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Since around 1950 the general classification theory of Riemann surfaces has been
studied. Although many fruitful results have been obtained, there are still unsolved
fundamental problems in the theory concerning the spaces of analytic functions with
finite Dirichlet integrals.

In this paper we shall be concerned with the following problems I and II (cf. [5,
pp. 50-51}).

Problem I. Let AD(R) be the complex linear space of analytic functions on a Riemann
surface R with finite Dirichlet integrals. Does there exist a Riemann surface R satisfying
1 <dim¢AD(R) < oo?

Problem 11. Let O,y (vesp. O4pp) be the class of Riemann surfaces on which there are
no nonconstant AD functions (resp. bounded AD functions). Does the strict inclusion
relation O,p< O,4pp hold?

Let HD(R) be the real linear space of harmonic functions on R with finite Dirichlet
integrals. Then, it is known that for every natural number # there is & Riemann surface R
satisfying dimg HD(R)=n (cf. [5, p. 197])). In contrast to this result, we show that
R¢0,; if and only if dimgAD(R)=oo.

Problem II has been open since the beginning of the study of the classification theory
of Riemann surfaces. We show that the equality O,p=0,5, holds. Moreover, we prove
that the space A BD(R), the space of bounded 4D functions on a Riemann surface R, is
dense in 4 D(R) in the sense that for every f€A4D(R) there is a sequence {f,}<ABD(R)
such that f,({)=f() for a fixed point (ER and [ |fn—f [2dzdy—~>0 (n—> o).

This paper consists of three sections. The purpose of § 1 is to prove Proposition 1.9 con-
cerning modifications of positive measures. Its proof is relatively long. This proposition is
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used only in the proof of Proposition 2.2. On first reading one could omit § 1 except for
the definition of admissible domains and the statement of Proposition 1.9.

In § 2 we define the kernel function M of the Hilbert space AD(R, ), the space of
AD functions f on R with f({) =0, and prove Theorem 2.3. In our theorem, we obtain the
following inequality:

1/2
sup | M(z)| < (f IM'Izdxdy/n) ,
2¢R R

which implies that M is bounded. The results concerning the above two problems
immediately follow from this theorem.

A generalization of our theorem and a complete condition when the equality holds
in the above inequality are given in § 3. As an application, we obtain the inequality on
conformal invariants ¢, and ¢z

The author would like to express his hearty thanks to Professor M. Ohtsuka and the
referee for their valuable comments and suggestions.

§ 1. Modifications of positive measures

Let W be an open set in the complex plane C. For everyp >0 put W_,={2€ W |d(z,0W) >
g}, where d(z,0W) denotes the distance from z to the boundary oW of W. The
smallest open set G which satisfies W<G_, is denoted by W,,. If ¢>0, it follows that
W,,={2€C|d(z, W)<gp}=U_.ewA,(c), where A,(c) denotes the open disc with radius
o and center at c.

Let W be a plane domain. We shall call it an admissible domain if it satisfies the
following conditions:

(i) W is bounded.
(ii) m(@W)=0, where m denotes the Lebesgue measure.
(iii) The boundaries y, of connected components 0,, n=0, 1, 2, ..., of W* are rectifi-
able Jordan curves and satisfy > I(y,) <oo. Here W* denotes the exterior of W
and I(y,) denotes the length of y,.

For an admissible domain W, we denote by o, W the union of y,. For an admissible
domain W and ¢>0, we consider the domain surrounded by the outer boundary y, of
the closure W of W and the other boundaries y, of connected components 0, of W* such
that I(y,) >2mp. We denote it by W(o).

Using this notation we have the following five lemmas. We omit the proofs of some
of them.
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Lemma 1.1. Let W, and W, be admissible domains such that W,N W,+D. Then
W,U W, is also an admissible domain and satisfies

UBW LU Wy)) <UD, Wy) +1(2. Wo).

LeMMa 1.2. Let Ay, j=1, ..., n, be open discs whose radii are not less than a positive

(e(08)) <2n(018),
j=1 7 \s=1

where 9,(Uj-1A,) denotes the union of 9, W, of the connected components W, of U1 A,.

number r. Then

Proof. We prove the lemma by mathematical induction on the number n of open
discs. If n=1, then our assertion is trivial. Assume that our assertion is true when
the number of open discs is equal to n—1. Let A,, j=1, ..., %, be open discs and assume
that A, has the minimum radius 7,. Set W= UJ,;.,A,. Then

U2 W 1 Ay) > 2 V&W;ﬂ

>gm(W nAy).
T

Hence, by the assumption, we have

UO(UA,)) = U(W U Ay))
=10, W) +1(2A) — U2 W N Ay))

< 2 {m(W) + m(Ay) — m(W nvAk)}
= EM(W U Ak)
"k

2
=-—m(UA,).
4"
This completes the proof.
Leuua 1.3. For every admissible domain W and every 9=>0, W, is an admissible
domain and satisfies the following inequalities:

(1) Ue, W) < U2, W) +2ng.
2) m(W,,— W) < U2, W) +mg*.
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Lemma 1.4, For every admissible domain W and every p>0, W(p) is an admissible
domain and satisfies the following:

(1) 2, W(g)=2W(e).

(2) WeW(e)=(W.p)-,.

(3) W(@)io=W,,.

(4) W) =Ue, W)— 2 Uya)

n21,ly)<2mp

6) m(WE)-W)<S S Iy,

h é 121, lyp)<2mp
Lrmma 1.5. Let W be an admissible domain and set A,=A(c). If
m(Wen Ay <gm(d,), (1.1)
then there is a number r such that ¢[2<r<g and

LWenaA,) <UA, N8, W), (1.2)
where A, =A{c).

Proof. For every r with 0<r<g, set l(r)=A,N 5, W) and I*(r)={W*N A,). Assume
that Ur) <I*(r) for every r with p/2<r< . This implies W*¢ N 8A,==D. If there is & num-
ber 7 such that g/2 <7< (49/50)p and A, < W, then we have either A, = Weor A,— A= We.
Both of them contradict (1.1). Hence &, W N0A,=+=Q for every r with o/2 <r<(49/50)p.
Therefore

l*(r)>l(r)>r——§ (g<r<§%9).

Integrating both sides of this inequality, we have

(48/60)¢

(49/50)¢
m{We N A,) = f ) dr> f
/2

el2

(r— g) dr > gy mo®.

This also contradicts (1.1). The proof is complete.

Remark. In Lemma 1.5 assume further W A, ,=%@. Then WU A, is an admissible
domain by Lemma 1.1. The inequality (1.2) implies

HBLW U A,)) <Y, W).

Let W be a plane domain and denote by HB(W) the Banach space of bounded har-
monic functions z on W with norm ||Al|,=sup,.w|k(z)|. If REHB(W) can be extended
continuously onto 6W, then we say that h belongs to HBC(W) and also denote by h its

continuous extension.
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The following lemma is well known.

LemMma 1.6. Let W be a bounded domain such that each point of OW is regular with
respect to the Dirichlet problem. Then the mapping hi—>h|0W is an isometric isomorphism of
HBCO(W) onto C(0W), where C(0W) denotes the Banach space of continuous functions on
oW with norm ||+ |

Let u be a totally finite signed measure on the closure W of a domain W mentioned
in Lemma 1.6. Then we can find a measure §=8(u, W) on 8W such that

f hd,u=f hdp
w ow
for every h€ HBCO(W).

For positive measures we show the following two lemmas. The proof of the first lemma,
is omitted.

LEMMA 1.7. Let u be a totally finite positive measure on C and define Mz)=A(z; u) by
A(z) = sup {r > 0[u(A(2) > Nur?},

where N denotes a fixed positive number and A,(2)={z} if r=0. Then

(1) A is @ nonnegative upper semicontinuous function on C.
(2) p(Aae) (2)) =Nr(A(2))>.

LemMa 1.8. Let u be o positive measure on C and 90>0. Suppose supp ycm and
‘u(m ) =1447(g/8)2. Then, for every number r with p|2 <r <y, there i8 a bounded measurable
function f(z)=f(z; u, Alc)) on € such that

(1) f(z)=21 on A,=Ac) and f(z)=0 on AL, where AL denotes the complement of A,.

(2) fa,hdu=[a hfdm, for every h€ HLX(A,), where HLMA,) denotes the class of harmonic

L functions on A,.

Proof. For a totally finite signed measure v with compact support and a number
>0, set (M, v)(2) =v(A,(2))/na?. Then M,y is a bounded L! function on €. If W is a
domain such that supp v< W—_a, then § hdv = fy h(M,v)dm for every h€ HLY(W).

Now we consider the function My, u. It is nonnegative and satisfies (M, /s u)(z) =16
on Ay,(c) and (My,su)(2) =0 on (Ay;,(c))°. Let s be the solution of the following equation:

ol

Since p/2 <r<yg, s satisfies 4<s<16.
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Set
(Mgqrst) () —5+1 on Ayylc)
[(2) = (Mypep)(2) +1 on A/{c) —Byc)
0 on A,{c).

Then f satisties (1) and

f hfdm=f h(Msa,a,u)dm=f hdu
a, A A,

for every h€ HLY(A,). This completes the proof.

Every totally finite signed measure g on C can be decomposed into an absolutely
continuous part g, and a singular part u, with respect to the Lebesgue measure m. We
denote by f, the Radon-Nikodym derivative du,/dm.

We shall now prove the following proposition which plays an important role in the

next section.

ProrosiTIiON 1.9. Lei W be an admissible domain and v a totally finite positive measure
on € such that supp v< W and f,>yy a.e. on C, where yy, denotes the characteristic function
of W. Then, for every e>0, there are a bounded open set W, and a bounded domain W, such
that

1) WeW, =W, and W<W,

2) m(W,~W,)<e.

(3) fwhdv=fw hdm, for every hEHLXW,).

Proof.(*) We may assume e¢<1. We first show that to prove the proposition it is
sufficient to construct the following W,, W, and v,, n=0, 1, 2, ...:

(a) W, is an open set and W, is an admissible domain.
(b) Wnc Wn+1 and Wnc Wn+1'
(¢) WeW,cW,.

AB" (b\™  4aK "
(d) l(a,W,,)<l.,{l+— > (7{) +A(lo)’ > (K) } for n=1.

K m=0 m=0
(e) m(Wy— W.,)sg and

P Kn-—l m En—l n n(K)"’ n~1 m
m(W, — W,,)<§+ 48{2 mgo (K)™+ 2 ,Eo(k) + (Alo)’"go (K)® } forn>1.

(*) In this proof we sometimes put the indices on the letters as superscripts. That is, o is not the
ith power of g, but ¢ is an index. For powers of ¢, we shall put parentheses around g and write (g)'.
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(f) », is a totally finite positive measure such that supp»,< W;
(€ f,,Zxw, ae. onC.
(h) supg,t_&,,c(Wn)_G(K),‘ for n>1 and
pn(W,)<(k)y*Be for n>0, where du,=dv,—yw, dm.
(i) fwhdv={3 hdv, for every h€ HBO(W,).

Here k=1-2/105, K=1-1/105, [,=1(8,W,) and &=¢/(A4l,). The numbers 4 and B are
positive and satisfy the following two inequalities:

AB 1 4n K _
K|k (AuP1-K
K

1

and
1 K B 1 7 (K)?

AT-E 2i-%  @piz(Ep Y

where I, denotes the length of the boundary of the largest open dise contained in W.

By virtue of (b), we can define W, and W, as im W, and lim W,, respectively. Then,
(1) is satisfied and (e) implies (2). To see (3), let AEHLYW,) and set [[4]|, = fw, |h|dm.
Then, by (h) and (i), we have

fhdv—f hdm=|_ hdu,.
14 W, (W) _ gz

Since % is harmonic on Aygy(z) for every z€(W,)_ saym We have

| Il
Iheal ln(a(K)")’ f A«x)-(»hdm' <Ry

Hence, by (h),

_ Be|lAll, ( k- )"
fw"’d” L,“"”lg 20) \(K)P) °

Combining this with the fact that A is also an Lt function on W,, we conclude that (3) is
satisfied.

Next we construct W,, W, and »,, n=0, 1, 2, ..., by mathematical induction. Assume
that W,, W, and v, are constructed. Set N =144, x=1—1/200N =0.999965..., I, =1(3, W,)
and

for every z€(W,)_,

A, =min {46( K"+t (k— ) (k)"Be ((k — %) (k)* BS)IIZ}.

3N=l, 2N=n

14782905 Acta Mathematica 142. Imprimé le 11 Mai 1979
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Let W,(A,) be the domain as defined before Lemma 1.1, and 8, =B(t,, W,(4,)) be the
measure as defined after Lemma 1.6. Suppose that there is a point p*€2W,(4,) such that
BulBs(p)) = Nr(d,)?

and

m(Wo(3n)° N Agelp*)) < o m(Dr(P"),

where o' =8A(p"; f,) >84,. For the definition of A(p%; f,), see Lemma 1.7. Then, by the
remark to Lemma 1.5, we can find 7 such that /2 <r!<p! and

YO W a(Aa) U A1) < HBW o(4,)). (1.3)
Set Al=An(pl), Wi=W,UA? and W;=W,(4,)U AL Then, (1.3) implies

W.Wi<l,— L,
where L, =1, —~1(@W,(4,)). Let

12) = 1(2; Bu| Ascorsg, (Y, AY)
be the function as defined in Lemma 1.8. Set

d."‘rlt = dﬂnl{a Wn(ﬁn) - Al(p’:ﬁ,‘)(pl)} + (f - xA'— W,) dm

dvn = Xwidm + dps,.

and
Then y; is nonnegative and »; satisfies

f_hdv,, = f_ hdvi
W, W
for every h€HBC(W?).
Set B =p(uk, Wi(A,)). Suppose that there is a point p?€dWi(4,) such that

BHBs(p") > N(4,)?
m(W3(An)* 0 Ap(2%)) < ym(Bp(p?)),

and

where g =84(p% 8')>84,. Set A2=Ax(p?). By using,the same argument as above we can
construct W2=WiUA2, Wi=Wi(,)UA? and »2 so that (o, WE)<l,—L,—IL1, where
L =13, W})—UoWL(A,)), dpn=dvi—y,sdm is nonnegative and v; satisties

j_h dvl= f_ hdv:
o W,

for every h€HBC(W3).
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We continue this process as long as possible. Since ¢™>84, and (3, Wp)<
l,—L,— %=1 L¥F<1, for every m, our process must stop after a finite number of times..
Therefore there are W, WY and 4, such that if a point p€0Wi(4,) satisfies

BB, (p)) > N2, )%,
MAWa(An)® 0 Ag(p)) >dgm(A(p)),
where B'=p(ut, Wi(1,)) and ¢ =8A(p; BY).

Set A(z)=A(z; B') and E,={p E@Wﬁ,(ln)|ﬂ’(m)>Nn(1n)2}. This set E, is compact.
If E,=£@, then A attains its maximum on E, at a point p, of E,. Set g, =8A(p,) and
E,=E,— Ay, (py)- If E;4D, we can again find p, € E, at which A attains its maximum on
E,. We can continue this process as long as E,=@. Since A(p,) >, for each m, there is a-

number § such that E,+@ and E, ,=0.
Set Ap=A7p(Pn), m=1,2,...,j. Then {A,} is a set of mutually disjoint open discs.

Now we define W,,,, W,,, and v,,, as follows:

then

1
Wn+1 = W:t U U Am:

m=1

Un+1 = W:z(}'n) Y U Ams Vn+1 = Wit(ln) v U Am’
me=1

C2o(R)M 1

W’n+1 = (Uﬂ+1)+2d(x)n+l’

fm(2) = f(2; /3‘| AA(D,,.)(pm): An),
]
dnsr =dp’! l {3W§(ln) - ml:.1 AA(p..)(Pm)} + "E.l (fn—Xan-wt) dm,

d’l’n+1 = an-i-l dm+ d,u,,+1.
It is clear that W, ,, W,,, and »,., satisfy (a), (b), (c), (f) and (g). To prove (d) and
(), we apply Lemma 1.2 to {A,}e,»sx+1. Then, by (h),
9 ]
e U Am))<m:1m§ﬂ(em)’

[ITTF il

2.8 1 J —
I A T LA G

1
< HE B EWHAL))
1 —_—
<3& Bl W)

<AloB<£)"
= K K .
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Hence, by Lemma 1.1,

U, Unsr) < UOWE(A,) Af% B (7’;)

Therefore, by Lemma 1.3,

AloB(k)” 4naK(
K \K Al,

AB * (kE\™ 4nK =
<h {1 * K ngo (Tf) AL mgo }
By Lemma 1.4, we obtain
A Wh(Ag) — Wh) =m(Wh(A,) — Wh) + m(Wh— W)

ln+1 < ln + K)”

<E Lt mIE ) U A= WU AY
<%L‘+m(Wﬁ,‘1(ln) )
<%(L‘+L“‘+ v A+ L) +m(W,— W,).

Hence by Lemma 1.3 we have
M(Wns1— Wai) < M(Un+1), g1 — Unsa) +m WiAs) — W3)

nt AlL,B (&
< 26(K) 1{(aW:.(/I"))+ U (K)}

+ a(2B(KYHE 4 T (L + z L"')

m=1

+m(W,— W,).

Sinoe I, < 21, and I(8W,(4,)) <l — L, — >*..; L™, we have

K B K
m( Wn+1 - n+l) < (Wn— Wn) +4e {Z (K)”+ E(k)n :i(” ;2 (K)En}'

This implies (e).
By the definition of u,.,, we have

SUPP fn+1 < Vasa

< (U"+1)+d(x)"+1

< (((Un+1)+6(K)n+1)+a(x)n+1)_d(x)n+1

= (W"“)—o(x)""‘l‘
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To estimate ppy(Wait) =pinis(Vaser)s We set & =ppin| Uho1890,(Pm) “and &=
Brsr|0WaiAs) — Uh1Ag, (Py)- Since {A,} is a set of mutually disjoint open discs and
BHAg(Pr)) <Nm(2g,)2, m=1,2, ..., 7, we have

§1(Vra1) = pns1(U Ag, (p))
1
=B(U A, (Pm)) — Zl X 5w, dm
i
<B(U st~ 3 [Hanstgpim

H
<pU A2om(pm)) - "gl Bliin(em)z

] H
<A(U e ()~ 3 ten Sipzelte)
< U Aag ()
< n(k)"Be.

Since every point p€dWi(4,)— UA,, (pn) satisfies

F(Aw(p) > Nn(4,),

we have
£o( A 2(p)) < N7(A,)
for every p€aW.(4,).
Each component y of 8W4(4,) can be covered by at most [[{(y)/A,]] closed discs with
radii 4,/2 and centers on y, where [[I(y)/A,]] denotes the smallest natural number not less
than I(y)/A,. If I(y)>2n4,, then

Uy) 3U(y)

I(y) 1
A< +1< 5 (1+2—n)< ),

Therefore

Eo(Vnr1) = Ex(@W4(A,))
< {~—ﬁ3l(322‘(’1"” + 1} Na(d,?

< gln Nai, + Nn(i,)?

< {k — %) (k)" Be.
Thus (h) holds for p,,.
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To prove (i), let h€ HBC(W,,,). Then k| V,,,€HBC(V,,,), so that

f hdv=J'__hdv,;= J\_.kd’l’;,=f
w ﬁ"n W:; Wn+1

Finally, we construct W,, W, and v, Set

hdvn+1‘

. le (k=) p(W) ((b—2x)p(W)\'"

0= ~ =

40 =min {2 I’ 3Nm '\ 2N« ’
where 1=1(8, W) and du=dv—yy,dm. In the above argument, replace W,, W,, », and 4,
by W, W, v and 1°, respectively. Then we can construct W?*, ¥? and #* which correspond to
Wosrs Vagy and v, respectively. We see that W' and V' are admissible domains and

satisfy

A e (1
m(Vi—~ WH < §l<§(§)

and
sV < (W),

where du! =di' — Y y:dm. The positive measure ! satisfies supp »'< f’—l, faZXwma.e.onCand

f_hdv= _hdn

w v
for every h€ HBC(V?),
For n>1, set

1 & (k—%) (k)”ﬂ(W)’ ((’c ~%) (k)"#(W))”z}

N — 1 —
A% =min {2"“ ™ 3Nl 2Nz

where I"=1(,V"). Then, by using again the same argument as above, from W?», V*, »"
and A" we can construct admissible domains W™+, V**! and a positive measure »"+! such
that W*tic V"+1, wre W"+1, Vre Vn+1’ m( Vn+1__ Wn+l) <(6/2)( ztll 1/2m)’ supp Pl
T, fae1 > gynst aee, on €, dut =dv™ — Lymrrdm, u* (V) < (k) w(W) and

J hdv=|__ hdv***
w i

for every h€ HBCO(V™*1).
Choose % so that (k)"u(W)< Be, and set Wy=W", W,=V" and v,=v". Then these
satisfy (2), (e), (e), (f), (g), (h) and (i). The proof is complete.
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§2. Analytic functions with finite Dirichlet integrals on Riemann surfaces

In this section we deal with the kernel function of the Hilbert space AD(R, () and
prove Theorem 2.3 below. Main results of this paper follow from this theorem. First we
give notation and a preliminary lemma.

Let R be a Riemann surface and { a point on R. We denote by A.D(R, {) the complex
linear space of analytic functions f on R such that f({)=0 and the Dirichlet integrals

Dilf1= fRIf'(z)dedy (z=2+ iy)
of f on R are finite. An inner product on AD(R, ) is defined by
1 Y2 _,—'
(f’g)"';zf f(2) g (z) dzdy
R

for every pair of f and g in AD(R, (). With this inner product 4D(R,[) becomes a
Hilbert space. Set [|f|| =(f, /) =(Dglfl/=)}.

Let ¢t be a local coordinate defined in a neighborhood of {. Then the functional
fr>(df/dt)({) is bounded on AD(R,({), and hence there is a unique function M(z)=
M(z; ¢, t, R) such that

d

Tor=v.a0 1)
for every f€AD(R, {). We call it the kernel function of AD(R, ). The differential dJ is
called the exact Bergman kernel differential.

The kernel function M(z)=M(z; {, t, B) is identically equal to zero if and only if
(df(de) (£) =0 for every f€EAD(R, {). If M0, then (dM/dt)(() = | M|2>0.

In the case of a domain in the complex z-plane, we always set ¢ =2z and abbreviate
M(z; ¢, t, R) by M(z; ). Then

M(z; 3) = }(Py(2; £)—Pil2; £)),

where P(z; {) (resp. P,(z; {)) is the extremal horizontal (resp. vertical) slit mapping of the
plane domain (cf. [6, pp. 125-132]).

By this equality and our Proposition 1.9, we can prove Lemma 2.1 below. But,
because the referee and J. Burbea [2] have given another short proof by using Schiffer’s
equality ([7]), we omit the proof.
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LEMMA 2.1. Let R be a plane domain. Then the kernel function M(2)=M(z; ) on R
satisfies
]| < | 2]],
where | M|, =sup,ez | M(z)].

By using above lemma, we shall prove the following proposition:

ProrosiTioN 2.2. Let R be a Riemann surface. If the valence function v, of
w=M(z)=M(z; {, t, R) salisfies vy, (w)=n on M(R), then

124]|.o < || 24 ]| V.

Proof. Without loss of generality we may assume M(z)=0. Let {R,} be an exhaustion
of R such that each 0R, consists of a finite number of mutually disjoint analytic Jordan
curves on R. We may assume that { € R, for every j. Set M, (z)=M(2;{, ¢, R)), V)=V
W,=M/(R,) and U,;={w€W,|v,(w)>n}. Then, for every compact subset K of M(R),
there is a number J such that K< U,. For every ¢ >0, we choose K s0 that j' MEy-x Vudm <e
and J so that K< U,, [g (vy—v;)dm<e and [v,dm— § vy dm<e. It follows that

m(W,—U,) < fw,—u,v’dm

< fv,dm— vadm+ f Vydm + f (Vg —v;)dm
M(R)-K K

< 3e,

Since M, can be extended analytically onto R; (cf. [8, pp. 114—137]), W, is admissible.
Define an L! function » on C by »=max {y;, nXy,} and apply Proposition 1.9 replacing W
and dv by W, and (v/n)dm, respectively. Then there are an open set W, and a domain W,
such that W,c W, W,, m(W,)<oo, m(W,—W,)<e and fy,hvdm=n [y hdm for every
hEHLYW,). Set M, (w)=M(w; 0, w, W,). Since HLXW,)< HLXW,), by (2.1), we have

f 1 M . n , 1 e
nfﬁ,‘, (J.'dem n_y—z)dm_j'vldm We_wcfdm+51’]d’lnfwll(v vj)dm

for every f€EAD(W,,0). Since v —»,=0 on U, and 0<»—,<n on W,—U,, we have

Dm[

w M, 1
———=| <
Jv,dm nn]

1
W{VM(WQ— We) + Vm(W,— U,)}< ]W(V;+ VEE).
This implies that M (w) converges to (nx/ | vydm)w uniformly on every compact subset
of M(R) as ¢—0. By Lemma 2.1
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_ fvudm .
|w|— nm ELH;IMs(w)‘

Amdm Vi)
nw =0
_1 medm= 4]
Vnt = Vn

for every weM(R). Hence || M||,<||M}/Vn.

Since »(w) =1 on M(R), the following theorem immediately follows from Proposition
2.2.

THEOREM 2.3. For an arbitrary Riemann surface, the kernel function M(2)=M(z;(,t, R)
is bounded and satisfies

12| oo < 1| 2£]]- (2.2)

Finally we deal with the complex linear space A D(R), the space of analytic functions
on a Riemann surface R with finite Dirichlet integrals. By Theorem 2.3 we obtain the
following corollaries:

COROLLARY 2.4. If there is a nonconstant AD funciion on a Riemann surface R,
then there is @ nonconstant bounded AD function on R, namely, 0,p=045p, where O, (resp.
O,4zp) denotes the class of Riemann surfaces without nonconstant AD functions (resp. non-
constant bounded AD functions).

Proof. Let f be a nonconstant AD function on R. Choose a point { on R so that
(df/dt)()=F0 for some local coordinate ¢ defined in a neighborhood of {. Then the kernel
function M(z; £, t, R) is nonconstant. Theorem 2.3 further implies that M is bounded.

CoroLLARY 2.5. A Riemann surface B is nol of class O,y if and only if
dim¢ AD(R)=co.

Proof. It is sufficient to show that if there is a nonconstant 4D function on R, then
dim¢AD(R)=c0. Let f be a nonconstant bounded 4D function on R. Let P be a
polynomial with complex coefficients. Then P(f)=0 if and only if P=0. Hence bounded
AD functions f*, n=0, 1, 2, ..., are linearly independent, and so dim¢AD(R) = co.

CoROLLARY 2.6. Let ABD(R) be the complex linear space of bounded AD functions f
on @ Riemann surface R and set ||[f|||=|fllw=+||f— ()|, where { is a fixed point on R.
Then ABD(R) becomes a Banach algebra with the norm |||:||| and dense in AD(R) in the
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sense that for every f€AD(R) there is a sequence {f,}< ABD(R) such that f,(C)={() for
every n and ||f,—f|| >0 as n—>co.

Proof. The first assertion is evident. To prove the second assertion it is sufficient to
show that A BD(R, ) is dense in the Hilbert space AD(R, (), where ABD(R, {) denotes
the linear space of functions f €4 BD(R) such that f({)=0. Choose a sequence {{,}7r.1< R
so that lim {, =¢ and let £ be a fixed local coordinate defined in a neighborhood of U Us-1Z,.
Then {M(z; (. ¢, RY—M(L; Ly, b, B)}5ny is complete in AD(R, (). In fact, if f€AD(R, ()
satisfies (f(2), M (2; &y, ¢, B) —M(L; £y 8, R)) =0 for every n, then (df/di)((,) =0 for every n.
Hence f=0. By Theorem 2.3 M(z; {,,t, R)—M(; (., t, R) is bounded, and so we have

the corollary.

Remark 1. It is easy to show that {M(z; (", ¢, R)}7-1 is also complete in A D(R, {) (for
the definition, see § 3).

Remark 2. From Corollary 2.6 we know that the maximal ideal space of A BD(R) will
be useful to study functions of class 4D(R).

§ 3. Representing measures of the functional ¢ ¢(0)

The valence function », of the kernel function M(z; ¢, ¢, B) satisfies

£(0) = ——— f o dm

for every analytic functions f on M(R) such that [y, |f |2vudm <oo, namely, vydm is
a representing measures of the functional ¢—>¢@(0) defined on the space of analytic
L2y, dm) functions ¢ on M(R) with single-valued integrals. In this section, we generalize
Proposition 2.2 and prove Proposition 3.2 below.

First we give notation. Let R be a Riemann surface and { a point on R. Let » be a
measurable function on R such that »(z) >¢ a.e. on R for a positive number ¢. We denote
by AD,(R,{) the complex linear space of analytic functions f on R such that f({}=0
and (g |f(2)|?v(z)dzdy < oo, where z=ux+1y.

An inner product on AD,(R, () is defined by

Goo= [ 17 vandy

for every pair of f and g in AD, (R, ). With this inner product AD,(R,{) becomes a
Hilbert space. Set ||f||, =(f, 2 =([z |} |2vdady/=)"2.
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Let ¢ be a fixed local coordinate defined in a neighborhood of {. Since the functional
f=(df/dt) ({) is bounded, there is a unique function M,(z)=M (z;(,t, R) such that
af

éi (C) = (fs Mv)v

for every f€EAD,(R,{). We call M, the kernel function of AD,(R, {). The kernel function
M (z ¢, t, R) is identically equal to zero if and only if (df/dt) ({) =0 for every f€EAD,(R, {).
The following proposition is a generalization of Theorem 2.3.

PrOPOSITION 3.1. The kernel function M,(z)=M,(z; {,t, R) is bounded and satisfies
(|13l < |1 28, u/Ve.

Proof. We may assume M ,(z)5=0. Suppose that » is lower semicontinuous on R, »(2)
is a natural number for every z€R and »(z)>n on R for a fixed natural number z.
Set W=M,(R) and p(@)=2epn w?(?). Then [g|M,|2vdzdy=fudm<co, u is lower
semicontinuous on C, u(w) is a natural number not less than » for almost all w€ W and
Mww)=0 on W°,

Now we construct & Riemann surface S and F€AD(S, n) for some 5 on § such that

(1) The valence function », of F is equal to u a.e. on C.

(2) (dF/dr)(n)=0 for some (and hence every) local coordinate 7 defined in a neighbor-
hood of .

(3) For every g€AD(S,7), there is a function f€AD, (W, 0) satisfying g=fo F.

Set U;={w€C|u(w)>j}, j=1,2, ... Then each U, is open and satisfies U, U,,,.
For every j>2, let U, ,, k=1, 2, ..., k(j), k(j) <o, be connected components of U,. For
each j=2 and k with 1<k<k(j), take a point p,, and a neighborhood V, , of p,, so
that V,,< U, 06U,U,V, . and V, NV, =0 (4, k)==(3, k). Let 8;,,,,1=1,2, ..., be
mutually disjoint closed slits in ¥V, ; converging to p; ;.

Let S, be a copy of U; — Ui U, Sa.xi=W—-UrU,; 8., 8nd let S;,7=2, 3, ..., be copies
of U;— UpU 8 10— UrU 8541, 1,.- We joint these copies along their common slitsidentifying
the upper edges of the slits of 8§, with the corresponding lower edges of the slits of
8,41, 7=1,2, ..., and vice versa. This gives a ramified covering surface S of W.

Let F be its projection mapping and let % be a point of F-1(0). Then these S and F
satisfy (1) and (2). It is easy to show that for every bounded analytic function g on §
there is a bounded analytic function f on W satisfying g=fo F (cf. Myrberg’s example,
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e.g. [5, pp. 53-54]). By Corollary 2.6, every g € AD(S, 5) can be approximated by bounded
analytic functions on 8, and so (3) is satisfied.

By virtue of (2) we can choose F as a local coordinate defined in a neighborhood of .
Set M(w)=M(w;n, F, S). Then, for every f€AD,(W,0), we obtain

aM 1 —
f;(O) = *(&)= 7_‘ fR (fon)'M,vdxdy

1{,

-1 f (foFY Fdudv  (w=u+ ).
TJs

In particular, by taking f(w)=w, we have (dM,/dt)(()=||M,|3=| F||>. Hence

4

dg . g V[, F
dF(n) =f (0)_ﬂfsg "F"zdud”

for every g=fo F€AD(S,7), and so M =F/|| F||2. Therefore, by Proposition 2.2, we have
12w = I Flleo < | E(|/V = || 34,11V

Suppose next that » is lower semicontinuous on R, that »(z)/e is a natural number for
some fixed £>0 and for every z€ R and that c/e is a natural number. Set v,(z) =max {»(2)/e,
¢/e}. Then M, (z; ¢, ¢, R) =M, (2 ¢, t, B)/e and v, satisfies the above assumption. Hence

12, | = (|24, el co < Vele|| M, Jells, = |12, ]1,/Vo.

Finally, we consider an arbitrary measurable function » on R such that »(z) >c a.e.
on R. We can construct measurable functions »; on R, j=1, 2, ..., such that

(1) 0<y,<v,,, a.e. on R and lim »,=v.

(2) »,(2)=c a.e. on R.

(3) v, is lower semicontinuous on R.

(4) (2/c),(2) is a natural number for every z€ R.

It is easy to show that M, (z; {, ¢, E) converges to M, (z; ¢, t, B) uniformly on every com-
pact subset of R and || M, |l,,~ || M,]|, as j—>o. Since || ¥, ||, < ||M,,||,,,/l/zby the above ar-
gument, we have || M, < | A, ||,/Ve. The proof is complete.

Let E be a compact set in the plane € and U be a domain containing E. We say
that E is removable with respect to 4D functions if every f€ AD(U — E) can be extended
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analytically onto U. We denote by N, the class of compact sets which are removable
with respect to 4D functions. A set E is of class N, if and only if E° is a domain of class
0,p, namely, there are no nonconstant 4D functions on E° (see e.g. [5, p. 261]). By using

this notation we have

PrOPOSITION 3.2. Let W be a plane domain containing the origin 0. Let v be an L*
function on C such that v(2) =c¢ a.e. on W for a positive number ¢ and ¥{(z)=0 a.e. on W°. If

’ _ 1 ’
1O= "y, [ f7am
for every f€ADW,0), then W< A(0), where r={{ vdm/(cm)}}. The equality

sup |z|=7r

zewW
holds if and only if v(z) =c a.e. on W and W =A,(0) — E, where E is a relatively closed subset of
A,(0) such that EN K€EN,, for every compact subset K of A, (0).

Proof. From the uniqueness of the kernel function M,(z; 0, z, W), it follows that
M,(2 0,2, W)=(z/f vdm)z. Since |M,|,=(n/fvdm)}, by Proposition 3.1, we have
W< A,(0). Thus the first assertion has been proved.

To show the second assertion, we assume inf, .z ¥(z) >¢ for a compact subset K of W
with m(K)>0. Let d=d(K, W) and define a bounded nonnegative L! function », on C
by vy =Myou, where du=(v—c){gdm and (M p)(z) =pu(Ag2(2))/{n(d/2)?}. Then there are
a disc A; and a number ;>0 such that A, W and »,(z)>a, on A,. Let A,,§=2, ..., 7,
be discs with centers at p, such that p, =0, A,c W and p,EA,_, for every j. Assume that
there are a bounded nonnegative L' function »,_; on € and a number «,_, >0 such that
supp v;,< W, v,(2) > o, on A, and [hy, ;dm= | hv,dm for every harmonic function
h on W. Let A be a disc with center at p, such that Ac A, ;. Then

J-hvl-l dm= J‘h(’l'!_l —0y_ XA)dm-l- %1 f hdm
A

m(A)

hd
mbd)Js,

= fh(”l-l —oy_1Xp)dm+oy_y

for every harmonic function b on W. Set v,=v, ; — o, ;ya + (0, ym(A)/m(A))) s, and
oty =0y_ym(A)/m(A,). Then v, and «, satisfy the above conditions for j. Thus, by induction,
we can construct v, and o, >0 such that supp v, < W, »,(2) > a,, on A, and [ hv,dm = { hv,dm
for every harmonic function % on W.
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Set 0=, m(A,)/f vdm and v*=v—(¥—c) xg +¥n— 2y )a, + 0. Then #*(2) > (1 +d)c a.e.
on W, v*(z)=0 a.e. on W¢, AD,(W,0)=AD,(W,0) and

4 . 1 4 - 1 ’
f(o)——_—j'vdmfwf vdm ——-.f”*de‘w'f v*dm

for every f€AD,.W,0). Hence sup,.w)z| <r/Y1+é<r.

Therefore if sup,¢w|z| =7, then »(z) =c a.e. on W and m(W) = fvdm/c = 7r® = m(A,(0)).
This implies that yy =% ) a.e. on Cand M(z; 0, z, W)=z/r?. By Theorem 1 of the author’s
paper [4], we see that W is a domain mentioned above.

Conversely, if W is a domain mentioned above and »(z)=c¢ a.e. on W, then every
1€AD,(W,0) can be extended analytically onto A,(0), and hence

1
cour® AA0)

f(oy= f’cdm=}v1—‘th’Wf'vdm

for every f€AD,(W,0). Thus we have proved the second assertion.

CoROLLARY 3.3. The equality sign in (2.2) of Theorem 2.3 holds if and only if either

(1) M(z; (¢, B)=0, or
(2) R 18 conformally equivalent to A(0)— E, where E is a relatively closed subset of
A (0) such that EN K€EN, for every compact subset K of A(0).

Remark. If R is of finite genus, then M(z; {, ¢, R)=0 if and only if R€0,,, namely,
there are no nonconstant 4D functions on R (cf. {5, pp. 50-52]).

For a natural number n, set

n-1
4, )= {fe v, |F - .. - G 0=}

This is a closed subspace of the Hilbert space A.D(R, ) and there is a unique function
M(z)=M(z; (" t, R)YEAD(R, {®) such that

a*f ..

for every fEAD(R, (*). Next we show
ProrosiTioN 3.4. The funciton M(z)=M(z; (" ¢, R) is bounded and satisfies

M o< {22
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The equality holds if and only if either
(1) M=0, or
(2) n=1 and R is a planar surface mentioned in (2) of Corollary 3.3.

Proof. Assume M %0, set W=M(R) and let » be the valence function of M. Since
foMEAD(R, (") for fEAD,(W,0), we have

M n
1o o="00 e
=i fR(foM)'Fdxdy
.=}tfwf’v dm

for every f€EAD, (W, 0). Hence
R y
1= o [ fram
for every f€AD, (W, 0) and so the proposition follows from Proposition 3.2.

For a fixed local coordinate ¢ defined in a neighborhood of a point { on R we define
¢p(¢") and cp(C") by

ooty =sup{[ G @) |reanem. 0. I <1},
oot =sup{ [T 0| |re 4z, o0, W<,

where AB(R, [") denotes the complex linear space of bounded analytic functions f on R

satisfying f(£) =(df/dt)({) =...=(d"1f/dt"1)({) =0 (cf. [6, pp. 2566-257]). We denote by N,

the class of compact sets which are removable with respect to bounded analytic functions.
Finally we show

COROLLARY 3.5. ¢,)({*) and cy(L™) satisfy
ep(C™) < cs(l™). 3.1

The equality holds if and only if either

(1) ¢5(l") =0, or
(2) n=1 and R ts conformally equivalent to A,(0)— E, where E is a relatively closed
subset of A,(0) such that ENKENyg for every compact subset K of A(0).
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Proof. Assume cp{{™)>0, and let FEAD(R, ") be the extremal function such that
ep({™ =(d"F[di")({) and || F||=1. Then F=M/||| M|, where M(z)=M(z; (" t, R). Hence,
by Proposition 3.4, we have || F||,<|F| =1, and so cp({™) =(d"F[dt™) (£) <cp(L™).

Obviously either (1) or (2) implies ¢p(L*)=c5z("). Assume cy{l®) =c5({")>0. Then
IFllo=|F||. By Proposition 3.4, we see that n=1 and M is univalent. Hence our

assertion follows from [3].

Remark. For the case of a plane domain and n=1, (3.1) was obtained by Ahlfors and
Beurling [1]. This is also obtained by the relation of the Szegd and the exact Bergman

kernel functions.
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