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1. Introduction 

In this paper we give a constructive proof of the following theorem, Theorem 1.1, of 

Brown, Douglas and Fillmore. Our proof yields a quantiative version, Theorem 1.2, 

depending on the norm of the self-commutator and subject to a natural resolvent 

condition. 

THEOREM 1.1 (BDF). Let T be an operator on a Hilbert space Y( such that 

T ' T - T 1  ~ is compact, and such that the Fredholm index ind(T-2)=0 whenever this is 

defined (A ~ oe(T)). Then there is a compact operator K such that T - K  is normal. 

Our quantitative version yields an estimate o f  IIKII in terms of the homogeneous 

quantity IIT*T-TT*ll 1/2 provided the spectrum of T is in a natural quantitative sense 

close to the essential spectrum a~(T). Indeed, if N is normal, and liT-Nil<e, then 

II(T-,~I)-III < (dist(2, a(N))-e)  -1. 

So it is reasonable to assume this inequality when distO., a(N))>e. 

THEOREM 1.2. Given a compact subset X of the plane, there is a continuous 

positive real-valued function fx  defined on [0, c~) such that f(0)=0 with the following 

property: 

Let T be essentially normal and satisfy the BDF hypotheses: 

(i) t ~ (T)=X ,  

(ii) ind(T-M)=0 for all ;t ~X. 

Furthermore let T satisfy the quantitative hypotheses: 

(iii) II r* T -  Tr*II'/2<E. 
(iv) II(T-2I)-lll<(dist(2, X ) - O  -1 for all 2 such that. dist(2, X)>e. 
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Then there is a compact operator K such that Ilgll<fx<O and such that T - K  is a 

normal operator with spectrum X. 

One reason for the significance of the BDF theorem is the connection demonstrat- 

ed between operator algebras and algebraic topology. Given any essentially normal 

operator T, its image zr(T) in the Calkin algebra is normal with spectrum X=cre(T). So 

then C*(er(T)) is isomorphic to C(X) by mapping T to the identity function z. The 

inverse map is a monomorphism r of C(X) into the Calkin algebra. An equivalence 

relation is put on such monomorphisms, namely unitary equivalence: ~1~r2 if there is a 

unitary U such that rz(f)=ar(U)rl(f)er(U)* for f in C(X). The set of equivalence 

classes is denoted Ext(X). This set has a binary operation given by [rl]+[r2]=[r~Or2] 

and this is shown to be a group. Indeed, the definition of Ext(X) in this context extends 

readily to any compact metric space. Brown, Douglas and Fillmore prove that 

X--+Ext(X) is a covariant functor from the category of compact metric spaces with 

continuous maps into the category of abelian groups. Moreover, it is shown that Ext(X) 

is a homology theory with Bott periodicity and certain pairings with topological K- 

theory. 

These connections with algebraic topology, especially the higher dimensional 

phenomena, will not be examined in this paper except for a few comments in w 6. Our 

purpose is to show that in the case of planar sets (where the topology is easily 

understood), the results of BDF can be explained in a purely operator theoretic way. 

Furthermore, this approach yields more information about how the desired compact 

perturbation is obtained. However, it is worth pursuing one other aspect of the Ext 

functor. The Fredholm index is a continuous homomorphism of the invertible elements 

of the Calkin algebra into the integers. Thus it naturally induces a map from Ext(X) into 

Hom0rl(X), Z). That is, given r in Ext(X) and any homotopy class [ f ]  of invertible 

elements of C(X), one has 

(ind ~) I f ]  = ind r ( f ) .  

In the case of planar sets, erl(X) is an abelian group generated by [z-2,-] where ~'i) is a 

set of points, one from each bounded component of the complement of X in the plane. 

Thus, if r corresponds to an essentially normal operator T via r(z)=zt(T), then ind r is 

determined by the integers ni=ind(T-2iI). For planar sets, it was shown [I2] that ind is 

an isomorphism. Showing that ind is surjective is an easy consequence of the Berger- 

Shaw Theorem [9]. Thus, the BDF theorem for indices other than 0 is an immediate 

corollary of Theorem 1.1 and can be stated: 
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COROLLARY 1.3. Let S and T be two essentially normal operators such that 

oe(S)=tre(T) and ind(S-M)=ind(T-2I)  for all 2 ~ Cre(S). Then there is a unitary operator 

U and a compact operator K so that T= USU*+K. 

Our approach has its roots in two papers by the first author [4, 5] in which 

constructive techniques were developed to prove our Theorem 1.2 in the special case in 

which T is the direct sum of a normal operator and a weighted shift. The problem was 

then to free the applications of these methods from an apparent dependence on the 

special character of weighted shifts. A paper of the second author, Almost commuting 

Hermitian matrices, [18], improved the methods and developed an approach which 

proves sufficiently general to lead to our results. 

In that paper [18], the existence of our proof of BDF for the disk was announced 

but the case of the annulus, which, of course, we solve here, was listed as open. 

The problem principally addressed in that paper, [18], is still an important open 

question. 

Problem 1.4. Given e>0, is there a d>0 so that whenever T is a norm 1, finite rank 

operator such that lIT*T-TT*II<O, there is a normal operator N satisfying liT.Nil<e? 

This problem is unresolved; however in [18] an absorption theorem is proved 

which turns out to be an acceptable substitute. 

THEOREM 1.5 ([18]). Given a matrix T in d/tn(C), there is a normal matrix N in 

vg,(C) with IINII<~IITll, and a normal matrix M in d/bzn(C) such that 

lIT~ N-MII <~ 7 511T*T- TT*II 1/2. 

The key to constructing normal approximants without solving problem 1.4 will be 

an adaptation of the method developed in [18]. Given an operator T with small self- 

commutator, we develop a block tridiagonal form for T based on short spectral 

intervals of Re T or of ITI as the situation demands. A simple argument of [12] shows 

that we can extract from T sufficient approximate eigenvectors to construct a normal 

operator N so that T is close to unitarily equivalent to TO)N. The normal N is shown to 

be close to a tridiagonal operator which mimics T on long strings of consecutive blocks. 

We then construct a small perturbation of T O N  that intertwines T and N along the 

string of blocks on which T and N agree. This permits us to "uncouple" T ~ N  into a 
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direct sum where each summand is supported on two of these strings of consecutive 

blocks, We will insure that each summand will be close to a normal by insuring that 

either the real part or the absolute value of each summand will be constant and hence 

T@N and consequently T will be close to a normal operator. A refinement of the 

method will insure compactness of the difference operator if T has a compact self- 

commutator. 

An important step in our construction is that of establishing that an essentially 

normal operator, that is, an operator with a compact self-commutator, with no index 

obstruction is quasidiagonal. We recall that an operator T is called quasidiagonal if 

there is an increasing sequence Pn of finite rank projections with supPn=I such that 

limn__.| n T-TP~I[=O. It is easy to show that if T is quasidiagonal, then for every e>0, 

there is a compact K with IIKll<e so that T-K=En~i@T,, where the latter operator is 

the direct sum of finite rank operators. The set of quasidiagonal operators is closed, 

invariant under compact perturbations, and if T is quasidiagonal, every element of 

C*(T) is quasidiagonal. We know that every normal is quasidiagonal by our extension 

of the Weyl-von Neumann theorem [3]. 

We will see that the lack of an indicial obstruction allows the quasidiagonality of an 

essentially normal operator, T, yielding T' = T+K for small compact K where T' = E if) T, 

and where limn__,~ll[T~ , T~]II=0. Now if we knew problem 1.5 had a positive solution we 

would instantly obtain a normal operator T"=EO)Nn where T,-Nn was small provided 

[~,  T,] was small, yielding the compactness of T-T". Unfortunately, we do not have a 

solution to problem 1.5, and we have to work harder. 

Once we have established quasidiagonality, Theorem 1.5 yields Theorem 1.2 for 

the disc case (RI=0) fairly easily [18]. In order to solve the general problem, it is 

necessary to control the spectrum of the normal matrix N. This and the proof of 

quasidiagonality are the main steps in the proof. These two steps are very closely 

related and for the most part are done at the same time, with few differences between 

the finite and infinite dimensional versions. As our spectrum becomes uglier, our 

estimates become worse so violently that the reader may replace every constant by M 

and lose little. This is due to the use of conformal mapping techniques. It would be 

more satisfactory to be able to deal with an operator without having to distort the 

spectrum into a manageable shape since this would almost surely lead to better norm 

estimates. 

Our results were described briefly in our Bulletin announcement [7]. A more 

detailed but still essentially non-computational guide to the present paper is contained 

in section 2. 
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2. Notation and outline 

All Hilbert spaces in this paper are separable or finite dimensional. The space of 

bounded linear operators on ~ will be denoted ~ ( ~ ) ,  or possibly d/n if ~ is n- 

dimensional. The ideal of compact operators is ~,  and :t is the quotient map of ~ ( ~ )  

onto the Calkin algebra ~ ( ~ ) / ~ .  The spectrum of an operator T is a(T), and o~(T) 

denotes a(:r(T)). The Fredholm index of T is defined, if ~t(T) is invertible, by ind T= 

nul T-nul  T*, where nul T is the dimension of the kernel of T. The commutator of two 

operators is [A, B] = A B - B A .  Given a normal operator N, the spectral measure of N 

will be denoted EN('), and En(a) is the orthogonal projection associated with the set tr. 

Nor(~) ,  or just Nor, will denote the set of normal operators on ~. Given a subspace 

M, we let P(M) denote the (orthogonal) projection onto M. 

A normal operator is called diagonal if it has an orthonormal basis of eigenvectors. 

There will be frequent need for our extension to normal operators of the Weyl-von 

Neumann theorem, sometimes called the Weyl-von Neumann-Berg theorem [3], which 

states that given a normal operator N and a positive e>0, there is a compact operator K 

with IIKII<e such that N - K  is a diagonal normal operator. 

An operator T is called almost normal if T=N+K for some normal N and com- 

pact K. 

An operator T is called essentially normal if [T*, T] is compact. Equivalently, T is 

essentially normal if :t(T) is a normal element of the Calkin algebra. We recall that BDF 

shows that lack of an index obstruction is both necessary and sufficient for essential 

normality to imply almost normality. In [12] Lemma 2.2, an important absorption 

principle is established for essentially normal operators: 

LEMMA 2.1. Let T be essentially normal and let e>0 be given. Suppose that N is a 

normal operator such that a(N) is contained in oe(T). Then there is a compact operator 

K with IIKll<e such that T - K ~ T ~ N  (we will often write simply T~N@T). 

This result is not particularly difficult, but it is of central importance. The key 

point is that if 2 belongs to ae(T), then T - 2 I  is not bounded below. So an orthonormal 

sequence xn such that limn_~| is obtained. The compactness of [T*, T] 

implies that {xn} is an approximate eigenvector of T* for ;~ as well. Do this for a dense 

set {2k} in ire(T), and one can obtain an "approximate summand" which is a diagonal 

normal operator M with a(M)=c%(M)=a,(T). The rest follows from the extended 

Weyl-von Neumann theorem. 

Now a few comments on our approach. In [12], the main technical device is cutting 
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the spectrum in two. Our approach differs significantly in that we never cut through a 

hole. The most important step is the construction for the annulus, which is our method 

for dealing with a hole in the spectrum. An essentially normal operator of index zero 

with spectrum an annulus is approximated by a direct sum of multiples of unitaries. 

Intuitively, the annulus is approximated by a bunch of thinner annuli. After that, the 

finitely connected case is reduced to the annulus case by showing that it is possible to 

cut the spectrum with a line that does not cut any holes. So, an n-holed spectrum is cut 

into n pieces conformally equivalent to an annulus. An approximation of an arbitrary 

essentially normal operator is obtained by "fattening" the spectrum of a normal 

summand to a nice set. Thereby, essentially normal operators with zero index data are 

shown to be quasidiagonal. The same methods are repeated on finite dimensional 

blocks to show that an absorption theorem analogous to Theorem 1.5 holds for general 

sets X. From this, Theorem 1.1 and 1.2 are deduced. 

Our proofs often appear dauntingly elaborate and computational. We can, howev- 

er, first give the reader a reasonable conceptual guide through the ideas of the proof. 

Much of the technical awkwardness in later sections arises from a quest for the right 

order of magnitude of the error. This is omitted from our overview here. 

Our most important technique is "intertwining". An operator T is tridiagonal with 

respect to a decomposition H=  X 0)~n (finite or infinite) if its operator matrix (T,j) has 

To=O if [i-j[~>2. Suppose T and S are tridiagonal on gg=Z~)Y(, and Y{=E@Xn respec- 

tively, and T U = S U for l<~i+j<~2N+ 1. Then 

N ( N \ (2) 

Z(~S n~=l(~(ff(n(~rn ) ~ Z n~=l~) ff(n) . 

Let ~ be the image of the subspace ~n~0  of ~n~5(n after a rotation through an angle 

of md2N by a 2• scalar valued matrix. Then T~3S almost leaves 

N 
, y s  

n~<0 n=l n>N 

invariant, and similarly for its orthogonal complement. The restriction of TO)S to this 

summand looks like T at the beginning, has their common structure of S and T in the 

middle, and looks like S on the tail section. The reverse holds for the complementary 

summand. So a small perturbation of T~)S intertwines the two summands along their 

common section. 
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N This technique is particularly useful when S "s tops"  soon, i.e. acts on E~=0~)ff{ ~ 

itself or perhaps N+I r,n=_10~( .. For then, the intertwining has succeeded in splitting T into 

two summands. We shall say that T has been uncoupled, or that the head and tail 

sections of T have been uncoupled. We next observe that this uncoupling procedure 

can be implemented on many different sections of T without increasing the norm of the 

perturbation. This is because the perturbations take place on pairwise orthogonal 

pieces, and T does not map anything in one of these blocks into any other. Thus this 

method can be used to split T into many direct summands. 

Let A be a self-adjoint operator, and let B be an operator such that [A, B] is 

compact and ILIA, B]ll~<e 2. Use the spectrum of A to split Y( into a direct sum r ,~  ~ 

corresponding to the spectral subspaces of A for intervals [ne, (n+ 1)e). With respect to 

this decomposition, B has a matrix (Bo.). A simple computation shows that B U is 

compact and IIBo.ll<.e/li-jl- 1 for li-j]>~2. Hence the tridiagonal part B' of B differs from 

B by a small compact operator. (A more delicate argument shows that IIB-B'II<.Ce 
independent of the number of summands, which is important to get best possible 

estimates.) 

Now suppose T is an operator with small self-commutator. Even if this commuta- 

tor is not compact, the approach of Lemma 2.1 approximates T by an operator unitarily 

equivalent to TO)N where N is normal and a(N)=ae(N)=a~(T). Write T=A+iB as the 

sum of its real and imaginary parts. Decompose Y( as in the previous paragraph, and 

modify B to a tridiagonal B'. If a~(T) contains an interval {2+it: Itl~<llBII}, we can use 

the intertwining technique to split T approximately into summands corresponding to 

spectrum in {z: Re z~>2} and {z: Re z~<2} respectively as follows. Take an integer 

n'--e -1/2-:- and consider the string of n + l  blocks 5e=Ein0~)~ corresponding to the 

spectrum of A centered about 2. Let B0 be the compression of B' to b ~ The operator 

No=~J+iBo is normal with spectrum {2+it: [ti<~iiBi[}, which is a direct summand of N, 

and is very close (O(el/2)) to the compression of A+iBo to b ~ So 

T-+ T@N - T@NoON ~ ~ (A +iB')@(A +iB'ISe)@N~. 

Now B' and B0 agree on the string 5e, so we can use the intertwining to uncouple B'. A 

moment's reflection on how this decomposition works shows that A is not perturbed at 

all. So T has likewise been uncoupled. This will be referred to as the cutting lemma. 
Now consider the case of an annulus A=(z: l~<[zl~<R}, and an operator T with 

[[T[[=R, I[T-I[I= 1, Cre(T)=A, and [I[T, T*]ll~<e 2. Let T= UP be the polar decomposition of 

T. Then T is normal if and only if P and U commute. Moreover II[u, e2]ll = 
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[[[Z~ T*] Ull~e 2. So split Y( into summands corresponding to spectral intervals of p 2  of 

length e. A small perturbation of U to U' makes it tridiagonal. We wish to uncouple U' 

into direct summands corresponding to small spectral intervals of pZ (roughly el/2; that 

corresponds to strings of length about e-1/2). The procedure is much like the one 

described in the previous paragraph except that the compression of U' to a string 

5O= r'~=0~ Ygk of blocks will not be unitary or even close to unitary. Care must be taken 

to overcome this by modifying the compression to a unitary U0 which is still tridiagonal 

and still agrees with U' except on a few blocks at each end of the string. We accomplish 
r n-2 W " h this by restricting U' to the interior of  the string 5 ~ =Zk=2@Y(kon hlc U'ISO' is almost 

isometric with range in 5O. In the finite dimensional case, one keeps track of kernels and 

ranges and finds that the complement of the range of U'[SO' in Y ( 0 ~ l  is precisely 

dim(~o@Y(0, and similarly for ~,-l@Ygn. So one extends U'[SO' to U0 so as to be both 

almost unitary and tridiagonal. In the infinite dimensional case, we have domain and 

ranges always of infinite dimension; so a similar extension of U'tso' is obtained. 

This accomplishes the construction of a unitary U which is (i) tridiagonal, (ii) splits 

as a direct sum U=E0)U,  where each Un acts on a string 5e, of length e -1/2, and (iii) Un 

agrees with U' on the interior string 5O" of 5O,. Let 22n be the midpoint of the spectral 

interval of p2 corresponding to the string 5O~. Then No= E 0)2~ U~ is normal, and is a 

direct summand of a normal N with o(N)=A. Also No is close to UP. So 

T ~ T@N ~ T@No@N ~ ~ U'P@ UP@N~ ~ (U'~) U) PtZ)@N~. 

The uncoupling procedure on each string 5on splits U'@ U into a direct sum E 0)Wn of 

almost unitaries, each of which is supported on a spectral interval for p2 of length 2e 1/2. 

It is now a simple matter to replace p2 by a scalar on each of these blocks by a 

perturbation of e 1/2, and modify Wn to be bonafide unitaries. Their product is a normal 

operator close (O(eV2)) to T. 

Now if [T*, T] is compact, this procedure as it stands may not yield a compact 

perturbation. To overcome this, we first establish that T is quasidiagonal. In fact, we 

will do this subject only to the hypotheses: [T*, T] is compact, cre(T)=A, and ind T=0. 

From the polar decomposition T=UP, we obtain ind U=0 and e~(P)=[I,R]. So we find 

a compact perturbation To=UoPo where U0 is unitary, I<~Po<~RI, and Po is diagonal 

with respect to a basis {In, n>~l}. Given e>0, it is a routine exercise to split this basis 

into blocks ~k=span{li: nk_l<i<~nk} SO that U0 differs from its tridiagonal part Ul by a 

compact operator of norm at most e. 

Write U1=(U,~) and P=diag(Dj). Since [p2, U1]=(D ~ Uu_Uo.D])is compact, all 
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terms are small (<e) once i,j>-N, say. Replace P by another positive operator 

a=diag(E)  where ETI  for j~<N, Ej=Dj forj~>2N, and E;= t;I+(1 - t )  Dj fo r j  in between 

and tj slowly tapers from 1 down to 0. A simple computation shows that II[Q 2, Uo]ll<~Ce. 
The spectrum of Q is still [1,R] and S,=UoQ is essentially normal with IIS~II=R, 
IIS7111=1 and Since II[S , S*]ll=ll[O 2, u0]ll, our distance estimate shows that 

dist(S,, Normal)= O(e~/2). But each S~-T is compact, thus T is norm limit of operators 

which are normal plus compact, and, a fortiori, quasidiagonal. Hence T is quasidia- 

gonal. 

Now decompose T----E,,~IO)T,,~)N on En_>IE)Yt~Y(' where T~ act on finite 

dimensional spaces, IIT~II~<R, IIT~ItI~<I, and N is a normal with o(N)=A. Since 

[T*, T]=E,~I~)[T*, T,] is compact, we have I1[~, Tn]ll=eZ~ tends to 0 as n increases. 

Apply the distance estimate to each summand in turn. We obtain normal operators N,  

and M, on ~ ,  and ~ , ~ ,  respectively so that IIT,,~N,,-M, II=O(e~/2) tends to zero. 

Now N~-E,~I~Nn~N , hence 

n>~l n~l  

n>~l n~l  

where K=E,~I~(M-T,  GN,) is compact. Moreover, if lilT*, T]ll=e z, we can arrange 

that e,~<e for all n. So we obtain a compact perturbation K so that T-K is normal and 

ItKI{ is small if If[T*, T]I[ is small. In our more precise calculations, we will actually 

achieve IIKII~100[I[T*, TIlt vz. Similar arguments yield the result when o(T) is a disc or a 

rectangle, using the real part instead of absolute value. 

Now turn to the general case of an essentially normal operator T with zero index 

data, and o~(T)=X. By the absorption lemma, T@T~N where N is normal and 

o(N)=cr~(N)---X. Given e>0, there is a nice region X, with X=X,c{x: dist(x,X)<g}, 

where by nice we mean a finitely connected region with piecewise analytic Jordan 

curves as boundary, and allowing conformal maps as necessary. There is a normal 

operator N, with o(N~)=X~ and IIN-N~II<e. Thus T is the norm limit of operators 

T~-T~N~. ff it can be shown that each T~ is quasidiagonal, then so is T. 

Fix T~. By a theorem of Apostol [1], one can assume that T has been replaced by a 

very small compact perturbation of itself so that o(T) is contained in X, except for 

finitely many isolated eigenvalues. Clearly, these can be removed by a compact 

perturbation, so we ignore them. Let f be a conformal map in a neighborhood of X~ 

9-918285 Acta Mathematica 166. Imprim6 le 15 f~vrier 1991 
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which carries each component of X~ onto a rectangle with rectangular holes parallel to 

the axes. Then S=f(T,) is an essentially normal operator with a(S)=ae(S)=f(X,). Use 

the cutting/emma finitely many times to uncouple S into a direct sum S~E~=1~)Sk 
where each Sk is essentially normal and has spectrum equal to a rectangle Rk with or 

without a rectangular hole. Each R~ is conformally equivalent to an annulus or a disc, 

so another conformal map gk(SD is an essentially normal operator with zero index data 

and annular spectrum. Thus gk(Sk) is normal plus compact. This implies' that each Sk, 

and thus S, is normal plus compact. In turn T,=f-1(S) is normal plus compact, and a 

fortiori, quasidiagonal. Thus T is quasidiagonal. 

Write T~-E,,~I~T ~ where T~ act on finite dimensional spaces ~ .  Study the method 

of the previous paragraph to see what the construction does to the summands T, in 

T , = E ~ I ~ T ~ N  ~. One notices that the functional calculus preserves direct sums, so 

f(T)=E~l@f(T~)~f(N ). Next, the cutting lemma works by first decomposing ~ via 

the spectral measure of Ref(T,)= E O)Ref(Tn)@Ref(N,), which also respects the sum- 

mands. Then it adds on a normal summand produced on the same space. In other 

words, a finite rank normal summand is adjoined to each finite rank summand, thereby 

allowing an uncoupling of each summand. The same procedure occurs again when the 

conformal map carries each uncoupled piece onto an annulus or disc. Again the 

perturbations respect the block decomposition. Consequently, the procedure yields 

normal matrices N~ and M~ with spectrum in X~ so that K=Z,~I~(M,,-T~N~) is 

compact. Moreover, 

n~>l n~>l 

It follows that [IM.-T eN II tends to 0 as n increases. 

Now for any e>0, [[M,-T,O)N,[[<e for n greater than some integer n,. There are 

normal matrices M" and N" with spectrum in X so that [[N,-N'n[[<e and [[Mn-M',[[<e. 
Hence ]]M',-T,~N',[[<3e for all n>~n~. But e>0 is arbitary. Thus it is possible to choose 

M" and N~ so that limn_,o~llM'+T,O)N'[[=O. Thus 

T ~ E ~)T.~N ~ E ~(T~N'.)~N ~ E ~M'.~N+K ~ N+K' 
n>~l n>_l n>~l 

where K' and K= E,~ l ~)(M'-T,~N',) are compact. This establishes the BDF theorem. 

Moreover, a norm estimate is obtained for each nice region X,. The fact that one can 

choose e to best advantage for each summand separately allows us to compute a 

uniform norm estimate for the region X as well. 
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3. The approximation techniques 

In this section, the principal technical tool will be described. This is a refinement of the 

interchange technique for weighted shifts [4] (see also [19, 21, 30]) to arbitrary "tridi- 

agonal" operators. This method was developed in [18]. 

An operator T is tridiagonal with respect to a decomposition of ~(= r~ n e ~  ~n if its 

corresponding matrix (Tu), where T U maps ~. into ~/, has Tu=0 if I i - j l>l .  The index set 

I may be a finite or infinite set of integers. It is worth pointing out that every operator T 

i in ~ ( ~ )  is tridiagonal with respect to some decomposition ~ =  En=0@ ~n n which every 

~0 has finite dimension. Furthermore, ~0 is arbitrary. Indeed, choose an orthonormal 

basis {en, n~>l}, and define 

N~+ l = s p a n  @ ~ . ,  Tff( n, T*ff( n, en+ 1 0 ~ff(n 
L j=0 .1 j=0 

for n~0. The verification is routine. 

There will be a need for the following variant. 

LEMMA 3.1. Let A and B be operators, and suppose A is self-adjoint. Given e>0, 

there are compact operators Kl and 1(,2 with IIg;ll<  and a decomposition of ~ as 

En~00)~ ~ into finite dimensional blocks so that A-K1 is block diagonal, and B-K2 is 
tridiagonal. 

Proof. First, choose K1 with IIKlll<e so that A - K I = D  is diagonal. Let {e~, n~>0} be 

an orthonormal basis of eigenvectors of D. Let ~0=span{e0}. Suppose ~0, ..., ~n have 

been chosen so that each ~. is the span of finitely many of the vectors {ej}, E~=00) 

contains span{e0 ..... e~}, and 

~ P j )  BPk + P k B ~ P ~  < d 2  k for O<~k<~n-1, 

where Pj is the orthogonal projection onto ~ .  Now, choose ~o§ to be of the same 

form, containing e~+ l if possible, so that the above norm condition is satisfied for k=n 

as well. Then one defines 

[k+l ~.l. / k + l  \ l  

Clearly IlK211<e, 1(2 is compact, and B-K2 is tridiagonal. [] 
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First, a weak version of our method is described. This has the advantage of being 

intuitively clear. The stronger version is based on the same principle, but is technically 

somewhat more difficult. 

N LEMMA 3.2. Let A=(A O) and B=(Bo.) be tridiagonal with respect to Ei=o~)~., and 

suppose that Ao=Bi j except for i=j=0 and i=j=N. Let C and D be tridiagonal with 

Cu=Dij=Au for l ~i+j<~2N-1, and Coo=Aoo, Doo=Boo, CNN=BNN, and DNs=Alv N. Then 
there is a unitary U such that [IA~B-U*(COgD) UII<(x/N)IIAI[. 

Remark 3.3. This lemma probably sounds rather useless as it stands, so some 

comment is needed. Think of A as a doubly infinite tridiagonal, and B as a finite 

tridiagonal agreeing with A on entries (i,j) with l<,i+j<,2N-1. Clumping all the 

E;~00) ~ into the initial block and Ei~N09 ~ into the Nth block yields the situation in the 

lemma. The operator C is tridiagonal agreeing with A up to the (N-1)st  block but 

finishing off like B; and D starts like B and looks like the "tail" of A on Ei>00)~.. 

This will be used as a perturbation result. Namely, A ~ B  is close to the operator 

CO)D. This will be thought of as the operation of splitting off the "head"  of A from its 

"tail" into two direct summands by a small change in norm. It is easy to see that i fA 

and B are self-adjoint or unitary, then so are C and D. 

Finally, an important observation to make is that the perturbation is made only on 

the blocks /~N-lt~ 9~(2) AS a result, this splitting procedure may be effected at many ~ ,~ i= l  " ~ " ~ i J  �9 

points along the length of A (by tacking on various summands Bj) without any addition 

of norm of the errors. 

N (2) Proof. Represent the domain of A(DB as Ej=0(D~ ) . Consider the projection 
N P=Ej=0(gP j where Pj acts on ~J:) by the matrix 

cjsjI q l J  

where cj=cos(jJr/2N) and si=sin(jzd2N). Note that 

P0--( '0 ; ) '  "~=(00  : ) '  

and that Pj commutes with 

0 A) 
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Thus Pj commutes with 

C 0) B o. for O ~ j ~ N .  

Hence [A~B, P] is a matrix with entries 

,,(Ao. o _Uo, o 
AO. ,] \ 0 A J  Pj 

and zero otherwise. But Py "commutes"  with 

;) 

for li-jl = 1 

SO 

,2)_ ,2) ~< I c 2 cjs~] r c~ cisi] 
ItP~Au Au PJII~'IIAII LC;Sj s~ J-Lci s, s~ J 

= Ilall = sIHAII < 2 N  HAll. L c, sl s~ 

Thus [AraB, P] is the sum of its first superdiagonal and first subdiagonal, and so has 

norm at most (:r,/N)IIA[[. 
The unitary taking N (2) N U= r~j=o~ Uj X j = o ~  ) onto itself is given by where 

U j ~  [ cJ I - s j I  1 

L sjI cyl J 

is rotation through the angle j~/2N. This takes the domain of A onto the range of P, and 

the domain of B onto the range of P• The operators Aff)B and U*(C~D)U differ only 

on the two off-diagonals as above. The ( j , j+ l )  term of At~B is a,Z) whereas the "atj, j+  1, 

( j , j+ l )  term of U*(C~D)U is ,r.A(2) rr _a<2) tr Since IIUl-la)]l=2sin(x/4N)< t./ j2"tj, j+ 1 v j+ 1 --" "j,j+ 1 I"1" 
zd2N, it follows that 

IIA~B- U*(C+D) uII < N IIAII. [] 

In the strengthened version of Lemma 3.2 which we now address there is no 

apparent hypothesis of tridiagonalization for B. This, however, will be guaranteed by a 

hypothesis of almost-commutativity with A. We state this as a separate lemma. 
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This useful lemma, which will provide the desired tridiagonal decompositions, is 

essentially Lemma 3.1 of [18]. The proof of this lemma was based on the methods of 

[10]. If A is a self adjoint operator and 

ao~-IlAtl<al <...<a . (where IlAll<a,) 

is a partition of the spectrum of A into intervals lj=[a:, aj+ 0, then A has a diagonal form 
n-1 A = E j= 0 0)Aj where Aj is the restriction to EA(/)=E i. Any other operator B has a matrix 

B=(B o) with respect to this decomposition. Let B' be its "tridiagonal part", namely the 
P t r  matrix (B0.) where Bii=B U if li-j[<~l and Bu-O for I i- j l>l .  

LEMMA 3.4. Let A, B and B' be as above. Suppose that aj+l-aj>-e for O<~j<n and 

Ilia, BIlI<& Then Iln-n'll<lZ~/e. 

Proof. The commutator [A, B] has matrix entries AiBo-BoA j. Thus [A, B'] is the 

tridiagonal part of [A, B]. Hence II[A, B']11<26. (To see this, note that the 2x2 blocks 

ll(f:+ fj+O [A, B] (Ej+E;+ 011<&) 
Hence H[A,B--B']II<36. By Lemma 3.1 of [18], it follows that 

dist(B-B',  {A}') < 66/e, 

where {A}' is the commutant of A. This consists of diagonal operators C. Thus if 

IIB-B'-CII<60/e, it follows that IIcIl<60/e. Hence IIB-B'II<120/e. [] 

Now for the stronger version, which is essentially Corollary 4.3 of [18]. 

LEMMA 3.5. Let A = A l ( ~ A 2 ( ~ A  3 be a self adjoint operator on H I ( ~ H 2 0 ) H  3 such 
that Al<,tI<,Az~(t+e)I<~A3. Let B be a operator with matr ix  [Bij]l<_i,j<_ 3 satisfying 
II[A, B]II<6. Suppose that D is a tridiagonal operator of the form 

D =  
Dll B12 0 I 
B21 B22 B23 �9 

B32 D33 /  

Then there is a projection of  the form P=(O~)I)O)P20(I~O) acting on/ag~2)0)/-/~22)~/-/~32) 
with 

(s2 ) SC 
P 2 =  S C  C 2 
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where S and C are positive operators in C*(A2) such that $2+C2=I and II[B~DD, PIll ~ 
616/e. Furthermore, if [A, B] is compact, then [B~D, P] is compact. 

I f  K1 and K3 are subspaces of  ill and Ha, let D' be the compression of  D to 
KIOH2~K3 and let P' be the restriction of P to this subspace. Then 
II[BGD',P']iI<~61c~/e and [B~D', P'] is compact when [B, A] is compact. In particular, 
this holds when KI=K3={0} and D'=[B22]. 

Proof. Let X=sin2(�89 and let S=sin(�89 JrX) and C=cos(�89 With P2 and 

P defined as in the statement of the lemma, compute 

( O B~z2)(P2-(O(~)I)) B13~O 

[B@D, P] = ((00I)_P2)B~]) tu22 ,rn(2) P2] ((IG0-P2)B~23) . 

-B31 (~)0 "-'32n(2) ((i(~ 0)_P2 ) 

Following the proof of Corollary 4.3 of [18], one obtains HB13[t<O/e,[IB3111<O/8 and 

II[n~ ), P2]11~<20 +e ~) 6/e. Also, 

(s; 
Hence, 

tlB~2 (P2-(0OI)) [ t  ~< IIB,~ Sll ~ 2~ra/e. 

Likewise, the 21, 23 and 32 entries are bounded by 2~ /e .  Totalling yields the estimate 

616/e for II[B@D, P]II as in [18]. 

When [A, B] is compact, [O@S~)I, B] is compact since O@S@I is a continuous 

function of A. Hence B~2 S and SB2~ are compact. Similarly it follows that all the matrix 

entries of [B@D, P] are compact. 

If Q is the projection onto KI@H2@K3, then since QP=PQ, one has 

[B~D',P']=Q[B~D, P] QIQH. So the results extend to these compressions. [] 

Remark 3.6. The main advantage of this lemma over the previous one is that the 

interchange can be made in one block provided the block is "parameterized" by the 

spectrum of a self-adjoint operator which almost commutes with B. Apply Lemma 3.5 

with D=B22 and let P be the projection obtained. Let B+ and B_ be the compressions of 

B(~B22 to P ~  and PJ-~ respectively. Then lIB@B22- U(B+ •B_) U*tl<~61c~/e where U is 

the natural unitary taking P ~ ( ~ P ~  onto ~ G  ~ given by the matrix 
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C - S  
S C 
0 0 

Furthermore, since P commutes with A~)Ao, one readily verifies that (A~Ao)IP~-  

A+O)Ao and A~AolP~--A_O)Ao where these pairings are given by the same unitary U. 

Thus, B~B22 has been split into two summands corresponding to a split of A~A0 into 

two summands, one with spectrum in (-oo, t+e] and the other in [t, oo). This will enable 

us to cut the spectrum of an operator with small self commutator. 

This section will conclude with a proof of BDF for the disc which is independent of 

[12]. The proof relies heavily on the absorption principle of Theorem 1.5. In [18], 

Theorem 6.1 this is proved subject to the hypothesis that T is quasidiagonal. Quasidi- 

agonality will be proved by using techniques developed in this section. 

THEOREM 3.7. Let T be essentially normal with ae(T)=D=(A EC: I~I~R}. Then 

there is a compact operator K such that T - K  is normal. IflITII--R, then one may take 

IIKI1 75 lit* T-  rr*ll '/2. 

Proof. Since IITII,=R, there is a compact perturbation of T satisfying IIT-KII=R. 
So it will be assumed that IITII--R. It suffices to prove that T is quasidiagonal. Make a 

(small) compact perturbation of T so that T - K = T ~ N  where N is normal with spec- 

trum D. Write T=A+iB as the sum of its real and imaginary parts. Use Lemma 3.1 to 

make (small) compact perturbations of A and B so that with respect to a decomposition 

~=Ek>~o(~P k ~, A is block diagonal and B is tridiagonal. 

Let B' be the tridiagonal operator with the same matrix entries as B except that 
l '  - ' " 2n 2 n, 2n+~-0=B2n+L 2 n. Then T' =A+iB' is block diagonal since F~= Ek= 0 Pk commutes with 

T' for every n~0. So 

[T'* ,  T'] = 2i[A, B'] = 2i ~ (F~-F~_ l) [A, B] (F~-Fn_~). 
n ~ l  

It follows that T' is essentially normal. By [18], Theorem 6.1, there is a compact 

operator K' so that To=T'-K ' is normal. 

Hence T-K=-T~N~-T~(To~N)-@T~To. So there is a compact perturbation of T 

unitarily equivalent to TO)T'. The two tridiagonal operators B and B' agree on 

(Fn+l-Fn)~ which consists of 2 n blocks. By Lemma 3.2, there is a projection Pn such 

that F,~)O<P,<F,+I~(F,+ I -F,)  such that [I[B@B', P,]II<2-"~r. The form of P ,  given in 
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the proof shows that P~ commutes with A ~ A .  Let Q~=P~+(O~F~). This is a sequence 

of finite rank projections such that hm~_~| Q~]II-0 and Qn tends to the identity 

in the strong operator topology. Thus T~T ' ,  and consequently T, is quasidiagonal. [] 

Remark 3.8. This proof works equally well if the spectrum of T is a rectangle. In 

fact, the constants are somewhat better because the constant in the absorption lemma 

obtained in [18] Theorem 4.4 for the rectangle case is 25X/-2-<36. The rectangle version 

will be used in section 5. 

4. The annulus 

The purpose of this section is to prove Theorem 1.2. We have described an estimate- 

free version of the proof in section 2. The reader should keep it in mind as we work 

through the technical details that allow a uniform estimate of the right order of 

magnitude. These estimates will also provide independent estimates for the disk using 

techniques somewhat different from those of [18]. 

LEMMA 4.0. Let U be a tridiagonal, invertible operator with respect to 

~=Ei~=o(~Ei, where Ei are either all finite dimensional or all infinite dimensional. Then 

there is a tridiagonal, invertible operator V which leaves c --~7k+6~ E invariant for ~ k - -  ~ i = 7 k  ~ i 
7k+4 k>-O and agrees with U on ~i=7k+2(~Eifor k>~O. Moreover, i f  U is within e o f  a unitary, 

so is V. 

Proof. We deal with the finite dimensional situation first. Set 

5 | 

M =  U X @ E  i and N =  U X ~ E  ,. 
i=0 i=6 

These subspaces are algebraic complements since U is invertible. Moreover, M is 

contained in So, and N is contained in Ei%5@Ei. Let N'=NnEs@E6. This is a comple- 

ment to M in So. To see this, note that each vector x in So decomposes as x=m+n with 

m 6 M  and nEN.  Since MESo, one has n belonging to NnSo=N'.  
--1 e~ Set L=U-~N ', and note that this is a subspace of U N=E~=6@E r Now 

5 

dimL = d imN'  = dim S0-dim M = dim S0-dim X@E~ = dimE 6. 
i=0 

5 Let J be an isometry of So onto E~=o@Ei@L which is the identity on Ei=0@Er Set 
5 I']S0= UJISo. Then V maps So onto itself, agrees with U on ~i~o~E i, and maps E6 onto 
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N'.  Thus V is tridiagonal. Moreover, if U is within e of unitary, so is V[S0, since for unit 

x in So, recalling that for all unit x in Ygwe have I IIUxll-ll<e, we see that I IIVxll-ll<e. 
In the same way, we can modify U on ETk and ETk§ to obtain a tridiagonal 

~7k+5 (~1 b-" invertible operator VISk which agrees with U on ,..,i=7k+l,,.~,~i. 
We describe the construction for E7. Let  " So=Ei=7~Er Now let 

o~ 7 

M = U E O E  i and N = U E G E  i. 
i=8 i=O 

As before M and N are algebraic complements, McSo and N~E~=6~E i. Let  

N'=NAEy~E8=NN ~r a complement to M in ~r Let  L =  U-1N ' a subspace of E~=oGE i. 

We now see dim L =  dim E7. To see this recall UE~=oGEicE~=o@E i. But the projection 

of UE~=o~E i on E6=o@E; has the dimension of E~=o@E ;, and so 

dim N'  = dim U ~ E  i n ~ E  i = dim U ~ E i - d i m  ~ E  i = dim E 7. 
�9 = , =  

Again let J be an isometry of S0 onto Ei~=8(~Ei{~)L which is the identity on Ei~8(~E i. Set 

Vl~r UJl,~o. Then V maps S0 onto itself, agrees with U on Ei~=8(~Ei and maps E7 onto 

N'. If  U is within e of unitary so is Vl~r 

Since the correction to U made for E6 and that for E7 had both orthogonal ranges 

and orthogonal domains, V is within e of unitary on U and has So as a direct summand. 

We now continue on E7+6 and so on in the same manner. 

When Ei are infinite, we proceed as above with 

4 

M = U E  ~Ei'  N = U E G E  i and N ' = N N S  O . 
i=0 i=5 

Again N'  is a complement of M in So. The extra blocks ensure that N'  is infinite 

dimensional. As above, take an isometry J of Es~E6 onto L=U-1N ', with the further 

stipulation that JE6 is contained in U-~(NNEs~E6) which is infinite dimensional. Then 

VISo= UJ will indeed be tridiagonal. The rest of the argument is the same. [] 

LEMMA 4.1. Let T be an invertible operator on Y( (of finite or infinite dimension). 
Suppose that IITI[<~R and []T-1[I~<I. Then there is a normal operator N on Y( with 

]IN[[<~R and HN-I[[~<I so that 

dist((TO) N),  N o r ( ~ ) ~ ) )  <~ 95[[ T* T -  TT*]] 1/2. 
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Proof. Let e=IIT*T-TT*il 1/2. If e>~0.05, apply Theorem 1.5 to obtain a normal No 

with IIg0lt~<R and dist(T@No, Nor)<.75e. There is a normal N such that IINII~<R, 
llN-ql<~l, and IIN-N01t~I~<20E. So dist(T~)N, Nor)~95e. 

Let us assume e<0.05. 

Let T= UP be the polar decomposition of T. In case ~g is infinite dimensional, we 

require that the essential spectrum of P be [1, R]. This is easily achieved by replacing T 

by T@N where N is normal and has spectrum the whole annulus. This doesn't affect 

the norm of the self commutator. Let an=l+4ne for n~0, and define En=Ev[a ~, a,+~). 
With respect to this decomposition, P2=E~00)PZ ~ and U=[Uo]. Let U' be the tri- 

diagonal part of U. Then let T' = U'P be the tridiagonal part of T. Since [Ip2u - UP2II=e 2, 
2 2 and since an+l-an=4e(an+l+an) 8a~e>8e, it follows from Lemma 3.6 that 

IIu-u'll~<~e. It will be established that I I T - T ' I I ~  as well. 
Group together strings of blocks corresponding to the spectral projections 

Fk=Ep[2 k, 2k+1), k>~0. First tridiagonalize U with respect to this coarse decomposition 

to obtain U". Since IIuP2-P2UII--F and the spectral gaps are 3.22k, the total perturba- 

tion of U is a compact operator with norm at most 

IIU'U"ll~< k=a II(u-s")&ll~ +STi- f f+  _ 3.4 k-' <- -9  

Moreover, the total perturbation of T to T"= U"P is a compact operator of norm at most 

C2 E 2 
IIT-T"II <~ ~ I[(U- U")PF, I I <~--~-" 2+ 

k=o 3" 16 
e 2 2k+ 1 e2. 

�9 4+ 3.4k_~ < 

Now consider T"Fk and its factorization (U"Fk)(PFk), and tridiagonalize this with 

respect to the finer partition into intervals Ee(a n, an+l), where 2k~an'<2 k+l. The spectral 

gap for p2 is at least (2k+4e)2--22k>2k+3e. Since U"Fk=(Fk_ 1 +Fk+Fk+ l) UFk, we see that 

II[U"fk, PE]II<~II[U, PE]II=ez. So by Lemma 3.4, the tridiagonal part U' of U (or U') 

satisfies 

II(u'- ~')&ll < 12~2 2-k-le 
2k+3 ~ = 3" 

and with T'= U'P, 

II(T'-T")&II ~ II(U'- U")Fk[I 2 k+' < 3e. 

As ' " - ( T -  T )Fk--(Fk_ 1 +Fk+Fk+~)(T'-T")F k, every third term has orthogonal range as 

well domain. So summing over all k=i (mod3), i=0, 1,2 yields an operator of norm at 
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most 3e. These three terms have orthogonal domains, hence their sum has norm at 

most 3X/-3-e. Hence [[T-T"I]<3V'Te+e2<~e. 
Also notice that [l[u',e2]ll<~2e2 for this is the tridiagonalization of [U, p2]. The 

obvious estimate is 3e 2 but we obtained 2e 2 by noting that a tridiagonal breaks up as the 

sum of disjoint 2x2 blocks (norm e2), and that of the remaining off diagonal terms 

which have orthogonal domains and ranges (norm e2). This refined estimate was 

pointed out to us by M. D. Choi. 

Split the blocks into strings Sek of length seven. We apply Lemma 4.0 to obtain an 

(almost) unitary V' which leaves each 5ek invariant, is tridiagonal, and agrees with U' on 

the middle three blocks of each Sek. 

Now we can intertwine U' and V' on the middle block of each string Aek using 

Lemma 3.5 and Remark 3.6. Because V' is reduced by each Aek, the perturbation W' is 

decomposed as a direct sum W'=Ek~>0~)W~ where W~ is supported on a subspace of 

5ek_t~Ae k. The perturbation required is estimated by Lemma 3.5. The spectral gap of 

the middle block of Yk is 

(aTk+2+4e)2--a2k+ 2 > 8a7k+2 e. 

The commutator is at most 2e 2, so 

61.2e 2 61e 
I lw' -  u '  v'lSe ll < = 

8a7k+2 e 4a7k+2 

Now we can define the normal operators N and M, which are going to be roughly 

V'P and W'P r respectively. Let P0 be the positive operator which on each string 5ek is a 

scalar equal to the midpoint of the spectral interval for 5ek. (Precisely, if Dk is the 

projection onto 5e k and 2k= 1 +(28k+ 14) e is the midpoint, then P0 = Y.k>~o2kDk .) Clearly, 

Ileo-PIl<~14e. Let V be the unitary in the polar decomposition of V'. Now by Lemma 

3.4, U' differs from being isometric on Sek by at most 

12e___~ 2 _ 3 ea7;" 
8ea7k 2 

Hence V'lAe k differs from VISe k by this amount. Now N=VPo is normal, and 

IIN- V'Pll II(V- v') eoll+lleo-ell 

3 e < m a x - - - -  
k 2 a7k 

�9 (a7k+ 14e)+ 14e < -~-  e+21e 2. 
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The normal M is defined in the same manner; W is the unitary part of W' and PI is a 

positive operator which is constant on each summand of W with scalar value a7k. As 

this kth summand is supported in 6ek_lO6e k, one has ItPOP-PllI<.28e. Set M=WP1. 

Now W' is bounded below on 6Ok by the same 1--3e/2aTk estimate as U' and V'. So 

M-W'(POP) is computed by maximizing over these summands: 

IIM- w'(POP)II < m a x  II(Wk- w~) el II + IIP~-POPII 
k~>l 

3e 
= max 

k~>l 2aTk_ 7 

1 2 a7k-t- 28e < 29-~-e + 42e. 

Now, since 11U'OV'--W'16ekll<61e(4a7k+2) -~, one gets 

II(u 'ov ' -  W')(eee)l~ekll < 61e 61 e+305e 2. 
4a7k+2 a7k+7 ~ 4 

The intertwining of U' and V' to obtain W' occurs on the middle blocks of each 5% 

Hence U'OV,-W'  is the orthogonal direct sum of (V'OV'-W')ISfk. Since POP also 

leaves 9~ invariant we obtain 

II(U, O V,_ W,) (pOp)II <~ 61 e+305e2. 
4 

So 

II T O N -  MII <~ II T O N -  T' O V' Pll + II( U' O V' - W') ( PO P)tl + II W' (POP)- MIt 

< m a x { ~ e ,  3-~ e+21e2}+( 6-~ e+305e2)+(29@12e+42e: ) 

< 61e+368e 2 <~ 80e. [] 

Remark 4.2. We call attention to the effect of the zero index. One might ask if U 

being unitary, as opposed to merely isometric, is essential here. Yes it is. The very first 

computation relating IT*, T] and [U, p2] relies on this. Furthermore, if ind T4=0 and 

IT*, T] is small, then P cannot be bounded below by one. Indeed, P>~I forces 

II[T*, T]II~>I in this case. 

COROLLARY 4.2. Let T be an invertible operator on ~ such that 11TIleR2 and 
IIT-1N---<Ri -I. Let N be normal with spectrum A={2EC:R~<.I21<.R2). Then 

dist(TON, Nor) ~< 9511T* T-  TT*III/2. 
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Proof. The main point is that I I 7"* T-TT*II'/2 is homogeneous of order one. So T can 

be scaled so that R, = 1. Hence Lemma 4.1 applies. The other point is that the extended 

Weyl-von Neumann theorem [3] guarantees that any normal with spectrum A will 
suffice. [] 

THEOREM 4.3. Let T be an inuertible operator on Y(such that IfTIJ~R2, IIT-'II~R~ -1, 
and cre(T)=A = {;t E C: RI~<I;tI~<R2). Then there is a normal N with spectrum A such that 

liT-Nil <~ 10011T*T-TT*Jl '/2- 

Proof. Let  e>[IT*T-TT*H 1/2. For each ;t in A, either T-; t  or (T-;t)* is not bounded 

below or has infinite dimensional kernel. Following [12, Lemma 2.1], it is possible, for 

{;tn} dense in A, to extract an orthonormal sequence en so that (i) the projection P onto 

span{en, n~>l} satisfies II]T, P]ll~<e, and (ii) the normal operator given by Ne~=;tne, on 

PY( satisfies IIPTqPY~-NII<.e. Indeed, we simply choose our en SO that either (T- ; t , )e ,  

or (T-;tn)* e, is as small as desired and so that {en} is not just  orthonormal but so that 

for n4:m we have (Ten, Ten> ,(Ten, T*em> and (T*e,, T*em) similarly as small as 

desired. Thus there is an operator T' of the form T'=SO)N with IIZ'-Zll<.2e. But T' is 

unitarily equivalent to S ~ N O N =  T' O)N. Thus there is an operator T" unitarily equiv- 

alent to TO)N such that IIT-Z"ll<~4e. By Corollary 4.2, dist(T", Nor)<~95e. Hence there 

is a normal M so that 

[[T-MII < IIT-T"II+IIT"-M[t < 100e. [] 

THEOREM 4.4. Let T be a quasidiagonal, essentially normal operator such that 

IITII=R2, IIT-'II=R? ', and ae(T)=A=(2:g,<-I;tl<-g2}. Then there is a compact operator 

K such that T - K  is normal with spectrum A and Ilrll <10011r*T-Tr*ll 

Proof. Given any 6>0,  there is a compact operator K, with [[K,[[<t~ so that T-K~ is 

unitarily equivalent to T O N  where N is normal and has spectrum A [12, Lemma 2.2]. 

Since T is quasidiagonal, there is another compact operator K2 with IIK211<6 so that 

0r  

T' = T - K , - K  2 = E @T~@N 
n = ,  

where each Tn acts on a finite dimensional space, and satisfies [[TnI[~R2, [[T~-1II~<R~ -1, 

and II[~, Tn]II'/2~II[T*, T]II'/2+a=E+& Furthermore,  lim~_,~ll[~, Z~]ll=0 since [T'*, T'] 
is compact. 

By Lemma 4.1, there are finite rank normal matrices N~ and Mn so that 
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T t n(~Nn-Mn=Kn satisfies IIK']I~<100I[[T~, T,]II vz. By the extended Weyl-von Neumann 

theorem, 

N ~ - -  n 3 
= 

where ILK311<6, and K3 is compact. So 

' N T - ( 0 ~ K  3) -- Z ~(Tn~Nn)~ 
n = l  

/,/ 

\ n = l  / 

Let K4=Y.~=I@K'n@O. Then there is a compact operator K so that T - K  is normal with 

spectrum A, and 

[Igll IIg, ll+llg211+llg31l+llg, II 
~< 36+95 max I1[~, Zn]ll 1/z < 95e+956 < 100e, 

provided 6 is chosen sufficiently small. [] 

Now we show that the zero index data guarantees quasidiagonality. 

THEOREM 4.5. Let T be an essentially normal operator with tye(T)=A= 

(). E C: 1~ < I)~I~<R} and ind T=0. Then T is quasidiagonal. 

Proof. We proceed as outlined in section 2, merely providing more detail. The 

polar decomposition is T=UP, and the hypotheses guarantee that indU=0 and 

ae(P)=[1, R]. So by a compact perturbation of T, one can arrange that U is unitary and 

I<~P<.RI. Moreover, the generalized Weyl-von Neumann theorem allows us also (with 

this compact perturbation) to assume that P is diagonalized with respect to a basis 

{en, n~>l}. Let e>0 be given. Split this basis into finite dimensional blocks 

~k=span{ei: nk_l<i<<.nk} so that the tridiagonal part U0 of U differs from U by a 

compact operator of norm at most e. With respect to this block decomposition, write 

U0=(U~) and P=diag(Dy). Let Pn be the projection onto the sum of the first n blocks. 

The commutator [p2, Uo]=(D~Uo_UuD z) is compact. So one can choose n 

so large that IIe. [e 2, f0]ll<  and n-l<e. Let Q=diag(Ej) where Ej=I for l<~j<.n, 
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Ej=(tjI+(1-tj)DZ) uz for n<j<2n, where tj=2-j/n, and Ej=Dj for j~>2n. Then Q - P  is 

compact, and 

[Q2, Uo ] = (E~ Uu-Uo.L~) 

= P~n[P 2, Uo]+(P2n-Pn)((1-ti)(0~ Uu-UuD})+ i-Jn UUD} )" 

Thus 

[I[Q 2, U]ll ~< 2R211U - UolI+IIP~[P 2, U0]tl+ 2 lip211 
n 

< 2R2e+e+2R2e = Ce. 

That is, Q tapers so slowly from the identity to P that its commutator with U is locally 

no worse than that of P for large coordinates and almost 0 for all earlier coordinates. 

Hence T~=UQ is essentially normal with IILINR, IIZT'll <l and By 

Theorem 4.3, dist(T,, Nor) tends to zero as e tends to 0. But each T, differs from T by a 

compact operator, whence T is the limit of operators which are normal plus compact. 

Such operators are quasidiagonal, so T is also quasidiagonal. [] 

THEOREM 4.6. Let T be an essentially normal operator with ae(T)=A= 
{2 E C: RI~<I).I~<R2} and ind T=0. Then there is a compact operator K such that T - K  is 
normal. If, furthermore, IJTII=R2 and IIT-~bl--g? ~, then one can arrange that 

IIKII 100 IliZ*, Till 1/2. 

Proof. Let T= UP be the polar decomposition. Since ind T=0, we may assume that 

U is modified to be unitary. The essential spectrum oe(P) equals [RI,R2]. Thus there is 

a compact, self-adjoint operator C so that a(P-C) equals [RI, R2]. Hence T'= U(P-C) 

is a compact perturbation of T satisfying IIT'INR2 and I[(T')-~II=R~ -~. By Theorem 4.5, 

T' is quasidiagonal. Hence Theorem 4.4 applies. [] 

This concludes the proof of BDF for the annulus. Since Ext(X) is a homeomor- 

phism invariant, the case of any region homeomorphic to an annulus follows. We 

include it for the reader's convenience. 

COROLLARY 4.7. Let T be essentially normal with a~(T) homeomorphic to an 
annulus, and ind(T-2I)=O for 2 in C\Oe(T).  Then T is normal plus compact. 
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Proof. Let h be a homeomorphism of oe(T) onto an annulus A. Then hOt(T)) is a 

normal element of the Calkin algebra with spectrum A and index zero. By Theorem 4.6, 

h(z(T))=z(N) for some normal operator N with spectrum A. Hence 

z(T) = h-l(xt(N)) = zt(h-l(N)). 

Thus h-l(N) is the required normal, and K=T-h-I(N) is compact. [] 

Remark 4.8. Already, the ideal control on K appears to be lost. Even the stringent 

condition that ae(T) be a spectral set for T seems as if it may not be enough. Corollary 

4.7 could be pushed further, but the proofs would be the same as the general arguments 

to follow. 

5. The general case 

The second key step in the proof is to apply the techniques of section 3 to "cutting" the 

spectrum. 

LEblMA 5.1 (the Cutting lemma). Suppose T is essentially normal, t[Im TH=I, and 
oe(T) contains R~={a+ifl: O<~a<~6 and Ifll~<l}. Let e--IIT*T-TT*II v2. Then there are 
essentially normal operators T! and T2 such that Re Tl~<6, Re T2~0, and T~-TIt~T2+ K 
where K is compact and IIKIl<~67max{e, e2/6}. Furthermore, ae(TO={2Eoe(T):Re2<~6} 
and oe(T2)= {~. E oe(z'): Re2~>0}. 

Proof. Let r /=min{f,e) .  Write T=A+iB where A = R e T  and B=ImT. Let 

E_I=EA(- 0% 0), Eo=EA[O, r/), and EI=EA[~I, ~). Then with respect to the decomposition 

~=E~=_I~ ~ where ~i=Ei ~, one has A=E~=_I~A i and B has a 3x3 matrix form (B/j). 

Let No be a normal operator with spectrum 

R,I = {a+ifl: O<~ a<~l, LSI~ 1}. 

Let Nl=(Ao+iBoo)O)N~o 2). This is an essentially normal operator with spectrum Re, and 

II[N~,NI]=IIEo[T*, T]EoH<~e 2. By Theorem 3.7 and the subsequent remark, it follows 

that there is a compact operator KI with ]lKlii<36e such that N2=NI-KI is normal with 

spectrum R~. 

By the absorption principle (Lemma 2.1), T has a small compact perturbation 

unitarily equivalent to TO)N2. Thus there is a compact operator K2 with I[K2II<36e such 

that T-K2=T~N1. This acts on ( ~ _ l ~ o ~ ( l ) ~ ( ~ 0 ~  C2)) which can be rearranged 

9T-918285 Acta Mathematica 166. Imprimg le 15 fgvrier 1991 
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as (~_~ @ ~02)0) ~ ) ~  ~ ~. With respect to this decomposition 

0 A 1 - [ B l o 0 ]  Bn J J  

Let P be the projection given by P=(O~Po~)I)O)I@O where 

( sin22D~ s in2D~176 2 D ~  / and 

P ~  cos22D 0 / 
Do= sin2 :r Ao" 

2r/ 

By Lemma 3.4, II[TOgN~,P]II<61e2/2~ (since II[Re T, ImT]II=�89 TIll). Let/~ be the 
projection on ~ obtained from the unitary identifying TO)N2 and T. Then IT, P] is 
compact by Lemma 3.5, and 

lifT, PIll II[reN,,P]II+II[K ,P]II 
< 61eE/2r/+36e < 67 max(e, eE/r/). 

Let T2=PllP~ and T~=P~llPiYc. Then T-TIO)T2 is compact of norm II[T,P]II. 
From the construction, 

Re T 1 <.A I~)A<o2)~ReNo <~ ~I 

and similarly, Re T2~>0. Clearly, o~(T) is the union of o~(Ti). As No is a direct summand 
of both Ti, R~ is contained in both of or So/'1 and T2 have the desired properties. [] 

If o(T)=o~(T), this argument does not show that o(T3=oc(T3. However, because 
the perturbation is small, this cannot introduce isolated eigenvalues far from o~(T). 
Hence Apostol's theorem [1] allows us to make another small perturbation to arrange 

ff( Ti)=oc( Ti) if d e s i r e d .  

The following lemma is proved the same way. 

LEMMA 5.2 (Cutting lemma II). Suppose T is a matrix with []ImT[l~<l and 
IIT*T-TT*Ilte2=e. Then there is a normal matrix N with o(N) contained in 
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R~= ( a + ifl: O<.a<.6, Ifll~<l) and matrices TI and T2 with Re TI <<.6I and Re T2~>0 and a 
unitary U such that 

I IT~)N- U(T1E) T2) U* H ~< 67 max(e,  e2/6}. 

We observe that we could have still a third cutting lemma using annuli for exchange 

and so cutting the spectrum into a component  inside a disk and a component  outside a 

slightly smaller disk. We could use this split to deal with disconnected components  of  

essential spectrum, but  we have chosen to use a theorem of  Apostol [1] which allows us 

to find corresponding disconnected components  of  the spectrum itself, instead. Since 

all holes of index 0 can be removed by small compact  perturbations [1], we can assume 

there are no such holes. So for essentially normal operators with zero index data we 

can assume components  of  oe(T) are components  of o(T). Hence  they can split out by 

circuit integrals using the Riesz functional calculus and dealt with independently.  Thus 

we will assume all our  sets in oe(T) are connected for our  proofs. 

We are now ready to obtain quantitative versions of  BDF. The remaining problem 

is that of  reducing the pathology of  the spectrum so as to be amenable to attack with the 

few tools we have developed. This is conceptually easier than we might guess. First, in 

Theorem 5.3, we show that an essentially normal operator  with no index obstructions is 

quasidiagonal. Because this is a norm closed proper ty  only gross properties such as 

large holes could offer difficulties and we can handle those. Recall that for this result 

constants are irrelevant. 

Now we are confronted with an infinite set of  finite blocks to be subjected to 

normal dilations and here we make the general observation that the principal role the 

spectrum plays is to provide us with eigenvectors for  an almost matching normal 

operator  suitable for  direct summing on each finite dimensional block. (This is, inciden- 

tally, one source of  difficulty in the case of  a finite dimensional space. Whence come 

the summands?). So, if a fatter spectrum provides us with a suitable normal summand 

on one of  our finite blocks, the genuine spectrum provides the same summand with a 

finite dimensional error  bounded by the difference in the spectra. 

For  a nice spectrum close to the genuine spectrum, a conformal mapping to a 

spectrum amenable to our  techniques produces an arbitrarily small error  e for all blocks 

sufficiently far out. But once we have obtained our  e error  on a block we have that e plus 

the spectral distances forever,  no matter  how bad the conformal estimates are for  later, 

tighter approximations of  the spectrum. Hence  the succession of conformal maps, each 

10-918285 Acta Mathematica 166. Imprim6 le 15 f6vrier 1991 
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with small error only for very large index blocks, actually provides a uniformly small 

compact error, yielding our quantitative BDF theorem. 

TrIEOREM 5.3. Let T be an essentially normal operator such that ind(T-2)=0 

for all 2r Then T is the limit of  operators in Nor+X, and hence is quasi- 
diagonal. 

Proof. By Apostol's theorem [1], we can improve T by a compact perturbation so 

that o(T)=a~(T). Let e>0 be given. Let X=or and let X, be a finite union of finitely 

connected regions each with smooth boundary consisting of disjoint Jordan curves such 

that X is contained in the interior of X~, and X, is contained in {4: dist(2, X)<e}.  Let N 

be a normal operator with o(N)=ae(N)=X; and let N, be a normal operator with 

tr(N,)=o~(N,)=X, such that IIN-N, II<e. By the absorption principle, there is a small 

compact operator K and a unitary operator U such that T=U(T~N)U*+K. Thus 

liT- Ur U*II IIN-N II+IIKII 

for appropriate choice of K. Hence T is the limit of operators T, unitarily equivalent to 

T~N,. The operator T, is essentially normal with "nice" spectrum X,, and 

ind(T,-2)=0 for 2 ~X,. Thus it suffices to prove the theorem for "nice"  spectra. As we 

have remarked, we can assume a nice spectrum has one component. 

Let T be essentially normal with nice essential spectrum X, and let t=z~T. Let h be 

a homeomorphism of X onto a rectangle with parallel rectangular holes R. (For 

example, if X has p holes, take 

P 
R = {(x, y): 0 ~<x ~<p, [y[ ~< 1 } \  Id {(x, y): [x - ( j -  1/2) I < I/4, }Yl < 1/2}.) 

j=l 

Then s=h(t) is essentially normal with spectrum R and ind(s-2)=0 for 2 ~R. Let S be 

any operator such that st(S)=s and IIIm SIl=llImsll �9 

Apply Lemma 5.1 to S (n -  1) times to obtain a compact perturbation of S unitarily 

equivalent to E~=1~S j where each Sj is essentially normal with spectrum equal to a 

rectangle with a rectangular hole. By Corollary 4.7, each Sj is normal plus compact. 

Thus, there is a normal operator M such that sr(M)=s and o(M)=ee(M)=R. Then 

h-t(M) is normal and st(h-l(M))=h-I(s)=t=stT. Thus T is a normal plus compact 

operator. [] 
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To prove the BDF theorem, it is necessary to examine how the preceding proof 

works on individual summands of T. This has to be done with operators, not in the 

Calkin algebra. So the homeomorphism h will be taken to be analytic in a neighborhood 

of the spectrum so that the Riesz functional calculus is available. 

5.4. Proof of Theorem 1.1 (BDF). Let T be essentially normal with o~(T)=X and 

ind(T-2)=0 for all 2 ~X. By the previous theorem, T is quasidiagonal. Hence there is a 

(small) compact perturbation K so that 

o o  

T' = T-K = E @ T ~ N  
n = l  

where Tn act on finite dimensional spaces ~n, and N is normal with o(N)=oe(N)=X. 
Let X, be a nice region containing X as in the previous proof. Then we can further take 

X~ so that the interior of X, is conformaUy equivalent to the interior of a rectangle R 

with n parallel slits. (As conceivable worst X , \ X  has a small hole which maps to the 

infinite component of R complement.) L e t f b e  the conformal map. Choose a region S 

such thatf(X)cSc~qcR and so that ~r is a rectangle with p parallel rectangles removed. 

Let Ye=f-l(s). Let N, be a normal operator such that o(N,)=ae(N,)= Y~. 
The spectrum of T~ is contained in Y, except for finitely many n; otherwise we 

would have a cluster point of eigenvalues for orthogonal eigenvectors, hence a point of 

essential spectrum outside X. Extend f arbitrarily to a neighborhood of Y, U U ~  l o(T~) 

so tha t f takes  o(T') into S. Let T~=E~i~Tn~)N,, and let S,=f(T~). The operator S, is 

given by the Riesz functional calculus, and one readily obtains 

oo oo 

s,--  sneM. 
n = l  n = l  

The operator M=f(N~) is normal with o(M)=oe(M)=~q. Since S, is essentially normal, 

en=ll[SL sjIP tends to zero as n tends to infinity. 

The region ,r is the union o fp  regions Aj, 1 <.j<.p, each of which is a rectangle with 

a rectangular hole. The regions Aj and Aj+ 1 intersect in a rectangle Rj, l<~.j<~p-I. Let 

~>0 be the minimal width of the Rj's. Let the projection ofA s onto the x-coordinate be 

[2s, gj]. Apply the Cutting lemma 5.2 to each summand S~ in turn (p -1 )  times. That is, 

one obtains normal matrices M~,j. with spectrum contained in Rj, l<.j<~p-I so that 

S~Y.~-~Mn,j can be approximated by an operator of the form E~f~S,.j with 

AjI<~ReS~,j<.pjI. Notice that the error incurred in making this perturbation is the 
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maximum of the ( p - l )  errors since these changes are on orthogonal pieces 

Remark 3.3). Thus, if one writes _ p-i M,,-Ej=1 t~M.,j, we have 

S.O)M.-~j=I ~S.,j <~ 67max{e., e2./6}. 

(see 

For n sufficiently large, this error is 67en. (Incidentally, the proof of Lemma 5.2 shows 

that Mn acts on a space of dimension no larger than that on which Sn acts.) 

By the extended Weyl-von Neumann theorem, M has a small compact perturba- 

tion unitarily equivalent to E~> 1 ~M~t~M. So 

ov 

S t -~ ~ O)(S.O)M.)O)M-Ko 
n=l 

where K 0 is compact and IIg011 t0=ll[S, *, S ]ll Let 

K 1 = Z ~ )  S . t~M.-  ~)S.j ~0. 
n = l  j = l  ' / 

This is compact, and IIKlll~<67max{e0, e~/6}. Let K=Ko+K I. Then 

[Igll-< 68 max{e 0, e~/6} 

and 

j = l  \ n ~ > l  / 

N o w  Mm~;=I(~)M j is normal with spectrum Aj. Let S,~.TS,,~1@S,,,j@M s. Then 

S,-K=-E~=~@S~,j and each S,,j is an essentially normal, quasidiagonal operator with 

2fl<.-ReS~,j<.lt/L Thus oe(S,j) is contained in the strip {zEC:;tj--.<Rez-.</zj) intersect 

oe(S), which is Aj. Because S,,j contains M s as a summand, tr~(S,~.j)=Aj. 
Repeat this procedure with the operator S,,j and a conformal map onto an annulus. 

Then by the proof of Theorem 4.4, one obtains a compact perturbation of S,,j which is 

normal with spectrum Aj and, as above, this compact perturbation is achieved by 

attaching to an, j a normal summand Mn, j with 

lira II(S,,,st~M,,,s)-N,,,jII = O. 
n-..~ oo 
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There is a compact operator Cj of norm at most e0 so that 

S,,F Ci = Z ~(S.,j~M..j)~Mi" 
n>~l 

t ~  Define Cj-E.~I~(S.,j(~M~,j-N~,j). This is compact, and 

s ,FcFc;= 
n ~ l  

which is normal. 

Recombining 
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P all the terms, one obtains normal operators Mn-Ej=l(~Mn, j and 
P N.-r.J=~N,,,j with spectrum contained in S so that 

lim ]]Sn~)M.-N.I ] = O. 
n---~oo 

Consequently, as f is conformal from a neighborhood of Y~ onto a neighborhood of 

lim Ilz,,@f-l(M.)-f-'(N.)ll = O. 
n.-.> ~ 

The operators f-l(M,,) and f-~(Nn) are normal with spectrum in Y,. This (finally) 

recaptures the proof of Theorem 5.3 with the important additional information that the 

compact perturbation is obtained by adding on to each summand T~ a normal summand 

A.=f-l(Mn) so that T ~ A ~  is close to a normal B. for n large. (Furthermore, A. acts on 

a space of dimension no larger than the domain of Tn.) 
Choose a sequence ek decreasing to zero. For each k, obtain normal matrices A., k 

and B., k with spectra in Y*k so that 

lim IlTn~m,,,k-B,,,kll=O. 
n----~ o0 

Choose an increasing sequence of integers Nk such that for all n>~Nk 

]lZn| <-- % 

Choose normal matrices A~ and B. with spectra in X so that 

Ila..k-a, ll<e k and IIn..k-n,ll<ek for Nk<.n<Nk+ v 

So then IIT,@A,--n,ll<--ek for Nk<~n<Nk+ r For l<~n<Nl, choose Bn arbitrarily and An to 
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be vacuous. No good norm estimate holds for these terms. Finally, T'= E ~  O)Tn@N is 

a (small) compact perturbation of an operator unitarily equivalent to 

T" = E,>>_~@(T~ ff)A~)@N. 

Let K=En>~l@(Tnt~A-Bn)t~)O. This is compact since lim~_.| and so T"-K= 
E~>,~B~N is normal with spectrum X. [] 

To get a quantitative version of BDF, it now suffices to examine the way the 

compact perturbation is obtained in the previous proof. It is the fact that each 

summand Tn in the block diagonal form of T is perturbed individually by adding on a 

normal summand that makes this possible. 

Definition 5.5. Let X be a compact subset of C, and let Nor(X) be the set of normal 

matrices with spectrum contained in X. For t~>0, let Xt denote {2 E C: dist(L X)<.t}. Let 

~(X) denote the set of  matrices T such that (i) lilT*, T]lll/2~<t and (ii) I1(T-21)-%--< 
dist(2, Xt)-t for all ~. ~Xt. Define a function fx: [0, oo)--,[0, ~) by 

fx(t) = sup inf dist(T@N, Nor). 
TE ~,(X) NE Nor(X) 

LEMMA 5.6 (Absorption principle), lim_~o+fx(t)=O. 

Proof. Choose T~ in 6Pv~ so that dist(T~N, Nor)>�89 Let T=En~1~T~N. 
This is essentially normal and quasidiagonal. Furthermore, ae(T) equals X since if 

dist(2, X)>  1/k, 

k - I  

S~ = E + 0 + X(T~-M)- '+(N-M)- '  
n=l  n>~k 

is bounded by k2+k and is an inverse modulo ~ of T-2I. From the proof of 5.4, one 

obtains normal summands Nn of N so that dist(Tn~Nn, Nor) tends to zero. Hence 

limn_~fx(1/n)=O. Since fx is monotone, lim/__,0fx(t)=0. [] 

5.7. Proof of Theorem 1.2. Let T be an essentially normal operator with ae(T)=X 

and ind(T-M)=O for 2 ~X. By Theorem 5.3, T is quasidiagonal. Given any 6>0,  there 

is a compact K0 with [[K0ll<8 so that 
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where N is a diagonal normal operator with o(N)=o~(N)=X, each T~ is finite rank and 

T~ belongs to 5e, for all n>~l. From the proof of 5.4, and Lemma 5.6, one obtains finite 

dimensional summands N~ of N and normal matrices M~ so that IIZ~Nn-M~ll<fx~e) 
and lim~_.~ IILeN -M II=O. Thus one obtains a compact operator K so that T - K  is 

normal, and 

IIKII < 6+sup IILeS -Mnll <f e) 
n 

if ~ is sufficiently small. [] 

This section is concluded with the easy proof of the classification of essentially 

normal operators up to compalence. 

TrIEOREM 5.8 ([12]). ind: Ext(X)--->Hom(:rl(X), Z) is an isomorphism. Consequent- 

ly, if  S and T are essentially normal operators such that ae(S)=ae(T)=X, and 

ind(S-M)=ind(T-M) for all 2r  then there is a compact operator K such that 

S=T-K.  

Proof. It is possible to write down explicit operators to show that ind is surjective. 

See [12], in the remarks following w 11.5, where this is done by using the Berger-Shaw 

trace identity [9]. Thus it suffices to prove that ind is injective. So suppose S and T 

satisfy the hypotheses. Let R be an essentially normal operator with ae(R)=X and 

i n d ( R - M ) = - i n d ( S - M )  for all 2 ~X. Such an R exists by surjectivity (or, one can take 

R to be the real transpose of S [11]). The operators S ~ R  and R ~ T  are essentially 

normal and have zero index data. By Theorem 1.1, S ~ R N N ~ R ~ T .  Hence by the 

absorption principle 2. I, 

S -  S ~ N ~  S ~ R ~ T ~ N ~ T ~  T. [] 

6. Remarks and problems 

6.1. The big open question in finite dimensions in this area is Problem 1.4. This may be 

rephrased as: 

Problem 6.1. For each e>0, is there a 6>0 so that if A and B are Herrnitian 

matrices of norm one with ILIA, B]II<~, then there are commuting Hermitian matrices AI 

and B1 with IIA-AII[<e and lIB-BIll<e? 

This problem was attacked in [18, 26, 27], but it has proven to be very resistant. An 
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example in section 2 of [18] provides self-adjoint matrices An and normal matrices B n 

such that [IAnll=llBnl[=l and limn__.| [I[An, Bn]I[=0, yet {An, Bn} is bounded away from 

commuting pairs {A, B} in which A=A* uniformly for n~>3 (by 0.04). Voiculescu [32, 

33] has other examples of this phenomenon. In particular, he exhibits pairs of unitaries 

with small commutator which are far from commuting unitaries. Terry Loring [24] has a 

K-theoretic appoach to Voiculescu's example. 

In view of our results, it would seem natural to try to extract from T=A+iB an 

approximate summand which is nearly normal. If it is big enough, perhaps it can be 

recombined by the absorption technique. But how does one obtain such a summand? 

In spite of all related negative examples, there does not seem to be any good 

reason for conjecturing the answer to the Hermitian case. Or rather, the authors of this 

paper each have a conjecture but they are contradictory. Voiculescu remarks that the 

known examples referred to above exploit the non-trivial cohomology of the 2-torus 

and the 2-sphere; and thus perhaps are not a good indicator of the Hermitian case 

which corresponds to the disc. 

There was a related question about arbitrary matrices. Namely, if A and B are 

norm one matrices and I[[A, B]I[ is sufficiently small, are A and B closed to a commuting 

pair? In this case, there is a counterexample. Let An be a diagonal normal given by 

An ek=(k/n) ek for O<<.k<~n, and let B, be the Jordan block B n ek=ek+ ~, O<<.k<~n, B n en=0. It 

is easy to verify that [I[An, Bn]H= 1/n. The argument of [16] mentioned above shows that 

no commuting pair (A, B) with A=A* is close to (A,, Bn). M. D. Choi [15] by an elegant, 

quite different, argument has recently shown that there is no such commuting pair, 

even without the requirement A =A*. Recently, Exel and Loring [34] have found a very 

simple winding number argument that gives the same result for Voiculescu's unitaries. 

6.2. For the purpose of getting a quantitative version of BDF, Problem 1.4 can be 

replaced by a quest for a better absorption result. The strongest possible version is the 

following. 

Problem 6.2. Is there a universal constant C so that: if T is any matrix, and 

II[T*,T][I~/2=t, then there is a normal matrix N with o(N) contained in 

{2: [l(T-2I)-~[[>>-t -~} such that dist(T~N, Nor)~<Ct? 

This would imply that for an essentially normal operator T with zero index data, 

dist(T, Nor)~<CII[T*, T]I[ v2. It would be promising even to get a constant Cx for nice 

regions X so that the functionfx(t)<.Cxt. At the least, one should be able to weaken the 

resolvent condition (ii) and obtain an explicit formula for fx. 

One of the difficulties is finding the appropriate analogue of the condition 
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]ITII~<Rz and IIT-lrI~<R~ -1 for the annulus. This condition is equivalent to the conditions 

that DR2= {2 E C: 121~R2} and D ~ =  {2 E C: 121---<R1} tJ {oo } are spectral sets for T. But this 

does not seem to help us even for sets with one hole. The reason is that working with 

the Riesz functional calculus is unwieldy. To progress, it seems likely that one has to 

deal with the spectrum without deforming it. 

6.3. It is an interesting problem to try to compute the distance of an operator T to 

the set of normal operators. Two obstructions are immediately apparent (i) ]][T*, T][I ~/2 

and (ii) Q={2EC:ind(T-2):~0}.  To measure the latter quantity, let 6(T)=sup 

{dist(2, C \ f~)} .  It is not necessary to worry about those 2 such that T-2I is semi- 

Fredholm of index __ oo. As in the proof of Theorem 4.3, for each 2 in at(T) it is possible 

to choose an orthonormal sequence which is an approximate eigenvector for T with 

eigenvalue 4, or, is an approximate eigenvalue for T* with eigenvalue ~,. As in the 

proof, a perturbation of order O(II[T*, TIll 1/2) yields a normal direct summand N with 

a(N)=ae(N)=ot(T). Moreover this same argument works for {4: Iler(T-2I)-~ll~e -1) 
where e=ll[T*, TIll 1/2, and this may be much larger set. Now a perturbation of size 6(T) 
yields a normal summand No which has expanded the spectrum of N to include all of f2. 

A small compact perturbation will remove all holes of index zero [1]. Thus the problem 

is reduced to considering operators To-~ToE)No which are biquasitriangular, o(N0)= 

ot(No)=a(To)\oo(To) where a0(T0) is a finite set of isolated eigenvalues of finite multi- 

plicity, and ]](To-M)-x]lt=O(dist(2, ae(T)) -1) as 2 approaches at(T). As the isolated 

eigenvalues may cause special problems, we suggest first trying to solve the problem 

without them. The "staircase" form of biquasitriangular operator [20] may be of use. 

Formally, we propose: 

Problem 6.3. Suppose T ~ T ~ N  is a biquasitriangular operator, and N is normal 

such that o(N)=at(N)=o(T). Furthermore, suppose that II(T-2I)-lll=dist(2, o(T)) -~. Is 

dist(T, Nor) bounded by a function of I1[ , TIll? 

There is an unsatisfactory aspect even with the quantitative properties of 

IIT*T-TT*[) tl2. This is because dist(T, Nor) may be much less than this quantity. For 

example, a bilateral weighted shift U with all weights 1 except one l+e  has 

I[[U, U*]Ill/2=e v2 whereas dist(U, Nor)=e/2. On the other hand, if S is the unilateral 

shift, an easy computation shows that 

dist((I+eS)~N, Nor) I> e/5 = 1 II[I+eS, I+,S*]ll '/z 

for every normal operator N. 
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What is a good lower bound for dist(T, Nor)? It is clear that 

1 
- -  sup I IIZxll-IIZ*xlll 
2 i~11=1 

is such a bound. If T = U P  is the polar decomposition, is �89 a lower bound? 

6.4. One of the important consequences of the BDF theorem is that the set N o r + ~  

is norm closed. This is an immediate corollary since any operator in the closure is 

essentially normal and has zero index data. It follows that N o r + ~ i s  the intersection of 

the set of essentially normal operators and the set of quasidiagonal operators, both of 

which are closed. Thus an answer to Problem 6.2 would yield a more direct proof. 

This interesting fact breaks down in higher dimensions (n~>4). In particular, there 

are subsets X of C 2 such as the suspended solenoid [12] for which there are commuting 

pairs (An, B~) of normal operators with joint spectrum equal to X and compact operators 

Kn and L~ such that A=limn__,| n and B=limn~| n exists, yet there are no 

compact operators K and L so that ( A - K , B - L )  is a pair of commuting normal 

operators. Salinas [28] identifies the closure of this set of commuting normal operators 

plus compacts as the set of quasidiagonal, essentially normal operators. His methods 

have a similar flavor to our own, in that he shows how explicit approximations can be 

made by dilating finite dimensional, completely positive maps (which is related to our 

absorption method). Also related are O'Donovan's ideas in his paper [25] on the 

relation between quasidiagonal and essentially normal operators, and Arveson's ap- 

proach [2] to Voiculescu's theorem [31]. 

This indicates that the absorption phenomenon breaks down by dimension 4. In 

R 3, L. Brown has shown [11] that the index map is still an isomorphism. So there is a 

possibility of using constructive methods there. However, a partial breakdown already 

occurs. 

6.5. Consider the case of the 2-sphere S 2 imbedded into R x C  as the surface of a 

cylinder S=(0, 1)xTU {0, 1}xD where D={2EC:  121~<l} and T is the boundary of D. 

Let (A~,Bn) be the almost commuting pairs of [16] mentioned in section 6.1. Let 

A = E ~ I ~ A  n and B=r.n~lOB n. Then [A,B] is compact, and the joint spectrum of the 

commuting, normal pair (~r(A),~t(B)) is S. Now Ext(S2)=0, so there is a compact 

perturbation of (A, B) to a commuting normal pair. We demonstrate this explicitly. 

Recall that A~ is diagonal given by A n ek=(k/n 2) e k, for O<~k<~n 2 and Bn is a weighted 

shift Bnek=bkek+l, for O<~k<~n 2 where bk=(k+ 1)/n for O<.k <n, bk= 1 for n<~k~n 2, and bk= 
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(n2-k)/n for n2-n<k<~n 2. So that on the span{ek: n<~k<~n2-n}, B. behaves like the shift. 

Consider the pair (An@A m, B.O)B*) with m>~n. Using the interchange technique, which 

was originally developed precisely for weighted shifts [4] [32] (also [20]) one can 

approximate B.O)B* by a direct sum of normal operators Nj acting on a subspace of 

Ea.~A,.[j--Sn 1 j + l ]  
n 

The self-adjoint pair A.O)A., is perturbed by an error of O(1/n) to be scalar ((fin)I) on 

the domain of each normal Nj. Thus (A.O)A,., B.O)B*) is close to a commuting normal 

pair. Since 

(A~A, B~)B*) = Z (AnO)An' Bnt~B*)' 
n>~l 

it is a compact perturbation of a commuting normal pair (H, N). By the absorption 

lemma, (A, B) is unitarily equivalent to a compact perturbation of (A~H, B~N). So 

one has 

(A, B) -~ (AO)H, B~)N) ~ (A~A~A, B~)BO)B*) 

~" ( Z  ~)A,,~)A2n_]~)A,,t~A2n, Z ~)Bn~)B~n_I~)B,,~B~. t �9 
\ n ~ l  / n~>l 

But the pairs (An(~)A2n_ ] ~)A,~Az, , Bn~)B2n_ 1@BnO)BEn ) can be perturbed to a normal 

pair by a compact change of norm O(I/n). Thus (A, B)~(H, N). 

Let Nor2 denote the set of commuting normal pairs. The above construction also 

yields the fact that 

lim dist{(A,@H, Bn@N), Nor2) = 0 .  

So it is curious that the absorption phenomenon falls. Let ~e denote the set of 

commuting pairs of normal matrices with spectrum contained in the cylinder S. Then 

liminf inf dist((A,~H',B,t~N'),Nor2}=6>O. 
n - - ~  ( H ' , N ' ) E S  

The reason is that the proof in [18] that (A~,B.) is far from commuting is not compro- 

mised by (H', N'). In order to overcome the dimension argument, it is necessary to go 

to infinite dimensions. 
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This indicates two related problems of a general nature: 

Problem 6.4. Let ~(X) be the set defined in section 5.5. Let N be a normal 

operator with cr(N)=oe(N)=X. Define 

gx(t) = sup dist(Tt~N, Nor). 
tE  ~ t 

Is gx(t)=fx(t)? Or is at leastfx(t)=O(gx(t)) as t->0? 

Problem 6.5. If T is essentially normal, let 

dr(T, Nor) = inf{llKl[: KE X and T - K  is normal}. 

Is dr(T, Nor)~<Cdist(T, Nor) for some universal constant C? 

Returning to the case of the two sphere, it is possible to give a proof that Ext(S)=0 

using our methods. If (A, B) is an essentially normal pair with joint essential spectrum 

S, then block diagonalize A using a partition of o(A)=[0, 1] into small intervals. Then B 

will be tridiagonal except for a compact, and on the "middle" of this tridiagonal part, B 

will be close to isometric. So there will be a unitary V which acts on the middle seven 

blocks and is close to B on the middle three except for a compact operator. Then 

(A, B)-~(A~)�89 B~)V) and the intertwining technique splits this into two summands with 

joint spectra equal to the two halves of S. These are normal plus compact by the disc 

case. The conclusion is that (A, B) is the limit of normal plus compact operators, and 

thus is quasidiagonal. Now one proves an absorption theorem by generalizing the 

construction used for the example. 

6.6. Is there more that can be said about essentially normal operators with non- 

zero index? A strong conjecture is given in [5]. A somewhat weaker version is the 

following. 

Problem 6.6. Let X be a compact subset of C. Is there a continuous function hx(t) 

such that hx(0)=0 and if: S and T are essentially normal with oe(S)=oe(T)=X, 
ind(T-2)=ind(S-),) for 2 CX, H[T*, T]ll~<t2 and II[s*, S]ll~<t 2, plus some resolvent condi- 

tion, there is a unitary U and a compact operator K and finite dimensional normal 

operators N and M such that 

S ~ N =  U(T@M)U*+K and I[K[t<~hx(t)? 
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6.7. There is an infinite dimensional analogue of Problem 6.1 which we state in a 

rather vague way. 

Problem 6.7. Give reasonable conditions on a pair of operators A, B so that 

(a) if IliA, BIll is small, then (A, B) is close to a commuting pair, and 

(b) if [A, B] is compact, then (A, B) has a compact perturbation to a commuting 

pair. 

The authors of this paper have been particularly interested in this problem. In [8], 

it is shown that if T=A+iB is essentially normal, then (A, B) has a compact perturbation 

to a commuting pair only if ind(T-2)=0 for all ~ ~ oe(T), in which case the desired 

perturbation is provided by BDF. In [6], the situation of a pair (S, T) is studied in which 

S is the unilateral shift and T is a weighted shift on the same basis. A complete analysis 

is given for T with real weights. Often, the desired results hold. However, it is shown 

that [S, T] may be small and compact yet be far from a commuting pair even when there 

is no index obstruction. The case of complex weights is still open in general, although 

some of the questions can be answered using the results of [16]. In this paper, one 

considers the problem of perturbing an essentially commuting pair (N, M) of essentially 

normal operators to a "doubly-commuting" pair (that is N' commutes with M' and 

M'*). This problem was solved when the joint spectrum X=oe(N, M) was fairly nice by 

identifying a certain subgroup of Ext(X). In [17], this idea was extended to a non- 

commutative setting (N, Q) where N is essentially normal and Q is quasinilpotent. 

Although a fair bit of pathology was identified, the positive results are limited. In those 

positive cases, quasidiagonality played a useful role. So the methods of this paper may 

be useful. 

Quasidiagonality of weighted shifts was analyzed by Russell Smucker [30] using an 

interchange technique to extract direct summands. This may be an appropriate place to 

mention that though the paper appeared in 1982 it was based on Smucker's 1973 

Indiana University dissertation research. Smucker and we (Berg) developed our inter- 

change techniques independently. 

6.8. A set of S~ of operators is jointly quasitriangular if there is an increasing 

sequence of finite rank projections Pn with s-limPn=I and lim~_~o~ IIP~ SP~II=0 for all S 

in 6e. 

Problem 6.8. Let A and B be essentially commuting, essentially normal operators. 

Determine necessary and sufficient conditions for {A, B} to be jointly quasitriangular. 
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This amounts to determining a subsemigroup Extqt(X) of  Ext(X) where X is the joint  

essential spectrum of  (A, B). However it is not a C* question since it is the quasitriangu- 

larity of the non self-adjoint algebra generated by A and B that is in question. This 

problem was solved for subsets of  a cylinder S tx [0 ,  I] by Kaplan [23], and also studied 

in [21]. Salinas [29] showed that methods of  several complex variables can be used. We 

feel that the constructive methods developed here may have a role to play as well. 
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