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Riemann surfaces in fibered polynomial 

Marsha l l  A. W h i t t l e s e y  

hulls 

Abs t r ac t .  Let A be the closed unit disk in C, let P be the circle, let H : A x C - + A  be 
projection, and let A(A) be the algebra of complex functions continuous on A and analytic in int A. 
Let K be a compact set in C 2 such that II(K) = F, and let Kx--= {w E C I(A, w) E K}. Suppose further 
that (a) for every ,kcF, Kx is the union of two nonempty disjoint connected compact sets with 
connected complement, (b) there exists a function Q(..k, w)~(w-R(,k)) ~ -S(..k) quadratic in w with 
R, S C A(A) such that for all ,k E F, {w C C I Q (A, w) = 0} c int K~, where S has only one zero in int A, 
counting multiplicity, and (c) for every AEF, the map w~--~Q(.X, w) is injective on each component 
of Kx. Then we prove that K \ K  is the union of analytic disks 2-sheeted over int A, where h/ is 
the polynomial convex hull of K. Furthermore, we show that Or~[\K is the disjoint union of such 
disks. 

Let  A be the  closed uni t  d isk  in C,  let  F be the  circle and  let  II:  A x C ~ A be 

pro jec t ion .  Let  K be  a compac t  set such t h a t  I I ( K ) = F .  Numerous  au thors  (see [1], 

[51, [6], [8], [9], [12]) have s tud ied  fea tures  of the  po lynomia l  hull  of K ,  de no t e d  by 

_~ or h u l l ( K ) ,  f requent ly  to  inves t iga te  whe the r  h" conta ins  ana ly t i c  s t ruc tu re  in the  

form of g raphs  of ana ly t i c  funct ions  whose bounda r i e s  l and  in K .  (Such funct ions  

are c o m m o n l y  cal led analytic selectors for K . )  In  th is  endeavour ,  it  is n a t u r a l  to  

res t r ic t  oneself  to  the  case where  the  fiber of K over ~ c F ,  K~ ~ { w E  C t(~, w) E K }  is 

a connec ted  compac t  set wi th  connec ted  complemen t  (so also po lynomia l l y  convex).  

(See [5], [6], [9].) 

We now consider  the  case of a compac t  K where  the  f ibers are  not  necessar i ly  

connected ,  bu t  stil l  have connec ted  complemen t s  (and so are  st i l l  po lynomia l l y  

convex).  We  shal l  speci fy  c i r cums tances  where  t he  p a r t  of t he  po lynomia l  hull  of 

K which p ro jec t s  t h r o u g h  II  onto  int  A is the  union of ana ly t i c  disks which are  not  

g raphs  over int A bu t  are  2-sheeted over int  A .  Under  the  same c i rcumstances ,  we 

shall  show t h a t  Ofi2\K is the  dis joint  union of such ana ly t i c  disks. Let  A ( A )  deno te  

t he  d isk  a lgebra  of funct ions  cont inuous  on A and  ana ly t i c  on int  A ,  and  let  H a (A)  

denote  the  a lgebra  of b o u n d e d  ana ly t i c  funct ions  on int A .  We consider  K wi th  

the  following proper t ies :  
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(la) for every AEF, K~ is the union of two nonempty disjoint connected com- 
pact sets with connected complement; 

( lb) there exists a function Q ( A , w ) - ( w - R ( A ) ) 2 - S ( A )  quadratic in w with 
R, S c A ( A )  such that  for all )~EF, { w E C I Q ( A , w ) = O } c i n t K ~ ,  where S has only 
one zero in int A ,  counting multiplicity; 

(lc) for every ),EF, the map w~Q(;~,  w) is injective on each component of K~. 

Note that  (lc) implies that  S has no zeroes on P and that  the points in {wcC]  
Q(),, w)=0} lie in different components of K~, AEF. Property (lc) is easily obtained 
if, for example, the diameters of the components of K~ are sufficiently small. 

We shall prove the following result. 

T h e o r e m  1. If K is a compact set satisfying ( la-c)  then F2 \K  is the union 
of the interiors of analytic disks of the form 

int A > K,  

(2) F ~ K for a.e. AEF,  

z, , ( B ( z ) , f ( z ) ) ,  

where B is a Blaschke product of order 2 and f E H ~ ( A ) (so the accumulation points 
on the boundary of the disk land in K) .  

First we prove a theorem which allows more components in the fibers of Kx 
but requires a relation among the components. 

T h e o r e m  2. Let M and Y be compact sets fibered over the circle (i.e., II( M) = 
A 

I I (Y)=F)  such that M r  and Y has fibers Y a c C ,  AcF, which are connected with 
connected complement. Suppose that there exists a function 

d 

n=0 

with anEA(A) for all n and ad=--i such that for all AEF, 

M~ = {~  c C hQ(~, w) c Y~}. 

Then M \ M  is the union of analytic varieties d-sheeted over int A. 

Proof. Let (A0,w0)E~r \M.  Then we claim that  ()m, Q(Ao,Wo))EY\Y. Given 

a polynomial P,  

IP(Ao, Q(Ao,Wo))l_< sup IP(A,Q(A,w))I 
(~,~)EM 

_< sup Ip(~,Q(~,w))l_< sup IP()~,w)l 
{ ( A,w)l( )~,Q( )~,w) )E Y } ()~,w)EY 
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as claimed. 

Since for AcF the Yx are connected with connected complement, there exists 

f E H ~ ( A )  such that  

f( o) = Q( o, 

and the accumulation points of the graph of f over F land in Y. Then we have that  

((A,w) C in tA  x C  I Q(A,w) = f(A), IAI < 1} 

is an analytic variety passing through (A0, w0) whose accumulation points over F 
land in M. [] 

C o r o l l a r y  1. I f  M and Y are as in Theorem 2 then 

{(~,w) e M \ M }  = {(~,~)  e i n t A  • C I (~, Q(~,w)) e Y \Y } .  

Proof. The inclusion C was proven in the theorem. As for the opposite take 
(A0,wo) with (Ao, Q ( A o , W o ) ) e Y \ Y .  Then there exists an f C H ~ ( A )  such that  
f() ,o)=Q(Ao, Wo) and such that  the set of accumulation points of the graph of f 
over F is contained in Y. Then 

{(A,w) e i n t A  x C  I (A,Q(A,w)) belongs to the graph of f over in tA} 

is an analytic variety over int A passing through (A0, w0) with accumulation points 
A 

over F in M. Thus ( h o , w o ) E M \ M ,  as desired. [] 

Example. Suppose M is a compact set defined over F such that  M~ is the union 
1 centered at i v / ~ .  Let us take Q(A, w ) = w  2. We claim that  of two disks of radius 

M has the required properties described in Theorem 2. First, given a fixed )~CF, 
choose a square root V~. Then the image of {wECl iw-v /~ ]_< �89  under the map 

w~-+w 2 is the same as the image of {w cllw§189 We call the image Y~; 
since the squaring map is two-to-one, M~ is the preimage of Y~ under the squaring 
map. Letting Y be the set with fibers Y~, we see that  Y is compact. Also Y has 
connected and simply connected fibers because the squaring map is one-to-one in a 
neighborhood of each of the components of Ma so is a homeomorphism from each 
component to Y~. Hence M \ M  is the union of varieties of the form w2=f(A),  
where f c H ~ ( A )  and f ( ~ ) c Y ~  for a.e. ~EF. 

Next we require two lemmas. 
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L e m m a  1. I f  U and V are in A (A)  and V has exactly one zero in A (not 
on F), then { (A, w) E A x C ] ( w -  U(A)) 2 _ V (A) = 0} is a 2-sheeted analytic disk over 
A whose boundary is a continuous closed curve. 

Proof. We may write 

V ( A ) -  A-c~ er ) 
i -o~A 

where ~EA(A),  I(~l<l. Then our surface over A is 

(A,w) E A x C  \ eC(X)/2 1-~A 

which, via the change of coordinates 

( ; '  = (SJ ' er J '  

biholomorphic in int A x C and continuous in A x C, is equivalen~ to 

{ ( ; ,  ~ ' )  E a • C I (w,)2 _ ;  = 0}, 

a 2-sheeted disk. [] 

L e m m a  2. I f  U, V E A ( A )  and for all AEF, the solutions of (w-U(A))  2 -  
V(A)=0 lie in K;~ (one in each component) then V has exactly one zero in A,  
counting multiplicity, which is not on F. 

Proof. Choose E small enough so that  if A E F, the components of Kx are at least 
3c apart in distance. From Lemma I and the remark following (1), we conclude that  
the analytic variety in (1) given by {(A, w) Eint A x C I (w-R(A))  2 -  S(A)=0} is an 
analytic disk 2-sheeted over int A .  Suppose it is parametrized with z H  (B(z) ,  g(z)), 
Izl _< 1. Then B is analytic in int A and maps the closed disk two-to-one onto itself. 
Clearly B E A(A) (using the transformation from Lemma 1), and maps F to F. Thus 
B is a Blaschke product  of order 2. Now the solutions of (w-R(A))  2 - S ( A ) = 0  over 
A are R(A) -kX/ /S~ ,  where ~ is not well defined over F. However, since SoB 
has winding number 2 over F, V~SoB can be continuously well defined over F; we 
choose it so that  R(B(z))+SvZ-ffYBoB (z) equals g(z). Then we choose Vx/VGBoB so that  
U(B(z))+Vv/-V--~BoB(z) lies in the same component of KB(z) as g(z). Construct a 

path p(z , t )  from 9(z) to U ( B ( z ) ) +  Vx/-V~BoB (z) which varies continuously in (z, t)  
and always stays within c of KB(z). Then we find through the homotopy p that  

wind(2 v~V~B~B ) = wind(UoB + vvFV~Bo B - (Uo B -  ~ ) )  

= w i n d ( R o B +  Sx/~oB-(RoB-x/SoB)) 
= w i n d ( 2 ~ )  = 1, 
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so w i n d ( V o B ) = 2  and hence the winding number of V is one over F. Thus V has 
exactly one zero on A, since it has none on F (the roots of (w-U(A))2-V(A)=O 
are distinct for AEF). [] 

In order to distinguish between elements of the copy of A that  we began with 
and elements of the domain of functions such as B and g above which parametrize 

the 2-sheeted disks, we generally use A to refer to the elements of the former and z 
to refer to elements of the latter. 

Combining Lemmas 1 and 2, we see that  given any continuously bounded ana- 

lytic variety {(A, w) CA x C I ( w - U ( k ) )  2 - V ( A ) = 0 }  with U, V E A ( A )  over A, where 
the fiber of the variety over A has one point in each component of Ka,  it must be 
a 2-sheeted analytic disk with boundary over A. 

In order to prove Theorem 1, we shall first assume tha t  K is a smoothly 
bounded solid torus, i.e., we shall assume that  there exists a mapping 

Z:F•215 
(z ,w),  ~ (z2 , I (z ,w) )  

such that  the following hold, where K is the compact set whose fibers over AEF are 
hull(I(z,  r ) ) U h u l l ( I ( - z ,  r ) )  for z2 =A: 

(3a) I is of class C2; 

(3b) (OI/Ow)(z, w) is never 0; 
(3c) for any zEF,  I(z, .) is injective. 

We shall need the fact that  there exists a compact set M as in Theorem 2, 
also satisfying (1), such tha t  K~,CM~ for M1 ) ,cF.  To see this, let X denote the 
compact  set whose fiber X~ is {wCCIQ(A,w)=Q(A,w' ) for some w'EKA}. In 
other words, X:, K;,U(2R(A)-K:,), where 2R(A)-K;,={wECIw=2R(A)-w' for 
some w~EK:,}. Then we claim that  XA consists of two connected components. 
Let KA,1 and KA,2 denote the components of KA and let K~, 1 and K~,,2 denote 
their reflections 2 R ( A ) - K ~ , I  and 2R(A)-K~,2  in R(A), respectively. Then X:,= 
K),,1LJK:~,2LJK~,IUK'~, 2. Clearly K),,lnK~,2r and K~,INK),,2~O. Also K~,IU 
K~, 2 does not meet K~,IUK),,2 because (i) K~,INK~,2----0 and K~,INK~,2--O from 
(la)  and (ii) K),,1NK~,I=O and K:~,2NK~,2=O from (lc). This establishes the claim. 
Since the components of X~ are symmetr ic  about  R(A), the polynomial hulls of the 

components are as well, and are disjoint because the two components of XA are 
connected. Thus if we define X ~ over F to have fibers hull(X~) and M to be the 
closure of X '  in F •  then M satisfies (1) and the properties that  M does in 
Theorem 2, and MDK. 

We shall need (3) when invoking results from [5], [9] and [11]. 
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Let wi be one of the elements of C such tha t  Q(1, Wl)=0. Then in fact we will 

show that ,  with the additional conditions (3), K \ K  is the union of analytic disks 

of the form (2) where 

B ( z )  = e %  = 1, -< for s o m e  > 0, 
(4) 

f E A(A), and f (1)  is in the same component of K1 as wl. 

We shall also need the fact that  K can be continuously expanded to a solid 
torus slightly larger than  M. In other words, we construct mappings Zt(z, w ) =  
(z2,It(z, w)), 0 < t < 2  having the same properties as ~ above in (3) and let K t be 

the compact  set whose fibers over AEF are hull(I t(x/~,F))Uhull(I t(-v/~,F)).  We 

require tha t  K~, ~ Cint  K~, 2 if t l<t2, Kt=Ns>t  K s, K ~  MACintK~ for all AEF 
and for all t, 0<t_<2, K t satisfies the properties that  K does in (1). To do this, 

we follow a method of Stodkowski [9, p. 371]. Suppose that  we first construct a 
compact  N satisfying the same properties K does in (1) and (3), and MA c i n t  N~ 
for all AEF. We may also construct N so tha t  the associated map I N  extends to be 
a diffeomorphism of the interior of the solid torus by extending each IN(Z,- ) from 
F to A. (We leave the verification of this intuitively obvious fact to the reader.) By 
composing the inverse of i t s  with the diffeomorphism (z, w)~-+ (z, w / ( 1 -  Iwl2)), we 
can map  the sets K ,  M to sets K ' ,  M '  in Stodkowski's setting in F • C, construct 
the associated (Kt) ' there, and pull them back through the above diffeomorphism 
to obtain the K t. The only difference now is that  Siodkowski only needed (K1) ' 

large enough to contain the graph of a constant function. By using a compactness 
argument,  we can extend this so tha t  (K1) ~ contains any particular compact  set in 
F • C, say M ' ,  so tha t  K 1 contains M.  The remaining properties are easily verified. 

L e m m a  3. There exists an ~>0 such that if B ( z ) = e i ~  and 
the mapping z~-+( B(z), g(z) ) is an analytic disk continuous for zE A with boundary 
in K 1 then l a ] < l - ~ .  

Proof. Suppose that  for a sequence of continuously bounded analytic disks 
with boundary  in K l, 2-sheeted over int A ,  we obtain B,~, gnEA(A)  parametrizing 
them as above, with associated a~ tending to 1 in modulus, and 0~--+0. Then on 

compact  subsets of int A ,  Bn(z) converges to eiCz (for some real constant r and 
g~--+g. Thus h u l l ( K 1 ) \ K  1 contains an analytic graph over int A .  If we restrict the 
corresponding function to the region IAI < 1 -  6 where 6 is chosen so small tha t  for all 
I on the circle of radius 1 - 6 ,  hul l (K~)~CK~,  (possible since K 1 C i n t K  2 in F •  

then we have a continuous selector for the set K 2 over IAI : I .  The topology of K 2 
does not permit  this. Thus the possible a must have modulus bounded above by 
1 - b f o r s o m e c > 0 .  [] 
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Letting c be as found in Lemma 3, l e t /~ t  equal the union of K t with the union 
over int A of all analytic disks possessing properties (2) and (4), replacing K by K t. 

T h e o r e m  3. Let K be a compact set fibered over F satisfying properties (1) 
and suppose there exist functions Z ( z, w ) = ( z  2, I ( z, w ) ) satisfying properties (3). 

A 

Then K \ K  is the union of the interiors of analytic disks of the form 

A - ~  fi2, 
F - -4  K, 

z, , ( B ( z ) , f ( z ) ) ,  

where B is a Blaschkc product of order 2, f E A ( A ) .  

Proof. If (B, f )  is a pair satisfying (2) and (4), replacing K by K t, let x/SoB 
denote the continuous square root of SoB over F such that  R(1)+  S~BoB (1) is in 
the same component of KB(t)t as wl. (Note that  the winding number of SoB is 2 

on P.) Let 

Lt(B) = {(z,w) E P x C l ( B ( z ) , w )  � 9  t, w � 9  the same component of t KB(~) 

as R(B(z ) )+  S,/g~oU (z)} 

and let 

Kt(B)  =KtU{(.X,w) E i n t A  x C  I (k,w) = (B(z) ,w)  where (z,w) lies on the graph 

of some element of A(A) which is an analytic selector for Lt(B)} .  

Then ~ t  is the union of all sets K*(B) ranging over all possible Blaschke prod- 
ucts B satisfying (4). Now let s be the infimum of all t such that  K t D K .  We 
first show that  s_<l and eventually s=0 .  We apply Theorem 2 to M and ob- 
tain the corresponding set Y with connected fibers specified in Theorem 2, that  
is Y a - { w E C I w = Q ( A  , w') for some w'EM;,}. Following Stodkowski [9, p. 380] we 
write Y as the decreasing intersection of sets y n  fibered over F whose boundaries 
are smooth tori; write M~={wECIQ( )~ ,w)EY~} .  For some large n, M n C K  1. 
Now Theorem 3 of [5], Theorem 1.1 of [9] and Theorem 4 of [11] show that  
hull(Y n) \Y~ is the union of graphs over int A of elements of A(A). Then Corollary 1 
shows that  hull(M n) \ M  '* is the union of varieties of the form {(k, w)Eint  A x C I 
Q(A, w ) = f ( k ) ,  f E A ( A ) }  with boundary in M n. Lemmas 1 and 2 show that  such a 
variety must be an analytic disk; in particular, suppose this disk is parametrized by 
>--~(B(z),9(z)), Izl<l. Then as in Lemma 2, we find that  B is a Blaschke product  
of order 2 and gEA(A).  By change of coordinates in z we may assume that  B(0)=0 ,  
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and (B(1),g(1))=(1,vi), where v 1 is in the same component of M~ as w 1. 
M s c K i , this shows that  indeed ~ i  D ~ n  = hull(M n) D MD  i~, as desired. 

s < l .  
We want to prove that  s=0 ,  so we make the assumption 

Since 

Thus 

(5) s > 0 .  

Claim. It is true that  h'~DhT. 
Take (), ,w)E/~. Then clearly (k,w)E_K ~ if I~1=1. If I~1<1, then for n > l  

take {Bn} and {f~} possessing properties (2) and (4) (replacing K by K *+1/~) 
such that  ()~,w)EK~+I/~(B,,). Then there exist z~Ein tA and f~EA(A)  which 
is an analytic selector for L~+I/~(Bn) with (Bn(zn),fi~(z,~))=(A,w). If B~(z )=  
e~~ then without loss of generality we may assume that  a~-+ 
a0, laol_<l-c ,  0,~-+0o, zn~zo,  Izol<l,  (if Iz01=l then since B~---+Bo mfiformly, 
IB~(z,~)-Bo(zo)}<_JB,~(z,~)-Bo(z,~)l+lBo(z,d-Bo(zo)l tends to zero, as n--~oc, so 
1 > IAI = IBn(z,~)l--~ I~o(Zo)l=l, which is impossible) and f~--~fo uniformly on com- 
pact subsets of int A .  Also note that  we have chosen Sv@TBn and S~@7~o such that  

(z) converges to ~ ( z )  for all zEF.  

Subclaim. It is true that  (zo, fo(zo))r where the function Bo(z )=  

~~176 
We have (z,~, f~(zn))Ehull(L*+l/n(B,~)) for n>_l. Fix polynomial P(z, w), fix 

c>0,  let 
c =  sup IP(~,~)l 

(z,w)EL~(Bo) 
and take N1 so large that 

L *+s/N~ (go) c {(z, w) c A • C I ]p(z, w)j < C-t-E}, 

(using the fact that  KS=~t>s K t, so LS(Bo)=Nt>~ Lt(Bo)) and choose N2>_N1 so 
large that  for n>N2 

L*+*/NI(B,~) C {(z ,~)  </X x C  I IP(~,~)l < C+c} .  

Then for n > N2, 

LS+l/n(Bn) C {(z, tu) E a x C l iP (z ,  w) l < C-~-c}, 

and choose N2 even larger so that  for n > N2, 

IP(zn, fn (~,d)- P(zo,/o(zo))l <_ ,, 
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possible since z~---~zo, Iz01<l and f,~---+fo uniformly on compact subsets of inCA. 
Then IP(zo, fo(zo))i<_supLs(Bo)IPI+2c, and this holds for any c>0,  so 

IP(z0, f0(z0))l _< sup IPl 
L~(Bo) 

and hence (z0, fo(zo))Ehull(LS(Bo)). This proves the subclaim. 

Take f E A ( A )  which is an analytic selector for LS(B0) (see Theorem 3 of [5], 
Theorem 1.1 of [9] and Theorem 4 of [11]) and whose graph passes through the 

point (z0, fo(zo)). This shows that  (Bo(zo), f(z0))=(A, w ) E K  s, as desired. Hence 
K~ D K,  which was our claim. 

We now claim that  K \Ut<~  _~t is nonempty. Relative to the topology of A x C, 

~ t l  contains a neighborhood of ~t~ if ~1 ) t 2  since L tl (B) contains a neighborhood 
of L t2 (B) in F x C for any B. Thus for any r, Ut<~ ~ t  is relatively open in A x C. 

Thus if Ut<~/~t contains K,  then for some r<s, fi2 ~ contains a neighborhood o f /~  

in A x C. (This holds because the interiors of the ~ t  in A x C form an open cover 

of K,  and ~" is compact.) This contradicts the minimality of s. 

Thus there exists some p=(B(zo), I(zo)) ~ K \ U t < ~  ~-t. Clearly Iz01 < 1. Then 
(Zo, f(zo)) Ehull(L ~ (B)) \Ut<~ hull( Lt (B)). 

We claim that  this means that  f(z)EOL~(B) for all zEP.  To see this, suppose 
that  at some point ~CF, f ( ( ) E i n t  L~(B). By continuity of f ,  this holds in a neigh- 
borhood of ( in F. Now let N(z) be the inward pointing unit normal to OLd(B) at 
f (z ) ,  if f(z)EOL~(B). Choose a polynomial G(z) such that  a rgG is within 17r of 
argN(z)/((z zo)/(1-zoz)), where N(z) is defined, and arbitrary elsewhere on F 
except that  G(z)r on r and wind G equals 0. If we let F(z)=G(z)(Z-Zo)/(1-ZoZ) 
then F~A(A), a r g F  is within ~ r  (modulo 2vr) of a rgN(z )  where N(z) is de- 
fined, F is never zero on F and F(z0)=0 .  Hence for sufficiently small positive 
T, f(z)+TF(z)EintL~(B) for all z in F. (This is obvious pointwise for zCF and 
can be extended to the entire circle uniformly in T by a compactness argument.) 
Furthermore, the graph of f+'rF passes through (z0, f(zo)): This contradicts the 
minimality of s and we conclude that  f(z)EOL~(B) for all zEF.  

We consider the various possibilities for the value of the winding number of 
(f-RoB-SV'S-JBoB) over F. We may show through an argument like the above that  
if the winding number were positive, s would not be minimal. We next show that  
this winding number is either 0 or - 1 .  

If w i n d ( / ( z ) - R ( B ( z ) ) -  SV/~BoB (z)) = d < 0  then 

w i n d ( / ( z ) - R ( B ( z ) ) - , / S J o B  (z) ) (f - R(B(z) )+ Sx/S~oB (z)) 
= l + d  = w i n d ( ( / ( z ) - R ( B ( z ) ) )  2-S(B(z))) 
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which is >0  since ( f ( z ) - R ( B ( z ) ) ) 2 - S ( B ( z ) )  is analytic, and nonzero on F since 
s > 0. Hence d = -  1. 

Case 1. Assume tha t  wind(f-RoB-Sv@-~B)=0.  
Let Q(A, w ) =  (w-U(/~))  2 -  V(A) be analytic in int A x C, continuous on A x C, 

and zero on points (B(z), f(z)),  zCA. 
In the proof Lemma 1 we found a change of coordinates in A x C which is 

analytic in i n t A  •  and which carries Q()~,w) to w2-;~. Let us switch to these 
coordinates, obtaining sets j t  as the image of the sets K t. Under this t ransformation 

we observe that  _~t maps to f i  and _K to J .  Then s satisfies the same extremal  
property with respect to the j t  as the K t. Now in the new coordinates the j t  are 

not as smooth as the K t but needed properties will be preserved. In particular, (i) 
the winding number above is the same since the function e *(x)/2 in Lemma 1 has 
no zeroes in A, and (ii) for fixed t the fibers of j t  are still smoothly bounded. Now 

with our change of coordinates we find tha t  B is t ransformed into the squaring map 
and f into the identity. We write p=(w~, wo). 

Let n(w) be the inward unit normal to J~,2 at w and let N(w)=2wn(w) be the 
image of n(w) under the differential of w ~ w  2 -A .  (Note that  n(w) is still continuous 
under the change of coordinates.) Then w i n d ( N ( w ) ) = l .  Choose a polynomial g 

such tha t  l arg g(w)-arg N ( w ) l <  ~Tr (modulo 27c) and g(wo)=0. Now consider the 
set where 

w 2 - ) ~  = r g ( w )  

for some fixed small positive constant T. We need a lemma. Let D be a closed disk 
in C centered at 0 such that  j 2 c F x i n t  D. 

L e m m a  4. For T sufficiently small, 

(6) w~-,~ =-rg(w) 

has exactly two solutions for w in int D for all AEA, the solutions actually lie 
in hull(J2)a as well, and for ;~cF, the solutions lie in different components of 
hull(J2)x. 

Proof. Suppose the assertion for/~CA does not hold. Then take ~-n$0, s  
A such that  (6) does not have exactly two solutions for wEint  D, where we replace 

),, T in (6) by )~,  Tn. Suppose this number of solutions is equal to kw. 
Since w 2 --;~n--~-ng(w)--~W 2 --~ uniformly for w in a compact  set in C, as n-+oc,  

w2-)~n-~-ng(w) has the same number  of zeroes in D as w2-A.  So for large n, kn=2,  
a contradiction. The argument regarding hull(J2)x is similar. 

To prove the assertion regarding s  we may proceed by contradiction again 
and use a similar argument to come to the conclusion that  for some A, w 2-/~ does 
not vanish at one of • an obvious contradiction. [] 
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We claim tha t  for AEF, these zeroes are in fact in int J:~ for small 7. Let  h(z ,  7-) 

denote the  locat ion of the  zero for w 2 - z  2 - r g ( w  ) which is in the same component  

of hull(J2)z ~ as z. (Note A=z2.)  We claim tha t  h is a C a function in (z, 7) for 

sufficiently small 7. We know tha t  h satisfies the equat ion 

F(h ,  z, ~-) - h 2 -  z 2 -  wg(h) = O. 

Fix v, Iv ]= l .  Then  since O F / O h = 2 h - T g ' ( h ) = 2 v # O  when ( h , z , T ) = ( v , v , O ) ,  the 

implicit funct ion theorem shows tha t  h is a C a funct ion of (z, ~-) in a ne ighborhood 

of (v, 0). Choosing finitely m a n y  such neighborhoods covering all v E F  we find tha t  

indeed h has the  required smoothness .  

We check tha t  the set { (A, w) ~ A • int D Iw 2 - A = 7g(w)  } is in fact (for the above 

small 7) given by { ( A , w ) E A •  for some a l (A) ,ao(A)E 
A(A) .  Let @(A), r~(A) be the two solutions, not  well-defined, of (6) for wEin t  D. 
Then  we just  have to show tha t  1 2 1 2 re +r~. and r.~r T are bo th  elements of A(A) .  Consider 
the well-defined continuous funct ion 1 2 2 1 is different ( r~(A)- r~(A))  on A; near where r~ 
from r~ 2, r~(~) and r~2(A) can be well-defined and are analytic; thus 1 2 

is continuous and analyt ic  on A where it is nonzero. By Radd 's  theorem, ( r~ (A) -  
r2(A)) 2 is in A(A) .  Thus  its zeroes are isolated in int A .  We conclude tha t  r ~ +  

2 and 1 2 r ~ ( A ) - r ~ ( A ) .  But  bo th  r~ r~r~ are analyt ic  except at isolated points  where 1 _ 2 

functions are clearly bounded  on A so such singularities are removable. Hence 
1 2 1 2 r~_+r~ and r~r~ are bo th  elements of A(A) ,  as desired. 

We have h: F •  ( -5 ,  5)--~C for some small ~ and 

7 ) )  = O. 

Differentiating implicitly with respect to % 

2h )" Oh 

for small I~-I. W h e n  ~-=0, 

SO 

Oh 
= 0 ,  

o h  _ _ 

where r is a continuous nonzero funct ion in w C F  with a rgument  within ~ of O. 

This means tha t  for small positive % the zeroes of w 2 - A - ~ - g ( w )  in int D over A lie 

in the interior of ff~. Deferring the verification of this for a moment ,  we see tha t  from 
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Lemmas 1 and 2 this means we have constructed a continuously bounded 2-sheeted 
analytic disk in d t for some t < s .  This disk passes through (w02, w0) since g(w0)=0.  
This is a contradiction of the minimali ty of s and hence Case 1 is impossible. 

To check the above assertion, first choose e so small tha t  a vector pointing with 
of the inward pointing normal to J ;  at w (where w2=,~) lies argument within gTc 

entirely in int d~, (except for w) if its length is less than  e. (First choose such small 
vectors on K s since it is smooth. Then map  these vectors to J* under the affine 
coordinate change. Some c will work for all A because the dilation constant e r is 

bounded away from 0 and oc uniformly in A.) Then choose ~ so small tha t  for Irl <~ 
and zCF,  (i) Ih(z, r ) -h ( z ,  0)1 < c  and (ii) l arg(cgh/OT)(z, v-)--arg(Oh/OT)(z, 0)} < 
~7c. Then for 0<  I~l <~, arg((h(z,  ~-) -h(z ,  0))/~-)=arg((Oh/O~-)(z, Tz)) for some % 
between 0 and T, by the mean value theorem. Hence for 0<7-<6, h(z,~-)-h(z,O) 

1 of the inward pointing normal has length less than  e and has argument within gTc 

to d~  at z so h(z,,-) lies in int J2~ for all 0<~-<6 and z~F .  

Case 2. Assume tha t  wind(f-RoB-SV@-JBoB)-=-l. 
Let us apply the same coordinate t ransformation as in Case 1. Let n(w) and 

N(w) be as before; then wind(N(w))=0 .  Choose g analytic in a neighborhood of 
A such that  arg(g(w)) is within ~7c of a r g ( - N ( w ) )  for Iw I=1 and consider the set 

(7) T = {(,k, w) ~ A x C [ w  2 - ,k  = "rg(w)}Nhull(J 2) 

for small ~-; using an argument similar to tha t  in Case 1, this is an analytic 2- 
sheeted disk whose fiber over AEF consists of 2 points outside of d~. As ~-;0, T 

approaches the point (w02, w0). We also claim tha t  T does not meet J .  We show 
this by proving tha t  T does not meet any 2-sheeted analytic disk in o~s\ JS for any 

sufficiently small T. 

Parametr ize  T by ) ~ ( B ; ( , X ) ,  f~()~)) which possesses property (4). Let ~ be 
the continuous square root of B ;  on F such that  ~ (1)-: 1. Using reasoning similar 
to tha t  at the end of Case l, choose 6 so small that  T does not meet d ~ for 0<~-<~ 

1 of a r g ( - n ( w ) ) ,  modulo 27r. Consider and fi-(w)-x/-ff~ (w) has argument  within gTC 

a disk in d" given by {( .k ,w)EAxCIU(A,w)=O }, g monic quadratic in w. Now 
there are two well-defined continuous functions R~ (z), R~ (z) such tha t  the zeroes of 

1 2 . R~(z) be the zero of U(B,-(z), w) V(),, w) over )~=B~(z) are R,_(z), R~_(z), just let 
which lies in the same component of dl  B,(z) as ~ (z) and let R~(z) be the other 

zero. 

Then U(B,-(w), f~-(w))=(/~(w)-R~(w))(f~-(w)-R~(w)). Now over Iwl =1,  

wind(f~-(w)-R~ 1 (w)) = wind (f~-(w)-  ~ (w)) = wind n(w) = -1,  
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since T does not meet J'~ for 0 < 7 < 6  and f ~ ( w ) - v @ 7  (w) has argument within [Tr 
of a rg ( -n (w)) .  Also for Iwl=l ,  

wind(f~(w)-R~(w)) w i n d ( ~ ( w ) - R ~ ( w ) )  

= w i n d ( ~  ( w ) -  ( X / ~  (w))) 1 

so wind(U(B.r(w), f ; (w) ) )=0 ;  this means that  U is never 0 on T for such T .  This 
holds for all U defining a 2-sheeted disk in d~, so for 0 < r < 6 ,  T does not meet J*, 
so does not meet J.  

Let P ( J )  be the set of continuous complex functions on d which are uniform 
limits of polynomials. Let Q~(k,w) be monic quadratic in w, 0 < 7 < 6 ,  such that  
Q~(B~(w),f~(w)) 0 for all w. Then by the Oka-VCeil theorem, Q~(A,w) -1 is an 
element of P ( J ) ,  since T does not meet J.  Also Q~(A,w) -1 is bounded on j = j o  
uniformly in r ,  0 < 7 < 5 ,  since s>0  but as r--~O, Q~(w~,wo) 1--~oo, a contradiction. 

A 

Thus the original assumption (5) that  s>0  must be false; s 0 and KDK. (This 
concludes Case 2.) 

N A ~ A 

We already know K c K ,  so K=K,  as desired. [] 

Proof of Theorem 1. Following Stodkowski [9] choose compact sets K(n) sat- 
isfying (1) such that K=~n~_l  K(n) and the K(n) are solid tori whose boundaries 
arise from mappings Z(n) which are restricted by (3). Also choose the K(n) such 
that  for all (A, n), Ka ~ K ( n +  1)a e K(n)x. 

We now invoke Theorem 3, replacing K by K(n) and conclude that  K ( n ) =  

hull(K(n)) ,  so K(n~)D~2. Thus fi2CK(n~) for all n. Thus every point p in ~ ' \  
K lies on a sequence of analytic disks parametrized by zH(Bn(Z), fn(z)), where 
B , ,  fn  possess properties (4) with respect to K(n). If Bn-+B uniformly and 
f~--+f uniformly on compact sets then using an argument similar to that  in the 
claim of the proof of Theorem 3, we can conclude that  every point of the form 
(B(A),I(A)) for IAl<l lies in K \ K .  The associated disk contains the point p 
and its boundary accumulation points lie in K,  as desired. (Note that  this shows 

K=FL< hull(K(n)).) [] 

T h e o r e m  4. ff K is as in Theorem 1, then OrX\K is the disjoint union of 
2-sheeted analytic disks. 

Proof. First suppose K has the special form in Theorem 3. Choose a point 
(A,w)COB2, where IAl<l, and suppose (A,w) lies on a disk parametrized by z~-~ 
(B(z), f(z)). The analysis in the proof of Theorem 3 shows that  we can choose 
f to be continuous on A, f(z)COL~(B) for all zEF  and Case 2 of the proof of 
Theorem 3 holds. (Otherwise we can construct gCA(A) such that  g(z)EintLz(B) 
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for all z c F  and the disk parametrized by z~(B(z),g(z)) passes through (A,w). 
Small perturbations of g then show that (A, w)~OK.) Then in Case 2 we showed 
that  every point on the disk z ~  (B(z), f(z)) is the limit of points on 2-sheeted disks 
external to _K. (Actually we proved this for J but the coordinate transformation 
allows us to pull it back to K.)  Hence all of the disk z ~ ( B ( z ) ,  f ( z ) )  lies in 0 ( K ) \ K .  
Thus 0 (K)  \ K  is the union of 2-sheeted analytic disks over int A .  

To see that  these disks are disjoint, suppose that  two of them given by z~-~ 
(B l(z), f l(z)) and z~-~(B2(z), f2(z)) meet in int A • C. Assume without loss of 
generality that  (Bl(zl), fl(zx))=(B2(z2), f2(z2)) for some Zx, z2~int A .  Now con- 
struct the sequence of disks z~-~(Bi(z), f~(z)) external to h' ,  as in Case 2 of the 
proof of Theorem 3. By changing coordinates in z, assume that  (B~(zl), fr 
(B 1 (zl), if(z1)). Let P~(A, w) be monic quadratic in w such that  Pi(Bi(z), i f ( z ) ) =  
0 for all z~F,  i=1 ,  2. Then the functions Pi(B~(z), fr are nonzero analytic 
functions in z which tend to 0 at Z=Zx, as ~---~0, for i--1, 2. Pass to a subsequence 
of (B 1, fl) which converges locally uniformly (and nontrivially, without loss of gen- 
erality) to ((B1) ', (fx),).  By Hurwitz' theorem, {Pi(B~(z), fr tends to zero 
uniformly for z in compact subsets of int A as ~---~0, and we conclude that  the two 
disks z ~  (B 1 (z), f l(z)) and z ~  (B 2 (z), f2 (z)) parametrize the same analytic disk 
because for every A c int A ,  p1 (A, w) and p2 (A, w) vanish for the same two values 
of W. 

For general K,  write K as a decreasing intersection of K(n) as before; then 

=Nn=  hull(K( )), as noted at the end of the proof of Theorem 1. Choose 
OK\K. Then, passing to a subsequence of the K(n) ,  there exist points (Am w~)E 
0 h u l l ( K ( n ) ) \ K ( n )  converging to (A, w). With them are associated 2-sheeted disks 
z~-+(B~(z), ff~(z)) in Ohull(K(n)) which pass through (A~,wn). A local uniform 
limit can be chosen as before so that  z~-~(B(z), f(z)) passes through (A, w) and lies 
in 0 h u l l ( K ) \ K .  To show that  no two 2-sheeted disks in cghull(K(n))\K(n) meet, 
we can employ an argument similar to that  in the previous paragraph, using the 
( B L  f~) instead of the (B 1, f~). [] 

The author is grateful to Professors Herbert  Alexander, Brian Birgen, Brian 
Cole, John Wermer and the referee for their suggestions and to the Brown University 
Department of Mathematics for its hospitality while a part  of this paper was being 
written. 
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