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Introduction 

Given two topological spaces, is it possible to determine whether they are homeo- 

morphie ? This is the homeomorphism problem and most work in topology is directed 

toward some aspect of the homeomorphism problem. A plan for solving the homeomorphism 

problem for "most" 3-manifolds has been developed by Wolfgang Haken. However, a 

certain very special step in this plan has eluded proof. The problem of providing a proof 

for this special case amounts to the problem of classifying homeomorphisms of compact, 

orientable 2-manifolds. In this paper a method for classifying homeomorphisms of 

compact, orientable 2-manifolds will be given, and hence it will be possible to classify all 

compact, orientable, irreducible, boundary irreducible, sufficiently large 3-manifolds. 

Hence "most" 3-manifolds of interest can be classified, including all knot and linl~ spaces. 

Haken developed the theory in his series of papers: [1]-[5]. In [11], Schubert has 

explained the essential points of Haken's theory of normal surfaces. Waldhausen [12] has 

written a summary of the classification procedure, using the recent results of Johannson 

[6], [7]. 

The eonju~aey problem [or selt-homeomorphisms o[ compact , orientable surfaces 

Let the surface S be compact and orientable, and let f, g be two homeomorphisms 

of S onto itself. Assume that there exists a homeomorphism h of S onto itself such that 

h-t[h is isotopic to g. In this case, [ and g are said to be conjugate. Given two homeo- 

morphisms such as f and g, the conjugacy problem asks whether or not they are conjugate. 

In order to complete Haken's program for the classification of sufficientlylarge 3-manifolds, 

we need to prove a result which is slightly stronger than the conjugacy problem. Namely, 

ff ~S~O and if [ and g agree on ~S, then our problem is to determine whether f and g 
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are conjugate by a homeomorphism h, such tha t  h-lth is isotopic to g by  an isotopy which 

leaves ~S fixed. As far as s classification of 3-manifolds is concerned, the interesting case 

is that  in which ~ S ~ O .  Hence we shall construct our proof for this case. I t  is possible to 

extend the proof to the case ~ S = O ,  but  to do so requires many  changes in the details of 

the arguments. However, these changes are in principle straightforward, and we will sketch 

very briefly in section 3.2 what  they are. In  order to solve the conjugacy problem we will 

first prove a certain theorem. 

A statement of the main theorem 

Let %s be the Euler characteristic of the surface S. (We choose the sign of the Euler 

characteristic so tha t  i t  becomes larger as the surface becomes more complicated.) The 

solution of the conjugacy problem is well known when %s ~< 0. The solution of the conjugacy 

problem is also well known when S is a disc with two holes. Hence we shall assume tha t  

%s~ > 1, and tha t  S is not a disc with two holes. 

1. The size of a homeomorphism of S onto itself will be defined in section 1.3. Let  ] be 

a homeomorphism of S onto itself. The size of ], d(])a, will be defined to be a certain positive 

integer. For any  positive integer there are essentially only a finite, determined number  of 

homeomorphisms of S onto itself whose size is less than  tha t  number. 

2. Let d be a curve on S which is either closed, or is such tha t  d f3 ~S = ad. If  there exists 

an integer, rag=0, such tha t  Ira(d) is properly homotopic to d, then d is a periodic curve 

under ]. When using the term "periodic curve" we will generally ignore the trivial cases: 

curves or arcs which arc null-homotopic or properly deformable into aS. 

We will be concerned with the production of a certain positive integer, N(I, g). The 

number N(t, g) depends only upon d(])~, d(g)A, Zz, and r, where r is the number  of 

components of the boundary of S. The number which will be found is certainly very large. 

I f  one were to be interested in solving the eonjugacy problem in practice then this number 

would be unmanageable. However, with ingenuity it would undoubtedly be possible to 

bring it within reasonable limits. 

The main theorem is: 

THEOREM. Suppose that in S there are no periodic curves under ], except those which 

are nuU-homotopic or properly de]ormable into OS. Let h be a homeomorphism o / S  onto itsel] 

such that ]h is isotopic to hg. Then/or  some integer n, and some homeomorphism h' isotopic 

to ]nh, it is true that d(h')a <-<N(] , g). 

Although this theorem may  seem to solve the conjugacy problem in only a somewhat 

special ease- -S  having no periodic curves, and the question of whether OS is left fixed 
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under the isotopy being disregarded--the theorem does actually solve it in general, when 

combined with known results. This will be shown in section 3.3. 

The proof of the main theorem is divided into three parts. In the first part  we prove 

that  under the hypotheses of the theorem there exist "small" isotopies of ] and g, and 

some isotopy of h, so that  after the homeomorphisms have been altered by these isotopies, 

]h = hg, exactly. {Note that  in general the homeomorphism which results from an isotopic 

deformation of the identity map will be called simply an "isotopy" for brevity.) 

In the second part  we produce a closed curve c on S, which is "small" in a certain sense. 

Proving the existence of the curve c is the main idea behind the entire proof. In constructing 

c we make use of a series of elementary geometric constructions. There are, however, a 

number of different cases to consider, which relate to each other in various ways, producing 

a certain amount of complexity. Hence the reader may be advised to first read the third 

part, where the theorem is proved quite simply, tal~ing the existence of c for granted. 

We will work in the piecewise linear category throughout. 

1. Isotopies of f ,  g,  and h 

1.1 Some preliminary results and definitions 

Let S be a compact, orientable surface with boundary, whose Euler characteristic 

Zs is greater than zero, and which is not a disc with two holes. Let  the homeomorphisms 

f, g, of S onto itself be given. Assume that  there exists a homeomorphism, h, of S onto itself 

such that  ]h is isotopic to hg. We wish to prove that  either there exists a "small" such h, 

(i.e. such that  d(h)a ~<~/(], g)), or else there exists a periodic curve under / .  {Clearly, if we 

produce a periodic curve under ], then since ] and g are conjugate, there exists a periodic 

curve under g.) 

The small h which we produce will be realized by a function of the form fro. horn, for some 

m. Here, hor~ is the original h which was given as part  of our assumptions, and which 

may be "large". As we proceed through the proof we will change our homeomorphisms, 

"improving" them, and to make the notation easier we will simply call the new versions 

/, g, and h, again. When we wish to refer back to the unimproved homeomorphisms we 

will use notation like ho~. Note that,  trivially, 

(/~. ho,~)-~- 1. (1~. ho~) = ho,~" I" ho~, 

so that  the new h will automatieaUy conjugate f and g. 

In order to prove our theorem we will work in the universal covering space of S. 

Since Zs>~ 1, the universal covering space is represented by the hyperbolic plane, H. 
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Fig. 1 

The hyperbolic plane may be pictured in the following way: Imagine the suriace S as 

being split into a disc, A, by a finite number of disjoint, simple arcs, whose ends are in ~S. 

The disc is "f lat tened" to form a polygon, and then infinitely many of these polygons 

are glued together along corresponding edges to form the hyperbolic plane (Fig. 1). 

The reader is referred to Nielsen's papers for a description of the hyperbolic plane. 

We shall use the following elementary results which appear in Nielsen's papers [8] and [10]. 

(i) If ~ is a simple closed curve on S which is not contractible, then ~ lifts to a 

system of simple, non-intersecting arcs on H. If ~ is one such arc then each end of 

converges to a point of bd H, the boundary of the hyperbolic plane, and those points are 

different. If ~' is another arc in the lifting of ~ then neither of its endpoints coincide with 

an endpoint of ~. 

(ii) If/c is a homeomorphism o r s  onto itself, then a lifting, ~, of b to H, is such that  the 

ordering of the points of bd H is preserved when bd H is considered to be acted upon by b 

in a natural manner. The mapping of bd H is continuous. If k ~ is taken, hence ~ ,  then the 

circular order of the points on bd H, under ~2, is preserved (not reversed). 

1.2 The definition of the fundamental region 

We define a system of simple closed curves, {~t}, on S: Let  b be one of the boundaries 

of S. Let  x 0 be a point of b. Then the curves {~l} are defined to be disjoint, modulo x0, 

and are in the interior of S, modulo x 0. They are arranged according to a certain pattern, 

as in Nielsen's papers, and generate, with b, the fundamental group of S (Fig. 2). 

We adjoin to {~}, also, simple arcs joining x 0 to the other boundary components of S, 
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Fig. 2 

which are disjoint from the other curves of {~}, modulo x o. Then for each boundary 

component, other than b, two curves from {0~} are associated with it. One is parallel to the 

boundary, encircling it, and the other is an arc connecting it with x o. 

We may think of the curves from {~,} as being in two classes; those with both end- 

points in x 0 being "based loops", while those with only one endpoint in x o are "arcs".  

Denote by A the disc gotten by splitting S along all the curves of {~} which are not 

boundary parallel. The lifting of A to H, ~,  consists of discs with 2(1 + Z s ) §  sides. If  we 

only count the sides which lift from curves of {~,}, (i.e. we do not count the liftings of 

boundary curves of S), then there are 2(1 § sides for each disc of ~. Each such disc is 

called a "fundamental region of A". 

Denote the lifting of x o by 0~0, and the lifting of ~ by ~ .  Then each point of a~ 0 is a 

? 
l~ig. S 
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"corner" of a number of fundamental regions of A. Note also that  each point of x0 is on 

bd H. Further,  if ~ is a based loop, having both ends in x0, then d~ is a collection of ares, 

each of which is a sequence of identical "segments" between adjacent intersections with 

x0. Each of these segments is a properly embedded arc on H, which splits H into two 

pieces (Fig. 3). 

If ~t has one end in x 0 and one end in a boundary other than b, then c~t is a collection 

of disjoint, "short"  arcs in H, each splitting H into two pieces. 

1.3 The size of a homeomorphism 

The size of a homeomorphism may now be defined. Let  k be a homeomorphism of S 

onto itself. Let  A be defined on S, and let 0 be a fundamental region of/~. Let  i~ be a lifting 

of b to H. Then ~(0) is a disc in H. Let  01, 02 ..... 0n be a finite collection of fundamental 

regions of A, such that  ~(0)c [J~-10,. 

Definition. If the set (01, 03 ..... 0~} is chosen so that  $(~) c U ~ 10t, and N is as small as 

possible, then N is the "positive size of k in A". The "negative size of k in A" is defined 

to be the positive size of k -1 in A. Then the "size of b in A", denoted d(k)~, is the greater 

of these two numbers. 

(Note that  in the sequel proofs will generally be given only for the "positive size" of 

homeomorphisms, it being understood that  the proofs can be equally well carried out for 

the "negative size".) 

Two important properties of the size of a homeomorphism can be immediately deduced. 

LE~M), A. Let k, 1 be homeomorphism8 of S onto itself. Then d(k'l)~x <~d(k)~x'd(l)a. 

LEMMA B. Let N be a l~ositive integer. Then there exist only finitely many isotopy classes 

ol homeomorphisms of S onto itself which contain a homeomorphism o/size no greater than N. 

Proof. Let 0 be a fundamental region of A. Define the sequence {A~} of subsets of H 

as follows: A1 = 0, A f+ 1 - t h e  union of the set of fundamental regions of A which meet funda- 

mental regions in At. 

If b is a homeomorphism of S onto itself then there is a lifting, ~, of k to H, such that  

k(0)N0~O. If d(k)a<<.N then we certainly have ~(0)=A~. 

By an isotopy involving rotations of the boundaries of S about themselves by less 

than one revolution, we may assume that  the set of endpoints of arcs of (~t} is taken onto 

itseff by k. We may further assume that  these isotopies do not increase the size of k in A, 

so that  we still have d(lc)~<~N. 

The set AN contains only finitely many points which are liftings of endpoints of 
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{ ~ .  (These are the "corners" of fundamental regions of A.) But if two homeomorphisms 

have liftings which agree on the liftings of the set of endpoints of {~),  then they are 

isotopic by an isotopy which leaves those endpoints fixed. Hence the lemma is true. 

1.4 New choices for f ,  g,  and h 

We return to our homeomorphisms/, g, h, as given in 1.1. Take/2, g~, rather than / ,  g, 

to ensure that  the circular order of the points of bd H remains fixed under ]iftings of f~, g~, 

respectively. Since g2~(h-1/h)~=h-lph, our conjugating homeomorphism, h, remains 

unchanged. Having gotten the results for/2, g~, they imply the results fo r / ,  g. Namely: 

if there exists a periodic curve under p, then there exists one under / .  If, on the other 

hand, (f2)m. h is "small" for some ~n, then it is still "small" with respect to f, g, and we still 

have g isotopic to ((/2)m)-lf((p)m/~). (This will be made more precise later in the proof.) 

I t  may be the case that  f and g permute the boundaries of S. Let r be the number of 

boundary components of S. If  we take the homeomorphisms f~I, grl, rather than /, g, 

we will certainly have all boundaries of S being taken onto themselves by fl, g~. Therefore 

let us redefine/,  g, to be the 2rl-th powers of the origional/, g, respectively. 

At this stage h may still permute the boundaries of S. That is to say that  if we order 

the boundaries of S then an application of h represents a certain permutation of those 

boundaries. I t  may be proved, by induction on the number of boundaries, that  there 

exists an orientation preserving homeomorphism, Ir with d(k)~(2(1  § r, and k per- 

muting the boundaries in the same way as does h. (/c may be constructed as a product of 

no more than r homeomorphisms, each of which exchange two boundaries.) 

Let us, therefore, redefine / to be, k*-xflc. (Clearly / is conjugate to g if and only if 

k-1/k is conjugate to g.) We also redefine h to be, /c-lb. Then we will have: 

and so the conjugating relations hold for the n e w / ,  and h. Further, h now leaves the 

boundary curves of ~ invariant (and also / still leaves them invariant). 

At the end of all these alterations we have: 

d(/)A ~ (2(1 +Zs)) r" [d(/orig)A] ~ri, and d(IT)A ~< [d(gorig)A] 2ri. 

1.5 The elimlnntion o[ trivial intersections 

In  this paragraph, / is altered by the application of a number of isotopies. At the end 

we have {/(~l)~ meeting { ~  "nicely". 
9 -  782904 Acta mathematica 142. Imprim6 le 20 F6vrier 1979 
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Fig. 4 

Begin with an isotopy which is a rotation of the boundary, b, about itself by less than 

one complete revolution, so that ,  after this isotopy, f is the identity map on b. We do 

this for the other boundaries of S as well. I t  may be assumed that  the size of this new f 

is no larger than that  of the old [, in A. 

Look at the covering space, H. Choose a curve, B, from the collection of curves, 

~, which is the lifting of b. Since / is the identity on b, we may choose the lifting, f, of [, 

which is the identity map on B. 

By a general position argument we may assume that  for all ~t, ~j, we have either 

/(~f) coinciding with ~j, or else ] (~)  intersecting ~j in a finite collection of points. In  the 

later ease, if there is a "trivial intersection" between/(~t) and ~j, then that  intersection may 

be eliminated in the obvious way by an isotopy in 8. (Fig. 4.) 

Here, in H, there is an intersection between ~j and f(~),  such tha t  a disc, D, is defined, 

whose boundary consists of one arc from each of ~ and f(~).  D does not meet ~0, except 

possibly where the two arcs defining its boundary meet, at  their ends (points u, v in the 

figure). By induction on the complexity of the intersections of {~j} and ~/(~z)) it may be 

assumed that  there are none of these intersections. At this stage we say that,  "~f(o~)} has 

no trivial intersections with {~j}". Note that  if we multiply by f-1 we deduce immediately 

that  ~/-~(~)} has no trivial intersections with (~) .  

If ~ is an arc irom x o to a boundary, b', of S, other than b, then  the situation illustrated 

below may occur, i.e. l (~)  winds around the boundary b'. In this case a rotation of b' 
about itself produces an isotopy which, after an isotopy along the trivial intersections 

which may result, reduces the number of intersections of ~/(~)} with ~ } .  By induction 

on the complexity of the intersection of (~(~)} with ~ } ,  we may assume that  both of the 

isotopies of this paragraph have been carried out as far as possible. 
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1.6 Straightening the homeomorphlsms 

Choose a to be a curve of {~} which is not one of the arcs from x o to a boundary of 

S other than b. Looking at the covering space H, we choose a point, P ,  which is in 

x0 N B. Since B is left fixed by ], P is also left fixed. 

In ~, the lifting of a, let f~ be the curve which passes through P. Let  fl be one of the 

"segments" of f~ with an endpoint at P,  i.e. fl is a single covering of cr on S. Let  ill, f12, 

be the copies of fl, adjacent to fl, on B (Fig. 6). 

Here, ill, and fie, are obtained from fl by covering space transformations of H which 

take B onto itself and rotate H, one unit to the right and one unit to the left. 

Let y be the endpoint of fl that  is not P; let Yt be the endpoint of fl~ which is not on B, 

i = 1, 2. I t  may be the case that  the endpoint of/(fl), which is not P, namely [(y), does not 

Y ~1 

f(y) 

\'y , '  

Fig.  6 
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fall between Yl and Y2 on bd H, as illustrated above. In this case we alter / by an isotopy 

which is a rotation about b a certain number of times. At the end of this isotopy we still 

have / being the identity on b, and if f is redefined to be the old f, acted upon by the 

lifting of the isotopy, and then acted upon by a covering space transformation taking the 

image of P back to P, we will have f(y) falling between Yl and Yz on bd H. 

Having done this we go back to paragraph 1.5 and alter things so that  {/(~t)} meets 

(~} nicely once again, l~ote that  the size of / cannot increase after all these operations. 

All of the things which have been done to / in the last two paragraphs may  be done, 

also, for g and h. Hence we assume that  they have also been altered by isotopics and their 

sizes in A have not increased. The liftings of g, h, which leave B fixed are denoted by 

~, ]~, respectively. 

1.7 Agreement between f .  h and h. g on x o 

In this and the suceeding few paragraphs our goal is to find isotopies to ], g, h, such 

that,  at  the end of these isotopies, g =h-l/h,  exactly. Furthermore the size of g in A WIU 

not be increased by more than 12(gz+l), ( r= number of boundaries of S), while the size 

of / in A is not increased. 

In order to do this we begin by examining f.~(~). I t  is a "broken arc" in H, as illu- 

strated below. We may think of the ends of f.~(~) as "going off to infinity" in H, as indeed 

they do in the metric on H which is supplied by Nielsen. For us, the important thing 

about these endpoints is the following: Any isotopy of S lifts to an isotopy which does not 

move the endpoints of f.~(~) (Fig. 7). 

Hence we examine the endpoint of f'~(~). Since ~. ~ is isotopic to f.~, there must 

exist a curve, let us call it ~n, in ~, the lifting of ~, such that  the endpoints of ~.~(~) 

coincide with those of f.~(fl). Further, there exists an isotopy (the one which changes hg 

t o / h  in S) which lifts to an isotopy moving ~-~(~) to f. ~(fl). Since, also, isotopies cannot 

move boundary points of S off boundaries, we must conclude that  ~'~(fln) meets B at a 

point, Q, of x0 N B. 

One may ask: How far is Q from P? Let us examine Figure 8 below, where 

fla, ~4, are defined to be adjacent to ~1, ~2, along B, and fls, ~6, to be adjacent to fls, ~4, 

respectively. The endpoint of fli which is not on B is denoted by y~, i = 1 ..... 6. 

Both endpoints of f-~(~) must fall between Y5 and Ye. This is because/h(~) is simple, 

and hence f. ~(~) cannot meet the copies of itself which are produced by covering space 

transformations which rotate H about B, moving one unit to the right and one unit to 

the left. Because both f and h are adjusted as in paragraph 1.6, we must have the endpoints 

of f-~(~) lying between Y6 and 96 on bd H, 
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A similar picture may be drawn for the are ~. ~(~), so that  its endpoints lie between 

points on bd H which are met by copies of ~ no more than three displacements along B 

from Q. But ~.~(~=) and f.~(~) have the same endpoints. Hence the distance from P to Q, 

along B, is no greater than 6. 

We may alter g by an isotopy which is a rotation about b. The rotation lifts to an iso- 

topy in H which moves Q to P. We then redefine the lifting of the new g to be ~, where 

leaves B fixed. With this new version of g, we have ~.~(~) corresponding with ].~(~) at 

P and at the endpoints. I t  then follows easily that  ~.~(~) must correspond with f.~(~) at 

I [ I  i ~ 4 ~" \',,,,,, 

4 
d 

Fig.  $ 
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all its intersections with x0. (This is because )~.~(f~) and [.)~(f~) are now isotopic, by an 

isotopy leaving the base point fixed.) 

In fact still more can be concluded; namely that  )~.~ corresponds with [ .~ on the 

whole set ~, the lifting of b. For let us choose :r to be another based loop from {:q~. Let 

/J* be the curve of d* which passes through P. Theil ~. ~(f~*) must have the same endpoints 

as does [.)~(f]*), for if not we could not have hg being isotopic to /h .  Hence, as before, it may 

be concluded that  )~'0(]~*) corresponds with ]. ]~(]~*) on all its intersections with ~0. Also, 

of course, )~. ~ corresponds with [. ~ on B, since both maps are the identi ty there. Therefore, 

extending this correspondence as far as possible, we conclude that  )~.~ corresponds with 

].)~ on the whole set x0, and in fact, on the whole set ~. 

I t  may still be the ease that  )~.y does not correspond with [.~ on the liftings of 

endpoints of arcs of {~} which connect x 0 with boundaries of S other than b. But then, 

using an argument similar to that  above, and an isotopy as in paragraph 1.5, one may alter 

g by a rotation of size no greater than 6 around such a boundary. We do this for all 

boundaries other than b. These rotations lift to isotopies in H which leave ~0 fixed. Hence 

after they have been preformed we have 1~.~ corresponding with [. )~ on all points which 

are liftings of endpoints of {a~}, and further 

d(g)a < [d(gor~)a]2rl + 12(X s + 1). 

(Note that  each point of x0 meets 2Xs + 4 -  r fundamental regions.) Hence, if ~ is a funda- 

mental region of A, we know that  ~. ~(5) agrees with [.)~(~), at least on the "corners". 

Without increasing the size of g we may ensure that  {g(:q)) has no trivial intersections 

with (:q), as in 1.5. 

1.8 Agreement between f .  h and h.  g, everywhere 

The task now is to make f.)~((~) agree with ]~.~(~) everywhere, not just at the corners. 

Begin by noting that  although we have all the homeomorphisms:/, g, h, producing no- 

trivial intersections with {a~), it may still be the case that  either {hg(~)} has trivial 

intersections with {~),  or {th(:q)) has trivial intersections with {~}. 

Assume, first of all, that  (/h(~)} has trivial intersections with (gf}. If we take / -~ ,  

that  would imply that  {h(~)} has trivial intersections with {/-l(:q)}. Now, {/-1(~)} can 

have no trivial intersections with { ~ ,  as in 1.5. Hence any trivial intersections between 

{h(g~)} and (/-1(~)} may be eliminated by isotopies to h which leave (J ~ setwise fixed 

(Fig. 9). 

That  is to say that  if D is a disc produced by a trivial intersection between h(:q) and 

/--i(gj), then the curves of {~} meet D in arcs having one end in h(a~) and the other end in 

I-~(~). 
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Fig. 9 

Therefore we may alter h by an isotopy which does not alter its size in A, so that  after 

the isotopy, (h(~)} has no trivial intersections with {/-l(a~)}. But then we have {/h(a~)} 

having no trivial intersections with {~) .  Note further tha t  even after this alteration, we 

still have {h(~)} having no trivial intersections with {~}. 

Next  look at'~the case that  {hg(a~)) has trivial intersections with {~}. This time take 

h -x and note that~we must have {g(x,)} having trivial intersections with:{h-X(x,)}. But  

then the same argument as before gives us an alteration to g which does not change the 

size of g in A,rand after which {hg(xt) } has no trivial intersections with {x,}. Furthermore, 

{g(a~)} still has no trivial intersections with {as}. 

If, now, there are any trivial intersections of {hg(~,)} with {/h(x,)}, then they are as 

illustrated in Fig. 10. 

~k 

- ]<-- - - - -  

Fig. 10 
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That  is, they may be eliminated by an isotopy applied to [ which leaves U ~ setwise 

fixed (and hence does not alter the size of ~ in A). After thus altering f, we still have 

(fh(~)} having no trivial intersections with (~}.  

At this stage, since f-~ and ~.~ agree on the liftings of all cndpoints of arcs of 

( ~ ) ,  we must have ] .~ and ~.~ agreeing on the liftings of all the curves in (~}.  That  is 

to say if ~ is a fundamental region of A then ]. ~(8)=~. ~(~), although the agreement is not 

necessarily pointwise, except at the corners of ~. 

Applying ~-1, we have then ~(~)=~-l.f.~(O), with agreement on the corners. But in 

this case we apply an isotopy to g which leaves U l ~ setwise fixed, so that  at  all stages of 

the isotopy, the set ~(~) is taken to itself. At the end of the isotopy there is pointwise equality 

between ~ and ~-1.]. ~ on ~, hence everywhere. Therefore g =h-lib, exactly. 

So we have proved: 

PROPOSITION. ]t l', g', h', l~roduce no trivial intersections in {~,}, and the ll]tin~s, 

]', ~', ~', are such that the maps, ]'~' and ~T', agree on the corners o] ]undamental regions, then 

]', g', h', are isotol~ic, by isotoples which do not increase their size, to homeomorphisms f, g, h, 

which are such that g =h-lib. 

In the second and third sections we will often be working with h(A). If ~ is a funda- 

mental region of A then ~(~) is a fundamental region of another system of curves on S, 

h(A). In  general we expect h to he of large size in A. That  means tha t  ~(#) crosses many 

fundamental regions of A. Conversely, ~(~) is a fundamental region of h(A), and if ~* is a 

disc of A, we will expect many fundamental regions of h(A) to meet it. Since ~h(~)} 

has no trivial intersections with ~ } ,  we find that,  in general, if ~(~) N 6" is not empty then 

it is either a single disc, or if they happen to share a side, a single arc, or if they happen to 

share a corner, a single corner. 

2. The small curve,  c 

In  this second part  our goal will be to produce a closed curve c which is "small" in 

both the systems A and h(A). In  order to produce c we will assume that  / has no periodic 

curves. This is where the condition about periodic curves in the main theorem arises. Once 

the curve c is produced, the theorem is easily proven in the third part. 

2.1 The definition of the arcs Tn 

We examine the curves (f)~(~), for all integral values of n (notation as in 1.6). Since 

is simple, all these curves are simple also. H n - - l ,  we have proved in section 1.8 that  

f~(~) has no trivial intersections with ~t~. (Hence the image of f~(~) in S, namely ]h(~), has 
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no trivial intersections with {~}.) I t  is also true that  ]}~(fl) has no trivial intersections with 

{~(~)}. This is because {g(~0} has no trivial intersections with { ~ ,  and g=h-1/h. 
We wish to have all the arcs {(Dn}~(fl)} enjoying these properties also. Hence we wish 

to find, for each n, an isotopy, ~n, lifting from an isotopy, k n, of S, which is such tha t  the 

arc, ~n(D'h(/~), has no trivial intersections with either A or h(A). However such isotopies, 

~n, may  be easily found by  simply eliminating the trivial intersections of/nh(~), first 

with A, and then with h(A). (Remember that  (h(~)} has no trivial intersections with 

{~}.) Therefore, in the first step we need introduce no new trivial intersections with {h(~)}, 

and in the second step we need introduce no new trivial intersections with {~}. 

Although no claim is made about the size of lcn in A, it is clear tha t  the size of the 

curve, kn]nh(oO, is no greater than the size of the curve, ]nh(oO, in both A and h(A). (The 

size of a curve is the minimal number  of fundamental  regions which cover a single 

"segment"  of its lifting to H.) So we have: 

d(kn/nh(oO)h(,a) < d(/nh)h(,~) = d(gn),~ < d(g)~. 

The equality here follows from the fact that  g'~ =h-1/nh. 
For ease of notation we will denote Sn(/)nJ~(fl) by the symbol ?n, for all integers n. 

Then, relating the size of g to the size of gore, we have: 

d(y,)a(a) < ([d(go~)~] 2~: + 12(Z s + I)) ' .  

In  general, since h is large in A, the size of ?~ in A will be large. However, the important  

thing at  this stage is that  ?n is limited in size iu h(A), i.e. the limit on its size has nothing 

to do with h. Finally we may  note tha t  the set of endpoints which are not P, of the 

arcs, {?,}, occur in order along bd H. 

2.2 The basic idea for constructing c 

We have a certain intersection of h(A) with A. This intersection has been "straight- 

ened". Look at  a typical fundamental  region of A, call i t  5, and look at  the way the 

different fundamental  regions of h(A) intersect ~ (Fig. 11). 

A certain number of the intersections are rectangles, not containing corners of (~. 

Such a rectangle is shaded in the figure. We call such a rectangle a "parallelity region". 

Two opposite sides of a parallelity region are in two different sides of 5, and the other two 

opposite sides of the parallelity region are in different sides of a fundamental  region of 

h(A). The intersections of h(A) with A, which are not parallelity regions, are called "non- 

parallelity regions". Since h has been straightened, there is a limit to the number  of non- 

parallelity regions in 5 which arc possible. That  limit is 2n + 2, where n is the number  of 

sides of a fundamental  region. Substituting n=2(1  + g s ) + r ,  we obtain 49~s+2(r+3) as 

the greatest number of non-parallelity regions in ~ which can be expected to occur. 

9 t  - A c t a  ma themat i ca  142. Imprim6 le 20 F~vrier 1979 
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Fig. 11 

Examine the set of arcs {y~}. We are interested in the relationship of y~ to ~2,+ 1. In 

general, as one proceeds along ?~, from P, one passes through a number of fundamental 

regions of A. At first, perhaps, ;J~ and 9'1+i go through a certain set of fundamental regions 

of A together, before branching apart (Fig. 12). 

We will be interested in the last fundamental region of A where they remain together. 

Of course, y~ and 92~+1 may, perhaps, not go through any fundamental regions together. 

That  is a difficulty with which we shall have to contend. On the other hand they may 

stay together so that  y~+, meets the fundamental region in which },~ has its endpoint 

away from P (or perhaps 9'~ meets the fundamental region in which ~t+1 has its endpoint 

away from P). In this case we are also interested in this "last" fundamental region of A. 

In section 2.5 we shall prove that  ?~ is "near"  to a non-parallelity region of this " last"  

fundamental region of A. That  is to say that  there exists an arc, drawn from Zi to a non- 

parallelity region within this " las t"  fundamental region, which intersects only a "small" 

number of parallelity regions. 

We do this for Z0, Y, ..... 9'N, where /V=4Zs+2(3+r  ). Then, for some 4, ], with 

~7,+I 

P 
Fig. 12 
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0 ~< i <?" ~ N, we will have the non-parallelity region linked to 7~, corresponding with the 

non-parallelity region linked to 7J, under a covering space transformation. 

We may hope that  the closed curve, e, which is the image on S of the arc in H which 

is generated by proceeding from the non-parallelity region near 7~, across to 7~, down 7t 

to P, then up 7s and across to the non-parallelity region near 7J, will be of small size, both 

in A and in h(A). We must, however, be careful. Perhaps the two non-paralielity regions 

which generate c are the same on H, so that  c is contractible on S. Perhaps c is parallel 

to a boundary. Perhaps, finally, 7t and 7j stay together for a long distance so that  e will be 

large in A after all. 

With an eye to these difficulties we return to the set of arcs, {7~}, and examine a 

certain special case. 

2.B The " l l nk"  of B and the definition of a particular case 

We have our boundary, B, in the hyperbolic plane, H. Let  us examine the set of 

sides of the fundamental regions of A, which might be termed the "link" of B in A. These 

sides are characterized by the property that  they do not meet B, and yet they are sides of 

fundamental regions of A which do meet B (Fig. 13). 

I t  is clear that  by looking at  covering space transformations which take B onto 

itself, we have transformations of the link of B onto itself. Hence we obtain equivalence 

classes of sides in the llnk of B. Two sides are equivalent if there is a covering space 

transformation taking one side to the other, which takes B to itself. The number of 

equivalence classes (if we do not count sides which are liftings of boundaries of ~ ) i s  
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We look again a t  the set of arcs,  {~,}. In  par t icular  we look a t  the  arcs, {r,}, where 

0 < i < N 1 - 1 .  Here,  N 1 is defined to  be the  following number :  

N 1 = [4Zs 2 + 6 Z s -  2rZs ] {214Xs + 2(3 + r)] [2(1 + gs) + r] [2(1 + Zs) + 2] + 3}. 

Note  t h a t  N 1 depends only upon  the surface S, and  not  u p o n / ,  g, or h. 

In  this set, {7,}, O<-i<N1, there mus t  be a subset,  {~;}, 1 <~i<.214gs+2(3+r)] 
[2(1 +Zs )+r ] [2 (1  + Z s ) + 2 ] + 3 ,  such t h a t  all the  }[ mee t  sides of the  link of B which are 

equivalent.  (We will call this  n u m b e r  N2. ) The indexing of the set  {}[}, 1 < i  ~<N~, is, for 

the  moment ,  not  specified as having  a n y  par t icular  properties.  

All the  }~ pass through a single equivalence class of sides of the  link of B. Fur ther ,  

each }[ passes through a side of the  link of B which is no fur ther  t han  d(/)~' f rom P.  (This 

is t rue  because Y0 passes through a side of the link of B which is a dis tance 1 f rom P.  

Then  71 mus t  pass  through a side of the  link of B a distance no greater  t han  d(/)• f rom 

P,  and so forth.) 

Le t  a be the  side of the  link of B which is in this equivalence class and  which is as 

near  to P as possible. Hence,  a mus t  be a side of a fundamenta l  region of A containing P.  

Each  }[ is equivalent ,  under  a covering space t rans format ion  tak ing  B to itself, to 

an arc, },, which passes through a. Le t  us now specify the  indexing of {},}, 1 ~< i <N2,  so 

t ha t  the endpoints  of arcs of {~,} which are not  on B, occur in order  on bd H.  T h a t  is to 

say t ha t  if y, is the  endpoint  of }, which is not  on B, then  Y0 is fur thes t  to the left, and  for 

each i, y, is to the  left of Yt+r This  set of points,  {y,}, is contained in the  set, a~0, of liftings 

of the base point ,  x 0. Note  fur ther  t h a t  the  endpoints  of {~,}, on B, are all within d(/)~' 
f rom P.  In  fact  they  are all to one side of P,  so they  are all wi thin  d(f)~ ~ of one another .  

(The distance between two points  in H is defined as the least number  of fundamen ta l  

regions which can cover an  arc connecting the two points.) 

We m a y  imagine the s i tuat ion t h a t  yt and  yj coincide, for some i 4=j. Bu t  it is not  

difficult to see t h a t  in this case there will be a periodic curve on S, name ly  the  image of 

$t in S. Hence  it  m a y  be assumed t h a t  no Yl, Yj coincide, i~=j. I n  fact ,  more  general ly 

we m a y  assume, for the same reason, t h a t  no two different y~, yj are in the  same 

component  of $, the lifting of b. 

Therefore,  between each pa i r  of points,  yt, yj, there are a grea t  m a n y  points  of a~ 0 on 

bd H.  Le t  us denote  by  zt a point  of a~ 0 between Yz and Yt+l (including yf, excluding Yt+1) 

which is as near  as possible to  P.  (We shall be more  specific abou t  our choice of zt in the  

nex t  paragraph. )  

The distance between zt and  P ,  in A, is denoted by  d(zt, P)a. The special case with 

which we shall first deal m a y  be defined as follows: 

d(z~, P)A <~ d(])A~'N' + 2d(/)A N', for all the  z~, 1 ~< i ~< N ~ -  1. 
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~$ z~ 

Fig.  14 

2.4 The Points z~ 

At this stage we need to make precise the definition of z~. In  the particular case which 

we are considering we know that  all the ~ pass through a. Let  us fix our at tent ion on a 

specific ~ and ~+1. We know tha t  in traversing the length of ~ ,  from its end a t  B to its 

other end a t  y~, we pass through a (or perhaps we end at  a, as the case m a y  be). Similarly 

for ~+1- I f  ~ does not end a t  a, then denote by  al the next side of a fundamental  region of 

A which ~ meets after passing through a. Similarly let a~, as, and so forth, be the sides of 

fundamental  regions of A which ~ meets after  passing through a 1. We know tha t  ~+1 

meets a. I t  may  be the case that  ~+1 also meets ~r r Perhaps it  also meets a z. Let  an be the 

last such side which both ~ and ~+1 meet together before branching apar t  from one 

another. 

I t  m a y  be tha t  ~ ends at  an, i.e. Yt is an endpoint of an. In  this case we define 

zt =Yt. I f  ~l does not end at  a ,  then let an+l be the next  side of a fundamental  region of A 

through which ~t passes. Define z~ to be a point of x0 which is between Yi and Y~+I on 

bd H and as close to an as possible (Fig. 14). 

Note tha t  this definition of z~ is in no way in conflict with the requirement for z~ 

given in the previous paragraph. 

2.5 Non-parallelity regions in the fundamental regions 

To proceed further we need the following: 

LEM~A. Let ~n, a~+l, be the sides o I fundamental regions o / A  def in~ above. (We assume 

an+l exists. 1] iS does not, then She lemma i~ trivially true.) Let ~ be the ]~ndamental region o /A  

containing an and an+l. Then there exists a non.parallelity region, Z, o / S  (wiSh respect to 

h(A), az de/insd in 2.2) such that ~ iz "near" to Z in She following sense: There exist~ an arc 
10 - 782904 Acta mathematica 142. Imprim6 re 20 FSvri 1979 
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O'n+ 1 

Fig. 15 Fig. 16 

in ~ which connects ~, with Z, and the arc passes through no more than 2d(g)~' +d(])~' 

parallelity regions in (5. 

Proot. In  order to prove this let us begin by looking at the point ~, N ~n+l (Fig. 15). 

If $, N ~n+l is in a non-parallelity region of ~, then we are finished. So let us assume it 

is in a parallelity region, and we travel along an+ 1, from ~ fi an+i, in the direction of ~,+r 

We see how many parallelity regions of 6 are met before meeting the first non-parallelity 

region. 

If we meet more than ~, N, 2d(g)~ +d(])a parallelity regions before meeting a non- 

parallelity region, then let us see what the parallelity regions can do in 6. They all meet 

an+l together, so they must all meet another side of 6 together. If that  side is an then 

we would have too many fundamental regions of h(A) meeting ~ and ~t+l. Remember 

(paragraph 2.1) tha t  both ~, and ~+x can have size no greater than d(g)~' in h(A). Hence 

both ~ and ~+i pass through no more than d(g)~' fundamental regions of h(A). But  

each parallelity region of 5 is part  of a fundamental region of h(A). Hence if all the 

parallelity regions under consideration pass through an, then each fundamental region of 

h(A) which contains one of these paraUelity regions of 6 will meet either ~ ,  ~1+1, or B 

between ~ and ~t+l. The first two possibilities account for at most d(g)~' intersections 

each, and the third for d(])~' intersections. Therefore if we have more than 2d(g)~' § 

parallelity regions we may assume that  they do not go through an. In that  case they must 

all meet another side of 6, as illustrated (Fig. 16). 

But then if we start at ~, N an+x and proceed along ~,  through 5, in the direction of 

an, we must encounter a nomparallelity region which actually meets ~,. 
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In either ease there is a non-parallelity region of ~ within 2d(g)~' +d(/)~' parallelity 

regions from ~.  

2.6 Construct ing the  curve  e in  our special  ease  

We have our sequence of arcs, {~}, 0~<i~N~. Let us denote by N a the number: 

N 3 = [4Zs+ 2(3 +r)][2(1 +Zs) +r][2(1 +Zs) +2] + 1. 

Then the sequence, {~t}, 1 >~i~>N3, is the "first half" of the original sequence. We 

shall work, for the time being, with this first half of the sequence. 

In light of the preceeding paragraph we know that  each ~,  1-< . i<N3-1 ,  is "close" 

to a non-parallelity region of the fundamental region in which ~ and ~+1 branch apart. 

There are no more than 4 Z s + 2 ( 3 - r )  non-parallelity regions. Also there are 2(1 + Z s ) + r  

"corners" of each fundamental region. Therefore there must be at least 2(1 + Z s ) + l  

indices, [call them i(~), 1 ~<j ~< 2(1 +Zs)+ 1] such that  the non-parallelity regions near to 

each ~(j) correspond under covering space transformations which move the corresponding 

points, z ,m onto one another. 

I t  may be that  some of these non-parallelity regions are in the same fundamental 

region of A. Let  us say that  they are in the fundamental region, ~, of A. Then we would 

have a ~ ) ,  and a ~(~), i(j)~=i(k), with ~(j~ branching apart from ~t(k~+l in 5 (Fig. 17). 

But this can happen in 5 for no more than 2(1 +Zs) arcs, since that  is the number of 

sides of ~. Hence there must exist ~ ,  ~j, i=~j, with 1 ~ < i < ] < N 3 - 1 ,  with ~, close to the 

non-parallelity region Z~, say, and ~j close to the non-parallelity region Zj, say. Z~ 

corresponds to T.j under a covering space transformation taking z~ to zj, and Zt~Z~.  

We may now construct the arc, C 1, as illustrated in Fig. 18. Begin in Z~, go over 
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to ~t, passing through as few fundamental  regions as possible (as in paragraph 2.5). Then 

travel  down ~ to ~, across ~ to ~ ,  then up ~j to the fundamental  region containing T.j, and 

finally across to ~j,  passing through as few fundamental  regions of h(A) as possible. We 

may  assume tha t  the starting and finishing points correspond, in that  the images in 

are the same point. The image of C 1 in S, namely cl, is a closed curve. I t  is small in the 

following sense: 

d(c~)A <~ 2(d(/)~ 'N' +2d(/)~') 

d(c,)~(a) ~< 3(2d(g)~' + d(/)~'). 

These numbers are calculated by  adding up the sizes of each of the "segments" of 

C 1 in A and in h(A). (The limits on the sizes of c I in A and in h(A) may  be expressed in 

terms of for~ and gor~ by means of the inequalities in par t  1.) 

Hence we have succeeded in finding a "small"  closed curve, cl, in this special case 

which we are considering. Since ~t~=Zj, we know tha t  c I cannot be contractible on S. 

I t  may,  however, be deformable to a boundary of S. I f  this is the case then take the set of 

arcs, {~}, N a +  1 ~<i <Na,  and call this the "second half" of the sequence. Then we find 

a curve, e~, constructed from the second half of the sequence, as was done for the first half. 

The curve c a is generated by  a curve, Ca, in H, between two non-parallelity regions, as was 

the case with C r 

H e 2 is not deformable to a boundary then we are finished, since the size of c~ is 

subject to the same limitations as was the size of c r Hence we assume tha t  c a is also 

parallel to a boundary. In  this case we generate the curve, c3, on S, by going once around 

ex on S, starting and finishing on the image of ~, then going along the image of a to cs, 

going once around it, then back to the start.  Clearly the size of c 3 is limited by  twice the 

limits for c 1 and c a, i.e.: 

d(c~)~ < 4(d(/)~'' + 2d(/)~,) 

d(cs)~<~> <~ 6(2d(g)~' + d(f)~') 

We will prove in the next  paragraph tha t  c3 cannot be deformable to a boundary on S. 

2.7 Prov ing  that  e is no t  de formable  to  a boundary  in  our  speeia l  ease  

L~MMA. The curve, c3, cannot be de/ormable to a boundary el S. 

Proo/. Let us begin by  looking at  the curve, cl, on S. In  general, c 1 does not pass 

through x a. We deform c 1, using a homotopy, so tha t  c 1 is deformed to the curve, dl, 
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which does pass through x 0. We may  assume tha t  this homotopy lifts to a homotopy 

in H which deforms C 1 to a curve, D1, which passes through zv (Remember that  the curve, 

C1, has been constructed from the arcs ~t and ~j.) 

The curve, dl, is obtained from c 1 by  a homotopy on S, hence, in H, the endpoints of 

the curve containing C 1 do not move on bd H when C 1 is changed to D r Denote by  D~ 

the curve of ~1 which contains D r 

We prove tha t  at  least one of the endpoints of D~ is on the same side of ~ ,  as is ~ ,  in H 

(Fig, 19). 

Note, to begin with, tha t  z I and zj are on the same side of ~N,. Can we have both ends 

of D~ on the other side of ~No, away from zt and zj, as illustrated in Figure 19~. I f  we had 

this situation then we may  assume that  a "segment"  of D~, which is not the one between 

zl and zj, is crossed by ~N,. (A "segment" is one covering of dl, start ing and finishing in 

x0.) Let the copy, a, of ~m, be the copy corresponding to the segment of D~ between 

z~ and zj under a covering space transformation given by  some power of the element of 

the fundamental group of S represented by d r Since the image of ~N,, on S, is simple, we 

cannot have a meeting ~N,. But  this is impossible because there are fewer segments of 

D~ to one side of a than there are to one side of ~N,, which violates the invariance of H 

under covering space transformations. Therefore we must  conclude tha t  one end of D. 1, 

hence one end of 01 (the arc of Cl containing C1) , is on the same side of ~N, as are z~ and zj. 

By  similar reasoning we may  prove tha t  one end of C~ is on the opposite side of 

~v,+i to z~ and zj. 
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We next produce the curve, G1, from C1, a s  illustrated in Fig. 20. G 1 is produced 

from C 1 by proceeding down ~ to a, then to P,  then from P up to a, where it 

joins with ~ and then continues as before. Do the same to C 2 to get G 2. The images on 

S are gl and g2. Then g3 is obtained by going once around gl on S, starting and finishing 

at  x 0, then once around g~, starting and finishing at  x 0. Clearly, ~73 is homotopic to c 3. 

Since S is not a disc with two holes, the curve, g3, can only be homotopie to a boundary 

of S if gl and g~ are homotopic to one another, a t  least up to multiples, by  a homotopy 

which leaves x 0 fixed. For this to be true we would have to have G~ and G~ having the 

same endpoints on bd H. But  since they have endpoints on opposite sides of ~N, and ~N,+I, 

and gl, g~ are homotopie to boundaries of S, we must  have both G~ and G~ being homotopic 

to B, in H. But this is impossible. For example if G~ were homotopic to B then z~ could 

be moved to zj by a covering space transformation taking B to itself. Since z~ and z; lie 

between the endpoints of ~ on bd H, this is impossible. Hence we conclude tha t  ca is not 

homotopic to a boundary of S. 

Let the curve c, on S, be defined to be either cl, c2, or %, whichever is not homotopie 

to a boundary. 

2.8 The second special ease: "many" ?j* pass through a 

In  the special case which was defined in paragraph 2.3, we are finished. A small curve, 

c, has been produced. What  of the other eases which are possible? That  is to say, what  if 

d(z~, P)~ > d(/)~ '~' + d(/)~', for some 1 ~< i ~< zY~ - 1 ? 

In  this case we look a t  ~t and ~,+1. Remember  tha t  ~[ =~n, ~+l=~m,  for some, 

0 ~< m, n ~</YI. Also, ?j was defined to be ~r for each j. Let  us, therefore, define/* 

to be, /* =/m-n. Then we shall have, up to an isotopy leaving x0 fixed, [*(Tn) =~m. 

Define also, g* =gin-,. From now on we will work with/*  and g*. We will need to alter 

them as / and g were altered in Par t  1. Note that  the sizes of /*  and g* in A and h(A) will 
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not be increased. Also we will need to find a suitable conjugating homeomorphism, h*, for 

/* and g*. 

We return to ~ and ~+1. In general, ~ N B, and ~+1N B, are different points. As 

shown in paragraph 2.3, they can be no further than d(/)~' apart. Let us al ter/* by an 

isotopy rotating the boundary, b, of S, about itself so that  the lifting of the isotopy moves 

the point ~t+t fl B to the point ~t N B. Then take the lifting, f*, of/*, which leaves B fixed. 

This insures that  /* is "straight" (as in paragraph 1.6). We may also alter /* by the 

isotopies of paragraph 1.5. 

Let the sequence, {?~}, of ares in H, be defined by: 7[ =(P)'(~,), for all integers, j. 

Let y; be the endpoint of 7; which is not at P. Then certainly y~ is between the endpoints 

of a on bd H (Fig. 21). 

To fix ideas let y~ be to the right, say, of y~. Then for all j, Y[+I will be to the right of 

y[. Clearly there will be an accumulation point to the left and also an accumulation point 

to the right. The question is: do the accumulation points fall between the endpoints of a 

on bd H, or not? 

Hence we have two cases to consider: (i) the accumulation points do not both fall 

between the endpoints of a on bd H, and (ii) they do. Let us tackle case (i) first. Assume 

that  the left hand side accumulation point (i.e. lim~_~o y~) is not between the endpoints of a. 

The argument for the right hand side accumulation point is similar. 

Denote by w the left hand endpoint of a. There must exist an index, u, such that  

y~, is between the endpoints of a, and Y~-I is not between them. 
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We define the homeomorphism, h*, to be: h*=/(~cm-n~+n~'h. Let  ~* be the lifting of 

h* which leaves B fixed. Then ]~*(~) ~ucm-n)+n~ (at least up to an isotopy leaving the base 

point fixed). Apply the straightening isotopies of paragraphs 1.5 and 1.6 to h*. The iso- 

topics will be of size no greater than d(])g I because the distance from ~ N B to P is no 

greater than g(])~. 
Let us define the sequence of arcs, (Tt}, in H, by: Tj -- (]*):]~*(/~). We also define the set 

of points, {z~}, for the arcs, {~j}, as was done in paragraph 2.4 for the arcs {~g}. The 

definition given there did not  include the possibility that  a z; is at  distance 1 from P. 

In this case define ~ to be the point of ~e which is at distance 1 from P and is the closest 

possible to the endpoint of T: which is not P. 

Because of the way we have chosen ~* and {~j}, we must have d(z*_u, P)5 >d(~)~ 'N'. 

Coucerning the position of w (the left hand endpoint of ~) with respect to the sequence 

{Tj}, we cannot quite assert that  w falls between ~-x and %. The reason is that  the endpoint 

of Yu~m-n)+n which is not on B may be on the component of ~ which contains w. Certainly 

we can assert that  w falls between T_2 and ~i. For the sake of definiteness, and without 

affecting the argument, we may assume that  w is between T-1 and % (Fig. 22). 

Since w is between ~-1 and %, then ]*(w) must be between % and ~1. Further,  

d(f*(w), P)~ ~<d(/*)~--<d(/)~'. In fact, in general, (]*f(w) lies between 7j_x and ~t on bd H, 
and d((f*)J(w), P)~d((]*)J)5~d(~)~ '. If we take, then, the set, {~}, 0~<~'~<N~-I, we 

must have all the ~j in this set passing through a. The reason is that  it  takes a long time 

for w to get far away from P under the repeated action of ]*. In  detail, all points of a~ o 

between ~ and ~+l are more than the distance d(])~ '~' +2d(])g ~ from P. On the other 

hand, the isotopies to [* and h* are each of size no greater than d([)~; hence we certainly 
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Fig. 23 

have a ~ and a vk+l, both of which pass through a, such that  all points of x0 between vk 

and ~+1 are further than d(f)~ IN' from P. Hence all arcs of {~j}, 0 ~ j  ~N~, must pass 

through a. 

But suddenly we find ourselves in the special case of paragraph 2.3. Hence there exists 

a small curve, c, which is not contractible, and not contractible into a boundary, such that: 

d(c),,, ~< 4(d(f)~ '~' +2d(./)~') 

d(c)h~) ~< 6(2d(g)2 '~' +,~(1)2')') 

(Note that  the expression for d(c)n~) contains the exponential (Arl) ~, rather than simply Arl . 

This is because we are working with f*, rather than f, and f* is, essentially, the product of f 

with itself, up to ~V 1 times. These expressions for the size of c can be related to the sizes 

of for~ by using the inequalities in part 1.) 

2.9 The third, and last, special ease. all 7~ pass through tr 

The only remaining problem is to deal with case (ii) of the preceeding paragraph, 

i.e. all the y~ fall between the endpoints of # on bd H. 

This time, let w be a point of ~0 with the property that  it is as near as possible to P,  

i.e. writ0, and d(w,P)zi~d(w',P)A, for all points, w', of x0, between the left and right 

accumulation points of {yT}, on bd H. Then w falls between 7; and r;-1, say, for some 

integer, v. We define the homeomorphism,/~*, to be:/~* =]crcm-n)+='h, in this case. Next, 

straighten h*, and find g*, as in paragraph 2.8. 

We must produce a small curve, c. To begin with, we know that  every Tj goes through 

#. As in 2.4, we let o ~ be the last side of a fundamental region of A such that  all the z~ 

meet #* (Fig. 23). 
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We m a y  assume tha t  w is a corner of a fundamenta l  region of A which contains a*. 

We construct  the curve, c, as was done in 2.6, but  this t ime using a* in place of a. We shall 

have  the same limitations on the size of c, as were found in 2.8, if we can establish tha t  

(]*)J(w) is "nea r"  to a* for small j, (i.e. the distance from (]*)J(w) to  a* is no greater t han  

d(/)~'). However  this is easily proven to be the case, as follows: 

Denote by  ~ the fundamenta l  region of A containing both  a* and w. Then ]*(~) is 

covered by  d(/*)A<~d(/)~ ' fundamenta l  regions of A. If  w is between ~-1 and ~0, then 

f*(w) is between 30 and zl, in H. I n  fact, f*(w) is between ~0 and ~1, and is on the far side of 

a* from P.  (Remember  tha t  a* divides H into two pieces.) 

Let  us say  tha t  f*(w) is fur ther  than  d(/*)A from a*. I n  this case we would have the 

entire fundamenta l  region, ]*(~), being on the far side of a* from P ,  and in fact  f*((~) would 

not  meet (~, except possibly at  a corner or a side. 

Where  does the point,  w, lie with respect to  ]*(a*) ~. I t  mus t  be either an  endpoint  

of ]*(a*), or else it lies on the same side of ]*(a*), in H, as P .  (Remember  tha t  ]*(a*) divides 

H into two pieces.) However,  this is impossible since it would imply  tha t  (/*)-l(w) would 

lie either on a*, or on the same side of a*, in H,  as P.  This contradicts  the definition of w. 

We must  conclude tha t  d([*(w), a*)a~<d(/*)a. I n  general, 

d((]*)Y (w), a*)A <~ d((/*)Y)a < d(/*)~ <~ d(/)~ ~'. 

Hence it m a y  be assumed tha t  the curve, c, which is produced in this case has the same 

size limitations as were found in 2.8. 

We conclude tha t  in all cases there exists a closed curve, c, with c being neither 

contractible nor  contractible to  a boundary  on S, and, 

d(c)a <~ 4(d(/)~ 'N' + 2d(/)A ~') = -N'4, 

d(c)a(,~> <~ 6(2d(g)~" + d(/)(~ N')') = N 5. 

We call these numbers; N4, 2V 5 for convenience. 

3. The proo[ o[ the theorem and the solution o[ the conjugaey problem 

3.1. We are given our curve, c, with d(c)a < 1V4, and d(c)a(a> ~-IV 5. Take a regular neighbour- 

hood of c in S. I n  general this will not  be simply an  annulus,  since c m a y  be singular. 

Hence the regular neighbourhood is a surface on S with a number  of boundaries. Some 

of the boundary  curves m a y  bound discs on S. If  there are any  such curves, then "fill 

them in" with discs of S. Hence we end up with a certain bounded surface, T o e S .  Let  

us look a t / (To) .  I t  m a y  be the case t ha t / (To )  is isotopic to To, and then again it m a y  not  

be the case. If  it is not,  then take a regular neighbourhood of c tJ/(c) on S and "fill in the 
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discs" as before. We get the bounded surface, T1, on S. Again,/(T1) may  or may  not be 

isotopic to T r If  not, then form T~, and so forth. 

We continue this process, forming T~ as a regular neighbourhood of U~=0[J(c) on S 

with the discs filled in. There must exist an n, with n ~<Zs+ 1, such that/(T,~) is isotopic 

to Tn. We consider two cases: 

(i) There exists a boundary curve of T n which is not  parallel to a boundary of S, or 

(ii) There exists no such curve. 

Since c is not parallel to a boundary of S, we may  think of these two cases as: (i) Tn is not 

"al l"  of S, and (ii) T n is "all" of S. 

If  case (i) holds then the boundary curve of Tn which is not parallel to a boundary of 

S is clearly a periodic curve under / .  Hence we may  assume that  case (ii) holds. In  this case 

we can estimate the size of h in terms of the sizes of / and g in A. The idea is as fellows: 

To begin with, i t  is clear tha t  under our assumptions, S-U~.0/~(c)  is a collection 

of discs (apart from the components containing the boundaries of S). The question is, 

how "big" are these discs in A, and in h(A)? Since/~(c) is limited in size in A, for each i, 

we must be able to establish an upper limit for the size, in A, of a disc of S -  U~_0/~(c). 

The same is true in h(A), so that  any  disc of S -  UT_0/~(c) can cross only a limited number  

of fundamental  regions of h(A). 

Let us then take a fundamental  region, 6, of A, and let it be acted upon by  h. We are 

interested in knowing how "big" the disc h(5) can become in A. An upper limit for the 

size of h((~) in A can be calculated in the following way: Since the size of/~(c) is limited in 

h(A), for each i, we must have only a limited number  of crossings of the disc h(5) by 

each curve/~(c). Hence these crossings split the disc h(O) into only a limited number  of 

smaller discs (Fig. 24). 

However each of these smaller discs is par t  of a disc of S - U~.0/~(c), which is limited in 
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size in A. Therefore the size of h(~) in A can be no more than the number of discs of 

h(~)-  U~_0/~(c), multiplied by the maximum possible size of a disc of S -  U~.o/~(c) in A. 

To be more specific, since the length of ]~(c) in A is no greater than d(c)Ad(/)~, for 

each i, we must certainly have no disc of ~q-[J~=o/~(c) having size greater than 

(gs+l)d(c)z~d(/)~, § in A. (Here the size of a disc is defined in the obvious way.) 

But  for each i, the size of/~(c) in h(A) is no greater than d(o)a(a)d(g)~. Here, again, the 

size of a disc of S-U~_0/~(c) in h(A) is no more than (gs+l)d(c)h(a)d(g)~ s+l. 

Hence, if we take a fundamental region, (~, of A and let it be acted upon by h, then 

h((~) meets, in its interior, no more than (Xs+l)d(c)a(a)d(g)~s+l arcs of U~_0/t(c). Hence 

the size of h(~) in A can certainly be no more than the maximum size of a disc of 

S - U ~ - 0 f ( c ) ,  multiplied by the number of times h(~) meets U'/_o/t(c). Therefore we 

obtain the limit: 

d(h)A < (Zs "1-1)2 (N4)(/u 

This limit can be expressed in terms of/or~ and goru by means of the inequalities: 

d(l)a ~< (2(1 +Xs)Y[d(lo~)~] 2'z, 
and d(g)a <~ [d(gorif)a]2r' + 12(Z s § 1), 

as found in Part  1. 

3.2 The generalization to surfaces without boundary 

In this section we will sketch the alterations which are necessary in order to construct 

a proof in the special case that  ~S--O. Clearly many changes in detail will be necessary 

since we have made extensive use of the fact that  isotopies of surfaces with boundaries 

cannot permute those boundaries. In reality, though, the proof is simpler when ~ S = 0  
since most of the difficulties which we have encountered resulted from complications 

involving rotations about the boundaries, and curves which may have been boundary 

parallel. All of these problems disappear when aS = ~ .  

Again we take H to be the universal covering space of S, the hyperbolic plane. This 

time, however, x 0 will be an interior point of S, and so the lifting of x e tb H will be an 

infinite collection of disjoint points in int H, all equivalent to one another under co- 

vering space transformations. With this in mind, sections 1.1 to 1.3 remain unchanged. 

Section 1.4 is no longer necessary. In section 1.5 we include a further operation into the 

process of "removing trivial intersections". Namely, any intersection of the form illu- 

strated in Figure 25 is "trivial" and should be removed by an alteration t o / .  

(Of course the problems involving rotations about the boundaries, in section 1.5, cannot 

occur.) We then choose a specific point, P,  of &0 in H, and choose the lifting f of ~ which 

leaves P fixed. Then section 1.6 is no longer needed. 
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At this stage all the lines of f (~)  meet the lines of ~j in at most one point each, for all 

possible/,  ~. Hence the proof may be continued in analogy to sections 1.7 and 1.8. (It is 

assumed that  all liftings, [, ~, ~, leave the same point P of ~0 fixed.) 

Par t  2 is technically easier when ~S = O. We do not need the special case of section 

2.3 (this is because the problem of rotations about the boundaries cannot occur). In  fact 

we only need the second and third cases, in sections 2.8 and 2.9. To see this, consider a 

certain neighbourhood of P in H. Specifically, the set of fundamental regions which 

meet P (Fig. 26). 

We look at the boundary of this neighbourhood of P. I t  consists of a number of sides of 

fundamental regions. We know that  ] leaves P fixed. Hence if we examine the repeated 

action of ] on ~(/~), it may be considered as representing repeted small rotations about P 

in the same direction, approaching a certain limit point. (This follows from Nielsens 

work.) If  ~(~) intersects the same side of the boundary of the neigbourhood of P after 

arbitrarily many applications of both ], and of [-1, then we are in the case of section 2.9. 

If not, then we are in the case of 2.8. 

3.3 The proof o| the conjugaey theorem 

Let S be a compact, orientable surface, and let f, g be homeomorphisms S-~S which 

agree on ~S. We wish to determine whether or not  ] and g commute; tha t  is, does there 

exist a homeomorphism h: S-~S which is such that  h-lfh is isotopic to g, by an isotopy 

which leaves 8S fixed? 

In  order to answer this question, we must first determine if there are any non- 

singular periodic curves in S under either / or g. If there are, they can be found directly, 
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using the procedure described by  Nielsen in [10]. Alternatively, they may  be found by  

transforming the problem into the realm of 3-manifolds and then using Haken ' s  theory. 

(First take the product S • I ,  where I is the unit interval, then glue the ends together, 

using either ] or g. The resulting space is a Stallings fibration, and the problem is to find 

incompressible annuli or tori in this space.) 

We may  split S along all such non-singular periodic curves under / ,  and g, obtaining 

the surfaces S r, and Sg, respectively, If  S I and Sg are not homeomorphie, by a homeo- 

morphism which is the identi ty on aS, then / and g cannot be conjugate. Hence we may  

assume tha t  there exists a homeomorphism k: S ~ S ,  which is the identity on aS. (It  

is an easy mat ter  to see whether or not such a homeomorphism exists, and if one does, to 

construct it.) 

Let us now denote S a by the symbol S*, and denote k-1/Islk by/*,  and glsg by g*. The 

problem then is to determine whether or n o t / *  and g* are conjugate on S*. In  this new 

setting we are guaranteed of having no non-singular periodic curves under e i ther /* or g*. 

In  fact it is possible to say even more. One can show, by an easy argument  involving 

Nielsen's constructions [9], that  the existence of a singular periodic curve implies the 

existence of a non-singular one (see Johannson [6]). Therefore we m a y  assert that  there 

are no periodic curves under e i the r /*  or g*. But  then we may  apply our theorem: 

First determine N(/*, g*), and then check all homeomorphisms of size no greater than 

this number on S* to see if they conjugate/* and g*. I f  a conjugating homeomorphism h* 

exists which is such that  h*-~/*h * is isotopic to g*, by  an isotopy which is constant on 

aS, then for some integer n, ~*'h* will be of size no greater than N(/*, g*) after being 

straightened, as in sections 1.5 and 1.6. That  is, ]*'h*t is of size no greater than N(/*, g*), 

where t is a homeomorphism which is isotopic to the identi ty on S, and involves only 

rotations of the boundaries about themselves. But  clearly if h*-l/*h * is isotopic to g*, by 

an isotopy which is constant on aS, then also the same is true for (]*nh*t)-lf*(/*nh*t)= 

(h*O-~ /*(h*t). 
Hence this conjugating homeomorphism will be found, and so the conjugacy 

problem will be solved for ]* and g* in S*. But  then, by  extending h* across the periodic 

curves in S to a homeomorphism h: S ~ S ,  we obtain a solution to the conjugacy problem 

for ] and g in S. 
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