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Since around 1950 the general classification theory of Riemann surfaces has been 

studied. Although many fruitful results have been obtained, there are still unsolved 

fundamental problems in the theory concerning the spaces of analytic functions with 

finite Dirichlet integrals. 

In this paper we shall be concerned with the following problems I and I I  (cf. [5, 

pp. 50-51]). 

Problem I. Let AD(R) be the complex linear space of analytic functions on a Riemann 

surface R with finite Dirichlet integrals. Does there exist a Riemann surface R satisfying 

1 < dimcAD(R) < oo? 

Problem II.  Let OAD (resp. OABn) be the class of Riemann surfaces on which there are 

no nonconstant AD functions (resp. bounded AD functions). Does the strict inclusion 

relation O~n .c OABD hold? 

Let HD(R) be the real linear space of harmonic functions on R with finite Diriehlet 

integrals. Then, it is known that  for every natural number n there is a Riemann surface R 

satisfying d imRHD(R)~n  (cf. [5, p. 197]). In contrast to this result, we show that  

Rr if and only if d i m c A D ( R ) = ~ .  

Problem I I  has been open since the beginning of the study of the classification theory 

of Riemann surfaces. We show that  the equality OAD ~ OA~D holds. Moreover, we prove 

that  the space ABD(R), the space of bounded AD functions on a Riemann surface R, is 

dense in AD(R) in the sense that  for every ]GAD(R) there is a sequence {fn}~ABD(R) 

such that  fn(~)--f(~) for a fixed point ~ER and ~R]f~-f[~dxdy~O (n-~oo). 

This paper consists of three sections. The purpose of w 1 is to prove Proposition 1.9 con- 

cerning modifications of positive measures. I ts  proof is relatively long. This proposition is 



200 M. SAKA~ 

used only in the proof of Proposition 2.2. On first reading one could omit w 1 except for 

the definition of admissible domains and the statement of Proposition 1.9. 

In w 2 we define the kernel function M of the Hilbert space ~4D(R, ~), the space of 

AD functions / on R with/(~) =0,  and prove Theorem 2.3. In  our theorem, we obtain the 

following inequality: 

su lM(.)l < , 

which implies tha t  M is bounded. The results concerning the above two problems 

immediately follow from this theorem. 

A generalization of our theorem and a complete condition when the equality holds 

in the above inequality are given in w 3. As an application, we obtain the inequality on 

conformal invariants CD and cB. 

The author would like to express his hearty thanks to Professor M. Ohtsnka and the 

referee for their valuable comments and suggestions. 

w 1. Modifications of positive measures 

Let W be an open set in the complex plane C. For every 0 ~ 0 put  W_o ~ {z E W I d(z, 8 W) > 
#), where d(z,~W) denotes the distance from z to the boundary 8W of W. The 

smallest open set G which satisfies WcG_o is denoted by W+0. If  0>0 ,  it  follows that  

W+o={zECId(z, W)<O)~ UeGwAo(c), where A0(c ) denotes the open disc with radius 

0 and center at  c. 

Let W be a plane domain. We shah call it an admissible domain if it satisfies the 

following conditions: 

(i) W is bounded. 

(ii) m(SW)=0, where m denotes the Lebesgue measure. 

(iii) The boundaries 7n of connected components On, n--0 ,  1, 2 . . . . .  of W e are rectifi- 

able Jordan curves and satisfy ~ l(Tn)< oo. Here W' denotes the exterior of W 

and l(Tn) denotes the length of 7n. 

For an admissible domain W, we denote by 8e W the union of 7n. For  an admissible 

domain W and Q > 0, we consider the domain surrounded by  the outer boundary 70 of 

the closure W of W and the other boundaries 7n of connected components On of W e such 

that  l(Tn)~2~. We denote it by  W(O ). 
Using this notation we have the following five lemmas. We omit the proofs of some 

of them. 
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LEMMA 1.1. Let W x and W= be admissible domaina such that W1N W=d=O. Then 

Wx U W2 is also an admissible domain and satisfies 

LEMMA 1.2. Let A~, j = l  . . . .  , n, be open discs whose radii are not less than a positive 

number r. Then 

18, A ~<-m_UAj , 
r ~_~ / 

where Oe( U~-x Aj) denotes the union of 8eW, of the connected components Wi o/ U~-xA~. 

Proo]. We prove the lemma by  mathemat ica l  induct ion on the number  n of open 

discs. I f  n = 1, then our assertion is trivial. Assume tha t  our  assertion is t rue when 

the  number  of open discs is equal to  n -  1. Le t  A j, j = 1 . . . . .  n, be open discs and  assume 

tha t  Ak has the min imum radius rk. Sef W = Uj.~Aj.  Then 

I(O,(W n Ak))>~ 2 ~  m(W n A~) 

r~ 

Hence, by  the assumption, we have 

z ( ~ ( U A , ) )  = l (~ . (w u A~)) 

= l(8. W) + l(aA~) - I (8 . (W n Ak)) 

< _2 {re(W) + ~(A~) -- ~ (W n ~ ) }  
r~ 

= _2 m( W U/~) 
rk 

2 

This completes the proof. 

LEMMA 1.3. For every admissible domain W and every Q~O, W+a is an admissible 

domain and satisfies the following inequalities: 

(1) l(~ W.o ) </(as W) + 2 ~ .  

(2) m(W+o- W) < el(8. W) +~O ~. 
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L•••• 1.4. For every admissible domain W and every ~ > 0 ,  W(~) is an admissible 

domain and satis/ies the [ollowing: 

(1) Oe W@ = ~W(e). 
(2) Wc W(Q)c(W+~)_Q. 
(3) W(~)+~= W+~. 
(4) l(ew(~)) = l(0e w) - ~ l(y~). 

(5) re(W@- W)< ~ Z I(r.). 
n~l,l(Tn)<2~ 

L v . ~ A  1.5. Let W be an admissible domain and set Ar ). / I  

m(W*fl AQ) <~m(Ao) , (1.1) 

then there is a number r such that ~/2 <~r<~ and 

l(Wen OA~) -<< l(A,n ~eW), (1.2) 
where A,=Ar(c). 

Proo]. For every r with 0 < r ~< q, set l(r) = l(A T f) ~e W) and l*(r) = l(W e N 8At). Assume 

tha t  l(r) < l*(r) for every r with ~/2 ~< r ~< q. This implies W e f) ~Ar=~D. I f  there is a num- 

ber r such tha t  q/2 <~ r < (49/50) Q and OAr c W e, then we have either A r c  W e or A o -  Ar~ W'.  

Both of them contradict (1.I). Hence OeWNSA,~-O for every r with ~/2<r<(49/50)g. 

Therefore 

Integrat ing both sides of this inequality, we have 

f(agJso)e l*(r) dr >~ dr > ~ ge 2. m(W e N Aq) >t Jq/~ jq/~ \ 

This also contradicts (1.1). The proof is complete. 

Remark. In  Lemma 1.5 assume further WN A o / ~ .  Then WU A r is an admissible 

domain by  Lemma 1.1. The inequality (1.2) implies 

l(eJW u At)) < l(0e W). 

Let W be a plane domain and denote by  HB(W) the Banaeh space of bounded har- 

monic functions h on W with norm IlhJlao=sup~w]h(z)l. I f  hEHB(W)  can be extended 

continuously onto 8W, then we say tha t  h belongs to HBC(W) and also denote by h its 

continuous extension. 
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The following lemma is well known. 

LEMMA 1.6. Let W be a bounded domain such that each point of OW is regular with 

respect to the Dirichlet problem. Then the mapping h~-+hlOW is an isometric isomorphism o/ 

HBC(W) onto C(0W), where C(aW) denotes the Banach space o/ continuous functions on 

with  no,'m I1" I1 " 
Let/~ be a totally finite signed measure on the closure W of a domain W mentioned 

in Lemma 1.6. Then we can find a measure/~=/~(/~, W) on aW such tha t  

fwhdp= fe hdfl 
for every hEHBC(W).  

For positive measures we show the following two lemmas. The proof of the first lemma 

is omitted. 

LE~IMA 1.7. Let ~ be a totally finite positive measure on C and define 2(z)=2(z; i ~) by 

2(z) = sup {r/> 0 [,u(Ar(z)) >/N~r~}, 

where N denotes a fixed positive number and A,(z)={z} if r = 0 .  Then 

(1) 2 i~ a nonncgatlve upper semlcontinuous function on C. 

(2) ~ (h~ (z ) ) f~ r~ (~ (z ) )  ~. 

LEMMA 1.8. Let/~ be a positive measure on C and ~>0 .  Suppose supp/~= AQ/a(c ) and 

p(A0/s(c)) = 144g(~/8) ~. Then, for every number r with ~/2 <~ r <~ ~, there is a bounded measurable 

/unctiou /(z) =/(z; ~, A,(c)) on C such that 
(1) ](z) >~ 1 on hr=Ar(c ) and ](z)=0 on h~, where A~ denotes the complement of At. 

(2) Sa hdp = Sa hfdm, for every heHLI(AT), where HLI(AT) denotes the class o/harmonic 

L 1 /unctio'f~8 OU A T. 

Proof. For a totally finite signed measure v with compact support and a number  

g > 0 ,  set (M~v)(z)=v(A~(z))/~a ~. Then May is a bounded L 1 function on C. I f  W is a 

domain such tha t  supp v c  W_a, then ~ hdv = ~w h(Mav)dm for every h EHLI(W). 

Now we consider the function M3Q/s ~. I t  is nonnegative and satisfies (MaQ/sp)(z) = 16 

on A~/4(c) and (MsQ/sp)(z)=0 on (AQ/2(c)) ~. Let  s be the solution of the following equation: 

Q2 

Since ~/2 ~<r ~<~, s satisfies 4 ~<s ~< 16. 
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Set 

Then  ] satisfies (1) and  

{ (M~/sp) (z ) - s+l  on Ao/~(c) 

/(z) - (Mscs~u) (z) + 1 on A,(c) - A~/~(c) 

0 on A~(e) ~. 

f~,h]dmffi f a  h(Msolsp)dm= fA hdp 

for every  hEHLI(A,). This completes  the  proof.  

E v e r y  to ta l ly  finite signed measure  p on C can be decomposed into an  absolute ly  

cont inuous pa r t  Pa and  a singular p a r t  Ps with respect  to  the  Lebesgue  measure  m. We  

denote  b y  f~ the  R a d o n - N i k o d y m  der iva t ive  d#a/dm. 

We shall now prove  the  following proposi t ion which p lays  an  i m p o r t a n t  role in the  

nex t  section. 

PRo P o s I T I 0 N 1.9. Let W be an admissible domain and ~ a totally Jinite positive measure 

on C such that supp v c  W and/v >~Xw a.e. on C, where Xw denote8 the characteristic/unction 

o/ W. Then,/or every e > O, there are a bounded olden set W, and a bounded domain W, such 

that 

(1) W c W ,  c ]~', and W c  t~',. 

(2) m(~ . -  W,) <e. 
(3) S~hd~ffiSw ̀  hdm, /or every heHL~(W,). 

Proof. (1) W e  m a y  assume e ~< 1. We  first  show t h a t  to  prove  the  proposi t ion it  is 

sufficient to  const ruct  the  following Wn, Wn and ~ ,  nffi0, 1, 2 . . . .  : 

(a) Wn is an  open set  and  Wn is an  admissible domain.  

(b) W,~c W,~+I and  W , c  IT'.+ r 

( c )  r rc  wnc ~ .  

l (O,W,~)<lot l+aB"- '[k~m 4~K ~.:-' m] (d) - ~ - s  +A---~o) . s  / f o r n l > l .  

8 
(e) m ( ~  o - -  Wo) ~ ,~ a n d  

m(Wn-W.)<~+ el~lm~.o(K)m+-:z,n.o ~ (k)m--I- (--~o)2m,~.o(K)'mj for  n ~ l .  

(1) In this proof we sometimes put the indices on the letters as superscripts. That is, 0 ~ is not the 
ith power of 0, but i is an index. For powers of ~, we shall put parentheses around 0 and write (Q)t. 
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(f) v. is a totally finite positive measure such that supp v . c  Wn. 

(g) [~>~Zw. a.e. on C. 

(h) supppnc(l~)_~cK), for n>~l and 

pn(Wn)<.(k)nB~ for n>~O, where dp~---dvn-Zwdm. 
(i) S~hdv=S-~hdv~ for every hEHBC(W~). 

Here k - - I - 2 / 1 0  5, K = I - 1 / 1 0  5, /0=/(Sel~o) and ~=r The numbers A and B are 

positive and satisfy the following two inequalities: 

AB 1 4~ K 
K + 1-z-  < '  

K 
and 

t K B 1 ___llk ~ (K) 2 
A 1 - 1 {  § 2 + ( A l , )  ~ I --  ( K )  2 

< ~, 

where l ,  denotes the length of the boundary of the largest open disc contained in W. 

By virtue of (b), we can define IV, and l~, as lim Wn and lira W~, respectively. Then, 

(1) is satisfied and (e) implies (2). To see (3), let hEt tY(W.)  and set ][hill = S~v. [h[dm. 

Then, by (h) and (i), we have 

f ~hdV- yw hdm= ~v.)_.c.). hdl~"" 
Since h is harmonic on ~K).(z) for every zE(W.)_~x)., we have 

= 1 

J~(~.(.) I :~(,~(K)") = 

for every z E (W.)_~(x f.  Hence, by  ( h ) ,  

J~ Jw,, I =(0)  ~(K) 'I " 

Combining this with the fact that  h is also a n / ~  function on Ws, we conclude that  (3) is 

satisfied. 

Next we construct W~, Wn and vn, n =0,  1, 2 ..... by  mathematical induction. Assume 

that  Wn, W. and v. are constructed. Set ~ = 144, u = 1 - 11200N =0.999965 .... In = l(~e Wn) 

and 

min {4,~(K) '=+z, !k - ~)(k)".B8 ((k - ~) (k)'=Bs~:t~ I 

14-782905 Acta Mathematlea 142. Imprim6 le 11 M~i 1979 
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Let W~(~) be the domain as defined before Lemma 1.1, and fl~ =fl(/~, W~(~)) be the 

measure as defined after Lemma 1.6. Suppose that there is ~ point 1o ~ ~01~r~(~n) such that 

and 

where ~z=8~(~z; ~n)~8X,. For the definition of X(pz; ~,), see Lemma 1.7. Then, by the 

remark to Lemma 1.5, we can find r z such that ~z/2~r~B z and 

~(ae(~(~,) U a,,@))) ~< ~(0~.(~,)). (1.3) 

Set Az--A,,(pz), W~=W,~U A ~ and I ~ =  l~'n(),n)U Az. Then, (1.3)implies 

where L~- - - l s -~ (~ (~ ) ) .  Let 

/(z) =/(z; B.] A~,;pgf), A~) 

be the function as defined in Lemma 1.8. Set 

and 

Then pz is nonnegative and ~ satisfies 

for every h E HBC(W~). 
Set ~z=~(p~, W~(;tn))" Suppose that there is a point p~EOW~(~(,) such that 

and 

where #~---8~(p~; ~l)~>8;tn. Set A~ffiAe,(p~). By using~the same argument as above we can 

construct s z W,---WnUA~, I~I--W~(~)UA 2 and ~ so that l(OeW~)~In-Ln-L 1, where 

L1 ffi/(0e W~) - l(~F~(~)), dp~ = dv~-xw~dm is nonnegative and ~ satisfies 

f~hd~ffi I~hdv~ 
J rv~ ,/w~ 

for every h~HBC(gr~). 
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We continue this process as long as possible. Since Qm>~8)tn and /(a,W~)< 

ln-Ln-~"~2 ~ L~ ln  for every m, our process must stop after a finite number of times.. 

Therefore there are W~n, W~n and #n such that  if a point pE~W~(~n) satisfies 

#'(A~(p))/> N~(;t~) ~, 
then 

m(W~(~n)" f~ Ao(p)) > ~ m(Ao(p)), 

where fit =fl(p~n, W~n(~n)) and 0 =8~(10; fl*). 

S a  ~(z)=X(z; fl~) and Ex={pES1V~(~n)]fl~(A~,(p))>~ZTg(~)~ ). This set Ex is compact. 

If  E 1 ~ O  , then ~ attains its maximum on E 1 at a point Pl of E 1. Set 01=8~(px) and 

E s = E 1 -  A~q,(pl ). Tf Es~=~, we can again find 1%~E~ at which ~ attains its maximum on 

E 2. We can continue this process as long as Em=~O. Since ~(Pm) >~/tn for each m, there is a. 

number ~" such that  Ef t=~ and Ey+~=~. 

Set Am=Ae,(~m) , m----l, 2 ..... ~. Then (Am) is a set of mutually disjoint open discs. 

Now we define W.+I, Wn+x and Vn+l as follows: 

W.+~ = W; U 0 A~, 
r a i l  

u . + ,  = W' . (&)  u U Am, v .+ ,  = ~'.C~tn) u U Am, 
~m~(K)~ + I m - I 

~ n + l  = (Un+I)+2~(K)n+I, 

l .(z) = l(z; #'1 A~(,.>@,.). A~), 

, } dp.+,=d~' IV~(~.)- U A~(.~C~m) + 2 (lm-Xa,.-~'~)dm, 
m - 1  m - I  

I t  is clear that  W.+~, IVn+~ and v.+~ satisfy (a). (b), (e), (f) and (g). To prove (d) and 

(e), we apply Lemma 1.2 to {Am}o.~0(~).+~. Then, by  (h), 

2 
l(0,( U Am)) ~ a(K)n+, ~ zr ~' Om)~(K)n + I 

2 . 8  ~ 1 
N ~(K) ~§ m-1 ~ ~ A ' ~  

1 

1 

A~oB i k \  ~ 
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Hence,  by  L e m m a  1.1, 

M. 8A T M  

AI.B k " 
l(O, U,+ l) < l(Olg~('t,) ) + ~ (~2 ) �9 

Therefore, by Lemma 1.3, 

AloB I k \  n 4 ~ K  ,~ 

~</o[1~ A B ~ k m 

By Lemma 1.4, we obtain 

m(~".(a.) - W'.) = m(~'.(a.) - W'.) + n~(~'. - w J) 

< ~ L ~ + m ( g T a ( 1 . )  u AS_ W~. -1 U N)  

< ~ L ' +  m(lt~.-l(I.) - W~. -a) 

< ~ ( L f + L H  + ... +/.* + L.) + m ( W . -  W.). 

Hence by Lemma 1.3 we have 

m(Wn+a - Wn+l) < m((Un+a)+2,(x),,+a - Un+l) + m(]~ln(~-n) -- Win) 

<~ 2~(K)n+a {I(OW~('Zn)) + AI~ (~)  

2t n t 
+"(2"(K)'~+a)" + ~  (Ln +m~. L" ) 

+ m(~r - W.). 

Since In ~< 2/o and l(OW~(I.)) <~ t m l .  -- L. -- ~m-1 L , we have 

. B . u(K)" . .  
m(W.+l- W.+,) <~ ( W . -  W.) + 48 {A (K ) + ~ ( k ) + ( - ~ o ) 2 ( K ) } .  

This implies (e). 

By the definition of Pn+l, we have 

suppp~+l  c V,,+a 

: (U.+l)+~(x).+~ 

C: ( ( ( ~ f .  + 1) +O(X).+l) +O(E.).+ 1) _ O(E.)# + 1 

= ( ~ . + 1 ) _ ~ ( / g ) . + 1 .  
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To estimate F~+~(~+l)=~u.+l(V.+i) , we set ~= /~ .+ l ]U~_lA~(10m) ' and  ~ =  

F .+~]~(~ . ) - [ . J~_ lA~(10m) .  Since {Am} is a set of mutually disjoint open discs and 

~(AiO,,~(10m)) <-N'Y~(2~m) ~, m = 1,  2 . . . .  , ], we have 

'f 
~ [Ji( |.J A2om(10m))- ~l f XAm-f~(~)dm 

y 
< #'(U A,o..(pm))- ,~ ~=(em)' 

m~l  

t i , .s#qA:Q,J10,.)) 
m-1 

Since every point 1o fi0~.(A.) - U Az0~(10m) satisfies 

we have 
#'(a~(p)) > N~(~)*, 

for every p fiSW~(R.). 

Each component 7 of ~W~(2.) can be covered by at most [[I(7)12.]] closed discs with 

radii 2./2 and centers on y, where [[/(y)/2.]] denotes the smallest natural number not less 

than l(y)/2n. I f / ( r )  >~2=2., then 

z(r) + 1 < ~Cr) (1 + 1 
"~ 2~.." 

Therefore 

~:,(r,,+~) = ~:,(o W~(~.,,)) 

I- 1} N~(A,~)' 
~< / 24. 

3 < ~ I. N~)~ + N~()~) ~ 

< ( k -  g) (k)"Be. 
Thus (h) holds for P.+v 
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To prove (i), let hEHBC(Wn+z). Then h I V.+zeHBC(V.+z ), so that  

Finally, we construct W0, W0 and %. Set 

2~  21" 3N~zl ~ ~ ] J 

where l=l(~W) and d#=d~-~(wdm. In the above argument, replace W~, Wn, r .  and 2. 

by W, W, ~ and 2 ~ respectively. Then we can construct W i, V z and ~z which correspond to 

W~+t, V.+t and ~.+t, respectively. We see that  W 1 and V 1 are admissible domains and 

satisfy 

and 
~'(w) < k~(W), 

where d/~ z = dr 1 - Zw, din. The positive measure ~l satisfies supp ~i c V t, [,, ~> Zw, a.e. on C and 

for every h EHBC(V1). 

For n~>l, set 

2n=min  2 l l . ,  

F hdv= [ hd~ 1 
j@ J~, 

- ( ( k  - 

where In=l(~e V~). Then, by using again the same argument as above, from W n, V n, ~" 

and 2 ~ we can construct admissible domains W n§ l rn+l and a positive measure ~n+l such 

that  W"+lc  V n+l, Wn~ W n+z, Vnc l '~+l, m(V"+l-W"+')<--.(e/2)(~+..~ 1/2m), supp ~ + a c  

V "§ /~,+,~>Zw,+~ a.e. on C, dp"+xffidv"+i-x~+~dm, pn+1(V~+X)~<(k)~+l#(W) and 

for every h EHBC(I~+I). 

Choose n so that  (k)"p(W) --< Be, and set Wo-"fW", Wo= Vn and %=v ~. Then these 

satisfy (a), (e), (e), (f), (g), (h) and (i). The proof is complete. 
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w 2. Analytic functions with finite Diriehlet integrals on Riemann surfaces 

In this section we deal with the kernel function of the Hilbert space AD(R, ~) and 

prove Theorem 2.3 below. Main results of this paper follow from this theorem. First we 

give notation and a preliminary lemma. 

Let R be a Riemann surface and ~ a point on R. We denote by AD(R, ~) the complex 

linear space of analytic functions / on R such that/(~) =0 and the Dirichlet integrals 

D~[l]~ / lt'(z)l~dxdy (z=x+iy) 

of / on R are finite. An inner product on AD(R, ~) is defined by 

_if, ,, (/, g) JR f (z) g (z) dx dy 

for every pair of / and g in AD(R, ~). With this inner product AD(R, ~) becomes a 

Hi/bert space. Set II/ll = (f, 1)' = 
Let t be a locM coordinate defined in a neighborhood oi ~. Then the functional 

/~-~(d//dO(~) is bounded on AD(R, ~), and hence there is a unique function M(z)~- 
M(z; ~, t, R) such that 

') = (I, M) (2.1) 

for every/EAD(R, ~). We call it the kernel function of AD(R, ~). The differential dM is 
called the exact Bergman kernel differential. 

The kernel function M(z)=M(z; ~, t, R) is identically equal to zero ff and only if 

(d[/dO(~)=O for every/EAD(R, ~). If M ~O, then (dM/dt)(~)=llMII2>O. 
In the case of a domain in the complex z-plane, we always set t=z and abbreviate 

M(z; ~, t, R) by M(z; ~). Then 

M(z; O---�89 r 

where P0(z; ~) (resp. Pt(z; ~)) is the extremal horizontal (resp. vertical) slit mapping of the 

plane domain (cf. [6, pp. 125-132]). 

By this equality and our Proposition 1.9, we can prove Lemma 2.1 below. But, 

because the referee and J. Burbea [2] have given another short proof by using Schiffer's 

equality ([7]), we omit the proof. 
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IA~M~IA 2.1. Let R be a plane domain. Then the kernel/unction M(z) =M(z; ~) on R 
sat~s/ies 

IIMII  -< IIMII, 
where IIMII =sup ,R 

By using above lemma, we shall prove the following proposition: 

PROPOSITION 2.2. Let R be a Riemann sur/ace. If  the valence /unction V M O/ 

wffiM(z)--M(z; ~, t, R) satis/ies v~(w)>~n on M(R), then 

IIMII  IIMII/ . 

Proo/. Without loss of generality we may assume M(z) ~ 0. Let  {Rj} be an exhaustion 

of R such that  each 0Rj consists of a finite number of mutually disjoint analytic Jordan 

curves on R. We may assume tha t  ~ERj for every j. Set Mj(z)=M(z; ~, t, Rj), Vj=VMj, 
W j f M j ( R j )  and Ujf{wEWj]vj(w)>~n}. Then, for every compact subset K of M(R), 
there is a number J such that  K c  U~. For every e > 0, we choose K so that  SM(S)-X vMdm <e 
and J so that  K c  U,, ~K (vM--v,)dm<e and ~v, dm-~v~dm<e. I t  follows that  

. ( w , -  u,) <. 

<3e.  

Since Mj can be extended analytically onto R~ (cf. [8, pp. 114-137]), W3 is admissible. 

Define an/_,1 function v on C by v -  max (v~, nXw~} and apply Proposition 1.9 replacing W 

and dv by Wj and (v/n) din, respectively. Then there are an open set W, and a domain W, 

such that  W~cWscWe, m(W6)<oo, m(Ws-We)<s and Sw1hvdm=nSwhdm for every 

hEHL~(We). Set M~(w)fM(w; O, w, W~). Since HL2(We)cHZ,t(W~), by (2.1), we have 

, 1 n , 1 , 

for e v e r y / e A D ( W s ,  0). Since v - ) ,~=0  on Uj and O<~v-~1<~n on W3-UI, we have 

This implies tha t  Ms(w ) converges to (nzt/S vMdm)w uniformly on every compact subset 

of M(R) as e-+0. By Lemma 2.1 
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Iwl = S,,,, ,  a ,n  lira I M,(w) I 
nZ~ ~..~o 

<~ I ~'udm lim ['/~1",(0) 

, 

= ~ = V'~, 

for every wEM(R). Hence IIMII~< IIMII/~. 
Since v(w)>i 1 on M(R), the following theorem immediately follows from Proposition 

2.2. 

THEOREM 2.3. For an arbitrary Riemann surlace, the kernel !unction M (z) = M (z; ~, t, R) 

is bounded and sati~!ie8 
II~ll| IIMII. (2.2) 

Finally we deal with the complex linear space AD(R),  the space of analytic functions 

on a Riemann surface R with finite I)irichlet integrals. By Theorem 2.3 we obtain the 

following corollaries: 

COROLLARY 2.4. I !  there is a nonconstant A D  !unction on a Riemann surface R, 

then there 18 a nonconstant bounded A D !unction on R, namely, 0.4D = 0asv, where 0.4~ (rest. 

0.4sv) denotes the class o! Riemann sur!aces without nonconstant A D  ]unctions (resp. non. 

constant bounded A D  functions). 

Proof. Let  ! be a nonconstant AD function on R. Choose a point ~ on R so tha t  

(dr/dr) (~)~=0 for some local coordinate t defined in a neighborhood of ~. Then the kernel 

function M(z; ~, t, R) is nonconstant. Theorem 2.3 further implies tha t  M is bounded. 

COROLLARY 2.5. A Riemann surface R i8 not of class 0.41)i! and only i/ 

dimc AD(R) = oo. 

Proof. I t  is sufficient to show tha t  if there is a nonconstant A D  function on R, then 

dimcAD(R)=oo.  Let f be a nonconstant bounded A D  function on R. Let  P be a 

polynomial with complex coefficients. Then P ( f ) - 0  if and only if P - 0 .  Hence bounded 

A D  functions ]", n =0,  1, 2 ..... are linearly independent, and so dimcAD(R) = ~ .  

COROLLARY 2.6. Let ABD(R)  be the complex linear space of bounded A D  functions f 

on ,, R~e,,.,nn surl,~e R ~nd ~a Ill/Ill = II111~+ II/-/(r whe,e ~ ~ ,~ l i ,ed point on R. 
Then ABD(R)  becomes a Banach algebra with the norm II1"111 ~nd dens~ ~n AD(R) in the 
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sense that /or every /6AD(R) there is a sequence (/n}= ABD(R) such that/~(~) =/(~) /or 
n a s   +oo. 

Proo/. The first assertion is evident. To prove the second assertion it is sufficient to 

show that  ABD(R, ~) is dense in the Hilbert space AD(R, ~), where ABD(R, ~) denotes 

the linear space of functions ] 6ABD(R) such that  ](~)= O. Choose a sequence (~}~-1 = R 

so that  lira ~ = ~ and let t be a fixed local coordinate defined in a neighborhood of ~ U U ~-1 ~ .  

Then (M(z; ~,  t, R)-M(~;  ~ ,  t,/~)}~=1 is complete in AD(R, ~). In  fact, i f / 6 A D ( R ,  ~) 
satisfies (/(z), M(z; ~n, t, R)-M(~; ~ ,  t, R ) )=0  for every n, then (d//dt)(~,)=0 for every n. 

Hence / - 0 .  By Theorem 2.3 M(z; ~,, t, R)-M(~;  ~,, t, R) is bounded, and so we have 

the corollary. 

Remark 1. I t  is easy to show that  (M(z; ~', t, R)}~.I is also complete in AD(R, ~) (for 

the definition, see w 3). 

Remark 2. From Corollary 2.6 we know that  the maximal ideal space of ABD(R) will 
be useful to s tudy functions of class AD(R). 

w 3. Representing measures of the functional ~0-~ ~(0) 

The valence function ~M of the kernel function _M(z; ~, t, R) satisfies 

1 /<o) 

for every analytic functions / on M(R) such that  ~<R)]/'[2VMdm<~176 namely, ~Mdm is 

a representing measures of the functional ~v-~(0) defined on the space of analytic 

L~(~,M din) functions ~ on M(R) with single-valued integrals. In  this section, we generalize 

Proposition 2.2 and prove Proposition 3.2 below. 

First we give notation. Let  R be a Riemann surface and ~ a point on R. Let  ~ be a 

measurable function on R such that  ~(z)/> c a.e. on R for a positive number c. We denote 

by ADv(R, ~) the complex linear space of analytic functions ] on R such that  ](~)=0 

and SR [/'(z)[2~(z)dxdy< ~ ,  where z=x +iy. 
An inner product on AD~(R, ~) is defined by  

, 1 f l' ,d dy (l g ) , - -  

for every pair of I and g in ADv(R, ~). With this inner product ADp(R, ~) becomes a 

Hilbert space. Set II/llv = (/,/)~,2 = (~a i/,12~,dxdy/g)l,~. 
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Let  t be a fixed local coordinate defined in a neighborhood of (. Since the functional 

lF->(d//dt)(() is bounded, there is a unique function Mv(z)=M~(z; ~, t, R) such tha t  

d~(~) = (I, ~,), 

for every /~AD~(R,  ~). We call M~ the kernel function of AD~(R, ~). The kernel function 

M~(z; ~, t, R) is identically equal to zero if and only if (d[/dt)(~) =0 for eve ry /~AD~(R ,  ~). 
The following proposition is a generalization of Theorem 2.3. 

PROPOSITION 3.1. The kernel/unction M,(z) =M~(z; ~, t, R) is bounded and satis/ies 

IIM, < I1 ,11,/  

Proo]. We may  assume .Mv(z ) ~0 .  Suppose tha t  ~ is lower semicontinuous on R, r(z) 

is a natural  number for every z~_R and ~(z)>~n on _R for a fixed natural  number  n. 

Set W f M~( R) and #(o~ ) = ~z~uT~(~)~(z). Then S~ [ M; l ~,dxdy = S pdm < oo, p is lower 

semicontinuous on C,/~(~o) is a natural  number  not less than n for almost all to ~ W and 

ff(o~)=0 on  W ~. 

Now we construct a Riemann surface S and .F~AD(S, ~) for some ~ on S such tha t  

(1) The valence function ~p of F is equal to p a.e. on C. 

(2) (dF/dz)(~)fi:0 for some (and hence every) local coordinate ~ defined in a neighbor- 

hood of r/. 

(3) For every gEAD(S, ~7), there is a function/EAD~,(W, 0) satisfying g=/oF. 

Set Uj={toEC[ff(to)~j}, j = l ,  2 . . . . .  Then each Uj is open and satisfies UjD Uj+ 1. 

For every ~ 2 ,  let Uj.k, k = l ,  2 ..... k(j), k( j )~  o% be connected components of Uj. For 

each j ~ 2  and k with l ~ k ~ k ( j ) ,  take a point pj.~ and a neighborhood Vj.~ of pj.~ so 

tha t  Vj.k= Uj.k, 0 r  and Vj.kN V~.h=lD ((j, k )~( i ,  h)). Let  sj.~.~, l = l ,  2, ..., be 

mutual ly disjoint closed slits in Vj.k converging to Pj.k. 

Let  S 1 be a copy of U 1 - U ~ U ~ s~.k.z -- W - U k U l sz.k.~ and let S j, j -- 2, 3, ..., be copies 

of U ~ -  U k U z ~.~.~- U ~ U zs j+~ ,k.z- We joint these copies along their common slits identifying 

the upper edges of the slits of Sj with the corresponding lower edges of the slits of 

Sj+I, ~ = 1, 2 ..... and vice versa. This gives a ramified covering surface S of W. 

Let  F be its projection mapping and let ~7 be a point of _~-1(0). Then these S and _~ 

satisfy (1) and (2). I t  is easy to show tha t  for every bounded analytic function g on S 

there is a bounded analytic function f on W satisfying g=foF (cf. Myrberg 's  example, 
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e.g. [5, pp. 53-54]). By Corollary 2.6, every gEAD(S, ~) can be approximated by  bounded 

analytic functions on S, and so (3) is satisfied. 

By virtue of (2) we can choose F as a local coordinate defined in a neighborhood of ~. 

Set M(w)=~/(w;  ~, F,  S). Then, for e v e r y / 6 A D ~ ( W ,  0), we obtain 

1'(o) (0--~ 

=~f (1o,)",-d, (wfu+iv). 

I IM ,  II, = I IFII  ~. Hence In  particular, by taking/(co)--oJ, we have (dM~/dt)(~)= 

1 / "  , F '  

for every g = / o F  E AD(S, ~7), and so M = F/IIFIP. Therefore, by Proposition 2.2, we have 

I IMvll , ,  = I IF I I |  ~< I I F I I / ~  = I1.~,11,/~-. 

Suppose next  tha t  ~ is lower semicontinuous on R, tha t  ~(z)/e is a natural  number for 

some fixed e > 0 and for every z E R and tha t  cle is a natural  number. Set ~8(z) = max {~(z)/e, 

c/e}. Then My(z; (, t, R)--Mrs(z; (, t, R)/e and ~8 satisfies the above assumption. Hence 

I1.~,,11| = II.~,./elloo ~< V;7~ll.~,Jell , .  = II.M, I I , / ~  

Finally, we consider an arbi trary measurable function ~ on R such tha t  ~(z)~>c a.e. 

on R. We can construct measurable functions ~j on R, j =  1, 2 ..... such tha t  

(1) 0~<vj~ j+ l  a.e. on R and l im~j=~.  

(2) vj(z)~>c a.e. on R. 

(3) ~j is lower semicontinuons on R. 

(4) (2J/c)~j(z) is a natural  number  for every z6R. 

I t  is easy to show tha t  M,~(z; ~, t, R) converges to My(z; ~, t, R) uniformly on every com- 

pact  subset of R and HM,~II,,-* IIMvll, as i ~ .  Since IIM,,II~< IIM~,II,,/V~by the above ar- 

gument,  we have IIM, I I ~  IIM, II~/V~. The proof is complete. 

Let  E be a compact set in the plane C and U be a domain containing E. We say 

tha t  E is removable with respect to A D  functions ff e v e r y / 6 A D ( U -  E) can be extended 
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analytically onto U. We denote by  N~ the class of compact sets which arc removable 

with respect to A D  functions. A set E is of class N~ ff and only if E ~ is a domain of class 

Oar, namely, there are no nonconstant A D  functions on E ~ (see e.g. [5, p. 261]). By  using 

this notation we have 

PROFOSI~ION 3.2. Let W be a plane domain containing the origin O. Let v be an L 1 

function on C such that v(z)>~c a.e. on W / o r  a positive number c and v(z)=0 a.e. on W c. I f  

1 1'(o) f l',dm 

tot every 1 ~ AD~(W, 0), then m,:: ~(0) ,  w~re r = {J' ,,dm/(c~)p. The equality 

supl l=," 
z~W 

holds i /and only i/~(z) =c a.e. on W and W =At(O) - E, where E is a relatively closed subset o/ 

At(0) such that Eft  K E N ~  /or every com2~act subset K of At(0). 

Proo/. From the uniqueness of the kernel function Mv(z; 0, z, W), it follows tha t  

Mv(z;O,z, W)=(~z/S~dm)z. Since IIM~Hv=(~/SI, dm)~, by Proposition 3.1, we have 

WcA,(0) .  Thus the first assertion has been proved. 

To show the second assertion, we assume inf~ oxv(z)> c for a compact subset K of W 

with re(K)>0. Let  d=d(K,  OW) and define a bounded nonnegative L 1 function ux on C 

by  ul = MaI~P, where dp -~ (1,- c)Zxdm and (Mal~ p) (z) =p(An/~(z))]{g(d/2)~). Then there are 

a disc A1 and a number ax>0  such tha t  A l e  W and ~l(z) ~> a 1 on AI. Let  Aj, iffi2 . . . . .  n, 

be discs with centers at  pj such tha t  p .  - 0 ,  A j c  W and pjeAj_~ for every i. Assume that  

there are a bounded nonnegative L 1 function u J-1 on C and a number  aj_x > 0 such tha t  

supp ~,j_l ~ W, 19_1(z ) ~ o~_~ on A~_x and Shu~_~dm-~ S h~,~dm for every harmonic function 

h on W. Let  A be a disc with center a t  p~ such tha t  A ~  A~_I. Then 

fh,,_,dmffi fhO,,_,-a,_x~)dm+~_x f hdm 
( - Za) dm+ ~ j a h d m  

for every harmonic function h on W. Set ~9=~,~_x-o~_~Za+(og_xm(A)/m(A~))Za~ and 

o~ ffi o~_~m(A)/m(A~). Then u~ and ~ satisfy the above conditions for i. Thus, by  induction, 

we can construct u, and a n > 0 such tha t  supp ~n~ W, ~,(z)/> ~ on A, and S h~,,dm = S h~,xdm 

for every harmonic function h on W. 
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Set (~ = o:nm(An)/] rdm and ~,* =r-(v-c)ZK+~,,  - o~Z~x.+&,. Then  r*(z) >/(1 +($)c a.e. 

on W, v*(z)=O a.e. on W e, ADv.(W, O)=ADv(W, O) and 

for  every  ]eADv,(W, 0). Hence  sup~w]Z] < r ] ~ - ~ < r .  
Therefore if sup , ,  w ] z l = r, t hen  ~(z) = c a.e. on W and m(W) =- ~ ~ dm[c = r~r 2 -- m(A~(0)). 

This implies t h a t  gw=ga,(o) a.e. on C and M(z; O, z, W) -=z[r ~. B y  Theorem 1 of the  au tho r ' s  

pape r  [4], we see t h a t  W is a domain  ment ioned  above.  

Conversely,  if W is a domain  ment ioned  above and  ~(z)=v a.e. on W, then  eve ry  

[fiAD~(W, O) can be ex tended  analyt ica l ly  onto A~(0), and  hence 

]'(O)---~rr2 f~,co J' Cdm= ~ ~-~-dm.lw/' Vdm 

for  e v e r y / E A D ~ ( W ,  0), Thus  we have  p roved  the  second assertion. 

COROLLARY 3.3. The equality sign in (2.2) o/Theorem 2.3 hold8 if and only i/either 

(1) M(z; ~, t, R) =0, or 
(2) R is conformally equivalent to f i t ( 0 ) - E ,  where E is a relatively dosed 8ubsd of 

AI(0 ) 8~(~h that E[~ KENv for every compact subset K of At(O). 

Remark. If R is of finite genus, then  M(z; ~, t, R)~-0  if and  only if REOAo, namely ,  

there  are no noncons tan t  AD funct ions on R (cf. [5, pp. 50--52]). 

For a natural  number  n, set  

AD(R,~")--{fEAD(R,~)ld~ (~') ,ffi ... ffi d--/-~T (~) - - d ' ~ - a f  0}. 

This  is a closed subspace of the  Hi lber t  space AD(R, ~) and there  is a unique funct ion 

M(z) =M(z ;  C", t, R)EAD(R, Cn) such tha t  

dn/ t~ ~ -  d-~ " ~  - ( f '  M )  

for every  lEAD(R, ~n). :Next we show 

PROPOSITION 3.4. The function M(z)--M(z; C a, t, R) is bounded and satisfies 

IIMll < I[Mll. 
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The ~luality holds i] and only if either 

(1) M = 0 ,  or 

(2) n = 1 and R is a lolanar sur]aee mentioned in (2) o/ Corollary 3.3. 

Proof. Assume M ~ 0 ,  set W=M(R) and let v be the valence function of M. Since 

]oMEAD(R, ~) for /EAD~(W, 0), we have 

, clnM tin(toM) 
/ (o)--j~-(~)= ~e (~) 

1 fR(loM),M, dxdy 

1 fw/,rd m 
for every fEADv(W , 0). Hence 

1 fw/,~,dm 1'(o)= 

for eve ry /EADv(W , 0) and so the proposition follows from Proposition 3.2. 

F~r a fixed local coordinate t defined in a neighborhood of a point ~ on R we define 

CD(~ ) and cB(~ ) by 

eo(~)=sup { d;--~n (~)l l/eAD(R, ~"), "/[' < l}, 

dn/ I}, 

~here AB(R, ~n) denotes the complex linear space of bounded analytic functions / on R 

satisfying/(~) = (d//dt)(~) = ... - (dn-~//dt n-~) (~) = 0 (cf. [6, pp. 256-257]). We denote by Ns 

the class of compact sets which are removable with respect to bounded analytic functions. 

Finally we show 

OORO~.T.A~Y 3.5. CO(~) and cs(~ ~) sc~is/y 

c~(~) < cB(~n). (3.1) 

The equality holds i/and only i/either 

0) ~n(~')=o, or 
(2) n = 1 and R is con/ormaUy equivalent to AI(0 ) -  E, where E is a relatively dosed 

subaet o] AI(0) such that EN KEN~/or every coml~act subset K o] AI(0). 
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Proof. Assume %(~")>0, and let F s  ~") be the extremal  function such tha t  

%(~")=(dnF/dt")(~) and IIFH =1.  Then F=M/IIMII,  where M(z)=M(z;  ~ ,  t, R). Hence, 

by  Proposition 3.4, we have II Fl]~ ~< 11FH = 1, and so cv(~") = (g'*F[dt n) (~) ~< %(~'). 

Obviously either (1) or (2) implies CD(~')=CB(~n). Assume cD($n)=cs(~')>O. Then 

HFII~=IIFII. By Proposition 3.4, we see tha t  n = l  and M is univalent. Hence our 

assertion follows from [3]. 

Remark. For the case of a plane domain and n = 1, (3.1) was obtained by  Ahlfors and 

Beurling [1]. This is also obtained by  the relation of the Szeg6 and the exact Bergman 

kernel functions. 
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