel '¢n-
tervals’ will signify rectangles, in the complex plane, with sides parallel to the
axes. If I is an interval, (I) will denote its boundary (see (8). Let K be a non
degenerate fixed interval.

Let f{z) be a complex valued function of which we may think as defined
originally only in a closed subset F' of K and which is uniformly Lip. 1 in F'; thus,

(2.1) [ fle) —f&) = Ale— 2| (2,2 in F).
We extend f(z) continuously -over XK, say by the method of Bohr. Such an ex-
tension will still be designated by f(z). By Theorem 1.2 the relation (2.1)
will imply

(2.2) |l —fle) = 4|z =2 (2, in K)
for the extension function. The continuity of f(z), implied by the above, is too
weak’ to lead us to expect a representation

(2.3) f(g):h(g)_‘z_:ﬁff%t:(gg
'O

where ule) is a complex valued additive function of sets {B} (i. e. Borel sets),
while h(z) is analytic in K. If, however, we examine in some detail the conti-
nuity properties of a Bohr's extension function in the case when (2. 1) holds
(see the text in section 1 leading up to Theorem 1.2), it is inferred that
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(2.3a) |fle) = f(&) | = dole—7| (zin F; ¢ in K)
and
(2.3b) |fle) —fl&) | =bn|z — 2|

when 2z and 2 are in K — F' and are such that

(2.4) 8z, F) =

here the designation

stands for the distance from z to F.

Intuitively one would expect that f(z) will be susceptible to the desired
representation, provided that the factor b# in the second member of (2.3b) is
replaced by e (n), where ¢(n) tends to + o, with #, sufficiently slowly. We are
accordingly brought to the following precise Definition.

Definition 2.1. It will be said that f(2) is of class Clo(n)} if fl2) is con-

tinuwous in K,

(2. 5) |fle) —fl&) ] = 4]z — 2| (¢ in F, 2 in K)
and
(2.52) |£e) = fl) | = en)|e — 2|

for 2,2 in En. In this connection En is the totality of those points § in K for
which 8(, F) = nL.

Naturally the sequence ¢(n) (= 1,2,...) may be considered as monotone
non decreasing.

Our problem can be now formulated as follows. To determine a law of in-
crease of the ¢(n) so that the f{2) of the corresponding class Cf{e{n)} can be repre-
sented in the form (2.3).

Inasmuch as we want to stay within the range of Lebesgue-Stieltjes inte-
gration, ¢(x) will have to be chosen so that the functions of intervals u(I), of
which the function u(e) is the extension, is of bounded variation. At this stage
we might remark that whenever a certain property is assigned to a complex
valued function of intervals or sets {B}, it is to be understood that the real
and imaginary components of such a function have this property.

8632046 Acta mathematica. 78
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We define the function

(2.6) u{)=B(I)+ <A f2)

(1
of intervals 7 in K. Since f (¢) is continuous as a function of z, the additive
functions of intervals u(I), B(1), A(I), are of course continuous, that is they
vanish with the area of I. With f(z) < C{e(n)}, offhand there is even no assur-
ance that the above functions of intervals are of bounded variation.

In the sequel a helpful role will be played by a paper of J. H. Binngy!, in
the sequal referred to as (B), in accordance with which the following may be
asserted.

Let K be an interval as before or, more generally, a simply connected
bounded domain and consider the equations

(19 [(0@ypdy + 0@ pdr)=4"(0), [(—b0@ydy+ O, ydz)=B (o),

8 &

where s are simple closed rectifiable curves in K with ¢ denoting the domains
interior s; @, 6 are unknown functions of points, while A’(s), B (¢) are the
values on o of given additive reaal valued functions of {B} sets e < K. Only
those curves s are considered for which A'(s)= B'(s)=o0. These equations are
satisfied by

(2°) D,(M)= g ffMP[COS (MP,y)d B (ep) — cos (M P,z)d A (ep)],

[f [eos (M P,z)d B (ep) + cos(M P,y)d A (ep)]

on all those simple closed rectifiable curves ¢, in K, on which the functions

en b= [ [ e, ve= [ [

are L, (i. e., Lebesgue integrable) with respect to arc length; here «(e), B(e) are
additive functions of {B}-sets,

« (e) = total variation of A’(e),

(2.7) ,
B(e) = toal variation of B’'(e).

' J. H. BINXEY, An eiliptic system of inlegral equations ..., Trans. Am. Math. Soc., vol. 87
(1935), pp. 254—265.
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If one puts
fle)=@(x,9) +0(x,y), 1 (0)=DB(o) +i4'(0),

equations (1°) are seen to be equivalent to

(3°) [fl&)dz = (o),

the solution of which is

(4°) f(z)=h(z)+'2—I;ffziflpei“cly'(e11)
"

(h(2) analytic in K; M = (x,y), with e =/ (M P,g).
The above developments of (B) can be modified as follows. Let { be a
complex variable denoting the point P. One has

3 E—a .
Cm o= P, t—rm g —]e ) Zi)r o feie

Hence in (4°) we may put
MP=—i(f—2)de,
obtaining

(5°) sl =hig -5 [ [ 2l

L—e¢
K

as the solution of the equation (3°) (on all curves s as described in connection
with (2. 7).

We now go back to our function u = B + 7 A introduced in (2.6). In view
of the above and since

B, A8
are set functions vanishing on frontiers of ’intervals’, we infer that the equation
(6°) [Y@de=p(D)
' {n
has a solution
0 e 1 d p (er)
(7" vio=— o [ [§
K

on all boundaries (I) of intervals on which a(e), b(z) of (2.7) are L, with respect
to arc length. Suppose the latter condition has been secured for all intervals;
then on every frontier (I) (intervals I < K) the function Y (2) (7°) and the given
function f(z) will satisfy (3°), where u’ =u. Accordingly
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(8°) f (Y2 —fe)d

)

for all intervals I < K. By Morera's theorem and by (7°) we then would obtain
the representation (2.3).
Consider an interval I with vertices

Zo, Zo'l"b, Zo+b+z.a, Zo+ Z‘a

(@> o0, b> 0) where, for instance, a <b. Let (I) be the least integer such that

We express I as the sum of #» = n(J) equal intervals,

(2.8) I=Il+Ig+"'+In,
~where Ij(j=1, ... n) is the interval with vertices

, b b b . b .
(2.8") (,7—1); Zoti s ati o tia 2o+ (J 1)n+za.

If b > a we let m(I) be the least integer such that

and express I as the sum of m(I) equal intervals I; with vertices
(2.8") o +ili— 0L, st b i~ f bt i, 2+ ij L
. ¢ 7n‘ [ m} 1] m, o m

(j=1,...m). Necessarily
n(I), m{I) = 2.

Whence the ratio r of the longer side to the shorter for the interval I; satisfies
(2.9) 2>r=1.

We now introduce the Definition.

Definition 2.2. Given a figure R (that is, a sum of a fintte number of closed
intervals), whose component tntervals are non overlapping and non degenerate, it will
be said that R has been regularized if every component inferval, for which the ratio

r of the longer side to the shorter exceeds 2, has been broken up into a number of
equal intervals for each of which the ratio satisfies (2.9).
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Inasmuch as p(I), being continuous as a function of intervals, vanishes on
segments parallel to the axes, the component intervals of any figure in this
section may be considered to be all non degenerate. With this in mind, we may
consider all figures encountered in this section as susceptible to regularization.

Let I be an interval, the length of one of its sides being a and the length
of another (non parallel) side being b < a, while

(2. IO) 1 g ==

Suppose that for some fixed 2" in I one has

(2. 10') lf(e) =f(&) | = e|le — 2|
for all z in. the closed 7. On writing
fle)=f(&) + (e, &)
and noting that , ,
lvle, &) = elz — 2],

for the indicated values z, 2, we infer that

lu(D)]=1[fl)dz|= |([v(z, Z)dz|

{1)
sofle—2|ldz| = eclza+ 2b),
(1)

where ¢ is the diameter of I. Now by (2. 10)

c<bV_, céaV;;

hence
(2.11) e <qelI| (g=205+V2),
where |I| is the area of I; similar inequalities will hold for | B(I)], | A(I)].

If after regularizing a figure R, K, each of the component closed non over-
lapping intervals Iy, ... I, contains at least one point of F, we have

(2.12) |A(R)]. |BR)|, [u(R)| < qA|R|.

In fact, let 2z be a point of F' in I;; then on taking account of (2.5) and of
the result (2. 11) it is inferred that

lw(D)| < ¢4 I},
lu(B)|=|Du@B)|<qd | L]|=a4|R|
7 j

Here | R| denotes measure of R in accordance with the notation in (S).
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Similarly, on taking account of (2.5a) ¢t is deduced that

(2.12a) lu(R)| < qe(n)|R|

Jor all figures R in Ey.
Let R be a regularized figure in K. We have

(2.13) R=R, + R,,

where R, is the figure consisting of all those intervals of R which contain at
least one point of F on the boundary or in the interior. By (2. 12) one will have

(2.13a) |u(Bo)| < qA|R,|.

The intervals of the figure R, lie, together with their boundaries, in K—F;
R, is regularized, the decomposition being

(2.14) R, =X 1,

where the I; are intervals. Unless the contrary is stated all the intervals are
implied to be closed.

Consider an interval I, < K — F, belonging to a regularized figure. We
shall say that I is divided when I is bisected by a vertical segment and the two
resulting intervals are each bisected, in turn, by horizontal segments. The four
intervals so obtained are similar to I; that is, each of them has the same ratio
of the longer side to the shorter as is the case for I (a square, if I is a square).
It is observed that if some or all the intervals of a regularized figure are di-
vided the resulting figure is regularized. Continuing with the fixed interval 7,
introduced above, we associate an integer »' such that I has points in E., but
has no points in Ex_;. The set E,_; could possibly be a null set. It will be
said that an interval has property Pn if the interval lies in Epyy — Ep_y. If I
does not have the property Py we divide I, obtaining intervals

’ 7
117 Il )

where the I; have property Py, while the /i’ do not have this property. It may
happen that no I has points in E.. One then has a decomposition of I into
stmilar intervals of which some lie ¢n Eyp 41— Ey_1, while the others lie in K_—Ew;
such a decomposition of I will be termed 'proper’. If the I, Iy do not con-
stitute a proper decomposition of I, let the I;” designate the intervals amongst
the I/ which have points in F.. An interval I{ will have points in K — Ep1.
We divide each I, obtaining intervals
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I, I,

where the I; have the property Pn, while the I; do not have this property.
If no I has points in Ey, the decomposition of I, obtained so far will be proper.
1f there are I; with points in E, we let I,” denote those intervals of I which
have points in E,,. We continue the indicated process of consecutive divisions,
at each step applying it to those intervals which do not lie in Epp; — Ew—; and
which at the same have points in F,', until after a finite number of steps we
obtain a proper decomposition of Z. The fact that a finite number of steps will
suffice follows from the circumstance that the intervals that are subjected to
divisions are those which at the same time have points in K— Ey4q and Ep.

Let the
1(;), I(‘;’)

be the intervals presenting a proper decomposition of I, where the I{ are in
Epyi— Ew—1 and the I9 are in K— Ey. We obtain a proper decomposition

{1 2
l ) !( )

where the I’ are in Ly ., — E,, while the I9 are in K — Ey-;. Continuing
this process, after a finite number of steps we obtain a decomposition, valid for

any I < K — F,

(2. 15) I=3IY+ 319+ 219 + -

{(finite number of terms), where for a fixed j the I') are intervals lying in
By — By sjo;

The intervals in the second member in (2. 15) are similar to I.
We now turn to the figure R,, involved in (2.13), (2.14). Since the inter-

vals of R, lie in K — F and R, is regularized we may apply a decomposition
(2. 15) to each of the component intervals of R,, obtaining

(2.16) R,=R" + R® + ...

(finite number of terms) where the R™ (»=1, 2,...) are non overlapping re-
gularized figures such that

(2~ 163') R(Iy) < E’l'+1 - r=—1 (/” =1I2,.. ')7

here we put E,=null set.
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On taking account of the italicized statement with respect to (2.12a) we
infer that, in view of (2. 16a),
|u(R¥)| < qo(v + 1)| R¥].
Whence by (2. 16)
le(B)] <q el + 1) RW].

Consequently from (2.13) and (2.13a) it 75 deduced that
(2.17) lu(R)| < qA|Ry) + ¢ el + 1)|R™| = S(R)

Jor all regularized figures R in K.
Now
m (Ew-‘y—l — E,._l) =m (Ey+l — E4) + m (Ev —-— Ey_1).

Thus, by (2.16a) and (2. 17) formally we obtain

(2.178) SR)=qA|K|+ g el + 1)m(Eps:— E)

r=1

+q e+ ym(E,—E,_ 1)< q(A| K|+ e(2)mE) + 2¢T,
r=1
(2.17D) = el +2)m(Ew1— L),
y=1
inasmuch as ¢(»+ 1) = o(v + 2). This enables us to formulate a condition securing
bounded variation of the functions of intervals A(I), B(I), u(I); this condition is
that the series I' (2.17b) be convergent. Herewith we assume that the class C {o (n)}
of functions under consideration is such that r converges. Accordingly, a(2), b(2)
in (2.7) may be defined with «(e), §(e) from (2. 7'), where 4’ (¢)= A4 (¢), B’ ()= B(e),
integrations being in the Lebesgue-Stieltjes sense.
We observe that

(2. 18) | Bl = |R], | RV| + | R®] + - =|R|.

By (2.17) for any j > 0 one has

S(R)= g4 |R|+q el + )] B + G5(R),

v=]

where
Gi(R)=q Qe+ )| RV | = ¢ Dolv + 1) m(Evsr — Eym),

»>j y>F
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With the aid of the relation subsequent to (2.17) it is inferred that
|G5(R)| < 2q Dol + 2)m(E,sy— E,)

r=j
(compare with (2.17b)). In view of (2.18)
(2.19) SIR) = qAIRI+ gl + DE®| + |R? |+ + | BI[
+]|GR)=q(d+eG+ )R]+ 29 el + 2)m(Ers — )

vzj
for all figures R < K, j being at our disposal.

Given ¢(> 0), no matter how small, we choose j =j(¢) so that

2q e+ 2ym (B — E) < g

vzJ(e)
We then define 5= 17(¢) so that
qld + oo + )]y <§.

In view of (2.19) it will follow that
S(R)< ¢
for all figures R for which |R| = 5(e). Hence by (2.17) the function of intervals

p (1) is absolutely continuous.

Let
p+in h+in (p, h,n real; p<h)

be a rectilinear segment S in K and let I, (not to be confused with intervals so
designated previously) be the interval containing S’, whose boundary consists. of
portions of lines

(ro > 0, suitably small so that I, < K).

Lemma 2.1. With the notation just given ¢n view, one has

h
dz dzx . ,
— — << of o —_ .
7@—_3' Iz €|—~f|3 é.I____clo,,w (e=z+in;, ¢ >o0)

»

foriin I, — Ly, v=2,3,....
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To prove this we first note that

| +in—C]|+RE+i9—10)
[p+in—=C|+Rip +in—10)

7{8) =log 2(f), =(0) =

I

here N ... designates 'real part of ...". Now
I'v - -I'v+1 = Iv,l + I'v,‘z + Ir,3,
where 1, 1, I, 2, I, s are parts of I, — I,,, specified by the inequalities

p=RE=h, RE>h, RE < p,
respectively.
In I, we have

|h+zn——§|+§Rh+zn——C)<lg 2|h + in— |
Blp+in—C|—RC—p—in) [p+in—C*|—RC—p—in)

7€) =

where {* is the point on (I,41), with R{* = R, lying on the same side of the
segment (p + 29, h + 77) as {; now

lp+in—C—REC—p—in=[0+ 1)+ |RC—p—in T
S T | %
~RE=p—in =i |o P + 1RC—p— in)P]
-fR(Q—p—in)}—lz;;;
hence
(10) yQ)=c"logv (inl,,).

Here and in the sequel ¢* designates generically a positive constant.

In Im[ 3 =V:(-)I’ ... denoting imaginary part of ] we write
lh+ig—L|— § h—in)
T
=i —RC—p—in
Let
C*=§RC te "o ’
T rv+1

where the sign is so chosen that the numbers J{* — #, 3§ — 7 have the same
sign. Then
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lp+in—(|—RE—p—inz(p+in—0|—RC—p—in)

. ro |3 .
—|@®e—p—inr + ] - RE—p—in =
_ T i il 22
—_(v-l—l)g{[(R(C p—in)? + v+ 1)2] +RC—0p “7)} = 7
for { in the indicated region. Hence
z(8) = ¢*y?
and
(2 y© = logy [ind,s with|3t—9lz 72|

For { in I, , [With RIS <v_:—27] we write

[(h~2P+ =R - —h
(p—8)P+ =)~ —p
where { ="+ ¢{”’. Further, one has

(p =P+ =) R+ —p

7({f) =

1

O v e —n
Now
’ o .
F—h=z= et
thus
)= sEylle =+~ IR+ —pi =
and
* . . ar__ ol To |
(30) 7{8) < ¢* log » [mL,z, with [ — 9] \v—f—l]

By similar methods inequalities like (2,), (3,) are obtained in I, ;. Aeccordingly,
we assert that

7(8) = ¢ log v (in L, 2 + I,,3).
Together with (1,) this establishes the Lemma.

As remarked in connection with (7°), (8°) the desired representation (2.3) will
take place if ale), b(z) of (2.7) are integrable along segments, in K, parallel to the
ares. With S denoting a segment parallel to the axis of reals (see text pre-
ceding Lemma 2.1 for notation), we examine conditions under which the integral

f afz)dz
R
exists, One has
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a(e) = a,(e) + a5(2),

al(z)zifl—z——_‘:ada(ec), ag(z)=l!‘...

(the Iy, I, ... are from the text preceding the Lemma) and

where

g =~a(B—1I) s ~a(K) (z on §).
o Yo
Hence a(z) is integrable along S’ if and only if
3
fa@dz=[[7@dele)
P L

(¢ =2 + ¢n) exists. The integral in the second member, above, is expressible
formally as a series

i [ r@dele),

ve=1l—Tp1y
which is dominated by the series

Lh+dt o =go(l,— L),
where
¢, = upper bound in I, — I, of «(f)

In view of Lemma 2.1 convergence of

Sa= N a(ly— L) log»
would imply that a(z) is integrable along 8. We carry out similar developments
to obtain a condition securing integrability of a(z) along segments (in K) pa-
rallel to the axis of imaginaries, as well as to secure analogous conditions for
b(z). We accordingly assert that convergence of the series

(2. 20) Se, Ss=28(L, — I,41) log »

will tmply that the functions a(2), b(2) are integrable along segments in K parallel
to the axes.
Since

A

2

IIv”"Iv+lI§y

(e> o),

by (2.19) we obtain
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(2.21) SR = %;G(A +oG+ 1)+ 29 ek + 2)m (B — E)= W, j)
kzj
for figures B in I, — I,4+,. On writing
A+(R)=u.b. A(R), A-(R)=u.b.— A(R)

(u.b. is ’least upper bound') for figures R’ in the figure R and noting that

by (2.17) |A(®)|= |u(®)| < 8(B),

one obtains

(2.21) A+(R), A= (R)= W{(»,j)

for all figures R in I, — I,;1. Accordingly for the total variation we obtain
a(B)y=A*(RB)+ A= (R) =2 W(», 3

for figures R < I, — I,4+1. A similar inequality will hold for g(R). Thus
a(l, — L), BL— L) =<2 W)

Accordingly, the series (2.20) will converge if

(2.22) 2 W, 7 log » (cf. (2.21))

converges for some choice of j, depending on ».
It (2.22) converges for some j=j,, tending to infinity with », we obtain
the desired representation. We, thus proved the following.

Theorem 2.1. Suppose f(2) is of class Cle(n)}, in K, in accordance with De-
finition 2.1. If the o(n) are such that there exists a sequence of integers

0<Cyjy<gg<--, limj,=o0
so that the two series
. log v
(2. 23) el + 1) i > D) ek + 2)m(Ersr — Ex) log v
v v kzj,

converge, then f(2) is representable with the aid of Lebesgue-Stieltjes integration,

(2.24) fle)=hie) — 2_:;‘[ dg;:(e;)

>

for ¢ in K. Here hiz) is a function analytic in K and p(e) is an additive ab-
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solutely continuous function of sets {B}; on intervals I (in K)u/(e) cotncides with
the contour integral

ff(z)dz.

¥4]

The conditions stated with respect to (2.23) are not as complicated as might
appear at the first glance. A simple application is presented by the case, satisfied
for an extensive variety of closed sets F, when

m{Ex+1 — Ep) < k%

Theorem 2.1 will then be applicable for any class C{go(n)} for which
OEYE% (o<a<;~; c'>o),

To establish this fact we may employ an auxiliary sequence

2

Jv ==y o<ed=e=sc;v=1,2..)

The following is another consequence of Theorem z.1.

Theorem 2.2. Suppose f(2) is uniformly Lip. 1 in K; that s,
|f(&) —fle)| = Ale — 2| (2, 2’ in K).

Then f(z) has the integral representation (2. 24).
In fact, under the above condition f(z) < C{g(n)}, where the sequence
{o{n)} is bounded; moreover,

c#

a(l, — L), 8(I,— Lyy) = =5

<

the series S., Sz will accordingly converge, leading to the conclusion of the
Theorem.

Definition 2.8. Let F be a perfect bounded set. It will be said that f(z) s
continuously monogenic (c. m.) over F if at every point z of F f(2) has a uniquely
defined derivative fV(z) (derivative with respect to F), the derivative being con-
tinuous over F,

With f(¢) ¢. m. on F, one has

lim L)L) _ ) (2 in F)

g —e
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for 2/ (in F) tending to 2. Putting in evidence the real and imaginary parts

we write

(2. 25) fle)=ule) + ivle), f7()=ule) + v, (e),
LEVZTE o= yie,0) 1) =ale' o) + i)

and obtain

le(@,2)|, |8, 2)| <e (zin F)
for all 2’ in F such that
| —2z]<6=24d()

On writing ¢’ =« + ¢y’ from the above we obtain
(2.26)  w(e)—ule)=[ule) + (¢, )] (&’ — ) — [v, (2) + B(', &)l (" — v),
(2.27)  v()—vle)=1n () + B, (' — ) + [w, 2) + (&, 2)] (4" —9).

The funection
y(E, ) =T,y zy)

is defined for (', ¥, z, y) in the four dimensional closed set P consisting of points
corresponding to all 2/, z in F, provided we put

y{z, 2) = lim y(¢’, 2) zin F)
(for 2' tending to # within ¥) and note that the latter limit is zero. In con-
sequence of the given hypotheses f(z) is continuous in F. Hence from the de-
finition of y(2, 2), given in (2.23), it follows that y(¢’, 2) is continuous in 2
(in F) and in 2 (in F). Clearly I'(@’, ¥, x, y) is continuous in (', ¥, x, y) over
P. Hence this function is bounded in P; thus

(2.28) lel, 2)|, |8, &) =< a, (for 2,z in F).
Inasmuch as, in consequence of continuity of /™ (2), one has
lu (@), oule)] < m,
from (2.26), (2.27), (2.28) we now deduce that
(2.20) |u() —ule)| |vl)— v <(u +e)(|2"—2|+ ]y —y)
=2(u +e)|d—2| (¢', z in F).

That is, u(z) and v(2) are uniformly Lip. 1 over F.
Confining our attention for the present to u(z), we observe that (2. 26) signi-
fies that #(z) has in F derivatives, in the sense of WrHITNEY,
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2 ), 2y

dx '—ul(z)7 —'5'?/ .

continuous in F. In consequence of certain developments of Whitney there exists
a function U(2), continuous in K, with partial derivatives

oU ov

ox’ Oy
continuous in I?, such that

oU ou 80U Owu . )
(2. 30) U () = u(z), 9z "o Oy~ ay {in F);

here, as previously, K is an interval or, more generally, a bounded domain con-
taining F. Such a function U(z) is uniformly Lip. 1 over K. We get a similar
result for a continuous extension V(2) (over K) of v(z). An application of
Theorem 2.2 will accordingly yield

Theorem 2.3. Suppose f(2) is ¢. m. over a bounded perfect set F in ac-
cordance with Definition 2.3. Such a function has in F an integral representa-
tion (2.24).

The points 2=z + ¢y of F which are limit points of points 2’ =z’ + ¢y of
F will be said to have the property (H), while points 2 =z + ¢y of ¥ which
are limit points of points 2/ =z + ¢y’ of F will be said to possess the property
(V). From (2.26), (2.27) on passing to the limit we obtain

o dulz) dvlz
(19 ) _ e, 22
at points having property (H), while

o Oule) _ _ dv(2) _
(2" s, )

at points with property (V). Here the partial derivatives of u(2), v(¢) are in the
ordinary sense over F. From the above it is concluded that the 'Cauvcny-RiE-
MANN' equations

du_0v Ou_ _0v

dx Oy Oy dx
hold for every c. m. function f=u + iv at every point z having simultaneously the
properties (H), (V).
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3. Problem of Representation for Discontinuous Funetions. We continue
to imply that intervals are closed and non degenerate. We shall now consider
JSunctions f(2) integrable along all rectilinear segments, in K, parallel to the axes.
It is assumed that the set H of points of discontinuity of f(2) has measure zero.

With the aid of the integral (2.6) we again define a function

ulI)=B(I) +i4(I)

of intervals I in K; under the new hypotheses u(I) is additive.
We define the function

(3-1) M(y=1u.b. (for z in K) of fle) —fle)

g —z

and assume that
(3.2) ME)< + =

for 2 in K— H. It is observed that M{z)) is measurable. If we define G, as
the part of K — H such that

(3.3) y—1=M(E)<v,

it is inferred that

(3. 4) K=H+G + Gy+ -,

no two of the sets H, G,, G4, ... having points in common.

Let I be an interval; I will contain points of K — H; more precisely, for
some j there will be in I a point 2 belonging to G;. With 2’ denoting some
point in (K — H)I one has

lfe) = Fl&) = M)z — 2|, M) <+ oo,

for all z in K. On the basis of this inequality we repeat the reasoning leading
from (2.10) to (2.11) and infer that

(3.5) lu(D| < ¢ M ()| 1} (g from (2. 11)),
provided (2. 11) holds.

Let R be any figure, whose regularized (Definition 2.2) decomposition into
non overlapping intervals is
(3.6) R=1I% 4 I® ... 4 [@
We designate by
(3.6a) I, I, ...1,

1

9-632046 Acta mathematica. 78



130 W. J. Trjitzinsky.

all those of the intervals /) which have points of G,. Let
(3.6b) L1, Lisa, ... I,
be all those of the IY) which are not included in (3.6a) and which have points

of G,. Continuing the process of selection in this manner, one breaks up the

IV (j =1, ... 0) uniquely into a number of groups
I"'s—l"'l’ I"s—l"‘?" R #

¥, ry

(vs—1 = ws; ¥9=0; §=1,2,...), where the intervals just displayed are all those
of the IV which are not amongst the

(3.60) I¢v1)_1+1, Ir)vp___]—[-z, .L-P (p: I,2,...,8— I)

and which at the same time have points of G,. Accordingly, from (3.6) one
deduces the decomposition

(3.7) R=R"Y 4+ R? 4+ ...,
where
(3. 7a) R(S) = I”8—1+1 + I”s-—~1+2 + o+ ]’.l'.g.

It is observed that the above is a regularized decomposition of a figure R.
The figures B, R®, ... are non overlapping.

Using the fact that every component interval of R® has a point of G, and
satisfies (2. 10), from (3.5) we infer that

e(B)l <3 () | 1] (a1 <j = ),
where 2z; is a point of G;. Thus, in view of the definition of G,, giveu-in con-
nection with (3. 3), from (3. 7a) one derives

| la(B9)| < gs| RO,
Finally, in consequence of (3.6)
(5.9) |u(B)] < g 35| B9| = Q(R)
s=1

the number of terms in the last member being finite.

Now R® is the sum of intervals (3.6b); none of these intervals contains
points of (,, inasmuch as all the intervals having points of (G, have been in-
cluded in (3.6a). Hence

R® < K — G,.
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In general, R® is given by the sum (3.7 a), the component intervals having no
points of Gy, Gy, ... Gs-1; this property follows from the fact that these inter-
vals are not amongst the (3.6 c), while the intervals (3. 6°c) constitute the totality
of all I'Y) having points of G, (p =1, ..., s—1). Accordingly

(3.9 RY < K —(Gy+ -+ Gs-1).

Whence

(3.9a) |IRE| S | K| —(mGy+ mGy+ -+ mGy_y) =1(s)
(s=12,3,...) on so far as no two of the G, have points in common.

Since m H = o it is noted that

=m G/p = | K | ’
accordingly

lim r(s) =o.
§=00

By (3.8) and (3.94)

(3. 10) le(R)| < g, = srls)
§=1

These considerations lead to the conclusion that the functions of intervals
(3. 11) B(I), A(I), u(I)

are of bounded wvariation whenever the series I' converges. Convergence of I is
Jorthwith assumed. We are now able to perform Lebesgue-Stieltjes integration
with respect to pu.

In consequence of (3.8) and (3.9a)

(3.12) QR) = q X s|BY| +qT(5),  TI'(j)=Dsrls)
§=1 §>F
for all figures R < K, j being a positive integer at our disposal. Since
|RP| + -+ |RY| = | R|
from the above we obtain
(3.12 a) QIBR) = qj|R] + ¢ ()).

In view of (3.12), given ¢ > 0, no matter how small, one may choose j = j(e)
so that

Ny ¢
qI'(jle) < 5



132 W. J. Trjitzinsky.

we then define n = 7(e) by the relation

€
gj(e)nle)=~;
in view of (3.8) and (3. 12 a) one obtains
B lu(B)| <e
for figures R in K for which
[B|=n(e).

Hence the function of intervals u(I), as well as the corresponding function ul(e) of
{ B}-sets, is absolutely continuous.

Let S’ be the rectilinear segment and the I, be the intervals introduced
subsequent to (2.19). For R in I, — I,—; one has

e
|R|=;
accordingly, by (3.12a)
.1 . .
(3.12b) QR) = eqj 5+ aT'(j) = w (),

for figures R in I, — I,+y. Analogous to (2.21') one now has

A*(R), A~ (R =w(»j) (R< I, — I41)
and, for the total variations of A(I), B(I),

a(R), B(B)=2wl,j)

for ﬁghres in I, —I,4; — in particular for R =1, — I,4+,. By a reasoning of the
type used subsequent to (2.22) we deduce that the desired representation for the
case now under consideration will hold if one can choose a sequence j=7j,,

0<j1<j2<'“’

wlv.g)log v

»

so that the series

converges. On taking account of (3.12b) one obtains the following result.
Theorem 3.1. Suppose f(2) is a function as described at the beginning of this

section up to and including (3. 2). Let G, be the set defined in connection with (3. 3).

If m@G, tends to zero with :; sufficiently fast so that there cxists a sequence of in-

tegers 0 < jy <jy<--- for which the two series
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. log »
(3-13) v —f; D (Z sr(s)) log ¥,
» v 8> 4,
where
r(s)=|K|—(mGy+ - + mGsy),

converge, then f(2) has the representation
N L[ [ dnle)
(5.14) R I =
i

Jor z in K (h(z) analytic in K; p additive absolutely continuous).

A simple application is embodied in the following.

Corollary 3.1. If f(2) s a function as described at the beginning of this sec-
tion and s such that
(3.15) mG, <<, (e <4),
then f(z) is representable in the form (3. 14).
To establish this we first note that

1<2— -
a—3
Choose 8 so that
I<fi<2— !
¢—3
By (3.15) )
r{)=mG+mGss1 + - < ngi
and, hence,
cll
(3.16) D sr(s) < o=
s$>7 '7
We choose integers j, subject to relatiens
jv = Cy =8 (O < Co = Cy = 0’)
and note that
. log» log v
./v vz‘ é 1 ‘Vﬁ ]

since B> 1, this implies that the first series (3. 13) converges. On the other hand.
by (3.16) »
[Z .s'r(s)] log v < ¢®»y= 2~ A (&3] log »,

8>,
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now
z—fle—3)>1
and, accordingly, the second series (3.13) will be convergent. The Corollary has
been proved. It is easy to give examples of functions f(z) satisfying the condi-
tions of the Corollary.
In applying Theorem 3.1 it is useful to note that the best choice of the j, s
on hand when we require that j, be the least positive integer such that

. ¢
7'(]41 + I) < ;:J

In fact, when R is a figure in I, — I,41 (I, introduced subsequent to (3. 12a))
and (3.7) is its decomposition we have

B9 <%, |RY]=r(9)
for s=1,2,.... The best inequalities, for B < I, — 1,4, that we obtain from
these are
| R éa% {s=1,...5) |R®| < r(s) (s=4v+1,...),

where j, is defined as stated above — a fact which leads to the italicized assertion.
In considering any instances when functions f(¢) are representable with the
aid of integrals of the form

as is the case in Theorems 2.1, 2.2, 2. 3, 3.1, for example, the following remarks
are in order. If f(z)=wu + ¢v 4s continuous and is monogenic in the bounded closed
set I in the sense that except, perhaps, on a denumerable set

E];—'If(z+h)—f(z)|<oo (¢,2+h in F)

and that u, v satisfy the Cauchy-Riemann conditions almost everywhere in F, then

(3.17) u(F)=o0
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This follows by a theorem of P. T. Maxer' which asserts that under the
conditions given in the italics, above, one can find a sequence of sets

= Z Imn,
m

where the I, are non overlapping closed intervals, so that €, > F and

ff* dz

i (Imn)

hm =0

(f*@ a continuous extension of f(2)).
In fact, the latter relation means that

lim u(Cy) =0

On the other hand, the C, can be so chosen that

In view of (S; p. 8) this will imply (3.17).
We shall conclude this section with the remark to the effect that whenever
there is a representation on hand of the form ‘

(5.18) Fe=h( mffg_z (¢ in ),

where h(z) us analytic in K and where ule) is an additive function of {B}-sets of
bounded variation, the total variations of whose real and imaginary parts vanish on
rectilinear segments 1 (in K) parallel to the axes, while

s () (] Yo

then necessartly one has

()

on tntervals I < K. In fact, integrating both members of (3.18) around the
boundary (I) of any interval in K, by Morera's theorem we obtain

* P. T. MARER, The Cauchy theorem for functions on closed sels, Bull. Am. Math. Soc. (1943),
PP. 912—016; see p. 9IS,
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[z [ 2]

and, in view of (3.18a),

[rorsemsia [ 1 e

In consequence of the hypothesis with respect to the total variations of the real

] w(e).

and imaginary parts of u(e) it is inferred that

(3. 19) J a szf[f

k-1

Now
1 dz o ( in K — (D),
2nim z—L 1 (¢ interior I).

Accordingly the conclusion of the above italies will follow from (3. 19).

4. Questions of Monogeneity and Differentiability. Consider a family of
functions {f(¢)}, with f(¢) analytic (uniform) in an open set O(f). Inasmuch as
O(f) is not necessarily connected, f(z) may be equal, in a number of subsets
of O(f) to a number of distinet analytic functions. Suppose there are points
common to all the O(f). Let F be a closed subset of the set common to all the O(f).
Designate by Os (6 > 0) the set of points at the distance <48 from F. For 6(> o)
sufficiently small Os < O(f). Let 3(f) be the upper bound of values & such that
0s < O(f).

We thus have a closed set F' and a family of analytic functions {f(z)} o
hand; to every function f(z) there corresponds a positive d(f) so that f(e) i
analytic in the open set Ogs(y).

When

Lb. 6(f)=24d,>0!
the situation is as in the classical theory, inasmuch as in this case all the func-
tions of the family are analytic in the same open set Os. It is noted that all
the 6(f) > o; hence the alternative to d,> o0 is

tim 6 (f) =

! 1. b. means greatest lower bound.
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It is precisely the latter case that is of interest from our present point of
view. In this case a sequence

d(f)>d(f)> ... liind(f;)=o
can be found. Correspondingly we shall have f,(2) analytic in Os, (J, = d(f.);
05, >04,>...; 05,>F; lim Os,=F; Os,, < Os,

A sequence {f.}, as described above, will be said to belong to {F; d,}; thus

(A} <{F; d.}.

Suppose we turn now to the study of monogeneity in the sense of existence
of a unique derivative. In this connection the nature of the set G over which
this property holds is of prime importance. If G has no interior points the
function in question, monogenic in G, may be non analytic at every point of G
(no matter how the funétion is defined in the complement of G).

Consider a sequence {f,} < {F; 8,} (closed F). Suppose

(4. 1) Sola) > fla) (as v > o0 in F),
convergence being not necessarily uniform. We shall study differentiability at a
point ¢, in F.

1t is noted that «, is an interior point of the open set O(d,) in which f,(e)
is analytic. One has
(4.2) Sole) = filag) + (@ — @) £ (ag) + (¢ — )" e (a).
For « in a circle

8 (eo, 1) (le—a| =),

where » (>0} is suitably small, f,(e) is analytic and clearly ¢, (e) is therein ana-
lytic. For | — ay| > r, with ¢ in 0(d,), on noting that

(4.2 ) ey () = [_"_(_"i)__;f"_(_‘ﬁ)) —fw (“o)] r .

a—a,

it is observed that e¢,(e¢) is analytic, since the functions f,(e), (¢ — @,)~! have
this property. Thus c.{e) ¢s analytic in O(d,).

We have
(4. 3) g» (@) = fo (@) — fu (ag) > fle) — flag) = g (e) (in F),
where ¢,(ay) = g (@) =0 and g,(a) < {F; d,}. Hence there is no loss of genera-
lity, if, with «, fixed, we assume that
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(4.3a) Solao) = flag) = o.

The specific question now raised is as follows. Under what conditions, given
a sequence (4. 1) (with (4.3 1)), do we have

(4.4) S (o) = Lim f11 ()2

Whenever (4.4) holds f(«¢) is monogenic (not necessarily analytic) at ¢, inas-
much as the fU(«,) being unigue numbers, the limit in the second member of
(4.4) will be unique.

For the validity of (4.4) it is necessary that

(4-42) lim [ (ep) = ¢’

should exist. Accordingly, we may as well assume the latter relation. The problem
now is to find conditions under which f@ () =¢". By (4.4a) and (4.2a) there
exists a function ¢(a), defined in F (o == a,) so that

(4.41) 1i:n ey (0) = c(e) =( Slo) y ) 1

a—a, a— a,
(¢ in F)1.
In view of (4.2)

LD (0) + (@ — ag) o )

a—a,
and in the limit
Sl .
(4.5) = ¢ + (0 — ) cla) (¢ in F; a = ).
a— a,
Hence (4.4) will hold provided
(4.5a) lim (@ —ay)cla) =0 (@ within F)2.

a—+ay

Accordingly, it is noted that (4.44a), (4. 5a) is sufficient for the validity of (4. 4).
Conversely, suppose (4. 4) holds; then (4.4a) is asserted and the function c¢(e) of
(4.4b) will exist for @ %= ¢, in F. The relation (4.3) could be then expressed in
the form

' With the aid of Taylor's expansion, applied at o, to f, (&), from (4.2) it is inferred that
2.¢, (e,) =fi,2) (e,). Existence of ¢(g,) is thus contingent on that of lim f£,2) (ety) (provided that we
define c(e,) as lim ¢, (e,).

? The implication, of course, is that «, is a limiting point of F.
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fla) = fla) _ ST P () + (@ — ap) c(e) (¢in F; a =+ a,).

a—a,

The assertion (4.4) implies that the limit of the first member above, as a — ¢,
within F, exists and has the value f(e,). Necessarily (4.5a) will hold. Ac-
cordingly, the following theorem may be stated.

Theorem 4.1. Consider a sequence {f, ()} <{F; d,} converging to a limit f(e)
in F. Let ay be a fixed point in F; assume that lim [ (a)) exists. In order that
fle) should be monogenic at a, and

SO (eg) = lim £ (a,)
it ds mecessary and sufficient that {« — ay)c(a) > o0, as « ~ e, within F. Here
¢(a) = lim ¢, (), where ¢, (@) is the function (4.24a), analytic in O(d,).
If a double sequence {fn.} (B, v=1,2,...) is on hand, where the limits
lim f;)’p y ].imfn,v
exist, then, as is known,
(4.6) lim (lim f;,,) = lim (lim f;,,)
v n n L4

if and only if the following holds. Given & (> 0), one can find m(e) so that for
each » = m(e) a number %, can be found so that

(4.64) | fo,y — eim £, | < & (for all n = k).

We again consider a sequence {f,(e)} <{F;d,} for which lim f, (a) = f(a)

exists in 7. On writing

Jo (o) —Jfe (o)

(4.7) Ty = ST (e in F; lim ¢ = o),
it is observed that

(4.7a) m fo,, =f}) (a), lim /i =]:%'i—:—£¥~°)

Accordingly (4.6) is equivalent to the relation

(4.9 lim 1 (ag) = (o),

where the derivative of f(a) is to be computed with respect to a sequence an (as
described in (4. 7).
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In view of the statement with respect to (4.6), (4.64a) it is concluded that
Jor monogenetty of fla) at o (in F) and in order that (4.8) should hold it is
necessary and sufficient that for every sequence {an} < F' converging to a, the follow-
ing should hold:

(4.88) Sylow) = frleo) _ flem) — fleo)

an'-—ao an__’ao

<é&

Jor all n = k,, when v is any integer such that v = m (e).
If liin JW(ao) = ¢’ exists one may replace (4.8a) by
[ £ (eg) + (@n — @) s (@n) — ¢’ — (n — &) c(an) | < &.
Accordingly, when lim fIU(e,)=¢ exists, in order that (4.8) should hold it is
necessary and suﬁicz‘en; to have
(4.8b) ean — ao| [ elan) — e (an)] < &

Jor all n =k, (any v = m(e).

If we make the convention that f*'(e,) is said to exist when

i @) = £ a0

n O — Oy

exists and has the same value for all sequences {a,} in F and tending to «,,
then fthe necessary and sufficient conditions for the validity of (4.8) may be given
in the form:

(4.8¢) e —ay]| le(e) — e ()] <&

Jor all @ ¢n F with |e — oy < §.. when v is any number such that v = m{e) (still
assuming that lim i (a) = ¢ exists).

When lim /U (a,) exists an obvious sufficient condition securing (4.8) is
(4.8¢" la —ay] |criple) —cla)| < e (p=1,2,..))

for all ¢ in F, |¢ — ay| = {»; any v = m(e).

On writing
(4-9) rvp(@) =frrp(e) — fo (@)

in consequence of (4.2a) we obtain

Te,p (@) — 74,9 (@) —

(a - aO) (cv-l-p (@) — Cy (a)) = pos

vllp (g —f svl) (ao))'
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If lim f1V(e,) exists we can certainly chose m(s) so that
£, (o) f"(ao)[<—8£ @ly=me);p=12...).

Hence, on taking account of the statement with respect to (4.8¢’), it is con-
cluded that (4.8) ¢s secured provided lLim fU (ao) exists and

7, p (@) — 1, p () l

<< = 1,2, ...
e |F (p=1,2,...)

(4.95) |

for all @ in F for which |a — o] < §v, this being so for every » = m(e).
Consider a funection

[ [ _4=u . :
(4. 10) fle) = j = oy (integer j > o),
where p = u (X) is an additive function of sets X (Lebesgue measurable), u=o

and u(F)=o, F being a closed subset of K. With §, > 6, > ... (d, > 0; lim d,=0),
the open sets 0(d,) will each contain F and lim O(d,) will be F. The function

(4. 108) ff s (Hy =K — 0@x)

will be analytic at every interior point of the complement of H, (accordingly,
in 0(d,); morever,

(4. 10D) H <H,<... lim H,=K — F.

Hence
(4. 10¢) hmfn ff " —ap Sle)

for « in F, provided that the integral last displayed exists for « in F (which

will be agsumed to be the case). Clearly

with f(e) of (4.10) constituting the limiting function (in F) of the sequence.
In consequence of (4.2a) and (4.10a)

(¢ — ag)ey (e ffa—ao[z-—a) (z—Iao)-"] du—JjI;f(?__(igJJﬁ
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(@g in F'; @ in 0(Jd,)). One has
(& — ay) s (@ f f pa, ) d

I e e e B R A e B
g(.v, «, ao) (Z - cc) (7__0!0) (Z— ao)j-\j =

. N

Eaf b —ay

where

On writing u =2 — ¢y, v=2¢ —«, it is found that
N=(e—a)[t+ -+ o) + o2+ + 972 .- + yi1]

={e—oa) [ + 2wy + 3wt + -+ (— Duvdt 4 i1

Whence
z;a,0,)du
(4.11) ffa_a Vo — agpit’
with
(411) e o) = (e — aob ™t + 2(r — a2 e — ) + -+ + e — @)L,
We write
evla) =y a) + -+ 7le), ple) =cle) —~ cror(e) (¢o (@) = 0),

and

¢ - ] 7 2 —_ ___ﬂz;;__a,___ao) —
wid) b= [ febinaldn o ae)——tEoel

Inasmuch as for «, ¢, in F and for #z in H, one has

B e—al le—alzd,

it is inferred that
4.11a”) el e el =lle—a) Ve =) + 2(e — @) T+ (2 — )0 +

gl a) e — ) < ~;1( 1) 472 (e,¢yin F'; z in H,).
Hence

e . |

(4. 11b) |72 ()| S 885972 (B, — H,) (5="2iU+ )
and, consequently,
{(4.11¢) AGIESY] Z 0792y — H;—j) (a,aqin F; Hy=: null set).

l]—J
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If the series
(4.12) 8j= 26,7 u(H; — H;-)

p=1

converges the function fle) of (4. 10) is monogenic in F and, in fact,

\ d . w
F ff 210:‘7“ (in F).

The condition relating to (4.12) amounts to the requirement that the 'mass’
@ (= o) be sufficiently 'rarefied’ in the vicinity of the set F. In this connection
it is to be noted that H; — H;_: is the set of all those points of K whose dis-
tance ¢ from F satisfies the inequality
6‘{ § 44 < az'—l .
Apparently there is no essential loss of gemerality if we take d; =

The condition for monogeneity involved in the italicized statement above
has the virtue of simplicity but is otherwise somewhat stringent. The validity
of this assertion is established by noting that in comsequence of the convergence
of (4.12) the inequalities (4.11¢) will yield

les(e)! = b S; (in F).
Whence the limiting function ¢(«) will satisfy

le(e)| =8 S; (@in F; a == a,),
which will insure (4.5 a), thus establishing the desired monogeneity property of
fle) at every limiting point of F.

Inasmuch as convergence of S;(j > 1) implies that of Sj—1, it is concluded
that the function

(413 se= [

K~-F

du

>
2— a (= o)

is differentiable tn F j times (the derivatives 'V (a), ... fU(a) being unique tn I and
obtainable by formal derivations), provided S; of (4.12) converges.

We shall now proceed to lighten the above condilion with the aid of a
result in (7,). Assume merely that Sj— converges. With X denoting any measurable
subset of K, we form the additive function of sets (for « in F)

I3 " : d
4. 14) a)j+1 (X) = ’ ‘ s — ‘Z |/1~1
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where u is an absolutely continuous set function, non negative and vanishing
on F. One has

omt9=3 [[ g

=1 X(H;-Hiy)

In view of the inequalities subsequent to (4. 114a’) it is inferred that

(4. 14 a) Djq (X) = Zd,_]_lﬂ(X(Hl it Hi_l)) = 81 (a in F)
=1

The set function @;4:(X) is, of course, absolutely continuous; we shall establish
that the latter property holds uniformly with respect to ¢ (¢ in F). First it is
noted that there exists a function d(¢), defined for o < ¢ =< ¢, and approaching
zero monotonically with ¢, such that

(4. 18) w(X) < d (e) (for all X with m X < ¢).

Convergence of S;.; implies that there exists a monotonically diminishing se-
quence of positive numbers s; so that

(4.15a) u(H; — Hyima) = 8:0]H f=1,2,...)
while s, + s, + -+ converges. With m X = ¢, in consequence of the above one
may assert

p=p(XHEH—Hy)suX)=dle) @=1,...k—1),

.15b
(4 ’ ) [Lig{l-(Hf"‘H:i—-l)§sid'g+l (Z=k,k+ I,...),

where % is arbitrary.
By virtue of (4.14a) and {4.15a), (4.15D)

010 (X) 5 37w+ S0

(4 16) i<k izk
=d(6) D67 + Ds=¢ (¢ in F).
i<k =k

Now there is no essential loss of generality (for the purposes on hand) to choose

the d; equal to ;— One then has

(4. 16 a) C=pdEbt+ Fa=1Clek)

izk
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where p; is independent of &. We choose k= k(e) so that
(4-17) lim k(e) = oo, lim d(e)kit2=0 (as & - o).

Such a choice can be achieved, for instance, by taking

(4-179) ko) =[d ()71 (6= 257 >9).
In consequence of (4.17) one clearly has

(4.17b) Sle) =Ll k@) >0 (as & = o);
moreover, in view of (4.16), (4.16a),

(4.18) D;1(X) = G(e) (all ¢ in F)

for all X< K with m X <& Inasmuch as {(¢) is independent of «, the state-
ment with respect to (4. 18) amounts to the assertion that the absolute continuity
of ;4 (X) is uniform with respect to a (¢ in F).

If we formally evaluate the derivative of

)= [ J&

by differentiating under the integral sign we obtain

d
f(l) \fl ff ,7_'5\'1+1

In view of the preceding convergence of S;_; implies that the absolute con-

tinuity of the related set-function®

. na jlu
(4.19) J 05 (X ‘ﬁfd_aﬁl

is uniform with respect to ¢ (for ¢ in F). In faect,
| @71 (X)] = 0;41(X),
while the function last displayed satisfies (4.18), (4.17b). In consequence of

statement with respect to (4.10) and on taking account of a result in (7,) the

following is concluded.

! Here [...] signifies greatest integer equal or less than... .
? This set function is complex valued.

10-632046 Acte mathematica. 78
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If the series Sj-1 (¢f. (4.12)) converges, the function f() (of (4.10) will be
monogenic tn F and one will have

(4. 20) (e f f . s d:w (in F);

the related sef-function (4.19) will have the property

(4.204) |J @341 (X) [ =58 (e) (&) > o with &)
Jor all measurable subsets X of K with mX =< &; here {(&) ts a function as de-
scribed in connection with (4.16a)—(4. 17 b), provided we take ;= -

Let us investigate the function ((¢) in the fairly general case when the s;
in (4.154a; with d; =¢"') may be taken as a¢~1"%*(z > 0). We then will have

Z s=a k"= a,df7(e),

izk
provided %(e) is defined by (4.17a). By (4. 16a) the inequality
Sle) =Cle, k@) = py ' PV (e) + a, dP* (¢)
will then follow. On taking ¢ in (4.17a) equal to = we accordingly obtain

T

m; d(é‘) from (4 IS)) .

(4.21) C(e) =< (a, + y5)d°(e) (o=

The above inequality, valid when S; ('wzth 6= z) converges and s; of (4. 15a)

is ai='"% (v > o), has the advantage of simplicity.
When u = 0 is-absolutely continuous one has

f [a@)dzdy (all measurable X < K),

where ¢(z)(= o) < L, over K!. This representation enables one to obtain ex-
plicit expressions for d(e) of (4.15) in some important cases. Thus

(4. 22) p(X)=mX =Be=dle) (whenever m X < &)

when |g(2)| < g8 in K. More generally,

! Lp is the class of functions whose p-th power is Lebesgue integrable.
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(4.22a) p(X)= [ff g?(2)dx dy]% [mX}F < g, =d(e) (whenever m X < ¢)
X

in the case when ¢(2) < L, in K; one may take

£==£fqﬂddxdy-

5. Uniqueness Properties Related to Sets of Positive Measure. Such pro-
perties have been investigated for contain classes of functions which are limits
of rational functions, by A. Brurrine'. In view of our purposes we shall first
establish a result somewhat similar to that involved in Lemma I of (B; p. 201).

We introduce the following Definition.

Definition 5.1. The frontier of a bounded set will be said to be regular if it
consists of a number of simple closed continuous rectifiable curves, the sum of whose
lengths is finite.

Suppose h(z) is analytic uniform in an open bounded set 0. Let
(5.1) F<o
be closed and have a regular frontier. We put
(5.2) u(2) =log | h(2)].
We designate by (f) the part of ¥ in which u(z) <{. On writing
(5.3) tf=ub. ulz) (in F),
it is observed that
(5.3a) A =F (for all ¢ > t*).
On letting
(s.4) 8(t)=mA(t)

it is noted that S(f) =mF (t = t*).
The frontier of A(t) 4s vegular and 1is of the form

(s.5) A1) + B(1),

where A({t) is o subset of the fromtier of F, while B(t) has no points in common
with the frontier of F.

! A. BEURLING, Sur les fonctions limites quasi analytiques des fractions rationnelles, Comptes
Rendus de huitiéme Congres des Math. Scandinaves, 1934, pp. 199—210; in the sequel referred
to as (B).
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Let ¢ =2 + {y designate a point in B(f) and » be the inclination angle of
the normal at z directed outwards with respect to #(f). One has

wl2) = ulz, y) = ¢.
With ¢t <<t + 2 <t", we shall have
w(z+ o) =ulx+ocosn, y+osing) =t-+41,

provided o is suitably chosen; z + 6¢’" on B(t + 4). Now

du du .
ulr+ocosy, y+asin g =ulr, yj + oz +e&)ocos g+ c)y + &)osiny

(¢, &2~ 0 as ¢~ 0). Accordingly

(() du )
=gl-—cosn+ —8iny +e

do )J

(e—0 as 6> 0). Whenece

s
—
du
on

g —

&+

normal derivation being in the divection outward twith respect to A({); by definition
9
of A(t) one has (TZ = o.
It is observed that
Sty + Ag) — S(ty) == m (AU, + Ay — A4Ey)
(fy<t+ 2 <) and

dS dl * (l.s'_
(t0+lo) (0) d\dO‘ Qﬁ* = ()_.u di,
on dn

L2
i=0 B (ty+2)

where ds is differential element of length of arc along the curves constituting
B(t, + ). Hence

a8 . ou - . s
(5.6) dto = ,1:3.10 2 f[ (dn) l'\vl dd = an

{ta i ..
g on
Bit)

This formula is in agreement with a similar result in (B).
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Now
Du\} [Ou\-3 du 3 ds|
= S = — o (s = o Y — .
b(f) = length of B(f) f(ls f((?n) (dn-) ds = 0ndb du
Bl B Wn
B) B
Thus, by (5.6)
as v (¢
(5.7) m;-—a(;)- (¢t < t*; ef. (5.3).
f*——ds
on

£
On writing
a (t) = length of A4 (¢

and letting I' denote the frontier of F, we have
length of I'— A() =g —a(l),

where g is length of I. The curves of A (f) + B(t), of total length a(f) + b(f),
enclose an area S(f). The curves of I'— A(f) + B(¢), of total length g a(t) +
+ b(t), enclose the set F'— #(f), whose area is mF — S(f). It is observed that

a(t) + () = 4,(8), g—all) +b(t) = 4,(),

where A4,{f) {4:(t)] is the length of the circumference of a circle of area
SH[mF— S(#)]. Hence

hit)= 2 b 8t — a(b),
b= 2at[mF— SE—g + a(h);
here 0 < a(t) < g. Adding these inequalities we obtain

(5.8) b(t)Zn%S%-‘L e [mF——S]’}—'g-———y(S).

We observe that ¢, being the length of the frontier of the set I" is not
less than the length of the circumference of a circle of area mF'; thus

(5-9) 9= 2 (mF).

The function y(s) vanishes for

94
(5.9a) 28=mF + [(mF)z’— - A ]% (=g —4rmmF)
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If F is a circular region 4 =0; in the contrary case 1> o and
4nmF < g2,
It will be assumed that the set I' is such that
(5.10) g?<8aml.

Under (5.10) one has

4
o< (mF)?:—

< "2
167t*=(mlf)

and the values §,, S, of S, given in (5.9a), are

4
(s.104a) Sl---‘—;mF——q, Sg=§mF+ q, q=§[(mF)2—- A ]%»

16 7°
where
(5.10b) o< g= ;ml";
thus
(s.10¢) o§81<;mF<S2§mF

if (5.10) holds; here the equality sign holds only in the case when F is circular.
Now y(S) is monotone increasing for 0 < § éé m F and is monotone dimi-

nishing for émF =S=mF. Hence

7{8)>o (8, <8< 8,).

Accordingly, by (s.8)
b (t) = »*(8) (8 <8< 8y
and, in view of (5.7),
2

(5.11) %—?;yf) <ty §,<8<8,),
where % is any constant for which

Ju

s <
(5.114a) f()nd‘S:k

B
for all ¢ such that S, < S(f) < &,.

We shall replace (5.11) by a simplified inequality. For this purpose we
express 7 (S) of (5.8) in the form
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(5.12) 7(8) = F279—)(3 — 8,)(8:— 8),
where
I L P S (R

A straightforward computation yields

74
N(S) = [n% St+ 2 mF — S} + ;—’] [2 7 (SmF — St + H
Clearly N(S)>o0 and attains its maximum for S= %mF ; thus, in view of (5.9a)

(5. 12b) N(8) = o(F =[(mm1r)%+ g]"f

By the above
1

r(8) = ")

(S - Sx) (Ss - S)~

We accordingly replace (5.11) by the inequality

1

(5. 13) fl—f;A(F)(s—sl)S(s,—s)ﬂ, AP = 7GsG, (5 12b)

valid for
t<t', §,<S<8,.

Now by (5.12a) and (5.10a)
S;— 8, =2¢.

On taking account of (5.10a)}—(5.10¢) we conclude that

(5. 14 Bz A(F) (55
for
(5s.14a) t<#, SI<S__<~?IZmF
and
(5.15) 122 A4(F) g (s, — 9
for

(5.15a) t<t, ;—mF§S<S,.
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Consider now the case when (3. 14a) holds. In consequence of (5.14)

S SN 2 Y - Y S
S SIS =a + p(t)dt,

where p(f) = o, is some function defined for values of  for which (5. 14a) holds.
Let t, correspond to 8,; integrating we obtain
1

—m(S—" Syt =t—ell),

where

g(f):c—fp(t)dt (¢ a constant).

Cled'rly o(f) 2s monotone non increasing for t =t,. We have

1 I

(5.16) §— 8= S e =1

Since under (5.142a) one has
S—8§ = imlf‘~ S, =q
it follows that
I

(5.163) Q(f):—it'FmT)

for the range of values ¢ for which (5. 14a) holds. Suppose now that for a value
o, such that

(5.17) 8, < S(a) éémlf’,
we have
1 I
4 o ~__ ,
(5.17a) S(a) S’=q’A(F) pyp

where gy ts a wumber such that
1
)
Let 8 be such that
1 1

< 0y — ———r <-mkF.
(5'18) a<ﬂ-—-90 q3A(1’v); S(ﬁ)-—zmlf
By (5.16) and (5.17a)
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Hence
ela) = o;
since ¢(f) is monotone non increasing for the range under consideration, in view
of (5.18) one has
eB)=ele) = o,
Accordingly (5. 16), with £ =8, will yield the inequality
I I
.1 SB— 8= —°
(5 9) (5) 1 qu(l,)eo_ﬁ
as a consequence of (5.17), (5. 17a); this discussion has been for the case (5. 14a).
Consider now the situation corresponding to (5.15a). By (5.15) one has
_I—. — -2 — >
qu(F)(Sg S)2dS=(1+p@®)dt (p= o).
On letting #, denote the value of ¢ corresponding to S, and integrating it is
inferred that
ts
I I ?
FAF) 5—5" t—e(t), el)=c+ tfp(t)dt,
where ¢ is a constant and ¢(f) is monotone non increasing (f < #,). Corresponding
to (5. 16) we now have ‘

’ - 1 I .
(5.16) S S=F AW e
moreover,

(5. 162 el =t———

¢’ A(F)

under (5.15a). Suppose that for a value @, such that

(5.17) SmF<S@)=S,
the inequality
12 I I

178 So - S g 2 3
(5 7 ) 3 (a) (I-A(l')a'—go
takes place, with

S
@ <ae— qz A :

Let 8 be such that
(5.18) e<f, SEB=SE..
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Then by virtue of (5.16'), (5.17a’)

1 1 I I

§, = Sla)= FAF) a—el) = CAF) a—op

whence ¢(¢) < ¢, and, in view of the monotone character of ¢ ()

e(8) = ele) =0,

Hence in consequence of (5.16'), where ¢t =g, it is concluded that
I I
19’ S, — 8B < —-.
Suppose (5.17a) holds for a value ¢. One may then assert (5.19) for

1
(5.20) ﬂ=ﬂo=eo*m*

obtaining

SB)=-mPF.

W -

We now may use 8, as « in (5.17a’); in fact, on writing

1 1
(5'208') QO’—ﬂo + qu(l") S(ﬂo)__ ‘52
it is deduced that

1

QO<ﬂ0“ qu(l")

and that
I I

—-Q!A QO_ﬁO.

With the aid of (5.19") it is then inferred that

S (ﬂo) - Sz

I I

(5.20b) S(ﬂ);sz—-mﬁ__qo

for all 8 > 8,, whenever (5.17a) holds for a value «a.
The above results may be formulated as follows.

Theorem 5.1. Suppose h(z) is analytic uniform in an open bounded set O
contaiming a closed set F, whose frontier I is regular (Definition 5.1); g = length
of I. Let 4(t) be the part of F in which

ulz) =log |h(z)] < ¢
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and put S(t)=md(t). Designate by B(t) the part of the frontier of A(t) having
no points in common with I'. It is assumed that F s such that g° is less than 8 xm F.
The following notation is introduced

g __ L2 2.._£ e 2'4
(5.21) M=g*—4amF(=0), ¢ —4[(mF) 1671;"]’

2

! I , 9ly
S, = = — - — == % =y
S, sz a, S; 2mF+q, ¢(F) [(2nmI?) +2]4
7! —‘—-———-—I 3 p—— —.._.———I .
A(F)= 5 (F) 8o = 0o F AT (ef. (5. 22));

Ou

here k is any constant equal to or greater than the integral over B(t) of a—,;ds

(normal derivation owtward with respect to 4t) when t is such that S; < S(f)< 8S,.
If for some o one has

' S | |
(5.22) ZmFgS(a)ZS,+q2A w—a someeo>a+q3A(F)

then for every 8 such that « <8 = 8, we have

1 1
(5.22a) S(ﬂ);‘sx"'qz/l(F) eo—B
while for every 8 > 8,

I I I !
5228 SO=S— i gte  |e=A* im sE =)

If, on the other hand, for some o« we have

1 1 1 !
(523) S(a)_>_; Sg—m‘j W__go [some 0 < Cl—m] ’

then for every 8> a one has

I 1
(5.232) SO= S~ im e

Let G be a closed set, contained in a bounded domain K,
(5.24) mG>o.
Let open sets 0,, > G, be such that
(5.244) K>, >0,> -, 0,> 041, lim 0, = G;

! This condition will imply that S(e)> ém F.
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moreover, O,y =1,2,...) is to have a regular frontier. For a given G and K
the sets O,, as just described, can be always constructed.
Suppose f5(2) is analytic in O,; then, incidentally,

(5. 25) )= M, (in Opsy).

Assume, for the present, that the sequence {f,(z)} of functions of the above
description converges uniformly in G'; there exists then a function f(2) such that

(5.252) Ife) —fal@)] < én (zin G; lim & = o).
Let us consider consequences of the relation
(5-26) fle)=o (in Hy),

where H, < G, while
o<mHy <m0,
in view of (5.25a)
(5.26a) [fale)]| < én (z in H,).

We shall apply Theorem 5.1 with fu(2), On, Ons:1 playing the role of & (2),
O, F, respectively. On taking account of that Theorem the following notation
is introduced:
I, = frontier of Oui1, gn = length of I,
An(t) = part of Oni1 in which ua(z) =log |fu(2)| < t, Su(t)=m £,(t); B.(t) is to
be the part of the frontier of 4,(f) baving no points in common with I',; ¢f 25
assumed thaot

(5. 27) gn < 87 m Opy1;
2 I . ? 4
A =gn — 4mOpya, qi=z[(m Onta) — 162:;’]’

1 1
Sl,n =;Tﬂ On-l-l - q—n, S;)’ n == ’2"m On-}»l + Qn;

moreover,
’ gn » 1
(5.27) Cp = [(2 7Tm ()n+1)% + ;’] %: An=M’
where kn ts any coustant such that
du
(527 a.) 'b‘;;dé'é kx (ur——u,,(z))
Bt

(derivations outward with respect to () for all t such that Sy » < m 4, (f) < Sa,n.
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Inasmuch as m On41 > m G it is observed that (5.27) holds when

(s.28) <8amG.
Now, in view of (5.26a)
(5. 29) un (2) < log &n = an (in Hy).
Clearly
HO < 41. (an);
whence
(5.294a) Sn(an) = m Hy.

We wish first to restrict H, so that. a relation corresponding to (s5.22)
holds; accordingly it will be required that

I I

= S —
(530) mHo = Sl,n + q;: An 90’" —

[some go,,.>an+——-—q,,l/1 ];
n

(5.30) with the equality sign would yield

\ _ I —-l—-—;
(s.30a) Qo,n = @n + Y] A,.(mHo—Sl,u)>an+q;A"
that is,

Si,a<mHy<qn+ Si,»n
and, in view of (5.27),
(5.30b) —;—m Owir—gn<m H, < %m Onsy.

1f

lim g, =0
the above could net hold unless m H, = %m G. Accordingly, in order that the part

of Theorem 5.1 corresponding to (5.22), (3.22a) should be applicable one

should have
lim gn=g¢>o07
that is (cf. (5.27),

1 9 Q 9
(5.31) g = P [16 2% (m Ons1)® — (g2 — 4 7wm 00 41)*] > ¢ >0
as n=mn; > ©. Now m Oni1 > m G; hence gu; tends to a limit g; in view of (5. 27)

(5.32) lim gi, =9*<8amG

and

! The g, are positive.
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I
64 7t

2

(5.324) 9 =

[16 7% (m G)* — (9* — 4 wm G)*] > o.

Now g, = length of circumference of a circle of area m Onyy; thus

gn = 4wm Onyay
and ’
g —4nm@G = o.

Hence the relation ¢ > o implies that
(5.32a’) 0=)P—4amG<4mmG?;

it ¢s noted that (5.32a) and (5.32a') are equivalent.
For the present we shall assume that ¢ > o and shall consider the case when

(5.33) ;mG—-q<mHo<—;—mG.

Unless the contrary is implied in the sequel we take # = n; = ny,. In view of
the above (5. 33) implies that (5.30Db) and, hence, (5.30) (whith the equality sign)

will. hold for n=1; = n, (n, suitably great). Bither S(an) > -;—m Out1 or, in
consequence of (5.29a).

1 I
q; Aaq Qo,n ™ Qyn

(5' 34) %m O'n-l—l g Sn(an) g Sl, n + ]

where o is from (5.30a). By Theorem 5.1 (cf. (5.22), (5.22a) the above
implies

1

1
. I T
(5 343‘) S (ﬁ) 1, + @ An Qﬂ.n—'{g

for all B such that

(5. 35) f‘<ﬁ§ﬂo,n=(’o,n"a—l‘A—;;

from this it follows that

1 1

1
Lo Ongr = Spm + e ——
2 n+1 1,n qi An Q(),n"—[g

Hence (5.35) will imply (35.3448) tn any case (provided (5. 33) holds). In particular,
on letting in (5.34a) 8= fo,» one obtains

(5.35") S (Bo,n) = —; m Onss.

! The relation ¢ = o would imply g° — 4w m G = 4 wm G and conversely.
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This implies that
(5- 36) O
in a set H, (= 4.(8o,») such that
(5. 36 a) H, < H, < Ons1, mHngém 0,,+1>§-mG.
Consider sets H, = G H,. We have
mH,=mH,—m(H,— @), m(Hz— @) <m(0pt1— G).

Hence, in view of (5.36a) and since m(Op+1 — G) > 0,
(5-37) mH,ZmH, — m{Ops1 — G) >%m6‘—s (r = ny = nie)

where ¢ (> 0) can be chosen arbitrarily small; moreover,

(5.37a) | H,< H,<G.
We shall have
(5.38) Hyim< Hy

if for every { of G for which tnim < fonim, i. €.
(5.384) |form Q)] < Porntm,
one has u, < fo,n, that is to say
@] < o,
|/ @] = | frsm Q)] + 1FEQ) — fram @) + |£a(0) — £D)]
and, by (5.38a) and (5.25c¢),

Now

|/ @)] < omtm 4 gypm + én.
Thus (5.38) will hold provided
omtm g+ e < O,
Suppose now that for every n (= ny) an m (> 0) can be found so that
(5-39) snim + & < 00— gfonim,
There exists then an infinite sequence of integers

By <My < my < ...
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(subsequence of the original sequence so designated) so that
(5. 40) H,>H,>....

In view of (5.37), (5.372a) the set

(5.41) H.= H, H,,...=lim H,,
will have the properties
(5.414) H,< H.< @, mHe;—;-mG—-—s.
By (5.36) it will follow that
(5.42) fle)=o (in H,)
if (5.39) holds and if
(5-42a) lim (90’"—193111,,) = —o0.
Consider a sequence & (> 0),
§> &> ..., lim &= o.
Under (5.33), (5.39) and (5. 42 a) vanishing of f(2) in Hy 2will imply
(5-43) fle)=o0 (i H*),
where
(5. 432) H*=H, +H,+..., H<H'<G, -mH‘“é;-mG.

Let us first find conditions under which (3.42a) holds. By (5.27")

(5.44) = Ao kn (4, = an upper bound of ¢;).

n

Hence in view of (5.30a), (5.29)

I
—m Opr1 —m Hy

I 2 -
—— <
(5 442) o L, e e Hy — S
A’l kn,
qn (m H,— %m Opp1 + q,,)

log &n +

where
A= (i m Opp1 — M Ho) k-

By virtue of (5.31) and (5.33)
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i, ,

I a—
- 3 =4q,

1 )
(5.44b) : — p .
n’)nHO"“;mOn+l+Qn mHo—;mG-}-q

as n=mn; - o, where

, , A
(5.44 1) q >
q
Whence
I
Bo,0=@o,n — aAs log &n + 74 kn (mj = n)

where ©, ts any number exceeding q' (n, suitably great). Consequently (5.42a)
holds if the second member above tends to —oo. Aeccordingly, (5.42a) takes
place whenever

(5.45) en = @ (n) Tn (pm >0, o<z<1),

where @ (n) is any function tending to zero and © = exp. (— 7).
By (5.44a) and, in view of the preceding, exp. fo,» > &:.. Hence

Cn = eﬁo’" — &n > 0.

Thus, inasmuch as lim g » =0 (cf. (5.42a)), we shall have

Bo, n; .
Enpy Fe IS Ly G=1,2,..),

provided one replaces the original sequence {#;}, if necessary, by a suitable
subsequence!. The latter inequalities, however, imply the validity of (5.39) with

n=mn;, n+m=mni (j=1,2,...)
Whence, under (5.32a’), (5.33) and (5.43), vanishing of f(2) in H, implies
(5. 46) fle)=o (in H*; Hy< H*<G),

1
where m H* = ;m G.

We shall engage now in a type of 'quasi analytic continuation’. We let H*
play the role of H and consider first the case when

{5.47) m H*=;—m Gq.

! The same notation is retained for the latter as for the original.
11-632046 Acta mathematica. 78
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One may apply the part of the Theorem relating to (5.22), (5.22b)*. In place
of (5.29a) we have

(5.48) Snlen) = m H* =—;~m G.

I . .
One may have Su{en)> -m Onsi; in the contrary case we put

1 | S 1 1
. —m Oy = 'n =Z—m =, n T T T
(5. 49) [2”’0 +1 ]6 (@n) 2z - Si,n + P W—
which gives
I
(5.49a) Qo,n = an + , >+ ;._‘A :
(ﬁt Aa (’2‘ mG — Sx,n) dn L
provided
1 i
o<‘2—m G —";mon-ﬂ + gn < @n,
that is, if
1 1 .
(5.49b) SO ——m G < gy

now, the latter inequality clearly holds for n = n; = n, (n, suitably great), inas-
much as (5.32a") (implying (5.31)) has been assumed. With (5.49), (5.49a) cor-
responding to (5.22), the implication of (5.22a) would be

1

. S8 = So,n — ——5—»
(5 50) (ﬂ) 2, q;l An(ﬂ—Pn)
where

1 1
(5.503) Pn= Bo,n + EL S =5
for all

; (m Opyr — m G)

1 1 .
an An (—2~ mG — m Oy + q,,,)

= — —- —~L~ S
(5 50 b) Yn = {9 = fg(),n Qo,n q;,l A, oy +

Since the last member above exceeds a, we have fo,» > «n and

(5.50b")  Su(Bo,n) = Sule) = ~m G, Sn(ﬂo,n)m&,ng-;—mG——;—mOn.;.l—g,,.

W -

! ¢ of the theorem is not to be confused with ¢ of (5.32a).
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In view of the latter inequality and of the one preceding (5.49b) one has

I
A 3>/go,n — Pn.

ndn
We take
(5.51) 7":p"+7171§;_e o< e<y)
Clearly y, > fo,». In (5.50) we put 8 =y,, obtaining
(5.52) Sn(;/n)z-;;mG-{-qMa.
Whence, if Snlen) < im Ons1,
(5.53) n(2) < pa + ?ZI,EE
in a set H,(= 4.(yn) such that
(5.538a) Hy < Hy < O, mHnz_—mG+q—e.

Consider now the case when m H* =% m @, while Sp(an) > %m On+1. With

(5.23) in view (where F is replaced by On+1), we write

I 1
) Sulen) = Sa,n——5——"—
(5-54) () = S, Py B
here
I 1 1
(5' 543’) _po,n = Qp — q:‘A < ay — qm

I
" qn + -2—m Onii— Sy (an)

Accordingly, by (5.23a).

I 1

Sulf) = Son— 5— 57—

n(ﬁ) B szz A, ﬁ — Po,n

for all 8> «,. Now, in view of (5.50b) y» > a,. Hence one may take § = ya,

obtaining

I

Sn n) = S e
(ra) = So.n— 5

where
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9 I I

0y = qn An(?’n - 270,11,) = 1 + Z

Sy (ﬂo,n)—s'm On+1—€ln

N I 1 +_; I m0n+;——mG >}’

gn + 2 m0n+1“Sn(an) Qn(;m(}“"gnl Ops1 + Qn) ¢

provided S,(en) < Sy,s. Hence
' I

(5 55) Sn()’n) > > m 0n+1 + gn— ¢

if Sn(@n) < Su,2; clearly (5.55) holds in the contrary case as well. Let q> ¢,> ¢,
where & may be as near to & as desired; (5.55) implies

(555 a) Suln) > ZmG +q—a (0 = ;= ny),

where n, is suitably great. In view of (5.52) 4t <s observed that (5. 55 a) is satisfied

Jor all w; = n, when mH* = i—m G, whether

1
Sn (an) = Z), m On-f-l

or not. In place of (5.53), (5.53a) we may assert that the relation mH*=;~mG
implies that
1
. 6 n < Pn +. DR
(5. 50 ) <+
in a set H, such that

(5.56a) Hy< Hy < Opya, mHng;_mG+q_£O

Jor all n=n;= 0y, where e,(> 0) is arbitraridy small.
Continuing the discussion begun with (5. 46) we are brought to the considera-
tion of the case when

(5.57) ;—m(}-!—q>n'LH*>';—mG.

Corresponding to (5.29a) one now has
Sulan) =mH* > ém G.
and

(5 58) Sn (an) Z S2, n ! !

gn An op—p>"
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where
(5. 58 2) ‘”O'nza”“qii’l'"'qn+;‘m0:+1—mﬂ*<an—§;—/1:
(n =mn; = n,). Whence, in consequence of (5.23a)
Sal®) Z San = 5 (8> a).

In particular, with y, from (5.51), one obtains
_‘_
d (n)

where d(n) is d, with Sp(e,) replaced by m H*; thus, in view of the inequalities

¥

S (711) = 82, n T

preceding (5.55), we have

d(n) >§ (n = n; = ny).

In establishing this use has been made of the first inequality (5.57). Whence

(5.55) and, finally, (5.55a) will hold for all n=n; = n, Accordingly, it is con-
cluded that the relation

(5.59) émG+q>mH*£émG
implies that
(5.59a) Un(2) < pun + ” /inq; = {(n) (cf. (5. 50a), (5.50Dh))
i a set H, such that
(5.50b) H,< H, < Oy, man—;mG+q-—ao
Suppose that the relation
(5.60) lim {(n) =—o0

has been secured. Then by (5.59a) it will follow that

(s.60a) f@)=o0 (in H(ep),
where
(5.60a) H0<H(so)=HHnj< G.

J

By a reasoning employed before we infer that in consequence of (5.60) one has

E11>Hﬂg>"'
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for a suitable subsequence of {n;}. By (5.59b) the latter inclusion relations lead
to the conclusion that

(3.60a") mH(g) = -mG + q-— &,

ISR

Suppose that for values » belonging to an infinite subsequence of {n;}

(5.61) S (Bo,n) = Sa, n.
We then shall have
(3.61 a) Sn(ﬂo,,,)zém(} -l;qﬁ- & (n = np);
that is,
1 (2) < Bo,n (in H,),

where H, satisfies (5.59b). Repeating the reasoning from (5.59a) to (5.60a""),
with {(x) replaced by (5.59a) we deduce that (5.60 a}—(5.60a") will hold if

(561 b) _lin__lﬁﬂ,n=“°°-
If the statement made with respect to (5.61) does not hold we have
(5 62) Sn(ﬁan) < Sz,n

for an infinite sequence of values »=1n;. By (5.59a), (5.504a), (5.50b) one then
will obtain

1 1 !
C(”) - ﬁm"’ + q;i An Sn(ﬂ(],n)""s2,n + aoqﬁf A"

I
. : ; (m On+1 —m G)
< Un + 2 C'ﬂ + ’ Cn = '
> A soqn A L o1
o gn An oqn Zn In (5 mG — Sm Opir + ‘In)
0 < (a, lim Cn ==
Whence
1+ &8
C(n) <o, + _Tn_— (n = MO),
€9 qn An

where by a suitable choice of », one may make & (> 0) arbitrarily small. Since
gn > q > 0, by virtue of (5.44) it is found that

’ %
(5-62 a/) C(n) < an+ 1+ 828 lokn é Uy -+ l——kn (1’1- g”o)

€on &

where

(5.62 ) * > fl‘;;
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here A* may be chosen arbitrarily near to 4,972 (if #, is chosen suitably great).
We further infer that (5.60) will take place if

¥

an+ _“kn%'_'w,
o

that is, provided
(5.63) en = @(n) wi:‘ (15 = my),

where @(n)(> o) is any function tending to zero with »™' and where

[_
(5.63 a) o<we‘,=exp.1———8— <1.
0

By (5.50b) and (5. 44)
Bon<ant an)dkn, o<a(n)—>o0 (as n; — )
Hence
Bo,n = an+ e*Agkn (e* > 0; n=mny);

here, with 7, suitable chosen &* may be taken arbitrarily small. Clearly
l*
ﬂo,n = a, + "‘]Cn-
o

Thus (5.63) (for all #=mn,), (5.63a) will imply (5.61b) in the case when the
statement with respect to (5.61) holds. Accordingly, if f(2) =0 in H, (Hy,< G),
where H, satisfies (5.33), then f(¢)=o0 in Hls,), where H(s,) satisfies (5.60a’),
(5.60a"), provided (5.63) holds for all n= n,.

If

(5. 64) on = () o) (o< vn),

where @(n) is as in (5.63) and z(n) is any function tending to zero with »', then
we shall have the following consequences. Let & (> 0) be a sequence such that

& > &, lim &, = 0.
We shall have
&= @; (n) w’;" (a,ll n= ’ﬂ(])),
where
’ )'*1 : , -
W, = €XP.y — — (> @i(n) < @(n) (n = n(3)
J 1 &

(suitable #(j). Hence in consequence of the above italics

fley=o0 (in H (),

where

H0<H(£j)<G, mH(ej)z—;mG+q~ej.
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Clearly f(z) will vanish in the set

H* = 3 Hl{e).
We have
mH*;mH(Sj);émG—f—q——ej U=12...)
whence
(5.64 ) mH*Z mG g,

We are now ready to formulate the following.

Theorem 5.2. Let {f.(2)} be a sequence of analytic functions, whose limit in
G is f(2), as described from (5.24) to (5.25a). With g denoting the length of the
Jrontier I'y of Ouiy, it 15 assumed that

(5-65) =k <8am@G

(necessarily gn = 47w m Ony1 > 4em @). For a suitable sequence {n = n;} we have
lim gn=g =k, Under (5.65)

422—61}7?[167.:2 (m G)* — (¢* — 47w m Q)] > o.

We consider consequences of the vanishing of fl(2) in H,, where Hy,< G and

;mG—q<mHo<§mG.

If
(5.65 a) &n = @ (n) n (o< e <1; cf. (5.27a)),
where @(n) (>0)—>0 with n™* and T=exp. (— 1y) (7, introduced subsequent to (5. 44 Db),
(5.441"), then fl2) is zero in a set H* such that

H<H*<G, mH*Z mG.

If, on the other hand,
(5.65 b) en = @(n) w'n (n = ng; ny suitably great),
where @(n)(>0) -0 with n™* and

ES
W = W, = eXp. {~ %—} (ef. (5.62a), (5. 44),

with 0 < ¢ <gq, then f(z) =0 in a set H(e) such that

Hy< H(g) < G, mH(e)?_-émG-i-q—*e.
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If, finally, one has
(.65 ¢) &n = @ (1) T(n)" (@, () > 0)
where @(n) and ©(n) tend to zero with w™', then f(2) will vanish in a set H* such that
H<H*<@®,  mH*= émG +4q.
In the above kn is from (5.27 a).

6. Uniqueness Properties (Continued). Consider

dule:) .
6.1 ffc—z’
where p(e) is an additive function of Lebesgue measurable sets, not necessarily
absolutely continunous and possibly complex valued; thus
pele) = (ui —us) + @ (0 — u3);
here pi, pa, ui, ps are non negative additive functions of sets. Suppose ui, ... us are
zero in a bounded closed set G < K, m G > o; then

(6.12) s = [ [ae.

E—2z
K-G

Let 7y>o0; designate by 0(:—19) the set of points (in K) at distance less

than :;0 from (. As is possible, we form an open set O, so that

_To o
0(n+l)<0"<0(n)

and so that the frontier F(0,) of O, is regular and is such that
F(o,,)<0(’—'°)~0( T )
n n+1

0n< O (’-'9) < Op_1.
n

We shall have

Moreover, lim O, = G. The sets G, O, satisfy the conditions (5.24), (5.24a).
We now note that the funetion

(6. 2) £l = j f g—‘_‘}fg (H, = K — 0,)

is analytic in O,.
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On writing

(6.3) gn = length of F(Ons1),

we assume that

(6.3 a) Sk <8rmmd.

Whether such an inequality can be seeured, for a suitable choice of the Oy, or
not rests in intrinsic properties of G

With a view to applying Theorem 5.2 we seek to secure inegualities cor-
responding to (5. 235 a).

For £ in H; and 2z in G one has

— T .
IE—el> i+1
now
O,= (Hn+1“‘ Hn) + (Hn+2 —_ Hn+1) SURRE
since
z)-——f[:f
-, On izn H,.H—H
one has
d ' d
lf(z)~ ak =1>n{ f u;

I+l

N U‘ uduz
{—2

and, finally, in view of the inequality for |{—¢|

d py
+lff =
{—e

a=tt

7A@ L S+ 2l (Howr = )+ + i (For— H)

izn

in G. Hence

(6. 4) If(z)“‘fn(Z)I =rin)=é=— Z i+ 2)p* (Hipr— H)

Oien
in G, where u* = puy + us + ui + ys.

The rarefication of mass p (more precisely, of u*) in the vieinsty of G will be
supposed fo be such that the series in the second member above converges. We then
shall have f, — f uniformly in G.

! It can be shown that such sets G, with m G >0 and having no interior points, exist.
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In agreement with the text subsequent to (5.26a) %, is a number for which
the inequality

3 Uy
(6.53) f();ds_k“

By (t)

holds when ¢ is such that S, < m 4, () < Sy n; here un(2) = log |.£u (2)| and B (1)
is the part of the fromtier of ,(f) having no points in common with F (Ont1);
in this connection ,(t) is the part of 0,1, where u,{(2) < t.

For § in H, and z in O,4: the inequality

will hold, where A, is distance between the frontiers of O,;; and O,. The dis-

tance between the frontiers of 0(1"), O( "o ) is
n n+1

T .
n(n + 1)
By choosing On with its regular frontier suitably near to the frontier of O (ln‘—’)

(doihg this for #» =1,2,...) we arrange fo have

4

I = m (o< <r1y),
where #, is as near to 7, as desired. Accordingly
(6.6) [t—z]= n+l)gq% (Cin Hu, 2z in Opy1; 0 < ¥ <1y).

With o denoting the angle made by the normal direction (bound outward
with respect to ,(f), one has

Qupn Oun Oun I
= cos ¢ + —— sin ¢ =

on ox °°F dy H|fn[{ | fa] cos @t o lfnlsma}

so that

l.
J

l!/\

¢]

e = i gal sl |+ 7yl

On writing p' = i — us, p” = py — us and

fn=an+7;ﬂm C K +Z”§"

we obtain
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/‘fC—Tdu+C"*U)du, f — (" —wdy + ( —x)du”
[¢—z] [g—el?
Hy,
Whence
0 1 0 an 9B\ 9., _ 0 ¢ 0 B
fﬁlf"lwlfnl( "oz ) le”lﬁlfn (a"f?y +'3"01/)

S LA

1 C_x _'(C” )o "
zl‘ f =7

dx

there are similar formulas for the derivatives with respect to . Accordingly,
in view of (6.6) and (6. 2)

” - 1
leul, 18ul o] £ 5 (HL) < lpn® (zoz,— *(K>)
and, in consequence of (6.7) and since | — x|, | —y| =< |5 —2|
d an 17} ﬁn ooy, a ﬂn
dx "oy | ay =it (1, > o)

for z in On41; here [, I, are independent of ». Whence

0
'%lﬁtl ’ IfNI Ifllolln
and
(6 8) —06_ = ‘;2 I 2loll ”6=6—2t2loll n® (On Bn(ﬁ)
Hence, in view of (6 5), one may take
(6.9) ko= 210,08 e~ b, (f)

(¢ such that Sin <md,®), where by(t) is length of B.(f). In any case we
arrange to have
bL=k=
With the aid of (6.4) and of Theorem 5.2 the following result may be
now deduced.
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fle)= f “‘—"—‘Z‘”_(e;)

be a function as described in commection with (6.1), (6.1a). We note the notation
leading up to the hypothesis (6.3 a) and consider consequences of the relation

Theorem 6.1. Let

Sfle)=o0 (in'Ho;%mG—q<mH0<-;—m G)-
Iy
(6. IO) ‘u*(Hi+1 — H,,) = '—:/.—i’tki (S,' >0, 0< 1< I),
where s, + sy + ... converges, and when the constant v satisfies the conditions of

Theorem 5.2 (as relating to the present case), then
Sfle)=o0 (z'nH'; H,<H*< G, mH*gim G)-
If (6.10) holds with = replaced by w. (w. formed in agreement with Theorem
5.2) then

fl@=o0 (inH(e); Hy<H(@E<G;, mH(e) = mG+q—s)-

1
2

On the other hand, of

[

(6. 100) ut (Hipr — H) < 2 2 (o) o< z(@) < 1)

-

where 1 (i) > 0 monotonzeally with <=2, then
fle)=o0 (z'nH*; H,<H*<G; nzH*i%mG-l—q)-

We turn now back to Theorem 5.2. Tt is recalled that f,(¢) is analytic in
0,> Oy, Let W, > 0,, be the set of all points in the complex plane at
which f,(2) is analytic (uniform).

We designate by o (f) the part of W, in which wu.(2) < t. Clearly

(6.11) An () Opsr = A (1).

Suppose the frontier I's, of A (t) has no points in common with the frowtier of W,

for values t for which
Sl,n < mdp < S2,n-
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The part Is in O,4; is identical with B, (). With normal derivation outwards
with respect to 7 (f), one has

v

Sz (on 13).
Since

T

—E—M—ds= 27 2y,

)

where z, is the number of zeros of fu(2) in A% (t) (for values ¢ as specified above)
we shall have

0 uy, 0y

",_—'d.S’é —ds=2m2,.

on J On i
Byt Iyt

Hence one may rveplace kn by 2 mz,, whenever the italicized statement subse-
quent to (6. 11} holds.

When fn(z) is rational of degree =< n! with poles not in G, sets O,, as
described in section 5, can be always constructed. The set W, will consist of
the whole plane excepting the poles of f.{z); the totality of the latter points
will constitute the frontier of W,. Since u.(z) =log |fy(2)] is positively infinite
in the vicinity of the poles, every set ;(f) and its closeure Ax(f)(t < + )
contains no points of the frontier of W,. Hence, in the case under considera-
tion, the italicized statement subsequent to (6.11) will certainly hold. Thus,
Theorem 5.2 may be restated, when the fn(z) are rational functions of degree
= n, with

(6. 12) kn: 27n.

Consider the number 7, involved in Theorem 5.2. We have, in accordance
with the italics subsequent to (5.44b'),

]~| I
%o > 7t 112(;m0n,,+1—-m HO)AO,

where (cf. (5. 44)

-~ 2
2‘0 = Cn.

Since m 0, —+ m G one may take

I
1125(7[’& G)/'LO

' L e., f, is ratio of polynomials of degree = n.
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By (5.65)
gn, P=k<8nam@,

hence, in view of (5.27'), we have

Cn§4l/;7t'

198

(m G)? (n = ny; m, suitably great)
so that it would suffice to take

Ay = 16 7% (m G)L.
Whence the condition of the Theorem will be satisfied if

(6.13) Ty > 1, 7T = ;1—4 16 7° (m G)*.
In view of the ahove we may take
o = 32 e (m G)*.
On taking note of (5.62a’) it is possible to choose 4* as any number such that
(6.13a) PR 4= qld 32 7% (m G)B.
We shall introduce the Definition.
Definition 6.1. A function f(z) will be said to belong to the class C(G; y)

(o <y <<1), provided f(2) 2s limit of a sequence of functions fy(z), rational of
degree = n,

(6. 14) (&) = fo@)] < g ()2 (in @)

the poles of fulz) lying exterior the closed bounded set G (m G > o) and @ (n) (> 0)
being any function' tending to zero with n=.

A class C(G;p) will be said to be regular if open sets O, with regular
frontiers can be formed, so that f.(¢) has no poles in O, and so that 0,> 0,1,
0,> G, lim 0, = (G, while

o=k, < 8am@,

where g, is length of the frontier of O.1%; the above being true for all se-
quences {f,(z)} associated with the class.

Suppose f=lim f;, k= lim h, belong to a regular class C(G;y). Then for
the funection

! The function ¢ (n) is allowed to be different for different members of the class.
? The property of regularity of C(G;y) is essentially a property of G-
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(6.14)) W=f—h=1m P,, Wan = frn — Iy

we shall have
by~ yaal < @, (0) 727" + @y (n) 2= (in @),

where @, (n), @;(n) are certain positive functions tending to zero with n~!. The
W2. being rational of degree = 2m, in view of

(6. 15) | — 2n| < @ (n) (ya)2n2" (lim ¢ () = 0; in G),

it is inferred that v belongs to a regular class C(G; yi).
If f=h in a set H, as described in Theorem 5.2, that is, if

IP =0 (in Ho)s
then (6. 15) will imply ¥ == o0 in H* (H* as introduced preceding (5. 65 b)), provided
yh=¢ %, T, > T (ef. (6.13);

that is, provided y is less than exp. (—217). We shall have { =0 in a set H (¢)
(as in the Theorem), in the case when

y = exp. {—- 32“ }7 A > (ef. 6. 13 a);

the latter condition holds when

{ 2X
y << exp. l———‘: .

It will be said that f(z)=lim fn(2), where fu(2) is rational of degree < n,
belongs to the class Cy(G), if
(6. 16) If—fal = ea=g@(n)z(n)™" (in G),

where @ (n)(> o), T(n)(> o) > 0 with n~1.
In this connection @(n), {n) may be different for different members of the

class C,(G).
Suppose f=1lim f,, h =lim h, < C,(G); thus

1= ful < @0 () m 0P, B ha] Z @y () (s )27 (in G),

where @, (n), @,(n), 7,(n), 7.(n) > 0 with »~1. For the functions 1, ¥, of (6. 14)
we shall now have

! One may, of course, write n in place of 27 n in (6. 16); the notation in use is in agreement
with (5. 635 ¢).
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[ — Wanl = @, (1) (v, @)™ + g (1) (73 w)27™

Let ¢ (n), 7°(n) be such that
@, (1), @s(n) = @(n); 7, (n), 7,(n) < 22 (n),

while @ (%), 7(n) > o with »~'. One then may assert that

(6.17) | Y — Yunl| = 2 9 (n) (5° 0)) 27" = 2 @ () (v @)>">"

(in G). Thus vanishing. of ¥ in H, (H, as in Theorem 5.2) will imply (in con-
sequence of (6.17)) that ¥ will vanish in H*, that is

f=h (in H*)

where H" is the set referred to at the end of Theorem 5. 2.
We are now ready to formulate the following.

Theorem 6.2. If f, h << regular C(G;y) (Definition 6.1), then the relation

(6.18) f=h (en Hy; Hy < G),
where
(6.184a) ;-mG——q<mH0<é-mG,

will have the following consequences.
Iy

' I
o< y<e?, '6'=zl—;167r3(mG)4,

then f="h in a set H* such that

H,< H* < G, mH"‘zémG.
Iy
[ 2% ;1 s e
o<7<exp.l—ué— o<e<gq; A :&—,_.3275 (m G)*}>

then f=h in a set H(e) such that
H,< H(g) < G, 7nH*;é~mG+q—e.
Finally, if f, h < regular C,(G) (cf. #talics in connection with (6.16)) then

(6.18), (6.18a) will tmply that f="h in a set H* such that

12-632046 Actu mathematica. 78
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H,< H*< G, mH“‘g-;ij-kq.

The above Theorem gives conditions under which certain classes of fune-
tions, consisting of limits of rational functions, are quasi-analytic in the sense
of unique determination of the members of the class by their values on sets of
positive measure H, We note that m H, is required to be suitably great before
the Theorem can be applied; moreover, unique determination is secured not
necessarily almost everywhere in G.

7. Unique Determination by Values on an Are and on Denumerable Sets.

Uniqueness properties, related to arcs I' for functions of the general form
(6.1) have been studied with considerable detail in (T,), (Ty). The results therein
obtained are of a rather complicated character. Accordingly, it appears to be
of interest to obtain simpler results for the important specialized case of fune-
tions, which are limits of rational functions. For this purpose one may apply
with good effect a suitable adaptation of the very elegant method of J. WoLr¥r!,
utilized by that write in the study of functions of the form

32

¥ £ Gk

Direct application of this method to functions (6.1) does not appear to be con-

venient.
We now consider functions f(z), such that
7 ICRVCIES (in 6 lim en =),
where
(7.12) s A
Al =3 e

Here the anr (k=1,...n), all finite and distinct, are outside the closed bounded
set G; moreover,

(7.1a) |an ] = R;

the latter is not a very essential restriction.

P J. WoLFF, Généralisation d'un théqreme de M. Carleman sur les séries de fractions ra-
tionnelles, Comptes Rendus, t. 202 (1936), pp. 551—553, in the sequel referred to as (W)
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It is recalled that, in accordance with (Ty; § 5), certain wide classes of func-
tions are representable as described above.

Let I" be a simple continuous rectifiable arc in G. As in (W), we introduce
a conformal transformation

(7.2) C=1C0(e)="Cile—20) + Lele— ) + (i + o)

(the series here converges in a vicinity of z,), which maps the region consisting
of the z-plane, with I" deleted, on the circular domain

S (12l < 1);
2o is to denote a point of G not on I'. We have
(7.22) z=z(0)=2y+ 2,0+ 20+ - (zl:i)
convergent for [{| < 1. On writing
(7.3) Jule) = Fa(0),
it is observed that F({) is analytic in S, except for simple poles at
(7.3 Bre="Clan ), |Bnr| <1 (k=1,...n).

As in (W), application of Jensen's formula will yield

27 n
4 log|Fulo)l =log laleol| = 1= [ log| ae1a0 + 3 togz—-
1
0

|ﬂn,kl
We wish to examine consequences of the relation
(7.5) fle)=o (on I).
In view of (7.1) the above will imply
|[fa(@) = | Frle'®)| < en (2 on I).

Hence (7.4) yields
(7 6) 10g Ifn (Zo)l = ].Og &n + kn,

where k, is any number such that

A

= 1
.6 log —— = ky.
(7 a) zl' o8 |13n,kl

We shall obtain f(z,) = 0 whenever

lim (log &, + kn) = — ®;
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that is, when
{7.7) lim étne, = 0.

In consequence of (7.2) and (7.3")

I A,(z
E;‘-’; = ,a-n i {__0 )‘5 0“l (Al (30) > O)
and
1 1
.8 1o —*—-l =nd + log ————>
(7.8) ; g Bt n 4 (2,) ; og lan,k ”“Zol

where 4{z,) is independent of ».
Let p(n)(>o0) be a function such that lim Y (n) =+ = (as n— ). An in-
finite sequence n ==; (n; < »y, <---) can be found such that

(7.9) 2;17([;2; < ¢ (60 > 0),

A

where ¢ may be assigned beforehand as small as desired. Designate by Sfe, r)
a circular domain |z —c¢| <r. Suppose G is such that a portion

GS(c, E)
4

of G, having a positive planar measure, exists. We designate by
n n
2, le
k=1 k=1
summations extended over those i which lie in S (c, é) and ontside of S (c, ;—),

respectively. When a point on 1 is in S(c, g) one has

. 2m 1
(7.9 0<fflogl—;:1-%—ﬂdwdy<fflog;‘rdrdf):l‘l;
S, ) ' 00
hence
n‘, 1
fZJ logwlz_an’kldxdy<nM.
8(c, ) F=1

Let F; be the part of S(c, é) in which
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" I
gl log m > ny M’([J(ﬁ])

Necessarily

1
mE; = -

P{n;)

In fact, if the contrary were the case one would have

nl 1 . ~
ff...(lxdyglfgl logmdwdyznjﬂ[w(nj)mbj>1sz;
)

8, d)

this is in disagreement with a previous inequality. Now

njl I : 1
— <y A in H: = -,
E’; log =k n; M ap (n;) (m H;= S8 (c, 2) L,)

where
I

Winy)

7%
mH; = ——

Form the set

E’=HH,-=S(0, 1) —SE.
2
Clearly
.10 E*<S(c,1), Bzl osapzf s L 2%,
(7. 10 2 ™ 4 4 Yi) = 4 °
(ef. (7.9) and
"y
(7. 104) 2 10g|z—‘an 7 = n My(n) (in E%).
k=1 '

In agreement with the statement relating to (7.9) we choose {n;} so that

(7. 11) (o<)ao<m(}S(c, i)
On writing

H*—~=E*S(c,—l),
4

pe4

and letting C denote complements of sets with respeet to S(c, 3) we obtain

1

H — S(c, —) — OE* — CS(c, 1).
2 4
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By (7.10), (7. 11)

mOE*=%~mE*§eo<mGS(c, I);

4
moreover,

T 1 T T 7T 7T
) mH zZ—mCE — '(,—)g—— ~(___)=__ :
(7.11) m )4 mCE mCSc4 s 116 6 %o
thus

mH*>—”~—mGS(c, l);
16 4

in fact, by suitable choice of (n;) we may get m H* as near as desired to {—:;

Let C now denote complements of sets with respect to S(c, i) Since H* <

< S(c, 1) one has
4

G H* = GS(c, 1)}1* =S(c, 1) — C(Gs(c, 1))— C H*
4 4 4

Hence, in view of (7.11"),
{(7.12) m(GH*)=Zm GS(c, ;) — &, GH'< S(c, i), GH* < E*;

in GH* (7.10a) will hold for j=1, 2,....

For z in GH* and «,  outside S(c,é) we have [z — an, x| > i; thus

log——l—< log 4
|2 — an, x|

and

Hence in consequence of (7.10a) (valid in G H*) it 4s deduced that
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- 1 . .
(713) Zlogm<njlog4+77jMw(nj) (==1,2,..)
k=1 "

for z in GH* (cf. (7.12).
In consequence of the above and of (7.8) the number %, introduced in
(7.6a) may be taken as

(7. 14) knj = m; A(20) + 15 log 4 + ny My (my),
when 2, is a point in G H*. Accordingly
Fngy < g, 0¥ (n=mn; = n),

where p is any number exceeding M and =(2,) is suitably great. Hence (7.7)
will hold and, thus, one will have

(7.15) fle)=o0 (in GHY),
if
(7.15a) &n = @ (n) emenvinl (p @) > o; lim ¢ (n) = o).

Here u is independent of z,. Inasmuch as y(xn)(> o), with lim ¢ (n) = + o,
is arbitrary, u may be absorbed in y(n). This may have effect on the choice of
(n,) necessary for the validity of (7.12) — a circumstance of no importance in the
final statement made in connection with (7. 13), (7.15a).

In (7.12) &,(> 0) is arbitrarily small. We take a sequence

&,m >0, lim & ,=o0.

Correspondingly, in consequence of (7.15a) it is inferred that f{(z) =0 in a set
G H;, such that

m(G Hp) = mGS(c, i) —&o,m, GHp< S(c, i),
whence one will have f(2)=o0 in
Ge= D GHp G < GS(c, i);
here

mGS(c, i)szc;mGﬂ,‘;gmG‘S’(c, i)~—eg,m

(m=1,2,...). Hence

-ch=mGS(c, 1)-
4



184 W. J. Trjitzinsky.

that is, (7. 15a) implies that f(2)=0 almost everywhere in G S (0, i) The set G

being bounded, there exists a finite number of points ¢ so that
G<}q‘_'S(cj,I—), G = ZGs(cj,~’).
Jj=1 4 J 4
For a fixed j the set GS(Cj, i) will have positive planar measure, when one
may assert that (7.15a) holds almost everywhere in this set; the alternative is

mGS(cj, -I-) =0.
4

Theorem 7.1. Consider functions f(2) of the type described in comnection w:ith
(7.1), (7.1a), G being closed bounded. If

&y =@ (n) eV (n=1,2,...)

where ¢ (n) > o, 1,0(1&) >0 and

-0 (@as n > o),

then vanishing of f(z) on a simple continuous rectifiable arc I < G will imply
vanishing of f(2) everywhere in G.

Vanishing of f(2) almost everywhere in G follows by the preceding de-
velopments. Now, f{z) is continuous. Hence the part of G in which f=o0 is
closed. The set Gy, <  in which f > 0 has zero measure and must be open with
respect to G; G, can have no points interior with respect to & since if it had
one would have m Gy, > 0. Whence G, is a null set. This completes the proof
of the Theorem.

If we denote by C(G) the class of funmctions f(2) which are of the type con-
sidered in the above Theorem, it is noted that the class is additive. In fact, suppose

[f—fal < @y(m)e ™ g —gn| < py(n)e a0l

in G, where fu, g. are of the form (7.1a) (poles not in (), while ¢, @y, ¥, Y,
are positive and

-0 (as n — o).

¢1 (’I'Z), Q’z (’ﬂ),

Consider the function
g=o0of+ g (e, ¢, constants).
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On writing
Qen=—Cc fu+ Cagn

it is observed that
g — @nl=le,(f—fa) + ea(g — gu| <o) @y (n) &m0l + | ey | gy () ¥l
(in G). We introduce positive functions ¢, (%), W¥,(n) such that
@ (0), :m) = @o(2m), Yy(2n) = ¥, (n), W, (n)
lim @y (2 %) = o, lim Yy(2n) = + .
It is observed that
| q— Qan l < @ (2 1’1) e—2nv(2n) (in G))
where
I
plen)=(a|+|a)gzn), wizn)=_w(2n);

whence g < C(G).

In consequence of the Theorem the class C{G) is 'quasi analytic’' in the sense
that the members of the class are determined uniquely in G by the functional
values on any continuous rectifiable arc I' < G,

We continue with functions f(z) as described in connection with (7. 1), (7. 1 a).
Let 2w, 2, 25, ... be a denumerably infinite set of points on the arc I, with 2w
as the sole limiting point;

(7.16) lim 2, = 2.

Conditions will be found under which vanishing of f(z) on {z»} will imply

vanishing of f(2) on a more extensive set. Lef »n be the smallest integer such that

(7.164a) |20 — 20| < (all ¥ = v,)

X
m
and designate by I'n the portion of I’ consisting of points { such that |z — 2| =
= ;;— If z(5 2,) is any point on I's, a point 2z, can be found so that ¥ = v,
while

(7.16D) le —zv]| = |2 — 2| (all » = vp).

The end points of I', and the 2z, (v = w,) divide I'n into a denumerably
infinite sequence of adjacent subares dm; we lef

(7.16¢) Am=1u.b.ln (fixed m)
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where Un is the distance between the end points of an arc dm. In view of (7.16b)
(7.164) |z — 2| = dm.
Clearly 1i1:n An = 0; in faect,
(7.16¢€) I = -;;
Since we have assumed that f=o0 on {z,} it will follow that
(7.17) [ falen) | < én v=r1,z2,...

and, for z on I'y,

[fal) | =1fales)| + | fule) = F (&) ] < en + pn (Ras),
where u, is a modulus of continuity of fn({) on I' (or in G). In view of (7.14a)
one may take

(7.17) pn(A) = M, 2, M,,:éZ | An ]

=1
where dn 1 distance (necessarily positive) from the set of points

an’l, an,2, e an’n

to G. We have
(7.18) 1/ (@)| < en + Mandm < o0 + —;; M, (on I).

We take m sufficiently great so that I's is a single simple arc. In place
of (7.2) introduce a transformation

E=1Cule), Lmlz =0,

Z, being a fixed point in G not on I, mapping the region consisting of the
z-plane, with I, deleted, conformally on the circular domain S(|{| < 1). We
repeat the developments given subsequent to (7.2a), with £(2)=Cn (), fn 1=

== fBn,k,m and

Jao = fulen) = Fpulb),
where

e=em(l) =2+ 2z,ml + Laml + (Z""‘='€f«7~)

is the inverse of the mapping function (n((), whose analytic element at z, may
be written as

Cule) =Cimle —2) + Lom(z—2) +- (L1, # 0).
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In view of (7.18)
|an,m(€io)! é‘é‘n -+ Mn lm,

we choose m = mm so that lim M, An = 0; accordingly, by virtue of an analogue
to (7.4)
(7- 19) log 'ffn, (ZO)I = log (Gn + Mnlm) + kn,m,

where %, » is any number such that

n
I
l ~—°Sk .
2 logyg = b

Inasmuch as Bni,m = Cnlan ) it is noted that

(7. 20) "‘g An (2 (dn e > 0);

lﬁn,k,m lan,k"“zo‘

this inequality corresponds to the one preceding (7. 8). Repeating the steps leading
to (7.14) we obtain, as a possible choice,

Enm =nAn(2,) + nlog 4 + nMy(n)

for a suitable infinite sequence % = ;. In view of (7.19) it is accordingly in-
ferred that

(7.21) flz) =0 (in GH?*)
if

6(n) = log (en + Mndnm,) + n Am,(2)) + nlog4 + n Mp(n) ~ — =
as n > . Now
(7.21") 0(n) = 0" (n) = log (en + MnAn,) + n Am, (2,) + pup(n)
(u>M; n=n,). Hence (7.21) will hold if 6*(n) > — o ; that is, if

en + My dn, = 2 p(n) e #nvm) gmndy, (2

where @ (n)(> o)~ 0. It will be convenient to choose m, so that
(7.22) My him,, < €n.

Absorbing u in () (inasmuch as ¥(n) > + o, w(n) > o, this is possible)® we
conclude that, under (7.22), it is sufficient to have

(7.23) &n S @ (n) e PP OI+An, )

! Note the remark subsequent to (7. 15 a).
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On the basis of (7.23) a reasoning of the type used subsequent to (7.13) well
lead to the inference that

(7.23") fle)=o (in G)

in consequence of the relations flz,)=o0 (v=1,2,...).

We shall obtain some essential information regarding A4n(2,) in the im-
portant case when I' is a rectilinear interval. It will suffice to take for I' a sub-
interval of the axis of reals, say (— a, a) (a > 0), with 2z, = 0. We consider the
transformation

z z\* o1
(7.24) w:—‘w(z)=;——[(a) -—I] =5[2‘-“(52“a2)%];
in this connection we introduce a cut along I' and take the determination of
the square root which is positive for real z > 4. The function w(2) maps the
z-plane, with I" deleted, on [w]< 1. The points 2= o and w =0 will corre-
spond. The function
w — W,

(7.24a) L=1C() = ’

wow_" I

where w = w(2), w, = w(z,) (2, not on I'), thought of as a function of w, trans-
forms the circular domain |w|< 1 onto the circular domain |[{|< 1, while
=0 for w =w,. If one thinks of { as a function of z, it is noted that (7.24a)
transforms the z-plane, with I' deleted, on the circular domain |{| < 1, while the
point z=2, goes into [ =o0(z= o > {=w,). We have

o _la—@B—aHle—(—a} —a

2@ [e— (2 — %] — [z, — (&2 — a?)P]

The denominator in the second member above is equal to
2 — 2}

(6 —a®F + (2 — a2t

Z"ZO“

Hence

T N A |t B PR e
(0 el 4 Iz P

With 2, 2, not on I" suppose that

(7.25) —
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where 6{0 < ¢ < 1) is such that

1
(7.25a) ZI +1|2.7+w“<4

Under (7.25)

2

1 a® o a2j
z—(*—a 7=;20;{H

=0
and
had 22j+1 + ~?2‘;4»1 .
=[zo— (22— a%}] + [e— (* — a?) 20 L Wa21+2;
J=
hence
@ S o} (——1)7'—ajj—(321_ 2=1g 4o )
D:DO(Z‘I'ZO);O—Z; D0= 2 i1 23132.7 I o T Pl 8
j=0
here
-]
1 T I
D=+ Dy 1Dyl =| 3 o= et | e gt s | = 7

accordingly, by (7.25a) |D,|= > and

4
4|zozl

2 < 21,
(7-26) |'Lw2+%w

On the other hand,
(7.26a) N*=(2—aP + (2 —at =242+
hod (220=1 4 g2 1
+ Z’ C}'(~ 1Ya% W—l (zo +2)Q,
1 [
where

(7.26a") Q=

(-]
b Vgl ] cer L 1 <
1+ D) C¢(— 1Ya Y Y +o ot Z| =

J=1

189

1+ i‘ Cﬂ(zj—— 1) 0% = q,.

j=1

Finally, in consequence of the formula subsequent to (7. 25 a)
(7.26Db) N=[5%—(B—a)[e—(*—a®?] —a®= —a® + a* T,
where

(7.26b") | 1, l‘“l Z] k., |0
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From (7.26)—(7.26b) it is deduced that

2

t
=_<—4|eoz]g0[1 + ale;ol] L4qtlzz)

_a_lz~zo|:’NN*
€& 1 D

where

(7.26b") to=1+ o> .

Replacing I' by I“m(- == %) and putting

I
m

, &=k, C(Z’)—:Cm(e),

N

I
m
in accordance with previous notation, we obtain

I I 4%750'30“".1', Ifomm
— < m=
Itgn,i‘,?n! 1m (“n,k)! o ,“n,k_zol " "’n,k“'?of

(7.27)

(=46 R; cf. (7.1a"), provided conditions corresponding to (7.25) hold, that
is, if

1 1
~ale) " o} an, ]

\

(7.274) m = tin

(1%

k=1, ...).

By virtue of (7.27) and (7.20) we may take
(7.28) Amlz)) =|2|qgm

whenever T is a rectilinear segment (as assumed previously).

With respect to (7.27a) we note that, inasmuch as we take m, so that
lim my = 4+ o, the first condition is not essential since it will be satisfied for
n = n, (B, = n,(2,) suitably great); the second condition (7.27a) will hold if

’ 1
(7.274a") mn Z o

(see text subsequent to (7.17), inasmuch z=o0 is in G and |ene|=ds. If
lim &, > 0, f(2) will be analytic at z=o0 and so, naturally, will have the desired
unigqueness property; that is, vanishing of f(¢) on {2z,} will imply vanishing of
f(2) in the counected domain containing z==0. Accordingly there is a problem
on hand only if lim d,=o0. In view of (7.27a’) we shall choose m, so that

(=2)

IA
IA

1.8

(7.27a")

1
— =
ady,
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By (7.21), (7.17'), (7.28) we have

6* (n) = log (en + hu 072 dm,) + nleo| qmn + pn(n), hn=|4n-
k=1

Now 2z, being a point of the bounded set G one has |z,|¢ = ¢°. Thus in view
of (7.27a")

(7.29) 0* (n) < log (en + ha 0% hn,) + 2 q*é + uny(n) (" =4q"0,).

On the basis of the text leading to (7.23) we conclude that (7.23) holds if the
second member, above, tends to — o as n = oo; that is, if
1

en + Iy 072 A, < @y (m) e 3, TP, @o(n) > 0.

These considerations lead to the conditions

» 1 —ny(n
(7.30) Iy S @y () Ge ™ TV,

« L i
(7.304a) e = @y(n)e "7 5, i i
where @, (n), @,(n) are positive and tend to zero with ;IZ (« has been absorbed in

Ww(x). We sum the above developments as follows.

Theorem 7.2. Let fle)=1limfn(2) be a function as described in connection
with (7.1), (7. 1a). Suppoese G contains an interval I' on which there is a denumer-
able infinity of points {z,}, such-that lim z, = z". Designate by TI'm the portion of
I' for which |z2—2¢ |§7—In (integer m > o). Associated with the set {z,} there exists a
set of numbers A,

m=1ub. I, (v = vm),

where the {I,} (v = vm) are the lengths of the non overlapping intervals into which
In is divided by the z, lying in I'm. Let 8, designate the distance from the set
of points enr (k=1,...7n) to G. We assume that the more interesting and im-
portant case when lim 8, = 0 is on hand. With {m.} denoting a sequence of integers

such that 6101 < my = 0,0, (02 > i), it is observed that under conditions (7. 30),

(7. 30a) vanishing of f(2) on {z,} will imply that
Sfley=o0 (in G);
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in this comnection q*(7.29), o(7.25a)' are positive constants defined as described
previously, while ¢ (n) (> 0) is any function tending to + o with n;
hn = 2. | Ao ).
k

Note. It is observed that (7.30) expresses a 'metric’ property of the set
{z,} in the vicinity of its limiting point 2’; (7. 30a) relates, of course, to the
speed of convergence of {f,(2)} in G.

In the case when the Ay i, anx are independent of » we have

< 4
(7.31) Anp=Ap, anr= o, f(z):}‘_,g__kak-
- :

Let {di} (31 =d,=---) be a sequence of positive numbers such that the distance
from op to G is equal or greater than d.. We then may take

(7.3]3:) Sqlzzj‘?ﬂa
k

k>n

the supposition being that the series
Z_Léd
E ds

converges. In (7.30), (7.30a} 6, may be given the meaning assigned above;

moreover, since
hn—é ZlAklzha

k

hn tn (7.30) may be absorbed in @,(n). Finally, ¢n view of the Theorem the uni-
queness property, - involved, will take place for functions f{z) of the form (7.31),
provided (7.30) holds (as stated above) and

IAklésmkexp.{—kq*i—kw(k)} k=1,2,...,

where the sp {>-0) are such that s, + s, + - - converges.

University of Illinois,

! We may take ¢*=4¢,(1+c*#) RD, where g¢,, £, are from (7.26a"), (7.26%') and D is
the diameter of @.



