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Removable sets for Sobolev spaces 

Pekka Koskela(1) 

A b s t r a c t .  We study removable sets for the Sobolev space W I'p. We show that removability 
for sets lying in a hyperplane is essentially determined by their thickness measured in terms of a 
concept of p-porosity. 

1. I n t r o d u c t i o n  

Let ~ be an open set in R n, n > 2 .  Recall tha t  uEWI,B(~) provided uELB(~), 
l<<p<oc, and there are functions OjuCLP(~), j = l ,  ... ,n,  so tha t  

for each test  function CEC~(~)  and all l<j<_n. If  E c R  n is a closed set of zero 
Lebesgue n-measure,  then we say tha t  E is removable for W 1,p if WI'p(Rn\E)= 
W I ' p ( R  n) as sets. As Sobolev functions are defined a priori only almost everywhere 
this does not seem to be much of a requirement. A look at (1.1) should soon 
convince the reader tha t  the question is more subtle than  one first expects. Indeed, 

the test function class for (1.1) changes when E is removed from ~t. 
Let us continue with some simple observations. First of all, it is immedi- 

ate tha t  removability is a local question. Tha t  is, E is removable for W ~,p if 
and only if for each xEE there is r > 0  so tha t  WI'p(B(x,r)\E)=WI'B(B(x,r)) 
as sets. Moreover, if EC~t for some open set ~, then E is removable for W l'p if 
and only if WI,P(~\E)=WI,p(~t) as sets. Secondly, as smooth functions are dense 

in WI,P(~\E) and WI 'p (~ )  is a Banach space, it suffices to verify (1.1) whenever 
ueCl(~\E)nWl,P(~t\E) and CeC01(~). Thirdly, integrating by parts  and using 
the F~bini theorem we notice that  (1.1) remains true for all r  provided 
the projections of E along the coordinate axes have vanishing n - l - d i m e n s i o n a l  
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measure. Thus sets of vanishing n -  1-dimensional measure are removable and there 
exist removable sets of Hausdorff dimension n (simply take for E the n-fold product  
of an appropriate  set F of Hausdorff dimension 1 but of vanishing one dimensional 
measure). On the other hand, there are nonremovable sets of dimension n - 1  as 
such a set may even separate ft. 

The structure of removable sets has been studied by several authors. Ahlfors 
and Beurling [AB] introduced the so called NED sets as the sets whose removal does 
not affect extremal length and proved that  NED sets are the removable singularities 
for Diriehlet finite analytic functions and univalent functions. NED sets coincide 
with the sets removable for W 1,2 in the plane. In general, the removable sets 

for W ~,~ are removable singularities for quasiconformal mappings in the euclidean 
n-space (eft [R, p. 188], IV2]). For recent work see [B1], [B2], [KW], [W]. The 
removable sets for W 1,p can be characterized as the null sets for the extremal length 

or modulus of order p or as null sets for condenser capacities [AH], [AS], [GV1], [H], 
[K1], IS], IV1], [Y]. These characterizations are rather difficult to apply in practice 
and one of the motivations for this paper  is to produce more concrete criteria for 
removability. It  is known tha t  the complement of a set removable for W 1,p, p>n,  

is quasiconvex (the internal distance defined as infimum of lengths of curves is 
comparable to the euclidean distance). This follows easily from the results in [KR]. 
From (1.1) and the Hhlder inequality we readily observe tha t  sets removable for 
W I'p are removable for W 1,q when q>p. Thus, the complement of a set removable 
for W I'p is always quasieonvex. Our main result is the following theorem. 

T h e o r e m  A.  Let E c R  ~-1. If  E is p-porous, l <p<_n, then E is removable 

for W I'p in R n. Moreover, for each l<p<_n there is a p-porous E c R  ~-1 that is 

not removable for W 1,q for any q<p. 

The restriction p < n  above comes from the fact tha t  any compact  E C R n  1 

without interior is removable in R n for all p>n,  see Section 2. The definition of 

p-porosity is given in Section 3. Notice tha t  by Theorem A, the removability of a 
set E can really depend on the exponent p. This conclusion can also rather  easily be 
deduced from a result of Hedberg on sets of uniqueness for Bessel potential  spaces 
[AH, Theorem 11.3.2], [H, p. 200]. 

Theorem A has a consequence for the extendabili ty of Sobolev functions. We 
say that  ft is a p-extension domain if there is a bounded linear operator L: W 1,p (ft) 
WI'p(R n) with Lu[a u for each uewl'p(~) (cf. [GV2], [HrK1], [J], [M], [Z]). 

C o r o l l a r y  B.  There is an n-extension domain f t c R  n that is not a p-exten- 

sion domain for any p<n.  

By a result of Go]'dstein and Vodop'yanov [GV2] and Jones [J], a simply con- 
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nected planar 2-extension domain is a p-extension domain for all p. In [HrK1] Herron 

and the author showed that each n-extension domain in R ~ that  is quasiconformally 

equivalent to a so called uniform domain is in fact a p-extension domain, for all p. 

Corollary B shows that one really needs some additional assumption on the domain 

besides of being an n-extension domain. On the other hand, an n-extension domain 

is a p-extension domain for each p > n ,  see [K]. Notice that  Maz'ya [M] has con- 

strueted a simply connected planar domain whose exterior is an extension domain 

for all p > 2  but for no p < 2  and whose interior is an extension domain for all p < 2  

but for no p_> 2. 

Our next result requires some terminology. We say that a metric space X 

equipped with a Borel measure # is n-regular if there is a constant C so that 

c - i F  n ~ [~(J~(x, r)) ~ Cr  n 

for each x c X  and all 0 < r < d i a m ( X ) .  Let u be continuous in X. We say that  a 

measurable function g >-0 is an upper gradient of u provided 

ju(x)- (y)j _< f .  g dH 1 

for all x, y E X  and each rectifiable curve 3 ~ that joins x and y. Here H 1 denotes 

the 1-dimensional Hausdorff measure, normalized so that H 1 ([0, 1])= 1. Notice that  
if X is a domain in R n and ucCI (X) ,  then g=lVul is an upper gradient of u. 

Following [HK2], [HK3] we say that X supports a p-Poincar6 inequality if there 

exist constants C, ~_> 1 so that 

for each xEX,  all 0 < r < d i a m ( X ) ,  and each bounded continuous u and every upper 
gradient g of u. Here uB is the average of u in B(x, r) and the barred integrals are 

averaged integrals, that  is ~a v dp=p(A) -1 fa v d#. 

T h e o r e m  C. Let E c R n  be a closed set of measure zero. Equip X = R ~ \ E  
with the restrictions of the euclidean distance and the Lebesgue measure. Then E 
is removable for W Lp, l < p < o c ,  if and only if X supports a p-Poincard inequality. 

C o r o l l a r y  D. Let l <p<_n. There is a locally compact n-regular metric space 
that supports a p-Poincard inequality but does not support a q-Poincard inequality 
for any l < q < p .  

The existence of such a space was stated without proof in a recent paper of 
Heinonen and the author [HK3]. The spaces that  support a Poincar6 inequality are 

important in the theory of quasiconformal mappings [HK1], [HK2], [HK3]. 
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If X = R  n, then any continuous function tha t  has an upper  gradient g in L p 
can be approximated by a sequence (r  of Lipschitz continuous functions with 
(VCj) bounded in L p by the LP-norm of g. Thus the Poincard inequality for u, 
g can be deduced from a Poincar~ inequality satisfied by Lipschitz functions and 
their gradients. Recently Heinonen and the author [HK4] extended this by showing 
that  a proper, quasiconvex n-regular metric space tha t  supports  a p-Poincar~ in- 
equality for all Lipschitz functions supports a p-Poincar~ inequality for continuous 
functions. Here the properness of X means that  each closed ball is compact.  Based 
on Theorems A and C we see that  the properness assumption is essential. 

C o r o l l a r y  E.  Let l <p<<_n. There is a locally compact n-regular metric space 
that supports a pJPoincard inequality for all Lipschitz functions but does not support 
a p-Poincard inequality for continuous functions. 

The paper  is organized as follows. As Theorem A admits  a more elementary 
proof in the planar case, we begin by proving Theorem A in Section 2 in the plane. 
In Section 3 we describe the modifications necessary for hand]ing the higher dimen- 
sional situation. Section 4 contains the proofs of Theorem C and the corollaries. 

Acknowledgement. We wish to thank Jang-Mei Wu for the construction of the 
Sierpifiski type set in Section 3 and Lars Inge Hedberg and Yuri Netrusov for their 

comments  on the original version of this paper. 

2. T h e  p l a n a r  case  

Let E c R  be a compact  set. For simplicity, we assume tha t  EC]0,  1[ and we say 
tha t  E is p-removable if E is removable for WI,P(R2). Let us begin with a simple 
reduction. Suppose that  ueWI,P(B(O, 2)\E)NCI(B(O,2)\E).  Then the Fubini 
theorem and the fundamental  theorem of calculus show tha t  u has a finite limit 
u+(x)=limo<t~o U(Xl, t) and a corresponding limit u-(x) for HLa .e .  x=(xl ,  O)e 
E. Thus integration by parts  and the Fubini theorem show that  u~WI,B(B(O, 2)) 
provided u+(x)=u-(x) for Hl-a .e .  xEE. In fact, one can easily show that  this 
condition is equivalent to p-removability. 

P r o p o s i t i o n  2.1. If  E has empty interior, then E is p-removable for each 
p > 2 .  

Proof. By the Sobolev embedding theorem u is uniformly H51der continuous 
both in the upper  half of B(0, 2) and in the lower half of B(0, 2). As E has empty  
interior, it follows that,  in fact, u + ( x ) = u - ( x )  for each x CE, and the claim follows. 
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Thus the case p > 2  is not very interesting as the size of the complementary 
intervals of E in ]0, 1[ plays no role. For p_<2 the situation is different. Let us begin 
the discussion with a nonremovability result. 

T h e o r e m  2.2. Let ]0, 1 [ \E=U~_  i Ij ,  where I# are pairwise disjoint open in- 
tervals. Suppose that Hl(E)>O,  1_<p<2 and that Ej~176 I2][I(Ij)2-P<oo. Then E is 
not p-removable. 

Proof. For xEB(O, 2 ) \ E  with x2_>0, set 

u ( x ) = m i n  d ( x ,E ) '  2 ' 

where x2 is the second coordinate of x. This defines u in the upper half of B(0, 2 ) \ E ,  
and we extend u as zero to the lower half. Then u is locally Lipschitz, and IVul _<M< 

B oo almost everywhere in (0, 2 ) \ U  j=l  A#, where A# is an isosceles right triangle in 
the upper half plane with hypotenuse Ij.  As 

/A  IVuIP dx < CHI(I j )  2-p, 
J 

we conclude that  uEWI,p(B(O, 2) \E) .  One can easily check that  u cannot be 
extended to a Sobolev function in B(0, 2) (notice that  u + ( x ) = v / 2 / 2  when x EE). 

Theorem 2.2 shows that  E cannot be removable if the complementary intervals 
are small and p<2.  A similar result holds for p=2;  see Theorem 3.1 below. We 
next define a sufficient condition for removability in terms of the complementary 
intervals. 

We say that  E is p-porous, 1<p<2 ,  if for Hi-a.e. x = ( x l , O ) E E  there is a 
sequence of numbers (ri) and a constant Cx such that  ri---~0, as i--~oc, and each 

interval ]Xl - ri, Xl ~-ri [ contains an interval I~ C [0, 1] \ E with H 1 tI.~ > C r 1/(2-p) \~]-- x i 
We call E 2-porous if above Hi(Ii)>_Cxri exp(-1/C~ri) .  

T h e o r e m  2.3. If  E is p-porous, 1<p_<2, then E is p-removable. 

Pro@ By the usual covering theorems 

(2.1) lira -1/B IVulPdx=O' 
r--+O r (x,r) 

for HLa.e .  xEB(O, 2) (cf. [Z, p. 118]). 
Suppose first that  1<p<2 .  Fix x E E  so that  the upper and lower limits u+(x) 

and u - (x )  exist and (2.1) holds and so that  the p-porosity condition holds for z. 
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It  suffices to show tha t  u+(x)=u-(x). Suppose that  these one-sided limits do not 
coincide. Without  loss of generality we may assume that  u=O in A+={(xl,t): 
O < t < r i }  and u = l  in A - = { ( x i ,  t):-ri<t<O}. Fix r~ as in the definition and write 
I+={ycIi:u(y)>_�89 and I-=I~\I +. By symmetry,  we may assume tha t  HI(I+)> 
lC r 1/ (2-p)  Let z=(xi+d(x, Zi)+2Hl(Ii),--Hl(Ii)). Then ]y-z I is comparable x i 
to HI(I~) ,  for each yEI~. Let Jy be the line segment on the line through z, y that  
joins y to A +. Then the fundamental  theorem of calculus and the H61der inequality 

give 

l < ~j~ ,Vu, dHl < (./j~ ,w_zl_l/(p_l) dH1)(p 1)/p (~j /\I/P _ _ IV,ulp(w){w-zl drill . 
Y 

Integrat ing in polar coordinates we obtain 

IVnF _> CH l(r~) ~-p >_ Cxr~, dy 
(~,2',-0 

and a contradiction follows by letting i tend to infinity. 
Finally, let p = 2 .  We use the above notation. Fix x and ri as above. Since 

we wish to obtain a contradiction by est imating the integral of IVul 2 from below, 
we may replace u by a function with minimal energy; that  is by a non-negative 
function v, harmonic in B(O,2)\(EOA+UA ), and with boundary values 0 in A + 

and 1 in A . Let xi be the midpoint of L. By the Harnaek inequality for positive 
harmonic functions, maxB v < 1 0 m i n B  v, where B=B(xi, �88 If v ( x ) <  1 

for some xEB, then v<~0_ in B. Otherwise, v _ > ~  in B. Thus either v >  ~ 1 _  100 
or l - v > _  ~1  in B, where d i a m ( B ) >  � 8 9  By symmet ry  we may assume that  

1 Then there is a constant C so that  V>_l~ ~. 

n f.  IVvl2 dy > 7c 
(x,2,-~) - log(CrJH~(5)) >- Cxr~, 

as seen from the s tandard capacity or extremal length estimates, and a contradiction 
follows by letting i tend to infinity. 

The proof above shows that  one could somewhat weaken the definition of p- 
porosity and still conclude p-removability. On the other hand, p-porosity is an 
essentially sharp condition for p-removabili ty for sufficiently regular sets as seen in 
the proof of Theorem A. 

Proof of Theorem A in the planar case. It  suffices to construct a p-porous 
Cantor set EC[O, 1] such tha t  E has positive length and ~ j~- i  gl(Ij) 2-q<O0 for 

each 1 <q<p. Here the intervals Ij are the complementary intervals of E on [0, 1]. 
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Let first 1 < p < 2 .  The set E is obtained by the following Cantor construction. 

Let 0 < s <  �89 be a small constant to be determined momentarily. We begin by delet- 

ing an open interval of length s2 ,/(2-p) from the middle of J= [0 ,  1]. We are then 
left with two closed intervals of equal length. Assume that  we have constructed 
2 i closed intervals of equal length. We remove from the middle of each of these 
intervals an open interval of length 82 (-i-1)/(2-p).  By induction we obtain a nested 

sequence of closed intervals. We define E as the intersection of all these closed in- 
tervals. The total  length of the removed intervals I j  (the complementary intervals 
of E)  is 

o o  

S2-1/(2-P) E 2i2-i/(2 P) = s2 1/(2-p) 
1 - 2 - ( P  1)/(2 p ) < 1 ,  

i = 0  

when s is sufficiently small. Titus E has positive length when s is sufficiently small. 
Moreover, given x E E  and j_> 1 the construction provides us with a complementary 
interval Jj of length s2 j/(2-p) and with d(x, Jj) <_2 -j .  The p-porosity of E follows. 

o o  
Finally, the convergence of ~ j = l  HI(Ij) 2 q, for l < q < p ,  is obvious as the collection 

of the intervals Ij consists of groups of 2 i intervals each of length s2 -~/(2 P) with 
i>1 .  

When p--2,  we remove intervals of length s2 - i  exp( -2 i ) .  We again obtain a 
o o  set E of positive length and it is easy to check that  ~ j = l  HI(Ij) 2-q converges for 

each l < q < 2 .  We leave the details to the reader. 

3. T h e  h i g h e r  d i m e n s i o n a l  c a s e  

The nonremovable sets from Section 2 and the corresponding functions can be 
used to construct similar examples in higher dimensions. Indeed, if Ep is the set we 
constructed for 1 < p < 2 ,  then E~ x Ep is nonremovable in 3-space as seen by consid- 
ering the function v(xl, x2, xa)=Up(Xl, x3)up(x2, x3), where Up is the function from 
Theorem 2.2. However, one can check using the Fubini theorem, Proposition 2.1, 

and induction that  each totally disconnected closed set E C R  n-1 is p-removable for 
p > 2  (here and in what follows, p-removabili ty means removability for W I'p in Rn).  
Indeed, the restriction of u to T \ E  belongs to WI'P(T\E) for almost all hyper- 
planes T parallel to the coordinate axes and the removability follows by integrating 
by parts  with the help of Proposit ion 2.1 provided n = 3 .  Use induction to cover the 
case of dimensions larger than 3. 

Thus such nonremovable sets cannot be Cantor sets for p>2 .  Moreover, a 
construction similar to tha t  used in the proof of Theorem 2.2 cannot give a nonex- 
tendable Sobolev function as the boundary  values of a Sobolev function of the 
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upper half space cannot be the characteristic function of a bounded set of positive 
(n-1) -d imens iona l  measure when p_>2 (cf. [HrK2]). 

We again obtain p-removabili ty from p-porosity. We say tha t  E c R  n-1 is p- 

porous, l < p < n - 1 ,  if for H n La.e. xEE there is a sequence (ri) and a constant 
Cx such that  r~--+0, as i--+oc, and each (n-1) -d imens iona l  ball B(x,r~) contains 

a ball B~cB(x, ri) \E of radius no less than Cxr~ n-1)/(~-p). We define p-porous 
sets for n-l<_p<n by replacing the balls Bi by continua Fi of diameters no less 

than  C~r~ n-1)/(n-p). We call E n-porous if the diameter  of Fi is no less than  
Cxr~ exp(-1/Gr& 

Notice that  our definition is consistent with the definition given in Section 2. 
We begin with a version of Theorem 2.2. For a cube Q and a positive real 

number a we write aQ for the concentric cube whose side length is a times tha t  
of Q. 

T h e o r e m  3.1. Suppose that I n - l \ E  - I1~  \ -~i=1 Qi, where I=]0 ,  1[, and each Qi 
is an open cube in I n-1. If l <p<n, 

OQ 

E diam(Qi)~-v  < cx~, 
i = 1  

then E is not p-removable. If 
o o  

E ( l o g ( 1 / d i a m ( Q ~ ) ) )  1-n < oc, 
i = 1  

then E is not n-removable. 

Proof. Set f ~ = I ' ~ - l x ] - l ,  1[. 

and H n-1 I n-1 2Qi > 0 ,  
i = 1  

( o ) and H n-1 I n - i \  diam(Qi) 1/2Qi >0 ,  
i ~ l  

Suppose first that  l < p < n .  For each cube Qi 
from our collection, let the set W~=2Qix]-diam(Qi),diam(Qi)[. Define fi(x)= 

oo 
diam(Qi)- lXe~ (x) and set 9(x)=~i ~ fi(x). Set y =  (�89 "", ~,1 - 1 ) ,  and define 

u(x) =invf f g(x)dg 1 
~r dq, 

for xCgt\E, where the infimum is taken over all rectifiable curves tha t  join x 
to y in ( In -~x [ - -1 ,  1]) \E.  Then u is locally Lipschitz, and IVul<g almost ev- 

erywhere. Moreover, f~ IVulPdx<C~i~=ldiam(Qi)n-p<cxD, and, consequently, 

ucWI'~(f~\E). As u > l  in the upper  half of f~ and limo>t-~ou(x',t)=O for all 
x'c I n-l\[.j~=l 2Qi, E is not removable for u. 

The case p=n is similar. In this case the intersection of Wi with R n-1 will be 
diam(Qi)-l/2Q~ and fi(x)=log(1/ diam(Qi)) -1 IX--Xil XWi\diam(Qi)l/2wi(X), where 
xi is the center point of Qi. We leave the necessary computat ions to the reader. 
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T h e o r e m  3.2. If E is p-porous, then E is p-removable. 

Proof. Let ECI  n-x. Given ucWI,P(~\E),  we let v be the p-harmonic function 
with the Dirichlet da ta  given by u. Then u-vEW~'P(~\E),  and it suffices to show 

that  E is removable for v. As v is p-harmonic, and fn\E I Vvlp dx<oc, v has one- 

sided upper  and lower non-tangential  limits almost everywhere in E;  see [KMV]. 
As in the proof of Theorem 2.3 it suffices to show tha t  

.n(x,2rO IVvLp dx >_ Cr~ -1 

whenever xEE is such tha t  the one-sided (non-tangential) limits do not coincide at 
x and the porosity condition holds at x. Here Bn(x, 2ri) is the n-dimensional ball 
corresponding to the (n-1) -d imens iona l  ball B(x{, r{) from the porosity condition. 
Assume again that  the one-sided limits are 0 and 1. Let Vi be an n-dimensional ball 
of radius R : d i a m ( G i )  tha t  contains the set Gi for x from the definition of porosity 
(so Gi=B~ or Gi=F~). 

Suppose first that  p<n. By symmet ry  and p-porosity, we may assume that  the 
1 upper  limit is 0 and tha t  v>_ 5 in a set AcBi  with Hc~ -1 (A) ___ 5~-0cl ~ n - 1  (Bi) or in a set 

ACF~ with H i ( A )  >_ ~Hoa(l~i).a 1 Here H~(A) is the A-dimensional Hausdorff content 
of A; notice tha t  H~-I(A)=H~-I(A) for a set A E R  ~-~. Extend the restriction of 

v to the upper  half space to all of R ~ by reflection. Write w for this new function. 
I t  clearly suffices to establish the above inequality for w. 

1 Assume first that  the average wv~<_�88 and let c>0 .  As u > 5  on A, s tandard 
estimates (eft [HK3, 5.9]) show tha t  

RP~C ]'2~, [VwlP >- H~P+P~(A)' 

where C depends only on p, n, and ~. When p<n-1 ,  we let c=(p-1)/p. The 
above inequality and the estimate on the size of A then give 

f2  ~ rn--1 C1 IVwlP > Rn P > w2 i , 
v~ 

where C1 and C2 depend only on C, p, n, and C~. When n - l < p < n ,  we let 
~=  ( p + l - n ) / p  and the above inequality again follows. 

Suppose then tha t  wy~ >-~. As u has the non-tangential upper  limit zero at x, 
we find for small ri a ball UicB~(x, ri) of radius comparable to ri so tha t  wv~ <_ 1. 
By the Sobolev-Poincar~ inequality 

(/13 IW--wBlPn/(n--P))(n--p)/n~c/B 'YwlP' 
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where C depends only on p, n, and B=B'~(x, 2ri). Because the diameters  of Ui and 

If/ are comparable  to  ri, it then easily follows tha t  

iVwl p > R n p, C n(~,2T~) 

where C depends oMy on p and n. 

Combining the above two cases and not ing the definition of w we conclude tha t  

fB IVvrp > C '~(~,,'~) _ , 

where C is independent  of i. The  claim follows. 

The  case p = n  is similar: let r and use the Trudinger  inequali ty instead 

of the  S o b o l e ~ P o i n c a %  inequality. 

Proof of Theorem A in higher dimensions. Let l<p<n. By Theorem 3.2 it 
suffices to const ruct  a p-porous compact  set E C [ 0 ,  1 ] n - 1 = I  ~ 1 such tha t  E is not 

removable when q<p in R n. Again,  the s i tuat ion is slightly different depending on 

whether  p<n or p=n. 
Let first p < n and set A =  ( n -  1) / ( n - p ) .  In what  follows �88 < s < �89 can change 

its value from line to line. We begin by deleting a cube Q1 of side length s2 A from 
the center of I n-1.  We subdivide I~-I\Q1 into cubes of two different sizes: 2 n-1 
of them of size / 1 = � 8 9  A) and the rest of size s2 -A .  The cubes of size 82 - A  

correspond to  t ransla t ing the central  cube along the coordinate  directions. This 

determines the value of s at this stage as we need 2A/8 to  be an odd integer. Write 

1421 for the collection of all the cubes in the subdivision. We continue by deleting a 

cube of side length s2 2A for an appropr ia te  s from the  center of each cube in 1471 
whose size is at least 1 ~11. Our  new collection 1422 consists of the cubes in 1421 whose 

side lengths are less t han  ~ ~ll and from the cubes obtained from the subdivisions 
of the cubes subject  to central  deletion. The  subdivision of such a cube results in 

1 cubes of  two sizes: 2 n 1 cubes of  size ~(l(Q) s2 2A), the rest of size s2 2A. Let 12 

be the largest side length of a cube in 1422. We repeat  the construct ion inductively: 
at  stage i we delete a cube of size s2 -id from the center of each cube in 142 i of size 

at least 1 ~l~, we subdivide (again the value of s is de termined by the requirement 

tha t  l(Q)2iA/s be an odd integer) and le t / i+1 be the size of largest cube obtained.  
E o~ Wi.  Notice tha t  fi is comparable  to 2 ~. Let =[-]i 1 Then  E is clearly p-porous,  

and a simple count ing a rgument  shows tha t  ~ o o  diam(Qi)n_q<oo for each q<p. 
i 1 

W h e n  p = n  we begin by deleting a cube Q1 of side length s e x p ( - 1 ) .  We then 
let l l = 1 (1 - s e x p ( -  1)). In  the it h step we delete a cube of size s 2 - i  e x p ( -  2 i) fi'om 

the center of each cube whose size is at least 1 ~li. The  claim follows as above. 
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Remark 3.3. One can modify the construction used in the proof of Theorem A 
above so as to obtain a compact set E c R  ~-1 that  is not n-removable but tha t  is 

p-removable for all p > n .  

4. P r o o f s  o f  T h e o r e m  C a n d  t h e  co ro l l a r i e s  

Corollary B immediately follows from Theorem A and as Corollary D follows 
directly from Theorems A and C, we only present the proofs of Theorem C and 

Corollary E. 

Proof of Theorem C. We define X=Rn\E,  and equip X with the euclidean 
distance and with the restriction of the euclidean volume. Let u be bounded and 
continuous in X and 9 be an upper  gradient of u. We first establish (1.2) for the 

pair u, g assuming tha t  E is p-removable. 
Fix a ball B(x, r). If  g is not in LP(B(x, r)), there is nothing to be shown. 

Otherwise, one can check that  uEWI,P(B(x, r)\E) (ef. [HjK], [KM]) and tha t  Iwl_< 
g almost everywhere in B(x, r). Thus the desired p-Poincar6 inequality follows from 
the usual p-Poincar6 inequality in R n. 

Suppose then that  X supports  a p-Poincar6 inequality. Let u be smooth and 
bounded in X = R ~ \ E  with [Vu I ELP(B\E) for each ball B; notice tha t  LP(B\E)= 
LP(B) as IEI =0.  Notice tha t  Ivul is an upper gradient of u. 

Fix j .  We cover R n with balls 5Bi, each Bi of radius 2 J and centered in X and 
so tha t  the balls Bi are pairwise disjoint. We pick a part i t ion of unity ~ ,  i_>1, so 
that  0<~i_<1, g?~=l in the euclidean ball Bi, ~ = 0  in R~ \10Bi ,  and Iv~il  <_c2J. 
Here C is independent of i. Define u j = ~ i ~ _ l  aiCg, where ai=fmB~ udx. Clearly uj 
is smooth. Fix k. Then 

O(3 

IVuj(x)l = V ~_l(ai-ak)r . 

If x C 10Bk, we conclude tha t  

IWj(x)l ~ 622 ~ la~-a~l , 
i 1 

where the sum is taken over those i with 1 0 B i n l 0 B k r  For each such i, 

la~_akl <_ C2_r ( [ ~l/p \ r  IVulP dx) , 
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and so 

< C  ~OBk lVUJl p d x -  f3oxB lVul p dx; 

notice that  there is only a uniformly bounded number of indices i with 30Bif330Bk 
0 and that  IVul is an upper gradient of u. As the balls Bk are pairwise disjoint, 

the balls 30ABk also have uniformly bounded overlap. Fix an arbitrary ball B. 

It follows that fB IVujl pdx<M<cc,  where M is independent of j .  Moreover, as 

u(x):Ei~176 1 u(x)r and uj(x)=Ei~176 air where ai is the average of u on 

lOBi, one easily checks using the p-Poincar6 inequality for u that  uj--*u in LI(B) 
(in fact Ilu-uj IIL~(B)<_C2-Y diam(B) n(p 1)/PllVUllLp(NB) ). Hence the sequence (uj) 
is bounded in LI(B) and thus the usual p-Poincar~ inequality in B shows that (uj) 
is bounded in LP(B) as well. Thus (uj) is bounded in WI'p(B). Consequently, a 

subsequence converges weakly to some vcWI,p(.B) and as the functions uj tend to 

u in LI(B) ,  we obtain uEWI,p(B). The claim follows. 

Proof of Corollary E. Let X = R n \ E ,  where E c R  ~-1 is removable for all q>n, 
but not removable for n; see Remark 3.3. 

Let u be continuous and let g be an upper gradient of u. If u is Lipschitz, then 
u E w I ' q ( ~ \ E )  for all q>n and each bounded domain [t. Then uEWl'q(f~) and 

consequently u E W 1 'p (f~) for each bounded ~t. Thus the usual p-Poincar5 inequality 

holds for u and IVul. On the other hand, it is easy to check that IVul<_g almost 
everywhere, and we obtain the desired p-Poincar~ inequality for the pair u, g- The 

rest of the claim follows from Theorem C. 
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