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1. In previous papers [9], [10], we introduced a class of functions of several real
variables which we designated as linearly continuous. In order to clarify the position of
this class of functions, in relation to established classes, it is desirable to first describe
matters for functions of one variable.

We shall consider only functions with compact support and shall consider length,
area, etc., of a function on a bounded interval containing the support. The functions of
one variable whose derivatives are measures are then equivalent to functions of bounded
variation. The functions whose derivatives are functions are equivalent to absolutely
continuous functions. The set of functions which are continuous and of bounded variation
lies between these two classes of functions. These functions are the omes (i) for which
the length of the associated curve is equal to the Hausdorff one dimensional measure of
the graph, (ii) for which the variation is given by the Banach indicatrix formula, and
(iii) for which the derivative is a non-atomic measure. Moreover, the space of these func-

tions is complete with respect to the metric given by

d(f’ g) = 6(f’ g) 'f'A(‘xf’ “g),

where § is the metric for convergence in measure, «; and «, are the measures associated
with the lengths of curves given by f and g, respectively, and A(y, v) =sup|u(E) —»(E)]|,
for Borel sets E, for any measures 4 and ».

For functions of several variables, the place of functions of bounded variation is
assumed by those whose partial derivatives are totally finite measures. This class of
functions was introduced by Cesari [5], and was studied, among others, by the author
(8], Krickeberg [15], Fleming [7], Michael [16], Serrin [20], and de Vito [23]. (There
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are various other notions of bounded variation for functions of several variables, but they
are not considered in this paper.)

Functions with compact support whose partial derivatives are functions take the
place of the absolutely continuous functions. They were studied mainly by Calkin [4]
and Morrey [17]. One interesting property they possess is that there is always an equi-
valent function which is absolutely continuous on almost all lines in every direction.
Incidentaﬂy, this result follows from facts proved in this paper. These functions have
proved to be of great importance in partial differential equations and other branches of
analysis, starting with the work of Morrey and of Sobolev [21].

Functions in these classes can be discontinuous everywhere [9]. Indeed, it is possible
to construct a bounded function f, whose partial derivatives are functions, such that every
function equivalent to f is discontinuous everywhere. The continuous functions whose
partial derivatives are measures could aceordingly hardly assume the same role, in several
variables, that the continuous functions of bounded variation have in one variable. A
natural candidate for this position is the set of linearly continuous functions whose partial
derivatives are measures. For the case of 2 varjables, these functions are precisely the
ones for which the surface area is equal to the Hausdorff 2 dimensional measure of the
graph [9]. Also for the case of 2 variables, the linearly continuous functions whose partial
derivatives are measures are the completion of the continuous functions whose partial

derivatives are measures with respect to the metric

a(f, 9) = (}, 9) +Aley, ),

where now o, and «, are the measures associated with the areas of the surfaces defined
by f and g¢. There are indications that a Banach indicatrix formula holds for this class of
functions. Such a formula has recently been obtained by Ziemer (oral communication),
for the continuous case. It also seems plausible that the partial derivatives of these
functions are characterized as measures which are zero for ridé sets [25], these seemingly

being the analogues in several dimensions of the countable sets in 1 dimension.

2. In [10], for dimension 2, we characterized the linearly continuous functions of
finite area (i.e. those whose partial derivatives are measures), among all functions of finite
area, as those functions f for which, for every ¢>0, there is a continuous g such that if
B =[z: f(x) +g(x)], then aH)<e and o,(H)<e. We noted that this implies that linearly
continuous functions are coordinate invariant. Indeed, it implies that for every such f
there is an equivalent function which is continuous along almost all lines in every direc-
tion. We also showed in [10] that if f is merely linearly continuous in one coordinate
system, but its partial derivative is not a measure, then it need not be linearly continuous
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in another coordinate system. We have not been able to obtain an analogous charac-
terization theorem for n>2. However, by using an induction argument in [10] we showed
that, for every =, every linearly continuous function whose partial derivatives are meas-
ures is equivalent to a function which is continuous along almost all lines in every direc-
tion. In the present paper, the main result is a characterization theorem for arbitrary n
which is similar to the one proved in [10] for n =2. In fact, we show that if f is linearly
continuous and its partial derivatives are measures then, for every £>0, there is an
approximately continuous g such that if E=[x: f(x) %g(x)] then o (E)<e and o,(E)<e,
and that the converse also holds. For the latter, we show in particular that every approxi-
mately continuous function whose partial derivatives are measures is linearly continuous.
Since approximate continuity is invariant under Lipschitzian transformations, it follows
that every function of the type considered has an equivalent function with very nice
behavior. It accordingly matters little, regarding the implications which may be drawn,
whether the approximating functions are continuous or, merely, approximatély continuous.

The space of linearly continuous functions whose partial derivatives are measures is
complete with respect to the metric mentioned above. We show that the approximately
continuous functions are dense in this space. For n=2, the continuous functions are dense
in the space, but we do not know whether or not this holds for n>2.

3. We now give some notations and definitions and a few facts which will be needed
in the sequel. We consider a rectangular coordinate system (zy, ..., z,) in n‘sPace. For
every t=1, , n, we designate points in (n—l) space with coordinates (@g, gy ooy Xy_g,
Xyi1s o5 T,) a8 & Thus a point in » space may be designated as (x,, #;). We say that a
measurable real function f on n space is essentially linearly continuous in this coordinate
system if, for every ¢=1, ..., n, there is an f, equivalent to f (i.e., f;=f except on a set
of Lebesgue » measure zero) such that for almost all Z,, f, is a continuous function of the
one variable ;. The function f is said to be linearly continuous in the coordinate system
(@3, ..., &) if, for every ¢=1, ..., n, f is a continuous function of x, for almost all %, We
showed in [9] that if f is'essentially linearly continuous and its pa,rtial derivatives are
measures then f is equivalent to a function which is linearly continuous.

‘We shall consider the class 4 of functions Whose.pa,rtia,l derivatives are measures.
These are the functions of finite area. We shall give a brief discussion of these notions.
In particular, we describe the partial derivatives in terms of variations of special func-
tions in the equivalence class, the linear Blumberg measurable boundaries. This has the
advantage of freeing the definition from an unnatural measurability hypothesis on the

linear variations which is customary.
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Let f be a measurable function whose support is contained in an » cube . We define
the area of f in terms of the areas of quasilinear approximations. By a quasilinear func-
tion p on ¢}, we mean a continuous function which is linear on each simplex of a decompo-
sition of Q. The area L(p, Q) of p on Q is the sum of the Lebesgue n measures of the sim-
plexes which form its graph. The area of f on @ is then defined as

L(f, Q) = inf {lim int L(p, @)},

where {p,} converges in measure to f and the infimum is taken over all such sequences.
Then L(f, @) is a lower semicontinuous functional with respect to various types of con-
vergence including convergence in measure and convergence in the L, metric. It was
shown in [5], see also [8] and [15], that L(f, Q) is finite if and only if f€ 4. Then, let 1
be Lebesgue n measure, and let yy, ..., u, be the partial derivative measures of f. The
vector valued measure (4, 4, ..., 4,) has an associated numerical valued measure «;, defined
for Borel sets £ by

o B) =sup 3 BT+ [ EPY,

where the supremum is taken over all finite partitions E,, ..., K, of E into Borel sets.
The area of f has an associated measure L(f, E), defined first for open intervals R<@
by means of quasi linear approximations, as above, and then by extending to a measure
on the Borel sets. It turns out that L(f, E) =o,(E) for every E (see [22], [9], [13]).
Of most importance to us will be the following representation of the partial deriva-
tives u,;, 1=1, ..., », of a function f€ 4. In this connection, we first consider, as in [8],

a measurable function g of one real variable. We define
V(g, (a, b)) = inf v(k, (a, b)),

where (a, b) is an open interval, v is the variation of % on (a, b), and the infimum is taken
for all & equivalent to g. This infimum is realized by the upper measurable boundary »
of g, in the sense of Blumberg [2], which we define shortly. Thus

V(g, (a, ) = v(u, (a, b)).
The function % is defined as follows: For each y, let B,=[&: g(£) >y]. For each z, let
u(z)=inf [y: density of E, at x is 0].

Now, for each y, u(x) >y if and only if the density of E,_,,, at x is not zero for every ».
It follows from the Lebesgue density theorem that # is measurable. The proof that

Vg, (a, b)) =v(u, (a, b)) is easy, and will not be given here.
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Now, let f be a measurable function of » variables. For any direction 6, we define
the measurable boundary of f in direction 6 by letting, for each y, E, =[¢&: }(§)>y]. For

each z, let
w(z) =inf [y: linear density of B, in direction § at x is 0].

The measurability of » follows from the fact [19], that for a measurable set S in » space,
the linear density of S exists and is one almost everywhere in S.

For every i=1, ..., n, let u; be the measurable boundary of f in direction z,. Let
Q=Q, x(a; b;). For each m=1, 2, ..., let

<& <E< ... <E<b,

be such that max (&, —a;, &,—&,, ..., b;—§&,)<1/m and u(Z,, &) is measurable in Z; for every
&, =1, ..., r. Then the function

r—1
}gl I“(ﬂzia Er41) —u(@;, f;)|
is measurable, and it follows that
v(u, ii, (aiﬁ bl)) = V(f’ x-i: (ai: bi))

is measurable. The function f€ 4 whenever V(f, &;, (a;, b;)) is summable, i=1, ..., n. For
an open interval R=R,; x (a, b), R<=@, where R, is the projection normal to the z; direc-

tion, we let
&, %, (@, b)) = lim w;(x, ) — lim u(w;, 7).
ri—~>b- Zi~>a+

It follows from the dominated convergence theorem that
uilB) = [ 41,70 @)

exists as does [ ;] (R) =f V(f, &, (a, b)).

The set function y; generates an outer measure, ¢=1, ..., n, for which the measurable sets
include all Borel sets. The same may be said of the associated o,. Alternately, we may
start with the set function IL{f, R) to obtain the outer measure e, This set funetion is
known to be (e.g. [6]) such that

(i) if the distance between E and F is positive,

(B U F) = ay(B) -+ ay(F), and
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(i) if E is measurable and &¢>0 there is a compact F and an open G such that
Fc Ec@ and m(G)<m(F)+e, and

(iif) compact sets have finite measure.

We are accordingly able to apply to the measure a,, f€ 4, a Vitali Covering Theorem
of Besicoviteh [1], in a version due to A. P. Morse [18].

THEOREM. If an outer measure m, defined on the subsets of n space, satisfies the condi-
tions itemized above, then for any set S, if S is covered by a family F of closed n cubes (with
faces parallel to the coordinate planes) in such a way that, for every >0 and x €8 there is a
cube in F with center x of diagonal less than &, then there is a countable set of cubes in F,

which are pairwise disjoint, such that almost all of 8 is contained in their union.

We also mention the measure 8, which is obtained from the vector valued measure
(%1, ... f4,,) In the same way that «, is obtained from (4, yy, ..., u,,). The inequality a;, (@) <
or(@) +B,(Q) is often useful.

Finally, for every f€L,, an important set of smoothing functions is the set of inte-

gral means

1
fm(x)=~—f Ha + &),
3m a(z, 1/m)
where o(z, 1/m) is the n ball of center x radius 1/m and s, is its volume, The functions f,
are continuous and converge to f in the L, norm as well as almost everywhere. Moreover,

it f€ 4, then
(@) =1im a, ().

If f€ 4 is linearly continuous with respect to a coordinate system and R is an open interval

in this coordinate system, it was shown in [10] that
“I(R) =lim “fu(R)s

and if H is a hyperplane and f is linearly continuous then o (H)=0, for the case n=2.
Moreover, if f€ 4 is linearly continuous then for almost all lines I, parallel to coordi-

nate axes, we have {f,} converging uniformly on [ to f.

4. We fix a coordinate system and say that f€L if it is in 4 and is linearly contin-

uous in the coordinate system. We suppose that the support of f is interior to a cube

Q= x [a;b;).
i=1
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In the next few sections, we show that if /€ £ then, for every ¢ >0, there is an approxi-
mately continuous g such that, if ¥ is the set for which f =g, then o;(E)<¢ and «,(E)<e.
As a first step, we note that we may assume f bounded. For every k, the function
/¢ defined by
ki fla)y=k
fixy=1fx) if —k<flx)y<k
—k if flx)< —k

is linearly continuous. Moreover, it follows directly from the definition of L(f, @) that
ox{(@) <o (@). Hence fFEL.

Let Q; be a face of © normal to the a; direction, i=1, ..., n. Let 6>0. For every
i1=1, ..., m, since f is bounded on almost all lines in every coordinate direction, there is a
natural number N,, and a measurable set B,=@, such that m(Q; — E,) <6 and ff(z) =f(x),
on the entire line I(Z,)=[x=(x;, %) : z,;€(a,, b;]], for every &€ E; and k>N, Then, for
E>max (Ny, ..., N,), f(x) =f(z) on the entire set '

Es =£Jl(EiX [@:. by]).

Choose §>0 so small that o (@ E;)<e. (We indicate below why this is possible). By
{9], since f* and f are both in £ and f*(x)=f(z) on Ej, it follows that o/ (Es)=cx(E;).
.We then have ax(Q — H;) <oy (Q —~ Es) <e, proving the desired result.

We next describe a decomposition of f€L, given for the 2 dimensional case in [9],
which we need in the sequel. Let ¢ be equivalent to f and such that it is continuous in z;
for almost all &, ¢=1, ..., n. Then ¢ is a continuous funection, of bounded variation, in z;
for almost all %, i=1, ..., n. Choose &) so that g(z?, #,) is measurable, and summable, in
Z;. We then obtain, as in [9], a decomposition g =g+—g-, where g+ and g~ are measurable,
indeed summable, are monotonically non-decreasing‘in xz,, for almost all #;, and g+(xf, &,) =
g(a?, &) for all ,€Q,.

Now, let g,, be the mth integral mean of ¢, m=1, 2, .... As in [9], for almost all &,
the integral means (g+),, and (9~),, converge uniformly in z, to ¢+ and ¢-, respectively,
for almost all #;. Since, g,,=(9*),— (97 )m, it follows that {g,} converges uniformly in x;
to g, for almost all £,, i=1, ..., n.

Since the ¢, m=1, 2, ..., are continuous, kit follows fhat, for every 6 >0, there is a set
n
Es= »UI(E"X [a:, B:])

on which g is uniformly continuous and on which f,, =g,, m=1, 2, ..., converges uniformly

to g, with
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m(Qi_Ei) <(3, ’L.=1, R (D

It is also worthwhile for us to indicate why the fact used above that, for all >0

small enough, «/(Q — E;) <e holds. For every i=1, ..., n,

|l (@)= fQ V(f, %, (a5, b))-
3
Let £¢>0. There is a §>0, § <g/(n+1), such that m(Q; — E,)<§ implies
- £
|;“i| (Bix(a;, b)) = fE;V(f, &, (@, b)) > lMil @ — nrl
For Es = U1 (E;x(a;, b;)), we have

o (@ Es) <

1

DR

|| (@ — Es) +m(Q — By)

<
i

i

|,ui| {(Qi —E)x{a;, bi)} +m(Q — )

W
i

| (@ =3 |pu] (Bux(a b))+ m(@— Bo) <.

Remark. In the remainder of this paper, we shall be concerned with the density of a
set at a point. This density will always be the ordinary density using cubes containing
the point with faces parallel to the coordinate faces, except in one place where balls are

used. If the density is 1 in either case, then it is 1 in the other case.

5. Let fEL and £>0. We shall obtain a certain 0 dimensional closed set V such that

First, there is a 6 >0 such that if E;,<Q, with m(E;)>m(Q,;) -0, i=1, ..., n, then

1@~ U (Bix @, b) <.

Let B, ¢=1, ..., », be such that m(E,)>m(Q,)—9, and such that the integral means {f,.}

of f converge uniformly to f on

B=U(Bx(a,by).

i=1

For each 1=1, ..., n, let S;< E, be the set of points in E; at which the ordinary (n—1)
density of E;, using eubes in @, is 1. Then, if
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§= U (Six (@ ),

it follows that «;{Q-—S)<e. We next let T,=8; be closed, i=1, ...,n, and such that
m(Q;—T,)<d. Then, if
T= il:Jl(Ti x(a, b)),

we have a{Q—T)<e. Moreover, T' is a closed set (relative to @).

We next apply the Besicovitch—-Morse version of the Vitali Covering Theorem to the
set T' to obtain a system of closed cubes. All cubes considered will have their faces parallel
to the faces of Q. For each €T, interior to @, let R, be a collection of closed cubes, each
in the interior of @, with = as center, and with diagonal less than }, such that for each

7 >0 there is a cube in R, with diagonal less than 7. Let
R=UI[R,:z€(nt Q) n T1.
There is a finite set R, Ry .. ,R,,

of pairwise disjoint closed cubes in the collection R such that
Na
%@= U (B, nT)}<e.

For every j;=1, ..., n;, and z€(int R)N T, let R} be a collection of closed cubes,
each in the interior of R;, with x as center, and with diagonal less than 1/2%, such that

for each 7>0, there is a cube in R} with diagonal less than 7.
Let R =UI[R} :x€(int B,) N T].
There is a finite set Reens Rhnﬁ, =1 ..,m,

of pairwise disjoint closed cubes in the collection R” such that
Y iy
o {Q— 1L=J1 191 (BN T)}<e.

By continuing in this way, and applying the Besicovitch-Morse covering theorem an
infinite number of times we obtain a system
le"'jk’ k:l’ 2, “eey jlzl, “ey ’nl,
for each §,, j,=1, ..., n,,,
for each §,9,, J3=1, ..., %), ju

for each 7.1 eee Ti—15 jk::]-’ sess njl...ik_l’
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is contained in the interior of R; and is of diagonal

of closed cubes. Each R; _; ;. g1

less than 1/2%. The cubes R .7, are pairwise disjoint, for every k=1, 2, .... Moreover,

for every k=1, 2, ..., we have

i1

ar(@— U& ... 0 T)<e,

where the k-tuples 4; ... j, vary over the finite set of possibilities.
The cubes E;, ... . chosenvat the kth stage will be designated as of rank k. Then every
cube of rank %+ 1 is contained in the interior of a cube of rank k.
For e’very k=1,2, ..., let
Vi=U(R, ., 0nT)

£

and let V= FI V.

k=1

Since each R, N T is non-empty, and T is closed, it follows that V< 7. We show that

V=(UR,..,)
k=1

Clearly, V<= NF-(U R, ... ;)

Conversely, if 2€ ni°=1(UR;1...;k , then z is a limit point of 7. Since 7 is closed,
€T, so that z€ U (Bj...;, N T)=V,, for every k=1, 2, .... Hence z€V.

Finally, since (@ — V) <e, for every k=1, 2, ..., it follows that x(Q—V)<e.

In the above construction, all cubes involved may be chosen so that {f,} converges
uniformly to f on almost all line segments on each of their boundary faces which are in

any coordinate direction. We make certain that they are so chosen.

6. The density of S is 1 at every point of 7', hence of V. The boundaries of the &;, .,
are pairwise disjoint. We consider a closed frame about the boundary of each E; , so
that the frames are pairwise disjoint and their union has density 0 at each point of V.
We accomplish this in the following way.

For a cube R, with boundary &R, the frame of width % about &R is the closed set
between 2 closed cubes concentric with R, the 1arger one having edges which exceed those
of B by h, and the smaller one having edges which are exceeded by those of R by 4. Since
the boundaries of the E; 3, are pairwise disjoint we may put frames &, . ; about the
sets OR, . ; in such a way that the frames are pairwise disjoint and also meet no
aRil...ikik+1'
wise disjoint. A frame about the boundary of a cube of rank k will be called a frame of
rank k.

Thus we may choose the Gy,...;, so that, even for different &, they are pair-
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For every k=1, 2, ..., there is an M, such that if R is any cube such that at least one
set RNE; ., , is non-empty and the set RNG, ; is non-empty, then the measure
of the portion of B which is inside @ ; but outside all the Giootyinsn

Let {¢,} be a sequence of positive numbers such that D, & < co. Shrink each frame
Gil,,,ik to a frame F;_ ., about OR, ., so that, for every k=1,2, ..., the sum of the

11. ) ’Lk
measures of the F';, ,; are less than g M. Now, let €V and let E be a cube containing z.

exceeds M.

Let r be the smallest rank of frames ¢, ; which meet E. Then,
m(RY>M,+M, ,+....
But, m(BN(UF, . )y <e, M, +e Moy + ...,

m{BN(UF,.. 1))
m(R)

so that <> g

k=r
Since 7 goes to infinity as the diagonal of R goes to 0, it follows that |J Fis, has density
0 at 2. In other words, the density of S—UF, ., is 1 at every 2€V.

7. We need the following lemma which was proved for »=2 in [10].

Lemma 1. If f€C and I is an open interval then

lim «; (I) = ay(I).

Proof. We first show that if H is any hyperplane parallel to a coordinate hyperplane
then «;(H)=0. Let H be normal to the z; direction. Then, for every j=¢, |u,|(H)=0,
since |u,| is defined as the integral of a variation function with respect to (n—1) dimen-
sional Lebesgue measure, and |u;|(H) is this integral on a set of (n—1) measure zero.
Moreover, |u;|(H)=0 since, for almost all points (27, &,) in H, f is continuous in the =,

direction. Then, using the Lebesgue dominated convergence theorem, we obtain

|44 (H) = lim fd‘ii' V(f, &, (2] —e, 2l +¢)) = 0.
e—>0

Tt follows that o (Hy<m(H)+ 3 || (H)=0.
i=1

It is known (e.g. [8]) that for every f€ 4 and every interval J, whose closure is contained
in 7, that lim,,', ara () Z ay(J), and that, for every open interval K, which contains the
closure of I, lim,, ey, (1) <o, (K). Since for f€L, a (0I)=0, for every >0 there are J and
K as above such that «(J)>a/(K)—7. We then have
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[lim o, (1) = o (D)| <,

for every 7 >0, proving the lemma.
Tt is easy to give an example of an f€ 4 for which the lemma fails to hold.

8. We now consider the restriction of the function f to the set V defined in § 5. We
obtain an extension g of this function to @ which is approximately continuous at every
'€V and is continuous at every x€Q — V, except at points on the boundaries of the cubes
R,
disjoint closed cubes. Suppose |f(z)| <M, for every x€@, and let 4, be the (rn—1)-dimen-
sional Lebesgue area of 8@y, k=1,2,.... We consider sequences {z}, {{x}, and {&} of

oty Lot Q=URy ;. k=12, ... Then @, is the union of a finite set of pairwise

positive numbers such that
D&<e, Dqdi<e and 220, M<e.
K<1 k=1 k=1

We first define ¢ on @ — int @, as an integral mean f,, of f, where m, is chosen so that

ay)  |fm (@) —f(@)| <1 for every x€S,
b,) ]fmx () —fm(x)l <7, on. all of 0@,

except for a subset of (n—1) dimensional measure less than {;, for each m>m;, and

¢)  ofm, (@ —int @) <a(Q—int Q) +&y.

That m, can be chosen so that a,) holds follows from the uniform convergence of {f,}
to f on S, that it may be chosen so that b,) holds follows from the choice of the R, ;

so that {f,} converges uniformly on almost all lines on their boundaries which are in

k

coordinate directions. For ¢,), we appeal to Lemma 1.
We next define g on @, —int @, as an integral mean f,, of f, where m,>m, is chosen
so that

a) | fme (@) —f(x)| <} for every z€S,
bl) ]fma (x) _fm(x)l <772 on a’n Of 8@2’

except for a subset of (n —1) dimensional measure less than ,, for each m >m,, and
Cg)  Omy(Q1 —Inb Qo) <oty —int Qy) +&,.

We continue by induction. Having defined m, <m,<...<my_;, and defined g on
Qi1 —int Q; as fm, =1, ..., k—1, we define g on @ —int @_; as f,, where my>m,_, is

chosen so that
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&) | fm,(x) —f(2)] <1/k, for every x €8,

by) | fm, (@) —fu(@)| <n on all of 8Q,, except for a subset of (n—1) dimensional meas-

ure less than {, for each m>m,, and
) Ot (@r—y —INb Q) <otf(Qy —int @) + 5 ke

In this way, g is defined on all of @, and is equal to f on V, sinee

@~ V=U (Qx-1—int @),

k=1

where @ =¢),. The function g is double valued on 8@, for every k. We select either of the
two continuous branches. The set for which f(z)=+g(x) is a subset of @ —V. Now

w(@= V)= 3o (@u-a—int Q)+ 3,60,
< ‘i o (@1 —1int @) + § &t § o, (0Qk)-
k=1 k=1 k=1

But ;El(x"(Qk_l—int Q) S (@—V)<e,

and >4 &, < e. Moreover,
2 o, (0Q) = Z B (0@ < Z ﬂchk"‘ Z 2ME<2e¢
k=1 k=1 k=1 k=1

since |[fn, . (r)— fmg ()| <y, for all x€0Q, except for a subset of measure less than (;, on
which |f,,,  (®)—f,, (x)| <2M. This shows that o, (Q —V)<4e.

The function ¢ we have constructed is approximately continuous at every x€ V. For
this we first note that § has density 1 at z and { is continuous at x relative to 8. So, let
£>0 and let 6>>0 be such that if y€S and the distance from y to z is less than §, then
| /() ~f(x)] <e/2. Moreover, let 1/k<g/2. There is an R, _, such that z€int R, ;. Then
yE€SNint B, ., implies

l99) ~9@] <o) ~1)] + [ —fe)] <+ £ <e.

Thus, ¢ is approximately continuous at x.

It is clear, by the construction, that g is continuous at every point in @ —V, except
at points in 8Q,, k=1, 2, .... On 8Q,, we may define g as either the continuous function
fm_, or the continuous function f, . The contribution of 8¢ to «, is the n dimensional
measure of the set between these continuous surfaces.

12 - 662903. Acta mathematica. 117. Imprimé le 9 février 1967.
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9. We now show how the discontinuities on the sets Q,, k=1, 2, ..., may be removed.
. of pairwise disjoint frames about the boundaries 8R,~1m,~lc SO

that the density of UF, ., is 0 at each €V. Then, any modification of g within the
frames will not change the approximate continuity of g at the points of V. Welet B=R, _;

We have a system F;

k
be an arbitrary cube in our system, and let F be the corresponding frame about oR. The

technique we use is to transfer the discontinuities of g from the surface &R to the surfaces
of two other cubes, but with the saltus of the function greatly reduced. By repeating
the operation, we obtain a sequence of functions which converges uniformly to a contin-
uous function % in F, which agrees with ¢ on the boundary of F, and is such that oy (F)
is not much greater than o (F). We proceed with the details.

Let >0 and let 252, §<oo and D 7.1 & <7. Now, let 4 and B be cubes concentric
with R, with 94 and 0B in the interior of F and with

A<int R and Rcint B.

Then let {4,} be a decreasing sequence of cubes, and {B,} an increasing sequence of

cubes, all concentric with R, such that
int R>4,, int B> R
int 4,24, int BB, m=1,2, ..,
and A,,<int4,, B,<int B,,, m=1,2,..

Let H,, be the frame bounded by 84, and éB,, m=1, 2, ..., and let H be the frame
bounded by 04 and 0B. Then {H,} is an increasing sequence of frames about oF, all
contained in the frame H, which in turn is contained in the interior of the frame F.

We define a sequence {g™} of functions on F. Let g'=g on F—H,. On H,, let

g =gx,, where %, is chosen so large that

a) |g(x) —gr ()] < on the boundary of H,,
B)  ap(int Hy) <o(int Hy)+&;,
v1)  oq(0Hy) <o, (0H:)+&y,
and for every z€F,
41) [gl(x)—g(x)l < 2K, where K is the maximum of the saltus of ¢ on 9R.

In particular, we have o, (F) <o (F)+2&;, and the saltus of g* does not exceed {;
at any point of F.
Let g2=g! on F —H,. On H?, let g2 —g;,, where k, is chosen so large that

) |gHx) —gi,(x)] <, on the boundary of H,,
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Pa)  op(int Hy) <apn(int H,) +&,,
')’2) %g2 (OH,) < Xy (6H,) +-&,,
and, for every z€F,

0z) Igz(x) — () I <2{;.

In particular, we have o, (F) <oy (F)+2(,, and the saltus of ¢g* does not exceed {,
at any point of 7.

By continuing, we obtain a sequence {g™} of functions, all continuous and agreeing
with each other on F — H, such that

(i) ¢™is discontinuous only on 0H,,,
(i) |g™ti(x) —g™(x)| <2(,, for every € F,
(1) am(F)<otpm1(F)+2L,, and
(iv) the saltus of g™ does not exceed £,, at any point of F.

Since >3 _1 {,< oo, the sequence {g™} converges uniformly to a function 4. We note
that % is continuous on F, since for every z€ F, and every m, the saltus of & at z is less
than

tn=Lat 3 2L

Since {t,,} is a null sequence, the saltus of & at « is zero.

Moreover, by lower semicontinuity,
an(F)<lim inf ot (F) < og(F) +2 3 &, < oty (F) + 27.
m m=1

Having established this, we now order and relable the countable set of frames F Fiowedy B8
O R L

Let %,,>0 be such that 2> _; ,,<e. For each m=1, 2, ..., modify g in the frame F,, as in
the above construction, so that

The resulting function % defined on € is equal to f on V, is approximately continuous at
every €V, is continuous at every x€Q—V, and
“h(Q) < “f(Q) +58.

This completes the proof of the direct part of our main theorem. Specifically, we

have proved:



180 CASPER GOFFMAN

For every fEL and £>0 there is an approximately continuous g such that if K=
[2: f(x) =g(2)] then a{(E)<e and a,(E) <e.

10. We now turn to a proof of the converse. In this connection, the main fact is that
if f€ 4 is approximately continuous then f€ L. We consider f€ 4 with support in the in-
terior of a cube Q. For a given ¢=1, ..., n, we consider the linear Blumberg measurable
boundary %, as defined in §3, in direction z;. Let @=@,;x (a,b). For each Z;€Q, and
x,€(a, b), let V(z)=V(z,, %) be the variation of u(x;, Z;) on the interval (a, ;). Then ¥V is
a measurable function on Q. To show this, we proceed as before and let a, <a,<...<a,
be such that max (@, —a, @5—ay, ..., b—a,)<1/m, and the u(a,, &) are measurable for

j=1, ..., k. Then let

vm (xi: x_i) = z lu(a_h iz) - u(ajfl; ji) l'
aj<Ti

The functions »,, are measurable and

V(x)=1lim v, ().

Suppose now that f€A4 but f¢L. Then there is an ¢=1, ..., n for which the associated
V(x) is discontinuous at a set of points in @, which is not of measure 0. For any pair of
reals s and ¢, s<<t, let T =[z: V(x)<s] and U =[z: V(z) >¢]. Then T and U are measurable
sets. We associate functions ¢ and v, defined on @;, with the sets 7' and U. For each
F,EQ,, let ’
$(&;) =sup [2g (z;, £)€T] and (&) =inf [z;: (z;, £,) €U

Then ¢(&;) <u(Z;), for every Z;€Q,;. We note that the functions ¢ and y are measurable.
Since their measurability does not seem to be standard knowledge, we indicate a proof.

The measurable set 7 is the union of line segments I(&;), with end points (a, #;) and

{$(x;), ¥;). Let >0. There are intervals

Iy o Iy Ty T, s Ky, Ko, ..o

isuch that >m(J;)<n and 21 m(K;)<n,
i1 i=
with Te(UI)u(UJ,) and T>(UI)—(UK),
=1 j=1 i=1 i=1

(e.g. [12]). Associate with each interval I=1I,x (c, d), the function { defined by {(Z;) =0,
#;¢1, and {(£)=d—c, £,€1;. Now, let r; be the function associated with I, j=1, ..., m,
s; the function associated with J,, j=1,2, .., and ¢; the function associated with K,,

=1, 2, ..., in the above manner. Then, let
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m (=) m 2]
¢1=27‘f+23j, and ‘1’2:2";_2%"
j=1 i=1 i=1 J=1

The functions ¢; and ¢, are measurable and summable, ¢,(Z)) <@(E;) <y(%,), for every
%,€Q,, and [o, $o<Ja; ¢, +27. Since this holds for every 5 >0, ¢ is measurable. Similarly,
y is measurable.

The set for which ¢(Z;) =(Z;) is measurable. Since V(x)=V(x;, #;) is monotonically
non-decreasing in x;, for every #,, and is discontinuous for some z; for each &; in a set
which is not of measure 0, there is a pair s, ¢, with s <1, for which the corresponding func-

tions ¢ and y are such that the set
4 =[2;:4(&;) =p(Z))]

has positive measure. We shall henceforth assume this holds and consider the function ¢
defined on the set 4.

11. We need a fact about approximate differentiability of measurable functions. For
the one variable case, such a result has been obtained by Burkill and Haslam—Jones [3],
and for the two variables case, the kind of result we need follows from a theorem of Ward
{24]. Tt seems that the methods of neither author extend readily to n dimensions. We are
able to give a simple proof of the fact we need.

Let f be a bounded measurable function defined on a measurable set 4 of positive
measure. There is an increasing sequence {4,} of closed sets such that f is continuous
on each 4,, and m(U:-1 4,)=m(4). Let k>0, and for each x€4, let

B® = [y:M<k].
ly— =l
Let o(z, r) be the notation for an open ball of center x and radius r. Let 0<¢ <1. Let 7,>0.
Let G4 be the set of points €A such that, for some r<r,, the relative measure of

B¥ in o(z, r) exceeds ¢. Let G,, be the set of points x€4,, such that for some r<r, the
relative measure of B N A4, in o(x, r) exceeds ¢. Then

¢=(U Gz,

where Z has measure 0. Each @, is easily seen to be open relative to 4,, so that G is
measurable. ) .

This remark implies that if, for each z€ 4,

)
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then the set of points x€4 at which the density of 4, is 1 is measurable, and for every
0<0<1 and 7,>0 the set of points €4 for which, for all r<r,, the relative measure of
A, in o(z, r) is at least § is measurable.

We now let <1 he so large that there is a ¢(f), independent of r, such that if
x€ao(y, ), yEo(x, r), S<o(z, ) has relative measure in o(x, r) at least §, and T'<o(y, r)
has relative measure in ¢(y, r) at least 0, then the diameter of SN T exceeds ¢(6)7.

Suppose the set of points €4 at which the density of 4, is 1 has positive measure.
Then, there is an 7,>0, such that the set E of points z such that, for every r <r, the rela-
tive measure of A, in o(z, r) is at least § has positive measure. Let x€4 be a point at
which the density of £ is 1. There is an r <r, such that the relative measure of ¥ in o(z, r)
exceeds §. Let y € E No(z, r) be such that

fly)>sup [f(z) :2€E N o(x, r)] —~ kﬂ;_)r

Now, A, has relative measure at least 6 in ¢(y, 7). The diameter of the set
A,no(y, r)N ENolx,r)
accordingly exceeds ¢(0)7. There is thus a « in this set such that |y —u| >¢(0)r/2. Then

k(@) r
f~ ) > ku—y] = 22O
But then f(u)>sup [f(z):2€ E N o(x, r)]. Since «€ & N o(z, r), this contradiction shows that
the set of points €4 at which the density of 4, is 1 has measure 0. By considering the
function —f we obtain a similar result regarding sets at which (f(y) —f(x))/|y —=| < —k.
Finally, the boundedness restriction is redundant. We thus have the

Lemma 2. If { is a measurable function of n variables on a measurable set A, then for
every k>0, for almost all x € A, the upper densities at x, of the sets for which (f(y) — f(x))/| y— x|
> —k and (f(y) —f(®))/ |y —x| <k, are positive.

Remark. In contrast with Lemma 2 it is possible for the approximate limit of

|H(y)—f@)|/|y —=z| to be infinite almost everywhere.

12. We now show that f€ 4 and f¢ L implies that there is an x at which f is not
approximately continuous. We start with the measurable function ¢ defined on the set

A<= Q, of positive measure. For every #,€4,

im w(r,)— lim w(z, &) =t—s.
zi—> (&) + x> (&) —
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We may assume then that, for every &, in a subset of A of positive outer measure,

lim  w(x;, &)= lm  w(x, )+ (E—s).
> (&) + Tj~> $(Fi)—
Letting g=§(t—s), there is then a subset B< 4 of positive outer measure, p>0, and r

real, such that, for every Z,€ B, we have

w(x;, Z;)<r, for x,€($(F;)—p), (&)
and u(x;, £;)>r+q, for x,€($(L,), $(£)+p).

We now choose k>0 so small that, for every cube R= x].; [#;,—k, 2;+k], >0, the

conical surface
me=a {3 (= g,

with vertex z, meets the lateral faces of R at ordinates y; <x;+5/2, i.e., at a distance more
than h/2 from the upper face of R. The choice k=1/2» will accomplish this.

Let &€ B be a point of approximate continuity of ¢, relative to 4, using (n—1) cubes
in @;, and a point of outer density 1 of B, and such that the upper densities of the sets

[0 g ]

ly—i - xil
and D; = [?]t : *——M(@) : Z’:-(]ii) > — k]

at Z; are positive, say greater than 3w >0. There is an A;>0, k,<p/2, such that for any
(n—1) cube I<Q,, with center Z; and edge less than Ay, the relative measure in I of the
set C for which |4(7;) —¢(%;)| <p/2 exceeds 1 —w, and the relative outer measure of B
in I exceeds 1 —w. There is a sequence {I,} of (n—1) cubes, with edges smaller than &,
and converging to zero, in each of which the relative measure of Dj exceeds 3w, and
another such sequence {I,}, in each of which the relative measure of Dj exceeds 3uw.
The relative outer measure of BN C'N D;, exceeds w in each I,, and the relative outer
measure of BN CN D;‘ exceeds w in each I,.

For each 1,, we consider the » cube K,, with center (¢(Z;), £) and projection I,
in @,, and for each I,, we consider the n cube K,, with center (¢(%;), Z;) and projection
I, inQ,.

Let S=BnCND; and T=BNCN DE"; also let A, be the edge of K, and &, the
edge of K,,, m=1, 2, .... For each §,€1, NS, we have
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P _ -y Pm
H(&) — 2 <) < P(&) + i

Now, since §,€B, u(y,, §;)>r +q for all y €((7,), (7.} +p). It follows that u(y,, §;)>r+q,
for all y,€(H(T;) +h/4, $(&;) +k/2). The relative outer measure in I n Of the set for which
u(x) >r+q then exceeds jw, m=1, 2, ....

Similarly, for every 7,€.1,, N T, we have
P oy P
$(&) + 97 ¢(7:) > $(F)— %

Also, wu(y,, §;) <r for all y,€(4(7;) —p, (7)), so that w(y, §;) <r, for all y,€((Z;) —hn/2,
&(&;) —h,,/4). The relative outer measure in I, of the set for which u(z)<r then exceeds

1w, m=1,2, ... Thus, since u is equivalent to f, f is not approximately continuous at
(H(£,), Z;). We thus have

Lemma 3. If f€ A4 is approvimately continuous then f€L.

13. In order to complete the proof of our theorem, it remains only to show that if
f€4 and f¢LC, then there is a k>0 such that, for every g€L, if B =[z:f(z)=+g(x)], then
o,(H)> k. Just as in the above discussion, there is a measurable 4 <@);, of positive measure,

a measurable function ¢ on 4, and ¢>0 such that, for every #;€4,

lim  wu(w,&)— lim wux, )| >q.
T —>P(Ei) + 2> (Ti)—

There is then a B< A of positive outer measure x>0 and a p>0 such that the saltus

of « is less than ¢/4 on each of the intervals

(p(F) —p, $(&))) and (H(Z,), (&) +p)

k=min (,up, ’l—‘f) .

for every %;€ B. Let

Suppose g€L, and let E =[x:fix)+g(x)]. Let C< B be the subset for which at least
one of E> (d(Z;)—p, $(F)) or E>(H(Z,), $(Z;) +p) holds, and let D=B—-C. The outer
measure of either C or D is at least ym,(B)=4}u.

a) Suppose m,(C)>u. Then

e (E)=m(B)22p-tuzk.
b) Suppose m,(D)=ipu.
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For each Z,€D, there are z,€(¢(F;)—p, $(F;)) and y,€(P(E;), 6(&;) +p), such that
w(@;, &) =g(x;, T;) and u(y,, &) =¢(¥;, ;). There is then a subinterval (a, b) of (z,, ;) with
H(E) € (@, D), ulz;)+g(x;) on (a,d), except possibly at ¢(;), and |g(b) —g(a)| >¢/2. Then
V(g, &;, (@, b))>¢/2 and

ay(B)> || (B)> L B>k,
We have thus proved. '
LeMmma 4. If f€ 4 and {¢ L then there is @ k>0 such that if g€EL and

E = [2:f(x) +g(2)]
then o (E)>k.
Lemmas 3 and 4 prove the converse of the following theorem whose direct part was
proved earlier in the paper.

THEOREM. If f€ 4 then fEL if and only if for every £>0 there is an approvimately
continuous g such that if E=[x:f(x)=+g(x)] then a(E)<e and ,(F)<e.

14. It seems appropriate to remark on the case of 2 dimensions. In [10], we obtained
a result like the above theorem except that approximate continuity may be replaced by
continuity. Thus, for this case, if f€ 4, then f€L if and only if for every £>0 there is a
continuous ¢ and an approximately continuous % such that if F=[z:f(x)=g(x)] and
F =[xz:f(x) +h(x)] then o (B)<e, afF)<e, «,(H)<e and a,(F)<e. One of these results
is stronger in one direction and the other is stronger in the other direction.

It may be instructive to see how the approximation by means of continuous func-
tions may be proved, for n=2, using the methods of this paper. Let £¢>0. We consider
the sets @, k=1, 2, ..., each the union of finitely many pairwise disjoint closed squares,
designated of rank k, such that each square of rank k+1 is in the interior of a square of
rank k, and the zero dimensional closed set V = 7.1 Q, satisfies a/(V)> o, (Q) —e. More-
over, f is uniformly continuous on E=V U (|JzL;0Q,) with f, converging uniformly to f
on L. Using the technique of this paper, slightly modified so that g does not differ by too
much, within a frame from the values of f on the boundary of the square of which it is
the frame, we may obtain a function g such that

a) g(x)=[(x), z€V,
b)  oy(Q) <a(@) +e,
¢) g is uniformly continuous on E,

d) g is continuous on @—V.

We indicate how ¢ may be modified to a continuous function 4 on @ such that h(x)=f(z),
2€V, and o, (@) < o (Q).
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Letting @ =@Q,, on each set @, ; —int @,, =1, 2, ..., define
y; =max [g(2):x€0Q,_, U0Q,], ¢;=min [g(x):2€0Q, ,V 2¢;]

Vi if g(z) =i,
Then define % as hx)=1qg(x) if ¢, <g(x)<y,
¢ if glx) <o

Then «,(§;_, —int @) <e,(Q;_, —int Q,), the function % is continuous and our result follows.

15. The theorem of this paper, and in particular Lemma 3, reveal a surprising con-
nection between linear continuity and approximate continuity, the latter being an =»
dimensional notion. It may be of some interest to note that no such relation holds for
other forms of continuity.

For this purpose, we give an example of a function f defined on 3 space such that
fE€ A, [ is approximately continuous, and every g equivalent to f is not continuous, as a
function of two variables, on any plane parallel to a given coordinate plane.

Let F be a function of 2 variables, defined on the closed square [0, 1] %[0, 1], which
is zero, except on a sequence {c,} of disjoint closed disks converging to (3, 4). The {s,}
are such that the sum of their circumferences converges, and the density of the set Uo,
is zero at (4, 1). We define F so that its graph on ¢, is a right circular cone of altitude 1.

We define f on the unit cube by means of

He, y, 2) = F(z, y).
The function f is continuous at all (z, ¥, ) for which (z, ¥) +(}, §) and is approximately
continuous at the points (4, , z). Finally, if ¢ is equivalent to f, then for almost all

2€[0, 1], f is not continuous at (3, }, 2) as a function of (, ).

16. We now show that the class £ is invariant under bilipschitzian mappings. By a
bilipschitzian mapping we mean a mapping f which is one-one between the open cube ¢
and a set P in n space, for which there is an L such that for every z, y€Q, |f(z) —f(¥)| <
L|z—y|, and for every &, n€P, |[ Y& —f(n)| <L|£—n|. Aset ScQ is said to be d-open
[14], if 8 is measurable and the density of § is 1 at every point of S. We show that
bilipschitzian mappings take d-open sets into d-open sets. First, there is a constant K >0,
depending only on % and L such that for every cube R<@), with center z, f(R) contains

a cube R’ and is contained in a cube R", with centers at f(z), such that
1
m(R") >—Ilf m(R) and m(R) >% m(R"),

and the same holds for f-1, for the same K.
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Let €8 and let R be a cube with center f(x). Let U be the cube of center z, con-
taining f~(R), with m(U)=Km(R). Let ¢>0. There is an >0 such that, if m(R) <z,
the relative measure of § in U exceeds 1 —#/K?. The U —8 may be covered by a sequence
{1y} of cubes such that

3 m(L) < m(0).
Then, m({U~$) < 3 m(f() <K 3, miL) < m(T) <qm(R),
and m(f(S) N R)> (1 ~n)m(R).

It follows that f(8) is d-open. Since a function is approximately continuous if and
only if the inverse images of open sets are d-open, it follows that if g is approximately
continuous, and f is bilipschitzian then gof is approximately continuous.

Using the constant K above, it is a standard fact that if @ is an open set, g is a meas-

urable funetion, and f is a bilipschitzian mapping, then

L(G)g J‘GgOf

In particular, this holds if ¢ is the area integrand for a lipschitzian function 4. Then, for

<K

any lipschitzian » and bilipschitzian f, and open set G, we have
an({(G)) < Katpof ().
Now, let G be open, and let {(,,} be a sequence of open sets with

G,<Gpy, m=1,2, ..,
and UdaG,=a

Let &, be lipschitzian on G, m=1, 2, ..., with {h,} converging in measure to a function

h and {o, ,(@,)} converging to oy, (). Then
a(f(@)) Shim inf ey, (F(Gn)) < K 1 o,,00(Gr) = Kothos(G)-
It now follows immediately from our theorem that the following corollary holds.

CoroLLARY. If g is linearly continuous and of finite area, and f is bilipschitzian,

then gof is linearly continuous and of finite area.
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As a consequence of this corollary, functions which are in £ with respect to any
rectangular coordinate system are also in £ with respect to any other rectangular coordi-
nate system.

Let f€L with respect to a coordinate system (y, ..., #,). The function g, equivalent
to f, which is linearly continuous in this coordinate system, was obtained in [9] as the
limit of the integral means {f,} of f. Since f€ L with respect to every rectangular coor-

dinate system, we may now draw the following consequences.

a) The integral means {f,} converge to g on a set S whose complement projects on
every hyperplane as (n —1) measure zero.

b) The function g, defined on S, is continuous along almost all lines in every direction.

¢) If M is any “smooth” (ie. C') (n—1) dimensional manifold, then g is defined

(n—1) almost everywhere on M.
17. In this last section, we discuss the completeness of £ with respect to the metric
d(f, g) =6(f: g) +A(‘xf’ ag)

which was introduced in § 1. We shall also note that the space F of functions whose partial
derivatives are functions is complete with respect to this metric.

We {irst consider the one variable case. A function f€L if it has an equivalent con-
tinuous function, with compact support, which is of bounded variation. Suppose then
that f is of bounded variation and not equivalent to a continuous function. It may be
taken so that there is, for example, a k>0 such that f(x+)>f(x—)+k, and a 6 >0 such
that the variation of f is less than %/8 in each of the intervals (x—6, ) and (z, +9). Now,
there is an 7>0 such that 6(f, g) <% implies there are & €(x—4, x) and &,€(x, x+9) for
which |f(&,)—g(&,)| <k/8 and |f(£,) —g(&,)| <k/8. Suppose then that g is continuous and
that 8(f, g) <. There is then a pair of intervals I<(x—4, z) and J< (x, z-+6), on which
f=+g and on which the sum of the variations of g exceeds k/2. This shows that £ is
complete.

For the n variables case, suppose f€ 4 and f¢L. Then, for some i=1, ..., », for a
set B of points &,, of positive outer measure, there is a k>0 and 4 >0 such that, say, for

each ;€ E there is an x,(,;) such that
Hae @)+, T) > fli@:) —, ) +k,

and the variation of f(z;, &) in 2, is less than k/8 in each of the intervals (z,(%;) -0, z,(&;))
and (x,(%;), x,(%;) +0). There is an % >0 such that §(f, g) <n implies that for every Z;, not
in a set of measure less that }m,(E), for every interval (x;, x;+0) there is a &,€(x;, x;+6)
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such that |f(£,) —g(&;)| <k/8. So, let g be continuous and such that d(f, g) <#. Then there
is an F< K with m(F) > im,(E), such that for every &,€ F there are intervals

I (2(%,) =6, x(Z))) and J<(x(F)), x,(%;)+9),

on which f=g and on which the sum of the variations of g exceeds k/2. It follows that

Mag, ) > m (1)
so that L is complete.
We turn to the completeness of F, and again consider the one variable case. Let f€L,
with support in (a, b) be non absolutely continuous. There isa £>0 and a compact set E

of measure zero, such that for any 6 >0, there is a disjoint set of intervals

[als bl]’ seey [am; bm],

the sum of whose lengths is less than 8, with

Now, let g be absolutely continuous. There is a >0 such that for every S, of measure less
than 8, o, (S)<k/2. Then, if 8= UjL1{a;, b;], where m(S)<d and /", |f(b;) —f(a;)| >k, we
have «,(8)>k. Since a,(4)=ua,(A), for any A on which f=g, it follows that there is a sub-
set B< S on which f44g, with o (B)> o (B)+k/2. Since L is complete, it follows that F
is complete. ‘

We leave the necessary adaptation for the n variables case to the reader.

A result of J. Michael [16] in a form given by author [11] asserts that for every
J€ A, for every ¢>0, there is a g €C" such that f(x) =g(x), except on a set of measure less
than ¢, and | (@) — o, (Q) | <e. This result implies that for every f€ F there is a g €C? such
that if E=[x:f(zx)=g(x)], then o (F)<e¢ and a,(F)<e. Indeed, this gives a characteriza-
tion of ¥ similar to the one given for £ in this paper, but with continuously differentiable
functions in the position of the approximately continuous ones.

Using this fact and the results of this paper, we may make the following assertions,

always using the above metric.

a) In one dimension, the space of continuous functions of bounded variations is
complete.

b) In two dimensions, £ is the completion of the set.of continuous funections in 4.

¢) In n dimensions, £ is the completion of the set of approximately continuous func-
tions in 4.

d) ¥ is the completion of C.
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