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ON THE INTEGRATION OF SERIES 

BY 

E. W. t lOBSOlg 
of C A M B R I D G E  (England). 

Since ABEL'S researches in the theory of infinite series, some of the 
most  important investigations on the subject have been concerned with 
the uniformity and non-uniformity of the convergence of such series. I t  
was first pointed out by SEIDEL, and by STOKES independently, that a 
discontinuity in the sum of a convergent series, of which the terms are 
continuous functions of a real variable, is due to the non-uniform converg- 
ence of the series in the neighbourhood of points at which such discon- 
tinuity exists. I t  is further known that non-uniformity in the convergence 
of such a series does not necessarily involve discontinuity in the sum. 
The theory is of special importance in connection with the question re- 
garding the conditions under which the series may be integrated term by 
term so that the series arising from such integration may have for its 
sum the integral of the sum of the original series. 

If  
u,(x) + u (x) + . . .  + u (x) + . . .  

is a series which converges everywhere in an interval (a,  b) of the real 
variable x, and if u~(x), '~2(x),..., u~(x).., are each continuous through- 
out the interval, it is well known that a sufficient condition that the sum 
of the integrals of the terms of the series taken through (a, b), or through 
an interval which is part of (a,  b), may be represented by the integral 
of the sum-function s(x) taken through the same interval, is that the 
series be uniformly convergent through the interval of integration. I t  

Acta mathematica. 27. Imprim~ le $ janvier  1903. ~7 



210 E .W.  Hobson. 

has been, however, shewn by OSC, OOD, I that in the case in which the 
sum-function s(x) is continuous through the interval (r0, x~) of integration, 
a sufficient condition for term by term integration is that there should 
be in the interval (x0, x~) no point at which the measure of non-uniform 
convergence is indefinitely great. 

I t  has been shewn by B a n ~  2 that the sum-function s(x) is at most 
a point-wise discontinuous function. In  the present communication the 
properties of the remainder-function R , , ( x ) =  s ( x ) -  s,(x),  are considered 
on the lines of BAIRE'S memoir, and the results are applied to prove that  
for the most general function s(x) which is the stun of a series of the 
above type, the series may be integrated term by term and gives a series 
of which the sum is the integral of s(x), provided (i) that s(x)  is inte- 
grable through the interval of integration, and (z) that in that interval 
there is no point at which the measure of non-uniform convergence is 
indefinitely great. 

I 
If n - - - - - ,  we may consider s~(x) ,  R,,(x) as functions of x and y, 

Y 
defined for all values of x in the interval (a,, b), and for values of y 
which are the reciprocals of any positive integer m. Following BAIRE'S 
procedure, the functions may be defined for values of y intermediate 

_ I 
I and y,,,+~ --  , so that writing s (x ,y ) ,  R(x y) between the values y~ m'  m + I 

for s,,(z), 

s(x , y ) =  y -  y'' s(x , y=+,) -i- Y ' + ' - - Y  s(x , y,,) 
y~+~ - -  y,, Ym+~ - -  y,,, 

y ) -  .v--y,, R(x y,,,+,)+ Y"*'--YR(x ym). 
" ' Y , . + l  - -  Y , , ,  ' y m + l  - -  y , .  ' 

If we further define s@,  o) ,  R(x,  o) to be s(z), and zero respect- 
ively, the two functions s(~,  y), R ( x ,  y) are defined for every point in- 
side and on the boundary of the rectangle eont'fined by the four straight 
lines x-----a, x = b ,  y = o ,  y----- I. 

The function s (x ,  y) is everwvhere continuous with regard to y, 
and is continuous with respect to .r everywhere except upon the bound- 

1 American Journal of Mathematics, Vol. XIX. 1897. 
See Ann'~li di Math. (3~ III, 1899. 
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ary y ~ o. ]~AIRE has shcwn that this function is at most a point-wise 
discontinuous function with respect to (x, y), on any continuous curve within 
the rectangle, and in particular on the boundary y = o. We shall here 
consider the function R(x,  y), which does not come under ]3AIJlE's general 
case, as although it is everywhere continuous with regard to y, it is in 
general a point-wise discontinuous function of x, for any constant value 
of y between 0 and I, the value y = 0 excepted, for which the function 
vanishes. 

At any point P(:~, y), let a straight line of length 2p be drawn 
with P as middle point, and parallel to the y axis, and let co(p) be the 
fluctuation (Schwankung) of the function R(x, y ) in  the line 2p; the 
function w(p) is a continuous function of p, and corresponding to an 
arbitrariIy assigned positive number a, let a~(:~, y) be the upper limit of 
the values of p which are such that o~(p)~ a; if P is in the boundalw 
y = o, it will be sufficient to take the straight line of length p within 
the rectangle. The function a~(x, y) is thus defined for every point in 
the rectangle and is an essentially positive function. Moreover since 
R(x, y )= s(x) s(x, y), and since s(x) is independent of y, the func- 
tion a~(x, y) is the same as the corresponding function introduced by 
BAIaE for the function s(x, y). 

I t  has been shewn by BAIP, n that  ao(x, y) is a semi-continuous func- 
tion, that is, that corresponding to an arbitrarily assigned positive number e, 
a ncighbourhood o[ the point P can be found such that for all points P '  

in this neighbom'hood a~(P') < a~(P) + r 
If P be a point (x, o) in the boundary y ~ o, and a semi-circle of 

radius p, and centre P, be drawn within the rectangle, the lower limit 
of [R(x ,  y)[ in this semi-circle is zero, and the upper limit may be de- 
noted by fl(p). The limit of fl(p) when p is indefinitely diminished may 
be called the measure of the non-uniform convergence of the given series 
at the point P; if this limit is zero, the convergence of the series at P 
is uniform. If  we divided the semi-circle into quadrants by means of a 
radius, the limits when p = o, of the upper limits of I R(x, Y)I in the 
two quadrants, may be called the measures of non-uniform convergence 
at P, on the right and on the left, respectively; these two measures are 
equivalent to OSGOOD's indices of the point, P, of which he gives a differ- 
rent definition. The measure of non-uniform convergence of the given 
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series is in accordance with the above definition, the saltus (Sprung) of 
the :function IX(x, Y) I at the point .P(x, o) with respect to the conti- 
n n u m  

The minimum of a,(x, y) at the point 1)(x, o), of the boundary 
y = o, with respect to that boundary, is the limit when 3 diminishes to 
zero, of the lower limit of a~ in the neighbourhood ( x - - d ,  x + 3) of 
the point P. If  this minimum at the point P is positive, a neighbour- 
hood of t ) in the continuum (x, y) can be found, such that the fluctua- 
tion (Sehwankun8-) of R(x., y) in that neighbourhood is < 2r and hence 
the saltus of [[~(x, y)] at P is < 2a. To prove this we observe that a 
neighbom'hood pp' of P can be found such that ~ at every point in 1o19' 

p P p 

is greater than a fixed number 7] which is less than the minimum of fl~ 
at P. Let X ,  Y be any two points in the rectangle whose base is pp' 
and height 7, and let Xm, Ym' be perpendicular to the boundary. We 
have then 

I R ( x )  - R ( r ) I  I R ( x )  - -   (m)l + Ix (* ' )  - R(m') I 

20" 

thus the required neighbonrhood has been found. 
I t  follows that if the saltus of JR(r, y)] at P, is greater than 2a, 

the minimum of a~(P) at P, must be zero. 
Now it has been shewn by BAIRE that in every sub-interval of the 

boundary y = o, points exist at which the minimum of a~(P) with re- 
spect to the straight line is positive, and this is the case however small 
a may be. 

I t  thus appears that in the interval (a, b) the points at which the 
given series is uniformly convergent are everywhere dense, and thus that 
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the function l i3(z ,  Y) i is on the boundary !! = o, a point-wise disconti- 
nuous function with respect to the continuum (z ,  y). I t  follows that  the 
points of (a,  b) at which the measure of non-uniform convergence of the 
given series exceeds an arbitrarily fixed positive number form a closed 
and non-dense affgrega~c. 

Let it now bc assumed tha t  the point-wise discontinuous function ~s'(~c) 
x l 

is an integrable function. The condition that  the series X~fu,,(x)dx con- 
J:o 

x l  

verges to the value f s ( x ) d x ,  is that  a value Y0 of y, can be found 
~0 

corresponding to a given positive number s, such that (x,  y)dx < s,  

for any fixed value of y which is < Y0- 

I t  will be proved that  this condition is satisfied, provided there is 
no point in the interval (xo, x~) at which the saltus of I /~(x,  Y)I, the 
measure of non-uniform convergence, is indefinitely great. I f  the saltus 
of IR(x ,  Y) I is at every point finite, then IR(x ,  Y) I has a finite upper 
limit for every point within the fundamental rectangle; this follows from 
the fact proved above, that  the points on y = o, at which the saltus of 
[R( x , Y)[ exceeds a fixed number, form a dosed aggregate, and thus if 
at a converging series of points Xl, x 2 , . . .  , x,,, . . .  the values of this 
saltus formed a sequence of increasing numbers whieh had no finite upper 
limit, the saltus at the limiting point L x,, would be indefinitely great. 

Let  A be a fixed positive number, then the aggregate G of points 
at which the saltus of IR(z , Y)I exceeds A, is closed and non-dense. I t  
is well known that  the aggregate G consists of the extremities of an 
enumerable aggregate of sub-intervals O~, O~, 8 s , . . . ,  together with the 
limiting points of these extremities. Let I be the content of G, then if 
l - - - - x ~ x 0 ,  1 - - I i s  the limit of 8~ A:8~ + 8 a + . . .  

A number p can be found corresponding to any fixed arbitrarily small 
number z:, such that 8~ + 8~-r . . .  + 0 z > l ~ I ~ z ~ ,  and is < l ~ I .  
Inside each o[ the intervals 8, take an interval 8', this can be done so 

p. I ~- 

that %0 '  - - ~ / 9 -  s~, where z2 is an arbitrarily assigned positive number. 
1 l 

The sum ~ 0 '  lies between l - - 1 -  ~ ~ s~, and l - - I - - s ~ .  
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Let the interval l be derided into I* + s sub-intervals of which I* 
consist of the intervals 0', and the offer s are t~, t2, t a , . . .  , t,; thus 

$ lz 
l - - - ~ t - J r - ~ 0 ' ;  all the points of G are in the intervals t. 

I 1 

We first consider the integral taken through the interwds 0'; on 0~. 
as base a rectangle of height *),. can be drawn so that in that  rectangle, 
[R(x,  y)[ < A + r/, when :7 is an arbitrarily small prescribed number. 
For if this is not the case, there would be points of the x-axis in 0;., such 
that  the fluctuation of [R(x ,  y)] in areas containing" them are > A, how- 
ever small y may be taken, contrary to the hypothesis that at every poin'~ 
of 0,'. the saltns of [R(x ,  y)[ is -< A, hence i ,  can be found corresponding 
to a given r/; if y is the greatest of the I , numbers & ,  :q~, . . . ,  ),,, then 
if y < y ,  for every x in the intervals 0', [ B ( x , y ) [ ~ A  q--V. I t  4&us 

~ [ 
appears that f i g ( x ,  y)dx , taken through the intervals 0', is <=(A+rj)~O' 

x0 
o r  < ( 1 - - - I - - e , ) ( A + 7 / )  , provided Y ~ Y .  The numbers ~ , y  converge 
to zero together. 

Next consider the s intervals tl, t , 2 , . . . ,  t,; for any point at, of (;, 
there is a value of y such that for it and all smaller vahles, [ R(x,  y)[ < (r, 
where ~ is a fxed positive number which we take < A; this arises from 
t.he continuity of R(x ,  y) with respect to y, at the point (x, o). Take 
y~ a value of y, and let G'v, be the aggregate of points belonging to G, 
such that  [ B ( , , y ) [  <~, ,  provided Y ~ P ~ .  The points of G,~, may be put 
into a finite number of intervals r~, r2, . . . ,  r,, where ~ z ' < I ~ , - t - 3 ,  
Iv, denoting the conten'G of Gv,, and ~ an arbitrarily chosen positive 
number. The complementary intervals whose stun is ~ t -  ~ r  contain 
only such points of G as do not belong to 61,,. Since there are by hypo- 
thesis no points of G at which the upper limit of the tluetua'don of 
/?(x ,  y) in (x,  y) is not finite, and this upper limit is everywherc less 
than some fixed finite number, there exists a finite upper limit of ]R(*,v)I 
for all values of :c which are in the intervals t but not in the intervals r; 
let this be B. The integral taken through those parts of the intervals t 
which are not in the r, is not greater than B ( ~ . t - - ~ r )  or is 
< B( I  + -c~ + e., --/~,); B cannot increase as y is diminished. 

I t  now remains to eonsider the integral taken through the intervals r; 
since P~(.z, y) or s ( x ) - - s ( x ,  y) is integrable in (a:0, x~), these intervals r 
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m a y  be divided into a finite number of sub-intervals such that the sum 

of those sub-intervals in which the fluctuation of R is => an assigned 

number, is as small as we please. I t  thus appears that  the intervals r 
can be further sub-divided so that  ~ r  = ~ r '  + ~ r " ,  where r' are inter- 

vals in which the fluctuation of R for a fixed y, is > a, and the r" are 

intervals in which the fluctuation is < a, where a is an arbitrarily chosen 
nmnber; this can be done so that  ~ r '  is arbitrarily small. Let  a + ( r<  A, 

then [f.R(x, y)dx] through the intervals v', is not greater than B ~ r ' .  

Of the intervals -" , , some contain points of Gv,, and others may not do so; 

let x be the sum of the latter, then through these intervals the integrM 

is not greater than ~B. For any interval r" which contains a point of Gv, 
]R(x ,  y)[ is everywhere less than a + a, where y~yl; ,hence the inte- 
gral through these intervals r" is < (a + a) ~ r "  < A ~ r " .  I t  has now 
been shewn that  

? 17 (z , y) d:r 
XO 

< ( 1 -  [ -  z2)(A + 7]) + B ( I -  Iv, + s, + z.2) 

+ B(E~' + z) + AZr" 

where A ,  y~, ~) are fixed, and s2 is arbitrarily small; y is < Yo where Yo 
is the smaller of the numbers Yl, Y. 

" [ Thus the value of fR(z ,  y)dx is 
X0 

or, 

< (A + r Z + X:") + r , ( I - -  I,,, + ~,) + P(X:' + ~.) 
sm.,e ~ r '  is arbitrarily small, 

< (A + ~ ) (~ -  ~ + :c:) + B(X-- • + ,,) + By. 

< (A + ~)(2Z - -  I) + B ( I - -  I,, + <) + Bx. 

Now it has been shewn by 0SG00D, that  Yl may be chosen so small 
that I -  I,,~ < ),, where ), is arbitrarily small; we have then also, x < a. 

P and choose y so The integral is <(A+~2)21+ B(22+s,); let A < 2 1 ,  

that ~ < q ,  and y~ so that 2B) ,< rl, and let the fl' intervals be so chosen 
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that Be1 < s~, where p ,  q ,  r l ,  s~ are positive numbers such that 
p + q +  r l + s ~ = s .  We now see that Yo can be found such that  

' /?(x,  y)dx < s, if y < Y0, it has thus been established that the term 
] so 
by term integrat~ion of the series gives the same result as the integration 
of the sum s(x) provided s(x) is integrable through the interval of inte- 
gration, and also the measure of non-uniform eonver~enee is everywhere 
finite in that interval. 


