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Since the introduction of the celebrated ~-Neumann problem by D. C. Spencer in the 

1950's, with related problems being studied by Garabedian and Spencer [12], Kohn and 

Spencer [21], and Conner [5], regularity properties of solutions of non-elliptic partial 

differential equations have been closely linked with important questions in the field of 

several complex variables, as well as purely real variable questions such as the real 

analytic embedding theorem of Morrey [23]. The C ~ regularity results of Kohn [18], 

later simplified in [20], gave rise to much interest in higher regularity properties both for 

the ~-Neumann problem and, at the same time, interior problems for operators such as 

the "complex boundary Laplacian", []~, which appear elliptic in most directions and 

suffer a loss of one derivative overall, whence the name "subelliptic". 

In the elliptic case, either for interior or coercive boundary value problems, local 

regularity of solutions has been well established for some time [24, 25] in the C ~, Gevrey, 

and real analytic categories. The proofs are of two kinds: "classical" proofs, which rely 

exclusively on L ~ methods (Gs inequality) plus carefully chosen localizing func- 

tions, and proofs employing pseudo.differential operators as introduced by Friedriehs and 

H6rmander. This theory has been widely developed in recent years and broadened to 

treat non-elliptic problems, either by means of Fourier Integral Operators or by hyper- 

function techniques, and special classes of such operators have been introduced to analyze 

the behavior of operators such as [:]b [9, 4], guided in large measure by results and 

methods in the theory of nilpotent Lie groups such as the tteisenberg group [11]. And 

the conviction, on the part of many, that [Zb should be locally analytic hypoelliptic was 

based, perhaps, at first largely on the explicit fundamental solution for this operator on 

the Heisenberg group which is analytic off its singularity, cf. [11]. 

On the other hand, initial efforts to prove that these operators enjoyed high regularity 
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results seemed blocked at the Gevrey class 2 level [6, 27] and with good reason in view 

of the example of Baouendi and Goulaouic [3] which consisted of a very simple, second 

order operator which is subelliptie yet is hypoelliptic only up to the Gevrey class 2 level. 

I t  was then observed independently by Komatsu [22] and Tartakoff [28], see also 

Derridj and Tartakoff [7], that  under an additional hypothesis on the non-degeneracy 

of the Levi form associated with these problems, a condition violated by the example of 

Baouendi and Goulaouic, one could obtain at least global regularity of solutions in the 

analytic category. Soon after, I showed, using this non-degeneacy hypothesis, t ha t  one 

could obtain local hypoellipticity in all Gevrey clases (except the analytic one) and in 

some quasi-analytic classes as well, and these results were extended in [8]. All of these 

results employed L ~ methods only. 

Very recently, two completely different lines of argument have produced the local 

real analytic result. That of TrOves [32], using the hyperfunction machinery of Sate, 

reduces the ~-Neumann problem to a problem in the boundary with pseudo-differential 

coefficients but vector fields of a particularly simple type; the local model for this problem 

is then a so called Grushin operator with parameters, whose parametrix is obtained 

together with explicit and very delicate estimates for each term in the symbol expansion 

of the parametrix; finally, the actual problem is treated with analogous estimates. 

By contrast, the present proof, as announced in [31], is very classical. We start from 

the basic estimate of Morrey and Kohn and estimate each derivative of the solution, 

using carefully chosen localizing functions and a special construction of a high order 

differential operator to estimate differentiability in the non-elliptic direction. We feel 

that  this method has three pleasing features: first it is not limited to operators whose 

principal part is diagonal; second, it is not tied to the real analytic category--it  would 

apply as well to a wide variety of (non-)quasianalytic classes; and third, it is elementary. 

Acknowledgements. We should like to thank L. Nirenberg for originally bringing this 

problem to our attention, A. Dynin for pointing out the implications of the Darboux 

theorem in this setting, and A. Melin for substantial simplifications in the proof. Thanks 

to him, the formulas have been vastly simplified and the main proof very much 

shortened with the help of suitable notation and norms, breaking it down into compre- 

hensible steps. We are also grateful to M. Derridj, J. J.  Kohn, M. Kuranishi, J.  Raueh and 

L. Rothschild for helpful discussions concerning the problem. 

1. Statement of results 

We formulate our results for operators like the boundary Laplacian first in rather 

abstract terms and then indicate how [Bb may be viewed to be of this form. The ~-Neumann 



T H E  L O C A L  R E A L  A N A L Y T I C I T Y  OF S O L U T I O N S  TO ~b A N D  T H E  8 - N E U M A N N  PROBL]~M 179 

problem will then be presented and the local result stated. And,  finally, we shall describe 

micro-local versions of these theorems. 

On a real, real analytic manifold M of dimension 2 n -  1 we consider 2n - 1 independent,  

real analyt ic  vector  fields Z 1 . . . . .  Z2~_~, T with the proper ty  tha t  the matr ix  cjk(x), 

x = (x 1 ..... x2n_l) , given by 

[Zj, Zk] -- cj1,(x) T modulo {Zj} (1.1) 

and called the  Levi matrix,  satisfies 

det  (cjk(x)) # 0 (1.2) 

near a point  x 0 in M. We consider a determined system 

P = Z ajk(x)ZJZ~ + Z aj(x)Zj + a(x) (1.3) 

with summations  for j, k = 1 . . . . .  2n - 2 ,  each coefficient being an s by  s real analyt ic  matrix,  

and shall assume tha t  P satisfies the a priori inequality: 

Z IIZ,Z,,vll -< C{llPvll + Ilvll}, (1.4) 

a fixed open set in M,  norms being L2(M) norms. 

T H E O R E ~  I. Let P be given by (1.3) and satis/y the estimate (1.4). Assume that the 

Levi matrix cj~(x), given by (1.1), satisfies (1.2) in D. I /  u(x)E~)'(~2) sati.~/ies P u - / ,  

/ analytic in ~,  then u i8 analytic in ~.  

To see tha t  [Zb is of this form, we recall t ha t  [Zb ::~bS*'l'8~Sb, where 8" is the (formal) 

adjoint,  with respect to a fixed L 2 inner product ,  of 80. 8b itself is defined in terms of an 

or thonormal  basis of 1-forms o) 1 . . . . .  ~on-1, r . . . . .  ~3n_ 1, ~ and dual, real analyt ic  complex 

vector  fields L 1 .. . . .  Ln-1, L1, ..., Ln-1, T = T  on (p, q)-forms 

w(z) = ~ wMx)  ~o ~ A ~J ^ "~' 
I l l = ~ - r  
IJI =q 

by  

~bw(x) = Z Z (LkWzz,(X))ff)kA~ Tr 
/c I l l - ~ - r  

I.Vl-a 

modulo terms in which the coefficients are no t  differentiated, terms so chosen t h a t  (~b) ~ =0 .  

Thus [Zb maps  smooth  (p, q)-forms to smooth  (p, q)-forms and hence m a y  be viewed as a 

system of partial  differential operators act ing on vector  valued functions. Clearly [:]b is of 
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the form (1.3), if we let the Zj denote the real and imaginary parts of the Lk, and condition 

(1.2) is easily seen to be equivalent to the non-degeneracy of the usual Levi form. Fi- 

nally, the a priori estimate (1.4) is an easy consequence of the "subelliptie" estimate of 

Morrey and Kohn (el. the appendix for this derivation) which is well known to be valid 

whenever the Levi form has max (q+ 1, n - q )  eigenvalues of the same sign or rain (q+ 1, 

n - q )  pairs of eigenvalues of opposite sign a t  each point (condition :Y(q)) on (p, q)-forms. 

Thus for ~b  our theorem may  be stated: 

THEOREM 2. On a real analytic C-R  manifold whose Levi form is non-degenerate 

and which satisfies Y(q), F]~ is locally real analytic hypoelliptic on (p, q)-forms. 

The local regularity question for the ~-Neumann problem may  be formulated as 

follows. Near a point x 0 in the boundary of an open set ~ (in C n, we may  assume) with 

F = ~  defined locally by the equation r=O with Vr:4=O, r(x) real analytic, the operator 

and, relative to a real analytic Hermit ian inner product, its L ~ adjoint are well defined. 

Given an orthonormal basis co 1 ..... on for the space of (1, 0)-forms on ~ near x o with 

wn= 1/28r, we have 

~( ~ w~I(x) tJAr = ~ (Ltwz.r(x))~JA~oIA~ J 
II1-~ I11=p 
Ill=q Ill=q 

J 

again modulo terms in which the coefficients are not differentiated, terms chosen so tha t  

~z = 0. Here the vector fields Lj are dual to the co j, and for j < n, Lj r = Lj r = 0. The ~-Neumann 

boundary conditions are locally defined by: w E D ~'q provided any  coefficient w~(x) with 

nEJ  vanishes on F. A solution of the ~-Neumann problem is a (smooth) (p, q)-form 

wE D ~'~ with $wED ~'q+l such that ,  with L ~ inner products, 

(aw, ev) + (~*w, ~*v) = (/, v) (1.5) 

for all v s  v'q. Then, if ~f=0 ,  one can show tha t  ~w=0  and hence ~(~*w)=/ with 0*w 

orthogonal to all holomorphic forms. In  terms of the vector fields Lj and their conjugates, 

the left hand side of (1.5) has the property tha t  Ln acts only on components which vanish 

on F. The a priori estimate of Morrey and Kohn may  be written: there exists a constant C 

such tha t  for all (smooth) (p, q)-forms v fi D v'q, v = ~ vl~(x)~olA Co J, 

L , v . l l 2 +  Ljvl1[[ 2 -Jff ~ 'Hv i j [121<c( (~v ,~v ) -~ (~$v ,~$v )~ -~  IlVljII 2} 
I, 1 1, J I, Y 

(1.6) 
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where ~ '  denotes a sum over indices with n E J  and all norms are L 2 except the last on the 

left, which is the Sobolev 1 norm. The estimate (1.6) is well known to be valid whenever 

the Levi form cjk(x) defined by 

[L,, Lk] =- icjk(x)(L, - L n )  modulo {Lj}, {Lj}, i < n  (1.7) 

satisfies condition 

negative ones. To 

neighborhood of a 

and the notion of 

Z(q): cjk(x) has at  least n - q  positive eigenvalues or at  least q + l  

state the next theorem we denote by ~ '  the intersection of a full 

point x0EF with ~ ,  and observe tha t  both the a priori estimate (1.6) 

solution to the ~-Neumann problem make local sense. 

THEOREM 3. Assume that the estimate (1.6) is valid in ~1', that the Levi [orm cm(x ) 

is non.degenerate in t'l', that F is real analytic in ~ '  and that u is a solution to the ~-Neu- 

mann problem with / real analytic up to the boundary o /g l  in gl'. Then u is also real analytic 

up to the boundary o/~1 in ~1'. 

From the proof of this theorem it will be clear tha t  it holds for a wide class of 

boundary problems for elliptic operators with non-degenerate Levi form; for the present, 

however, we content ourselves with this, so far the most  significant, case. 

Next  we describe micro-local versions of these theorems: 

Definition. Let v(x) be a smooth function defined in a neighborhood ~o I of a point 

x0ER m. We say tha t  a point (x0, ~)E T*R m does not belong to the analytic wave front set of 

v, (x0, ~)CWFA(v ) provided there exists a neighborhood ~o o of x 0 compactly contained in 

o)1, a constant K, and an open cone, F, in R m ~  {0} containing ~, and, for any N, a function 

V2N in C~(wl) and identically one near Do such tha t  

< KN(1 + I I/N) ver. (1.8) 

THEOREM 1'. Let P be given by (1,3) and satis/y the estimate (1.4). Assume that the Levi 

matrix cm(x), given by (1.1), eatisfies (1.2) in ~1. I[ u(x) is smooth and satisfies Pu  = / w i t h  

(x0, ~o) CWFA(/), then (Xo, ~o) ~WFA(u)" 

There is an obvious notion of "tangential  wave front set" which we introduce for the 

micro-local version of Theorem 3; since the interior problem is elliptic one needs to know 

tha t  micro-locally the Dirichlct data  of the solution behave well with regard to analytic 

wave fronts. Thus we fill in a neighborhood of ~1  with a one parameter  family of hyper- 

surfaces, Ft, 0 ~< t < 1, with Ogl = F0, and (under a real analytic coordinate change) speak of 

the wave front set in T*(Ft) of functions restricted to Ft. In  particular we shall take for 

the Ft integral surfaces for Z~ ..... Z~n-~, S as defined near ~gl in section 3. 
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TH~O~V,~ 3'. Let (1.2) and (1.6) be satis/ied in ~ ' ,  with the boundary o / f~  real analytic 

in f~'. Let u(x) be a (smooth) solution o/ the ~-Neumann problem in ~ '  with (x, ~0) 

WFA(/Ir~ ), x EFt, uni/ormly (the same cone and constants), 0 <~t <~t o. Then the same is true 

/or u, 0 <~ t <~ tg /or any to < t o. 

To pass from Theorem 3' to "micro-local analyticity up to the boundary"  perhaps 

the most natural  method is described in [16] (see also [25]); one reduces the problem to a 

pseudo-differential one in the boundary and then expresses the restrictions of all normal 

derivatives of the solution to the boundary in terms of lower order ones and / and concludes 

tha t  none of these have (x, ~0) in their analytic wave front set (hence tha t  (x, t, ~0, T) does 

not belong to the analytic wave front set of the solution for any t > 0  and any ~). 

Theorem 1 is proved in section 2 and Theorem 3 in section 3. Theorems 1' and 3' 

are discussed in section 4, and in the appendix we discuss C ~ hypoellipticity and various 

estimates. 

2. Proof of Theorem 1 

The first step in the proof is to show tha t  under the non-degeneracy hypothesis on 

the Levi form, we can reduce the problem to one of the same form which lives essentially 

on the Iteisenberg group. Tha t  is, there is a real analytic coordinate change in terms of 

which the linear span of the Zj is the same as the linear span of the much simpler vector 

fields, which we also denote by Zj, 

Z j = X  s=~/axj  i f j = l  ..... n - l ,  

Zn-l+j = Y j  -~a/ayj+xja/~t if ~=1, ..., n - 1 .  

This reduction, which was pointed out to us by A. Dynin, is an immediate consequence 

of a classical theorem of Darboux: 

THEOREM (Darboux). Let r be a real analytic one /orm on a 2 n - 1  dimensional 

mani/old such that a~ A (dw) A ... A (deo) is a volume/orm, with n - 1 copies o/d~o. Then alter 

a real analytic coordinate change, oJ = ~  x j d y j - d t .  

For our application, the one form ~o is a real one form polar to the original Z~. The 

non-degeneracy condition (1.2) ensures tha t  we have the required volume form, and the 

new Zj are clearly annihilated by the new form of ~o. The operator P is unchanged in 

form and the a priori estimate (1.4) is also preserved (with a new constant). 

PROPOSITION 1. The solution u will be real analytic near x o provided there exists a 

constant C~ such that, in L ~ norms in a neighborhood o/ x o, we have 

llZ'T%l cL'  § " ( I I + r) !, 
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where Z l will denote any 
Z I = Z,, Z,, ... Zql V 

We omit the proof, which is elementary, if tedious. 

A few simplifying assumptions are in order. First, we shall take P u  =0, since the 

Cauchy-Kowalevski theorem always allows this in the real analytic category. In  other 

categories the presence of / would change little. Next, we observe tha t  we m a y  replace the 

estimate (1.4) with the more useful form 

IIz, z~ vii + Ilvlh < cllpvll, (1.4') 
Lk 

(provided we work sufficiently locally, as we may),  for T can always be writ ten in te rms 

of two Z's. 

The classical proof of analytic regularity in the elliptic case begins by  inserting the 

function v =v2D~u in Gs inequality: 

E IID, D:II~.<. c(llPHlz.+ Ilvllr,), ~mc~ ~ 
t,t 

where we have used the notation D~-~-~/~xj, Da- r : , , n~ , ,  ... -~ ,1  ~ D~,  the ~j non-negative 

integers with I a 1 = ~- aj. Here the function ~o E C8 ~ is equal to one near x 0 where analyticity 

is to be proved and vanishes outside an open set in which we take P u  = O. I f  the operator 

P is written as a sum of terms of the form g~DB with I fll ~<2 and g~ real analytic, 

Pv=P~pDau=[P,y~Da]u=~g~[D ~, ~ o ] D a + ~ [ g p ,  Da]D [~ where the sums are over all fl 

with Ifll ~<2. On the right, the first commutator  contains terms of the form g~vf'D ~'+~ or 

g ~ " D  a where D a+~ stands for D i D  a for some/ ' ,  while the second may  be expanded as a 

multiple commutator  when g~ and its derivatives are always brought to the left. These 

fall under the schemata 

vfD"+2u ~ v2'D~'+lu, ~p"D"u (2.1) 

or 

Thus, using the bounds I g<~')l-< Co C '~I Ir and replacing ~§ by just ~, 

the sum over all r r with 1 -< I~' +~#I < I~I" Xterat~g, 

8+t~.l:(l 

(2.2) 

(2.3) 

(2.4) 
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As we shall see, given ~1~c~22 and hr we may choose W=WN in C~(~2) equal to one 

near ~1 and such that  ly~(r)l ~< C~C~N r provided r~</V, with C~ independent of h r. Thus 

when [~1 =hr, the left-hand side of (2.4) is bounded by C~IV N, hence by C~hr!, yielding 

analyticity. 

To introduce the reader to the methods we shall employ in the non-elliptic case, and 

to introduce the notation and some of the norms due to Melin which allow great simpli- 

fication of the proof, we outline the following approach. The schemata (2.1) and (2.2) 

suggest the introduction of the abbreviation G for a constant coefficient sum 

G = ~ cAGA.~, GA.~ =~(')D~, A = (7, ~) 

and a norm for it, depending on iV: 

IIIGIII --5 lc lhr% IAI = Irl + I i, hr > IAI. 

With (analytic) coefficients g, we may consider 

with 

and we may assume that  Ig(~) I ~<el~ (by dilation), [QI/>1. The corresponding norm 

will be 

Thus the schemata (2.1) and (2.2) estimate IIwD~ull by two kinds of terms: ~ - 1  HGjUlIL, 
with IIIa, lllN=hr '~1 and I[aaull L, with 

HGauH r., ~< II[Gl[[t~., sup I[(G(~.){[I]G(,.)[[[N)UHL,, 
of* 

< sup Ila' ll..., 

this supremum over all G' with 

IlIa'l[I,,<llla~lll,,., <ll[,~D'[l[,,=hr ~ if [~[ <hr,  

e small. Thus after at most [a[ iterations, 

l[~/D-u[[ < 3 I~' sup IIG'~II (2.6) 

over G" of the form CAW(V'D ' with l~i  < I  and llla'llb~<hr~=', i.e., Ic~lhr~,§ As 

shown above, with proper choice of ~p~ this yields analyticity. 
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In the (non-elliptic) case at hand, (1.4) measures Z derivatives effectively but  T 

derivatives poorly. Thus we must distinguish at  every stage between them. With 

v =y~ZXT2'u inserted in (1.4), the commutator [P, v2ZIT ~] will contain the terms considered 

above and new terms which arise when [P, Z] generates Z T  (times a coefficient of P). 

Eventually, there will occur terms with [I[ =0  or 1, and now the schema 

y~ZST ~, .-+ [P, ~]ZS'T ~ ~ v,ZS"TZ,u 

with I JI  = ]J ' l  +2  =2 or 3, I JI = ]J"l + 1 leaves one unable to iterate effectively. What  

is needed is a localization of powers of T which commutes well with Z. 

To prepare the construction, we recall that  Z' =(Z I ..... Z,_I), Z" =(Z . . . . . .  Z~,_z) , T 

satisfy 
[Z;, Z~] = 5,k T 

with all other commutators equal to zero. For any given function / to be specified below, 

we introduce differentiations Z}, Z;, T z with the same properties but acting only on [ (or 

its derivatives), and, similarly, define Z',, Z, ,  T ,  acting on everything else. Thus, 

= z ' , z S ( l u )  = ( z ' t )  

For now, when no target is specified, Z and T will act on everything. If F is a polynomial 

in ~ ,  ~,, Tr T, we shall denote by {F}v the result obtained by replacing ~ by Zr ~, 
# I u by Z, ,  etc., with the provision that  all Z~ act to the right of all Z~, all Z ,  to the right of 

all Z',, and applying this operator to ~v. Thus 

[ z ' ,  { F } ]  = = { O ' F }  (2 .7)  

and 
[Z", {F}] = {~'~ F + 3 . 8 F / ~ .  + v~ af/O~'~} = {0"F} (2.8) 

I P t ~ t (vector equations: Z --(Z~ ..... Z,_~), ~ =  ( (~h  ..... (~)~_~), etc.), the last equalities being 

definitions. Since [0~', O'~]F--'rr there are no F for which {F} commutes with all Z but  

if we overlook the last term in (2.8) for the moment, however, then the function 

F~  =exp  (a(~., ~) /v . ) ,  with 

satisfies 

a(a, b) = (a", b') - ( a ' ,  b") 

A good approximation, then, is the analytic part  of T~ exp (a(~,, ~)/T,);  letting 

g,(a, b)-- ~ aJbS-J/j!, 
t - 0  
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we have 
r 0'n~(a(~,, ~r T,) = ~a(~ , ,  ~r 

0"~(~($,, $~), ~,) " ~ ' = $~,~(~,, $~) /s!  + r d , ~ , - ~ ( ~ ( ~ , ,  ~ ) ,  r , ) .  

We introduce the notat ion 

(T%v  = {~, (~($,, $~), ~,)} fv 
$ 

= ~ ,~J(z,, Zq,) T~,-Jq~vlj! 
0 

(2.9) 

where a ( ,  )~ and (T s) will now always carry the convention tha t  Z '  acts to the left of Z". 
We also now write {F(~,,  ~ ,  ~,, ~:r as F(Z., Zr T., Tr with the order 

conventions within F.  Wi th  this nota t ion we have 

L~MMA 1. [Z', (T~)r ' = Z~a(Z.,  Z~) q~v/s! 

[:g", ( T % ] v  ~(Z., ~ " : Zq:) Zr + (TS-1)TcZ, cfv. 

I n  any  open set where ~ = 1, (T~)r = T ~, so t h a t  (T~)~ appears to  satisfy our  requirements.  

One could (and in fact  we did) arrive at  (2.9) by  means of a certain amoun t  of pure in- 

spiration, bu t  the above nota t ion will be useful below. 

In  using (1.4), we encounter  a t  once in [P, (TS)r terms of the form ZITP(TS')~TqZJ, 
so we m a y  as well begin with these directly. We set 

G.t.r = ZIT~(Tm)zKT,~TqZJ, A = (I, p,  m, k, r, J ,  q) (2.10) 

with IAI = I I I  +p+m+ [ J I  + q  = IGA.~I , [JAi l - - IAI  +P+q=IIGA.~II, the order of G with 

T derivatives given single and double weight, respectively. A constant  coefficient sum 

will have the norm 

G = ~ CAGA,~ 

III Olll , = 5 (2.11) 

with any  C O >~2n-2 .  While the operator  G m a y  have several different expressions and 

hence different norms, if we think of G as a formal expression whenever we take  its norm 

the  norm will be well defined. Note  tha t  Nm/m! <<.NN/N! <~e N for m<~N, hence it is a bit 

artificial, bu t  will be useful below. 

I n  utilizing (1.4), then,  we apply  it to  v=GA.r and writing P as a sum of terms of 

the  form gZZ, we encounter,  in the  commuta to r  [P,  GA.~], two kinds of terms. 
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1. The commutators [Z, Ga.~] are straightforward. In fact, [Z, Ga.~] contains at  most 

I A I < N terms where [Z, Z z or Z ~] generates a T, while on the other hand, when [Z, (Tm)~.] 

enters, we get 

(i) ZZTP(Z+, a(Z., Z+.)mcy'/m !) Z ' T  q 

or 

(ii) ZZT~(Tm-1)Z~T,+'~, Z Z ' T  q 

with norms, respectively, bounded by 

and 

Thus we have 

LEM~A 2. I11 [GA.~, Z] II1~ < 3N III GA.~IIIN; [G~.~, Z] ha~ only term~ o/ I ]-order ~ IAI, 
while the order II II may increase by one over IIAII. 

2. Commuting with a coefficient requires looking at  the terms in Ga.~(gv) in which 

g receives some derivatives. We may write, assuming I KI + r = 0  to simplify notations, 

Ga. r = (Z~.~ + Z J (  T~.~ + To)~(Zem(a(Z v, Zr + a(Z a, Zr T~ + Ta) } (Z~ + Zg)~( T~ + Tu) q (gv). 

(2.12) 

(Recall that  within curly brackets, Z' acts to the left of Z", but  outside the brackets this 

need not be so.) 

To rewrite (2.12) in terms of monomials in Zo, T~, to the left of operators Ga..~ free 

of Zg and To, we must expand the term in curly brackets in (2.12): 

LEMMA 3 .  

:~,(a + a', b + b') = ~ 
t+gt+k~s 

with C~jk, = (s - i  - j ) ! / i ! j !k! (s  - i  - j  - k ) !  

b'k4J a"( - a)J~s_2j_~_k(a, b) Cfm s 

Proo/. In the definition of g8(a+a' ,  b+b'),  let j = i + j ' ,  expand (a+a') *+r as 

~.(i+iJ')ata'J" ' 

(b + b') ~-C~+r) as 

13 - 802905 Acta mathematica 145. Imprim6 le 6 F6vrier 1981 
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then replace the binomial coefficient 

by 

s - / - ~  

and let k = k ' - ;  j = ~ ' - ~ .  The result is the statement of the lemma. 

Applied to the curly brackets in (2.12), we obtain 

GA.~(gv)  = (Z~.~+ZJ(T~.~+ To)" 2 0,,~{4~(~, ~,)'(-a(~o, ~0)Y 
t + 21+ k ~ m  

o 7~m-~_2r ~),  Tv)} (Zv +ZJ(T, ,  + To)q (gv). (2.13) 

Note that  the order is still observed, Z' to the left of Z", etc. This causes no problems for 
tt u # the Z~; the Zr just act on ~v or Z~:Trq~, as the case may be, directly, while Zv sit off to the 

right. But some of the "extra" Z'  will be embedded within ~rm_t_~j_k(o'($., $r v,) and 

must be brought out for the induction to proceed. 

The first step is to examine: 

{~'~m(a(~,, ~) ,  ~ , ) } -  {~r,~(a(~,, ~) ,  -r,)}Z'~. (2.14) 

From Lemma 1 we have 

{(~', +~'~)~(~(~,, ~), ~,)} = {~(~(~,, ~), ~.))z'. + {~;~(~., ~)~/,nt) 

so that  

{~;~m(~(~*, ~), ~*)} = {~(~(~*, ~}, ~.)}Z; + {~_,(~,, ~), ~,)~',~} 
= {Zem(a(~,, ~,), z ,)}Z; + {z~m_l(a(~ ,,  ~) ,  ~,)}Z, T~ (2.15) 

+ {~(~,, ~)m l~'~/(m- 1)!}- {~_~(a(~,, ~), ~,)~;~}. 

If we iterate this we obtain 

{~;~(o(~,, ~), ~,)}= ~ ({(- 1)~-~(~(~(~,, ~), ~,)} ~-~z;  
k-0 

-~ {3l:k_l(ff($,, ~ ) ,  T$)} Z' ,  Y~lr -k+ l  (2,16) 

_}_ { ( y ( ~ , ,  k - 1  m - k + l  . . . .  ~r ~ ~r 1)!}). 

(This expresses the result of moving one Z' to the right; if more than one needs such 

treatment, one need only observe that  those already outside the brackets in (2.16) may 

stay on the right throughout subsequent commutations.) 
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Looking a t  the  norms  for (2.16), we have,  for example,  with v 2 =ZKTrq~, 

I m ! IIIZ+(T )+lll~ = II l (e~(e , ,  ~ ,  ~,)}lll~ 

<< ~ (C~N~k+'~-~+'+~+Tk! + 2C~-~N~-2+m-~+2+~+7(k- ])!) 
k = O  

m! 
< III (T%III~3 Y c~ ~ (~_  k)---------~ N~-~< 6NIII (T%III~ 

and thus,  using (2.14), 

t m J[[Z~(T )w[[lN< 7~V[[I(Tm)wII[N. 

! In  Otherwise s ta ted,  Z,,(T ),p m a y  be rewri t ten as a sum of te rms  of the form 

k--X ! (T )~=.-+Zv, (T%=_,~.~ 

(2.17) 

[Z'T~gl <~'"+~(llI +p)! if [I[ +p~>l 

and assign, to an expression such as ~ r v. cr.v,.AZg T o G.4.r (where the GA. ~ do not  ac t  on g), 

the  norm 

1' p" ~- I]I~.c,,.v,.A, ZgTgGA..~IIIN.~ ~IC,'.r'.A]eWI+~'(II'I+p')tlIIGA,.~ItlN. (2.18) 

For  any  computa t iona l  purposes,  we shall define one more  norm with powers of M 

instead of powers of e t imes factorials: 

I '  p '  IH~c,,.~,.A, ZgTg ~A,.+II[N.M : ~ I c,,.~,.A,I M'"'+~'III G~,.+]ll~. 

To compute  the  III IIIN,~ norm, thus,  one can compute  the III IIIM, N norm and then  replace 

M '  by  e's!. 

and a(Zv, Z~) ~-1 divided by  ( k - l ) !  with yJ replaced in the end by  Tm-k+lz'~v; the  III IIIN 

norm of the result  is given above.  

This process can be i terated,  the  norms growing as one might  expect;  for example,  

with several Z'v. ~ the  last es t imate  above  mere ly  has the factor  6N or 7N raised to the 

corresponding power. 

To similarly control the  norm taking the  coefficients into consideration, we recall 

t h a t  we m a y  assume tha t  
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To es t imate  the  Ill II1~,~ norm given the  Ill II1~,~ norm (i.e., replace M s b y  eSs!) we 

will have  to use 

(M + N)~'Mq-,. ~ ~ ' - '  (~) eq+'(q + j) , 
t=0 

1 ) [  " 
<eqql~" ~o (p_ j ) !  ( q ; ? )  N- 'd  

!a 

< (2e)qq! N ~ ~ (2s) ~ < 2(2s)qq! N ' .  
~=0 

Applying (2.16) and  its i terat ions to each t e rm  in (2.13) (after expanding the  a(Zg, Z~) ~ 
and a(Z~, Z~) ~) gives an expression whose Ill I I kM norm is bounded b y  

(N + M) I~I+p+IJI+Q ~ M~:+J(14nlV2)J(14nNM)tNe~176 2 j -  k -  i)! 
t+21+k<rn 

(2.20) 

Est imat ing  (N+M)~'M q as indicated above,  we obta in  t h a t  the  Ill IIl~., no rm in 

question is bounded  by  

2 ( i + j + k ) l  ~ N-~-2J-z'~(14n)J4t(2e)~+J+kC52J-~-~C~jk,,(C~lVlzl+~'~lll+q+lKl~r+2'n/m!). 
/+2)+k.<m 

(2.21) 
Here  

so t h a t  in all, 

, m!( i+j+lc)!  
C,j~,n = G,jl,,,, (m - 2j - k - i) l 

3 ~ ~/+kN2)+ 2k+~ ' 

GA,~(gV) = ~ " ~" Cr. p.. A" Z~ Tg GA.. ~ gv (2.22) 

where the last  GA,.r act  only on v, ~0, with 

(2.23) 

For  the  nex t  lemma,  we need informat ion abou t  the  L 2 norm of [P, GA. ~] u which can 

be derived f rom the above.  Indeed,  we have  expressed [P, GA.r as a sum of a bounded  

n u m b e r  of t e rms  of the  form z. ~, Cr.,,A,ZgTgGA,.~ whose Ill [llN.e norms  are bounded  by  a 

constant  t imes the  III IIIN norm of the  opera tor  Z,Z, Ga.~ f rom which we s tar ted.  I t  follows 

as in the  discussion of the  elliptic case above t h a t  

Ilz, Z, GA.~ ullL. < o sup IIGA,.~ ~IIL. (2.24) 

with the supremum over all GA. ~ wi th  IIIGA,.~IIIN 4 IIIZ,Z,aA.~IIIN but  n o w  with  ]A'[ < 

IAI+2, and for the  double bar norms,  IIA'll<llAll+2. For in the c o m m u t a t o r  
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GA,~(gu)--gGA.~u the degree drops by one and while (2.23) gives information on the 

I[i IlI~.~ norm; denoting the operator on the left in (2.23) by G, 

Jl ~ i i~ .  ~ ~ i ~,.~,. ~, i~ ~'''''(I r i + p') ! ii G~, ~ uii~, 

~< liI~iIIN,~ sup li(GA',~/IIIGA,~ifIN)UlI" 
~< sup IIcA. GA,,~ ullL,, 

the supremum over all CA,Gx,., with ]A' I < eAR , IIA'I[ ~< IIXII, Illc~,G~,.,lIl~ < IIIG~.~III~. 

Letting G stand for a finite sum ~CAGA.q~ , with IIIGIIIN=~III~. ,III~,  
[G[ =maxr IAI, IIr =max~.ollA]] we have proved 

LEMMA 4. Let each GA. ~ in G contain at least two Z's. Then 

[i~[[L, < C sup {ilg'uli .:  liIG'I[[~ < [iIGII[~, Ig'I <IGI, IIG'II ~< IIGll}. (2.25) 

The condition that  each GA.~ contains at least two Z's is important if we are to use 

(1.4); to use it repeatedly, we must stay within the class of operators with at least two Z's. 

De/inition. G is called admissible if every term contains at least two Z's. G is called 

simple if m = 0  and at most one Z appears (i.e., ] I  I + [JI <2). 

LEMMA 5. Let G be admissible. Then G may be decomposed as 

G -- Z2Go +Z3G1 +ZiGadm + G'aam + Gslm 

with no /actors o/ Z in G o or G1, G~dm and G',dm admissible, Gsj ~ simple, all terms o/ 

III IliN<~cliIGII[N ' ] [ and I/ [[ orders no greater than those/or G, with strict inequality /or 

the last two terms. 

The proof consists in observing that  [Z, (T'n)r when m4=0 with IIIG'ZIII~ << . 

CIII(Tm)~ZIIIN and ]G' I =IIGI[[ = m - 1  (G' is of the form q)(m+l)ZL/m! with ILl = m - l ) .  

Thus in a general GA.r =Z1T~(T'n)~TqZ j, a factor Z from the right may be brought to the left 

of (T~)~ by adding to G'~dm. When m =0, one may lose Z's and end up in Gsl m as well. 

LV, MMA 6. Let G be admissible. Then the conclusion o/ Lemma 4 holds with G' 

admissible or simple. 

Proo/. When G=Z~Go, (1.4) leads to ]][gZ 2, G0]u]l L, and the three contributions, 

[g, G0]Z 2, g/Z, G0]Z, and gZ[Z, Go] satisfy the norm requirements by the discussion above. 

:For ZZG1 we must not use (1.4), but rather 

[JZSVllL , + ]]vlls,2 <~ C 5 ]IZjPvKIL , + CHvlKL,, v~C~ (1.4") 
t 
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(as in (1I): we derive (1.4") f rom (1.4) in the  appendix)  and  use essentially the  same  

arguments .  Note  t h a t  if one used (1.4) instead, two Z ' s  could he lost before m was reduced 

to  zero. Finally,  when G =Z2Gaam, we consider the  b racke t  [Z, Ga~m] and note t h a t  every  

t e rm will contain a t  least one Z, and  t h a t  if a new T appears ,  it does so a t  the  expense of 

two Z's,  hence the  norm requi rements  are met .  

As long as admissible t e rms  appear  in L e m m a  6, we use the  l emma  again; each 

t ime the order A decreases by  one, hence af ter  a t  mos t  N i terations,  all t e rms  are simple: 

Ilaull=.-< c"  m a x  Ila,,m ull:. 

the  max over  simple Osl m whose III III- norm is n o  greater  t han  t h a t  of G and the  same 

for the II II norm.  But  for simple G, we can be quite explicit: 

Ilaull:.llllalllN <~ c ~ max IIZ'T'(T'Z%) T~ ' ' '+'+j+''<'+:+"+, 

where, taking i GI to be a t  mos t  N and I A [ + I K I  + r < 2N, the  m a x  on the  right is over  all 

I,  J , p ,  q, r and K w i t h i I [  + [J[  ~<1, I l l  + I J [  +2p+2q<~N, I l l  + I J I  + p + q + r +  [K[ 

2N. Thus 

tr [[Z'T=u[IL,(~ 1)/~"I+m<C ~ max ~- m a x  [[Z+T'u[[L,<:~,,/N '+'+'. (2.26) 
s<~2N [,/I+21~CN 

II1~<1 

Finally, we control the localizing functions: 

PROPOSITION 2. There exists a constant K such that i / ~ 1  and ~ 2 ~  ~1 are open sets 

with distance d / tom ~1 to the complement o/~2,  then/or any N there exists V =V2N equal to 

one near ~1 and in C~(~2) with I~v<~)l <~KKI~Id-I~IN I~1 /or lal <~N. 

The first  use of these seems to be due to Ehrenpreis .  Using such ~, (2.26) becomes 

m a x  [[T'Z'ullu<n,>/N v+m <~ CN+l d-2N m a x  liTqZJuIIL,(n,>/(N/2) q+J1j. (2.27) 
p r l l i ~ N  q + ]Ji<<.(N+ I)]2 

To i terate this es t imate ,  we choose log 2 N nested open sets with separat ions ds=do/2 j. 

The i terates of (2.27) yield 

m a x  IlT,ZMI,.,<n,>/lv ,§ <~ c"+~(2') '''~'-, C= ~ c'" 
p+llk<N 

with C' independent  of N. This implies ana ly t ic i ty  in ~'~1 �9 
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3. The ~-Neumann problem 

Solutions to the ~-Neumann problem are in particular solutions to an elliptic equa- 

tion; hence to prove real analyticity up to the boundary it suffices to prove real 

analyticity (on the boundary) of the Dirichlet data (in this case just the boundary values). 

These may be estimated in L ~ norm on the boundary or, as we shall do, in L 2 norms near 

a point on the boundary of high order derivatives all but one of which are tangential. 

Using the Darboux theorem on the boundary and extending these Zj and T into ~2 in 

some convenient real analytic manner, we shall show, in a standard manner, that  for the 

Dirichlet data to be real analytic it suffices to demonstrate that  

where ~o denotes a full neighborhood of the given point on the boundary and D is any 

of the following: L 1 ..... Ln_ 1, L1 ..... Ln, identity. Actually, L~ should also be included but 

it may be expressed as a linear combination of L~ and T. 

The new vector fields L n and Ln cause additional complications; for while on the 

boundary we may (and shall) use the Darboux theorem to simplify the commutation 

relations, we do not know how L~ and its conjugate will interact with (TP)~, and without 

some additional preparation the commutation relations of Lemmas 1 through 6 would fail. 

As in the case of Do we invoke the Darboux theorem: on the boundary there is a 

smooth (i.e., analytic) coordinate change in terms of which the linar span of the Lj and Lj, 

]<n, is the same as the linear span of the vector fields; Xj=~/~xj, Yj=~/~yj+xj(~/~t), 

j < n, so that  

[Z],Zn_I+t] :S ,  l~<j<n,  

[Z j, S] • 0, all j, 

with all other pairs commuting. We stress that  for the moment these vector fields are 

defined only on F :~f~, and hence satisfy these relations only there. To extend the vector 

fields and the commutation relations we observe first that  if we choose a normal (i.e., 

non-tangential) vector field N1, then we could define S and the Zj near F, denoting the 

extensions by the same letters, by requiring that  [5r 1, Z~] =0  and IN I, S] =0. Then the com- 

mutation relations would continue to hold: S -  [Zj, Zj+n-1] : 0  on F and commutes with hrl 

which is transverse to F; unfortunately we must choose N 1 very carefully so as to relate S 

and -N 1 to the complex structure. On F the choice is clear; hr I should be equal to JS, 

where J is the real analytic linear map on the tangent space defining the complex struc- 

ture: holomorphic vector fields are those of the form W +iJW. We wish to extend JS, 
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and denote the extension by  (JS) ~t, in such a way tha t  extending S as above with 

N 1 = (JS) ~t, J S  should equal (JS) e~t. For this to be the case it suffices to have [(JS) e~t, 

J(JS)  e~t] =0,  since S + J ( J S )  ext =0 on I ~ and would commute with (JS) e~t, which is trans- 

verse to F. 

LEMMA 7. Let a real analytic real vector/ield N be given on a real analytic hypersur/ace, 

F, in C n with N transverse to F, locally, and such that J N  is tangent to F. Then there is one 

and only one analytic extension N '  o/ N to a neighborhood o/ F such that [N', JN']  =0. 

Proo/. ~qear x 0 E F, we revert  to the notation Ls, Lj, ?" < n, for tangential holomorphie 

and antiholomorphic vector fields, with T (for example (L~-L , ) / i )  also tangent to P 

and v = J T .  Then we seek to extend the coefficients of 

N = ~ a sYs+aTT+a"~  

(the Ys denoting the real and imaginary parts of the L~) to a neighborhood of F subject to 

the condition tha t  IN', JN']  =0. We may  write 

J N  = ~ as(JYs)+aTY--a,  T 

and if we write out the condition [N, JN]  = 0 we find the only non-tangential derivatives 

of coefficients appear as follows: 

for v, a,(var) --aT(va,) = g~, 

for T, a~(va,,) --hn, 

other, a,(vas) = ks, j = 1 ..... 2 n -  2. 

J N  being tangential to I ' ,  aT must  vanish on F, while av does not. Thus F is non-charac- 

teristic for this system and the Cauchy-Kowalevsky theorem gives a unique analytic 

solution with initial data  given by N. 

We denote this extension of J S  also by J S  and, as indicated above, extend S and the 

Z s via [-, JS] =0. Letting M s = S - i J S ,  let h denote the invers of the length of Mn in 

the given metric. We may  define F by a real analytic function r with h(Mn--Mn)r/ i  V2 = 1, 

and then set 2n=Or. Completing to an orthonormal basis ~t a ..... ~t n of Aa.~ (locally), 

we denote the dual vector fields by M a ..... M,_  1, hM, .  Since we have constructed a 

"special boundary chart"  in the sense of Ash [2], well known calculations (cf., e.g., [10]) 

give []  on a form ~ = ~ ~H 2~ A ~J: 

~ =  ( ~ * + a * ~ ) ~ 0 = ~  ( h 2 M n M n + ~ M k l ~ k ) c f z j 2 1 A ~ + l o w e r  order terms (3.1) 
/ J  

with h(z, ~) non-zero and real analytic. 
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Fortunately,  the bounday conditions our solution satisfies are preserved in form 

under this change of orthonormal frame; a form ~ as above satisfies both ~-Neumann 

boundary conditions if 

(i) ~ = 0 on F whenever n e J ,  

(ii) 3 I ~ v ~ = 0  on 1 ~ whenever nCJ. (3.2) 

Instead of the "subelliptic" estimate (1.6), we shall find it useful to use the 

analogue of (1.4') which omits the quadratic form: 

l . J  t=J=l  J=l l ,  neY  

for all (p, q)-forms ~ = ~ r l  ~vH ~~ ~ satisfying the two ~-Neumann boundary conditions 

given in (3.2). To pass from (1.6) to (3.3) is not difficult, but  we sketch the main steps. 

First, one inserts ZjT for v in (1.6), and in commuting the Zj on the right into its final 

position (i.e., in reaching the expression (8~v, ~Z~ZKf ) + (~*~v, a*Z~Z~v)) one must  estimate 

[[Tq~[[. Writing [[Tq0[[~=(T~v, T~v) and expressing one of the T 's  in terms of two Z/s ,  

one is led to estimating IIZjAtgl/2Tq~ll ~. Here Atg is the tangential pseudo-differential 

operator (with suitable compactly supported functions) whose square is 1 -Atg ,  Atg 

denoting the "tangential Laplacian", the sum of second derivatives in tangential direc- 

tions in some local coordinate system. I t  is not a pseudo-differential operator in the usual 

sense, but inserting now v=At~I2TT in (1.6), all commutators encountered are bounded 

by 11D~I[-1/~. tg where D is any first order differentiation and the norm is tile Sobolev norm 

of tangential order - �89 L 2 overall. But  such expressions are of lower order than those we 

set out to bound (for example, normal derivatives are estimated by 3 I  n and T and T 

by two Z~'s). Finally for the last term on the left of (3.3), since such components vanish on 

the boundary, one has a coercive estimate for them, i.e., the two norm is bounded by 

[ ]  acting on those components; but  the principal par t  of [] is diagonal hence for any (I ,  J) ,  

II[] ~-ll ~ II[] ~11 modulo first order terms, all of which are bounded already. Note tha t  the 

second of the boundary conditions in (3.2) is needed once all commutations have been 

effected, e.g., once one has (~v, ~Z~ZKf ) +(~*% ~*Z~Zjcp) and commutes the operators 

and its axijoint to the left. 
r~q - hu 

In our Klb estimates, 1 0% was reinserted in (1.4') and (1.4"). Here, boundary conditions 
q - h  

must  be preserved as well; TD*v being scalar, (3.2) (i) is automatic,  but  (3.2) (ii) is not. 

For while [_]~n, Zj] = [3~,, T] = 0, and hence [/~, ,  T~,]q' -- T -q' for any YJ1, we must  ensure Mn ~Pl 

tha t  any ~Vl-~-Dk~v which arises in our estimates satisfies Mn~vl = 0  on F, since then if u 

satisfies (3.1) (ii), so will T~',u. 
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Which v I = D k v  arise? Lemma 1 gives T derivatives on V and (2.16) shows that  

Xj(=~/~xj), T(=~/~t), and ?/~y derivatives may  occur on F. We consider eoordinates near 

F given as follows: Let  0 = 0  on F and satisfy JTo- -1  near F, ~ real, since J T  is. A point 

p near P will have coordinates (x, y, t, s) where s=~)(p) and (x, y, t) are the coordinates 

of the (unique) point on F lying on the integral curve of J T  through p. In these co- 

ordinates Xj=~/~xj, Yj=~/~yj+xj~/~t, T=~/~t on F, and since [Xj, J T ] = [ Y j ,  J T ] =  

[T, J T ] = 0 ,  also near F, as one easily checks. Furthermore, M~=@/@t-i(@/~s), hence 

[-Mn, ~/~Y~] =0 by definition. Thus for any D% 2 which can occur in (2.16) or the proof of 

Lemma 1, M~/)kV = Dk~nV. 

To construct V for which M~y, vanishes to high order on F, we merely prescribe 

V =V(x, y, t) and define 

V(r)= ~ oJTJv/]!. (3.4) 
1<r 

Then 

M~ y'(r) = ~rT ~ + * v/r ! 

M~ V(, ) = (Tv)(~) + (Tv)(~_I). (3.5) 

The obvious analogue of Lcmma 1 is clearly valid for (Tq)v(,) and we omit details. 

The outline of the proof is this: to estimate TPu in a neighborhood of x 0 E F, we choose 

a first localizing function V with suitable growth of derivatives on F, then form V(r) as 

above and modify the definition of V(r) away from F by multiplying it by a function of 

the distance to F only, a function equal to one near F and vanishing outside a suitable 

neighborhood of F, depending on the size of the support of V, and with the same growth 

of derivatives as V. In the region where this function is varying, the ~olution is analytic. 

We then insert ~0 =(Tq)~(,)u in (3.3). Since the principal part  of [] is of the simple form 

given in (3.1), we first bring h 2 out of the norm; this means that  the principal part  we must 

consider has the form 

D ' = M , _ ~ f n +  ~ M;M;,  M'j=h-IMj.  
t<n  

In commuting (Tq)v(,) past [] ' ,  we incur errors of the following types: 

(i) [[[a(x) Z, Zk, (Tq),{.}] u[[ ] 

(ii) HM.[-~, (Tq),(,)] u H ] (3.6) 

(iii) [[[M., (Tq)~(.,]M,,u[[ 

and essentially no others; first order terms may contribute Mn or Mn times the commu- 

tator of (Tq)~(.) with a coefficient, but  M~ is replaced by _M~ and T, T then replaced by 
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two Z's, and these are covered by  the t rea tment  of (iii) and (i) above. The analysis then 

proceeds as in the first par t  of the paper, section 2, with the following observations kept  

in mind. First, while (i) is formally identical to cases considered in section 2, the 

localizing function is more complicated, receives more derivatives, these being offset in a 

sense by  the factorials in (3.4), and must  be consequently capable of sustaining up to 

q + r + 2  der ivat ives--we shall take these differences into account  shortly. Secondly, (ii) 

will yield a new kind of term, namely  

(ii') ]lM~( Tq)r,+ l~ ~T ulJ/r! 

which m a y  be very  effectively est imated since with r large, M n acts on a funct ion which 

vanishes to very  high order on F. I n  fact, coercive estimates apply,  and if r is comparable 

to  q, this term, with (Tq). writ ten out,  is bounded by  a sum of terms of the form 

(ii") II1p T~j ~ i(Mn) iJTa"Qru[[/r! j!. 

When  ~ has growth conditions as in section 2 satisfied, we bring it out  of the norm and 

are left with a coercive problem because of the presence of Qr. Last ly,  to  t reat  (iii) of (3.6) 

we recall t ha t  the boundary  conditions (3.2) tell us t ha t  on components  u~j with nEJ, 
any  two derivatives are estimated, namely  M ,  and,  as we shall see in a moment ,  a T 

from (Tq)., modulo pure Z errors, and on components  with nCJ, MnUll vanishes on F, 

hence any  two derivatives of it may  be estimated, namely  two T ' s  which we shall ext rac t  

f rom (Tq).. To examine this "ex t rac t ion"  of two T's,  we write out  (Tq)., omit t ing powers 

of - 1 ,  in the form (cf. (2.4)): 

q 2 2 (q 1) q 1 [ (q) q Y (Tq)z = ( T - ) x T  +I - Z - T / ( q - 1 ) . +  Z Z /q. 
(Tq')z T(Tq')z- (Tq')rz 

so tha t  

q q--~ q - 1  q q ) 1 

(Tq)z= ~. ~. T2(T q J k)~(,,k 2)+ ~ Cq-JX(q)Zq-J/(q-j)!+ 7. ~. TZ(ql)Zq-J-k/(q-j-k)!. 
1=1 k ~ l  J=O 1-1 k - 0  

That  is, modulo terms involving only Z differentiations and balanced by  appropria te  

factorials, two T ' s  m a y  be pulled to the extreme left. And all derivatives which land on 

the localizing functions are Z 's  or T's,  and so do not  interfere with the vanishing on I ~ 

of these functions when differentiated with /1Jn, which commutes  with all Z ' s  and  T. 

In  particular, (iii) dictates t h a t  we mus t  take Z = M n ~  at  least, and recall t ha t  MnyJ = T~. 

Thus in dealing with (iii) we are led to est imate 

T'(Tq-t),(,-1) M~ u,[I 
( r - l )  "" " "  
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with n r J and i >~ 2. And since even a second T derivative m a y  be est imated on compo- 

nents which vanish on F, such as M~u~l with n ~J ,  this term is est imated by  

( r -D  

which in turn,  because of the diagonal i ty  of the principal par t  of [ ] ,  is bounded by  

modulo first order terms. These first order terms m a y  be of the form (coeff.) Z (for which 

we bring Mn across and have a good estimate modulo "coercive" terms), or (coeff.) Mn, 

which we rewrite in terms of [ ]  and ZZ, or (coeff.) Mn. This last, which in terms of t h e L  ~ 

norm is writ ten 

is t reated by  first put t ing  both  21~'s on the left, modulo a term which vanishes to high 

order on the boundary ,  and then observing tha t  the estimate (3.3) could as well have the 

term HM~M~cf,[[ added to the left; on components  with n E J, this is the coercive est imate 

since those vanish on F, while on components  with n t J ,  one m a y  revert  to  (1.4) with 

v = l ] l ~ ,  since (1.4) requires only the first of the boundary  conditions in (3.2), and com- 

mute  one of the ~]7, to the other side modulo terms which can be observed on the left of 

(3.3). Thus (i), (ii), and (iii) are all errors of lower order. 

As expected, we iterate this process until  the operator  (Tq)v is eliminated. When  

this occurs, there m a y  still be q differentiations, but  all in Z directions, times a qth 

derivative of the localizing function (actually, (q+r ) - th  derivative) balanced by  q!r! or, 

more generally, whatever  Z derivatives remain are balanced by the corresponding factorial 

and when more than  q derivatives appear  on ~ they  do so in the form - (q) Taking r ~V(s). 

originally to be q so tha t  commuta tors  with M n still behave coercively, and choosing 

to be 2q times differentiable with proper growth (actually the s tandard  construct ion of 

the yJ gives dq for any  given d), one still has the est imate ~(s)" (q) ~Cqq!j 2q for q between 

p/2 j and p/2 ~-1 (s<~q), and this is what  was required to allow the overall i teration to 

proceed in section 2. 

4. Theorems 1' and 3' 

We shall discuss here, briefly, the changes which must  be made in the above 

discussion to prove the micro-local results. But  since the major  technical features, such 

as the definition of (Tq)q~ and the  choice of a sequence of localizing functions, as well as 

the  iterative process, are essentially the same, we do no t  present  a full proof. 
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The first  observat ion  is t h a t  (1.8) m a y  be expressed in t e rms  of a p roduc t  of two 

localizing functions,  namely  ~ and a funct ion 0(~), homogeneous  of degree zero in 

for I ~ ] ~  > 1, identically one in the  chosen cone and  vanishing outside a slightly larger 

cone, I~1 ~> 1. This funct ion is chosen with the same bounds on growth  of der ivat ives  on 

I~1 = 1  as Y~N, and  when a change f rom ~N to ~0 N, is required, the  funct ion 0(~) is also 

changed. To  see t h a t  this is possible, we present  a proposi t ion which expresses the  

c o m m u t a t o r  of 0(~) with a funct ion of the  spat ia l  variables  in a form suitable for our  

purposes: 

PROPOSITION 3. Let 0(~) be a smooth /unction o/ ~, O(D) denoting the pseudo-di/- 

/erential operator with 0(~) as symbol, and let g(x) denote a smooth, compactly supported 

/unction o~ x. With D ~ denoting any r-th order partial derivative in the x-variables, we have: 

([0(D), g] n~w) ̂  (~) = A o + ~ A, + ~ B~ 
i-1 |=1 

where 

(Ao w) ̂  (~) = j (f+l))^ (~_ ~) Jo tr~ (' + t(~ - ~)) dt~(,)  d~ 

and 

( A i w , ^ ( ~ , =  ~ ~ f , g ( r i i ) ) ^ , ~ _  , ,  f l t r  f l t ] - t  I ... f l t ; ,  ~ b~+l-k)(,  ~-tt I . . .  t t ( ~ - - , ,  , 
J=l ~t=1 J J0 J0 J o  k 0 

x ( ~ -  tt I ... tt( ~ -~))J-kdtdt~.. .  dtt~(~)d ~ 

with r ' = r - ~  ij, and where the bjk are the coe//icients o/ x ~ in the espression ((xD)te~)/e ~. 

denotes summation over those i t. with ~' <] ,  and 

(B~w)̂ (~) = ~ ~ (1/~ ir] 
~=lt / 1 J'~t \ t '~l" / 

t"<t 

where Ij = ~,f<fif. 

t 
~. bm 0(~-k)(~?) ~,"~(~) d~. 

k 0 

The proof goes as follows. A first  order Tay lo r  expansion of 0 gives 

([o, g] D'w) ̂  (~) =/(g')^ (~-,~) F 0'(~ + t(~-,1))dt,'~,(,)d,7. 

Writ ing one ~/ as r / + t ( ~ - ~ ) - t ( ~ - ~ )  m a y  produce O'(~l+t(~-~))(~l+t(~-rl) ) (which has 

order zero) or m a y  add a der ivat ive  to  g. In  the  la t ter  case we express another  ~ in the  

same way,  repeat ing each t ime a der ivat ive  lands on g. This gives the  t e rm A o plus 

f(g(J))^ (~ -- ~) f ~  t t-10' (~ "~- t(~ -- ?~)) (~] + t(~ -- ~])) ?~r-t~)(~) d?~ d t .  
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Here  we rewri te  the  in t eg rand  in t wi th  a f irst  order  Tay lo r  expansion:  i t  is 

tJ-~(O'(7)7 + ((d/ds) (0'(7 + st(~ - 7 ) ) ) ( 7  + st(~ - ~ ) ) }  

which yields  B,  plus  t e rms  wi th  one more  de r iva t ive  on g and  whose t - in tegrand  is 

~ (0"(7 + st(~- 7)) (7 + st(~- 7)) + 0'(7 + st(S- 7))} tl ds. 
j 0  

Now we begin over,  rewr i t ing  7 in t e rms  of st, etc.  

To see the  effect of Propos i t ion  3, one f i rs t  not ices  t h a t  in the  A j  terms,  w is no t  

d i f ferent ia ted .  F o r  a g iven ~, the  sum of b~kN k m a y  be wr i t t en  as the  va lue  of the  sum from 

0 to  ?" of the  expression ((xD)%X)/e x a t  x = N;  for N ~> ], a s t a n d a r d  induc t ive  a r g u m e n t  shows 

this  is bounded  b y  CJN j. Thus the  sum of the  A t is a sum of 2 r t e rms  each of the  form 

g(r+l) t imes  a p roduc t  of reciprocals  of m d i s t inc t  integers  t imes  an  ope ra to r  of o rder  - 1  

which involves  de r iva t ives  up  to  order  m of 0 opera t ing  on w. Thus,  for example ,  a n y  such 

te rm will have  L 2 no rm bounded  b y  Cmsup ]g(r~l~]Nm/m!; bu t  wi th  N comparab le  to  r, 

even if the  bounds  on the  size of g(8) are  like (KN)  ~, this  t e rm is bounded  by  C'rr! Those 

t e rms  wr i t t en  Bj,  wi th  s de r iva t ives  on g and  r -  s r emain ing  are C s in n u m b e r  a n d  each of 

the  form g(S) t imes  a p roduc t  of reciprocals  of m d i s t inc t  integers,  m ~< 8, t imes  a pseudo-  

different ia l  ope ra to r  of the  form o(m)(D)D 'n ac t ing  on D~-~w. Hence  the  conic suppo r t  

of the  pseudo-dif ferent ia l  ope ra to r  is preserved,  and  in no rm such a t e rm is bounded  b y  

C s sup Ig (~) INto~m! t imes  an  a p p r o p r i a t e  L 2 no rm of Dr-Sw. Whi le  N'~/m! is no longer  in 

general  well bounded ,  if g is real  ana ly t i c  we do have,  over  compac t  sets, [g~8~[N'~/m! 

s~-'~N m < N  ~ if N >s ;  and  in the  presence of e i ther  an  opera to r  01(D ) with  conic suppo r t  

where 0 = 1 or  ano the r  funct ion gx with  suppor t  where g = 1, none  of the  t e rms  in t he  

sum of the  Bj  occur a t  all. I t  is this  last  p r o p e r t y  which permi t s  one to  pass from one 

O(D) to  another ,  one spa t ia l  cutoff  to another .  

Thus  in place  of ~ we work  wi th  ~ 0 0 ~  N wi th  v2~(x ) ident ica l ly  equal  to one near  

supp  YJu; every  c o m m u t a t o r  wi th  an  Xj  or T is ve ry  simple,  since the  Xj  have  such s imple 

expressions in local coordinates .  Commuta to r s  wi th  ana ly t i c  funct ions  are  wr i t t en  out ,  
. . . .  "h ~,,t ( .~)~(k)~,,(t) f 'Pq /2~s according to  Propos i t ion  3, down to pure ly  L ~ t e rms  in u. W h e n  we . . . . . .  ~N ~0 VN ~ ~ ,  

we inser t  ano the r  set of such localizing funct ions  and  remove  the  old, modulo  L 2 errors  

on u, or r a the r  we replace  T q/2 above  t b y  the  analogue  of (Tq)v above,  namely ,  

( T~)v,~ = 
r 0 

I~ ~ l ~ r  

( - 1 )~{x"~x  '~, ~'0~,} X"~X'ZTS-r/~! 8! 
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where by curly brackets we denote iterated commutator,  in other words, the pal% of the 

simple commutator  in which no derivatives survive. Lemmas 1 and 2 continue to hold, 

with appropriate modifications (now commuting with a function g has differentiations on 

g coming from the curly brackets as well, and g with these derivatives must  be brought 

to the extreme left and estimated out of the norm at  each stage). With these modifications, 

the proofs of Theorems 1' and 3' go just as before, and we omit  the details. 

Appendix 

A1. The a priori estimates. The usual form of the "subelliptic" estimate associated with 

[ ~  and similar operators is not (1.4) but  rather 

IIx  JJ + c(P , + CIfvll (A 
t 

for all smooth v with support  in a fixed compact set. To see tha t  (1.4) follows from this, we 

let v=Xkw, w smooth and of compact support, where the X ' s  now need not be of any  

special form. The commutator  PXk-XkP  on the right will in general contain Xt T and 

using a weighted Schwarz inequality, (AI.1) reads: 

Ilx, x vll +EllX vll , <c'llpvll +c'll,,ll +c ' E I(gjkX, rv, Xkv)l ( i  1.2) 
J,k  k t . k  

where the gj1: are smooth functions. Now if even one eigenvalue of the Levi form (c~j) is 

non-zero, T can be expressed in terms of two X's,  and hence any commutat ion errors 

introduced in rewriting the last term in (A1.2) will be absorbed, possibly with a new 

constant. Thus denoting by A ~ t the "classical" pseudo-differential operator with symbol 

~(I + I~]")• ~ and @ smooth, compactly supported functions (both with support  in the 

region where (1.4) is to be demonstrated and equal to one near the support  of v), we again 

use tile Schwarz inequality, and, modulo errors which can be absorbed in (A1.2), have 

I(qjkij Tv, Xkv) l <~ ~llXkvll] +C~ [[h-tXjTv[[ 2 

and, again modulo such errors, using (AI.1) a second time, 

IIA-tXjTvI[ 2 < C(PA-~Tv, h-tTv) <~ C(TPv, h - t h - J T v )  < CHPv H ~ HijXkvll, 
t , k  

whence the result. 

Using the same methods, we next derive (1.4") from (1.4). Replacing v by Xkv in 

(1.4), one must  estimate the commutator  PX,~-XkP; terms with X 2 are readily handled, 

but  there remain terms of the form HX~Tv H to estimate. Now (1.4) may  have ]]XkvHt 
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added to the left wi thout  change (except for the constant),  hence we are allowed as errors 

small multiples of IIXjXkvHi. Hence with A -  t as above, modulo admissible errors we are re- 

quired to estimate A-�89 Expanding  one T in terms of two X ' s  and using (1.4) again, we 

m a y  write llA-~T2vH <CIIPA-~Tv H ~C ~. HXjPvH +C ~ IIs + c  ~ Hx~xkTvll_s,~. 

But  in both  of the last two terms we m a y  associate the T differentiation with the nega- 

tive order operator  or norm, modulo lower order errors. The estimate (1.4") follows a t  

once. (Higher order versions of (1.4) m a y  be proved in the same manner,  but  we do no t  

need them here.) 

A2. C ~ hypoellipticity. I n  this section we prove C ~ hypoell ipt ici ty for operators satisfying 

(1.4); we have taci t ly  used this already in the proofs above, since we have est imated 

high order derivatives of solutions, not  proved tha t  they  existed. H a d  we taken  as our  

start ing point  the  more s tandard  subeUiptie est imate (AI.1) ,  we could have merely 

quoted the m a n y  known regulari ty results (ef. [20, 27]). 

PROPOSITION 4. Let P be a system o/partial differential operators of the form (1.3) 

satisfying (1.4) in ~,  and let the Levi form c m, given by (1.1), have at least one non-zero 

eigenvalue. Then P is C ~ hypoeUiptic in ~.  

Proof. With  ~0EC~(~)  fixed, let s(u) denote the largest (possibly negative) integer 

such tha t  ~vouEH ~(~. Since we m a y  apply (1.4) to functions in H 2 with compact  suppor t  

contained in ~ ,  let us set vo=O1A~(~)-20~vlu where A has been defined in A1 and the 

functions 01, 02, and ~v 1 are so chosen in C~(~) t ha t  0 x ~ I  near supp Y~I, 0 z - 1  near 

supp 0 x, and ~0 ~- 1 near supp 0~. Suppressing these localizing functions where there is no 

confusion, we now set 

v ~ A s{u)-2 ~rA~r~VlU 

for r > 0  bu t  free, where A~ r has symbol (1 + 18~]2) -r/2. For  8 > 0, this function belongs to 

//2, and to show tha t  voEH ~ it will suffice to show t h a t  the  L ~ norm of v is bounded 

uniformly in 8-~ +0 .  

LEM~A 8. Let a(x) be a smooth/unction. Then for any N, [A~ ~, a(x)] = ~ Q ~ A J  +Q_~ 

where Q(_~ and Q-N are pseudo-differential operators o/order - 1 and - N respectively, uni. 

/ormly in 0 <8 < 1; that is, their norms, mapping H t to H t+l or H t+N, and the norms of their 

(iterated) commutators with other pseudo-differential operators between the appropriate Sobolev 

spaces (locally) may be bounded uniformly in 0 < 8  <1.  The operators A$ r have the same 

/orm as A;', with possibly differentiated/unctions Oj. 



THE LOCAL REAL ANALYTICITY OF SOLUTIONS TO D 0 AND THE ~-NEUMANI~ PROBLEM 203 

Apply ing  (1.4) to  this  v gives the  es t imates  

IlX2A*'"'-2+rAarV, iull < CllPAs,U,-2+~A;rwlul[ + K  r 

wi th  Kr independen t  of (~. Now since P is a sum of t e rms  of the  form a ( x ) X  2, t he  commu-  

t a t o r  te rm,  modulo  a h ighly  nega t ive  no rm of V1 u, will be a sum of t e rms  the  wors t  of 

which is of the  form 

[[XA.,.,-~+~Ax~w~ull 
where  the  .~ are  of the  ind ica ted  form and  the  cutoff  funct ions  m a y  have  been different i -  

a ted.  Again  modulo  lower order  errors, th is  t e rm  is bounded  b y  

~ 
I I X M ( ~ ) - 2 + r - ~ f t  xrwl~tl]�89 

B u t  in t he  presence of a t  leas t  one non-zero e igenvalue  of the  Levi  form, the  le t  h a n d  

side of (1.4) ac tua l ly  conta ins  IIXA~'~'-2~A~-~Vlu]I�89 as we have  r e m a r k e d  earlier.  Thus  

our  error  is smoothe r  (in all  direct ions) .  R e p e a t i n g  this  a rgumen t  wi th  r r ep laced  b y  

r - % ,  etc. ,  unt i l  all  errors a re  bounded  by  ]lV0ull~(~), i t  is clear t h a t  the  lef t  h a n d  side is 

bounded  i ndependen t l y  of ~, so t h a t  V I U s  ~l~)-~+, with  r a rb i t r a ry .  
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