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I t  is the purpose of this paper  to give an account of numerical calculations re- 

lating to the behavior of the Riemann zeta-function 

~(s)= ~ n -s (s=a+it) 
r im1 

on the critical line a=l/s, t > 0 .  These results confirm those made previously by 

Gram [1], Hutchinson [2], Titchmarsh [3] and Turing [4] and extend these to the first 

10,000 zeros of $ (s). All these zeros have real parts  equal to one half and are simple. 

Thus the Riemann Hypothesis is true at  least for t<_9878.910. This extension of our 

knowledge of ~ (1/2+ it) is made possible by the use of the electronic computer known 

as the SWAC while it was the property of the United States National Bureau of 

Standards. Actually only a few hours of machine t ime was needed and much more 

could be done along the same lines by  this or any other really high speed computer. 

A brief history of previous results and contemplated calculations may  be given 

as follows. The work of J.  P. Gram (in 1902-4) was largely for real s. However, he 

gave the first ten roots of ~ (s) to 6 decimals and five further ones with less accuracy. 

He is also to be credited with a valuable observation, now known as Gram's  Law, 

which may  be stated as follows. Let  n be a positive integer and let v~ be the real 

positive root of the equation 

3~: -1 I m  (log F (1/4 + :~ i v)) - v log g = n. 

We call ,~ the nth  Gram point and the interval 

I t .  : (Vn, "Kn+l) 

the nth  Gram interval. Gram's  Law states tha t  ~ (1/2 + 2 z  iT) has a single root in I~. 

This law implies the Riemann Hypothesis and the verification of the lat ter  depends 
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largely on the verification of the former. Gram's Law, however, is known to fail for 

an infinity of n and, in fact, fails for about 800 values of n below 10,000. The first 

Gram interval not containing a root of ~ (1/2 + 2~ i~) is I12 a . However, I126 contains 

two roots. Similarly Ila a contains two roots while Ila 4 contains none. These facts 

were discovered in the neighborhoods of t =  282 and t = 295 by Hutchinson in 1925. 

He also extended Gram's list of zeros so as to include the first 29 below t =  100, 

using 3 decimal accuracy. This list has never been extended. Further work has been 

in the direction of merely isolating and counting rather than approximating the roots. 

However, the early roots have received some attention lately, van der Pol [5] in 1947 

constructed an electronic analog device for exhibiting the first 73 roots (for t_<210). 

Recent unpublished work of Haselgrove in England is being devoted to the deter- 

mination of the early roots to considerable accuracy by electronic digital computation. 

Returning to the work of Hutchinson, he showed that  the first 138 roots of 

(s) = 0 all have a = 1/2. Using a method of Backlund [6] he showed that  inside the 

rectangular region 
0 < a < l ,  0 < t < 300.468 

there are exactly 138 roots, and having found, by sign changes, at least 138 real 

roots of ~ ( 1 / 2 + 2 z i v ) = 0  he thus verified the non-existence of roots not on the ab- 

scissa a = 1/2 for t <  300. As a basis for his computation, Hutchinson used the Euler- 

Maclaurin asymptotic expansion as suggested by Backlund 

where 

rn-1 ,//bl s k 
~(s)= ~ v-'+l/2m s+ + ~T~+R(k,m) (1) 

~=1 8 -  1 v=l 

2v 2 
T v =  B2v ~"bl-s-2v 1-I ( 8 ~ - i )  

(2 v) ! r 

and B 2 = i/e, B 4 = -  1/30 . . . .  are the Bernoulli numbers with appropriate estimates, for 

the remainder R (k, m). At t =  300 the corresponding m = 0 (t), of the order of 100, 

was occasionally needed and, with only a desk calculator available, the computation 

became too laborious. 

To meet this difficulty, Titchmarsh, in 1935, employed another asymptotic expan- 

sion of Riemann and Siegel in which only [$'/,] terms are required. This formula may 

be given as follows. 

Let 

l (3) = e ~e ~ (1/2 + 2 ~ i ~) 

where 
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0 = 0 (3) = - ~3  log ~ + I m  (log F (1/4+ u3)) 

= ~  (31og 3 -  3 - 1 / s  + (192z2 3) -1 + ...), 

then /(v) is real and is given by  

/ (3) = 2 ~ v-1/, cos 2 ~ (u - 3 log v) + g (v) + R 
v=l  

where 

m = [~'/ , ]  

= 0 / 2  

(3) = ( - -  ])m--1 3--'-/4 h (~:) 

h (~) = ( sec  2 ~ ~) cos 2 ~ @ 

= . ~ ' I ,  _ m 

4' = ~ _ ~ 2 + 1 h . "  

(2) 

Titchmarsh gave a elaborate estimate for I RI  approximately equal to 3 - ' / .  for v 

large enough to be of interest. Under the supervision of L. J.  Comrie, a s tudy was 

made in 1936 of the first 1041 roots in which automatic  computing, in the form of 

punched ~ard equipment,  was first applied to the problem. Ti tchmarsh found tha t  

all roots had ( r=l /2  and so the Riemann Hypothesis was verified up to t=1468.  

There were 43 failures of Gram's  Law. 

Plans to extend the work of Ti tehmarsh by use of a differential analyzer were 

made in 1939 by  the late A. M. Turing. These were interrupted by  the war and 

later rendered obsolete by  the advent  of the electronic digital computers. 

I n  1947 the writer programmed an extension of the work of Titchmarsh for the 

ENIAC, the only electronic computer then in operation. However, before the program 

could be run, the ENIAC was drastically modified thus rendering it useless for the 

problem. 

In  June 1950, Turing used the Manchester University Mark 1 electronic digital 

computer to examine the zeta-function for 24,937.96 < t < 25,735.93 (that is for 

63 < 1/~< 6.4) and found in this region of the critical strip tha t  there are about  1070 simple 

zeros all with a =  1/2. In  another short run the validity of the Riemann Hypothesis 

was verified between Titchmarsh 's  upper limit of t =  1468 and t =  1540. Only some 

twenty hours of machine time was used. Unfortunately no further t ime was made 

available and these incomplete results were published in 1953. 

I n  1949 the writer had suggested the zeta-fun'ction problem to J.  B. Rosser, then 

Director of the National Bureau of Standards Inst i tute  for Numerical Analysis, and 
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it was eventually accepted as a low priority project for the SWAC some two years 

before the completion of the machine. The coding and much of the actual operation 

has since been done by Mrs. Ruth  Horgan. The initial part  of the project consisted 

in determining the first 5000 Gram points v,. This was done by solving for z the 

equation 

T log ~ - ~ = n + 1/8 

for n =  1 (1) 5000 using the iterative subroutine 

~ ( k + l ) =  (T/, "~- 1/s)/(log 3 (k) - 1), . ( T  (0) = "t '*,-1).  

Next the function / (v , )  was evaluated without remainder, tha t  is 

was evaluated using a Chebyshev approximation for the cosine function and one of 

two step functions for g. When Gram's Law holds 

sgn / (v.) = ( -- 1)". (3) 

Whenever [h (r ,)[  was below the estimate for [R[ in (2), so that  the sign of [(T,) 

was in doubt, a special indication of this fact was put  out by the machine. Another 

coded output  was made when [h (v,)[ was large enough to prove that  (3) did not 

hold. Such failures (or possible failures) of Gram's Law were examined more closely by 

a further computation subdividing each of the Gram intervals I,_1 and In into 8 sub- 

intervals (equally spaced in the scale of n) with the expectation of finding sufficiently 

large values of ] [1 (3) [ to indicate clearly the behavior of [ (3) in the combined interval 

(v,-1,3n+1). A study of these exceptional cases revealed about 360 failures in Gram's 

Law. In all but  one interval the absence of a root was exactly compensated for by 

the presence of an extra root in an adjoining interval. In the case of I4ve3 the func- 

tion h(3) rises to a very low maximum less than the estimated In[ and so (2) was 

inadequate to determine whether Iavea has two real roots or no real roots of [(T). 

The discovery of this interesting phenomenon led to two further programs: (a) an 

immediate analysis by the previous method of the next  5000 Grams points and 

(b) a new program based on (1), with a much smaller remainder than (2), for the 

more minute investigation of the zeta-function in a selected neighborhood. 

Program (a) disclosed another doubtful Gram interval I6707 and about 450 addi- 

tional failures of Gram's Law. 
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Program (b) disclosed that,  in conformity with the Riemann Hypothesis, /(z') 

has two real roots in each of I4e~s and 16707 and no root in 14674 and IeT0s" 

An account of the failures of Gram's Law among the first 10,000 intervals can 

be given briefly as follows. All failures produce one Gram interval without a root 

and it is convenient to assign the failure to this interval as its location. All but  14 

failures are of the simple type in which the "missing" root is found in one of the 

two adjacent intervals. Very often this displacement is a minor one and in 18 cases 

it was impossible to decide, without further calculation, whether such a displacement 

had actually occurred since f (~n) was too small in absolute value to determine its 

sign. The 14 failures mentioned above are such that  the missing root is displaced 

into the next interval beyond the adjacent one. Thus for n - 3 3 5 8 ,  3777, 4541, 5105, 

6413, 6536, 6810, 7002, 7544 and 9609, there are two roots in In-2, one in In-1 and 

none in In. There are two roots in In+2, one in In+l and none in I= for n=4921 ,  

5491, 5816 and 5936. 

The failures of Gram's Law become more and more frequent as n increases. The 

following table gives the number E (n) of failures among the first n Gram intervals 

for n =  1000 (1000)10,500. Numbers in parentheses refer to cases in which there is 

some doubt, as mentioned above. 

n E (n) A E (n) 

lO00 40+ (4) 
72 + (7) 2000 112 + (11) 
76 3000 188+ (11) 
82 + (3) 

4000 270 + (14) 
86 + (1) 5000 356 + (15) 
87+(1) 

6000 443 + (16) 
93 7000 536 + (16) 
87 + (2) 8000 623 + (18) 
91 9000 714 + (18) 

100 10000 814 + (18) 

In 419 failures the shift of t h e  missing root was to the right; in 395 cases to 

the left. 

Although in about 546 cases failures are more or less isolated, some 268 occur 

in conjunction with one or more other failures. For example, there are three roots 

in In for n=2145,  4085, 4509, 6704, 9100 and possibly 7334, the two adjacent inter- 

vals /n-1 and In+l being devoid of roots. There are failures in Imp, Ism, IQoo~, the 

numbers of roots in I8995 to I00o4 being 

1, 2, 0, 1, 0, 2, 1, 0, 2, 1. 
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6703 ~ - . . ~  s /  6706 \ 6707 670e 6709 I 671o ~ 6717 

- 1 -  

- 2 -  

- 3 ,  

F i g .  1, 

Eight similar phenomena occur in the neighborhood of In for n =  4823, 5747, 5935, 

6154, 7003, 7545, 9483, 9581. There are 47 and possibly 49 cases in which failures 

occur in both In and In+l and 61 or 62 cases in which both In and ln+~ have 

failures. 

The above anomalies in Gram's  Law may  be thought  of as minor modulations 

in the frequency of the oscillations of [ (T). Perhaps of more interest to the problem 

of the Riemann Hypothesis  is the question of the amplitude of these oscillations. Wha t  

interests us especially are low maxima and high minima and the related mat te r  of 

two nearly coincident roots. 

For some 25 values of n, In has two roots differing by  less than  one fourth of 

In between which the extreme value of ] has a particularly small absolute value. 

Five of these cases required a special fine mesh calculation to insure tha t  two roots 

actually exist. These are the cases n = 3775, 4085, 4509, 4763 and 6707. In  the first 
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Fig. 2. 

three cases extreme values of ~1 (~) were found sufficiently large in absolute value to 

exceed the est imated value of IRI in (2). The last two eases remained uncertain and 

required the use of (1) as mentioned above. The number  m of terms used was 1500 

and 2000. Both real and imaginary parts  of ~ (x/2 + 2 g i T) were found at  some 20 points 

in each case, the t ime required being about  30 seconds for each point. The results 

obtained were gratifyingly free from round-off errors. The behavior of I (v) in the 

neighborhood of Ie707 is illustrated in the accompanying two figures. 

Figure 1 is a graph of [ (vn) with n as a continuous independent variable between 

6703 and 6711, showing three roots in I~7 ~ and the low max imum in Ie7o7. 

Figure 2 shows, greatly magnified, the critical region near ~ =  1114.89 (n=6707.6)  

where /(T) has its lowest maximum in the range of its first 10,000 roots. The actual 

max imum is only .0039675 and occurs at  z =  1114.89340 ( n =  6707.64686, t =  7005.0819). 

The two roots of ~ (8) in Ie707 are 
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1/~ + i 7005.0629, 

1/~ + i 7005.1006. 

I t  is perhaps appropria te  to _make a few informal comments  in conclusion about  

the significance of the above results in relation to the Riemann Hypothesis .  These 

comments  repeat  to some extent  those made already by Titchmarsh.  A tendency  for 

the behavior of the zeta-funct ion to  become more and more capricious as t increases 

is evident f rom the values thus  far computed.  Near ly  one interval  in ten now shows 

a depar ture  from Gram's  Law. 

There are relations between the logari thms of the primes, especially the early 

ones, which, at  least as far as v =  1572, prevent  a negative max imum of a positive 

min imum of f (T). Whether  this conspiracy will ever break down is equivalent  to the  

question of the t ru th  or falsity of the Riemann  Hypothesis .  The low max imum of 

/ ( v )  at v=1114 .89  has a value approximate ly  of the order of magni tude  of the 

25,000th term of the series Z n -s so tha t  there is a very  delicate balance at  this 

point. By  inspecting the terms of /(v) in I~707 one sees the first few rapidly  rising 

terms being steadily beaten back by  a conspiracy of slowly descending terms so t h a t  

the resulting m a x i m um  is nearly negative,  the contest  being followed by  a violent 

oscillation. This phenomenon,  which has occurred before in a slightly less pronounced 

way, will occur infinitely often, by  Kronecker ' s  theorem, and investigations at  suitable 

neighborhoods at  immense distances up the critical strip m a y  well prove to  be the 

best  future a t t ack  on the  Riemann  Hypothesis .  

N O T E  A D D E D IN P R O O F :  Since the  above was wri t ten a few more hours of 

machine t ime was used to  examine the next  15000 roots. 

The zeta-funct ion 's  behavior  becomes s teadi ly  "worse"  but  all roots have a =  1/2. 
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