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Since the introduction of the celebrated -Neumann problem by D. C. Spencer in the
1950’s, with related problems being studied by Garabedian and Spencer [12], Kohn and
Spencer [21], and Conner [5], regularity properties of solutions of non-elliptic partial
differential equations have been closely linked with important questions in the field of
several complex variables, as well as purely real variable questions such as the real
analytic embedding theorem of Morrey [23). The C® regularity results of Kohn [18)],
later simplified in [20], gave rise to much interest in higher regularity properties both for
the 0-Neumann problem and, at the same time, interior problems for operators such as
the “complex boundary Laplacian”, [J,, which appear elliptic in most directions and
suffer a loss of one derivative overall, whence the name ‘“‘subelliptic”.

In the elliptic case, either for interior or coercive boundary value problems, local
regularity of solutions has been well established for some time [24, 25] in the C®, Gevrey,
and real analytic categories. The proofs are of two kinds: “classical” proofs, which rely
exclusively on L? methods (Girding’s inequality) plus carefully chosen localizing func-
tions, and proofs employing pseudo-differential operators as introduced by Friedrichs and
Hérmander. This theory has been widely developed in recent years and broadened to
treat non-elliptic problems, either by means of Fourier Integral Operators or by hyper-
function technigues, and special classes of such operators have been introduced to analyze
the behavior of operators such as [J, [9, 4], guided in large measure by results and
methods in the theory of nilpotent Lie groups such as the Heisenberg group [11]. And
the conviction, on the part of many, that [J, should be locally analytic hypoelliptic was
based, perhaps, at first largely on the explicit fundamental solution for this operator on
the Heisenberg group which is analytic off its singularity, cf. [11].

On the other hand, initial efforts to prove that these operators enjoyed high regularity
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results seemed blocked at the Gevrey class 2 level [6, 27] and with good reason in view
of the example of Baouendi and Goulaouic [3] which consisted of a very simple, second
order operator which is subelliptic yet is hypoelliptic only up to the Gevrey class 2 level.
It was then observed independently by Komatsu [22] and Tartakoff [28], see also
Derridj and Tartakoff [7], that under an additional hypothesis on the non-degeneracy
of the Levi form associated with these problems, a condition violated by the example of
Baouendi and Goulaouic, one could obtain at least global regularity of solutions in the
analytic category. Soon after, I showed, using this non-degeneacy hypothesis, that. one
could obtain local hypoellipticity in all Gevrey clases (except the anpalytic one) and in
some quasi-analytic classes as well, and these results were extended in [8]. All of these
results employed L? methods only.

Very recently, two completely different lines of argument have produced the local
real analytic result. That of Tréves [32], using the hyperfunction machinery of Sato,
reduces the 9-Neumann problem to a problem in the boundary with pseudo-differential
coefficients but vector fields of a particularly simple type; the local model for this problem
is then a so called Grushin operator with parameters, whose parametrix is obtained
together with explicit and very delicate estimates for each term in the symbol expansion
of the parametrix; finally, the actual problem is treated with analogous estimates.

By contrast, the present proof, as announced in [31], is very classical. We start from
the basic estimate of Morrey and Kohn and estimate each derivative of the solution,
using carefully chosen localizing functions and a special construction of a high order
differential operator to estimate differentiability in the non-elliptic direction. We feel
that this method has three pleasing features: first it is not limited to operators whose
principal part is diagonal; second, it is not tied to the real analytic category—it would

apply as well to a wide variety of {(non-)quasianalytic classes; and third, it is elementary.

Acknowledgements. We should like to thank L. Nirenberg for originally bringing this
problem to our attention, A. Dynin for pointing out the implications of the Darboux
theorem in this setting, and A. Melin for substantial simplifications in the proof. Thanks
to him, the formulas have been vastly simplified and the main proof very much
shortened with the help of suitable notation and norms, breaking it down into compre-
hensible steps. We are also grateful to M. Derridj, J. J. Kohn, M. Kuranishi, J. Rauch and
L. Rothschild for helpful discussions concerning the problem.

1. Statement of results

We formulate our results for operators like the boundary Laplacian first in rather
abstract terms and then indicate how [J, may be viewed to be of this form. The é-Neumann
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problem will then be presented and the local result stated. And, finally, we shall describe
micro-local versions of these theorems.

On a real, real analytic manifold M of dimension 2r —1 we consider 2n —1 independent,
real analytic vector fields Z,, ..., Z;, o, T' with the property that the matrix c,(z),

Z=(Zy, ..., Xan_y), given by

[Z,, Z] = cyfx) T modulo {Z,} (1.1)

and called the Levi matrix, satisfies

det (c(@)) %0 (1.2)
near a point x, in M. We consider a determined system
P =3 a3(@) 2,2+ 2 a,(x)Z;+a(x) (L.3)

with summations for j, k=1, ..., 2n —2, each coefficient being an s by s real analytic matrix,

and shall assume that P satisfies the a priori inequality:
212,Ze0] < CE|1Pol| + o]}, vECT(Q), (14)
€) a fixed open set in M, norms being L% M) norms.

THEOREM 1. Let P be given by (1.3) and satisfy the estimate (1.4). Assume that the
Levi matrixz cy(x), given by (1.1), satisfies (1.2) in Q. If w(z)€ED'(Q) satisfies Pu=—f,

f analytic in S, then u is analytic in Q.

To see that [J, is of this form, we recall that (], = 0,85 + 85 0,, where 3} is the (formal)
adjoint, with respect to a fixed L? inner product, of d,. J, itself is defined in terms of an
orthonormal basis of 1-forms w,, ..., w,_;, @y, «o., ®p_;, T and dual, real analytic complex
vector fields Ly, ..., Ly_y, Ly, ooy Ly_y, T=T on (p, q)-forms

wx)= > wpy@o'Ad’ AT
viza "
by
GwE)= > (Lywy ()@ Ao’ Ao’ AT
e
modulo terms in which the coefficients are not differentiated, terms so chosen that (8,)2 =0.
Thus [J, maps smooth (p, g)-forms to smooth (p, g)-forms and hence may be viewed as a
system of partial differential operators acting on vector valued functions. Clearly [T, is of
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the form (1.3), if we let the Z; denote the real and imaginary parts of the L, and condition
(1.2) is easily seen to be equivalent to the non-degeneracy of the usual Levi form. Fi.
nally, the a priori estimate (1.4) is an easy consequence of the “subelliptic”’ estimate of
Morrey and Kohn (cf. the appendix for this derivation) which is well known to be valid
whenever the Levi form has max (g+1, » —q) eigenvalues of the same sign or min (¢ +1,
n —q) pairs of eigenvalues of opposite sign at each point (condition Y(g)) on (p, g)-forms.

Thus for [J, our theorem may be stated:

THEOREM 2. On a real analytic C—R manifold whose Levi form is non-degenerate
and which satisfies Y(q), [, is locally real analytic hypoelliptic on (p, q)-forms.

The local regularity question for the d-Neumann problem may be formulated as
follows. Near a point z, in the boundary of an open set 2 (in C*, we may assume) with
I'=2Q) defined locally by the equation » =0 with Vr3:0, r(z) real analytic, the operator 8
and, relative to a real analytic Hermitian inner product, its L2 adjoint are well defined.
Given an orthonormal basis @y, ..., w, for the space of (1,0)-forms on Q near z, with

Wy, = Véar, we have

(2 wy@o' Ad)= 3 (Lywy(x) o' Ao’ A e’
{=p ]|=p
7l=q IJ|;=a

again modulo terms in which the coefficients are not differentiated, terms chosen 8o that
72 =0. Here the vector fields L, are dual to the w,,and for j <n,L,r = L,r ~0. The 3-Neumann
boundary conditions are locally defined by: w€ D?¢ provided any coefficient w,(z) with
n€J vanishes on I'. A solution of the &-Neumann problem is a (smooth) (p, q)-form
w€ D™ with dw€ DP9+ guch that, with L? inner products,

(Bw, Bv) + (*w, 7*v) = (f, v) (1.5)

for all € D? 9 Then, if 8f=0, one can show that dw=0 and hence 9(0*w) =f with &*w
orthogonal to all holomorphic forms. In terms of the vector fields L, and their conjugates,
the left hand side of (1.5) has the property that L, acts only on components which vanish
on T'. The a priori estimate of Morrey and Kohn may be written: there exists a constant C
such that for all (smooth) (p, ¢)-forms v€D?<, v=3 v, (x)w’ A&,

n n-1 —
5 (3 Mol S 1Eall) + 3 leullt< 04, B0+ G 3o+ S ol (1.0
I,J \f= - . I,
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where >’ denotes a sum over indices with n€J and all norms are L? except the last on the
left, which is the Sobolev 1 norm. The estimate (1.6) is well known to be valid whenever
the Levi form ¢, () defined by

[L,, L] = icy(x) (Ly— L,) modulo {L,}, {L,}, j<n (1.7)

satisfies condition Z(g): c,,(x) has at least n—g positive eigenvalues or at least g+1
negative ones. To state the next theorem we denote by (' the intersection of a full
neighborhood of a point z,€I" with €, and observe that both the a priori estimate (1.6)

and the notion of solution to the 8-Neumann problem make local sense.

TEEOREM 3. Assume that the estimate (1.6) is valid in ', that the Levi form cy(x)
is non-degenerate in ', that T' is real analytic in Q' and that w is a solution to the 8-Neu-
mann problem with | real analytic up to the boundary of Q in Q'. Then u is also real analytic
up to the boundary of Q in .

From the proof of this theorem it will be clear that it holds for a wide class of
boundary problems for elliptic operators with non-degenerate Levi form; for the present,
however, we content ourselves with this, so far the most significant, case.

Next we describe micro-local versions of these theorems:

Definition. Let v(x) be a smooth function defined in a neighborhood w, of a point
z, ER™. We say that a point (z,, &) € T*R™ does not belong to the analytic wave front set of
v, (%, &) ¢ WF 4(v) provided there exists a neighborhood w, of x, compactly contained in
wy, a constant K, and an open cone, I', in R™\ {0} containing &, and, for any N, a function

yy in CP(w,) and identically one near &, such that
[(pnv)~ ()| < K1+ |y|/N)™™, neT. (1.8)

TuaEOREM 1. Let P be given by (1.3) and satisfy the estimate (1.4). Assume that the Levs
matriz cu(z), given by (1.1), satisfies (1.2) tn Q. If u(x) is smooth and satisfies Pu=f with
(@o: £o) EWE4(f), then (xy, &) ¢ WF 4(u).

There is an obvious notion of “tangential wave front set”” which we introduce for the
micro-loecal version of Theorem 3; since the interior problem is elliptic one needs to know
that micro-locally the Dirichlet data of the solution behave well with regard to analytic
wave fronts. Thus we fill in a neighborhood of 82 with a one parameter family of hyper-
surfaces, I';, 0<¢<1, with 8Q =I";, and (under a real analytic coordinate change) speak of
the wave front set in T*(I';) of functions restricted to I';. In particular we shall take for
the I'; integral surfaces for Z,, ..., Z,,_,, 8 as defined near éQ in section 3.
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THEOREM 3'. Let (1.2) and (1.8) be satisfied in ', with the boundary of Q real analytic
in Q. Let u(x) be a (smooth) solution of the 8-Neumann problem in Q' with (x, &) ¢
WEFE,(f|r,), z€T;, uniformly (the same cone and constants), 0<¢<t, Then the same is true
for u, 0<t<ty for any ty<t,.

To pass from Theorem 3’ to “micro-local analyticity up to the boundary” perhaps
the most natural method is described in [16] (see also [25]); one reduces the problem to a
pseudo-differential one in the boundary and then expresses the restrictions of all normal
derivatives of the solution to the boundary in terms of lower order ones and f and concludes
that none of these have (z, &) in their analytic wave front set (hence that (x, ¢, &), 7) does
not belong to the analytic wave front set of the solution for any ¢>0 and any 7).

Theorem 1 is proved in section 2 and Theorem 3 in section 3. Theorems 1’ and 3’
are discussed in section 4, and in the appendix we discuss C*® hypoellipticity and various
estimates.

2. Proof of Theorem 1

The first step in the proof is to show that under the non-degeneracy hypothesis on
the Levi form, we can reduce the problem to one of the same form which lives essentially
on the Heisenberg group. That is, there is a real analytic coordinate change in terms of
which the linear span of the Z, is the same as the linear span of the much simpler vector

fields, which we also denote by Z,,
Z,=X,=8lox; ifj=1,.,n-1,
Ziy =Y, =00y, +x,0l0 ifj=1,..,n—1.

This reduction, which was pointed out to us by A. Dynin, is an immediate consequence

of a classical theorem of Darboux:

THEOREM (Darboux). Let w0 be a real analytic one form on a 2n—1 dimensional
manifold such that w N (dw) A ... A (dw) is a volume form, with n —1 copies of dw. Then after
a real analytic coordinate change, w=> z,dy,—dt.

For our application, the one form w is a real one form polar to the original Z,. The
non-degeneracy condition (1.2) ensures that we have the required volume form, and the
new Z, are clearly annihilated by the new form of w. The operator P is unchanged in

form and the a priori estimate (1.4) is also preserved (with a new constant).

ProrostTiON 1. The solution u will be real analytic near x, provided there exists a

constant C,, such that, in L* norms in a neighborhood of z,, we have

12 Tru] < €, 007 | 1] +7)Y,
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where Z; will denote any
Z]=Z11Z12 e Zilll.

We omit the proof, which is elementary, if tedious.

A few simplifying assumptions are in order. First, we shall take Pu=0, since the
Cauchy-Kowalevski theorem always allows this in the real analytic category. In other
categories the presence of f would change little. Next, we observe that we may replace the

estimate (1.4) with the more useful form

2 12, Z, v + ||ol|, < €| Pol, 1.4)

(provided we work sufficiently locally, as we may), for 7' can always be written in terms
of two Z’s.
The classical proof of analytic regularity in the elliptic case begins by inserting the

function v=zpDiu in Girding’s inequality:

izl ”D1 D,v”p < C("P‘U”La + "U”Ln), ’UEGSO,

where we have used the notation D,=8/éx,, D>=Df D3 ... Dy, the o, non-negative
integers with |a| =3 o,. Here the function y € C{’ is equal to one near ¥, where analyticity
is to be proved and vanishes outside an open set in which we take Pu=0. If the operator
P is written as a sum of terms of the form gz D with |f] <2 and g real analytic,
Py =P1pDiu=[P, wD‘i]u=Z 951 D%, v] D+ v[9s, D*| DP where the sums are over all B
with |#| <2. On the right, the first commutator contains terms of the form gﬂzp’D&*’l or
gﬂzp”D".‘ where D*+1 stands for D,D‘; for some §, while the second may be expanded as a
multiple commutator when g; and its derivatives are always brought to the left. These

fall under the schemata

pD*+2y -y D%y, " DRy 2.1)
or
pD*+ey—> > (oc’) g@OpDr oy, 2.2)
O<ar<a \&

Thus, using the bounds |¢’| <C,Cl![a’|!, and replacing «,, by just o,

IpDeul < 3 €, (|l < 0 D=~ @3)

the sum over all «', «” with 1< |a’'+a"| <|a«|. Iterating,

lwDrul <C¥ sup |afpt=-+-0D"4|. (2.4)
2?1‘;];]2?3. .
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As we shall see, given Q, ccQ, and N we may choose y=yy in OF(£),) equal to one
near Q; and such that || < C,C, N provided » <N, with C,, independent of N. Thus
when |a| =N, the left-hand side of (2.4) is bounded by C3 NV, hence by C3 N!, yielding
analyticity.

To introduce the reader to the methods we shall employ in the non-elliptic case, and
to introduce the notation and some of the norms due to Melin which allow great simpli-
fication of the proof, we outline the following approach. The schemata (2.1) and (2.2)
suggest the introduction of the abbreviation ¢ for a constant coefficient sum

G = Z CAGA,¢3 GA-W =(p(y)D8, A = (7, 6)
and a norm for it, depending on N:
MGl =2 fes] 84, [ 4] = 7| + 8], N>]4].
With (analytic) coefficients g, we may consider

G=3 €a,0.0G4.0.0
with
G = 9P DS

and we may assume that |¢@| <&'"|g]|! (by dilation), |¢| >1. The corresponding norm
will be
G llv.e = 2 eae.ol 1] [o] ! AL (2.5)

Thus the schemata (2.1) and (2.2) estimate ||y D=u|| by two kinds of terms: 57 1 ||Gu||zs
with ||| @, |lly=N'" and ||Gyul|s with

1Gawllis <[ Galll.e sup |(Gear ] Gor el o
<sup [|Gufzs,
this supremum over all @’ with
N Nl < 1 Gslllw.e <lllwDlly = 2™ if |«f <N,
¢ small. Thus after at most |«| iterations,
[y D=u|| < 3™ sup [|G"u| (2.6)

over G of the form C,y® D¢ with |[6] <1 and |||Q"||[y <N, ie., [c,[N"*H <N, As
shown above, with proper choice of yy this yields analyticity.
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In the (non-elliptic) case at hand, (1.4) measures Z derivatives effectively but 7'
derivatives poorly. Thus we must distinguish at every stage between them. With
v=yZ'T%u inserted in (1.4), the commutator [P, $Z'T*] will contain the terms considered
above and new terms which arise when [P, Z] generates ZT (times a coefficient of P).

Eventually, there will occur terms with [I| =0 or 1, and now the schema
WZIT? [P, p) 27 T% > /2" TPy

with |J|=]J'| +2=2 or 3, |J| =|J"| +1 leaves one unable to iterate effectively. What
is needed is a localization of powers of 7' which commutes well with Z.
To prepare the construction, we recall that Z2'=(Z,, ..., Z,_,), Z"=(Z,, ... Zpp ), T
satisfy
[Z;» ZI:] = (SJkT
with all other commutators equal to zero. For any given function f to be specified below,
we introduce differentiations Zj, Zy, T, with the same properties but acting only on f (or

its derivatives), and, similarly, define Z,, Z,, 7', acting on everything else. Thus,
ZiZy(fu) = ZoZf(fu) = (Z'f)(Z'w).

For now, when no target is specified, Z and T will act on everything. If F is a polynomial
in §,, &g, Ty T We shall denote by {F}v the result obtained by replacing &, by Z,, &,
by Z,, etc., with the provision that all Z;, act to the right of all Z, all Z, to the right of
all Z,, and applying this operator to gv. Thus

[Z', {F}] = {£, F —1,0F o0&} = {6' F} 2.7)

and

(2", {F}] = {&, F +7,0F o€, +1,0F &} = {0"F} 2.8)
(vector equations: Z’'=(Zy, ..., Zn_1), &=((E 1, .-s (E;)n-1), €te.), the last equalities being
definitions. Since [0}, 0;] F =7, F, there are no F for which {F} commutes with all Z but
if we overlook the last term in (2.8) for the moment, however, then the function
F=exp (0(&y, £,)/Ty), With

o(a, b) =<{a”, b'> —{a’, b">
satisfies
01 Fp =0, 0"F, =18, Fyfts.
A good approximation, then, is the analytic part of 7} exp (o(£y, &,)/v4); letting
8

(@, b)= 2 a’b"/j1,
=0



186 D. 8. TARTAKOFF

we have

elns(a(é*a §¢)3 T*) = fllpo'(é*, E(p)s/'gl
0”7‘53(0'(5*, £¢)’ T*) = 5;6(5*’ Eq))s/‘g! +T¢$,;7L',-1(0'(§*, §¢)’ T*).

We introduce the notation

(Ts)q,'v = {75‘ (U(E*’ E¢)a T*)} pv

= %: 0! Zx, Zg) T 'pufj! (2.9)

where o( , )’ and (7°) will now always carry the convention that Z’ acts to the left of Z”.
We also now write {F(&,, &,, 7., T,)} Zo Thov as F(Z,, Z,, T, T,)Z, Thpv with the order

conventions within F. With this notation we have

Lemma L. [Z, (T)]v = Zyo(Z,, Z,) gu]s!
[Z", (T*)p]v = (2, Zo) Zygpu[s! + (T° ) ro Zr v

In any open set where p=1, (T%), =T, so that (1*), appears to satisfy our requirements.
One could (and in fact we did) arrive at (2.9) by means of a certain amount of pure in-
spiration, but the above notation will be useful below.

In using (1.4), we encounter at once in [P, (17),] terms of the form Z'T*(T%), T2,

80 we may as well begin with these directly. We set
Cap= Z'TP(T™) 2800, T2, A=(I,p,m, k,r,J,q) (2.10)

with |A]| = |I|+p+m+|J|+q=|Gaql, |4l =]4| +P+g=]|Gu .|, the order of G with

T derivatives given single and double weight, respectively. A constant coefficient sum

G=73¢,Gy4,
will have the norm

NGy =2 | ea) Co NAHIEITEm /) (2.11)

with any C;>2n—2. While the operator ¢ may have several different expressions and
hence different norms, if we think of G as a formal expression whenever we take its norm
the norm will be well defined. Note that N™/m! < N¥/N!<e" for m <N, hence it is a bit
artificial, but will be useful below.

In utilizing (1.4), then, we apply it to v =G, ,u, and writing P as a sum of terms of
the form gZZ, we encounter, in the eommutator [P, G4 ,], two kinds of terms.
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1. The commutators [Z, G, ,] are straightforward. In fact, [Z, G, ,] contains at most
| 4] <N terms where [Z, Z' or Z'] generates a T, while on the other hand, when [Z, (T™),]
enters, we get

() Z'T"(Z, 0(Z,, Zy)" ' Im)) 27T
or

(1) Z'TP(T" ) grprir, ZZTO
with norms, respectively, bounded by

1G]l N (@n—2)"C5™ < N ||| Ga, ||l
and

11 Ga.olllvm/Co < N|[|Ga,o]llx-
Thus we have

LEMMA 2. |||[G4,pr Z]||nw < BN ||| Ga.pll|ws [Ga,g» Z] has only terms of | |-order< [A],
while the order || || may increase by one over || 4].

2. Commuting with a coefficient requires looking at the terms in G, ,(gv) in which

g receives some derivatives. We may write, assuming | K| +7=0 to simplify notations,

GA.«:(Q’”) =(Z,,, +Za)I(Tv.q: + T,)"{nm(a(Zo, Zy) +0(Z,, Z{p)’ T,+ Ta)} (Z, +Za)](Tv +T5)%(gv).

(2.12)

(Recall that within curly brackets, Z" acts to the left of Z”, but outside the brackets this
need not be so0.)

To rewrite (2.12) in terms of monomials in Z;, T, to the left of operators G, , free
of Z, and T,, we must expand the term in curly brackets in (2.12):

LEMMA 3.

ala+a,b+b)= 3 b ' (—a)m_gi_xla, B) Oy
1+2§+k<s

with Cpes= (s —i—)!/ilj1 kN8 —i—j —k)!

Proof. In the definition of n,(a+a', b+b"), let j=i+j’, expand (a+a’)"*" as

5 (47wt
7: ’
(b+b')s—(i+5') as

8=i=J'\ errs gtk
(07w,

13 — 802905 Acta mathematica 14S. Imprimé le 6 Février 1981
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then replace the binomial coefficient

by
T )
’ 5 —]- 5
kr.k'(k"? ( ) 7

and let k=Fk'— 77, j=j — 7~ The result is the statement of the lemma.
Applied to the curly brackets in (2.12), we obtain

GA.Q)(gv) = (Z'D.q) +Zﬂ)I(T1).¢+ Tﬂ)p 2 Oilkm{r‘l7+ko'(§a) Ew)‘( —O'(Ew Eq)))j

i+ 2f+k<sm

© Tm1_21-1(0(Evs &p)s To)} (Zp+Zg) (T, + T)* (gv). (2.13)

Note that the order is still observed, Z’ to the left of Z”, etc. This causes no problems for
the Z; the Z,, just act on @ or ZXT"p, as the case may be, directly, while Z, sit off to the
right. But some of the “extra’” Z’ will be embedded within 7,_;_s; (0(&y, &,), T4) and
must be brought out for the induction to proceed.

The first step is to examine:

{Eemm(0(Ex, Ep), T)} — {Tn(0(Exs £0), Ta)} 2o (2.14)
From Lemma 1 we have
(& +EDN (0 ws £p)s T} = [Em(0(E s &), Ta)} 2+ {EG0(Ex, Ep)"[ml}
so that
{Eumm(0(E s £o) Ta)} = (Um0 Eo)s Ta)} g+ {Tm1(0ws &), Ta) EuTo}

= {7!,,,(0'(5*, 50:)7 T*)}Z;+{nm—1(q(5*’ 6(1:)9 T#)}Z; Tw (2.15)
+ {6(5*, Ew)mwlft;fq)/(m - 1),} - {ﬂm—l(o(f*» Eq))’ T*) 5;1’.},}-

If we iterate this we obtain
{E;nm(o(&'*, 'E(p), 7*)} = zgo ({( - l)m_k(”k(a(g*; ‘Srp), 7*)} T;'—kZ;,
+ {nk—l(6<£*’ &o)s 7*)} Z; T;l—kﬂ (2.16)
+{o(&,, &Yt g E (k= 1)1}).

(This expresses the result of moving one Z’ to the right; if more than one needs such
treatment, one need only observe that those already outside the brackets in (2.16) may

stay on the right throughout subsequent commutations.)
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Looking at the norms for (2.18), we have, for example, with p=Z¥T"p,

I Ze(T™)ulllw = 1 {Ep 7n(€.s €ps T2}l

< % (03N2k+m—k+l+|K|+r/k!+2015—1N2k—2+m—k+2+|K|4r/(k_1)!)

k=0

_ m!
<@, 3 3 Cs*

(m—k)!

NESON |, Il (2.17)

and thus, using (2.14),

12y (T™lllw < TN U™, ||
Otherwise stated, Z,',(T”’)w may be rewritten as a sum of terms of the form
(Tk‘l)Tm+l—kw Z;, (Tk)Tm—kz»w

and o(Z,, Z,)*"* divided by (k—1)! with y replaced in the end by 7™ **Z'y; the ||| |||»
norm of the result is given above.

This process can be iterated, the norms growing as one might expect; for example,
with several Z, , the last estimate above merely has the factor 6N or 7N raised to the
corresponding power.

To similarly control the norm taking the coefficients into consideration, we recall

that we may assume that
|Z2'T?g| <™ 2(|I] +p)! if [I]|+p>1

and assign, to an expression such as 3 ¢, 4 Z; T% G4, (where the G4, do not act on g),

the norm
N2 eropa Zi TE Gacglllv.e = 2 | er.pr al €2 ( ']+ )| Gl (2.18)

For any computational purposes, we shall define one more norm with powers of M

instead of powers of ¢ times factorials:
W= er.pr.a 25 TG G glll. e = 2l er.orae| MV | Gyl

To compute the ||| |||v,. norm, thus, one can compute the ||| ||| y norm and then replace
M* by s,
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To estimate the ||| |||x.. norm given the ||| ||ly,» norm (i.e., replace M* by &%s!) we

will have to use

?
(M + N)vMa_,jzo NP (Z;) 8q+l(q+ ?)|

L p! (q+7') -
< &lq! N? — NI
1 2:0 -3\ ¢

»
< (2e)%qI N? 3 (2¢) < 2(2¢)%g! N~
j=0

Applying (2.16) and its iterations to each term in (2.13) (after expanding the o(Z,, Z,)*

and o(Z,, Z,)) gives an expression whose || [||y,» norm is bounded by

(N -+ BL)lo+iine m,%m M (14nN?) (14nN M) N¥m-H-k-bop-ti-k-toy  [m—2j — k—1d)!
(2.20)

Estimating (N + M) M? as indicated above, we obtain that the ||| |||y, norm in
question is bounded by

2(i + 7 + k)! 2 N—i—ZI—Zk(l4n)H—l(28)1+I+k CSZl-k-tO;Ikm(OanNuu»p+|J|+a+|K|+r+2m/m!).

1+24+k<m
(2.21)
Here
o m!l(i+7+k)! LSk A2
Cipem = Cpem (~m——27'—k~m<3 Hkeitektt
80 that in all,
Caolg) =2 Cr.pa Zy T Garpgv (2.22)
where the last Gy , act only on v, ¢, with
12 Crproa 25 TF Gl s < 31| G llly- (2.23)

For the next lemma, we need information about the L? norm of [P, G4 ,]u which can
be derived from the above. Indeed, we have expressed [P, G4,,] as a sum of a bounded
number of terms of the form Oy, 4Z; T5 Gy, whose ||| |||y norms are bounded by a
constant times the ||| |||y norm of the operator Z,Z,G, , from which we started. It follows

as in the discussion of the elliptic case above that
IIZ{ZIGA_wu”ng C sup ”GA:,q,u"L- (224)

with the supremum over all G, , with |[||Gy o|l|ly <|||Z:Z;G4,,|lv but now with |4’| <
|A| +2, and for the double bar norms, [|4’|<{{4[+2. For in the commutator
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G4, olgu) —9G@4,ou the degree drops by one and while (2.23) gives information on the
lI llly.e norm; denoting the operator on the left in (2.23) by @,
|Geelloe < 3| Crrar| 7L | + 2)! | G ul] 2o
<Gl sup |(Gar.o/ | G plllw) 2o
< sup [[Oa Gup |z,
the supremum over all C,. G, , with |4’| <|4], [|[A"[[<||4]l; || CaCarolllv < ||| Ca.olln-
Letting G stand for a finite sum > C,G, ., with |||@|||lv=2 [|CaGua.olllns

|G| =maxc,.0|A|, |G| =maxc,.o||4]] we have proved

Lemma 4. Let each G4 , in G contain at least two Z’s. Then
|1Gullzs < € sup {Gullos I Nllv <Gl [&] <]G] NEFN<1EN}- (225)

The condition that each G4, , contains at least two Z’s is important if we are to use

(1.4); to use it repeatedly, we must stay within the class of operators with at least two Z’s.

Definition. G is called admissible if every term contains at least two Z’s. G is called

simple if m=0 and at most one Z appears (ie., |I|+|J| <2).
Lemma 5. Let G be admissible. Then G may be decomposed as
G = Z*Gy+2ZPQ, + Z2Cygry + Gaam + Gsim

with no factors of Z in G, or Gy, G and Gosn admissible, Gy, simple, all terms of
v <Cl|Gllx> | | and || || orders no greater than those for G, with strict inequality for
the last two terms.

The proof consists in observing that [Z, (T™),]=G'Z when m=+0 with |||G*Z|||y <
CIT™),Z|||y and |Gt =||G*||=m—1 (G" is of the form ¢™*PZ*/m! with |L|=m—1).
Thus in a general Gy, =Z"T?(T™),T°Z, a factor Z from the right may be brought to the left
of (T™), by adding to Ggm. When m =0, one may lose Z’s and end up in Gy, as well.

LemMma 6. Let G be admissible. Then the conclusion of Lemma 4 holds with G’

admissible or simple.

Proof. When G=Z°G,, (1.4) leads to |[9Z? G,]u| .+ and the three contributions,
lg, GolZ%, glZ, Gy)Z, and gZ[Z, (] satisfy the norm requirements by the discussion above.

For Z3G, we must not use (1.4), but rather

1Z3|es + ||ollse< C ;_‘ |2, Po||s+ Of|v)| sy, vECET (1.4")
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(as in (11): we derive (1.4") from (1.4) in the appendix) and use essentially the same
arguments. Note that if one used (1.4) instead, two Z’s could be lost before m was reduced
to zero. Finally, when G=2Z2G,;,, we consider the bracket [Z, G,4,] and note that every
term will contain at least one Z, and that if a new T appears, it does so at the expense of
two Z’s, hence the norm requirements are met.

As long as admissible terms appear in Lemma 6, we use the lemma again; each

time the order 4 decreases by one, hence after at most N iterations, all terms are simple:
|G| e < CN max || Gy ul|2s

the max over simple Gy, whose ||| |||y norm is no greater than that of G' and the same

for the || | norm. But for simple G, we can be quite explicit:
|G|/ ||| Gllx < CF max || Z*T>(T"Z" ¢) T“Z’u"/N'”’L'“'*'Kl“”q”

where, taking |G| to be at most N and |4 + | K| +r<2N, the max on the right is over all
I,J,p,q,r and K with|I]| + [J| <1, [I| +|J| +2p+2¢<N, |I|+|J|+p+q+r+[K|<
2N. Thus

()
1Z2"T™ || 3q. 1,/ NV ™ < OV max l# ;I max || Z°T%u|| treupp f V717 (2.26)
SN |Jl|;-|2<pl<N

Finally, we control the localizing functions:

ProrosiTion 2. There exists a constant K such that if , and Q.55 %), are open sets
with distance d from Q, to the complement of Q,, then for any N there exists p=yy equal to
one near Q, and in OF(Q,) with |p®| <KKW™d "N for |a| <N.

The first use of these seems to be due to Ehrenpreis. Using such ¢, (2.26) becomes

max [T%°Z%upqy/ N 1< O¥2d™2  max  [|TZ%ullpq,/(N/2)7*V.  (2.27)

prlll<N i s+ 1)/2

To iterate this estimate, we choose log, N nested open sets with separations d,=d/27.
The iterates of (2.27) yield

max [|[T7Zu||pq,/ NP < O 0, < OV
pH|II<N

with ¢’ independent of N. This implies analyticity in £,.
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3. The 5-Neumann problem

Solutions to the 8-Neumann problem are in particular solutions to an elliptic equa-
tion; hence to prove real analyticity up to the boundary it suffices to prove real
analyticity (on the boundary) of the Dirichlet data (in this case just the boundary values).
These may be estimated in L? norm on the boundary or, as we shall do, in L? norms near
a point on the boundary of high order derivatives all but one of which are tangential.
Using the Darboux theorem on the boundary and extending these Z; and T into  in
some convenient real analytic manner, we shall show, in a standard manner, that for the

Dirichlet data to be real analytic it suffices to demonstrate that
"DT"u“La(an) < C'O”p'

where w denotes a full neighborhood of the given point on the boundary and D is any
of the following: Ly, ..., L,_y, L, ..., L,, identity. Actually, L, should also be included but
it may be expressed as a linear combination of L, and 7.

The new vector fields L, and L, cause additional complications; for while on the
boundary we may (and shall) use the Darboux theorem to simplify the commutation
relations, we do not know how L, and its conjugate will interact with (1), and without
some additional preparation the commutation relations of Lemmas 1 through 6 would fail.

As in the case of [J, we invoke the Darboux theorem: on the boundary there is a
smooth (i.e., analytic) coordinate change in terms of which the linar span of the L, and L,,
j<n, is the same as the linear span of the vector fields; X,=0/ox,;, Y,=2/oy;+x,(0/ct),
j<mn, so that

(Z),Zp_y+s1=8, 1<j<nm,

[Z;, S] =O, al] j,

with all other pairs commuting. We stress that for the moment these vector fields are
defined only on I' =9Q, and hence satisfy these relations only there. To extend the vector
fields and the commutation relations we observe first that if we choose a normal (i.e.,
non-tangential) vector field N,, then we could define 8 and the Z, near I, denoting the
extensions by the same letters, by requiring that [N,, Z,] =0 and [N, 8]=0. Then the com-
mutation relations would continue to hold: § —[Z,,Z,,, ;]=0 on I' and commutes with N,
which is transverse to I'; unfortunately we must choose N, very carefully so as to relate S
and N; to the complex structure. On I' the choice is clear; N, should be equal to JS,
where J is the real analytic linear map on the tangent space defining the complex struc-
ture: holomorphic vector fields are those of the form W +iJW. We wish to extend J§,
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and denote the extension by (JS)**%, in such a way that extending S as above with
N, =(J8)°**, J§ should equal (JS)***. For this to be the case it suffices to have [(JS)™,
J(J8)**¥] =0, since S+J(JS)***=0 on I"' and would commute with (JS8)***, which is trans-
verse to I'.

LEMMA 7. Let a real analytic real vector field N be given on a real analytic hypersurface,
T, in C* with N transverse to I, locally, and such that JN 1is tangent to T'. Then there is one
and only one analytic extension N' of N to a neighborhood of T' such that [N’, JN']=0.

Proof. Near x,€T", we revert to the notation L;, L,, j <n, for tangential holomorphic
and antiholomorphic vector fields, with 7' (for example (L,—L,)/:) also tangent to T’
and v=JT. Then we seek to extend the coefficients of

N=>a,Y,+a,T+ay»

(the Y, denoting the real and imaginary parts of the L) to a neighborhood of I" subject to
the condition that [N, JN']=0. We may write

JN=>a,(JY,)+av—a,T

and if we write out the condition [N, JN]=0 we find the only non-tangential derivatives

of coefficients appear as follows:
for v, a,(vay) —ar(va,) = g,,
for T, a,(va,) = h,,
other, a,(va,) = k;, j=1,..,2n-2.

JN being tangential to I', @, must vanish on I', while @, does not. Thus I' is non-charac-
teristic for this system and the Cauchy-Kowalevsky theorem gives a unique analytic
solution with initial data given by N.

We denote this extension of J§ also by J§ and, as indicated above, extend S and the
Z, via [+, J8]1=0. Letting M,=8—14J8, let h denote the invers of the length of M, in
the given metric. We may define I' by a real analytic function r with h(M, — M ,)r/i V2 =1,
and then set A,—&r. Completing to an orthonormal basis A,, ..., 4, of AL%Q) (locally),
we denote the dual vector fields by M,, ..., M,_,, RM,. Since we have constructed a
“special boundary chart” in the sense of Ash [2], well known calculations (cf., e.g., [10])
give [J on a form ¢ =3 @, A AN

O =(00*+8*0)p =3 (WM, M,+ > M, M) ;A A ¥’ +1lower order terms  (3.1)
7]

with %(z, Z) non-zero and real analytic. .



THE LOCAL REAL ANALYTICITY OF SOLUTIONS TO 0, AND THE 9-NEUMANN PROBLEM 195

Fortunately, the bounday conditions our solution satisfies are preserved in form
under this change of orthonormal frame; a form ¢ as above satisfies both ¢-Neumann

boundary conditions if

(i) ;=0 on I" whenever n€J, (3.2)
(i) M,¢;=0 on I' whenever n¢J. '
Instead of the “subelliptic” estimate (1.6), we shall find it wuseful to use the

analogue of (1.4’) which omits the quadratic form:

7

J

2n-2 2n-2
(It 3 120+ S, 12,50) + 3 pale< ool +clol 33

for all (p, ¢)-forms p=>, ; ¢, ;0 A&’ satisfying the two 8-Neumann boundary conditions
given in (3.2). To pass from (1.6) to (3.3) is not difficult, but we sketch the main steps.
First, one inserts Z,p for v in (1.6), and in commuting the Z, on the right into its final
position (i.e., in reaching the expression (0p, 0Z; Z,p) +(0*p, 6*Z; Z,p)) one must estimate
[To|l. Writing ||Tp||2=(Tp, Tp) and expressing one of the T’s in terms of two Z,’s,
one is led to estimating ||Z;A*Tg|2. Here A is the tangential pseudo-differential
operator (with suitable compactly supported functions) whose square is 1—A., A,
denoting the ““tangential Laplacian”, the sum of second derivatives in tangential direc-
tions in some local coordinate system. It is not a pseudo-differential operator in the usual
sense, but inserting now v=A"?Te in (1.6), all commutators encountered are bounded
by H D(pll_, 12.t¢ Where D is any first order differentiation and the norm is the Sobolev norm
of tangential order —4}, L2 overall. But such expressions are of lower order than those we
set out to bound (for example, normal derivatives are estimated by M, and T and T
by two Z;’s). Finally for the last term on the left of (3.3), since such components vanish on
the boundary, one has a coercive estimate for them, i.e., the two norm is bounded by
[3 acting on those components; but the principal part of [ is diagonal hence for any (1, J),
|O0¢u]| <||O¢|l modulo first order terms, all of which are bounded already. Note that the
second of the boundary conditions in (3.2) is needed once all commutations have been
effected, e.g., once one has (0, 8Z] Z,p) +(0*p, 8*Z} Z,p) and commutes the operators 9
and its adjoint to the left.

In our (], estimates, Tg,i:" was reinserted in (1.4') and (1.4"). Here, boundary conditions
must be preserved as well; Tgi:, being scalar, (3.2) (i) is automatic, but (3.2) (ii) is not.
For while [M,, Z,)=[M,, T]=0, and hence [M,, T%]=T5,,, for any w,, we must ensure
that any vy, = D*yp which arises in our estimates satisfies #,y, =0 on T, since then if
satisfies (3.1) (ii), so will T u.
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Which v, = DFy arise? Lemma 1 gives 7' derivatives on p and (2.16) shows that
X (=0fox,), T(=0/ot), and /oy derivatives may occur on I'. We consider coordinates near
I' given as follows: Let p=0 on I" and satisfy JTp=1 near I, g real, since J7' is. A point
p near I" will have coordinates (z, y, t, s) where s=p(p) and (z, y,t) are the coordinates
of the (unique) point on I' lying on the integral curve of J7' through p. In these co-
ordinates X,=0/ox,, Y¥,=0/oy,;+x,0/0t, T=0/ét on T', and since [X,, JT]=[Y,, JT]=
[T,JT1=0, also near I', as one easily checks. Furthermore, 3, =38/t —i(0/ds), hence
(M, 8/6y,]=0 by definition. Thus for any D*y which can occur in (2.16) or the proof of
Lemma 1, M, Dy =DM .
To construct g for which M,y vanishes to high order on I', we merely prescribe
p=y(z, y,t) and define
Yo = 2 Tl (3:4)
Then
Moye, =o' T ylr!
Moo= (T9)o + (T9)e-1)- (3.5)

The obvious analogue of Lemma 1 is clearly valid for (7'),, «, and we omit details.

The outline of the proof is this: to estimate TP in a neighborhood of z, €T, we choose
a first localizing function y with suitable growth of derivatives on I', then form y,, as
above and modify the definition of v, away from I' by multiplying it by a function of
the distance to I" only, a function equal to one near I' and vanishing outside a suitable
neighborhood of I', depending on the size of the support of y, and with the same growth
of derivatives as ¢. In the region where this function is varying, the solution is analytic.
We then insert ¢ =(T%y,,

given in (3.1), we first bring k% out of the norm; this means that the principal part we must

% in (3.3). Since the principal part of [] is of the simple form

consider has the form

D,=MnMn+ Z MJ’MI,’ Mll=h—1M1'

j<n

In commuting (1), , past [1’, we incur errors of the following types:

(i) la(@) Z, Z, (T, ] ul
(ii) | MM, (T, ul| (3.6)
(iii) (M, (T, ) M, u|

and essentially no others; first order terms may contribute M, or M, times the commu-

tator of (79),, with a coefficient, but M, is replaced by M, and T, T then replaced by

Y
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two Z’s, and these are covered by the treatment of (iii) and (i) above. The analysis then
proceeds as in the first part of the paper, section 2, with the following observations kept
in mind. First, while (i) is formally identical to cases considered in section 2, the
localizing function is more complicated, receives more derivatives, these being offset in a
sense by the factorials in (3.4), and must be consequently capable of sustaining up to
g+r+2 derivatives—we shall take these differences into account shortly. Secondly, (ii)

will yield a new kind of term, namely
(ii") | M ()41, 07l /!

which may be very effectively estimated since with » large, M, acts on a function which
vanishes to very high order on I'. In fact, coercive estimates apply, and if 7 is comparable

to ¢, this term, with (7'%). written out, is bounded by a sum of terms of the form
(ii") flo" 7 (M) XITpmul|[rt g1

When y has growth conditions as in section 2 satisfied, we bring it out of the norm and
are left with a coercive problem because of the presence of p". Lastly, to treat (iii) of (3.6)
we recall that the boundary conditions (3.2) tell us that on components u; with n€J,
any two derivatives are estimated, namely M, and, as we shall see in a moment, a 7T
from (T9)., modulo pure Z errors, and on components with n¢.J, I, u;; vanishes on T,
hence any two derivatives of it may be estimated, namely two I”s which we shall extract
from (77).. To examine this “extraction” of two 7”s, we write out (7)., omitting powers
of —1, in the form (cf. (2.4)):

{ (T, = (T9-2), T+ 2" PZ1T (g — 1)1 4+ 1 Z%q!
(T)y = T(T)y — (T9) 14

8o that
q q-f q-1 q a-3-1
@9=3 3 THI Honnt 3 CEOZ T q- i+ 3 3 TACPZ g - B
1=1 k=1 7=0 j=1 k-0

That is, modulo terms involving only Z differentiations and balanced by appropriate

factorials, two 7”’s may be pulled to the extreme left. And all derivatives which land on

the localizing functions are Z’s or T”s, and so do not interfere with the vanishing on I

of these functions when differentiated with M,, which commutes with all Z’s and 7.

In particular, (iii) dictates that we must take y =M,y at least, and recall that M,y = Ty.
Thus in dealing with (iii) we are led to estimate

NI gts=yy M |
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with n¢J and +>2. And since even a second 7' derivative may be estimated on compo-

nents which vanish on T, such as M,u,, with n¢J, this term is estimated by
] (Tq_t)wffjlliﬂn |

which in turn, because of the diagonality of the principal part of [, is bounded by
N0 (@ -y M ]

modulo first order terms. These first order terms may be of the form (coeff.) Z (for which
we bring M, across and have a good estimate modulo “‘coercive” terms), or (coeff.) M,,
which we rewrite in terms of [] and ZZ, or (coeff.) M,. This last, which in terms of the L?

norm is written

I (7)1 T ]|

is treated by first putting both M,’s on the left, modulo a term which vanishes to high
order on the boundary, and then observing that the estimate (3.3) could as well have the
term |[ M, M, ¢, added to the left; on components with n €J, this is the coercive estimate
since those vanish on I', while on components with n¢J, one may revert to (1.4} with
v=M,q, since (1.4) requires only the first of the boundary conditions in (3.2), and com-
mute one of the M, to the other side modulo terms which can be observed on the left of
(3.3). Thus (i), (ii), and (iii) are all errors of lower order.

As expected, we iterate this process until the operator (79, is eliminated. When

v
this occurs, there may still be ¢ differentiations, but all in Z directions, times a g¢th
derivative of the localizing function (actually, (g +7)-th derivative) balanced by g¢!r! or,
more generally, whatever Z derivatives remain are balanced by the corresponding factorial
and when more than ¢ derivatives appear on o they do so in the form {%. Taking r
originally to be ¢ so that commutators with M, still behave coercively, and choosing
to be 2¢ times differentiable with proper growth (actually the standard construction of
the y gives dg for any given d), one still has the estimate |y{%| <C%!* for ¢ between
p/2! and p/2""! (s<gq), and this is what was required to allow the overall iteration to

proceed in section 2.

4. Theorems 1’ and 3’

We shall discuss here, briefly, the changes which must be made in the above
discussion to prove the micro-local results. But since the major technical features, such
as the definition of (7%), and the choice of a sequence of localizing functions, as well as

the iterative process, are essentially the same, we do not present a full proof.
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The first observation is that (1.8) may be expressed in terms of a product of two
localizing functions, namely vy and a function 6(5), homogeneous of degree zero in 7
for |n|>1, identically one in the chosen cone and vanishing outside a slightly larger
cone, |5|>1. This function is chosen with the same bounds on growth of derivatives on
[n] =1 as yy, and when a change from vy to v, is required, the function 6(s) is also
changed. To see that this is possible, we present a proposition which expresses the
commutator of 6(n) with a function of the spatial variables in a form suitable for our

purposes:

ProrositronN 3. Let 6(n) be a smooth function of n, 6(D) denoting the pseudo-dif-
ferential operator with O(n) as symbol, and let g(x) denote a smooth, compactly supported

function of x. With D" denoting any r-th order partial derivative in the x-variables, we have:

([0(D), g1 D"w)~(§) = Ao + ZlAz + El B,

where
(owr ()= [0 ¢-n [ 000+ e myaaman
and
=3 5 [orore=n [l [fa 5 3w e

X (n—tty ... t,(E—m)Y *dtde, ... dt;b(n)dny
with " =r—>3 i,, and where the b © are the coefficients of x* in the espression ((xD) e¥)/e®.
1 1 s
>, denotes summation over those i, with §' <j, and
i r
Boor©=3 5 (@ EnTL(1 3 i) 3 6000 an,

J=11 r<sr
<t

where I,=3 i,

The proof goes as follows. A first order Taylor expansion of 6 gives
1
©. 00w = [ €= [ 00+ 16— myaoracan

Writing one 7 as n+£&—n) —#& —») may produce 0'(n+HE—%)) (n+4&—n)) (which has
order zero) or may add a derivative to g. In the latter case we express another 7 in the

same way, repeating each time a derivative lands on g¢. This gives the term A4, plus

1
Z g (&~ n)fot"‘0’(n+t(E—n))(n+t(§~n))n"’w(n)dfidt-
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Here we rewrite the integrand in ¢ with a first order Taylor expansion: it is
#1007 ()m + ((@]ds) (0" ( +8t(€ — ) (n + st(€ —7))}

which yields B, plus terms with one more derivative on ¢ and whose t-integrand is
1
4 fo {07 (n + st(& —m)) (n + st(€ — 1)) +6'(n + st(£ —n))} ds.

Now we begin over, rewriting # in terms of st, ete.

To see the effect of Proposition 3, one first notices that in the 4, terms, w is not
differentiated. For a given 4, the sum of b,, N* may be written as the value of the sum from
0 to j of the expression ((xD)*e*)/e” at x=N; for N >4, a standard inductive argument shows
this is bounded by (’N’. Thus the sum of the 4, is a sum of 2" terms each of the form
gD times a product of reciprocals of m distinct integers times an operator of order —1
which involves derivatives up to order m of 6 operating on w. Thus, for example, any such
term will have L? norm bounded by C™sup |g"" V| N™/m!; but with N comparable to r,
even if the bounds on the size of ¢ are like (KN)®, this term is bounded by C’'r! Those
terms written B, with s derivatives on g and r —s remaining are (* in number and each of
the form ¢g'® times a product of reciprocals of m distinct integers, m <s, times a pseudo-
differential operator of the form 6™ (D)D™ acting on D™—*w. Hence the conic support
of the pseudo-differential operator is preserved, and in norm such a term is bounded by
C*sup |g*)| N™/m! times an appropriate L? norm of D'—*w. While N™/m! is no longer in
general well bounded, if g is real analytic we do have, over compact sets, || N™/m!<
&-"N™<N*® if N>s; and in the presence of either an operator 6,(D) with conic support
where 6 =1 or another function g, with support where ¢g=1, none of the terms in the
sum of the B, occur at all. Tt is this last property which permits one to pass from one
6(D) to another, one spatial cutoff to another.

Thus in place of gy we work with yy8,yy with yy(z) identically equal to one near
supp yy; every commutator with an X, or T is very simple, since the X, have such simple
expressions in local coordinates. Commutators with analytic functions are written out,
according to Proposition 3, down to purely L2 terms in u. When we reach 9y 00"y 772,
we insert another set of such localizing functions and remove the old, modulo L? errors

on u, or rather we replace T%2 above tby the analogue of (79), above, namely,

3

(T)o,= 2 (—1)*{X"6X"* o' 0p} X"*X'BT"7"|a) B
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where by curly brackets we denote iterated commutator, in other words, the part of the
simple commutator in which no derivatives survive. Lemmas 1 and 2 continue to hold,
with appropriate modifications (now commuting with a function g has differentiations on
g coming from the curly brackets as well, and g with these derivatives must be brought
to the extreme left and estimated out of the norm at each stage). With these modifications,
the proofs of Theorems 1’ and 3’ go just as before, and we omit the details.

Appendix

Al. The a priori estimates. The usual form of the “subelliptic”” estimate associated with

O, and similar operators is not (1.4) but rather

;JIX, olP + JJolffiz < C(Po, v) + Clof? (A1)

for all smooth v with support in a fixed compact set. To see that (1.4) follows from this, we
let ¢ =X, w, w smooth and of compact support, where the X’s now need not be of any
special form. The commutator PX, — X, P on the right will in general contain X,7T and
using a weighted Schwarz inequality, (A1.1) reads:

;Z;c 1X, X, 0|2+ % [ X v|[fe< || Pol?+ C[Jo]I* + C” ;Zk HgwX;Tv, X,v)|  (A1.2)

where the g, are smooth functions. Now if even one eigenvalue of the Levi form (c,,) is
non-zero, T can be expressed in terms of two X’s, and hence any commutation errors
introduced in rewriting the last term in (A1.2) will be absorbed, possibly with a new
constant. Thus denoting by A'? the ‘“‘classical” pseudo-differential operator with symbol
(1 + |&|®)*ie,  and @ smooth, compactly supported functions (both with support in the
region where (1.4) is to be demonstrated and equal to one near the support of v), we again

use the Schwarz inequality, and, modulo errors which can be absorbed in (A1.2), have
|95 X, Tv, Xy0)| < 3| Kyl +C 2 [ ALK, Toff?
and, again modulo such errors, using (Al.1) a second time,
|[A-1X, T||2 < C(PA~#Tv, A~tTv) < C(TPv, A-*A~1Tv) < C||Po|| I}_‘k | X, X0,

whence the result.

Using the same methods, we next derive (1.4") from (1.4). Replacing v by X,» in
(1.4), one must estimate the commutator PX, — X, P; terms with X? are readily handled,
but there remain terms of the form ||X,;Tv|| to estimate. Now (1.4) may have || X,v]|,



202 ) D. 8. TARTAKOFF

added to the left without change (except for the constant), hence we are allowed as errors
small multiples of || X, X, v||;. Hence with A~* as above, modulo admissible errors we are re-
quired to estimate A~7%y. Expanding one T in terms of two X’s and using (1.4) again, we
may write |[A~#T2%] <C||PA-Tv||<C 3 | X,Pv||+C 3 ”]&*W’Xﬂ)” +O WX, X, T -3s2-
But in both of the last two terms we may associate the T' differentiation with the nega-
tive order operator or norm, modulo lower order errors. The estimate (1.4") follows at
once, (Higher order versions of (1.4) may be proved in the same manner, but we do not

need them here.)

A2. C*® hypoellipticity. In this section we prove C* hypoellipticity for operators satisfying
(1.4); we have tacitly used this already in the proofs above, since we have estimated
high order derivatives of solutions, not proved that they existed. Had we taken as our
starting point the more standard subelliptic estimate (Al.1), we could have merely

quoted the many known regularity results (cf. [20, 27]).

ProPOSITION 4. Let P be a system of partial differential operators of the form (1.3)
satisfying (1.4) in Q, and let the Levi form cy,, given by (1.1), have at least one non-zero
eigenvalue. Then P is C° hypoelliptic in Q.

Proof. With € CF(L) fixed, let s(u) denote the largest (possibly negative) integer
such that you€H*™, Since we may apply (1.4) to functions in H? with compact support
contained in Q, let us set vy =0, A’*™“~20,p, 4 where A has been defined in Al and the
functions 0,, f,, and y, are so chosen in CF(Q) that 6,=1 near suppy,, 6,=1 near
supp 0,, and y,=1 near supp 8,. Suppressing these localizing functions where there is no

confusion, we now set

v =N ATy u

for >0 but free, where A;" has symbol (1 + |6& ] 2)-"'2_ For ¢ >0, this function belongs to
H2, and to show that v,€H" it will suffice to show that the L? norm of » is bounded

uniformly in é— +0.

LEMMA 8. Let a(x) be a smooth function. Then for any N, [As", a(x)] =S QM A; +Q_y
where Q} and Q_y are pseudo-differential operators of order —1 and — N respectively, uni-
formly in 0 < <1; that is, their norms, mapping H' to H** or H**¥, and the norms of their
(iterated) commututors with other pseudo-differential operators between the appropriate Soboley
spaces (locally) may be bounded uniformly in 0<06<1. The operators A,; " have the same

form as A57, with possibly differentiated functions 6,.
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Applying (1.4) to this v gives the estimates

| XA 2470 Ty u]] < Of[PA-2+7A; "pu]| + K,
< O A®=247A5 "4p, Pu+ O [P, A2 A5 7T + K,

with K, independent of §. Now since P is a sum of terms of the form a(x) X2, the commu-
tator term, modulo a highly negative norm of y;u, will be a sum of terms the worst of

which is of the form ;
”XAs(u)—2+rAé—rw1u”

where the A are of the indicated form and the cutoff functions may have been differenti-

ated. Again modulo lower order errors, this term is bounded by
]]XAS‘“)"2+"*./~\3rzplu||§.

But in the presence of at least one non-zero eigenvalue of the Levi form, the let hand
side of (1.4) actually contains | XAs=2:"A5 ", u||y, as we have remarked earlier. Thus
our error is smoother (in all directions). Repeating this argument with r replaced by
r—3, etc., until all errors are bounded by ||ye%||sw) it is clear that the left hand side is
bounded independently of 8, so that y,u€ H*™~2+" with r arbitrary.
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