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I ~ I n t r o d u c t i o n .  This  work  is essent ial ly  a cont inua t ion  of the  funct ion-  

theore t ic  developments ,  which the  p resen t  a u t h o r  unde r took  in two extensive 

memoirs ,  in the sequel referred 1o as (T1) 1 a , d  (T2) 2, respect ively.  I n  order  to 

save space it  will be assumed t h a t  the  r eader  is f ami l i a r  wi th  the ma in  ideas  

and  pr inc ip les  involved in those two works.  

W e  shall  first es tabl ish  a n u m b e r  of t heo rems  re la t ing  to the  r ep re sen ta t i on  

of classes of func t ions  (of a complex variable),  charac te r ized  by cer ta in  descr ipt ive  

proper t ies ,  by in tegra ls  of the  fo rm 

J J C - z ' loo. (~ - ,~) ~ ,  (ec) (e = x + ~ y), 

1 W. J. TRJ[TZINSKY, Thdorie des fonetions d'une variable eomplexe d~finies sur des ensembles 
.qdndraux, Ann. Ec. Norm., (3), LV, Fasc. 2, pp. I I9--I9I .  

W. J. TRJITZINSKY, Some general developments in the theory of .f~nctions of a complex 
variable, Acts mathematics, vol. 70 0938), pp. 63--163. 
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where tt(e) is an additive function of sets 1 and ~ ~ '+  i~" is the variable with 

respect to which integration is performed. 

Consideration of (T1), (T~) and of the present work will make i t  clear that  

integrals more complicated than or essentially different from those in (l ~ I) 

are not necessary, in so far as our main interest is in functions mo~ogenic 
(that is, possessing a unique derivative) in one sense or another over suitable 

measurable sets, 

Results regarding representation of functions as integrals (I ~ I )a re  involved 

in Theorems I . I ,  2. I, 2.2, 2.3, 3. I. Theorem 2. I, of which Theorems 2. z, 2.3 

are Corollaries, relates to classes of functions C{e(n)} (Definition 2. I): The in- 

troduction of such classes is made plausible and natural in the light of the devel- 

opments relating to continuous extension functions and leading to Theorem I. 2. 

In section 4 an investigation is given relating to conditions securing mono- 

geneity and existence of derivatives up to any assigned order: monogeneity on 

a set that  may be without interior points does not necessarily imply analyticity 

in the set. 

Outside of representation theorems, various problems of uniqueness constitute 

the most important and, incidentally, the most difficult part in a theory, such 

as developed by the present author. The properties of uniqueness are suggested 

by various properties of uniqueness which the class of analytic functions possesses. 

/~ non analytic class of functions having a particular property of this type could 

appropriately be termed 'quasi analytic' in a suitable sense, t towever,  traditionally 

the term 'quasi analytic' has been applied mostly to classes of functions posses- 

sing the property of unique determination of the members f of the class, involved, 

by the values f( ')  (~ ----- o, I , . . . )  at  a point z 0. Sections 5, 6, 7 relate to uniqueness 

properties. 

Preliminary to the study of uniqueness properties (P), related to sets of 

positive planar measure, we establish a Theorem 5. I on analytic functions, which 

is along the lines of a similar result due to BEu~nI~G and utilized by him in a 

study of such properties for certain functional classes consisting of limits of 

rational functions. In Theorem 5.2 we establish conditions securing properties 

(P) for limits of analytic functions. The same problem for integrals (I ~ I ) i s  

involved in Theorem 6. I, while for limits of sequences of rational functions, 

converging uniformly on a closed set G, the problem is treated in Theorem 6.2. 

1 All the sets mentioned are Lebesgue measurable. Unless the contrary is implied integrations 
are in the Lebesgue-Stieltjes sense. 
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Uniqueness properties (C) relating to arcs are studied in section 7. Con- 

ditions securing properties (C) for limits of rational functions are given in 

Theorem 7. I. The method is of the type used for a similar purpose by J. WOLFF. 

We go further and in Theorem 7.2 establish uniqueness properties related to 

denumerable sets, the functions studied being expressible as certain limits of 

rational functions. 

The leading idea in (T~), (T2) and the present work is that  we study func- 

tions of a complex variable which are apt necessarily a~alytic but which at the 

same time are sufficiently specialized so as to come within the scope of classical 

analytic tools (like Lebesgue-Stieltjes integration). I t  appears that  conditions of 

monogeneity in one sense or another (and, in fact, in a rather generalized sense) 

over sets in the complex plane, which may be without interior points, are the 

conditions which give the desired degree of specialization. On the other hand, 

the classes of functions, so obtained, are of such great vastness and the possi- 

bility of classifying these functions according to various uniqueness properties 

and of subsequently studying them is so wide that  there appears to be on hand 

a very extensive field for new investigation. 

It  was Bowel who, inspired by Cauchy's point of view in the field of ana- 

lytic functions, developed a theory of functions, now termed 'Borel monogenic', 

for which he established a fundamental contour integral formula analogous to 

Cauchy's integral formula. On the basis of his formula Borel developed a theory 

of 'Borel monogenic funct ions;  these, incidentaIly, form a class of functions 

quasi analytic in the traditional sense. Borel also gave an indication that  two- 

dimensional integrals in place of contour integrals may be fruitful for the further 

advance of the theory.. Under the inspiration of Cauchy and Borel the present 

author was confirmed in the conviction that  the foundation for the theory should 

be an analogue of Cauchy's integral formula. Hence the representations in terms 

of two-dimensional Lebesgue-Stieltjes integrals (I ~ I); theorems relating to such 

representations were already given in (T1), (T~). Accordingly, the representation 

theorems of sections 1,2,3 are designed to serve as the basis of our theory, 

jus~ as Cauchy's fundamental  formulas serve effectively as the basis of the theory 

of analytic functions. 

I t  has been pointed out in (T1)and (T~) that  functions representable by 

integrals (I ~ I) are also representable, under certain rather wide conditions, in 

the form 
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(A) lira f ,  (z) (f ,  (z) analytic) 
,v 

for z in suitable sets G, which could possibly have no interior points. In (T~) 

conditions have been found under which functions of type (1 ~ I) are expressible 

in suitable sets G as 

I - -  - -- av, mr ] (B) l i m  a*., 1 .~_ a , , 2  + . . .  ~ -  . . . .  ; 
~, Z - -  a ~ , , 1  z - -  c t ~ , 2  Z - -  C t ~ , , m . . ]  

under certain other conditions functions (i ~ I) may be expressed as infinite series 

(c) Z a, (~ I a, I convergent). 

In other words, the various classes of monogenic functions for which  represen- 

tation formulas in terms of integrals (i ~ I) have been established have, for that 

same reason, also representations (A), (B), (C), valid under suitable conditions. 

These conditions for (A), (B), (C) are of increasing order of restrictiveness - -  in 

the order stated. For this reason, when we study a class of functions with a 

certain uniqueness property (X) and note that  the study can be based on either 

one or all of the four types of representations, 

(I ~ I), (A), (B), (C), 

we at the same time observe that the use of these representations is of decrea- 

sing degree of desirability in the stated order. This remark is made from the 

point of view of the generality of the results obtained. The study of functions 

with a particular uniqueness property requires a specific method. I t  may happen 

that the available method does not conveniently apply to integrals (i ~ I); we 

then apply it, if practicable, to the representation (A); if this is not practicable, 

we apply it to representation (B), provided the method is suitable for that  

purpose - -  and so forth. Also, as is to be expected, in some instances results 

obtainable, for instance, for (B) will be simpler than those obtainable for (A) 

a n d  (I ~ I). 

The above considerations make apparent the connection between the 'uni- 

queness' sections 5, 6, 7 and the 'representation' sections I, 2, 3; these considera- 

tions also explain why certain classes of functions have been made a subject of 

study in sections 4, 5, 6, 7. 
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In  order to follow the terminology in the  use of integrat ions and of additive 

funct ions of intervals and of sets reference to a book of S. SAKS ~, in the sequel 

referred to as (S), will be helpful.  

I. P rob l ems  o f  Represen ta t ion  for  General  l~Ionogenie Func t ions  o f  (T~) 

and Concerning Ex tens ion  Func t ions .  In (T~) we introduced funct ions which we 

termed 'general monogenic ' .  The first development established for such funct ions 

was our representat ion of them with the aid of a double integral. The definition 

of 'general monog~enic' functions as well as this integral  representat ion will be 

now put  on a m o r e  rigorous basis. W i t h  this  purpose in view, let us recal~l 

certain per t inent  facts  about  integrals  

fj()i (x. , )  V ( M ) =  log ~ ~(Pld~d~ 
t2 

(M = (~, y); P = (~, ~)), 

where Y2 is a domain (open). I f  ~p(P) is continuous bounded then V(M) has 

continuous first order partials which can be obtained by differentiat ing under  the 

integral  sign. I f  ~p(P) has continuous first order partials or satisfies HSlder 's-  

condit ion or the more generai  P ETR INI  ~ conditions then  V~,~, Vy, y exist and 

J V = V~, ~ + V,~,~j = - 2 ~r ~p (M). A generalized Laplacian z/8 is an operator 

with the properties:  (I ~ if u~,~, uy, y exist then  Ju=-u~,:~ + uy,~t; (2 ~ i f J u ,  .4v 

exist then  ~ / ( h u + k v ) = h J u + k J v ;  (3 ~ ) if u has a maximum at  P then 

Ju(P) < o; (4 ~ Poisson's formula  holds. The la t ter  condit ion amounts  to the 

assertion ~hat, whenever ~p is cont inuous in t2, one has 

[ ( f  ' ] (I. I a) J log~--p~p(P) d~d n -=--- 2 ~ p ( M )  

7 

for M interior  a circle 7, whose closure lies in t2. A simple generalized Laplacian 

is due to ZaRE~BA 4, 

J u = lim h -~ [u (x + h, y) + U (x -- h, y) --  2 u (x, y) + u (x, y + h) + u (x, y - -  h)-- 2 u (x, y)]. 
h ~ O  

1 S, SAKS, Theory of the Integral, Warszawa-Lwow~ 1937. 
2 PETRIIqI,  Les ddrivdes premieres et secondes du polentiel, Aeta mathematica,  rot. 31 (I9o8), 

pp. I27--332;  also Journ.  de Liouville (19o9) , pp. 127--223. 
See BRELOT, M6morial des Sciences Math., Fasc. XI ;  in particular,  pages 3, I4, 13. 

, ZARE~rBA, Contribtttion ;z la Thdorie d'une dquation fonctionnelle de la physique, Rcndiconti  

di Palermo, vol. 19 (I9O5) , pp. I4O--I5o. 
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BR~LOT established that  if u has a particular generalized Laplacian Jou ,  

continuous in a domain w, then all generalized Laplacians of u will coincide wish 

Jo  u in oJ. I t  is also known that Green's formula 

f/  f( (1.2) (~d~p--~pJqD)  d ~ d ~ +  q~-~--~O--d-~n d s - = o  
D 

is valid whenever q~, ~0 have generalized Laplaeians continuous in a domain D1 

containing the closure of /). 

Given a function u(x ,y) ,  defined and continuous in a bounded closed set :F, 

suppose that the derivatives 

(I .  3) ux,  ,~,j, Ux, x, u., ,y,  u , , , ,  

exist in F in the se~se of WHXTN~Y 1 and are continuous in F, while 

(I. 3 a) u~,~ + uv, v -=- o (in F).  

Let  Sk be a bounded domain containing F.  Let U be a continuous 'exten- 

sion' of u to ~2 with the properties: 

U = u, U~ = u~, Y~ = uy ,  U~. ~ = u~ , , ,  / & y = u . , , ~ ,  U,j,y = uy, ,j 

in F ;  on the other hand, U, U ~ , . . .  Uy, u are continuous in ~2. 

We form the function 

g, = bS,~ + U,j,:,; 

~p will be continuous in $2, while 

~p -~ ux, ~ + uu, u -- o (in F).  

With  L/ denoting, let us say, the generalized Laplacian of Zaremba, Poisson's 

formula (T. I a )wi l l  hold, yielding 

ff (I. 4) d log ~--~ ~0 (P) d~ d~ 

7 

We now form the function 

(I.4') 

- ~ , ~ 0  (M);  
= o (in ~ ) .  

, f f  i h ( x , y ) =  U(x ,y )  +~-~z l~ dy" 

7 

1 I'I. WHITNEY, Analytic extensions of differentiable functions, Trans. Am. Math. Sot., vol. 36 

(~934), PP. 63--89. 
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On taking ,1 of both sides, in consequence of (I. 4) it is inferred that  

,1h = , 1 U - -  ~(M). 

Now, by hypothesis, U~,~, U:~,v exist in 9. By virtue of condition (I ~ one has 

and, by definition of ~p, 

thus 

Whence h is harmonic in ~2. 

,1 U = U~,.. + Uv, v 

, 1 U =  ~p ; 

,1h = o  (in 9). 

In  consequence of the above considerations we state the following. 

Theorem 1.1. Suppose u is the real part of a general nwnogenic function; 

that is, u is defined in F and has .first and second order partials in F, as described 

in the statement with ~ respect to (I. 3), (I. 3 a). One then will have the following 

representation formulas, for (x, y) = M in F, 

, f /  i (I. 5) u(x,y) = h(x,y) -- ~ log ~---]-fi~p (P) d ~ d ~  
7CI," 

[P = (~,*/)], where h(x,y) is harmonic in 9, 7 is a circle containing (x,y) in its 

interior, while f, ~ ~2; ~V (P) is continuous in ~2 and vanishes in F;  in fact, 

= + 

where U is an extension function of u. 

We say that  u function f ( z )  of a complex variable z:= x + i y  is general 

monogenic in a closed set F ( ~ a bounded domain 9) i f  

= u (x, v) + i (x, u), 

with u (x, y) fi'om the above theorem and v a harmonic conjugate in F of u. The 

meaning of the latter expression is that  v is defined in F and that the derivatives 

(in the sense of Whitney) v,, v.,/ exist in F and that one has 

v ~  - - =  - -  uu, vu : u ~  (in F). 

In  view of (I. 5) the followi~,g is the representation, in ~b. of  a function f(z) 

satisfying the above conditions: 

(I.6) f ( z ) = a ( z )  + -~z ~P(~'n) l ~  ( w = ~ +  i~); 
7C/~ 

here a(z) is a function analytic in 9. 
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We shall have 

(~.6 a) .f("(~) = a"'(~) + - ~  ~ . ,~ ,  
7('F 

at every limiting point of F. 

I t  is of interest to observe the connection between general monogenic func- 

tions and subharmonic functionsL Let s be open connected: I t  is known thaf, 

if at every point M of s one has 

( t .7)  u (M)  2- _ 
y 

where circle 7 contains M (2 % ~) and where tp (P) ~ o is bounded measurable, 

then u(M) is continuous and subharmonic. 

In (I. 5) O(P)----- U~,~ + U.,~,:/ is continuous; on writing 

I 
~Pl(P)= 2(~(P) + I ~J(P)]), 

one has 
~(P) = ~ ( P )  - ~(~,), 

Accordingly, by (I. 4') 

U(M)--= h(x,y) + U~(M)-  U2(M), 

~.~ (p) = I 
2 ( -  ~p(/9) + I ~'(P)I), 

~J~(P) >=- o, *~(P)  >_-- o. 

U~(M) = 2-z log ~--i--p~p,(P) d~ d~ 
7 

(in 2); here, in consequence of the remark with respect to (1.7), the UI(M) 
(i ~ I, 2) are continuous subharmonic in 2. 

Thus, the real part u (x, y) of a function general monogenic in F is of  the form 

(~. 8) u(M) = h(x,v)  + U~(M)- U~(M) ( M =  Ix, V)), 

for M in F, where h(x,y) is harm01~ic and U1, U2 are continuous subharmonic i~1 
~2>F.  

In' the remainder of this section we shall study continuity properties of a 

continuous extension (over a bounded connected domain K ) f *  (z) of f(z) when 

continuity properties of f(z) (over a closed set I , ' <  K) are given. This study 

culminates in Theorem I. 2. This Theorem, us well as the developments leading 

to it, will make plausible the definition of an extensive class of functions in 

section 2, a class for which we shall establish an integral representation formula. 

Without  Theorem I. 2 the introduction of the mentioned class of functions might 

appear quite ar~ifical. 

Regarding subh,~rmonic functions see, for instance, Brelot's pamphlet in Actualitds Scienlifiqnes 
et Industrielles, Paris. 
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For  our  purpose of the several known methods of cons~ruction of continuous 

extension funct ions the most  suitable one appears to be tha t  of I t .  BOHB t. The 

per t inent  facts wi th  respect to this  method may be expressed as follows. 

Le t  h (z) be cont inuous over F ,  

(I, 9) 0 <= h(z) N I (in F) ;  

with S(z, r) denot ing  a circle of center z and radius r, form the funct ion ~V(z, r) 

such tha t  

(I. 9') ~V(z,r) = upper  bound of h in F S ( z , r ) ,  

unless F S ( z , r ) =  o, when ~0(z,r) is defined as zero; on le t t ing 

e ( z ) =  distance from z tO F ,  
one has 

Q (z) # o (in K - - F ) .  

For  z in K - - F  define the funct ion 
2 o (z) 

f ,(z,,.)a,., ( ' -9  a) r = 

e~z) 

which is cont inuous in K ~ F ;  in fact, one has 

( I . 9b )  le(z , )q,(z , ) -q( , )qD(,) l -~ 3 l , - - < l  (z, za in K - - F ) ,  

while q(z) is continuous in K - - F  and is therein different  from zero. Also 

(I. 9 c) I Q(~) - e (q)  l =< I ~ - -  z~ I 

Finally,  there is defined a funct ion 

(I. 9 d) H(z) = ~ h (z) 

(z ,z  1 in K - - F ) .  

(in F) ,  

(in K -  F )  

and it  is shown tha t  H(z) is continuous in K ;  H(z) is accordingly a continuous 

extension of h(z). 
Proceeding with the aid of Bohr's developments,  as described above in 

connection with  (1.9)--(I .  9d),  we write 

(Z) (~  (gl) - -  ~ (Z)) = (~ (s ~0 (Z 1) - -  ~ (Z) 99 (Z)) - -  ~ (Zi) ~0 ('~'1) + ~ (~) ~0 (Z1) ; 

thus  in consequence of (I. 9 b) and (I. 9 c) we obtain 

I e (.~) (~ (,.,) - r (~')) I --< 31 ~" - *,. I + I ~ ( f i )  I I e (*) - e (,1) I --< 31 ~ - ~, l + I ~ (~1) 11 ~ - ~11 

See, for instance, CARATH~ODORY, Vorlesungen i~ber reelle _~unktionen, I918, pp. 617--62o. 
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for  z,z~ in K - - F .  

follows tha t  

Hence  

(I. IO) 

Inasmuch  as h(s) is 

W. J. Trjitzinsky. 

Inasmuch  as o < ~ O ( z , r ) <  I (cf. (I.9), (I.9')), f rom ( I . 9 a ) i t  

o < ~ ( s ) <  i 

I ~(s~)m(z)l  < 4 1 s - z ' l  = Q(s) 

(for z in K -  F). 

(z, zl in K - -  F). 

cont inuous  in F ,  /7' being closed, given e ( >  o) there  

exists 3 7(  > o), independent  of z , z  o so that  

( i .  ~ i)  I h (s) - h (s0) I --< 

for  z ,z  0 in F such tha t  [ z - - s 0 [ <  37. According to Bohr  a consequence of 

such a hypothes is  would be 

(I. i I') I ~ (z) --  h (s0) I ~ ~ (So a f ront ier  point  of F)  

for  I z - - s o [  <~? and z in K - - F ,  which on taking account  of ( I . 9d ) ,  (I. I I)  

leads to the conclusion 

(~. ~I a) I H(z)  - -  H(s0) I =< 

fo r  all z such tha t  I z -- zo I < V (Zo a f ront ier  point  o f  F). 

Consider the  case when F has inter ior  points. Then a point  z0 of F which 

s no t  a f ron t ie r  poin t  is center  of a circular domain S(z0, a) (of radius  a) such 

tha t  
~(~o,~) < F. 

Ina smuch  as F is closed, a in the  la t ter  ralat ion may be taken as the upper  

bound of all radii  of circular domains  with center  at  z0 and consist ing of points  

of F .  I f  a ~ v ,  then by (I. II)  

(I.I2) I I:IT(S)- ~/(So) [ ~-~ 

for  all z such tha t  ] Z - - Z o ] ~ 7 .  Suppose now ~ < 7 .  Then in view of (i. i I )  

for  all z in F such tha t  [ z - - z 0 [ ~ 7 .  Let  z represent  a point  in ~ ( s  o,v) in 

K --  F (necessarily a < Is0 --  z [ ~ 7). Consider  the set  F.~o,= of points of 2 '  on 

the segment  (zo, z) and designate  by z' the  poin t  of F=,,,= neares t  to z. Such a 

point  exists because F~o,~ is closed; moreover,  

I s 0 - s ' l > . .  

bTecessarily z' will be a f ront ier  poin t  of F ,  while 
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I z ' - z l - - < 7 - ~ < 7 .  

With z' playing the role of Zo in (I. 11 a), we obtain 

(I .12b) IH(s)--H(~')I_--<,  (z in ~(zo,y): in K - - F ) .  

Now I H(z ' ) -  H(zo)[ <= ~ in view of (I. I2a). Hence by (I. 12b) 

(I. I2C) [ H ( z ) - - H ( z o ) [ < = l H ( z ) - - H ( z ' ) [ + l H ( z ' ) - - H ( z o ) [ < = 2 r  

for z in K -  F such that  l z - z 0 1  _-< 7. Thus in consequence of (I. 12a), (I. I2 c) 

one has 

(~. , 2  d) I H ( s )  - H(~o)  t --< 2 ~ (if  ~ < 7) 

for all z such that  [ z - - z  o[ ~ 7. This, together with (I. I2) and (I. II a), imp- 
lies that 

(i .  x3) [ / / ( z ) -  H(so) l  ___< 2 ,  (So any point of F) 

for all z such that I s -  Zol< 7. 
Continuity of h(z) in F may be expressed by saying that  there exists a 

function r(u), independent of z, so, continuous for u > o and such that  

r (u) -~ o (monotonica l ly  as u -~ o), 
that  

(I. I4) [h(z)--h(zo) [ ~ r ( [ Z - - s o l  ) (all z, s o in F). 

The equation v-~ r(u) has a unique inverse u----r_~ (v), tending to zero mono- 

tonically with v. With the aid of the function r (u) we deduce that  7 (involved 

in the statement with respect to (i. 1 i)) may be taken as 

I 
( i .  15) 7 = - r - 1  (~). 

3 
In fact, an inequality 

I s - ~ o l  < 3 7  = r - l ( ~ )  
would then imply that  

r(l~- - go I) --< , - ( , - - 1 ( , ) ) =  , .  

Inasmuch as (I. II) implies (I. I3), the following may now be asserted. 

h(z) satisfies in F a continuity condition (I. I4), then 
~f 

for all z in K. 

( , .  I6)  I l l ( z )  - -  H(zo) I =< 2 r(3  [z - -  Zo[) (zo any  point  of  1") 
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To verify this we note tha t  an inequali ty I z -  z01 < ~7 wiU imply 

r(3 Is --*ol) < ,.(r_~(~))= 

so tha t  (]. ]6) becomes (I. 13). 

Let  z ,z ,  be in K - - F .  Des ignate  by z o a point  in F nearest  to z: then 

(z) = Is - ~01. We have 

{H(z )  - -  H(s~) [ =< I H ( z ) -  H(zo) [ + !H(zo) - -  H(z,) [ 

and,  in view of (]. ]6).  

]H(z)--H(z,)]_~2r(3]Z--Zo] ) +  2 r ( 3 ] z  ~ - z o l  ). 
Since 

i<-~-ol--< I ~ o -  sl * I * - < i  
we have 

[H(z)  --  H ( z ~ ) l ~  2 r (3  [ z - -  Zol ) + 2 r (3  [z -- Zo[ + 3 I z - - z ,  I ) =  r. 

By vir tue of (I. 9d)  and (I. IO) 

= __Zo[  - -  r~.  
Hence  

([. I7) [ H ( z ) -  H(zl)  [ ~ ra (z, zt in K - -  F), 

where r 8 is defined as the least of the values r 1, r.,. 

W e  define a funct ion Q(u) ( >  o), for  o < u <= Uo, so tha t  

( u )  ( [ . I8 )  r*(u)-~r 3 + r  3 0 - ~ + 3 u  _-->2~(u), 

while 
�9 U 

hm Q - ~  = o 

in consequence of (i. 18) we then shall have 

lira Q (u) = o 

For  a fixed pair  of points z, z 1 in K - - / e  one has ei ther  

I * - * , l <  (1. < i )  (i~ I,. ~ - ~ o l = e  - 
o r  

I s - ~ , l  (~~ I~ -*o l  < . o ( I z - < ! )  

(as  ~ -~ o ) ;  

a s  u - - ->o) .  
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On the case (I~ in view of (i. 18) one has 

r~ _--< 4 (~ (u) _--< 2 r* (u) (u = I z --  z 1 [)" 

When  (2 ~ ) takes piece we have 

Ih < 2 r  3 + 2 r  3 + 3 u  

and, by . ( I .  18). 
r 1 ~--~ 2 r*  (U). 

Hence, in view of the definition of r s (in (I. I7)), one :has r e =  < 2r*(u) and 

(I. I9) [ H ( z ) -  H(z,)[  =< ~ " * ( 1 ~ - -  < I) 

for all z, zl in K - - ~ :  

Le t  z, z~ be any pair of points in K. Then ei ther  at  least one of the 

points, say z~, will be in F anti accordingly (I. 16) will hold with z o = z , ;  the 

al ternat ive is the case when z, z, are in K - - F ;  (I I9) will then  take place. 

Accordingly 

(I.2o) [ g ( z ) - - H ( z , ) [  =< r ' ( [ z  - z ,  I 

for all z, zl in K; here r' (u) is defi~ed for u > o as the greater one of the values 

I.  2 0  a) 

Consider the case when 

( 1 . 2 i )  

2 ,-(.3 , ) ,  2 ,-* ( .) .  

r (u) - k u~ (0 <~ (~ ~ I) .  

Then, in accordance with (I. I8), 0(u) is to be such tha t  

r*(u) =-- k3~u~[e-~(u) + (e- '  (u) + ~)~] _>-- 2 e(u). 
I f  we take 

O. 22)  o (u) = b ,,~ ~ - -  ~ -~ . 

i t  can be shown tha t  b can be chosen suitably small so t ha t  r*(u)_~ 2(~(u). In  

fact, one has 

I + (I + bu/~)~ > 2k3~b_~u & ( ~ . = a )  , . * (u ) -=  ~ 3 ~ u  o b~uo ~ 

I t  will suffice to take b so t ha t  the last  member  above is equal to or is greater  

t han  2 (~(u) (for u > o). Whence  b is to satisfy the inequali ty 

( I .  2 2  b) b <2 b '  = [ 3 a k ]  (1+a)-1. 
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Wi th  Q(u) thus defined, f rom (I. 22a) it is inferred tha t  

(,. 22 c) ,* (.) ~ ~ . ~  ~. = ~ [~ + ( i  + ~,,o~) ~1 , 

where u o is f rom the  inequali t ies 

o < u ~ u o ;  

one may take  u o as the diameter  of K. By ( I .2 I )  

(i .  2z c') 2 r(3  u) = 2 ~ 3 ~ .  ~. 

In  view of the  s ta tement  wi th  respect  to (I. 2o a) the  above relat ions imply tha t  

a 

(,. 2e d) I H(z)  - H ( z , ) l  <= k ( . ) l z  - z ,  ] ~§ (z, z t in K), 

this being a consequence of (I. 2I); here  

k ( a ) - ~ g r e a t e r  one of 2ks ,  2 k 3  ~u01+~ 

If  a real  valued funct ion  f (z)  is cont inuous in F we have 

(~. 23) I f (z )  - Y(z,) I =<_ c (I ~ - ~, I) (~, < in  F) ,  

where c (u) is modulus  of. cont inui ty  (in ~') of f(z). Now 

- z, < f ( z )  __< z~ (in F ;  - z, < z.,). 
On wri t ing 

h (~) = f ( z )  + z , ,  

one has 
o ~ h ( z ) ~  I (in F) 

and 

~ ( l ~ - < l ) = , ' ( l * - < l )  (I. 23' ) I h(z) - h ( , , )  I _--- Z, + Z~ 

where the last  member  is in t roduced in accordance with (I. I4). 

the extension of h (z), as descr ibed above. The function 

�9 '(~) = (z~ + z~) Ir  - z~ 

will be an extension for f(z) and will have the property 

(I. 2 3 a) IF(z) --  F(z,)  I ~ (2, -~ Z,)r' (] z --  z, 1) (z, z, in K), 

where r '  (u) is a funct ion constructed on the basis of 

(z, z 1 in E), 

Let  H(z) be 
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: (.), 
r ( u ) = ; t  t + z ~ e  

as described previously. 

The statement with respect to (I. 20), ( I .20a)  implies, of course, more than 

has been inferred above. By definition of r*(u), given in (i. I8), one has 

(I. 24) r* (U) __--> 2 r 2 

for any e(u). Hence the inequality (I. I8) will hold if 

( i . 2 5 /  ~ 3 _-> e(u) .  

There is no essential loss of generality in assuming 

," (~)--< 3 (o < u _-< Uo); 

in fact, this can be always secured by taking Uo(>O ) suitably small. We 

then have 
3 u >  

r (u) = u 

and, in view of the monotone character of r(u), the function 

(I .25  a) e (u)  = r (~)  

will be seen to satisfy (t. 25). Hence in consequence of (I. 18) 

( I .25b)  r * ( u ) < 2 r  3-~U)+ 3u  = ( u ) ~ 2 r  + 3  u �9 

In accordance with the text in connection with ( I . 2 o a ) o n e  may then define 

r (u), for o < u ~ u0, as the greater of the values 

2 r (3 u), 2 R* (u). 

Whence the nwdulus of continuity invoh'ed in (I. 20) may be taken as 

, .t3'* ) 
(I .25e)  r (u)--~4, ~ r ~  + 3u , 

which is a perfectly general formula. This is useful only if u / r  (u)-~ o, as u-§ o. 

Wi th  respect to the above result it is to be noted that  in special instances 

of r(u) better determinations for r'(u) can sometimes be obtained. This is the 

case in the situation when 
r (u) = k u~ (o < ~ =< i). 
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In  fact, if r(u) is such a function, the relation (I.25c) will yield 

/ ( u )  = ~ > o).  

This conclusion is no~ as good as the one obtained previously. However, for 

small values of a the discrepancy becomes, in a sense, negligible. 

Theorem 1. 2. I f  a real valued function f ( z )  has r(u) for  its modulus of 

continuity in a closed set F (F  contained in a bounded domain K), then an exten- 

sion funct ion F(z) ,  continuous over K,  may be formed so that the modulus of  conti- 

~uity of F ( z )  over K is of the form 

In  particular, i f  r (u) = c* u ~' (o < a ~ 1) one may take 

r'(u) = c* td (fl a ) 
- - I + C ~  " 

Representat ion Theorems for Continuous Functions.  In  the sequel 'in- 

will signify rectangles, in the complex plane, with sides parallel to the 

I .  

tervals' 

axes. I f  I is an interval, (I) will denote its boundary (see (S)). Let  K be a non 

degenerate .fixed interval. 

Let f ( z )  be a complex valued function of which we may think as defined 

originally only in a closed subset iv of K and which is uniformly Lip. I in F;  thus, 

(2. I) If(~) --f(z')I----< A I z  --  z'[ (z,z' in iv). 

We extend f(z) continuously over K, say by the method of Bohr. Such an ex- 

tension will still be designated by f ( z ) .  By Theorem 1.2 the relation (2. I) 

will imply 

(2.2) I f (z )  - - f (z ' )  ] =< A ' l z  - -  z' [~ (z, z' in K) 

for the extension function. The continuity of f ( z ) ,  implied by the above, is too 

weak' to lead us to expect a representation 

(2.3) ((d (ed 
2 n i d d  ~ --  ~ ' 

K 

where #(e) is a complex valued additive function of sets {B} (i. e. Borel sets), 

while h(z) is analytic in K. If, however, we examine in some detail the eonti- 

nuity properties of a Bohr's extension function in the ease when (2. I )ho lds  

(see the text in section I leading up to Theorem 1.2), it is inferred that  
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I f ( z ) - f ( z ' ) l  < A o l z - - z '  I (2.3 a) 

and 

(2.3 b) If(z) - f ( z ' )  I =< b n Iz - ,~ '1 

when z and z' are in/~7--  F and are such that  

113 

(z in F ;  z' in B7) 

(2.4) d (z, F)  ~ ~ 3 (z', F)  >= I ;  

here the designation 
~ (.,~, F) 

stands for the distance fi'om z to F. 

Intuitively one would expect that  f (z)  will be susceptible to the desired 

representation, provided that  the factor b n in the second member of (2.3 b) is 

replaced by q (n), where e(n) tends to + o0, with n, sufficiently slowly. We are 

accordingly brought to the following precise Definition. 

Definition 2.1.  

tinuous in If ,  

(~. 5) 

and 

(2.5 a) 

I t  will be said that f (z )  is of  class C {o(n)} i f  f (z)  is con- 

If(z) - - f ( z ' )  l ~ A I z -- z'l (z in F, z' in I~) 

If(z) - - f ( z ' ) l  ~ e (n) lz - z'l 

for  z, z' in En. In  this connection En is the totality of  those points ~ in f (  for 

which ~ (~, F) => n -1. 

Naturally the sequence Q (n) (n---- I, 2 . . . .  ) may be considered as monotone 

non decreasing. 

Our problem can be now formulated as follows. To determine a law of in- 

crease of the q (n) ~o that the f (z )  of  the corresponding class C{#(n)} can be repre- 

sented in the form (2.3). 
Inasmuch as we want .to stay within the range of Lebesgue-Stieltjes inte- 

gration, e(n) will have to be chosen so that  the functions of intervals ,u(1), of 

which the function /,(e) is the extension, is of bounded variation. At this stage 

we might remark that  whenever a certain property is assigned to a complex 

valued function of intervals or sets {B}, it is to be understood tha~ the real 

and imaginary components of such a function have this property. 
8-632046 Acta mathematics. 78 
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We define the funct ion 

(2.6) . (I)  = B (I) + i A (I) = f f(z) d z 
(1) 

of intervals I in K. Since f(z)  is continuous as a funct ion of z, the additive 

funct ions of intervals ~(I),  B(1) ,  A(I),  are of course continuous,  tha t  is they 

vanish with the area of L Wi th  f ( z ) <  C{Q(n)}, offhand there is even no assur- 

ance tha t  the above funct ions  of intervals are of bounded variation. 

In  the sequel a helpful  role will be played by a paper of J. H. BINarY ~, in 

the sequal referred to as (B), in accordance with which the following may be 

asserted. 

Le t  K be an interval  as before or, more generally, a simply connected 

bounded domain and consider the equations 

(,~ f (a)(x,y)dy + O(x ,y )dx)= A'(a), f (--O(x,y)dy + q~(x,y)dx)~-- B'(a), 
8 8 

where s are simple closed rectifiable curves in K with  ~ denot ing the  domains 

interior  s; ~,  0 are unknown funct ions of points, while A'(a), B'(a) are the 

values on a of given additive reaal valued funct ions of {B} sets e ~ K. Only 

those curves s are considered .for which A ' ( s ) ~  B'(s)-~ o. These equations are 

satisfied by 

(20) q)o(•)_ i f f  I 2 ~--; i ~  [cos (~• P, U) d B' (e~) - 
K 

~ - ~  [eos (M P, ~) riB' (e~) 0 o (M) ----- ~ :  
K 

cos (M P, x) d A' (e?)], 

+ cos (MP,  y) d a '  (ep)] 

on all those simple closed rectifiable curves s, iu K,  on which the fuuct ions  

ff (2. Z) a (z) : I ~ - -  [ ~ -- z-----~ d fl (e;-) 
K K 

are L 1 (i. e., Lebesgue integrable) with respect to arc length;  here a(e), fl(e) are 

additive funct ions of {B}-sets, 

(2.7') 
e~ (e) = tota l  variat ion of A'  (e), 

fl (e) = foal variat ion of B '  (e). 

1 j .  H.  Br~.~E'~, An egliptic system of integral equations..., Trans .  Am.  Math .  Sot. ,  vol. 87 
(1985), pp .  2 5 4 w 2 6 5 .  
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I f  one puts  

f (z )  = �9 (x, y) + i 0 (x, y), # '  (a) = B '  (a) + i A'  (a), 

equat ions (I ~ are seen to be equivalent  to 

(3 ~ f f ( z )  d z = t~' (a), 
8 

the  solution of which  is 

(4 ~ f(z) h(z) + ' f l f l  ' = - -  - -  e ~ d ~ '  (e~,) 
2 ~  M P  

K 

(h(z) analyt ic  in K i M = (x, y)), with a = / _  ( M P ,  g). 

The above developments  of (B) can be modified as follows. Let  ~ be a 

complex variable denot ing the point  P.  One has 

I r  = M P ,  ~ -  ~ = i~ - ,~1~' ( .~ -~  = i l ~ - , ~ l ~  -;o. 

Hence  in (4 ~ ) we may put  

M P  = --  i (~ - -  z) e i~, 
obta ining 

(5 ~ ) f ( z ) = h ( z )  ~iJ J ~ z  
K 

as the  so lu t ion  of the  equat ion (3 ~ (on all curves s as described in connect ion 

with (2.7)). 

We  now go back to our funct ion # - -  B + i A  in t roduced in (2.6). In  view 

of the above and since 
B, A,  e~,fl 

are set funct ions vanishing on front iers  of ' intervals ' ,  we infer  tha t  the equat ion 

f r(~)~ ~ = ~(t) 
(I) 

( 6  ~ ) 

has a solution 

(7 o) , f f d , ( ~ )  
r (z) = - 2 ~ i  J j  C - z 

K 

on all boundaries (I) of  intervals on which a (z), b (z) of  (2.7) are L1 with respect 

to arc length. Suppose the la t te r  condit ion has been secured for  all intervals;  

then  on every f ront ier  (I) (intervals I < K)  the  funct ion Y(z) (7 ~ and the given 

funct ion f ( z )  will satisfy (3~ where #' =re. Accordingly 
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(8 ~ ) 

for  all intervals I < K. 

the representation (2.3). 

W. J. Trjitzinsky. 

( f  (Y(z) " f(z)) dz  = o 

By Morera 's  t h e o r e m  and by (7 ~ we then' would obtain 

Consider an  interval  I with vertices 

zo, zo + b ,  z o +  b + i a ,  z oq- i a  

(a > o, b > o) where, for instance, a < b. Le t  n (I) be the least  integer  such tha t  

b __< . ( I ) .  
a 

We express I as the sum of n ~ n (1) equal intervals,  

(2.8) I = / 1 +  I~ + . . - +  I~, 

where / j [ j  = I, . . .  n) is the interval  with vertices 

b .b, i b  (2.8') Zo + ( j - -  I )~,  Z o + 3 ~  Zo+.  n + i a ,  Z o + ( j - - I )  b-+ia.n 

I f  b > a we let  m (I) be the least in teger  such tha t  

a _ < (I) b - m  

and express I as the sum of m (1) equal intervals ~. with vertices 

i , b  b i . b ,  . . b  
(2.8") z~ + i ( J - -  ) m z~ + b + i ( J - -  ') m '  zo + b + 3 m zo + z3 m 

( j =  I , . . .  m). Necessarily 
n (t), m Cz) > 2. 

Whence  the ratio r of the longer side to the shorter for the interval I~ satisfies 

(2.9) 2 > r>_ I. 

We now int roduce the Definition. 

Definit ion 2 .2 .  Given a .figure 1~ (that is, a sum of  a finite number o f  closed 

intervals), whose component intervals are non overlapping and non degenerate, i t  will 

be said that R has been regularized i f  every component interval, for  which the ratio 

r of  the longer side to the shorter exceeds 2, has been broken up into a number of 

equal intervals for  each of  which the ratio satisfies (2.9). 
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Inasmuch as tz (I), being continuous as a function of intervals, vanishes on 

segments parallel to t h e  axes, the component intervals of any figure in this 

section may be considered to be all non degenerate .  With  this in mind, we may 

consider all figures encountered in this section as susceptible to regu]ari~.ation. 

Let I be an interval, the length Of one of its sides being a and the length 

of another (non parallel) side being b ~ a, while 

a 
(2. xo) x ~ , ' =  ~ <  2. 

Suppose tha t  for some fixed z' in I one has 

(2. m') If(z) - f ( ~ ' )  [ <= e ] z  - z '  l 

for all z in  the closed / .  On writing 

f(z) = J ( z ' )  + v (z, z') 
and noting that  

Iv(  ~, z')l----< ~1 ~ -  z' l ,  

for the indicated values z, z', we infer that  

I,-.(z)l = I f f (~ )d~  I = I f  v(~, ~'),lz I 
(l) (l) 

__< ~ f l ~ - ~ ' l l d ~ l  =< ~ ( ~ .  + 2b), 
( l)  

where c is the diameter of I. Now by (2. I o) 

c<bV~, c~aV~2; 
hence 

(2. ~ )  l , ( z ) l  < q ~ l I I  (q = 2(V~ + V~)), 

where III is the area of I ;  similar inequalities will hold for [B( / ) [ ,  [A(/)[ .  

I f  after regularizing a figure 1~, K, each of the component closed non over- 

lapping intervals /1, . . .  I ,  contains at least one point o f  F,  we have 

(2. x2) IA(R)I, [B(R)[, [~(R)[ < q A I R  [. 

In  fact, let zj be a point of /v in /~.; then on taking account of (2.5) and of 

the result (2. ~I) it is inferred tha t  

Ig(~) l  < adl~l, 
I ,(R) I = I E , ( ~ ) I  < q A ~ l ~ l  = qA I Ri. 

J J 

Here [It[ denotes measure of R in accordance with the notation in (S). 
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Similarly, on taking account of (2.5 a) it is deduced that 

(2. I2 a) [/A(~)[ < qQ(,)]R] 

for all figures R in E,,. 

Let R be a regularized figure in /~. We have 

(2. I3) R = Ro + RI, 

where /~o is the figure consisting of all those intervals of //  which contain at 

least one point of F on the boundary or in the interior. By (2. I2) one will have 

(2. 13 a) I~(R0) I < qA IRo[. 

The intervals of the figure R1 lie, together with their boundaries, in / ~ - - F ;  

_R~ is regularized, the decomposition being 

(2. I4) 

where the /j are intervals. 

implied to be closed. 

Consider an interval 1, 

Unless the contrary is stated all the intervals are 

K -  F,  belonging to a regularized figure. We 

shall say that  I is divided when I is bisected by a vertical segment and the two 

resulting intervals are each bisected, in turn, by horizontal segments. The four 

intervals so obtained are similar to I;  that  is, each of them has the same ratio 

of the longer side to the shorter as is the case for I (a square, if I t s  a square). 

I t  is observed that  if some or all the intervals of a regularized figure are di- 

vided the resulting figure is regularized. Continuing with the fixed interval I, 

introduced above, we associate an integer n' such that  I has points in E~,, but 

has no points in En,-1. The se rE , , -1  could possibly be a null set. I t  will be 

said tha t  an interval has property /)~, if the interval lies in E~,+I--En'-~.  If  I 

does not have the property Pn' we divide I, obtaining intervals 

i ; ,  ~;', 

where the I~ have property Pn', while the i~' do not  have this property. I t  may 

happen that  no 1~' has points in /in,. One then has a decomposition of I into 

similar intervals of which some tie in E,,+I --  E,,-1, white the others lie in K- -En ' ;  

such a decomposition of I will be termed 'proper'. I f  the I~, I~' do not  con- 

stitute a proper decomposition of I, let the I~" designate the intervals amongst 

the 1'1' which have points in /in,. An interval 1~" will have points in K -  E~,+t. 

We divide each I~" obtaining intervals 
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where the 1~ have the property P~,, while the If" do not have this property. 

I f  no It" has points in ~ . , ,  the decomposition o f / ,  obtained so far will be proper. 

I f  there are If' with points in En, we let I~" denote those intervals of I~' which 

have points in E , , .  We continue the indicated process of consecutive divisions, 

at each step applying it to those intervals which do not lie in E, '+I -- E,,,-, and 

which at the same have points in /~.,, until after a finite number of steps we 

obtain a proper decomposition of I. The fact that  a finite number of steps will 

suffice follows from the circumstance tha t  the intervals tha t  are subjected to 

divisions are those which at the same time have points in /~--E,v+~ and E,v. 

Let the 
I(I ), IT 

be the intervals presenting a proper decomposition of I, where the I([ ) are in 

E ~ ' + I -  E,,'-I and the I(~ ) are in K - - E , , .  We obtain a proper decomposition 

of each 1(~ ) into intervals 
1Z ), IT ,  

where the I[  ~> are in E~ ,+2-  E)),, while the I<~) are in K -  En,-1. Continuing 

this process, after a finite number of steps we obtain a decomposition, valid for 

any I < h7 -- F,  

(2.15) I---- Y, l(l ) + Z IT + Z I(~ ) + ... 

(finite number of terms), where for a fixed j the 1~ ~ are intervals lying in 

.En'+j - -  E)v +j-~; 

The intervals in the second member in (2. I5) are similar to / .  

We now turn to the figure R1, involved in (2.13), (2. I4). Since the inter- 

vals of R 1 lie in K -  F and R 1 is regularized we may apply a decomposition 

(2. I5) to each of the component intervals of R1, obtaining 

(2. I6) R 1 = R (') -i- R (m -~ "" 

(finite number of terms) where the /~('> ( ) =  i, 2 , . . . ) a r e  non overlapping re- 

gulurized figures such that  

(2. I 6a )  A~ ()) < -Ev+l - -  E,,--, (~ = I, 2, . . . ) ,  

here we put Eo ~ null set. 
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On taking account of the italicized statement with respect t ~ (2. I2 a) we 
infer that, in view of (2. I6a), 

It,(R('))l < qQ(~ + I)IR(')I. 
Whence by (2. i6) 

]tt(R1)] <-, q Z o ( v  + I)]R(")]. 
y 

Consequently from (2. I3) and (2.13 a) it is deduced that 

(2. I7) I ~ ( R ) I  < q A ] R o ]  + q ~ q ( v  + I) ] R(')I ~ S(R) 

for all regularized .figures R in K. 
Now 

m (E,+I  - E,._1) = m (Z ,+ l  - E,.) + m (E ,  - Z , _ l ) .  

Thus, by (2. I 6 a ) a n d  (2.17) formally we obtain 
oo  

( z .~Ta)  S(n)-<_qAiK[ + q~,e(v + I)m(E,+I--E,) 
v = l  

qJ 

+ q ~ q ( ~  + I)m(E,--E,_I)<= q(A ]K[ + q(2)mE1) + 2 q F, 

(2. 17 b) F = ~ ~ (v + 2) m (E,.+~ --E,,), 

inasmuch as Q(v + I) >___ e(~ + 2). This enables us to formulate a condition securing 
bounded variation of the functions of intervals A(I), B~/), g(I) ;  this condition is 
that the series F (2.17 b) be convergent. Herewith we assume that the class C{Q(n)} 
of functions under consideration is such that F conve~:ges. Accordingly, a(z), b(z) 
in (2.7) may be defined with a(e), fl(e)from (2; 7'), where A'(e )=A (e), B'(e)=B(e), 
integrations being in the Lebesgue-Stieltjes sense. 

We observe that 

(~. ~s) IR01---< IRI, I ~(')1 + 1R':)I +--.=< IRI. 

By (2. I7) for any j > o one has  

.i 
~(R) <= qA IRI + q~r  + x)l R(')I + ~j(R), 

where 
Gj(R) = q ~ Q ( v +  I)[R (')] =< q ~ Q ( v +  I)m(E,.+,--E,-,) .  

,,>j ~>j 
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With  the aid of the relation subsequent to (2.17) it  is inferred tha t  

1 cj(R) I <= 2a~e(~ + 2) re(E,+1-- E,) 

(compare with (2. I7 b)). In  view of (2. I8) 

(2. ,9) s(R)__< q A I R I  + q e ~ + i)[I ~'"1 + IR'~'I + +IRe)I] 

+ I Gj(R)I <= q(A + e(J + I))IRI + 2 q ~ e ( ~  + 2)m(E,+~ --_E%) 

for all figures R < K, j being at  our  disposal. 

Given e ( >  o), no mat ter  how small, we choose j ~ j ( e )  so tha t  

2 q ~ ( ~  + 2)~  (E,+~ - ~,,) < ~. 
2 �9 ~ j  (*) 

We then define V ~ • (e) so tha t  

q [A + e (J (r) + I)] *1 < e_. 2 

In  view of (2.19) it will follow that  

S(R) < 

for all figures R for which I R I ~  • (~). Hence by (2. !7) the function of intervals 
# (I) is absolutely continuous. 

Let 
P + i T ,  h + i ~ 7  (p,h,~/ real; p < h )  

be a rectilinear segment S' in K and let 1, (not to be confused with intervals so 

designated previously) be the interval containing S', whose boundary consists, of 

portions of lines 

re y=~ + ~, x=p----j, x=h + ~, 

(r o > o, suitably small so tha t  /1 < K). 

Lemma 2. 1. With the notation just given in view, one has 

h 

f dz f dx <c, log~, (z=x+iv; c,>o) 
~(~)= I z - f f l -  I z - S ~ l =  

for ~ in h - - L + 1 ,  v = 2 , 3 , . . . .  
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To prove this w e  first note tha t  

7g)  = tog ~(~), ~(~) = [h + i v -- C[ + ~ (h  + i T - -  C) 
[p + iv__ ~[ + ~}~(p -{- i v _ _ ~  ) > I; 

here ~ . . .  designates 'real part  of , . . ' .  Now 

1,--1,+i = I,,1 + I , , ~ +  L.a ,  

where I,,1, I,,2, I,.8 are parts of I , - - I ,+1 specified by the inequalities 

p < = ~ < _ - - h , ~ > h , ~ < p ,  

Let 

where 

sign. 

hence 

(10) ~(~) =< e* log v ( inL, , ) .  

Here and in the sequel e* designates generically a positive constant. 

In I " ' [  [ ~ - ~ ] > = v + I ' r ~  ~ . . .  denoting imaginary part  of . . .1  

~(~) = ]h + i v - - ~  ] - ~ ( ~ -  h - i v )  
Ip + i v - ~ l -  ~ ( ~ - p - l v )  

~ * = ~ + i  ro , 
- v+I  

Jp + i v  - C*I - n ( C - p  - iv) = [g(~ + ~)-' + I R ( C - p -  iv)I-'] �89 

- ~ ( ~ - p  - i v ) =  - -  ,.g {[ r g  
(~+ ')" t~+  I) ~ 

+ I R ( C - p  - i,~) I"] �89 

--1 C* 
+ R ( C - p -  iv)] _-> V-'; 

we write 

the sign is so chosen that  the numbers ~ * - - V ,  - ~ - - V  have the same 

Then 

respectively. 

In  /, ,  1 we have 

[ h + i ~ - - ~ l + ~ ( h + i ~ - - ~ ) < l o g  2 [ h +  i ~ - - ~ [  
7 ( ~ ) = l ~  { p + i v - - ~ * ] - - ~ R ( ~ - - p - - i v ) '  

where ~* is the point  on (L+I), with ~ * -  ~ ,  lying on the same side of the 

segment (p + iv,  h + iv) as ~; now 
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[p  + i v  - ~l - R ( t - p  - i v )  _>- Ip  + i v  - ~*l - R ( ~ - - p - -  i v )  

~ ]�89 
= ( ~ ( ~  - p  - iv ) ) '  + (~ + , ) , j  R (~ - p  - 

_ to' � 89  i v )  ->-- - -  - (~ ( R ( ~ - p  - iv ) ) '  + (~ + ~)---~ R ( t  - p -  ~ 

iv) = 

for ~ in the  indicated region.  Hence  

and  

(20) y(~) ~ c* log v [ i n L ,  2, w i t h l ~ t . V ] ~  ro ] .  
k v + I J  

t i n  L,  2 [ w i t h  I ~ - - V ]  < rv---~- ] we For  wri te  

(t) = [(h - ( ) ,  + (v - (')~]�89 - I (  - h) 

[ ( ~ -  ( ) '  + (v - ( ' ) q � 8 9  - C - p ) '  

where t -~ t '  + i t " .  Fur ther ,  one has 

(t) = [(p - t ' ) '  + (v - ( ' ) ' ] �89 + (.~' - p) 

[(h --  ~')' + (V --  t")2] �89 + (t' - -  h)' 
Now 

thus 

t ' - - h  > ~--~'0 ; 

(t) < I 
= 2 (~'--h) {[(p t ' ) '  + (V - -  t") ' ]  �89 + ( t ' - -P )}  ~ c* 

and [ ,~ (30) 7 (~) ~ c* log �9 in I , ,~,  with  [ ~ t - -  ~} ] < ~ �9 

By similar  me thods  inequal i t ies  like (20), (30) are obta ined  in L ,  8. Accordingly ,  

we assert  t h a t  
r (~) --< c* l o g  ~ (in L , ,  + I , ,  8). 

Toge the r  wi th  (Io) th is  establishes the  Lemma.  

As r emarked  in connec t ion  with (7~ (8 ~ the desired representation (z. 3)wi l l  

take place i f  a (z), b (z) of  (2.7) are integrable along segments, in K,  parallel to the 

axes. W i t h  S' d e n o t i n g  a segment  paral lel  to the axis of reals (see tex t  pre- 

ceding L e m m a  2. I for  notat ion) ,  we examine  condi t ions  unde r  which the  in tegra l  

f a(z)dz 
S' 

exists. One has 
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a (z) = a t (z) + a s (z), 
where 

ff a, (~) = I ~ _ ~ t d ~ ( e ~ ) ,  ~ , ( ~ )  = . . .  

It K--II 

(the I t ,  I~ . . . .  are from the text preceding the Lemma) and 

Hence a(z) is integrable along 8' if and only if 

(z = x + i,l) exists. 

formally as a series 

(z on 8'). 

h 

f at(z)dx ~- ffr(g)d=(eD 
p z, 

The integral in the second member, above, is expressible 

oo 

Y, f f  r ( r  
~.ll~-r~+l 

(~ > o), 

by (2. I9) we obtain 

which is dominated by the series 

i ,  + Z~ + . . . ;  Z, = O, a (I, -- I,+i), 
where 

Q, ~ upper bound in I v -  I~+1 of a(~). 

In  view of Lemma 2. I convergence of 

s .  = ~ ~ (z. - Iv+,) log 

would imply that  a (z) is integrable along 8'. We carry out similar developments 

~o obtain a condition securing integrability of a (z) along segments (in K) pa- 

rallel to  the axis of imaginaries, as well as to secure analogous conditions for 

b (z). We accordingly assert that  convergence of the series 

(2.2o) S,, S~ = ~ ( I ,  -- Iv+i) log v 

will imply that the functions a(z), b(z) are in~egrable along segments in K parallel 

to the axes. 

Since 



Problems of R~epresentation and Uniqueness for Functions of a Complex Variable. 

(2.21) S ( R ) ~ ( A  + Q(j+ i ) ) +  2 q ~ Q ( k  .z 2)m(Ek+~--Ek)---- W(v, j )  

for figures /~ in ~ -  I~+1. On writing 

('u. b.' is 

by (2.17) 

one obtains 

125 

A + (R) = u. b. A (R'), A -  (R) ----- u. b. --  A (R') 

'least upper bound') for figures R '  in the figure R and not ing tha t  

IA(R') I_--< I~(R')I =< S(R'), 

(2.2I') A + (R), A -  (R) ~ W(v, j )  

for all figures R in I , -  I,+1. Accordingly for the total  variation we obtain 

a ( B ) = A + ( B )  + A=(~)=< 2 W(v, j )  

for figures R ~ I ,  I ,+ , .  A similar inequality will hold for fl(R). Thus 

~(I ,  --  I,+,), 3(I,--~,+,)_--< 2 W(~,j). 

Accordingly, the series (2.2o) will converge i f  

(2.22) ~ w(,,,j) log ~ (cf, (:. 2,)) 
,v 

converges for some choice of  j, depending on v. 

I f  (2.22) converges for some j = j , ,  tending t o  infinity with v, we obtain 

the desired representation. We, thus proved the following. 

T h e o r e m  9.. 1. Suppose f (z )  is of  class C{r in K, in accordance with De- 

finition 2. I. I f  the Q (n) are such that there exists a sequence of integers 

o <J l  <J~ < " ,  l i m j ,  = r162 

so that the two series 

(2.23) ~ q (j, + I) log v, - V  Z Z e(k + 2)m(E~+,-- E~)log, 

converge, then f(z)  is representable with the aid o.f Lebesgue-Stieltjes integration, 

fla.(cO (2.24) f (z)  = h (z) --  --~2 ~ --  z 
K 

for z in K. Here h(z) is' a function analytic in K and re(e) is an additive ab- 
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solutely continuous function of  sets {B}; on intervals I (in K)tt (e) coincides widh 
the contour integral 

ff(z)dz. 

The conditions stated with respect to (2.23) are not as complicated as might 

appear at the first glance. A simple application is presented by the ease, satisfied 
for an extensive variety of closed sets F,  when 

e 
m ( E , + ,  - Ek)  < k--~. 

Theorem 2. I will then be applicable for any class C{q(n)} for which 

q(n)<_c'n~ ( o < ~ < ~ ;  c' > o ) ,  

To establish this fact we may employ an auxiliary sequence 

j,-----c,: (o < e' <_ c,_< c"; ~ =  i, 2, . . . ) .  

The following is another consequence of Theorem 2. i. 

T h e o r e m  2.2. Suppose f(z) is uniformly Zip. I in K~ that is, 

If(g) - - f (z ' )  [ "~ A [~ -- z'[ (z, z' in g ) .  

Then f(z) has the integral representation (2.24). 

In  fact, under the above condition f ( z ) <  C{q(n)}, where the sequence 
{q(n)} is bounded; moreover, 

C* 
a ( / , - - • + i ) ,  ~ ( / ~ - - L + l )  < - "  ~3 ~ 

the series S~, S~ will accordingly converge, leading to the conclusion of the 
Theorem. 

Definition 2.3. Let F be a perfect bounded set. It will be said that f(z) is 
continuously monogenic (c. m.) over F i f  at every point z of E f(z) has a uniquely 
defined derivative f(~)(z) (derivative with respect to ~ ,  the derivative being con- 
tinuous over F. 

With f(z) c. m.  o n  F ,  one has 

lim f ( z ' ! - - f ( z )  _f(1)(z) (z in/~') 
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for z' (in 2") tending to ~. Put t ing in evidence the real  and imaginary parts 

we write 

(2.25) 

and obtain 

f ( , )  = ,, (~) + i v  (~), . f l ,  (,) = u, (,) + i v ,  (,), 

f(z ')--  f("(e)=r(z',z), r(z ' ,z)=a(z ' , , )  + ifl(z',z) 
Z - - Z  

I ,~ (*'. z) l, I ~(*'.  *) I < ,  ( ,  in F )  
for all z' in F such that  

On writing , '  = x' + iy '  from the above we obtain 

(2 .26)  u C*') - u (,) = [u, (,) + ~ (*', ~)] (x' - x) - Iv1 (~) + ~( , ' ,  ,)] (v' - v), 

C2.27) v C , ' ) - v ( , ) = [ , : , ( , )  + ~ ( , ' , z ) ] ( ~ ' - , )  + [u l ( , )  + ~( , ' ,  z ) ] ( y ' - v ) .  

The function 
r (*', z) = r (~', v', ~, v) 

is defined for (x', y', x, y) in the four dimensional closed set P consisting of points 

corresponding to all z', z in F, provided we put 

7 (z, z) = lira ~, (z', z) ',z in F)  

(for z' tending to z within F)  and note that  the latter limit is zero. In con- 

sequence of the given hypotheses f ( z )  is continuous in F. Hence from the de- 

finition of ~,(z', z), given in (2.25), it follows that  7(*', z ) i s  continuous in z' 

(in F)  and in z (in F). Clearly F(x' ,  y', x, y) is continuous in (x', y', x, y) over 

P. Hence this function is bounded in 19; thus 

(2.28) I ~ (z', z) l, I ~ (z', e) l ----< a, (for z', z in 2"). 

Inasmuch as, in consequence of continuity of f m  (z), one has 

from (2.26), (2.27) , (2.28) we now deduce that  

(=.29)  l u ( / ) - ~ , ( , ) l .  I v ( ~ ' ) - v ( , ) l  < (~,, + , ~ , ) ( } z ' - x l  + I r  

---< ~ (~,, + ,~,) I * ' -  ~ I (~', ~ in F) .  

That is, u(z) and v (,) are uniformly Lip. I over F. 
Confining our attention for the present to u (z), we observe that  (2.26) signi- 

fies that  u (z) has in F derivatives, in the sense of WHITNEY, 
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o . ( ~ )  o u ( z )  
- - - -  = u~ (z), - - - -  = - v, (z), 

Ox Oy 

continuous in F. In  consequence of certain developments of Whitney there exists 

a function U(z), continuous in K, with partial derivatives 

OU OU 
Ox'  Oy 

continuous in /s such that  

0 U Ou 
(2 .30)  u(~)  = u (z), 7 x  = o ~ '  

OU Ou 
= ~o-:- ( iu F ) ;  0 Y 

here, as previously, K is an interval or, more generally, a bounded domain con- 

raining F. Such a function U(z) is uniformly Lip. I over K. We get a similar 

result for a continuous extension V(z) (over K) of v(z). An application of 

Theorem 2.2 will accordingly yield 

Theorem 2.3. Suppose f ( z )  is e.m. over a bounded perfect set F in ac- 

cordance with Definition z. 3. Such a function has in F an integral representa- 

tion (2.24). 

The points z = x + i y  of t~ which are limit points of points z' = x' + i y  of 

F will be said to have the property (H), while points z = x + i y  of /~ which 

are limit points of points z' = x + iy '  of ~" will be said to possess the property 

(V). From (2.26), (2.27) on passing to the l imit  we obtain 

o u (z) o v ( , )  

(I~ ~ - . ~  = u ,  (~), 0 x = v,  (~) 

at points having property (H), while 

o u(z )  Ov (~) u~ (z) 
(2~ - - 5 ) -  = - v~ (~), - ~ y  = 

at points with property (V). I tere the partial derivatives of u (z), v (z) are in the 

ordinary sense over F. From the above it is concluded that  the 'CxvcHY-RI~.- 

~al~lr equations 

Ou Ov Ou Ov 
Ox Oy Oy Ox 

hold for every c. m. function f =  u + iv at every point z having simultaneously the 

properties (H), ( V). 
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and assume that 

(3.2) 

for z' in K- -1 t .  
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3. P rob lem of  Representa t ion for  Discontinuous Functions.  We continue 

to imply that  intervals are closed and non degenerate. W e  shall now consider 

functions f(z) integrable along all rectilinear segments, in K, parallel to the axes. 
I t  is assumed that the set H of points of discontinuity of f(z) has measure zero. 

With the aid of the integral (2.5) we again define a function 

(I) = B (Z) + i A (I) 

of intervals I in / ~  under the new hypotheses /~ (I) is additive. 

We define the function 

M(z ' ) - -=u .b . ( forz inK-)o f l f (~ , - -~ f ( z )  I 

MCz,) < + 

I t  is observed that  M(z') is measurable. I f  we define G, ,as 

the par~ of / ~ - - H  such that  

(3.3) ~ - i __< M(z') < ~, 

it is inferred that  

(3.4) g = / t +  G1 + G~ + .. ,  

no two of the sets H, G1, G 2 , . . .  having points in common. 

Let  1 be an interval; I will contain points of K - - H ;  more precisely, for 

some j there will be in 1 a point z~ belonging to Gj. Wi th  z' denoting some 

point in ( K - - H ) 1  one has 

I f ( z ) - f ( ~ ' ) l - - <  ~ ( z ' ) l z - z ' l ,  M(~') < + ~ ,  

for all z in /~. On the basis of this inequality we repeat the reasoning leading 

from (2. Io) to (2.1 I) and infer tha t  

(3. s) I ,  (I) I < q m ( : ) l  I I  (q from (2.1 I)), 

provided (2.11) holds. 

Let  R be any figure, whose regularized (Definition 2.2) decomposition into 

non overlapping intervals is 

(3.6) R = I (" + 1 (~) + .-. + I (~). 

We designate by 

(3.6a) l t ,  I , ,  . . .  I,, 

9-632046 Aeta mathematiea. 78 
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all those of the intervals I(2 which have Points of G 1. Let  

(3 .6b)  I,,+1, L,+~, . . .  I , .  

be all those of the  I (j) which are not  included in (3 .6a)  and which have points 

of G2. Cont inuing the process of selection in this manner,  one breaks up the 

I(J) (?" = I, . . .  a) uniquely into a number  of groups 

L,~_I+1, I , . , _ 1 + 2 , . . .  I,.~ 

(v,-1 ~ v,; v o -- o; s ~= I, 2, . . . ) ,  where the intervals jus t  displayed are all those 

of the  I (j) which are not  amongs t  the 

(3 .6c)  L.p,l+l ,  L > _ 1 + 2 , . . .  L> (p = I ,  2 , . . . ,  8 -  I )  

and which at  the  same time have points of G,. Accordingly,  from ( 3 . 6 ) o n e  

deduces the decomposi t ion 

(3, 7) B = B "~ + / 2  e-) + . , . ,  

where 

(3" 7a)  R(s) ='=/-~,-1+1 + /~s-l+2 + "" + Ls.  

I t  is observed tha t  the above is a regularized decomposi t ion  of a figure B (~). 

The figures R (v, R(2), . . .  are non overlapping. 

Using the  fac t  tha t  every component  interval  of B ('1 has a point  of Gs and 

satisfies (2. IO), f rom (3.5) we  infer  tha t  

I~(~) i < qM(*j) lSI (,,~-, < J  --<- ~,), 

where zj is a point  of G,. Thus, in view of the  definition of G,, g iven , in  con- 

nect ion with (3.3), f rom (3.7 a) one d e r i v e s  

I~(R(:))  <qslR<')[. 

Finally, in consequence of (3.6) 

(3.8) ]tt(R) l < q ~ s ] R  (~)] = Q(R), 

the  number  of terms in the  last  member  being finite. 

Now / t  (~) is the sum of intervals (3.6b);  none of ~hese intervals contains 

points of Gj, inasmuch as all the intervals having po in t s  of G~ have been in- 

cluded in (3.6 a). Hence  

R ~2) < / s  G 1 . 
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In  general, R(') is given by the sum (3.7 a), the component intervals having no 

points of G1, G ~ , . . .  Gs-1; this property follows from the fact that  these inter- 

v~ls are not  amongst the (3.6 c), while the intervals (3.6"c) constitute the totality 

of all I(J) having points of Gp (p = I, . . . ,  s - -  I). Accordingly 

(3.9) 

Whence 

(3.9 a) 

R ( " ) < K - - ( G ~ +  - -+  G~-~). 

1t~(":1 ~ IKI--(mG1 ~- ~nG2 '~ "'" ~- m G ~ - , ) - - ~  r(s)  

(s--~2, 3 , . . . )  on so far as no two of the Gj have points in common. 

Since m H - - o  it is noted that  

~ m G . = I K I ;  
accordingly 

lira r(s) -- o. 
$ ~ O O  

By (3- 8) and (3- 9 a) 

(3. ,o) I~(n)l  < qr ,  r = Z ~,-(,). 

from the above we obtain 

(3. i2 a) Q(R)<  q j ] R I  + qr ( j ) .  

In view of (3. i2), given ~ > o, no matter  how small, one may c h o o s e j = j ( ~ )  

so that  
q l~(j (e)) < s - :  

2 '  

These considerations lead to the conclusion that  the ]~nctions of intervals 

(3. II) B(I) ,  A(I), /~(I) 

are of  bounded variation whenever the series r converges. Converge~ee of r is 

forthwith assumed. We are now able to perform Lebesgue-Stieltjes integration 

with respect to g. 

In  consequence of (3.8) and (3.9 a) 

(3. ~2) Q(R) ~ q~slR( ' )[  + q FU), r(j)  - ~s, . (s)  
s=I s>j 

for all figures R ~ h', ] being a positive integer at our disposal. Since 
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we then define ~ = ~?(e) by the relation 

qj(e) ~ (~) = s .  
2 '  

in view of (3.8) and (3. I2 a) one obtains 

for figures R in K for which 
[R I_--- < ~(~). 

Hence the function of intervals i ~ (I), as well as the corresponding function it(e) of 

{B}-sets, is absolutely continuous. 

Let S'  be the rectilinear segment and the / ,  be the intervals introduced 

subsequent to (2. I9). For R in I + - - / , , 1  one has 

accordingly, by (3. I z a) 

(3. I 2 b) 

c [nl  < 

Q(R) <= cqj ~ + q F(j) = w (~,,j), 

for figures R in ~ - / ~ + 1 ,  Analogous to (2.21') one now has 

A+ (R), A - ( l ~ ) ~ w ( v , j )  ( I t < L , - - L + ~ )  

and, for the total variations of A(I), B(I) ,  

.(R), :w(.,j) 

for figures in I , - - I , . + 1 -  in particular for R ==-/, ~ / , + 1 .  By a reasoning of the 

type used subsequent to (2.22) we deduce that the desired representation for the 

case now under consideration will hold if one can choose a sequence j = j , ,  

o < J l  <J2  < ' " ,  
so that  the series 

E w (~,j) l o g ,  

converges. On taking account of (3-x2 b) one obtains the following result. 

Theorem 3.1. Suppose f (z)  is a function as described at the beginning of this 

section up to and i~wluding (3.2). Let G,, be the set defined in connection with (3.3). 

I f  m G v te>~ds to zero with I sufficiently fast  so that there exists a sequence of in- 
v 

tegers o < Jl < J2 <""  for which the two series 
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. l o g v  ( ~  st(s)) log v, (]" IS) Z J ' 7 ' ,  ~ s>j, / 

where 
r(s) = [K I--  (mG: + . . .  + raG,_1), 

converge, then f(z) has the representation 

- l f (3. x4) f ( z )  = h(z) 2 ~ i J J C - z  
K 

for z in K (h(z) analytic in K; # additive absolutely continuous). 

A simple application is embodied in the following. 

Corollary 3.1 .  I f  f (z) is a function as described at the beginning of this sec- 

tion and is such that 

c (a < 4), (3- ~ 5) m G. _-< s-: 

then f(z) is representable in the form (3. I4). 

To establish this ~ve first note tha t  
I I ~ 2 - - - - -  

a - -  3 
Choose ~ so tha t  

By (3.15) 

I I ~ 2  
a - -  3 

r(s) = m G s +  m(J,+l  + "'" < - -  

and, hence, 
C tp 

(3. :6) s,-(s) < 
*>j 

C p 

8a-1 

We choose integers j ,  subject to relations 

and  n o t e  t h a t  
�9 l o g  v l o g  
3, ~ ----< c: v? 

(o < e0 = c, _< c') 

since fl > I, this implies that  the first series (3. I3)converges.  On the other hand. 

by (3' I6) 
[Z sr(s)] log v < e~ ) ('~-s) logv; 

8 > j , ~  
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n o w  

and, accordingly, the second series (3.13) will be convergent. The Corollary has 

been proved. I t  is easy to give examples of functions f(z)  satisfying the condL 

tions of the Corollary. 

In applying Theorem 3. I it is useful to note that  the best choice of  the j ,  is 

on hand when we require that j ,  be the least positive integer such that 

t~ 
r(j~ + i) < ~ .  

In fact, when R is a figure in /~--I~+1 (L introduced subsequent to (3-12 a)) 

and (3.7) is its decomposition we have 

IRIs) l < ~ I R(.')I < ,'(s) 

for s ~  1,2 . . . . .  The best inequalities, for R < / ~ - - L + I ,  that  we obtain from 

these are 

IRlsII _-< ;~ r  i , .  . . j , ) ,  IRI,/I =< ,.(s) ( s = j ,  + i, . . . ) ,  

where j ,  is defined as stated above - -  a fact which leads to the italicized assertion. 

In considering any instances when functions f(z)  are representable with the 

aid of integrals of the form 

f f d ~, (e:) y - r  ~- , 

where /~(e) is the extension to {B}-sets of the function of intervals 

(I) = f f ( ~ )  d~, 
(1) 

as is the case in Theorems 2. I, 2.2, 2.3, 3. I, for example, the following remarks 

are in order, l f  f ( z )  : u + iv  is continuous and is monogenic in. the bounded closed 

set F in the sense that except, perhaps, on a denumerable set 

lim ~ I f (z  + h) -- f(z) [ < ~ (e, e + h in F)  

and that u, v satisfy the Cauchy-I~iemann conditions almost everywhere in F, then 

(3. ~ 7) ~, (F )  = o 
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This follows by a theorem of P. T. MAKF.R t which asserts that  under the 

conditions given in the italics, above, one can find a sequence of sets 

where the Inn are non overlapping closed intervals, so that Cn ~ F and 

(f*(a) a continuous extension of f(g)). 

In fact, the latter relation means that  

lim/~ (C~) ----- o. 
n 

On the other hand, the Cn can be so chosen that  

C~ > C=>...;  lim Cn= F. 

In view of (S; p. 8) this will imply (3.17). 

We shall conclude this section with the remark to the effect that  whenever 

there is a re2ore,'entation on hand of the form 

, f f d , ( e r  (z in K), (3. I8) f (z )  = h (z) -- 2 z i,, ,, ~ --  z 
K 

where h(z) is analytic in K and where /,(e) is an additive function of {B}-sets of 

bounded variation, the total variations of  whose real "and imaginary parts vanish on 

rectilinear segments 1 (in ~,) parallel to the axes, while 

,aa = f f (f d'(e:)' 
l K K l 

then necessarily one has 
/ .  

l*(I) = ] f (z)  dz  
L e  

(I) 

on intervals I <  K. In  fact, integrating both members o f  (3. I8) around the 

boundary (I) of any interval in K, by Morera's theorem we obtain 

i p. T. MAKER, The Cauchy theorem f o r  2/'unctions on closed sels, Bull. Am. Math. Soc. 0943), 

pp. 912---916; see p. 915. 
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f d, =-  f f f f dl~(e~)] d'z 
2 ~ i J  [ J J C -  ~ .1 

(t) (I) K 

and, in view Of (3. I8 a), 

i 
f f I*) = i f f [.f  -cl a" Ier 
(i) K (I) 

In  consequence of the hypothesis with respect to the total variations of the real 

and imaginary parts of ~(e) it is inferred that  

f i f f [ f  (3. ~9) f ( , )  d ,  = ~ ~ d s  (<). 
(1) Z-(I) I 

NOW 
fd _o 

2 ~ i J z - - ~  I 
(I) 

(~ in K - -  (/)), 

(.~ interior 1). 

Accordingly the conclusion of the above italics will follow from (3. I9). 

4" Q u e s t i o n s  o f  ] [ o n o g e n e i t y  and  D i f f e r e n t i a b i l i t y .  C o n s i d e r  a family of 

functions {f(g)}, with f (z)  analytic (uniform)in an open set O (f).  Inasmuch as 

0 ( f )  is not necessarily connected, f (z)  may be equal, in a number of subsets 

of O( f )  to a number of distinct analytic functions. Suppose there are points 

common to all the 0 (f).  Let F be a closed subset of  the set common to all the 0 ( f) .  

Designate by O~ (d > o) the set of  19oints at the distance < d fi'om F. For d ( >  o) 

sufficiently small Oa < O(f).  Let d ( f )  be the upper bound of values d such that 

o~ < O(f) .  
We thus have a closed set F and a family of analytic functions {f(z)} on 

hand; to every function f (z )  there corresponds a positive d ( f )  so that  f (z )  is 

analytic in the open set O~(.f). 

When 
l .b.  d ( f ) = d 0 > o  1 

the situation is as in the classical theory, inasmuch as in this case all the func- 

tions of the family are analytic in the same open set 0~. I t  is noted that  all 

the d ( f ) >  o; hence the alternative to do > o is 

lira d ( f )  = o. 

i 1. b. means greatest lower bound. 
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I t  is precisely the latter case that  is of interest  from our present point of 

view. In  this case ~ sequence 

(f~) > ~ (f,) > . . .  ; lim J (f,) ---- o 

can be found. Correspondingly we shall have f,(z) analytic in 0a, ( d , =  d(fi); 

0 ~ , > 0 ~ , > , ~ . ;  0 ~ , ~ F ;  lira 0 ~ , = F ;  0a,+ 1 <  0a,. 

A sequence {f,}, as described above, will be said to belong to {F; d,}; thus 

{f,} < {F; eL}. 

Suppose we turn  now to the study of monogeneity in the sense of existence 

of a unique derivative. In  this connection the nature of the set G over which 

this property holds is of prime importance. I f  G has no interior points the 

function in question, monogenic in G, may be non analytic at  every point of G 

(no mat ter  how the function is defined in the complement  of G). 

Consider a sequence {.f,} < {F; d,} (closed ~ .  Suppose 

(4. I) f ,  (a) -~ f(a) (as ,  -~ ~ ; in F), 

convergence being not necessarily uniform. We shall study differentiabflity at a 

point  a o in F.  

I t  is noted tha t  a o is an interior point  of the open set  0 (d,) i~ which f ,  (a) 

is analytic. One has 

(4.2) f ,  (a) = f ,  (%) + (a --  no)f(:) (%) + (a --  %)' e, (a). 

For a in a circle 
S (%, ,') (I" - -  ao I ----< "), 

where r ( > o )  is suitably small, f , (a )  is analytic and clearly c,(a) is therein ana- 

lytic. For I n - - a 0 1 >  r, wi th  a in 0(~,), on not ing tha t  

(4. 2 a) c,(a)=[f- '(a! - f ' ( a ~  J~,~) (ao) ] I 
{~0 (~ - -  (~0 

it  is observed tha t  c,,(a) is analytic, since the functions f~(a), ( a -  ao) -1 have 

this property. Thus c,(a) is analytic in 0 (d,). 
We have 

(4. 3) g, (a) ----f, (a) - - f ,  (no) --> f (a )  --f(ao) = g (a) (in F), 

where g,(ao)----g ( % ) =  o and g,(a)~ {F; d,}, Hence there i s  no loss of genera- 

lity, if, with ac fixed, we assume that 
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(4 .3  a) f,'  (So) = f ( a o )  = o. 

The specific question now raised is as follows. Under what conditions, given 
a sequence (4. I) (with (4.3 a)), do we have 

(4.4) f(') (so) = lira f(!)(no)? 

Whenever (4. 4) holds f(a) is monogenic (not necessarily analyt ic)at  ao, inas- 
much as the J~,l)(ao) being unique'numbers,  the limit in the second member of 

(4.4) will be unique. 
For the validity of (4.4) it is necessary that 

(4-4 a) lira f!l)(so) = e' 

should exist. Aeeordingly, we may as well assume the latter relation. The problem 

now is to find conditions under which f(l, (no)= e'. By (4. 4a) and (4.2 a) there 

exists a function e (a), defined iD F (a ~= no) so that  

(4.4b) lira e , ( a ) - ~ e ( a ) = ( ' f ( a )  - -e '  ) I 
\ a  - -  ~o ~ - -  ~o 

(a in F)1. 
In view of (4.2) 

and in the limit 

f "  (~) - A 11 (.o) + ( -  - ~o) e, (~) 
- -  f $ 0  

(4. 5) .f(a) = e ' + ( a - - a o ) e ( a  ) (~ in F ;  a 4  =so). 
0~ - -  C t  0 

Hence (4.4) will hold provided 

(4. 5 a) lira (a --  no) e (a) = o (a within F)~. 
a ~ a  O 

Accordingly, it is noted that (4.4a), (4. 5 a) is sufficient for the validity of (4.4). 
Conversely, suppose (4.4) holds; then (4.4a) is asserted and the function c(a)of 
(4.4 b) will exist for a =V ao in F. The relation (4. 5) could be then expressed in 

the form 

1 W i t h  t h e  aid of Taylor ' s  expans ion ,  app l ied  a t  er o to f~  ~er from (4. 2) i t  is in fe r red  t h a t  

2 c~ (~o)=f t2 ) (60)  . Ex i s tence  of c (~o) is t h u s  con t ingen t  on t h a t  of lira f(2)(~o) (provided t h a t  we 

define c (*r as lira c~ (~o)). 

2 The  impl ica t ion ,  of course, is t h a t  ao is a l imi t ing  p o i n t  of F .  
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f ( a ) -  f(a,,) _ j_e(1)(/%0) -~ (1~ - - / % o )  c (g )  (1% i n  i f ;  /% :~= rio). 
/% - -  {$o 

The assert ion (4-4) implies t ha t  the l imit  of the  first member  above, as /%-* a o 

within F,  exists and has the  value ft~)(/%o). Necessari ly ( 4 . 5 a ) w i l l  hold. Ac- 

cordingly, the following theorem may be stated. 

Theorem 4. 1. Consider a sequence {f, (a)} < {F; ~,} converging to a l i m i t f ( a )  

in 2". Le t  a o be a f ixed point  in F;  assume that Iim g~t) (/%) exists. In  order that 

f(/%) should be monogenic at /%0 and 

J~') (%) ~ lira fca)(/%o) 

i t  is necessary and sufficient that ( a -  %)c(a)-- ,  o, as /% ~ % wi th in  F. Here 

c ( a ) =  lira c, (/%), where e, (a) is the function (4. 2 a), analytic in 0 (&). 

I f  a double sequence {f,,,} (n, v ~ i, 2, . . . )  is on hand,  where the  limits 

lira f , , , , ,  l im f,,, 

exist, ~hen, as is known, 

(4.6) lim (lim f , , , )  = lira (lim f , ,  ,) 
n n 

if and only if the  fol lowing holds. Given e ( >  o), one can find re(e) so tha t  for 

each ~ > re(e) a n u m b e r  k, can be found  so tha t  

(4.6 a) 

W e  again consider 

exists in 2'. On wri t ing 

(4. 7) 

it is observed tha t  

(4.7 a) 

Ifn,, - -  lim fn , ,  I < * (for all n ~ k,). 

a sequence {f,(/%)} < {F; d,} for which lira f,(/%)=f(/%) 

s ( . . ) -  f, (-o) j;~,, =_,,v (a, in ~'; l i m a ,  = %), 
/%n ~ /%0 n 

lira f , ,~ - -  f(1) (%), lira f , , ,  - -  f(/%'~) --.f(/%o) 
n ~" /%n - -  (~0 

Accordingly (4. 6) is equivalent  to the  relat ion 

(4- 8) lira f(a)(%) = f ( 1 ,  (a0) ' 

where the  derivative of f ( a )  is to be computed with respect to a sequence ~, (as 

described in (4.7)). 
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In view of the statement with respect to (4-6), (4.6a) it is concluded that 
jar monogeneity of f(a) at ao (in F) and in order that (4, 8)should hold it  is 

necessary and sufficient that for every sequence {an} < F converging to a o the follow- 

ing should hold: 

(4- 8 a) f ,  (a,_)) f ,  (so) .f(a,) • f ( a , )  < e 
} G n  - -  G 0 a n  - -  g o  

for all n >_ k,, when v is any integer such that v > m(e). 

If lira f(,~)(%)~ c' exists one may replace (4.8 a) by 

I f~. ') (%) + (a .  - % )  c. (a,) - c' - (a .  - %) c (~,) I < *. 

Accordingly, when lira f(,1)(%)= c' exists, in order that (4. 8)should hold it is 

n, ecessary and sufficient to have 

(4. s b) I ~ ,  - -  ~o I I c (,n) - -  c, (-,)1 < 

for all n _>--_ k, (any v >-->_ re(e)): 
If  we make the convention that f(~)(%) is said to exist when 

lim.f(a.) --  f (ao) 
n U a  - -  a o 

exists and has the same value for all sequences {an} in F and tending to %, 
then the necessary and sufficient conditions for the validity of (4.8) may be given 

in the form: 

( 4 8 e )  I~' - = o I  I c ( , ~ ) -  c,(,~)l < e 

for all a in F with I a --  % I < ~,. when ~ is any number such that v >_-- m (~) (still 
assuming that lim f(~} (%) = c' exists). 

When lim f(~)(%) exists an obvious sufficient condition securing (4. 8) is 

(4 .8 o') l a - ~'o I I c,+,, (a) - e, (")I  < *  (p ~---- I ,  2 , . . . )  

for all a in F, l a - ~ o l _ - <  ~,; a n y  �9 >_- m(,). 

On writing 

(4- 9) ,',,p (,) = f , + p  (a) - - f ,  (a) 

in consequence of (4.2 a) we obtain 

(a  - % ) ( c . + ~  c~) - c .  ( , ) )  = r . . ~  ( , )  - r . . ~  ("o) 
a - ao - (f~+)~ ( a 0 ) - f ~ )  (,0)), 
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I f  lira f(~)(ao) exists we can certainly chose re(e) so tha t  

Iff+,, (~o) - f ( : ) ( -o ) t  < ~- 
2 

(all v ~ re(e); p -- x, 2 . . . .  ). 

Hence,  on tak ing  account  of the  s ta tement  with respect  to (4.8 c'), it is con- 

cluded tha t  (4.8) is secured provided lira f(1)(a0) exists and 

(4.9a)  
I (~  - -  (]'0 [ 

for all a in 2" for  which [ a -  c~o[< C,, this being so for  every v ~ m (~). 

Consider a funct ion 

f f  d/~ (integer j > o), (4. I0) f (a)  = (z - -  a)i 
K 

where /~ = / ~  (X) is an addit ive funct iou of sets X (Lebesgue measurable),  /~ ~ o 

and/~ (F) = o, F being a closed subset of K. Wi th  6t > r > �9 �9 �9 (c?, > o; lira 6, = o), 

the open sets 0 (~,) will each conta in  F and  lira 0 (~,) will be ~:  The funct ion 

f f d t* (H,, = K --  0 ((~,;) (a. ~o a) f "  (~) = (~ _ ~)s �9 
H,, 

will be analyt ic  at  every inter ior  point  of the  complement  of H ,  (accordingly, 

in 0 (~,)); morever,  

(4. ~o b) 

Hence  

(4. ~o c) 

~ < ~ < . . . ;  

f f  d,, lira f ,  ((~) -- (z - -  et)J --  f (a)  
K - F  

lim H , = K - - F .  

for  a in F,  provided tha t  the integral  last displayed exists for c~ in F (which 

will be assumed to be the  case). Clearly 

{f,(~)} < {F; ~,}, 

with f (a)  of (4. IO) const i tu t ing the  l imit ing funct ion (in F) of the sequence. 

In  consequence of (4. 2 a) and (4, Ioa)  

I ! 

tt~ " I1 
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(ao in F ;  a in  0((L)). One  h a s  

(.-ao)C~(,~)= f f a(z; c~,.o)d~,; 
H,~ 

w h e r e  

g (~; ~, ~o) - ( z  - ~o)~- :  + (z  - ,~o)J-~ ( z  - ~) + . . .  + (z  - , ) J - '  
(z - ~).J (~ - %)J 

N 
(~ - ~,o)~ (z ,~o)J +' 

z - -  tXo)J + 1 

O n  w r i t i n g  u - ~  z - - a  o, v := , v - - a ,  i t  is f o u n d  t h a t  

j~7"= ({"Z" - -  a'o)[(uJ-1 --~-'" + V j - l )  "}- ~)(~j--2 _{_ ....{_ vJ--2) _[., . . .  + /)j--l] 

= ( a - - - a o )  [UJ-J "k 2 ?fl-2 V + 3 U J - 3 V  ~ + ".. + ( j - -  I )UV j -1  " - k j v J - ! ] .  

W h e n c e  

f f  h (z; a,  %) d # (4. I I) 
~'(") = ( ,  - -  "V (Z - -  ,~o/+, ' 

H,, 
w i t h  

(4. I I a) 

W e  w r i t e  

a n d  

(4. :' ~') 

h (z; e, ao) = (z - -  ao)J-I + e (z - -  ao) j -2  (z - -  a) + . . .  + j (z - -  a)~'-". 

~, ( - )  = r~ (~) + + z,. ( - ) ,  z ,  ( - )  = e ,  (,~) - ~.,._~ (,~) (eo(~) = o) ,  

H.,,-H~,_ 
e ( z ; . ,  ~o) = 

h (z; e, ~o) 

I n a s m u c h  as  f o r  a,  a o in  17 a n 4  f o r  z in  H ,  one  h a s  

i t  is i n f e r r e d  t h a t  

(4. I I a " )  

" '  "J~ j (Z s (Z --  aO)--J--' [ N -~-j (j + :) d~-.J--~ (a, e o in  F ;  e in  tL). 
H e n c e  

(4. ~: b) I r~ (~)1 -<- b~ ~ j - ~  ~ (H~ --  H ~ - d  

and ,  c o n s e q u e n t l y ,  

(4. ' ' c) i c, (.)[ <= b~ i ~7~--~ ~ ( ~  - -  H,-A (c~, a o in F ;  Ho =: nu l l  set). 
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I f  the series 
oo 

(4, I2 )  Sj = Z Oi j -2  I t ( H i  --  H i - l )  
i= 1 

converges the fitnction f(a) of (4. Io) is mo,o.qenic in F and, in ./'act, 

jd,  f"'(~ (in 
K 

The condition relating to (4- I2) amounts to the requirement that  the 'mass' 

/~(~ o) be sufficiently 'rarefied' in the vicinity of the set F. In this connection 

it is to be noted that Hi- -H~-I  is the set of all those points of K whose dis- 

tance Q from F satisfies the inequality 

dt ~ e < &-1. 
x 

Apparently there is no essential loss. of generality ~f we take ~l = i"  

The condition for monogeneity involved in the italicized statement above 

has the virtue of simplicity but is otherwise somewhat stringent. The validity 

of this assertion is established by noting that  in consequence of the convergence 

of (4.12) the inequalities (4-I I e) will yield 

I c, (a) I < bj Sj (in F). 

Whence the limiting function e(a) will satisfy 

I ~' (")l =< bj 6 (a in F;  a * no), 

which will insure (4..~ a), thus establishing the desired monogeneiiy property of 

f (a )  at every limiting point of /7. 

Inasmuch as convergence of ~. (j > I) implies that  of Sj-1, it is concluded 

that  the .function 

( 4 .  = . = 

/(--Y 

is d(fferentiable in F j  times (the derivatives f(t) (a), . . .  fo')(a) being unique in F and 

obtainable by formal derivations), provided Sj of (4. 12) converges. 

We shall now proceed to lighten the above can41tion with the aid of a 

result in (T,). Aszume merely that 5~'-1 converges. With X denoting any measurable 

subset of K, we form the additive function of sets (for a in F) 

(fj, (4- I4) ~./+I (X) = d#  .. _ ~ ]]+1 ' 
X 
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where 

on F. 
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/~ is an absolutely continuous set function, non negative and vanishing 

One has 

O j + I ( X )  = Z l ~ - -  ~l~ "I'I" 
i=~ xt~i_H~_l ) 

In  view of the inequalities subsequent to (4. I I a') it is inferred that  

(4. I4a) a)j+, (X) _--< ~ d~-J-'/., ( X ( / / , -  /-/,_,)) _---< Sd_s 
l=l 

(a in F).  

The set function $~+~ (X) is, of course, absolutely continuous; we shall establish 

tha~ ~he latter property holds uniformly with respect to a (a in 2'). First it is 

noted that there exists a function d (~), defined for o < ,  ~ % and approaching 

zero monotonically with e, such that  

(4. I5) ~(X) ~ d (t) (for all X with m X ~ e). 

Convergence of Sj_~ implies that  there exists a monotonically diminishing se- 

quence of positive numbers s, so that  

(4 ' IS a) ~(-]:/t - -  H i - l )  ~ 8,~i +1 (i ~- I, 2 , . . . ) ,  

while s~ + s2 + ' "  converges. With  m X ~ ~, in consequence of the above one 

may assert 

(4. 15 b) 
~,, = # ( x ( H , -  H,_,)) =< ~,(X) =< d(~) 

where k is arbitrary. 

By virtue of (4. ~4 a) and (4. I5 a), (4. I5 b) 

l<k f~k 

i<k t~k 

(4. 16) 

( i = i  . . . .  k - -  i), 
(i = k, k + i ,  . . . ) ,  

(a in F). 

(4. 16 a) ~ .--_ < ~? d (~)/d +~ + Z s; ---- ~ (e, k) 

Now there is no essential loss of generality (for the purposes on hand) to choose 

the & equal to I=. One then has 
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where 7~ is independent  of ,. W e  choose k = k(,)  so t ha t  

(4. I7) lira k ( ~ ) =  o0, lira d(~)k .i+'~ : o  

Such a ehoice can be achieved, for  instance, by twking 

(4. 17 a) k (d = [d ( d -  ~] 

In  consequence  of (4-I7) one dea r ly  has 

(4.17 b) ~ (,) = ~ (,, k (,)) ~ o 

moreover,  in view of (4-I6), (4-16 a), 

(4. 18) @S+, (X)-----_ ;(e) 
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a s  ~ -~  0 ) .  

(~ 1 , )~ 
-----: ,~ ~ > O  3 + 2 + 8  

a s  ~ -~  o ) ;  

(all a in F)  

for  all X < K with m X =< ~. Inasmuch  as ~ (e) is independent  of a, the  state- 

men t  wi th  respect  to (4- I8) amounts  to the  asser t ion tha t  the  absolute  cont inui ty  

of  ~ + 1  (X) is unifm~n with respect  to a (a in F). 

I f  we formally evaluate  the  derivative of 

f f  dp 
f( .)  J J (z - a)J' 

K 

by differentiat ing under  the integral  sign we obtain 

f f  .i dr, 
f(l) (.) J J (z - U} j+l" 

K 

i n  view of the  preceding convergence of  Sj_~ implies tha t  the  absolute  con- 

t inui ty  of the  re la ted set-function ~ 

(4.19) j~+,(x): f f (zJa'~ 
- -  a)J+l 

X 

is uniform with respect  to a (for a in F). In  fac t ,  

I o ; . ,  (x )  l =< o~+,  (x) ,  

while the  funct ion  last  displayed satisfies (4. 18), (4-I7b) .  In  consequence of 

s ta tement  with respect  to  (4.I9) and on tak ing  account  of  a resul t  in (T~) the  

fol lowing is concluded. 

t Here [ . . . ]  signifies greatest integer equal or less than . . . .  
This set function is complex valued. 

10-632046 Ac~ ~w~themat/ea. 78 
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1.]" the series Sj--1 (eft (4. I2)) converges, the function f (a)  (of (4. IO)) wil l  be 

monogenie in F and one will hare 

ff (4. 20) f(') (a) = (z --  a) j+' (in F);  
K 

t/Re related set:function (4. I9) wiU have the propert!l 

(4- 20 a) [j q)~+, (X) I =< j ~ (e) (~ (~) -~ o with ,) 

for all measurable subsets X of  K with m X <= s; here ~(~) is a function as de- 

scribed in connection with (4.16 a)--(4. 17 b), procided we take di - -  I. 

Let us investigate the function ~(e) in the fairly general case when the s~ 
in (4. I5a;  with d i = i  -1) may be taken as a i - 1 - ~ ( ~ >  o). We then will have 

~,  ,~; _-< a' k -~ _-< al  d~ ~ (~), 

provided k(e) is defined by (4. I7a). By (4. I6a) the inequality 

will then follow. On taking e' in (4. I7 a) equal to �9 we accordingly obtain 

(4.2 I) ~(~) _-< (a~ + rj) d"(~) a- - - - - j+2+ ; d(~) from (4. I5) �9 

,is a i-: 1-~ (4 > o), has the advantage of  simplicity. 

When /~ ~ o i s  absolutely continuous one has 

~(x)-- ff  q(~)dxdy (~ll m e a s u r a b l e  X < K ) ,  
X 

where q(z)(>_--o)~ LL over K ~. This representation enables one to obtain ex- 

plicit expressions for  d(e) of (4. I5) in some important eases. Thus 

(4.22) t*(X) _<= flm X =< ~ ---- d(~) (whenever m X  <= ~) 

when I q (z) I =< fl in K. More generally, 

1 Lp is the class of functions whose p-th power is Lebesgue integrable. 
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(4.22a) tt(X) < [ f f  q~(z)dxdy]�89189 < ~ , � 8 9  (whenever m X  <=,) 
x 

in the case when q (z )<  L2 in K; one may take 

~:=ffq~(~)dxdy. 
x 

5. Uniqueness P rope r t i e s  Related to Sets of  Pos i t ive  Measure. Such pro- 

perties have been investigated for contain classes of functions which are limits 

of rational functions, by A. B~.trRLI~o x. In view of our purposes we shall first 

establish a result  somewhat similar to thai; involved in Lemma I of (B; p. 2oi). 

We introduce the following Definition. 

Definition 5.1. The fi'ontier of a bounded set will be said to be regular i f  it 

consists of a number of simple closed continuous rectifiable curves, the sum of whose 

lengths is finite. 
Suppose h(z) is analytic uniform in an open bounded set O. Let 

(5. ~) F < o 

be closed and have a regular frontier. We  put  

(5.2) u (z) = log I h (z) l. 

We designate by z/(t) the part of F in which u (z) < t. On writing 

(5.3) t* = u. b. u (z) (in F), 

i t  is observed t~hat 

(5.3 a) ~ (t) = F (for all t > t*). 

On lett ing 

(5.4) S(t) ~- mzl(t) 

it is noted that  S ( t ) =  m F (t >--_ t*). 

The fi'ontier of ~r is regular and is of the ]brm 

(5.5) A (t) + ]~ (t), 

where A(t) is a subset of  the frontier of  F, while B(t) has no points in common 

with the fi'ontier of F. 

1 A. BEURLING, Sur les fonctions limiies quasi analytiques des fractions rationnelles, C o m p t e s  

R e n d u s  de h u l t i 6 m e  Congres  des  Ma th .  Seand inaves ,  1934, pp.  I 9 9 - - 2 1 o ;  in  t he  s eque l  referred 
to as (B). 
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Le t  z := x + iy designate  a poin~ in B(t) and '~2 be the  incl inat ion angle of 

the normal  a~ z d i rec ted  ou twards  with respect  to  z/(t). One has  

, (~) = , ,  (.% r  = t .  

W i t h  t < t + ). < t*, we shall have 

u(z  + ae*':) = u ( x  + o cos V, y + a sin V) = t + Z, 

provided o is sui tably chosen;  ,z + ae*'; on B(t  + ~). l~ow 

u (x + a cos ~], y + a sin .i]) == u (,v, !/) ~- \Ox + e~ ~ cos ~,~ + + r~ 
~0~ 

(~i, e~ ~ o us a ~ o). Accordingly  

[ 0 .  0 u ) 
Z = a ~ cos ,~ + ~ sin 'i' + 

/ 

( e - * o  as a ~ o ) .  Whence  

). 
0 -~- O'tt .  

e + 0~----~ 

a sin ~ 

normal deriration being iu the direction outward with respect to d(t): by definition 

Ou> 
of J ( t )  one has ~ - - -  o. 

I t  is observed t ha t  

s(to + zo)- S(to)--,,, (J(~,, + Zo;- a,(to:~) 
( t o < t + Z o < t * )  and 

S(to + Zo)-S( to)= f If lta i a., .do= a , a , _  "[  / 'a., .l~z, 
Ou Ou 

. o,% . 
; ,=0 I (t~+z) 

where ds is differential  e lement  of leugth  of arc a, long the  curves cons t i tu t ing  

B (t o + ~), t t ence  

)'0 

" ~  'f[ f 71 f"' dt--o = ~,,-,, go ~ o , , f  d.~ d z  = ~ .  
o 1;(t,,+a) O,~---~ 

/~ Ito) 

This  formula  is in agreement  with a similar resul t  in (B). 
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N O W  �84 

b(t) = length  of B(t) ---- ds ~-- d~" <= 
B if) ~ (t) 

Thus, by (5-6) 

(5.7) 

On wri t ing 

d__S> b~(t) 
d t =  f Ou ~ds 

B(t) 

a (t) = length of A (t) 

B if) B if) 

(t < t*; cf. (5.3)). 

and letting F denote the fi'o~dier of F, we have 

length  of F - -  A (t) -~ g --  a (t), 

where g is length  of F .  The curves of  A (t) + B (t), of to ta l  length a (t) + b (t), 

enclose an  area S (t). The curves of F - -  A (t) + B (t), of to ta l  length  g --- a (t) + 

+ b(t), enclose the set T ' - -  d(t), whose area is m F - -  S(t). I t  is observed tha t  

a (t) + b (t) >__ A,  (t), g - a (0 + b (t) ~ a s  (t), 

where Aj(t) [As(t)] is the  length  of the  eiremnference 

s (t) [m F -  S (t)]. h e n c e  

b (t) >- 2 •�89 S�89 a (t), 

b(t) > 2 z � 8 9  - S]�89 + a(0;  

of a circle of area 

here o =< a (t) =< g. Adding these inequalit ies we obtain 

(5 .8)  ~, (t) ~ . �89  84 + = t [ m  F - s]�89 - .g = r (s).  
2 

W e  observe t h a t  g, being the length of the f ront ier  of the set ~'  is no t  

less than  the length  of the circumference of a circle of area mF; thus  

(5.9) g ~ 2 z�89 (m F)�89 

The funct ion y(s) vanishes for  

(5.9 a) 2 S ~= m F + [(m F)  e --  - -  
I_ 16 s 

()3 = g2 __ 4 ~ m t r  
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I f  F is a circular region ~ = o;  in the contrary case )~ > o and 

4 z m F  < g~i 

It will be assumed that the set F is such that 

(5" IO) 

Under (5. IO/ one has 

g~ < 8 er m/~'. 

~4 
< (re.v)'  o < (mF) ~ 16z~ ~ = 

and the values $1, Sa of S, given in (5.9a), are 

(5" IOa) 

where 

(5- IO b) 

thus 

(5. Ioc )  

i[ 
_ I m F +  q, q =  (mF  - -  S l = ~ m F - - q ,  S , =  2 ~ )~-- 

2 

o.-%<_St< r m F < S ~ m F  
2 

z, 
16 ~ J  

if (5. IO) holds; here the equality sign holds only in the case when F i s  circular. 

Now y(S) is monotone increasing for o ~ S_<-- -I m F  and is monotone dimi- 
2 

nishing for I m 2 ~' ~ S ~ m F. Hence 
2 

z ( s )  > o 

i c c o r d i n # y ,  by (5.8) 

b ~ (t) > ~,'-(s) 
and, in view of (5-7), 

(5, xi)  d S  > ~,~(S) 
d r =  k 

(s l  < s < ~).  

(sl  < s < 8~) 

( t < t * ;  S I < S < S ~ ) ,  

where k is any constant for which 

(5. I I a )  f O:o~ d s ~ k 

for all t such that  $1 < S(t) < S~. 
We shall replace (5. ix) by a simplified inequality. 

express 7(8) of (5.8) in the form 

For this purpose we 
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I (5. i2) r(s)  = - f f ( ~ ( s  - s , ) ( s , .  - s ) ,  

where 

(5" I2a) SI~---/{mF-- [(m F)~ 16 zr'~J~4 ]�89 s*' ----:-- 2I{ mF+ [ (m" F)e 16 ~r'_[~4-sl�89 

A straightforward computation yields 

Clearly N ( S ) > o  and attains its maximum for S =  I-mF; thus, in view of (5.9 a) 2 

[ (5. I2b) ~(S) ~ C(A~') = (2 :;'[; .$ F ) ]  + --~" 

By the above 
I r(s) >= ~ ( s -  s,)(s,, - s )  

We accordingly replace (5-I1) by the inequality 

I (c f . (  5. IX a), (5- I z b )  d S >  A(F)(8--8~)*'(8,,--8)*', A(F) kc~(F) (5-I3) d~-= 

valid for 

Now by (5. I2a) and (5-IOa) 

t < t * ,  8~<S<S, , .  

$2 - -81=2q .  

On taking account of (5. Ioa)---(5. Ioc) we conclude that  

(5. ~4) 

for 

(5. ~4 a) 

and 

(5. ~5) 

for 

(5. I5 a) 

d8 
> A (F) q*' (8- -  St)*' d t =  

t<t*,  S I < S ~ I m F  
2 

d8 
> A (F) q*' (S~ --  8)*' 

d t =  

I 
t < t*, -m F <--_ S < S~. 

2, 
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Consider now the case when (5-I4a) holds. In  consequence of (5-I4) 

I 
q' a ( F ) ( s  - s , ) -~  d S = (~ + V (t)) a t, 

where p ( t ) ~  o, is some function defined for values of t for which (5. I4a )ho lds .  

Let  t, correspond to S,; in tegrat ing we obtain 

where 

' ( s -  s,)--, = t - e (t), 
q" A (F) 

t 

e (') = ~ -  f v  (t) a t (~ a c o n s ~ t ) .  
tl 

Cledrly e (t) is  monotone non increasing f o r  t ~ tt .  We have 

I I 

(5. ,6) S -- St -----q, A (F) e(t) - -  t" 

Since under (5. I4a) one has 

I 
S - -  S, =< - : m F - -  S, ----- q 

2 

it  follows that  
I 

(5. ,Sa) e(t) ~ t + q8 A (F) 

for the range of values t for which (5. I4a) holds. Suppose now that  f o r  a vah,e 

a, such that  

(5. ,7) 

we have 

(5. '7 a) 

where qo is a re,tuber such that 

St <= ,r (a) <= _Im F,  
2 

I I 
S ( a ) -  Sj > 

= q: A (F )  Qo - -  a 

I 
e o > a  + ~ ,,,,~. q l ~  

Let fl be such tha t  
I 

(5. ~8) '~ < ~ --< q~ q ~ a (~'), 

By (5. I6) and (5-I7 a) 
I I 

S (a) - -  81 - -  q~ A (1,') e (a) - -  a 

2 

I I 

= q: A ( F )  eo - -  
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Hence 

e(a)--< ~o; 

since q(t) is monotone non increasing for the range under consideration, in view 

of (5-18) one has 

Accordingly (5-I6), with t = f f ,  will yield the inequality 

I I 
(5- 19) S(~) - -  8, > q~ A (F) ~o --/~'  

as a consequence of (5. I7), (5. I7 a); this discussion has been for the case (5- I4a) - 

Consider now the situation corresponding to (5-I5a)- By (5-I5) one has 

I 
q~ A (F) (8~ - -  8)-~ d 8 = ( 1  + p( t ) )d t  (p(t) > o). 

On lett ing t~ de:note the value of t corresponding to S~ and integrating it is 

inferred that  
t. 

I ! ( 
q~ A IF) S ~  ~- t - -  oct), o(t) c + j p ( ~ d t ,  

t 

where e is a constant  and O (t) is monotone non increasing (t ~ t2). Corresponding 

to (5-16) we now have 

(5. I6') 

moreover, 

(5. I 6 a ' )  

under (5- I5 a). 

1 I ~ 

S a - -  8 q~ A (F) t--e(t--)' 

I ~(t) _-<t 
q~ A (F) 

Suppose that  for a value a, such tha t  

(5- 17') 

the inequality 

(5- I7 a') 

takes place, with 

Let ~ be such that  

(5" 18')  

! m F  <= 8(a) ~ 8~ 
2 

s . -  s (.) <-_ - -  
I I 

q~" A (!,') a - -  eo 

I 
Qo < a - - ~ .  q~ A 

a < ~ ,  s ( 8 ) ~ s . .  
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Then  by vir tue of (5. i6'), (5. I7 a') 

S . - S ( ~ ) =  ' ' < ~  ' 
q-" A iF)  a - - e ( a )  = q-" A (F) a - -  qo' 

whence Q ( a ) ~  Qo and, in view of the  monotone  charac ter  of  Q (a) 

(~) -<- ~ (-) --< qo. 

I~ence in consequence of (5. I6'), where t =  fl, it is concluded tha t  

I I 
(5.19') Ss - -  S(~) <qZ  A (F) ~ -  qo" 

Suppose (5. IT a) holds for  a value a. One may then  assert  (5.19) for  

I 
(5.20) ~ = 8o = qo q~ A (F) '  

obta ining 
I 

S (&) =-- - m F .  
2 

We now may  use flo as a in (5. IT a'); in fact,  on wri t ing 

( 5 . 2 0  a) 

it is deduced tha t  

and  tha t  

qo  "~- ~ + m 
I I 

q~ A (F) 5' (rio) - -  b'~ 

I 

qo < flo q~ A ( F ) 

I I 
s (&) - s .  = 

q" A qo -- flo 

With the  aid of (5. z9') it is then  in fe r red  tha t  

I I 

(5.2ob) S ( ~ ) > S ~  q ~ A ( F )  f l - -qo  

for all /~ > fro, whenever  (5-IT a) holds for  a value a. 

The above results may be formula ted  as follows. 

Theorem 5. 1. Suppose h(z) is a~alytie uniform in an open bounded set 0 

containing a dosed set F, whose fi'ontier F is regular (Definition 5. I); g = length 

of  F. Let zt (t) be the part  of  F in which 

u (~) log  I h(~)l  < t 
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and put S ( t ) =  m J ( t ) .  Designate by B(t) the part of the fi'ontier of J ( t )  having 

no points in common with F. I t  is assumed that F is such that g~ is less than 8 u m F .  

The following notation is introduced 

(5.2I) ) . " = g ~ - - 4 ~ m F ( > O ) ,  q ~ = 4  (mF)-o~-Ig~r ' 

q, +,+i - - - - I m F - l - q ,  c (F )  ---- [(2 :w m F)�89 -1 - g lg-~ '  s , =  2 ~ - m F -  2 
L z j  4 

I I (cf. (5" 22))" A(F)--=--ke ~(F)' ~ o = e o  qSA(F)  

tgu 
here k is any constant equal to or greater than the integral over B(t) of ~ i d s  

(normal derivation outward with respect to J(t)) when t is such that S~ < S ( t )<  S~. 

I f  for some a one has 

(5.22) I ( )  I I [ I )]  = s o m e e o > a + - -  , - m  F >- S'a" > SI + q~ eo --  a qS A (F 

then for every ~ such that a < fi < ~o we have 

(5- 2z a) S (fl) _-__ S~ + - -  - -  

while for every ~ > flo 

I I 

(5, 22b) S(/~) __-- ~ S~ q~ A (F) fl--Oo 

I I 

q~ A (F) eo --  ~' 

[ I , ;] 
q o = ~ O + q ~ A ( F )  8 ( ~ o ) _ 8  " 

If ,  on the other hand, for some a we have 

, , [ 
8 o m e  (5.23) S(a) > S~ q2 A (F) a --  0o 

' )] '  
Qo < a qa ~ (F ' 

then for every fl > a one has 

(5.23a) S(fl) >--_ S~ 
I I 

qZ A (F) f l -  eo 

Let G be a closed set, cont;ained in a bounded domain K, 

(5.24) m G > o. 

Let open sets 0,,  ) G, be such that  

(5" 24 a) K > Q1 > q$ > ' " ,  0 ,  > (),+1, lira 0,---- G; 

I This condition will imply that S (a )>- Im F.  
2 
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moreover, 0 ,  (~ ~ I, 2 . . . .  ) is to have a regular frontier. For  a given G and K 
the sets 0, ,  as jus t  described, can be always constructed. 

Suppose f,,(z) is analytic in 0~; then, incidentally, 

(5.25) I/~ (~)I --< ~, (in 0,,+i). 

Assume, for the present, t ha t  the sequence {fn(z)} of functions of the  above 

description converges uniformly in G; there exists then a function f ( z ) s u c h  tha t  

(5-25 a) If(z) - - fn(~) l  < ~ (z in G; lira e,, = o ) .  

Let  us consider consequences of the relation 

f(~) = o (in Ho), (5.26) 

where 1to ~ G, while 

o < m H o < m G ;  
in view of (5- 25 a) 

(5- 25 a) If~ (~) [ < en (z, in H0). 

We shall apply Theorem 5- I with f~(z), 0~, 0,+1 playing the role of h (z), 

0, F,  respectively. On taking account of tha t  Theorem the following notat ion 
is introduced: 

F,~ = frontier  of 0~+1, g~ = length of F . ,  

J~( t ) -~  part  of 0n+l in which un (z )=  log [f~(z)[ < t, S ~ ( t ) = m d ~ ( t ) ;  Bn(t) is to 

be the part  of the frontier  of J,~(t) having no points in common wi th  F,,; i t  is 

assumed that 

(5.27) g~ < 8n:m On-F1; 

I I 
81,,~ - : - - m  0~+~ - q. ,  S.,,,, = - m  0,,+~ + q.; 

2 2 

moreover, 

where k .  is any constant such that 

(5"27 a) f (u u. 
B n (t) 

(derivations outward with respect to J,,  (t)) for  all t such that 81.,~ < m d , ,  (t) < $2, ,,, 
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(5 .28)  

Now, in 

(5-29) 

Clearly 

whence 

(5- 29 a) 

W e  wish 

Inasmuch  as m 0~+1 > m G it  is observed tha t  (5.27) holds when 

g~ =< 8 ~r m G. 

view of ( 5 . 2 6 a )  

u~ (a) < 1.og e,, ----- a,, 

s . ( ~ . )  _>-- ~ t~. .  

first to res t r ic t  H o so t h a t .  a 

holds; accordingly it  will be required tha t  

I I 
(5" 3 O) m g  0 ~"  S l ,  n 3 I- - -  

q~ A .  eo,. - -  a,, 

(5, 30) with the  equali ty sign would y i e ld  

( i , , / to ) .  

r e l a t i o n  corresponding to (5- 22) 

[ some  e0,. > a,, + q'~A~] " 

I I 
(5-3oa)  0o,,, = a,, + q ,  A , , ( m H  ~ _ &,,~) > a,, + -~'--;-;q,, A , ,  

t ha t  is, 
8 1 , ~ < m H  o < q ~ + S 1 ,  

and, in view of (5.27), 

i I m (5-3 ~  - m  0 . + 1 - -  q~ < m H o < 0,,+1. 
2 2 

I f  
l im q,, = o 

l 
the  above could not  hold unless m H o ~-  "-- m G.  Accordingly,  in order  tha t  the  par t  

2.  

o f  Theorem 5-I corresponding to (5.22), (5.22a) 
should have 

lira qn-~ q > o1" 
tha t  is (ef. (5.27)), 

(5.31 ) q,~-- 

as n = ~ . j ~  00. 

(5 .32)  

and 

should be applicable one 

x [ , 6  ~ :  (m 0,,+1)" ( ~  - 4 ~ , , ,  o.+1): ]  ~ q > o 
64 ~ 

lqow m 0~+1 -+ m G; hence g,,j tends  to a l imit g; in view of (5.27) 

= g ~  < 81rm G lim g,~j = 

1 The qn are positive. 
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(5 .3  2 a) q~ =- ' z~[ ,  6 z~: (m G) ~ --  (g~ --  4 ~r m G) ~] > o. 
64 

Now g,  > length  of c i rcumference of a circle of area  m On+l; thus 

9~ > 4 zr m 0.+i 
and 

9 ~ - -  4~rm G > o. 

Hence the re la t ion q > o implies that 

(5 .3  2 a ' )  (0 < ) g ~ - -  4 z ~ m  G < 4 ~ ' m  V l ;  

i t  is noted that (5.32a) and (5.32a')  are equivalent. 

For  the present we shall assume that q > o and shall consider the ease when 

(5.33) i m  G - -  q < m H  o < L m G .  
2 2 

Unless the cont ra ry  is implied in the sequel we take n = n~--_ n 0. I n  view of 

the  above (5.33) implies t ha t  (5.3ob) and, hence, (5 .3o) (whi th  the equali ty sign) 

will. hold for  n = n~ > no (no suitably great). E i ther  8n (an) > L m On+l or, in 
2 

consequence of (5.29a). 

I >= Sn ( a n )  > 8 , ,  n + , ' ' ~ - m  O n + ,  = - -  , 
qn An qo, n - -  a,, 

is f rom (5.3oa).  By Theorem 5. I (of. (5.22), (5.2za)) the above 

(5-34) 

where Qo.n 

implies 

(5.34 a) 

for all fl such tha t  

(5.35) 

f rom this it  follows tha t  

S l , .  + - -  
I I 

~A q,, . r  

I 
< r < rio,. = e0,,~ , ; 

= q . A .  

I I I 
-m2 0..+1 > $1,. + q~ A .  Oo,.--fl" 

Hence (5.35) wil l  imply (5.34a)  in any ease (provided (5.33)holds), I n  particular,  

on le t t ing in (5.34a) fl = fl0,. one obtains 

(5.35') s.( o .) > = - m On+l. 
2 

1 The relation q = o would imply g ~ -  4~  ra G = 4 ~ m  G and conversely. 
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This implies that  

I 
(5.36 ) u,,(z)<qo,,~ q:A,~ 

in a set H~ ( =  J.~0, ,~))such that  

(5.36a) Ho<It,,< 6.+,, mH,,~ lm O,,+a >LmG. 
2 2 

Consider sets H~ = G/In .  We have 

m . H ~ = m t t , , - - m ( H , , - -  G), m ( H , -  G) <= m(On+, -  G). 

Hence, in view of (5.36a) and since m(On+l -  G ) ~ o ,  

(5-37) m H , , > m H ~  - -m(O, ,+~-  G) > L m  G - - ~  2 

where 8 ( >  o) can be chosen arbitrarily small; moreover, 

H o < H ~ <  G. (5- 37 a) 

We shall have 

(5.38) H~+m < H~. 

if for every ~ of G for which Un+m < ri0,.+~, i. e. 

(5.38 a) IA+~ (~)1 < d ~ 

one has u,, </~o.n, that  is to say 

If- (r < d ~ 
~ o w  

I/-(r =<-If-+-(~)l + I f ( t ) - f - + ~  (~)l + If-(~)-f(~)l  

and, by (5-38a) and (5.25 c), 

I / -  (~)1 < do.-+..  + ~.+.. + , . .  

Thus (5.38) will hold provided 

e ~~ + ~n+m + gn <~ e p~ 

Suppose now that for every n (> %) an m ( >  o) can be found so that 

(5- 39) ~-+- + ~- < ~o,. _ ergO, ,+% 

There exists then an infinite sequence of integers 

n o < ~ ]  < n~ < . . .  

159 
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(subsequence of the original sequence so designated) so that  

(5-40) H;,, > H;_. > . . . .  

In  view of (5-37), (5.37 a) the set 
t (5.4I) H~ = H~,, H~, . . . .  = lim H,,j 

will have the properties 

(5.4I a) Ho<H~<G, 

By (5-36) it will follow that  

(5.42) f(g} = 0 

if (5' 39) holds and if 

( ' )  (5- 42 a) lim qo,, p,~.3-.4,, 

Consider a sequence ~j ( >  O), 

= mOO. 

Under (5.33), (5.39) and (5.42 a) va, ishing off (z )  in H o will imply 

/(~) = o 

mH* > l-m G. 
2 

m H ~ > = L m  G - -  ~. 
2 

(5-43) 

where 

(5.43 a) H*-~H~ ,q -H~+. . . ,  Ho<H*<G-, 

Let us first find conditions under which (5.42 a) holds. By (5.27') 

(in/-L) 

l i m  t~ = o .  

(in H*), 

( 5- 44) A,--~ = 

Hence in view of (5.3oa), (5.29) 

I 
--  m 0 .  H - m H e  

I 2 
(5.44a) q0,,, q,~A,--'loge,~+q~A,,{mHo_b, ) ~  

where 

By virtue o~ (5" 3 I) and (5.33) 

log ~,, + 

(~ = an upper bound of c~). 

m O..+l - -  m He)  )~o. 
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(5.44 b) I Z l I J~l ' 

q~m Ho I ~ I - - - m  O~+~ + q~ q m H o - - - m G  + q 
2 2 

as n = nj -~ o0, where 

(5.44 b') q' > q~-. 

Whence  
I 

rio, ,~ = Oo, ,, q~ A n < log ,,~ + *o k,, (nj > no) 

where % is any number exceeding q' (n o suitably great). Consequent ly (5 .42a)  

holds if  the second member  above tends t o - - o 0 .  Accordingly, ( 5 . 4 2 a ) t a k e s  

place whenever 

(5.45) en-----gg(n)a#,~ (~0(n)>o,  o < ~ <  I), 

where ~ (n) is any function tending to zero and �9 = exp. (--~o). 

By (5.44a)  and, in view of the  preeeding, exp. flo.~ > ~n. Henee  

~n ~- e ~ ~  en > o. 

Thus, inasmuch as lira r0,n : o (of. (5;42 a)), we shall have 

e,~+~ + e:~ < ff~ (j = x, 2 , . . . ) ,  

provided one replaces the  original  sequence {nj}, if necessary,  by a suitable 

subsequeneeL The la t ter  inequalities,  however ,  imply the validity of (5 .39 )wi th  

n = n j ,  n + m = n j + l  ( j =  1,2, . . .). 

Whence, under (5.32a ') ,  (5.33) and (5.45), vanishing o f f ( z )  in Ho implies 

(5.46) f ( z )  = o (in H*;  H o < H*  < G), 

where m H* ~ I raG. 
2 

We shah engage now in a type  of 'quasi analyt ic  continuation' .  W e  let H* 

play the role of H and consider first the  case when 

(5.47) m H *  I 
2 

i T h e  s a m e  n o t a t i o n  i s  r e t a i n e d  for  t h e  l a t t e r  a s  for  t h e  o r i g i n a l .  

11-632046 Aeta mathematiea. 78 
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One may apply the part  of the Theorem relating to (5.22), (5.22 b) t. 

o f  (5.29a) we have 

(5.48) S~ (a,) ~ m H* =I - - raG.  
2 

In place 

One may have &(ctn)>.I- -mO,+l;  in the contrary case we put 
O 

(5.49) [In~o, ,+~ > ]S, , (a ,~)> I__mG = St,,, + I I 
. = - -  2 q ~  A , ,  eo., - -  a , , '  

which gives 

I 

provided 
I I 

o < - - m  G --  - m  O,~+~ + q+, < q,~ , 
2 2 

tha~ is, if 

(5.49 b) I 1 - -m 0~+~ - - - - m  G < qn; 
2 2 

now, the latter inequality clearly holds for n = n j  > n o (n o suitably great), inas- 

much as (5.32 a') (implying (5.3 I)) has been assumed. With  (5.49), (5.49 a) cor- 
responding to (5.22), the implication of (5.22 a) would be 

(5.50) 

where 

(5-50a) 

for all 

I 

&(~)->= &'~ q~A.(fl--p.)' 

P n  ~ ro, n + 
I I 

qn A ~ 8n (rio, ,) -- b'2, 

I 

I 
(m 0~+1 - -  m G) 

Since the last member  above exceeds an we have fl0,n > c~n and 

(5.50 b') Sn (to, n) >= S~ (a,) ~ s m G, S~ (rio, ,~) - -  8%,~ _>--_ I_ m G - -  ~ m 0,~+1 - -  q,,,. 
2 2 2 

1 q of the theorem is not  to be confused wi th  q of (5.3 2 a). 
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In  view of tbe lat ter  inequali ty and  of the one preceding (5.49b) one has 

I 
A,,q~ > rio,. --19.. 

We take 

(5 .5I )  7 - = p , ,  + ~ (o < e < q ) .  
Anq,;e 

Clearly 7n>flo,,~. In (5.50) we put ~ = 7 - ,  obtaining 

(5.52) 8,(7n)->_- s  ~ + q -  , .  
2 

Whence, ( f  Sn(an) < L m  On+l, 
2 

(5 .53)  u,(z) < pn + - -  

in a set Hn (=  dn(7.)) such that 

( 5 . 5 3 a )  Ho < H .  < 0,~+1, mHn ~ L m  G + q --  r. 
2 

Consider now the case when m H* I = - -  m G, while S~(a,) > I--m On+l. W i t h  
2 2 

(5.23) in view (where F is replaced by 0,+x), we write 

(5.54)  s .  (~.) = s ~ .  ' ' " 
" q~Anan --po, n' 

here 

(5- 5 4 a) po, n = g.  --  - -  

Accordingly,  by (5.23 a). 

I I 

q~ A .  i 
qn + - -m On+i - -  Sn (an) 

2 

q~ A,~ fl - -  po, . 

I 
- -  ~ 

- -  < a n  qg  An 

for  all ~ > e n .  

obtaining 

where 

Now, in view of (5.5ob) 7n > c~n. Hence one may take f l=Tn ,  

I 
~'~ (7.) > s o . .  

$,, 
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2 
a,, = q~ A ~ (Tn --- po, ,) = 

I + -  

& (~o,.)-- .~ o,,+~-q. 

I I m 0,~+~ - -  m G I 
+ 4--  > - ,  

zI mOn+l--Sn(an) 2 ( I  G - - O n + l  + ) t q, + : q,~ m I_ m qn 
2 

provided Sn (a,) < &, 2. 

(5.55) 

Hence 

-mOn+1 + qn~ 
2 

if Sn(an)< 8~,2; clearly (5.55) holds in the contrary case as well. Le t  q > e o > ~ ,  

where e o may be as near  to e as desired; (5.55) implies 

(5.55 a) & (z~) > ~- m v + q - ,o ( ,  = nj >= ,,o), 
2 

where no is suitably great.  In view of (5.5z) it is observed that (5.55 a ) i s  satisfied 

for all nj>=no when m H *  = I m G ,  whether 
2 

I 
Sn(Cln) > -2mOn+l  

or not. In  place of (5.53), (5.53 a) we may assert  tha t  the relation m H *  = ~mG 
2 

implies that 

(5.56) u~(~) < p~ + I - - - L - -  
~o Anq,", 

in a set H .  such that 

(5" 5 6 a) H 0 < -]T~n < 0 n + l ,  mHn > I = - m G + q - - ~ o  
2 

for all n ~ nj ~ ~o, where e o ( >  o) is arbitrarily small. 

Cont inuing  the discussion begun with (5.46) we are brought  to the considera- 

t ion of the case when 

I H*  >'~- (5.57) - r a g  + q > m raG. 
2 2 

Corresponding to (5.29 a) one now has 

& (~) >= m H *  > I m G. 
2 

and 
I I 

(5.58) &(~n) > &,,~ q;", An ~,,--p~ 



Problems of Representation and Uniqueness for Functions of a Complex Variable. 165 

where 
I 

(5.58 a) pO.n = a , , -  q~ A---~ " 

(n = nj _-> no). 

I I 

I q~ A~ 
q~ + - m 0 . + l - -  m H *  

2 

Whence, in consequence of (5.23 a) 

I I 
S~ (fl) _-- S~, ~ q~ A,, ~ --p~ (fl > a.). 

In  particular, with 7~ from (5.5I), one obtains 

I 

where d(n) is (T, with S,(a,~) replaced by m H * ;  thus, in view of the inequalities 

preceding (5.55), we have 

( .)  > -~ (n = n~ _>- no). 
8 

In establishing this use has been made of the first inequality (5.57). Whence 

(5- 55) and, .finally, (5.55 a) will hold for  all n = nj >--_ %. 

eluded that the relation 

(5.59) 

implies that 

(5.59 a) 

in a set H~ such that 

(5.59 b) 

I - m G + q > m H * >  i - m e 
2 2 

~o A .  q~ - -  ~ (n) 

Ho < / / ~  < 0,~+1, 

Accordingly, it is con- 

(cf. (5.50 a), (5.50 b)) 

m H ~  >= I - r a G + q - - c o .  
2 

(5.60) 

has been secured. 

(5 .60  a) 

where 

(5.60 a') 

Suppose that  the relation 

lim ~(nj) = --  

Then by (5.59 a) it will follow that 

f ( , )  = o (in Hieo)), 

Ho < H(~o) = I I%< e .  
J 

By a reasoning employed before we infer that  in consequence of (5.5o) one has 
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for a suitable subsequence of {nj}. By (5.59 b) the lat ter  inclusion relations lead 
to the conclusion that  

(5-60 a") mH(,o)  >= [ m  G + q --  *o. 2 

Suppose that  for values n belonging to an infinite subsequence of {~.i} 

(5.6I) S,,(#, ,)>_-- S..,,n. 

We then shall have 

(5.6I a) Sn(flo, n) > I-raG + q - -  ~o (n ~ no) ; 
2 

that  is, 
u.(~) < #0,n (in H,,), 

where /am satisfies (5.59 b). Repeat ing the reasoning from (5-59 a) to (5-60 a"), 

with ~(n) replaced by (5.59 a) we deduce that ( 5 . 6 o a ) ~ ( 5 . 6 o a " ) w i l l  hold i f  

(5.61 b) liu_~l rio,,, = -- ~ .  

I f  the s ta tement  made with respect to  (5.6I) does not hold we have 

(5.62) &(#0,.) < s~,. 

for an infinite sequence of values n ~ nj. By (5.59 a), (5.50 a), (5.50 b) one then 
will obtain 

~(n) = ~o, .  + q~ An S~(#o,n) - -  $2, n + *oq,1 An 

Now 

I I 

< a. + ~ ~n + e----T----, ~. = q,, An oqn A .  
qn 

~ (m On+a "- m G) 

o < ~'~, lira ~n = o. 
Whence 

~( . )<  ~,, + I +~~ (- => ~o), 
~o qn A,, 

whe re  by a suitable choice of n o one may make ~' (>  o) arbitrarily small, Since 

q,, .+ q > o, by virtue of (5.44) it is found that  

- - I  + )~* 
6(-) < ~ .+  ~~ Zo~. <-_ ~,. + - - k n  (" ~--'o) 

~oq~, *o 
( 5 . 6 z  a) 

where 

(5.62 a') ~0 �9 Z* > q~' 
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here Z* may be chosen arbitrarily near to ~oq -2 (if no is chosen suitably great). 

We further  infer that  (5.6o) will take place if 

O:n + -- kn ~ o o ,  
~o 

that  iS, provided 

(5.63)  ~. = ~ ( ~ ) ~ -  (.~ _-> %), 

where 9 ( n ) ( > o )  is any function tending to zero with n -t and where 

(5.63 a) 

By (5.50 b) and (5.44) 

Hence 

~ "< ~176 == exp" { - )'*'~ < I ' e o  ! 

~o,. <= a . +  o(n) 4 L ~ ,  

~o,. ----< an+ **~ok~ 

0 < a(n)  -+ 0 (as nj -+ ~ ) .  

(suitable n (j)). 

where 

here, with no suitable chosen r* may be taken arbitrarily small. Clearly 

~o,,, =< a~ + - - k . .  
~o 

Thus (5.63) (for all n ~  no), (5.63 a) will imply (5.6I b ) i n  the case when the 

statement with respect to (5.6I) holds. Accordingly, i f  f (z)----o in Ho (Ho < G), 

where Ho satisfies (5.33), then f ( z )  = o in H(ro), where H(ro) satisfies (5.6"o a'), 

(5.6o a"), provided (5.63) holds for  all n ~ n o. 

I f  

(5.64) ~. = 9(n)z(n) k" (o < .(n)), 

where ~v(n) is as in (5.63) and ~(n) is any function tending to zero with n -t, then 

we shall have the following consequences. 

$0 > 8j, 
We shall have 

~j 
where 

Let  ~j (>  o) be a sequence such that  

lira en = o. 

(all n > n~.?j), 

~j (.) =< ~ (.) ( .  >= n (j,~) 

Hence in consequence of the above italics 

f ( z )  = 0 

~o < H(~) < G, m H(,j) > i = - m G + q - - ~ j .  
2 

(in H(~)), 

( e * > o ;  n ~ % ) ;  
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Clearly f ( z )  will vanish in the set 
H *  = z H ( r  

We have 

m H *  > mg(~j)  > i = = - m G + q - - ~ j  
2 

whence 

(5.64 a) m H *  ~ I - m G + q .  
2 

We are now ready to formulate the following. 

(j = i ,  2 , . . . ) ;  

Theorem 5.2. Let {fn(z)} be a sequence of analytic functions, whose limit in 

G is f (z) ,  as described from (5.24) to (5.25 a). With g~ denoting the length of the 

frontier F,, of 0~+1, i t  is assumed that 

(5-65) g~, =< ko < 8 ~ m  G 

(necessarily g~ >= 4 ~  m 0~+~ > 4~, m G). For a suitable sequeme { n ~ n~} we have 

lira 9~ = 9 ~ ko. Under (5.65) 

q" = - - ~ - -  [ i6  ~*" (m G)' = (g~ - 4 ~  m e ) q  > o. 
64 z~ 

We consider consequences of  the vanishing o f f ( z )  in Ho, where Ho < G and 

I I G .  - - m G - - q <  mlto < - m  
2 2 

I f  

(5.65 a) en = 99(n) $ kn (o < $ < I; of. (5, 27 a)), 

where ~(n) (>o)-~ o with n -'1 and ~=exp .  (--~0) (~o introduced subsequent to (5.44 b), 
(5.44b')), then f ( z )  is zero in a set H *  such that 

H o ~ H * <  G , m H * ~  I m G .  
2 

If ,  on the other hand, 

(5.65 b) en = qD(n) CO~'n (n ~ no; no suitably great), 

where ~(n) (>  o)-~o with n -1 and 

ea = r = exp. ~{-  ~'*]--~j (cf. (5.62 a'), (5.44)), 

with o < e < q, then f ( z ) =  o in a set H(e) such that 

t t o < / / ( d  < G, m/ / (~)  > : = - r aG + q - - ~ .  
2 
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If ,  finally, one has 

(s. 65 c) ~ = ~(~)~(n~ ~" (~(,) ,  ~(n>> o) 

where q~(n) and ~(n) tend to zero with n -~, then f (z )  will vanish in a set H *  such that 

H o ~ H * ~ G ,  m H * ~  ~ m G + q .  
2 

In the above k,, is fi'om (5-27 a). 

6. Uniqueness Properties (Continued). Consider 

(6. i) f ( z )  = f { d ~ ( ~ )  
J J C  - z ' 

K 

where p(e) is an additive function of Lebesgue measurable sets, not  necessarily 

absolutely continuous and possibly complex valued; thus 

(e) - ( , i  - , i )  + i (,i' - , i ' ) ;  
r r  p t  �9 p r  

here ~'~, ~ ,  ~1, g2 are non negative additive functions of  sets. Suppose ~1 , . . .  ~2 are 

zero in a bounded closed set G ~ K, m G > o; then 

= f fd/~(er (6. I a) f ( z )  j j ~ _ - - ~ .  
K - - G  

Let r 0 > o ;  designate by 0 ( ~ ) t h e  set of po in t s ( in  K) at distance less 

than r o from G. As is possible, we form an open set 0 .  so tha t  
n 

o( )ro 
and so that  the frontier  F(O.) of 0 .  is regular and is such tha t  

We shall have 

Moreover, lira 0,---- G. 

We now note tha t  the funct ion 

ff dtt (ec) (6.2) fn (z) =- ~ --  z 

is analytic in 0~. H. 

The sets G, On satisfy the conditions (5.24), (5.24 a). 

(H.  = K - -  0,,) 
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On writing 

(6. 3) gn = length of  F(0,,+~), 

we assume that 

(6.3 a) g~ ~ ko < 8 z i n G .  

Whether  such an inequality can be secured, for a suitable choice of the On, or 

not rests in intrinsic properties of G *. 

With  u view to applying Theorem 5-2 we seek to secure inequalities cor- 

responding ~o (5.25 a). 

For ~ in Hi and z in G one has 

I~ - ~1 > - "~ ," 
' t + I  

n o w  

since 
o,, = ( ~ . + ~ -  1t,,) + (Hn+= - I-1.+1) -~ ...; 

/( ff j7 f (z)  - f .  (z) . . . . . . . . .  ~ ~ -  z 
K_'II  n On t~n  i l i+1_Hi  

one has 

t~n H~+I_tI i 

and, finally, in view of the inequality for ] ~ -  e] 

If(z)  - f .  (z) l < I . . . .  = 70 F~ ( i  + 2 ) { ~ , ( H , . + , -  it,.) + . .  + t,~ ( H , . , -  H,)I  

in G. Hence 

I 
(6.4) I f (z ) - - . f . (* ) l  <=r(,)= ~.= ~ ,  (~ + 2)t,* ~,+~- ~,) 

" ~ n  

pt 
in G, where tt* = tt~ + tt~ + tt~' + tt~. 

The rarefieation of  mass tt (more precisely, of  tt*) in the vicinity of G w i l l  be 

supposed to be such that the series in the second member above converges. We then 

shall have fn -~ f uniformly in G. 

1 I t  can be shown  tha t  such sets  G, wi th  m G > o and hav ing  no inter ior  points ,  exist.  
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In  agreement with the text subsequent to (5.26a) kn is a number for which 

the inequality 
c9 u. 

(6.5) 3-gT.,, as < L, 
Bu(t) 

holds when t is such that S~,. < mz/.(t) < 82,.; here un(,z) ~ log {f.(z)] and Bn(t) 
is the part of the frontier of J . ( t )  having no points in common with F(O.+x); 

in this connection J,~(t) is the part  of 0~+~, where u . ( z ) <  t. 

For ~ in H .  and z in On+l the inequality 

I ~ - * - I  >= z~ > o 

will hold, where ~ is distance between the frontiers of 0 .+i  and 0~. The dis- 

tance between the frontiers of 0 ~ , 0 ~ is 

ro 
n ( ,  + I) 

.eo  ,o O 

(doing this for n = I, 2 . . . .  ) we arrange to have 

= .  (~ + ~) (o < ,-, < to), 

where rl is as near to ro as desired�9 Accordingly 

rl r_' 
(6.6) ]~- -z l>=n(n+i)~n~ (~inH. ,z inO.+l;  o < r' < r~). 

With  u denoting the angle made by the normal direction (bound outward 

with respect to J.(t)), one has 

0 Un 0 Un 
On OX 

so that  

- - c o s a +  ~ s i n a = ~  ~ l f n l c o s  a + ~ l f ,  I s i n a  

I } o_-< + a - v l / . I  �9 

On writing #' gel /22, /2" . . . .  = ' - -  ' = t h - - / 2 2  and 

f , , = ~ + i ~ ,  ~ =  ~' + i~" 

we obtain 
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(fC - - x ) d . '  + C ' - - u ) d . "  
.,, = ~ _ : ; ~  , 

I ~  ~ /  

Whence 

f f -  (~." - u) d ~' + (~' -- x) d ~t" ~ " =  I ~ - z l "  

where 

(6.7) 

= I-~.l t '~" -Y;  + ~" ' Y-uu IAI  = [7 / i~""-~-u  + ~" ' 

It n tt~ 

O ~n = __ C C  2 (~ ' - x) (~'' - y) d , ,  + C C '~' - -  X)' - -  (~" - -  
o ~  . j j  I ; - ~ l '  . , J  I r  ~ u ) " d / ' ;  

ztn Hn 

~here are similar formulas for the derivatives with respec~ to y. Accordingly, 

in view of (6. 6) and (6. 2) 

( i . )  I=.[ ,  I~. l  < Ir < " '  *(H.) < go. ,  lo = - (K) 
~ r '  /~ ~ r ' ~  

and, in consequence of (6.7) and since ] ~ ' - -  zl,  ] ( " - -  Y l ~ I ~ - - z [  

oo. io,. ioo  I 
- ~  o ~  ~ ' o u l - -  

for  z in 0,,+1; here 10, 11 are independent  of n. Whence 

and 

(6.8) Ou,, < i = i f ~  21011 n~ = e--~t 2 Zo l, n6 
On 

Hence, in view of (6. 5), one may  take 

(6.9) k, > ~ lo l~ ,,e e-,,t b, (t) 

(t such ~hag $1, ,  < 'md , , ( t ) ) ,  where bn(t) is length o f  B~(t) .  In  any 

arrange to have 
ki ~ k,, _--< . . . .  

Wi~h the aid of (6.4) 

now deduced. 

(11 > o) 

(on B.(t)).  

c a s e  w e  

and of Theorem 5.2 the following result may be 
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T h e o r e m  6 . 1 .  Let 

f f d# (et.) Y ( ~ )  = C - 
K 

be a function as described in connection with (6. I), (6. I a). We note the notation 
leading up to the hypothesis (6. 3 a,) and consider consequences of the relation 

f(z) o (in'Ho; I-m G -- q < m Ho < x ) -~- - - n ~  e �9 
2 2 

I f  

(6. IO) , ~ s~ ,~ ( r e > o ;  o < ~ < I ) ,  

where sx + s2 + . . .  converges, and when the constant �9 satisfies the conditions of 
Theorem 5.2 (as relating to the present case), then 

f(z) o ( inH*;  H o < H * < G  m H * > I  ) ---- �9 = - m G  �9 
' 2 

I f  (6. IO) holds with ~ replaced by oJ, (r formed in agreement with Theorem 
5.2) then 

(in < G m ) f(z) = o  = - m G + q - - ~  �9 
' 2 

On the other hand, i f  

(6. IO a) #* (/~t+1 - -  H i )  < $j  ~ ( i ) k i  (0 < T(i) ( I )  

where $( i )~  o monotonically with i -x, then 

f ( z ) = o  ( inH*; H o < H * < G ' ,  mH*>= I-me G-q-q). 

We turn now back to Theorem 5. e. I t  is recalled thai; f , (z)  is analytic in 

On> O,+x. Let W~ > On, be ~he set of all points in the complex plane a~; 

which in (z) is analytic (uniform). 
We designate by d,] (t) ~fie part of W, in which u, ,(z)< t. Clearly 

(6. ~ )  ~,* (t) 0 .+,  = A.  (t). 

Suppose the frontier F~ of d*(t) has no points in common with the frontier of W, 
for values t for which 

$1, ~ < m ~r < $2, ,. 
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The part 1;* in (),Z+I is identical with Bn (t). 

with respect to d*(t), one has 

0 u , , >  o 
0 n 

Since 

W. J. Trjitzinsky. 

With  normal derivation outwards 

(on  /',,*). 

j ' ~ d s = 2 g Z n ,  

r*(t) 

where z~ is the number o f  zeros o f f , ,  (z) 'in d*, (t) (for values t as specified above) 

we shall have 

fOU,,ds (0..,, "~ . ]  O n  d 8 - -  2 :rg gn,  

.B,~ (t) r* (t) 

Hence one may replace k,, by 2 ~r z,~, whenever the italicized statement subse- 

quent to (6. i I) holds. 

When f~(z) is rational of degree < n 1 with poles not  in G, sets 0, ,  as 

described in section 5, can be always constructed. The set Wn will consist of 

the whole plane excepting the poles o f f , ( z ) ;  the totality of the latter points 

will constitute the frontier of V~n. Since u, , ( z )= log ]fi~(z) l is positively infinite 

in She vicinity of the poles, e v e r y  set d*(t) and its closeure d~*(t)(t< +r 

contains no points of the frontier of W,. Hence, in the case under considera- 

tion, the italicized statement subsequen~ to (6. I I) will certainly hold. Thus, 

Theorem 5.2 may be restated, when the • (z) are rational fi~nctions of  degree 

<-- n, with 

We have, in accordance 

(6. I2) k,~ -- 2 ~cn. 

Consider the number r involved in Theorem 5.2. 

with the italics subsequent to (5.44b'), 

where (cf. (5.44)) 

Since m 0,~ ~ m G one may take 

~o ~ c,~. 

I 
z, = G) Zo 

t I. e., Jn is ratio of polynomials of degree .-<_ n. 
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By (5.65) 
g~, ga ~ ko < 8~rmG; 

hence, in view of (5.27'), we have 

c,, ~ 4 V22 ~r'~ (m G)~ (n ~ no; no suitably great) 

so tha t  it  would suffice to take 

~1 = I 6 z  3(raG) 4. 

Whence the condition of the Theorem will be ,'atisfied i f  

(6. 13) % > *', * ' =  q~ I6 z~3(m G) '. 

In  view of the above we may take 

)~o -~ 3 2 z3 (m G) ~. 

On taking note of (5.62 a') it  is possible to choose 2* as any number  such tha t  

(6. ~ 3 a) Z.* > Z', Z' ~ G) 3 = = 32  ~,~ (m . q- 

We shall introduce the Definition. 

Definition 6.1. A #,nction f(z)  will be said to belong to the class C(G; 7) 

(o < 7  < I), provided f(z)  is l imi t  of a sequence of fiowtiol~s .f,(z), ratio~ml of 
degree ~ n, 

(6.14) I f ( . e ) - f i ( z ) l  < 9 (n)r ~"" (in G), 

the poles of fn (z) lying exlerior the closed bounded set G (m G > o) and q~ (n) (> o) 
being any function t tending to zero with n - k  

A class C(G; 7) will be said to be regular  if open sets O~ with regular  

frontiers  can be formed, so tha t  f,,(z) has no poles in 0~, and so tha t  0 ,  ~ 0,+1, 

0,, > G, lim 0 ,  --: G, while 

g,~,, ~ k o < 8 ~rmG, 

where g ,  is length of the f ront ier  of 0n+l~; the above being true for all se- 

quences {f,~(z)} associated with the class. 

Suppose f =  l i m f n ,  h = liIn h~ belong to a regular  class C(G; 7). Then for 

the funct ion 

I The function ~p (n) is allowed to be different for different members of the class. 
The property of regularity of C(G; 7) is essentially a property of G. 
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(6. 14') 

we shall  have 

W. J. Trjitzinsky. 

~- f - -  h = lim ~2 n, ~P2,, =%,- - -  h, 

(in G), 

where ~o,(n), ~0,(n) are certain positive funct ions t end ing  to zero with n -~. The 

~ being rat ional  of degree _< 2n, in view of 

(6. I5) I ~/1 - -  lP 2n ] <: 99 (n)(r~) 2n2n (liln 99 (,) = O; in a),  

it is in fe r red  tha t  ~p belongs to a regular  class C(G; 7~). 

I f  f =  h in a set Ho as described in Theorem 5.2, t ha t  is, if 

~0 = o (in Ho), 

then  (6. 15) will imply ~0 = o in H* (H* as in t roduced preceding (5.65 b)), provided 

7~ = e-~~ % > ~' (of. (6. x3)); 

tha t  is, provided 7 is less than exp. ( - - 2  z'). We  shall have ~p = o in a set H (~) 

(as in the Theorem), in the  ease when 

{ _  _2,o*}, ~ 2 ' > ~ '  (of. (6. I3 a)); 7 = exp. 

the latter condition holds when 
!_2z'/ 

7 < e x p .  ~ ~ j-  

I t  will be said that f(z)  = lira fn (z), where fn (z) is rational of degree ~ n, 

belongs to the class Co(G), i f  

(6. 16) I f  - f . I  <= *~ = ~ ( . )*  (n) 2~n (in a) ,  

where ~ (n) (> o), , (n) (> o) ~ o with ~,-1. 
In  this connection 9 (n), , (n)  may be different for different  members  of the 

class Co(G) x. 
Suppose f = l i m f , , ,  h ' - l i ra  h ~ <  Co(G); thus  

I f -  f. I < r ( . )  (.1 (n)?'~'!, I h - -  h.  I =< ~0~ ( . ) (n  (-))~'~" (in G), 

where ~0~(n), ~02(n ), zj(n), T~(n)-~ o with n - h  For  the funct ions % ~02, of:(6. ~4') 
we shall now have 

One may, of course, write n in place of 2z~n in (6. I6); the notation in use is  in agreement 
with (5.65 c). 
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I ~ - ~.~. I =< ~ (n) {~, (n))~" + ~ (n) (~ (n)) ~''. 

Let  ~0 (n), ~ (n) be such tha t  

~,( . ) ,  ~ ( n )  < ~(n); ~,(.), n (n) <-_ ~ (.), 

while r ~(n)-~ o with n -1. One then may asser~ tha t  

(6. 17) I ~P - -  ~P" -I -----< 2 99 (n)(~ (n)) 2~u __: 2 ~0 (n)(~ (n)) 2" ~ 

(in G). Thus  vanishing,  of .~ in Ho (Ho as in Theorem 5.2) will imply (in con- 

sequence of (6.17)) t ha t  %0 will vanish in H*,  tha t  is 

f =  h (in H*), 

where H*  is the set referred to at  the end of Theorem 5.2. 

W e  are now ready to formula te  the following. 

Theorem 6.2. 

(6. i8) 

where 

{6. ~ 8 a) 

I f  f ,  h <  regular C(G; 7) (Definition 6. x), then the relation 

f = h (in Ho; Ho < G), 

I I 
- m G - - q  < mHo <---mG , 

2 2 

will have the following consequences. 

i f  
0 ~ y ~ e -2~ ' ,  

the~ f - ~  h in a set H* such that 

H o < H * < G ,  

If  

o < 7 < exp. - -  . . . .  

then f - ~  h, in a set H(e) such that 

Ho < H(e) < G, 

Tt ~ -  I I6 zs (m G)', 

m H* I G. -_>--m 
2 

o < e < q; )/ i ] = ~ 3 ~ . ~  (m r , 

mH*>= [ m G  + q - - e .  
2 

Finally, i f  f ,  h ~ regular Co(G) (eft italics in connection with (6. 16)) then 

{6. I8), (6. IS a) will imply that f =  h in a set H* such that 
12-632046 Acts mathematics. 78 
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H o < H * <  G, m H * >  I = - m G + q .  
2 

The above Theorem g i v e s  conditions under which certain classes of func- 

tions, consisting of limits of rational functions, are quasi-analytic in the sense 

of unique determination of the members of the class by their values on sets of 

positive measure Ho. We note that  m Ho is required to be suitably great before 

the Theorem can be applied; moreover, unique determination is secured not  

necessarily almost everywhere in G. 

7. Unique Determination by Yalaes on an Arc and on Denumerable  Sets.  

Uniqueness properties, related to arcs /" for functions of the general form 

(6. I) have been studied with considerable detail in (T1), (T2). The results therein 

obtained are of a rather complicated character. Accordingly, it appears to be 

of interest to obtain simpler results for the important  specialized ease of func- 

tions, which are limits of rational functions. For  this purpose one may apply 

with good effect a suitable adaptation of the very elegant method of J. WOLFF 1, 

utilized by that  write in the study of functions of the form 

y, 
k ~ - -  C~k 

Direct application of this method to functions (6. I) does not appear to be con- 

venient. 

We now consider functions f (z) ,  such that 

I f ( z ) - - f , ( z ) [  N ~, (in G; lira r~ =: o), (7. I) 

where 

(7. i a) 
k ~ l  Z - - t 2 n ,  k 

Here the a,~, k (k-= I, . . .  n), all finite and distinct, are outside the closed bounded 

set G; moreover, 

(7. I a') I an,,.]--< B; 

the latter is not a very essential restriction. 

J. WOLFF, G~n~ralisation d'un tMor~me de M. Carleman sur ies sdries de .tractions ra- 
tionnelles, Comptes Rendus, t. 202 (I936), pp. 551--553, in the sequel referred to as (W). 
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I t  is recalled that ,  in accordance with (T2; w 5), cer tain wide classes of func- 

t ions are representable  as described above. 

Le t  T be a simple cont inuous  rectifiable arc in G. As in (W), we int roduce 

a conformal  t ransformat ion  

(7-z) ~ = ~(z) - -  ~1 (e - -  Zo) + ~s (z - -  Zo) ~ + . . -  (~t 4 = o) 

(the series here converges in a vicinity of go), which maps the region consist ing 

of  the  e-plane, with r deleted, on the circular domain 

s (ICI < i); 

Zo is to denote  a poin t  of G no t  on I ' .  We have 

(7. ~a) z = z ( ~ ) = Z o + Z , ~ + z s ~ +  ... (zl := ~1) 

convergent for [ ~ 1 <  I. On wri t ing 

(7.3) f "  (z) = ~ ;  (C), 

i t  is observed tha t  B~(~) is analyt ic  in S, except  for  simple poles a t  

(7.3') ~,,,~ - -  C (,~., ~), I ~,~,~ I < ,  (k = ~ , . . .  n). 

As in (W), applicat ion of Jensen ' s  formula will yield 

2rr u 

( 7 . 4 )  log I~'~ (o) 1 = log If" (Zo) l = 2 ~  < ~ ~] log I -~  (e'O) I a a + Y,~ log Ifl-.~l" 
o 

We wish to examine consequences of the  relat ion 

(7.5) f(z)  = o 

In  view of (7. i) the above will imply 

If- (z)I = I F .  (da)[ < ~,, 
Hence  (7.4) yields 

( 7 . 6 )  log If,, (zo) l < log , .  + k., 

where  k,, is any number  such tha t  

(7.6a) . log Ifl.,~l = k.. 
1 

W e  shall obtain f ( z o ) =  o whenever  

lim (log an + kn)---- - -  oo; 

(on  / J .  

(~ On F ) .  
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that is, when 

(7.7) l i m e  kn ~n -~- o .  

In  consequence of (7.2) and (7.3') 

and 

(7-8) Z log ~ ~ .  ~ (~o) § Z log I~,,~ - ~1' 
k k 

(A~ (Zo) > o) 

where A (go) is independent of n. 
Let ~p(n)(>o) be a function such that lira ~(n)-~ + o~ (as n---)o~). 

finite sequence n - ~ n j  (n 1 < n~ < . - . )  can be found such that  
An in- 

~ < *o (,o > o), ( 7 . 9 )  ,~  ,(~;)  = 

where % may be assigned beforehand as small as desir,ed. Designate by S(c, r) 
a circular domain [z -- c] < r. Suppose G is such that a portion 

0 4) 

(7.9') 

hence 

of G, having a 2~ositive planar measure, exists. We designate by 

Z, Z" 
k=l k~l  

summations extended over those a~, ~ which lie in S (c, ~) and outside of S 

respectively. When a p o i n t  an.kis in S ( e , : )  o n e h a s  

ff I <ff IrdrdO~_21,f; o < l o g  ] z - -  a,,, k [ d x d y log ~ 
,sCc, �89 o o 

f fn  ~_~' log, I ~ d x  dy < n M .  
s(c,�89 ~=I I z -  a , , k l  

C, ~) ,  
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Necessari ly 

?~ 

' I 

log I~---~,~.1 > ,qM~(~j). 

I 

= .r 

In  fact, if the cont rary  were the case one would have 

f f  ff , i . . .  d x d y  > lOglz__an, , > ~jM~p(nj) mEj > njM; 
s(~, �89 rj k=1 

this is in d isagreement  with a previous inequality�9 Now 

where 

Form the set 

log I~-~, , ,~1 ~ ~j ~ o ( . j )  in/-/j 
k~l 

~ I 
m ~ >_- 

4 ,pC@ 

/~" = / / H ~  = S (c, ~) - -  ZE.~. 

Clearly 

( I )  ~ ~r , ~ I  ~ 
(7. IO) E* < S  c, 2 , mE*>----~mFJ>---4 = 4 - - ~ ( , j ) = > - - - e o 4  

(cf. (7.9)) and 
-j 

I 
(z. ,o a) y,' log I ~ - , ~ . ,  kl --< "j ~ g '  ('j) (in E*). 

k=l 

(7" I f )  

On wri t ing 

In  agreement  with the s ta tement  re la t ing to (7.9) we choose {~j} so tha t  

(o <)~o < m6; S (r 4)" 

H* = E* S c, , 

(1) and let t ing C denote  complements  of sets with respect  to S c, we obtain 
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By (7. xo), (7. I I) 
7r  

m CE* ~ - - -  
4 

m E* ~ eo ~ m G S (o i); 
moreover, 

(7" I I ' )  m H *  ~ z m CE* - -  m C S  c, ~ - - - -  2 o . . . .  eo; 
4 4 

thus 

in fact, 

~nH* > ~ m G S  c, , 

by suitable choice of (,j) we may get m H* as near as desired to ---~. 
I6 

I H *  Let C now denote complements of sets with respect to S c, . Since 

< S ( c ,  4) one has 

and 

i)"= 

= i - ~ - - m C  G S  c, - - I N C H *  

+ m H * - - - - .  
i6  

Bence, in view of (7. i I'), 

(7. I2) m ( G H * ) ~ m G S ( c , ~ ) - -  eo , G H* < S ( c, ~ ) , G H*  < E* ; 

in G H *  (7. IOa) will hold for j = I ,  2 . . . . . .  

For z in GH* and an~ outside 8 ( c , I - ~  
\ 2 /  we have ] z - - a n . k [ > 4 ;  thus 

and 

I 

log [ z - -  an, k] < log 4 

~ "  log .... [ < ~ log 4, 
I 

k ~ l  g ~ 0~n'/c 

Hence in consequence of (7. ioa)  (valid in G H * )  i t  is deduced that 
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(7. ~3) ~ log i~_~ i < ~ log 4 + , , ~ ( ,~ )  
k = l  

for z in G H* (cf. (7. I z)). 

I n  consequence of  the  above and of (7.8) the number  k,,j 

(7.6 a) may be taken as 

(7-I4) k,j----njA(zo) + n~ log 4 + n;Map(nj), 

when z o is a point  in G H*.  Accordingly 

e kn ~n <-~ ~n e ~n~p(n) 

where /~ is any number  exceeding M and n (z0) is suitably great.  

will hold and, thus, one will have 

f ( ~ )  = o (7. ~ 5) 

if 

(7.15 a) 

( j - i ,  2, . .) 

in t roduced in 

( ,  = n; ~ n (Zo)), 

Hence  (7.7) 

(in G H*),  

Gc ~ G S  c, , 

(4) r a G S  c, ~_ 

Hence 

o c-- os(c, 4) 

S0. 

m ~ I ,  2, . . . ) .  

here 

G H*~ such tha t  

m ( G  H*~) ~ m G S(c ,  

whence one will have f ( z ) =  o in 

m 

8n ~--- ~ (n)e  :-t'n~'(n} (99 (n) > o; lira ~ ( n ) -  o). 

Here  /~ is independent  of z o. Inasmuch  as Ip(n)(> o), wi th  lira ~0(n)~  + oo, 

is arbi trary,  /~ may be absorbed in %0 (n). This may have effect on the choice of 

(nj) necessary for  the  validity of (7.12) - -  a c i rcumstance of  no impor tance  in the  

final s ta tement  made in connect ion with (7. I5), (7. I5 a). 

In  (7-I2) s0(>  o) is arbi t rar i ly small. W e  take a sequence 

SO, m ~  O,  l i r a  So, m ~ O .  

Correspondingly,  in consequence  of (7.15 a) it is inferred tha t  f ( z )  = o in a set  
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thai; is, (7.15 a) implies  that  f ( z )=o  almost everywhere in GS (e, 4)" The set G 

being bounded, there exists a finite number of points cj so that 

< Z s , G = Z G s �9 
j=1 j 

For a fixed j the set GS(cj ,  a) will have positive planar measure, when one 

may assert that  (7. I5a) holds almost everywhere in this set; the alternative is 

mGS(e j ,  ~) -~o. 

Theorem 7.1. Consider functions f(z) of the type described in connection with 
(7. I), (7. I a), G being closed bounded. I f  

where qD (~) > o, ~ (n) > o and 

~,, - q~ (n) e -'`f'(') ( n  ----~ I~ 2 ,  . . .) 

I 
q~ ( ' ) '  ~,(n) -~ o (as ~ -~ oo) ,  

then vanishing of f(z) on a simple continuous rectifiable arc F < G will imply 
vanishing o f f ( z )  everywhere i~t G. 

Vanishing of f(z) a lmos t  everywhere in G follows by the preceding de- 

velopments. NOW, f(z) is continuous. Hence the part of G in which f= o is 

closed. The set Go ~ G in which f ~ o has zero measure and must be open with 

respect to G; Go can have no points interior with respect to G since if it had 

one would have m Go > o. Whence Go is a null set. This completes the proof 

of the Theorem. 

I f  we denote by C(G) the class of functions f(z) which are of the type con- 
sidered in the above Theorem, it is noted that the class is additive. In fact, suppose 

I f - i l l  < ~(n)e -n~'('), I g - -  g,~l < ~f,(n)e-:~'~(") 

in G-, where fn, g,, are of the form (7-ia) (poles not in G), while 991, 9o2, ~01, ~0~ 
are positive and 

~ ,  (n), ~ ( n ) ,  ~' ,(n)'  ~ / n )  o (as n -~ . 

Consider the function 

q = e l f  + c~.q (el, c~ constants). 
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On writ ing 

it is observed tha~ 
q2 ,, = clf,, + e~ g. 

[q - -  q~-I ----- 1Cl ( f - - f n )  + e~ (g - -  g~)l < I c, 1991 (n) e-"W,(") + leo 199-~ (n) e -"v',(') 

(in G). W e  in t roduce posit ive funct ions  99o(n), aPo(n ) such tha t  

99, b,), ~,  (n) ~ 990 (2 ,,), V,o (2 . )  < ~,, (n), ~o, (n). 

lira 990 (2 n) == o, lim ~Po (2 n) = + oo. 

I t  is observed tha t  
Iq - -  q2~[ < 99(2n~e -2'S''!'(2n) (in G), 

where 
I 

99(2.) = (IcI I + Ic~1)99o(2 ~), ~ ( = ~ )  --  ~ ~o(2~); 

whence q ~ C(G). 

In  consequence of the  Theorem the class C(G) is 'quasi analytic' in the sense 

tha t  the  members  of the  class are determined uniquely in G by the funct ional  

values on any cont inuous  rectifiable arc I ' d  G. 

We continue with funct ions  f (z)  as described in connect ion with (7- I), (7. I a). 

Let zoo, zl, z ~ , . . ,  be a denumerably infinite set of points on the arc F, with z= 

as the sole limiting point; 

(7" I6) lim z, = z~.  

Condit ions will be ' found under  which vanishing of f ( z )  on {e~} will imply 

vanishing of f (z)  on a more  extensive set. Let ~,,~ be the smallest integer such that 

m 

and designate  by F~ the  port ion o f / ' c o n s i s t i n g  of  points ffsueh tha t  Iz~-gl< 

=_<_I. I f  z ( ~ z ~ )  is any point  on / ~ ,  a point  z,., can be found so tha t  v ' > v m ,  
m 

while 

(7" I6b)  

The end points  

infinite sequence of ad jacen t  subares ~m; we let 

(7. I6c)  s ---- u. b. 1,~ 

of F~ and the z, (v > rm) divide l'm into a denumerably  

(fixed m) 
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where l~ is the distance between the end points of an arc &~. 

(7. I6d) Iz - -z . ' [  < L~. 

Clearly lim ~ ~ o; in fac~, 

2 
(7. I6e) ~m ~ - - "  

m 

Since we have assumed tha t  f =  o on {z,} it will follow tha t  

(7. ~7) I / .  (z.)I--< ~. 

and, for z on /"m, 

[f . (z)  I = [f .(z. ,)  [ + [ f . ( z ) - - f  (z,,)~ I <_- ~., + g,,(Z~), 

where # ,  is a modulus o f  continuity of fn(~) on F (or in G). 

one may take 

I (7. ,7') . . ( ~ ) =  M . ~ ,  ~ . = ~  ~ Ia.,~l 
k~ l  

where ~. is distance (necessarily posi t ive)from the ,set of poi~ts 

g n ,  1 ~ ( ~ n ,  2 ~ * �9 * ~ n ,  n 

We have to G. 

(7. ~ 8) 

In  view of (7. I6b) 

(~ ~ I~ 2 ~ . . .  

In view of (7. I a) 

{f. (z) { ~ *n + M .  Xm ~ ~ + ~ 3 / .  (on Fro). 
m 

We take m sufficiently great  so tha t  F~ is a single simple arc. In  place 

of (7.2) introduce a t ransformation 

= ~.~ (~), ~ (Zo) = o, 

zo being a fixed point in G not  on F, mapping the region consist ing of the 

z-plane, w i t h / ' ~  deleted, conformally on the circular domain S ( [ ~ ] <  I). We 

repeat the developments given subsequent to (7.2 a), with ~ (z )=  ~(z) ,  fl~,k = 

= fl~,~,~ and 

f .  = f .  (~,.) = . , ~  (~), 
where 

z = z . ( : ) = Z o  + Z,,,.: + :,,~.: +.." (z~,.:~-~.~) 

is the inverse of the mapping function ~m (~), whose analytic element at z o may  

be writ ten as 

~ (~) = 5,  ~ (~ - ~0) + 5,  ~ (~ - ~o) + (5, ~ ~ o). 
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In  view of (7. I8) 
I F.,,~(e'~ =<,~ + M,, Z,~; 

we choose m ~-m,~ so that lira MnZ~ ~-o;  accordingly, by virtue of an analogue 
n 

to (7.4) 

(7. I9) log ]f,~ (Zo)] < log (*n + Mn Z~) + kn,,,,, 

where kn,,n is any number  such that  

I 

1 

Inasmuch as ~,~,~ = ~m(a,,~) it  is noted t~at  

(7. zo) ~ 1  < A,~(Zo) (A~ (Zo) > o); 

Repeating the steps leading this inequality corresponds to the one preceding (7.8). 

to (7-I4) we obtain, as a possible choice, 

~,,, ~ = n A~ (Zo) + n log 4 + n M ~  (n) 

for a suitable infinite sequence n ~-nj.  I n  view of (7. ~9) it  is accordingly in- 
ferred tha t  

(7. zl) f(Zo) = o (in C~nj-*~ 

if 

we 

o(.) = log (~,~ § M,~Z~,,,) + .A,~,,(~o) + . l o g 4  + . M ~ ( . )  ~ - -  

as n - +  oo. ~Tow 

(7. z i') 0 (n) =< 0* (~) = log (~n + M,, Z%,) + .  A%,(~o) + ~ ~ ~ (-) 

(,a > M; n ~ n o ) .  Hence (7.21) will hold if O * ( n ) ~ - - ~ ;  tha t  is, if 

where 9 (n)(> o)-~ o. I t  will be convenient to choose mn so tha t  

(7. zz) M,~Z,~,~ <= e~. 

Absorbing ~ in ~p(n) (inasmuch as ~p(n)~ + ~ ,  qJ(n)> o,  this is possible) ~ 

cQnclude that, under (7. zz), it ia sufficient to have 

(7. z3) e~ _- 9 (n) e--t~(-)+A~.(~o)l. 

t Note the remark subsequent to (7- x5 a). 
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On the baMs of (7.23) a reasoning of the type used subseque~t to (7. I5) will 

lead to the inference that 

(7.23') f ( z )  = o ( i ,  G) 

in consequence of the relations f(z ,)  = o (v -= I, 2, . . .). 

W e  shal l  o b t a i n  s o m e  e s sen t i a l  i n f o r m a t i o n  r e g a r d i n g  Am(zo) in  t h e  im- 

p o r t a n t  ease  w h e n  F is a r e c t i l i n e a r  in t e rva l .  I t  will suffice to take for 1" a sub- 

fi~terval of the axis of reals, say ( - - a ,  a) (a > o), w i th  zor = o.  W e  cons ide r  t h e  

t r a n s f o r m a t i o n  

. . . .  I ~- - [ z  : -  ( z  ~ - -  a~)�89 ; a a 

in  t h i s  c o n n e c t i o n  we i n t r o d u c e  a c u t  a l o n g  F a n d  t a k e  t h e  d e t e r m i n a t i o n  o f  

t he  s q u a r e  r o o t  wh ich  is pos i t i ve  f o r  r ea l  z > a .  T h e  f u n c t i o n  w(z) m a p s  the  

on [w l <  r .  T h e  p o i n t s  z = o o  a n d  w ~ o  wil l  corre-  z -p lane ,  w i t h  F de le ted ,  

spend .  T h e  f u n c t i o n  

w - - w e  
(7 .24  a) ~ - -  ~ (z) -~ 

~ ) 0 W  - -  I ' 

w h e r e  w = w (z), we = w (z0) (z o n o t  on  F), t h o u g h t  of  as a f u n c t i o n  of  w, t r ans -  

f o r m s  the  c i r cu l a r  d o m a i n  Iwl < ~  oneo the  c i r cu l a r  d o m a i n  I ffl < ~, whi le  

= 0 f o r  w - =  w0. I f  one  t h i n k s  of  ~ as a f u n c t i o n  of  z, i t  is n o t e d  t h a t  ( 7 . 2 4 a )  

t r a n s f o r m s  ghe z-p lane ,  w i t h  F de le ted ,  on  t h e  c i r cu la r  d o m a i n  I~1 < *, whi le  t h e  

p o i n t  z = z0 goes  i n t o  ~ = o (z =- oo - .  ~ _= w0). W e  h a v e  

a [2 0 ---(~g - -  a~) �89 [z - - ( z '  - -  aZ) �89 - -  a ~ 

(z) = [ z .  (z2 - -  a~) �89 - -  [Zo - -  (zo ~ - -  a~) �89 

T h e  d e n o m i n a t o r  in  the  second  m e m b e r  above  is equa l  to  

H e n c e  

- - (z  - z o / _  

Z ~ - -  g 2  o 

g - -  Z o - -  (z 2 - -  a~)�89 + ( g  - -  a~)�89 

~(~) 

W i t h  z, Zo n o t  on  /" suppose  t h a t  

a 
( 7 . 2 5 )  z0 [' 

[~.  - -  ( g  - -  a'~) �89 [ z  - -  ( z  "~ - -  a ~ }  �89 - -  a "~ 

[Zo - -  (z~ - -  .~)�89 + [ z  - -  (z :  - -  a~)�89 [ ( g  - -  a")�89 + (z" - -  a" ) �89  

a 
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where a(o < a < ~) is such tha t  

oo 

(7.25 a) r (a)=  ~lC)+,[(2j  + x)(r <= 
j~l 

Under  (7.25) 

and 

hence 

here  

I 

4 

z--(z~'--a2)�89163 C~.+I( l)J(a) 2"i 
j=0 

.zO_j+~ + z2j +1 
.D=-[Zo.--(zo--a~') �89 + [z- - (z '  a~)�89 -~ Z CJ~+, ( -  ')j z-~oJ+~z2-Tg Y a2J+2; 

j=o 

a S 0~ . a 2 J  . ,) . _  

D==Do(z + Zo)z~; Do = ~ C ) + I ( - - , ) J ~ ( z ~ ' - - z  "J l z  o -i-.. + z~); 
j=O 

I I I 
D o - -  -~.o + D~, I D~ l = 1 (--  t l~a2a ~ z,~-'  e + ' "  + 

j =  

accordingly,  by (7- 25 a) I Do I > -~ and  
4 

= Iz + zola ~" (7-26) 

On ~he o'~her hand,  

(7" 26 a) 

where  

(7.26 a ' )  

N*----(z~--a ' )  �89  (z ~ - a S )  �89  o +  z +  

Z 2 J - 1  .-t.. " 

+ C~(-- I)J~,~J = (~o + Z) Q, 
g 2 o j - 1  2 ; 2 J -  t 

1 

Finally,  in 

(7.26 b) 

where 

(7.26 b') 

< T(.); 

[ q l ~'~ I + Z - - I ) Ja  2j Z2ojI1 ,~ 
j=l 

i I l l  z~-'~ z ~ + ... + ZoZ~j-i <= 
oo 

, +  Z I  = 
j - - I  

consequence  of the  fo rmula  subsequen t  to (7-25 a) 

N = [20 - -  (2o 2 - -  aS) �89 [z - - ( z  ~ - -  aS) �89 - -  a" . . . .  a ~ + a 4 T 1 , 

j=o 
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From (7.26)--(7.26 b) it is deduced that  

I +(+)I 
where 

(7226 b") 

Replacing F by F~ ( - -  

I N'I [ 
�9 - -  }**o1_! = 

to = t + a ~ t[. 

I < Z < a n d  putting 
m 

4qotolZozl, 

I 

m 

in accordance with previous notation, we obtain 

I __ r 4 q ~ t o l & a , "  Izolqm 
(7.27) I-fl,,+,~ [ [era (a,,,~)] <- ~'lm <- 

(q == 4</o t0R; eft (7. I a')), provided conditions corresponding to (7.25) hold, that  

is, if 

i (k = I ,  . . .) .  
( 7 . 2 7 a )  ~ - - m . _ - _ _  I+0 I, m_--- i+. .+ I 

By virtue of (7.27) and (7.2o) we may  take 

(7 .28)  A ~  ( z o ) =  Izolqm 

whenever F is  a rectil inear segment (as assumed previously). 

With  respect to (7. z 7 a )  we note that, inasmuch as we take m, so that  

lira m . - ~  + ~ ,  the first condition is not essential since it will be satisfied for 

n ~ n o (n o -~ no(z o) suitably great); the second condition (7.27a) will hold if 

(7-27 a') m n =  o'&,+ 

(see text subsequent to (7. I7)), inasmuch z = o  is in G and I~ , ,+ l~  6+. I f  

lira r > o, f (z)  will be analytic at z = o and so, naturally, will have the desired 

uniqueness property; tha t  is, vanishing of f(z) on [z,} will imply vanishing of 

f ( z )  in the connected domain containing z == o. Accordingly there is a problem 

on hand only if lira ~n = o. In  view of (7.27 a') we shall choose m, so that  

+ + ~  ( 
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By (7. 2I~'), (7. I7'), (7.28) we have 

O*(n) = log (.,, + h.  6,72 ~t,nn) + nl*ol qm,, + ttntp(n), 

191 

hn= ~IA..~I" 
k = l  

Now z o being a point  of the  bounded  set G one has I zolq ~ qO. Thus  in view 

of (7.27 a") 
, I 

(7- 29) 0* (n) =< log (e~ + h, ~ 2  Z~n) + n q ~ + / z  n ~0 (n) (q, = qO a,). 

On the  basis of the  tex t  leading  to (7.23) we conclude t ha t  (7.23) holds if the  

second member ,  above, tends  to - -  o0 as n -* oo; t h a t  is, if  

~,, + h~ ~;~ Z~. _-< ~o (n) e -n'* ~ .~.~(.), q~o (n)-~ o. 

These  cons idera t ions  lead to the  condi t ions  

. 1 

(7.30) )~m,~ ----< qh ( n ) ~  , 

. 1 

(7 .3oa)  *~ __< r ~ -,~,/n), 

where q~(n), qD, (n) are positive and tend to zero with ~- (tt has been absorbed in 
n 

~p(n)). We  sum the  above deve lopments  as follows. 

T h e o r e m  7 .2 .  Let f(z)----limf~ (z) be a function as described in connection 

with (7.1), (7. I a). Suppose G contains an interval F on which there is a denumer- 

able infinity of points {z,}, such-that lira z, ~ z'. Designate by Fm the portion of  

F for which I z - - z '  I<--_ ! (integer m > o). Associated with the set {z,} there exists a 
m 

set of  numbers ~,,,, 
Z~ = u. b. l, (~ ~ v~), 

where the {L} (v _--> vm) are the lengths of the non overlapping intervals into which 

F~ is divided by the z, lying in Fro. Let 6n designate the distance fi'om the set 

of points an, ~ (k---- I, . . .  n) to G. ~Ve assume that the more interesting and im- 

portant ease when lira 6, =- o is on hand. With {m,,,} denoting a sequence of lntegers 

such that 0"--1 (~: ` ~_~ r/l. ~ o$~:l (a2 > I ) ,  i t  is observed that underconditions(7.3o), 
X 

(7 .3oa)  vanishing o f f ( z )  on {z,} will imply that 

f ( z )  = o (in e) ;  
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in this connection q*(7.29), a(7.25a)  1 are positive Constants defined as described 

previously, while ~p(n) (>  o) is any function tending to + co with n; 

k 

Note. I~ is observed tha t  (7.3o) expresses a 'metric' property of the se~ 

{z,} in the vicinity of its l imiting point  z'; (7.3oa) relates, of course, to the 

speed of convergence of {fn(~)} in G. 

In  the ease when the An, k, ~,,,k are independent  of n we have 

o~ A~ 
(7.31 ) A n , ~ = A k ,  an, k = a k ,  f ( z ) =  ~ , Z _ a t  ~ 

1 

Le~ {~k} (c?l ~ d~ > - - - )  be a sequence of positive numbers such  ~hat the distance 

from ak tO G is equal or gTeater than  ~k. We then may take 

(7. a)  3I 
l :>n 

the supposition being that  the series 

k 

(7.3oa) 5~ may be given the meaning assigned above; converges. In (7.30), 
moreover, since 

h.<  WlA ]=h, 
k 

h, in (7.3o) may be absorbed in 91(n). Finally, in view of the Theorem the uni- 

queness property, involved, will take place for  functions f ( z )  of the form (7.3I), 

provided (7.3o) hems (as stated above) and 

{ 1 }A~}~sk0kexp.  - -kq*  - -k tp(k) .  ( k =  I , 2  . . . .  ), 

where the s1~ (> 'o)  are such that *'1 + s~ + ..- converges. 

University of Illinois. 

1 We m a y  t ake  q~=4f lo ( I+a2t~)R1) ,  where  qo, tt are  f rom (7 .26a ' ) ,  (7.26b') and  D is  
the d i ame t e r  of  G.  


