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Introduction 

In his paper [15], D. C. Spencer has given a canonical procedure for associating to a 

differential operator ~ a sequence of differential operators 

0 ~ 0 ~ _C o ~ _C 1 ~ ... ~ _C ~ ~ O, (1) 

which, in the sense of formal exactness, resolves the sheaf 0 of germs of solutions to the 

homogeneous equation Os = O. In  the case where ~ is elliptic Spencer has proposed a certain 

boundary value problem for the purpose of studying the cohomology of (1), or more 

precisely, the cohomology of 

F(~ ,  C O ) ~ F ( ~ , C  1) D~  ... ~ F ( ~ , C  n) - -~  0, (2) 

where ~ is a compact manifold-with-boundary and F(s C i) is the space of smooth sections 

of C ~ over ~.  This boundary value problem, the D-Neumann problem, is the topic of this 

paper. 

The D-Neumann problem is closely related to the existence problem for elliptic 

differential equations; a theorem due to D. G. Quillen asserts that  the exactness of (2) 

at F(~/, C 1) is equivalent to the existence of global solutions on f / t o  the equation Os=t, 

where t satisfies the appropriate compatibility conditions in the overdetermined case. 

Similarly the exactness of (1) at _C 1 is equivalent to the local solvability of ~s =t. 

Our efforts here yield some sufficient conditions for the solvability of the D-l~eumann 

problem. These take the form of sufficient (and, for the most part, necessary) conditions 

for certain a priori estimates to hold. However, the conditions which have wider scope 

are also more difficult to interpret; in general, the problem of interpreting the conditions 

remains. 

Chapter I begins with the definition of the jet bundles and a description of the jet 

representation of differential operators. In section 5 we define the first Spencer sequences, 

and we establish the stability of these sequences in section 7. The results in section 8 prove 

the theorem of Quillen quoted above. Almost all of the definitions and propositions in 

Chapter I can be found in Quillen [12]; however, to suit our purposes, we give different 

proofs in several cases. In particular, the proof of the main proposition in section 7 is due 

to the author. 

In Chapter I I  we construct the second Spencer sequence and show that  its cohomology 

is isomorphic to the stable cohomology of the first Spencer sequences. We also show that  

the associated symbol sequence is exact whenever the original operator is elliptic. We then 

state the D-Neumann problem and give a priori estimates which imply its solvability. 

Following along lines suggested by the work of HSrmander [7], we reduce the study of 
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these estimates to  the s tudy  of similar estimates on the  boundary .  By  taking advantage  of 

certain formal properties of the Spencer sequence we obtain est imates which are simpler 

than  those given in [7]. At  the end of Chapter  I I  we discuss sufficient conditions for the 

solvability of the D - N e u m a n n  problem. 

I n  Chapter  I I I  we consider the restriction of the Spencer sequence to the boundary  and  

define the D~-problem. I n  section 3 we give a condition under  which the solvabili ty of the 

Db-problem implies the solvability of the  D - N e u m a n n  problem. I n  section 5 we discuss the 

D~-problem corresponding to the Cauchy-R iemann  equation; our  results here agree with 

those of Kohn-Ross i  [11]. 

Chapter I. The first Spencer sequence 
0. Notation 

Whenever  the  word " smooth"  occurs in connection with manifolds, bundles, or maps  

of these objects, it is to  be interpreted as meaning differentiable of class C% If  E is a vector  

bundle, we denote by  _E the sheaf of germs of smooth  sections of E. Unless s tated otherwise, 

a bundle map  between two bundles over the same manifold M is assumed to cover the 

ident i ty  map  M; we do not  require tha t  a bundle map have constant  rank.  I n  this chapter  

we consider only vector  bundles whose fibers are real vector  spaces; this is only for the  sake 

of being definite, and  all the results hold for complex vector bundles also. 

By  multi-index in n variables we mean  an n-ruble ~ = ( a l  . . . . .  an) of non-negat ive 

integers. We write I a[ = al +. . .  + ~n and ~! = al! " ... " ~n!. I f  / is a smooth funct ion on R n, we 

write ~ / for the part ial  derivative of / with respect to the ~-th coordinate place; we also 

write ~ = ~ '  �9 ... �9 3 ~  for a multi- index ~. I f  x = (x 1, ..., x n) e R  ~, then x ~ = (x l )~ . . . .  �9 (x~)%. 

Multi-indices will be used similarly in other contexts.  

1. The jet bundles 

Let  E ~ M  be a real vector bundle over a smooth  n-manifold M, let xEM, and let # be 

a non-negat ive integer. We denote b y  $x(E) the space of smooth  local sections of E at  x. 

W e  define an  equivalence relation on Sx(E) by  calling two local sections sl, s2ESx(E ) 
equivalent  if t hey  agree up to order/z at  x. This means tha t  for every smooth curve q9 : R - ~ M  

with q~(O)=x and for every  smooth  funct ion v ~ : E ~ R  which is linear on each fiber the 

derivatives 
d k 

should vanish at  t = 0  for k =0 ,  1 . . . . .  #.  We denote the set of equivalence classes by  J~(E)x 
and  write J~,(E) for the  disjoint union, over all x in M, of the sets J~(E),. J~(E) is called 
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t he  set of # - je t s  of sect ions of E;  t he  equivalence  class in J~(E)x of a local sect ion s is called 

t h e / z - j e t  of s a t  x. 

Our  a im in th is  sect ion is to  show t h a t  J~(E) is a vec tor  bundle  over  M.  Indeed ,  there  

is an  obvious pro jec t ion  J~(E)-+M, a n d  i t  is easy  to  see t h a t  the  f iber  Jz(E)z inher i t s  f rom 

S~(E) the  s t ruc tu re  of a vec to r  space over  R.  However ,  before p u t t i n g  add i t i ona l  s t ruc tu re  

on J~(E), i t  is convenien t  to es tabl ish  the  functor ia l  p rope r t i e s  of J~.  

Le t  E I ~ M  1 be ano the r  vec tor  bundle ,  le t  g:M-+M 1 be a di f feomorphism,  and  le t  

h: E-~  E 1 be a bundle  m a p  which covers  g. The  ma pp ing  f rom $~(E) to  Sg(x)(E1) def ined b y  

s~hosoff  -~ 

is compat ib le  wi th  the  equivalence  re la t ion  defining the  je ts  and  wi th  the  opera t ions  of 

add i t i on  and  scalar  mul t ip l ica t ion .  Thus  we ob ta in  a m a p p i n g  

J~(g, h): J~(W) -~ J~(E1) (1.1) 

which maps the  f iber  over  x l inear ly  in to  the  f iber  over  g(x). I f  M=MI,  E=E1, a n d  if g 

and  h are  the  i d e n t i t y  maps ,  t hen  J~(g, h) is the  i d e n t i t y  map .  I f  E 2 ~ M  2 is a t h i r d  bundle  

and  if gl:MI-->M2 and  hl:E1-->E2 have  the  same proper t i e s  as g and  h, t hen  

J~(glog, hlOh ) = J~(g~, hl)oJ~(g, h). 

Fina l ly ,  we no te  t h a t  for  an  open subse t  U of M we have  J~(E)v~J~(Ev); t h a t  is, J z  

commutes  wi th  the  opera t ion  of res t r ic t ing  to  U. 

W e  now give J~(E) a bund le  s t ruc tu re  in the  special  case where M is an  open subse t  

G of R n a n d  E-~M is the  t r iv ia l  bundle  G • Rm-~G. F o r  x=(x ~, ..., x n) in G an  e lement  s 

of Sz(G • R m) can be considered as a local Rm-valued func t ion  

s(y) = (si(y), ..., 8m(y)) 

defined for y = (yl . . . .  , y~) in a ne ighborhood  of x. The  sect ion s is equiva lent ,  in the  sense 

o f /z - je t s  a t  x, to  a un ique  R'~-valued po lynomia l  in (y-x) ,  namely ,  the  t r u n c a t e d  Tay lo r  

series 

ZI~I<,(Y - x)~= s(x)/:d 

of s a t  x. I f  we denote  b y  F m the  vec tor  space of al l  R % v a l u e d  po lynomia l s  of degree  a t  

mos t  /z in  the  inde te rmina te  X = ( X  1 ..... Xn), t hen  we ob ta in  a b i jec t ive  m a p  f rom 

J~(G • R m) to  G • ~'~ which sends t he / z - j e t  of s a t  x to  the  pa i r  

(x. ~,j<, X~s(x)/~!). 

This mapp ing  is l inear  on the  f ibers  and  thus  defines a bund le  s t ruc tu re  on J~(G • Rm). 

I f  a is the  # - j e t  of 8 a t  x, t hen  we wri te  o'= =~=s(x) so t h a t  the  m a p p i n g  J~,(G • Rm)-~G • F ~  

is g iven  b y  
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a-* (x, Zl-I<. ~X~ / ~ ! )  (1.2) 

for a in the  f iber  over  x. The  vec tors  aa ERm are  cal led the  componen t s  of a. 

Now le t  g be  a d i f feomorphism of G wi th  ano the r  open subse t  G 1 of R n, le t  (x, e)-> 

(g(x), h~e) give a bundle  m a p  h f rom G • R m to G 1 • R k, and  consider  the  m a p  

Jt~(g, h):J~(a • R m) ~J~(O 1 • R~). 

An  e lement  a of J~(G • Rm), is t h e / z - j e t  a t  x of the  sect ion 

~(y) = Y.r~l<.(y- x)~a./~!; 

= J~,(g, h)a is t h e / z - j e t  a t  g(x) of the  sect ion hosog -1, and  thus  

Tfl = ~ l a l < ~  ~ / ~ ( ( g - l ( y )  - -  x)aha- l (y)  a~/~!)ly=g(x).  (1.3) 

The m a p  J,(g, h) is t hus  given b y  

(x, 5r~ ~ ~ xV~!)  ~ (g(x), Z~a<. ~ i~/~!),  (1.4) 

where ~B is def ined b y  (1.3). I t  is clear  t h a t  J~(g, h) is smooth,  and  thus  i t  is a bundle  m a p  

f rom J~(G • R m) to  J~(G 1 • Rk). 

W e  are  now r e a d y  to p u t  a bund le  s t ruc tu re  on J~(E). Le t  U be a n  open subse t  of M 

which is d i f feomorphic  to  an  open subse t  G of R ~, and  assume t h a t  E~  can be t r iv ia l ized  

b y  a mapp ing  E v ~  U • R m. Composing wi th  the  d i f feomorphism U~G, we ob ta in  a bund le  

i somorph i sm 
h 

E v , G •  m 

4 ~ (1.5) 
U o , G 

We thus  ob ta in  a c o m m u t a t i v e  d i a g ra m 

Jl~(g, h ) 
J~(E)~ ~ Ji,(G • R m) 

U ~ , G 
(1.6) 

where  J~(g, h) is b i jec t ive  since J~(g, h)-l=j~(g -1, h -1) exists.  W e  use th is  d i a g ra m to  

t r ans fe r  t he  bundle  s t ruc tu re  of J~(G • R m) to  J~(E)u a n d  claim t h a t  the  s t ruc tu re  so ob- 

t a i ned  is i ndependen t  of the  choice of g a n d  h. Indeed ,  if 

E ~  ~' , G l x R  m 

U g' , G 1 
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is another bundle isomorphism, then J,(g,  h)oJ/~(gl, hl)-l=J/~(gog; 1, hohi  1) is a bundle 

isomorphism of J~(G 1 •  m) with J~(G x R m) so that the bundle structures on J~(E)u 

obtained by transfering are the same. If  U ranges through a covering of M by coordinate 

disks, the resulting diagrams (1.6) thus define a bundle structure on J/~(E). A local co- 

ordinate in Jz (E)  is obtained by composing the bundle map (1.6) with the bundle map 

described by (1.2); in such a local coordinate a jet a will have components aa ER m for I al </t" 

The coordinate changes for J~(E) are expressed by (1.3) and (1.4). Note finally that  the 

mapping (1.1) is smooth and hence a bundle map. 

2. An exact  sequence  

Let E ~ M  be a real vector bundle with fiber dimension m. Since the equivalence rela- 

tion defining the ( / t+l)-jets  of sections at x E M  is stronger than the one defining the 

/t-jets, there exists a mapping 

7t : J/~+1(E) -~ J~(E) (2.1) 

which sends the (/t + 1)-jet at x of a local section s to the #-jet of s at x. In  a local coordinate, 

is given by 

(X, ~lvl~<g+l X~(7~// ~!) --> (x, ~lvl<,  XV(7~/~!) �9 (2.2) 

I t  is clear that  z is smooth and hence is a bundle map. 

Denote by Sg+IT * the (#+  1)-fold symmetric product of the cotangent bundle T* 

of M, and define a mapping 

i : ~q/~+l T* (~ E --~ J # + I ( E )  (2.3) 

as follows. If  o>E(Sg+IT*| has the form o> =vl@v~'@...~)v/~+l| then choose a local 

section s of E with s(x) =e and local functions/1 ..... /~+1, vanishing at x, such that  d] ~ =v ~ 

at x. Then define iw to be the (/x + 1)-jet at x of the section [1.. . . . /g+l.  8. I t  is easily verified 

that  the definition of ie) depends only on r and that  i can be extended to all of (S/~+IT*| 

by linearity. In  a local coordinate i is given by 

(~, ZM- ,+  ~(dx) ~ | ~ / ~ !  ) -~ (~, ~z~ ~,~ +, X ~ / ~ ! )  �9 (2.4) 

Thus i is a bundle map, and in view (2.2) the sequence 

0 �9 S~+IT*(~E ~ ~ J~+I(E) ~ , J~,(E) ~0 (2.5) 

is exact. I t  follows immediately from the definitions that  the sequence (2.4) is natural in 

the following sense. 



T H E  D-]~ 'EUMAN~ P R O B L E M  229 

PROPOSITIO~ 2.1. Let E and F be two bundles over M,  and let h : E-> F be a bundle map 

w h i c h  covers the identity map o / M .  Then the diagram 

0 �9 S~+XT*| ~ J~+~(E) ~ J~(E) �9 0 

l |  ~ J~+i(1, h) ~, J~(1.h) (2.6) 

0 �9 S"+~T*|  �9 J,+~(F) ~ J , ( F )  * 0 

commutes. 

3. Differential operators 

Let E and F be real vector bundles over M With fiber dimensions m and k respectively. 

A differential operator of order # from E to F is'defined to be a sheaf map O : E - +  F which 

in local coordinates is given by a differential operator of order # in the usual sense. This 

means that  for a local coordinate x = (x 1 . . . . .  x n) defined on an open subset U of M and for 

trivializations Ev-~ U • R m and Fv-~ U • R k there should exist smooth (k • m)-matrix- 

valued functions A ~, 0 ~ l a l  <#,  defined on U such that  

Os(x) = ~1~1 <<.~ A~(x) ~ s(x) (3.1) 

for a section s(x) = (sl(x), ..., sin(x)) of U • R m ~ E~. 

To provide an example we construct a canonical differential operator 

~ : E_ -+ J~(E).  

To a section s of E we assign the section of J~(E) which maps x to the/~-jet of s at x. The 

sheaf map thus defined is denoted by ?'~. In  local coordinates ]~ sends the section s(x)= 

(sl(x) . . . .  , sin(x)) of E to the section a(x) of J~(E) with components (a~(x) ..... (r~(x))= 

as(x) =~s(x) ,  l a] ~</z. Thus ~ is a differential opeator of order/~ on E. 

P R  0 P 0 S I T I 0 ~, 3 . 1 .  T o  each di]/erential operator ~ : E_ -+ F_ o/order/~ there corresponds 

a bundle map ~(~ ) : J~ (E) -~  F such that the diagram 

J , ( E )  egD) _F 

_E " , _ F  

(3.2) 

commutes. Moreover, the correspondence 0 - + ~ ( ~ )  is one-to-one and onto the set o/ bundle 

m a p s / r o m  J~(E) to F.  

Proo/. Let ~ be a differential operator of order # from E to F. In  view of the local 

representations (3.1) of ~ the mapping 

$=(E)~ s-~ ~s(x) e F= 
15 - 682902 Acta  mathematica 120. Impr im~  le 19 ju in  1968 
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is compatible with the equivalence relation defining the jets and thus induces a mapping 

~(D)  :JI~(E)->F. If ~ is given by (3.1) in some local coordinate, then 9~(~2) is given by  

e , ( ~ ) a =  ~l~l<~A~(x)a~, (~eJz(E)~, (3.3) 

in the same coordinate. The mapping ~ ( ~ )  is smooth and thus is a bundle map. The asser- 

tions in the proposition are now easily verified. 

:Following Quillen's presentation [12], we illustrate the correspondence O ~ z ( O )  

with several examples which will be used in the sequel. 

Example 3.1. We let O : E ~ F  be a differential operator of order/~ and form the 

differential operator ? ' ~ : E - ~ J ~ ( F ) ,  which has order # §  The bundle map ffz+,(]~O) 

from Jz+~(E) to J~(F) is called the ~-th prolongation of ~ ( ~ ) .  By Prop. 3.1 the diagram 

J~+~(E) , J,(F) 
r ~,+~ ~, ~ (3.4) 

E 

commutes. We use this diagram to compute ~+~(]~O) in a local coordinate. Given 

a6J,+~(E), we consider the section 

s(y) =- ~l~l<~+~(Y - x)~ (;~/~ 

of E, which is defined for y = (yl . . . .  , y~) in some neighborhood of x=(x  1, ..., xn). Now 

]~+~8 is a section of J~+~(E) through a, and thus by (3.4) ~ =Q~+~(j~)a is equal to the value 

of j ~ s  at  x; that  is, 

T~ = ~ Os(x) = ~(~l~l<~ ~lrt<, Av(Y) a~+v(Y - x)~/~! ) l~= ~ (3.5) 

for [fll ~<v if ~ is given by (3.1) in the local coordinate. If either the coefficient matrices 

Av(y ) are constant, or if a is in the kernel of :~:J~§ ), then (3.5) simplifies to 

(3.6) 

Example 3.2. If G is an open subset of Itn, then ~ is a first order differential operator 

from the trivial bundle G x Itm to itself. We will denote ~(~v) and all of its prolongations by 

~ .  By (3.6) if a6J~+1(G)<tt"), then 

(~,a)D =aB+,~ , JflJ ~</~, (3.7) 

where 1~ is the multi-index with 1 in the v-th place and O's elsewhere. More generally for a 

bundle E ~ M  and a coordinate neighborhood U ~  M one can define ~v:J~+l(E)u->Jg(E)u 

in terms of the coordinate on U and a trivialization Eu-~ U • Its. The definition depends, 

of course, on the choice of coordinate and trivialization. 
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Example 3.3. In view of (3.2) we have Q~(?'~) =1 for the canonical operator j~:_E-~ J , (E) .  

In local coordinates we have 

~'~ s(x) = ~ . < ~  x %  s(x)/~!; 

thus by (3.6) the v-th prolongation of e~(~'~), which we denote by q~:J~+v(E)-+JdJ~(E)), 

is given by 

( w ) ~ = ~ . / ~ + ~ / ~  !, I/~l<~, (3.s) 

in local coordinates. I t  is clear that  ~ is injective. 

Example 3.4. Let h : E ~ F  be a bundle map which covers the identity map of M; 

passing to sheaves, we obtain a differential operator h: E-~ F of order 0. Note that  J0(E) = E 

and that  ~0(h)=h. Comparing (1.3) with (3.5) we see that  the v-th prolongation is the map 

Jdh)  = J d l ,  h) defined near (1.1). 

Example 8.5. The identity map 1 of _E may be viewed as a first order differential 

operator from E to E. From (3.6) we see that  ~,+~(j,1) is the map :z:d~+l(E)-+JdE ). 

The following technical result will be useful later on. 

P R O P O S ~ O ~  3.2. Let El, E~, E a be bundles, and let DI:Ev+E_~ and D~:_E~-~_E 3 be 

differential operators o/ order # and ~ respectively. Then 

e/~ +), +v(~'v D2 DI) = e~,4 v(j, D2) el~ +).+)'(i v +). D1) (3.9) 

lor v=O, 1 .. . .  

Proo/. From the definitions we compute that  J~+a+~ followed by the map on the right 

side of (3.9) is equal to ~a+~(J~ D~)]v+a D1 =Jr D= D1; the identity (3.9) now follows from the 

uniqueness assertion in Prop. 3.1. 

4. Properties of differential operators 

Let D : E - + F  be a differential operator of order #0; for each/~>#0 we define subsets 

R~ = R~(j~_~0 D) and g~ =g~(j~_~. D) of J~(E) by the exact sequences 

0 , R~, , J~,(E) ~ , J~,_~~ 

0 * g, �9 R~ " J~-I(E), 

where e~ =~(?'~-~. D) and zr is the restriction of 7e: J~(E)-+J~_I(E). We claim that  7rQ~+I = 

Q ~ ;  indeed, by Prop. 3.2 

zre,+ 1 = e,+l-~.(J,-,~ 1) e,+l(J,+~-,o D) = e,+~(?',-,. D) = e,(] ,- ,~ O) e~+l(Y', 1) = e, =- 
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Thus for each/~ >~/~0 we have an exact commutative diagram 

0 0 0 

0 -~ g,+l -~ S , + I T , |  e , , l  S,+I_~~174 

4 ~ 4 

0 ~-~ R,+I + J~+I(E) ~+1., J,+I-,~ 

4 r 

0 0 

(4.1) 

where the columns on the right are instances of (2.5). 

De/inition. The differential operator 0 is said to be regular if (i) for each f~ ~>/~0, 

g~ and / ~  are vector bundles over M and (ii) if for each #~>#0 the map 7~:R~+I~R ~ is 

suriective. 

The condition (i) in the definition requires that  the maps ~)~ and Q~IS 'T*|  have 

constant rank; the condition (ii) is more subtle and requires that the homogeneous equation 

Os = 0 be completely solvable in a formal sense. For example, if the data E, F,  M, O are 

all real analytic, then (ii) implies that  every ~E R# can be prolonged to a formal power 

series solution of the equation Os = O. 

PROPOSITIO~ 4.1. Let 0 be as above, let/~ >~/~0, and let 01 be the operator j~,~o O: E-> 

J#_~~ o/ order #. Then/or each v >~/~ we have 

R~(j~_~O~) = R~(j~_~. O). (4.2) 

I n  particular, i / 0  is regular then so is 01. 

Proo/. By Prop. 3.2 we have 

e,(i~-, O1) -~ e,( i , - ,  i,-~0 0 )  = e~-,~ ~,-,o) e,(/~-,o 0 )  = q~e~(i,-,o 0) ,  

where ~ :J,_, .(F)-~ J~_,(J,_,o(F)) is the map defined in Example 3.3. Since ~ is injective, 

(4.2) holds. 

For a non-zero cotangent vector $ e T* we define the symbol s t = s~(O) of 0 at ~ to 

be the composition 

where i is the injection (2.3) and the first map on the left is defined by e ~ ~ 1 7 4  
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If ~ = ~ d x  ~ + ... + ~ d x  n in a local coordinate x = (x ~ . . . . .  x~), then 

thus by (2.4) and (3.3) we have 

s~(D) e = Zlal =~,0 A~(y) ~e, (4.3) 

where the Aa's are the coefficient matrices for ~ in the local coordinate x. 

Definition. A non-zero cotangent vector ~ is said to be characteristic for 0 if the 

symbol s~(O) is not injective. O is said to be elliptic if s~(O) is injeetive for each non-zero 

cotangent vector ~. 

PROPOSITIO~r 4.2. With the notation o/Prop. 4.1, ~ is characteristic/or ~ i] and only 

i / i t  is characteristic/or ~1. In  particular, D is elliptic i /and  only i / ~ 1  is. 

Proo/. Let x=  (x 1 ..... x n) be a local coordinate defined on a neighborhood of yEM,  

and let ~ = ~ l d x l + . . . + ~ d x  ~ be a non-zero cotangent vector at y. Let  eEEy and let 

=si(~l)e~J~_~,(F)~. In view of (3.6) and (4.3) we have: 

[ ~1~1=~0 Av(Y) ~e  = ~sr e, [ill = # -/~o, 
(4.4) 

The proposition now follows. 

Definition. The differential operator ~ is said to be under-determined (resp. deter- 

mined) if for each y E M  there exists ~ET* such that  s ~ ( O ) : E ~ F y  is surjective (resp. 

bijective). 

PROPOSITIO~ 4.3. I] ~ is under-determined, then ~ is regular and the mappings 

e~(J,-~0 9 )  :J~(E) -~ J~ ~,(F) (4.5) 

are sur~ective /or [~ >1 I~o. 

Proo]. Assume for the moment that  the maps 

Q~ : S~'T* | E-~ S~-~~ | F (4.6) 

are known to be surjeetive for/~ ~>/~0. The surjeetivity of (4.6) for/~ =/~0 implies the surjee- 

t ivi ty of (4.5) for ~u =/~o, and using diagram (4.I) we can conclude by induction that  (4.5) 

is surjeetive for all/~ ~>/~0- I t  follows from the surjectivity of (4.5) and (4.6) that  the corre- 

sponding kernels R~ and g~ are vector bundles, and by chasing diagram (4.1) we can in- 

fer the surjectivity of the maps ~:R~+I~R~,  t z >_-iZo . 
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Thus it suffices to show that  the maps (4.6) are surjective. To do this we work in the 

fibers over y e M  and with a local coordinate x = (x ~ . . . .  , x ~) defined near y. By hypothesis 

8~(~)) is surjective for some ~=0~T* and thus by  continuity, for all ~ 4 0  in some cone C 

containing ~0. Since the range of (4.6) contains the range of s~(?'~_~0 ~),  it follows from (4.4) 

tha t  ~ ( S ' T  * | E)~ contains all elements of (S " - ' . T*  | F)~ of the form 

~ . _~ .  ~(dx)~ | (4.7) 

where / ~ Fu and $ = ~ dx 1 +... + ~n dxn ~ (~" Since ~,~(S ~ T* | E)~ is trivially a closed subset 

of (S ~' " T * |  it must  contain all partial  derivatives of (4.7) with respect to the ~ ' s  

evaluated at  points ~ in C. Taking the fl-th derivative a t  O, we see tha t  (dx )Z |  in the 

range of (4.6) for each ]fl] = # - ~ u  0 and each /~ F~. The proof is now complete. 

5. The first Spencer sequence 

Let E be a vector bundle as before, Following R. Bot t ' s  presentation [1] we consider 

the diagram 

0 �9 T*|  ~ J~(J,+~(E)) , J~,+~(E) ,. O 

0 ~ T*| , JI(J~,(E)) �9 J , ( E )  . ,. O. 

(5.1) 

The map ~ is the injection given in Example  3.3, and the rest of the diagram is an instance 

of the exact commutat ive diagram (2.6); we have used primes to distinguish the various 

~'s. I t  follows from Prop. 3.2 tha t  ~"~ = z .  Indeed, denoting by  1 the identity map  on 

Jr (E) ,  we find tha t  ~=~+: ( j~ )=~+: ( l j~ )=~ : (1 )~+l (~x j~  ) =z~"~. Thus if k = J l ( ~  ) -~ze ' ,  

we have z"k=:~"Jx(~ ) - ~ " ~ ' = z ~ ' - ~ '  =0;  and by  exactness we may  consider k as a 

map from Jx(J~+1(E)) to T * |  ). The sheaf map kjl is thus a first order differential 

operator from J~+x(E) to T*|  which we denote by  D. 

We now compute D locally. Let  x = (x x, ..., x n) be a coordinate on an open disk U c  M, 

and let Ev-+ U • R m be a trivialization. An element v of Jx(J~+x(E)) is now identified with a 

polynomial 

where y1 . . . . .  yn are indeterminates and each T~=~l~l<,+lX%~.~/a[ is an Rm-valued 

polynomial in the indeterminate X = (X 1 . . . . .  X~). By  (3.8) we have 

where & is the map in Example  3.2 defined by  the coordinate and trivialization chosen 
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~ Y z ~  so tha t  J~(~) v -  ~g  v = above. B y  (1.3) and ( 1 . 4 ) w e  have Jt(7~)~=~vo+ ~n ~ 

~ Y"(~U - ~ ~0) and kv e T* | J , (E)  is equal to ~ d x  ~ | ( ~ ,  - ~ v0). Thus  

Da(x) = ~:~dx ~ /.~ | ( ~ a ( x ) -  ~a(x)) 

for sections a of J~+~(E)v. 

We now imbed our discussion of D in the following: 

(5.2) 

PROPOSITION 5.1. For each pair o/non.negative integer~ i, I~ there exists a first order 

differential operator 

D : A~T * | J,+I(E) ~ A~+IT * | Ju(E) (5.3) 

such that 

(i) D(~A a ) = d ~ A  ~ a +  ( -  1)J~A Da /or each section (T o/ AiT*| and each 

~-]orm ~ on M, 

(ii) _E J,+l ~ Ju+I(E) ~ T*| is an exact sequence, 

(iii) D ~ = 0. 

Moreover, (i) and (ii) determine D uniquely. 

Proof. We first verify the uniqueness s ta tement .  Suppose there are two operators 

D satisfying (i) and (ii) and  denote their difference by  K; we must  show tha t  K = 0 .  By  (i) 

K(~ A a) = ( -- 1)s~ A K a  for j-forms ~; so it suffices to  show tha t  K annihilates sections of 

Jz+l(E). Again by  (i) K is linear over the functions and therefore mus t  be a differential 

operator  of order 0. Thus  K operates on elements of J#+I(E),  and  it suffices to  show tha t  

K annihilates J~+I(E). Now if a EJ~+~(E)x, we can find a section s of E such tha t  j~+lS(X) = a. 

By (ii) we have K~= (Kj~+ls) (x)=0. Therefore the uniqueness s ta tement  holds. 

A similar a rgument  shows tha t  (i) and  (ii) imply (iii). F rom (i) we compute  tha t  

D~(~ A a) = D(d~ A ~a) + ( - 1 )  j D(~ A Da) = (-1)J+ ~ d~ A Dzra + ( -  1)J d~ A :rDa + ~ A D2a = 

A D2a. Thus it suffices to show tha t  D ~ annihilates sections of J~+I(E). Since D 2 is linear 

over functions and D2j~+I = 0  we can conclude as before tha t  D2=0 .  

I t  remains to establish the existence of D satisfying (i) and  (ii). Because of the uni- 

queness statement,  it suffices to prove existence locally. I n  a local coordinate x = (x 1 . . . .  , x ~) 

we define 

Da(x) = ~ d x  ~ A ( ~  a(x) - ~, a(x)) (5.4) 

for local sections a of A~T*| By (5.2) this agrees with our previous definition in 

the case i =0 ,  and (i) clearly holds. To verify (ii) we let a be a section of J~+I(E) satisfying 

Da  =0 .  Then  by  (5.2) we have ~ a  = ~ a  in each local coordinate, and  thus  by  (3.7) we have 
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aa+~=~aa .  I t  follows by repeated use of this identity that  a~=~=a~ for each lal ~</~+1, 

and thus a=]~+~c~ o. By reversing the argument just given one sees that  D ~  =0.  Thus (ii) 

holds and the proof is complete. 

From the operators (5.3) we may form a sequence 

0 E ~+~,  Jz+n(E) D D D - * * T * |  " . . .  * A n T * |  , 0  

(5.5) 

for each fe t>0. The following proposition, together with (3.4), shows that  these sequences 

are compatible with the jet representation of differential operators. 

P R 0 ~ 0 s I T I 0 ~ 5.2. Let ~ :  E ~ F be a differential operator of order ~o. T h e n / o r  [~ >~ [~o 

the diagram 

A ~ T , |  o~+1 A ~ T , |  ) 

4. o 4, D 

A i+ 1T* | J , ( E )  e'- , A~+~T * ~ J,_,,~(F~, 

(5.6) 

commutes, where we have written ~ for 1 | and e~+l /or the corresponding expres- 

sion. 

Proof. Write K = o ~ D - D o ~ + I .  By (i) of Prop. 5.1 and by (4.1) we have K(~A ~)= 

d~h  ( O ~ - T e ~ + l ) a + ( - 1 ) ~ h K a = ( - 1 ) J t h K a  for ~'-forms ~. Thus  it suffices to prove 

the proposition in the case i =0.  Now K is linear over functions, and by  (ii) of Prop. 5.1 we 

have K]~+I = ~ Dj~+I - D ~ + I  ]~+1 = 0 - Dj~+I_~~ ~ = 0. Arguing as in the proof of Prop. 

5.1 we conclude that  K : 0. 

If ~ :  E ~_F is a differential operator of order #o, then Prop. 5.2 shows that  D restricts to 

a differential operator from A~T* | R~+ 1 to A ~+1 T* | R~ for/~ I>/~0. Thus for/~ ~>/~0 we obtain 

a sequence 

0 " 0 J~+~, R~+~ D T*|  D D . . . . .  , A ~ T  * |  ~ O, 

(5.7), 

where 0 is the subsheaf ];+ln(R~+~) of E. From (3.4) we see that  0 is the sheaf of germs of 

solutions s to the homogeneous equation Os =0,  and by (ii) of Prop. 5.1 the sequence (5.7) 

is exact at R~+ n. The sequences (5.7) are called the first Spencer sequences for ~ (see 

Spencer [15]). 

The fundamental problem, of course, is to determine when the Spencer sequences are 

exact. From experience with the Dolbeault sequence in complex analysis one would expect 

a wealth of applications in the case where exactness holds. Indeed, an important theorem 
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of D. G. Quillen (see Prop. 8.3 below) shows tha t  the exactness of (5.7) implies the local 

solvability of the inhomogeneous equation Os = t, and in D. C, Spencer's deformation theory 

of pseudogroup structures (see [15] and [16]) the exactness of (5.7) plays an important  role. 

6. The trivial operator 

Let E be a vector bundle over M, and consider the trivial differential operator which 

maps each section of E into the zero section of E. For this operator we have R~ = J~(E)  

for/u ~> O, g~ = G~ = ker ( J r (E)  -~J~_I(E)), and go = Go = E. Thus the first Spencer sequences 

are the sequences (5.5). From Prop. 5.2 (with ~ =IE,  considered as a first order operator) 

we obtain a commutat ive diagram 

O ~ E �9 

O -  ~ . E  

0 0 O 

- - ~  G,_I  . . . . .  G,_~ , 0 

4 r 4 
J~,(E) D , g~_~(E) D D n , . . .  �9 J~,_n(E) --~ O 

D 1 D D n 
- - - - +  (E) " - " J ,  ~- I (E)  " 0 E , _ I ( E )  J -2 . . .  

r r 

O 0 0 

(6.1) 

with exact columns. Here we have made the abbreviations J ~ ( E ) = A i T * |  and 

G ~ = A ~ T * |  and we have writ ten - ~  for the restriction of D to G~. I t  follows from 

Prop. 5.1 (i) that  ~ is linear over functions and thus must  be a bundle map; in fact, from 

(5.4) we see that  in a local coordinate 

&~ = ~ d x  v A ~v a (6.2) 

for elements a in G~. Since (~v is the formal jet representation for differentiation with re- 

spect to x ~, (6.2) suggests that  ~ be interpreted as formal exterior differentiation (see 

Spencer [14]). 

Our aim here is to establish the exactness of the first Spencer sequences for the trivial 

operator. The diagram (6.1) leads us to the following proposition. 

PROPO SITION 6.1. 1 / w e  interpret G i€ as 0 whenever /~ <0 ,  then /or  each ~ >~ 1 the sequence 

o , a .  , .  . . . .  

is exact. 
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Proo/.  I t  suffices to work in the fibers over a single point and with a local coordinate 

x = (x 1 ..... xn). Thus for the purposes of this proof we may interpret G~ as the space of forms 

a=~lz l_~a idx  I, where az is a homogeneous Itm-valued polynomial of degree/~ in x =  

(x 1 ..... xn). The proof is by  induction on n. 

If  n ~-1, then in view of (6.2) we are to verify that  the map ~I:Gs,-~G~_I is bijeetive if 

# >~ 1. The injectivity is immediate, and surjectivity holds even for n >~ 1, a EG~_ 1 being 

the image under (~n of the element 

( ~  0, = ~l~l:~-I  X~+l~a~/( 0r § 1~)! (6.3) 

in G~. 

Now assume that the proposition holds when n is replaced by n - 1, and let a E G~ 

satisfy ~ = 0. We may assume that ~ ~> k since otherwise there is nothing to prove. Thus 

by the remark above we can choose ~ E G~7~-k such that  (~ ~=  a A ~ / ~ x  ~. Now consider 

(~1 = (~ - ~ = ( dx~ A (~) ~ ~ / ~ x  ~ + d x  ~ A ((~ ~ ~ / ~ x  ~) - d x  ~ A ~ ~ - ~ -  x d x  ~ A ~ "c = (dx  ~ A 0,) 

~ / ~ x  n - ~ - l d x ~  A (5~ v. ~1 A ~ /~  xn = 0; and since 0 = ~ = 80,1 = d x  n A ~n ~ § (terms inde- 

pendent of dxn), we must have (~ a~ = 0. Having seen that  0"1 is independent of x n and 

dx n, we use the inductive hypothesis to conclude that  Ol, and hence 0", is in the range 

of (~. The proof is complete. 

PROPOSITIO~ 6.2. I /  we 

sequence 

0 - -  , E_ ~ J~(E)  

interpret J~(E)  as 0 whenever/~ < O, t h e n / o r  each i~ >~ 0 the 

i8 exact. 

D D D 
, J I _ I ( E )  - -  �9 . . .  - - +  J~ -n (E)  - -  , 0 

1 
P r o o / ( b y  induction on #): For # =0  the sequence reduces to O-+E-+E-~O. The induc- 

tive step is given by Prop. 6.1 and diagram 6.1. 

Prop. 6.2 states that  the Spencer sequences for the trivial operator are exact. Note 

that  the arguments leading to Prop. 6.2 do not ca t ty  over immediately to the case of an 

arbitrary differential operator 0 :  E-~ F of order/~o. For example, the map ($n: g~+l-~ g, '  

discussed in the proof of Prop. 6.1, is not always surjective; and even assuming the ana- 

logue of Prop. 6.1, the induction used to prove Prop. 6.2 does not always have a trivial 

beginning. In  the next two sections we will discuss the analogues of Props. 6.1 and 6.2 in 

the general case. 

At several points in the discussion to follow it will be convenient to consider first order 

operators only. The following proposition shows that  this can be done without loss of 

generality. 
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PROPOSITION 6.3. Let O : E ~ F  have order #o and let/~>~#o. For each v>~l denote 

by R: the image o/ R:+~(]~+~_.,~) under the injection q~:J~,+.(E)~J~(J:(E)). Then there 

exists a first order di//erential operator D ' : J ~ ( E ) ~  _F' such that 

R~(?'~_~D') = R:, ~ = 1, 2 . . . . .  (6.4) 

Proo/. Assume at  first tha t  ~ is the trivial operator on E, and write Q for the quotient 

bundle J~(J~(E))/cf(J:+~(E)). For ~ '  we choose the differential operator K:J , (E) ->~ 

defined by  

K =/~?'~, 

where ]C:Jl(J~(E))~ Q is the natural  map. I t  follows immediately that  

RI(K ) = cf(J:+l(E)) 

so tha t  (6.4) holds for ~=1.  Thus 0=01(K)~+1(]1~ ) =O~+I(K]~), and hence K]:=O. This 

shows tha t  j: maps _E into the kernel 0 of K. Also Q~(]._IK)q~=~(j~_IK)~+~(j~jt,)= 

~:+v(j~_~K]:) =0 so tha t  ~ maps J:+~(E) into R~(j~_IK ). To prove that  

R~(]~ K) = ~f( J ~+~( E) ) 

we may  now use the following diagrams which commute by  Prop. 5.2: 

0 , 0 ~ D -~ R l ( g  ) , J . (E)  | T* 

J ~ + l  D 
0 ) E , J ,+I(E)  , J , (E) |  

0 ~ 0 J~ D T* D ' R2(]~K) ~ R~(K) |  , J . (E)  Q A ~ T  * 

0 . E_ / .+3 J.+2(E) D . J.+I(E)| D , j . (E) |  

In  the first diagram the bot tom row is exact, and ~ is an isomorphism. I t  follows by  diagram 

chasing tha t  ] :  gives an isomorphism of _E onto 0. Thus, in the second diagram, we may  use 

the exactness of the bot tom row to conclude by  diagram chasing tha t  R2(]IK ) =q~(J:+2(E)). 

The proof of 

Rv(iv_l g )  =q~( J :+~( E) ) (6.5) 

for ~ ~> 3 now follows by  an inductive argument  based on the diagram 

0 , 0 , R~(j~_IK) --* R, ~(~_2K)| �9 R~_~(~,_~K)| * 

0 E J,+,(E) J,+~-I(E) | T* E ST* . . . .  J,+,-2( ) |  . 



240 W I L L I A M  J .  S W E E N E Y  

In  the case of a general differential operator we write ff for p.u(].u_~,o D) and define O '  

to be the operator 

K |  ~ q(~Jl(J.u_.uo(F)). 

The first summand in D'  has already been discussed; as to the second, we claim tha t  the 

diagram 

commutes. Indeed, 

O a+ v(.~v+.u-.uoiO) 
J.u+dE) ) J~+.u_~,(F) 

r J~(J.u .u~ 
4r 

Or(Jr - 11~Q) 
JdJ.u(E)) , J~_,(J~(J~,_.uo(F))) 

by Prop. 3.2 e,(j~_,j,e)q)=ev(jv_,jie)e.u+v(jvj.u)=e.u+v(]~_~ile],a) = 

~.u+v(]v-1  ]1 ].U-.U, D )  = ~ v ( ] v - 1  ]1)  ~v+.u-.u.(]v ] u - u , )  ~.u+v(]v+.u-.uo O )  = qg~.u+v(]v+.u-.uo ~ ) .  T O  estab- 

lish (6.4) we let aEJdJ.u(E)) be in the kernel of ed]~_,D')=e~G_,K)| :By 

(6.5) we have a =  cry for some "~EJ.U+,,(E). Thus, using the preceding diagram, we have 

0 = Q~(?'~ 111~)q~= ~0Q.u+~(]~+.u_.u00)T. Since the maps q~ are inject]re, "~ER.u+~(]~+.u_.u,D) 
and a E R:. Therefore R~(]~_,D')~ R:. Be reversing the argument  we obtain the opposite 

inclusion, and the proof is complete. 

Prop. 6.3 states tha t  ~ restricts to an isomorphism of R~+~(~+~_.u0 ~)) with Rv(]v_ 1~ ' ) .  

Since ~ = ~  by Prop. 3.2, ~ restricts further to an isomorphism of g~+.u(?~+.u-.u,O) with 

g,,(Jv-lD'). Since ~ commutes with the maps ~k defined by  a local coordinate, these iso- 

morphisms are compatible with ~ and (~k- We will use this fact in the next  section. 

7. Stability of the first Spencer sequences 

Let D:_E-~_F be a regular differential operator of order/%, and let R#, ff~, ~#, f~>~0, 

be the corresponding data as previously defined. Combining Prop. 5.2 with diagram (6.1) 

we obtain for each/~ >~u o a commutat ive diagram 

0 0 0 

-~ 1 - a  -~ n 0 �9 g . u + n + l  " g.u+n ' ... ' g.u+l , 0 
r r r 

0 ~- 0 ) R.u+n§ 1 D 1 D D n �9 R.u+n �9 . . .  �9 R . u + l  ~ 0 (7.1) 

0 , 0 , R.u+~ o R1 o o �9 .u+n 1 > . . .  �9 R.u �9 0 

0 0 0 

where the columns are exact because O is regular. 



T H E  D - N E U M A N N  P R O B L E M  241 

Let U c  M be a coordinate disk with coordinate x = (x ~ . . . . .  xn), and choose a trivializa- 

tion E z ~  U • R z. In  terms of this data  we have maps ~,:Jg+,(E)v-+Jg(E)v ,  v = 1 . . . . .  n. 

Note tha t  if a ~gg+x, then (3v(r =(3a A ~/~x" Eg,~. We will use the following notation for various 

objects P (e.g., for one of the bundles (gg)v or for a fiber (gp)~, yE U) :  

p(~) = P, 

P(~) = { a E P [ ~ a = . . . = ~ + l a = O ) ,  l <~v<n, (7.3) 

p(o) = O. 

Definition. The local coordinate x is said to be Q-regular at  y E U if the maps 

(~ :(g,+l)(y ~) -~ (g~)(y~) (7.4) 

are surjective for each ju ~>#0 and each 1 ~<v ~<n. The operator O is called involutive if there 

is a O-regular coordinate at  each y E M. 

Using (1.3) one can cheek tha t  the choice of trivializatiou does not effect the O-regu- 

larity of coordinate a t  a point; we decline to prove this fact, however, as it will not be used 

in an essential way. Note tha t  involutiveness is exactly the property required to carry 

out the induction used in the proof of Prop. 6.1. Thus we have: 

PROPOSITIO~ 7.1. 1] O is involutive, then/or  each/~ >~/~o the sequence 

is exact. 

0 �9 g / l + n  6 1 t~ 9 n " g / ~ + n - 1  ' . . .  ~ g• ~ 0 ( 7 . 5 )  

The usefulness of Prop. 7.1 is extended by the following proposition. 

PROPOSITIOI~ 7.2. There exists an integer/z,(n , m,/~0), depending only on n =dim M, 

m =fiber  dim E, and ]u o =order o / 9 ,  such that/or each/~ >~#,(n, m, [~o) the operator j~_~, O is 

involutive. 

Postponing the proof for a moment,  we use Prop. 4.1 to reformulate Prop. 7.2 as follows. 

PROPOSITIO~ 7.2'. For each y E M  there exists a coordinate such that the maps (7.4) 

are sur]ective /or each/~ >~ul(n , m,/~0) and each 1 <~, <~n. 

Also using Prop. 4.1 we combine Props. 7.1 and 7.2 to obtain: 

PROPOSITIO:ST 7.3. For each/~ ~>~u,(n , m,/~o) the sequence (7.5) is exact. 

Diagram (7.1) and the  preceeding proposition now establish the stability of the first 

Spencer sequences: 
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PROPOSITIO~  7.4. I /  ~ is regular, then /or each/~>~/~(n, m, #o) the sequence (5.7)z 

has the same cohomology as the sequence (5.7)~+~. 

We now turn  to the proof of Prop. 7.2', which will occupy several pages. Recalling 

the remaks at  the end of section 6, we m a y  assume tha t  f~0 = l; we m a y  also work in the 

fibers over a single point  y ~ M .  As in section 6, we will write Go=E and G~=ker(J~(E) 2~ 

J#_I(E)) for ~u ~ l .  

L ] ~  7.5�9 For each tt ~ 1 the maps 

~ : ~ -  ~(~) -~ ~- ~(~) (7.6) 

are sur~ective i / and  only i / the  maps 

�9 (~) ~,+~.(G,+l)y -~ (~,+~(G~+I)~) (~) ~ =  1 . . . . .  n -  1 (7.7) 

are sur~ective. 

Proo/. Suppressing the subscript  y, we consider for 0 ~v ~ < n - 1  the foUowing exact  

commuta t ive  diagram: 

0 0 0 

0 ~ y/z+l'*(v) ~ /2_(~) ._~ ~ r ~ + 1  ~ / ~ + 1 ~ / ~ + 1  ] 

o , g ~ : ~ )  , a ( ; : ~  ) -,  e ~ + ~ ( a ~  )) , 0 

4 4 4 
o . . . .  g(;+" , a ' F  ~) - - .  e . ( a ~  ~ + ' )  , o 

4 r 
0 0 

By  diagram chasing we find tha t  the surject ivi ty of the  maps  (7.6) is equivalent  to 

~+1(G~+1) (~) =~,+1~ /G(~'+I)~(~)~+I j for 1 < ~ v ~ n - 1 .  Thus if the maps (7.6) are surjective, then 

maps  (7.7) are surjective. Conversely, if the maps  (7.7) are surjective, then  for 

1 < v ~< n - 1 we have e,+l(G~)+l) c e,+l(G~+:)) (~) c e,+l(G,+l) (~) < e~+l(G~)+l), and the maps  

(7.6) are surjective. 

LE~MA 7.6. I] the maps (7.6) are surjeetive ]or # = r ,  then they are sur]ective /or l~=r + l 

and hence ]or all [~ >~ r. 

Proo/. B y  L e m m a  7.5 the maps  (7.7) are surjective for # =r. We show by  induct ion on 

tha t  they  are surjective for tu =r + 1. The inductive step follows f rom the five lemma and 

the  following diagram. 
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(2~(v - 1) /~(u)  dv /~0 ' )  
> ~ r + 2  ~ ~ r + 2  �9 ~'~r +i 

0 ' qr+2(Or+e) (~-~) " qr+2(ar+2) (~) > ~)r+~(Or+l) (~) § 0 
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~ 0  

Note  tha t  the left column consists of zeros when v = 1; thus  the induct ion has a be- 

ginning. 

Our proof of Prop.  7.2' (in the case /~0 = 1 )  is by  induct ion on n. I f  n = 0 ,  

the proposit ion holds trivially; assume tha t  it holds when n is replaced by  n - 1 .  Set 

m (  a + n] a = t t l ( n - 1 ,  m, 1) and c =  \ n - 1 )  + a +  3. Among all coordinates at  y choose a coor- 

dinate x =  (x 1 . . . . .  x n) which maximizes 

~ = a + l  dim ~ "(gc)y. (7.8) 

Since the data  (g,)~ depend only on the first order coefficients of D at y, we m a y  

assume t h a t  D is given by  

O s =  Z ~ A , ~ s  

in the coordinate x, where A~ is a constant  k x m matr ix.  Since the da ta  (g~)(yn-1) 

correspond to the operator  ~ - I A , ~  in n - 1  variables, the inductive hypothesis  per- 

mits us to assume tha t  (7.6) is surjective for each 1 < v  ~ < n - 1  and each #>~a. 

Suppressing the  subscript y, we claim t h a t  

gp-1) ~ ~c-,(gc) (7.9) 

for # = a 4- 1, a + 2 . . . . .  c. Otherwise, we can choose an  integer t z in this range and an 

element a E #  n-1)~ such tha t  a~(i~-/~(gc). By  hypothesis  we can choose u Eg(~ ~-1) such 
c - ~  c /~ tha t  d n - l ~ = a .  We also choose ~h . . . .  ,~NEgc such tha t  dn ~1 . . . . .  d~-'UN form a 

basis of ~-"(gc) .  Now consider the new coordinate x~-i  = X n - 1 -  tx~, Xs = X~ for v ~= n -  1. 

Corresponding to differentiation with respect to  x~ we have the map  d~ =d~+td~- l .  

For  small t the elements (dn)~-"U1 , ..., (d~)c-'~]N are linearly independent  and span a 

subspace which converges to ~t~-'(g~) as t-~0. Since a~d~- ' (gc) ,  a mus t  be linearly 

independent  of (d~)~-z~t . . . . .  ((~)~-"U~ for small t > 0 .  Since a=tZ-~(d~)~- '~ is in 

(d'~)~ this means tha t  dim (d'~)C-~(g~)>dimd~n-"(gc) for small t > 0 .  B y  semi-con- 

t inui ty  this is also true for the other  summands  in (7.8), only with " > "  replaced 

by  "~> ". Thus we have obtained a contradict ion to the maximal  proper ty  of x. 

Now let a + 1 ~ / t  < c, and let a ~g~. We write a as a polynomial  

a = 5~a ,  X~-~/(/~ - v)!, (7.10) 
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where each a, is a homogeneus R•-valued polynomial of degree v in X:  . . . . .  X~-I.  A 

straightforward calculation shows tha t  

/z-~,-1 ~ a = ~ : J ( ~ , + l a , + : + A ~ a v ) X ~  / ( t t - v -  1)!, (7.11) 

where An a~ is the polynomial obtained by  applying A~ to each coefficient of the poly- 

nomial a~. We extend the usual inner product in R m to Rm-valued polynomials by 

< ~ X ~ ,  ~X~#>  = ~<T~, ~ }  and let Tl+a be the orthogonal projection of a:+~ on g(~_~:). 

By  the preceeding paragraph there exists ~ E gz+l such tha t  6~-~T = ~:+~, Thus if we ex- 

a '  • Applying pand a ' = ( r - ( ~ n v  in powers of X~, as at  (7.10), when we find tha t  :+~ ~:+~ . 

the same argument to the coefficients of successively lower powers of Xn, we reduce a 

modulo 8~(g,+1) to an element 

where *av=av for v=0 ,  ... a and *a~J_g~ ~-1) for v = a + l  . . . . .  c. 

Define *gt, = {*a ] a E gz} for each a + 1 ~</~ ~< e - 1. Then bn(*gg+~) ~ *gz; and since by 

(7.11) *a 0 ... . .  *an determine *a uniquely, 6~:*g~+v+*gg is injective for a + l  ~<p ~<c-2.  

The number  of maps here is equal to e - a - 2 which is greater than  dim G~+: >~ dim *ga+:" 

Thus at least one of them must  be surjective. Therefore by  Lemma 7.6 the maps ~ :g~+:-~gl, 

are surjective for all # ~> c -  2. The proof is complete. 

COROLLARY 7.7. We can define the integer #:(n, m, tic) by the/ollowing relations: 

(i) ~(0,m, 1)=0, 

(ii) /~:(n,m, 1 ) = m  + a + l  if a =  # : (n- -  l, m, 1), 
n - -  

(iii) t t , (n ,m,#o)=pl(n ,b ,  1 ) if b = ~ ~  
n - - I  m .  

Prop. 7.3 was first stated by  D. C. Spencer [14] in the special case of the partial  dif- 

ferential equations defining the infinitesimal transformations of a pseudogroup. Later  

S. Sternberg recognized the connection with E. Cartan's  notion of involutiveness and 

introduced this concept into the theory. In  [4] J.  P. Serre proves tha t  involutiveness is 

equivalent to the 6 sequences being exact. For other proofs of the main theorem in this 

section see [3] and [12]. 

8. Exactness of the first Spencer sequences 

We begin our discussion with the following proposition due to D. G. Quillen. 

PROPOSITION 8.1. Let ~o be a regular di//erential operator o/order % /rom E o to E 1. 

Then there exists a sequence 
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E ~ ~o , _E 1 ~ , _E 2 ~ , E a . . . .  (8.1) 

o/regular di//erential operators ~ o] order v~ such that by passing to the lets we obtain exact 

sequences 
J,+,~(E~) -~ J,(E,+~) ~ J,-~+~(E,+2) (8.2) 

/or i >~O and # >~v~+l. 

Proo]. I t  suffices to construct ~1; the rest of (8.1) can then be obtained by  itera- 

tion. We set vl=n+l~l  (n, fiber dim E0, v0)-v0, and define E2 to be the cokernel of 

~v,+~o(]~Oo):Jp,+~o(Eo)--->J~:(E~). Since ~o is regular, Ee is a vector bundle. Composing 

]~ with the natural  map J~.(E1)--->Ee, we obtain a differential operator ~ of order vl from 

E~ to E~. 

For i=O, 1, 2 we write G~,o=E ~ and G~.~=ker (z:J~(E~)~J~_I(E~)) for /~>~1. We 

prove by  induction on # tha~ the sequences 

Go.~+,.o --> G I . ,  --+ G 2 . g - v ,  (8.3) 

are exact for/~>v~. (The maps here are eg+,o(?'g~o) and ~/~(?'/~_~Ox).) Indeed, the case 

# =vx follows from the definition of E~, and the inductive step is obtained by  chasing the 

0 0 0 

0 �9 g/~+l+v0 ' Go, ft+l+v. ' G1.~+1 

0 ) 2 2 g/~+v.-1 ' a~.l~+vo 1 �9 e l . / ~ - i  
r r 

diagram 
0 

G2./~+ 1-vl 
r 

where the vertical maps are ~'s and the columns are exact because of the choice of r~. 

I t  now follows by  induction on/~ tha t  the sequences (8.2) are exact for i = 0  and # >~vl. 

The case/~ =Vl is trivial, and the inductive step is furnished by  the diagram: 

0 0 0 

ao . ,+ l+~0  . G1. .+1 ' a 2 . , + l - v ~  
$ r $ 

J~+l+~o(E) , Jz+I(E1) , J,+I_~,(E2) 
+ r + 

g~++~ , J , (E,)  �9 J~_:,(E~). 
r r + 

0 0 0 
1 6 -  682902 Acta mathematica 120. Impr im~  lo 24 ju in  1968 
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Since the regularity of Di follows from (8.2), (8.3), and the diagram above, the proof 

is complete. 

The following proposition shows that  as far as exactness is concerned, the sequence 

(8.1) is " the best possible." 

P~OI~OSlTIO>r 8.2. Let Do and ~, be as above, and suppose there exists an operator ~ :  

E ~ F of order ~ which malces E o m ~ E_ 1 v - ,  F_ exact. Then E_ o ~ E_, v~_~ E~ 

is exact. 

Proof. Since j,-~'D satisfies the same hypotheses as ~ ,  we may assume that  v ~> v,. 

Note that 0 = 0~+~~ ~(~)~+~o(?'~o), and recall that the sequence 

J~+~~ - - -  �9 J~(E~) - - ~  J~_~.,(Ez) 

is exact. Thus we may factor e~(O) through eoker e,+,o(JvD0), which is a bundle since Do 

is regular, and extend the resulting map to a bundle map h:Jv_w(E2)-+F.  Thus qv(~)= 

h0v(j,_,,Oi), and composing with ?v we obtain ~--h~'v_v~i.  Thus ker D1 c k e r  O = i m  D0, 

and the proof is complete. 

The relationship between (8.1) and the first Spencer sequence is expressed by the com- 

mutative diagram 

0 0 0 

0 �9 0 , R~ o +  g~_, ~ ... 

D 
0 E o J , (Eo)  g~,-l(Eo) - ~ .. .  

0 E 1 j~_~o(E1 ) D - -  , , _ - +  g l . u , y  1 ( E i )  * . . .  

r r r 

0 E 2 J,_~~ ~,(E~) D , �9 _ - -  " --" J ~ _ ~ ~  -~ ... 

: : : 

(s.a) 

where 0 is the solution sheaf for Do s =0  and # is large, By Props. 6.2 and 8.1 the diagram 

is exact except possibly for the first row and first column. Thus by diagram chasing the 

eohomology of (8.1) is the same as the stable cohomolgy of the first Spencer sequences. 

P• oPo  s I r*O ~ 8.3. Let/):_E-~ F be a regular differential operator o/order ~o. Then for 

/~ >~#l(n, m,/~o) the Spencer sequence (5.7)~ is exact 
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(i) if M c R n and ~ has constant coe//icients, 

(ii) /or real analytic germs i / M ,  E, F, and ~o(~) are real analytic, 

(iii) at * R,+n-1 i /and only i/there exists an operator O' making E ~-~ F_ ~ E' exact. 

Proo/. (iii) follows from Prop. 8.2 and the remark following (8.3); (i) depends in addi- 

tion on the theorem of Ehrenpreis and Malgrange. By the remarks following (8.4) s ta tement  

(ii) is equivalent to the classical Cartan-K/~hler theorem. Recently, L. Ehrenpreis, V. Guille- 

min, and S. Sternberg [3] have obtained estimates which, together with diagram chasing, 

yield a simple proof of this theorem. Using similar estimates obtained by  the author  

[17], C. Butt in has given another proof of (ii) in [2]. 

Chapter II. The D-Neumann problem 

1. The second Spencer sequence 

At the end of Chapter I we saw how the exactness of the first Spencer sequences 

can be used to obtain existence theorems for the differential equation ~ s  = t. To this extent 

the theory generalizes the situation in complex analysis, where the Dolbeault sequence 

has proved to be an important  tool for studying the Cauchy-Riemann equation. The 

problem of proving exactness is, of course, much more difficult in the general theory than  

in the case of the Dolbeault sequence; and, in fact, it is more difficult than it should be. 

To be specific, the sequence of symbol maps associated with (I.5.7)g is exact only in the 

most trivial cases; thus the harmonic methods which establish exactness for the Dolbeault 

sequence cannot be applied to (I.5.7)g even when "Os = 0 "  is the Cauchy-Riemann equa- 

tion. Thus we are led to consider the second Spencer sequence 

o-,o+co + _, ... C__~ --> O, (1.1) 

be constructed from (I.5.7), by factoring out the degeneracy in the symbol which will 

sequence. 

Let  ~ : E-~  F be a regular differential operator of order/z0, and consider the corre- 
_ _  6~ t __ sponding data g__~ and R~. For/x/>/x 1 =/x, (n, fiber dim E,/z0) define g, - {~ e g~l~$ = 0}. 

From the exactness of the S-sequences for /x ~>/x, we conclude tha t  ~g~ is a vector 

bundle; thus the cokernel of the inclusion map ~g,+,~R,+l is a vector bundle C~. For  

/x ~>/~, we have an exact sequence 

0 ~g~+, ~ v ~ R~+, - �9 C~ , 0 (1.2) 

and thus a commutat ive diagram 
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0 ) 9~+2 ~ R~ n g+2 ~ R g +  1 ~ 0 

-~ ~ D ~ v' (1.3) 

~]t~+l ~ t ~ + l  ~ , ,  ,u .. 

where the  rows are  exac t  and  D '  is i nduced  b y  D. W e  claim t h a t  D '  fac tors  t h rough  

C~. Indeed ,  if q ~ a g , +  ~ then  ( r=  - (iv for  some v~"~- I  a n d  hence a =  - ~ v l  for  some - -  y/z+2 

R f - 1  . t ~, ~ ,+a, t h u s D ' a  = - D ' ~ ' r t  = D 7rD~:, = p D D v t  = 0. Accordingly ,  we ob ta in  a d i f ferent ia l  

ope ra to r  D " ' ~ .  ~__z ~ + * ~ ,  such t h a t  D '  = D " p .  To show t h a t  D" squares to  zero we note  
2 .  ~ i  .__> ~ i  t h a t  p z  . ~,+~ t~, is sub jec t ive  and  t h a t  D " D " p z r  ~ = D " D ' z r  2 = D " p D z e  = D'D:,r  = D ' z r D  = 

p D D = O .  Fina l ly ,  we claim t h a t  the  kerne l  of D " : C ~  ~, is the  solut ion sheaf 0 for  

~ s  = 0. I n  fact ,  b y  (1.2) we have  C~ = R,+, ,  and  b y  chasing (1.3) we infer t h a t  the  se- 

quence 

0 " 0 ~+~ '  R~+~ D ~  C1 (1.4) 

is exact .  Thus  the  cons t ruc t ion  of (1.1) is complete.  I t  follows f rom (i) of Prop .  1.5.1 t h a t  

D" is a de r iva t ion  in t he  sense t h a t  

D"(~ A a) = d~ A a + ( -- 1)r A D" (1.5) 

~or each sect ion ~r of C~ and  each ~-form ~. I n  fact ,  wri t ing (r = p~rT, we f ind  t h a t  

D " ( ~  A a)  = D"pz r ( ~  A 7;) = pD(@ h ~) = p(d@ h zrv+ ( - 1)J~ A D~) = d@ A a + ( - 1)J~ h D"a.  

I t  will be  convenien t  l a t e r  to  have  a more  expl ic i t  descr ip t ion  of C~. F o r  # >~/% we 

choose m a p s  P : R r , ~ R ~ + ~  such t h a t  ~ r P = l ;  tensor ing wi th  1 we thus  ob ta in  maps  

P : R~-~ R ~+1 wi th  ~rP = 1. Se t t ing  Q = 1 - P~r, we consider  t h e  c o m m u t a t i v e  p rog ram 

0 0 

0 ~ ~g~+l -~ ~ "~ g~+l ) ~A+I . y~, " 0 
r  ~ S Q  r 

0 ~gi~+t i v C ~ , 0 ~ i~#+ 1 ~ tt 

0 0 

(I.6) 

where  t he  l as t  co lumn is induced  a n d  is exact .  W e  claim t h a t  the  m a p  R,+I~ to  n,~)-~ - ~g,~+t 

def ined b y  ~-~ (7r(r, OQq) induces an  i somorphism 

C~ _+ ~ -  ~+1 (1.7) ~ ~ ~ff~ �9 
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Since ~a  = 6Qa = 0, when a fi cogS+,, the  map  (1.7) is well defined. To prove inject ivi ty we 

let 6E R~+, satisfy ~a  = (~Q(~ = 0. Then since a = P~(~+ Qa = Qa, we have z a  = (~a= 0. 

Thus ( ~ o : 9 ~ + ~ = k e r p .  To prove surject ivi ty  we let ~ER~, ~ :r choose ~ E q,+~ such 

tha t  5~=  ~, and note  tha t  (1.7) maps  p ( P , +  ~) to  (~, $). A straightforward calculation 

shows tha t  D" is given by  

(a, ~) ~ ( D P a  - ~, (DP)~a - DP~)  

in terms of the isomorphisms (1.7); however, we shall not  use this fact. 

2. The symbol  sequence 

Let  E and F be vector bundles over M ,  E having fiber dimension m. Let  ~ be a 

regular differential operator  of order/~0 f rom E to F ,  let y be a point  in M, and ~ be a 

non-zero cotangent  vector at  y. We choose a coordinate x = (x 1 . . . . .  x n) on a small neigh- 

borhood U of y, and by  trivializing (R,) u and (~g~+l)v for i = 0, ..., n we obtain triviali- 

zations for the bundles (C~)w i = O ,  1 . . . . .  n. Because of (1.5), the principal par t  of 

D"" ~ -> ~+* is given by  ~ +  ~ d x ' A  ~ a near y, where 0~ is defined by  the coordinate x �9 .~/~ _~/, 

and the trivializations. I n  terms of the isomorphisms (1.7) the principal pa r t  is given by  

(a, ~)-+ ( ~ d x ~ A  ~ (~, - ~ d x ~ A  ~ ~). Thus the symbol sequence of (1.1) at  ~ is the direct 

sum of the sequences 

0 -~ (R,)y ~A ) (R~)y ~^ , ... �9 (R~)y , 0, (2.1) 

0 1 =~A ~ 2 -~A ~ n �9 ( - g , b  ' ( z , ) ~  . . . .  �9 ( g , ) ~  . o .  ( 2 . 2 )  

The first sequence is always exact;  the second is the subject of the following proposit ion 

due to D. G. Quillen. 

PROPOSITION 2.1. The sequence (2.2) is exac t /or /~>/~ l (n ,  m, [~o) i / a n d  only i / ~  i8 

not characteristic /or 9 .  

Proo/.  By the remark  at  the end of I ,  section 6 we m a y  assume tha t /~0=1 ;  we m a y  

also assume tha t  ~ = dx n. Throughout  the proof we will suppress the subscript y. 

To prove necessity assume tha t  dx ~ is characteristic for 9 .  Then b y  (I.4.4) there exists 

a non-zero element a of gg such tha t  a a = 0  unless an=/~. Thus (~va=0 for v = l ,  ..., n - l ,  

and ~ |  ~ 0  is in the kernel of the first map  in (2.2). 

To prove sufficiency assume tha t  dx ~ is not  characteristic, and let a E ~g~ satisfy 

dx~A a = 0 .  Wri t ing H for the  subspace of T* spanned by  dx  1 . . . . .  dx ~-~, we choose 

T E g, | A~-IH such tha t  dx ~ A T = ~. Then, sett ing 5' = ~ - l d x ~  A ~,  we obtain - (~(~ = 

dx n h (~v = dx ~ A 6'~ and hence (Yv = 0. Thus ,  if the  sequence 
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g ~ A~_2H ~. 8, //+1%0) �9 gt,| A~-IH * fit 1| A~H (2.3) 

E J - i  is exact, we can write a = -  ~ A ~ ' ~ / = - ~  A (St/, where ~ y~ . Therefore it suffices to 

show t h a t  (2.3) is exact  for / to  ~> #1. 

For  a polynomial  a =  ~i~,,=l,a~X"/~! in ~/, we define 

~a= ~ a~X~/~!. 
~n=0 

Thus ~ is a mapping  of g~ into a space h~ of homogeneous Rm-valued polynomials  in 

X1 . . . .  , Xn-1. We elaim tha t  ~ is an isomorphism for e a c h / t  >~ 1. Indeed, suppose aEg~,, 

a 4= 0, satisfies ~0a = 0. Among all multi-indices ~r with 1 ~ [ = #  and  a~ 4= 0 ehoose a multi-  

index fl for which fl~ is minimal. Since ~ a =  0 we have fl~ >/1, and by  minimal i ty  we 

have ~ - l ~ a  = 0 for ~ = 1, ..., n -  1. Thus  ~a-X~a is an element of gl which depends only 

on X~. B y  (I.4.3) this eontradiets the assumption tha t  dx '~ is not  eharaeteristic. Since the 

isomorphisms ~ are eompatible with (~1 . . . .  , ~ - 1 ,  it now suffices to show tha t  

A~-IH h~+I|  ' h~@ �9 h~ I |  (2.4) 

is exact  f o r / t  >~/ti. 

Since the spaces h,  do no t  come directly f rom a differential operator,  we cannot  

immediately  apply  the proposit ion in I, section 7. Ins tead  we introduce the inner pro- 

duct  (~X~a,,/~!, ~ X ~ / ~ ! >  = ~@~, ~> /zd  on h,  and note  t ha t  the adjoint  of 6~ is mul- 

tiplication by  X~. Since (~(h,+l) c h,  for ~ = 1, ..., n -  1, the space h" = ~ ~  is a submo- 

d u b  of the R[X 1 . . . . .  X~_l]-module of all Rm-valued polynomials  in X D . . . ,  Xn-1. Thus by  
• the Hilbert  basis theorem there exists an  integer/ t~ such tha t  f o r / t  ~>/t~ we have a~h~,+~ 

if and only  if a = X 1 ai + . . .  + X~ an for some al, ..., a~ E h~. Thus if a homogeneous po- 

lynomial  a satisfies ~ a E h,  for ~ = 1, ..., n - 1 then we can infer f rom 0 = ~ ( 6 ~  a, h~> = 

~,(a, X~,h~}=(a, h~+l> t h a t  a e h ,  if and only if ~Vaeh,~ for each [ y ] = / t - / t ~ .  I t  now 

follows from (I.3.6) tha t  the spaces ht,,/t ~>/t.,, are the g , -data  for a differential operator  

of order #z. Thus by  Prop.  1.7.3 the sequence (2.4) and  hence is exact  f o r / t  ~>/tz + 

#l(n, m,/to). Using the diagram 

g~2 

g ~ l -  1 
Y~-i 

0 

0 0 

6r - 1  �9 g g ~  

i ~ ~+1 
�9 ~g/z - 1 )" ~tt - 1 

0 0 

0 

4 
�9 ~g~+l  

______, g~+l 
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we conclude by downward induction that  (2.2) is exact for all/x >/~r The proof is complete. 

Prop. 2.1, together with the following proposition, removes the difficulty described 

at the beginning of section 1. 

PROeOSITION 2.2. For #>~#l(n, m,/x0) the cohomology o/the second Spencer sequence 

(1.1) is the same as the stable cohomology o/the first Spencer sequences. 

Proo/. Consider the commutative diagram 

0 i R i ~ i �9 g~+2 ' . + 2  , R ~ + I  , 0 

~ ~+1 �9 l ~ i + l  P ~, C i + l  �9 0 
0 �9 g1*+l *~,,+1 _ g  

0 

�9 i _ _ >  i For each i we choose a map q. C, Rt,+l such that  pq = 1; we claim that p and q fur- 

nish the required isomorphism in homology. Since pq = 1 modulo coboundaries, we need 

only show that p maps cocycles to cocycles and coboundaries to coboundaries. The sec- 

R ~ + I  ond assertion follows immediately from the diagram; to prove the first we let a E 

satisfy Da = 0. By chasing the diagram we can find ~ E R ~,+2 such that  n~ = a and Dv = 0. 

Thus D"pa = D" pz~v = D ' ~  = pDv = O. 

3 .  T h e  D - N e u m a n n  p r o b l e m  

Our first task is to fix the notation which will be used in the rest of this chapter. 

Let M be a smooth Riemannian n-manifold, and let ~ c  M be a compact, smooth 

n-manifold-with-boundary which is imbedded smoothly in M. Thus from the Riemannian 

metric on M we obtain Riemannian metrics on ~ and its boundary o~. Let E and 2' be 

vector bundles over M, and let ~ be a regular elliptic differential operator from E to F. 

Whenever the data Rg, gg, etc. occur in the future, it will be tacitly assumed that /x  is 

greater than the integer /~1 given in I, section 7. In  situations where only one value of 

/~ > Ftl occurs, the subscript will be suppressed�9 We will denote the operator in the second 

Spencer sequence by D instead of D". 

We choose an inner product along the fibers of J ,(E);  using the l~iemannian met- 

ric we thus obtain an inner product in each J~(E) and hence in each of the sub-bundles 

R~, g~, ag~. Using the isomorphism C]~ ~ RJ ~ ,j+l -o~ ,~ ~.~ , we obtain an inner product in C j #�9 

We denote by F(~,  C j) the space of all smooth sections of C ~ over ~.  In  accordance 

with the usual definition for manifolds-with-boundary, each section in F(~, C j) can be 
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extended  smooth ly  across the  bounda ry  co. We refer to H S r m a n d e r  [5] for the  definitions 

of the  spaces ~4(s)(~, CJ). I n  the sequel we shall a lways  consider ~(0)(~2, C j) =L~(~ ,  C j) 

as a Hi lber t  space with  inner p roduc t  (a ,  7) = S(a,  "~)~dv, where dv is the  R iemann ian  volume 

e lement  and  ( . ,  �9 }x is the inner p roduc t  in C(  The nota t ion  given here  will also be appl ied 

to the  bundles  R j, g J, etc and  to their  restr ict ions to  co. 

Wi th  the  in t roduct ion of the  Fourier  t rans form spaces above,  we assume tha t  all 

bundles occurring have  complex fiber. Wi th  i =  1 / - 1  we write D r = - i ? p  in a local co- 

ordinate.  

Now let D be the  opera tor  in the second Spencer sequence, and  let D* be its formal  

adjoint .  Define the N e u m a n n  space N i to  be the  space of all sections u E F(g2, C j) sat isfying 

the  bounda ry  conditions 

(Dv ,  u )  = (v,  D ' u )  for each v E F ( ~ ,  CS-1), (3.1) 

( D r ,  D u )  = (v,  D*Du}  for each v e F ( ~ ,  C). (3.2) 

Define the  harmonic  space I t  j to be the  set  of all sections u E 1~ i which are annihi la ted by  

the  laplacian D D * §  Since ( ( D D * + D * D ) g ,  u} = [IDu[[2+ lID*all 2 for u e N  j, we have  

]IJ = {u  e ~ J [  D u  = D * u  = 0}. 

Definit ion.  We say  t ha t  the  D - N e u m a n n  prob lem is solvable for  ~ on ~ if I t  j is closed 

in L2(~, C j) for ) '=1 ,  ..., n and  if there exist  bounded  operators  N :L2(~ ,  CJ)~L~(~ ,  CJ), 

)' = 1 . . . .  , n, mapp ing  F (~ ,  C j) into N j, such that :  

(i) N H = H N = 0 ,  where H :  L2(~ , CJ)-~tI j is the  or thogonal  projection; 

(ii) each uEF(~2, C ~) can be wr i t ten  

u = D D * N u  + D * D N u  + H u ,  (3.3) 

where the te rms  are mutua l ly  or thogonal  in view of (3.1) and  (3.2); 

(iii) D N  = N D  holds. 

Note  t h a t  (iii) follows f rom (i) and  (ii). Indeed,  if u EF(~ ,  Ci), then  

(D*D + DD*) ( D N  - 2~D) u = D(D*D + DD*) N u  - (D*D + DD*) N D u  = D u  - D u  = O. 

Also ( D N  - N D )  u E N j and  H ( D N  - N D )  u = 0. I t  follows t h a t  ( D N  - N D )  u = O. 

I n  view of (iii) the  decomposi t ion (3.3) gives a eochain h o m o t o p y  1 - H = D ( D * N )  + 

( D ' N )  9 ;  thus  the  cohomology of the  sequence 

0 -~ r ( ~ ,  c ~ -~ r(~2, c 1) -~ ... -~ r ( ~ ,  c n) -~ 0 

is isomorphic to ] t  = ~3 H (  Since the  a rgumen t  following (I.8.4) and  the  a rguments  leading 

to Prop.  I I .2 .2  work  for sections as well as for germs, it follows t h a t  if the  D - N e u m a n n  
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problem is solvable for ~ on ~ ,  then there exists an operator ~I:_F~_F1 such tha t  in 

the sequence 

F ( ~ , E )  ~ ~ F ( ~ , F )  ~' , F (~ ,F~)  

we have ker Dl/ im ~]~1 .  Moreover, this is the best possible result; for by  the proof of 

Prop. 1.8.2 if D ' : F ~ F '  satisfies ~ ' ~  =0, then ker ~ ' ~ k e r  ~1. 

4. General methods 

In  this section we recall some of the general Hilbert  space methods which are relevant 

to the D-Neumann problem. Since much of the material presented here is classical, we will 

omit several proofs. 

We first form the Friedriehs extension L of D D * §  D*D on N j (see [13], p. 335). This 

is done as follows: Complete N J abstractly to a Hilbert  space W with the Dirichlet inner 

product Q(/z, v) = (Du,  Dv)  + (D 'u ,  D 'v )  + (u, v), and show that  B j can be considered as 

a subset of L~(~, C~). Define the domain of L to be the space of all u eB j such tha t  v--->Q(v, u) 

extends to a bounded functional on L~(~, CJ); and for such u define t = L u  by  Q(., u ) =  

( . , / )  + ( . ,  u).  The operator L is self adjoint, and L + I  has an inverse which is a bounded 

operator from L2(~ , C j) to W. 

I f  u e N  j and v e t ( n ,  C'), then [(Dv, u)[ = [(v, D'u)[  <Hv[[Q(u,u)�89 Thus for any 

u EB j, v--->(Dv, u )  extends to a bounded functional on L2(g2 , CJ), and hence u satisfies the 

boundary condition (3.1). On the other hand, an element uEB j need not satisfy (3.2), 

even if u is smooth. However, if u E F(~2, C j) is in the domain of L, then [ (Dv, Du)  ] <~ 

[(D*v, D'u)[  + [Q(v, u)[ § ](v, u)[  < ][v[[ {[[DD*u[[ § ][Lu[] + 2[[u]]) for v eN j, and hence u 

satisfies (3.2). 

PRO~'OSlTION 4.1. Assume that ~ is elliptic and that the inclusions BJ-->Le(~, C j) 

are completely continuous/or ] ~ 1. Then: 

(i) we have u e F ( ~ ,  C j) whenever LuEF(~2, C j) and j>~l; 

(ii) /or ]>~1, H j is finite dimensional, and the range o / L  ou F(~,  C j) is closed; 

(iii) the D-Neumann problem is solvable ]or V on ~.  

Proo/. (i) is a recent theorem due to J.  J.  Kohn  and L. Nirenberg (see [9], Theorem 

3). Our assumption tha t  ~ is elliptic enters here via Prop. 2.1, which shows that  DD* + D*D 

is then elliptic. The Kohn-Nirenberg theorem requires tha t  the boundary ~o be non-charac- 

teristic for DD* + D*D. 

Since H J ~ k e r L  by  (i), s ta tement  (ii) is pa r t  of the s tandard theory of compact 

operators. To prove (iii) we first note tha t  since L is self adjoint, I . - H  is the orthogonal 
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projection on the range. Given u EL2(~, C~), we define v = N u  to be the unique element in 

the domain of L satisfying Hv =0, Lv = u - H u .  Then N is bounded because of the closed 

graph theorem, and it maps U(~, C j) into N ~ because of (i) and because of the remark pre- 

ceeding this proposition. 

5. Reduction to the boundary 

As one easily verifies (see section 6 below), the boundary condition (3.1) on u E F(~,  C j) 

is given by Bu=O on o) for a certain bundle map B : C J ~ C  ~-1. Thus in order to establish 

the complete continuity required in the hypothesis of Prop. 4.1, it suffices to show tha t  for 

some 0 < r ~< 1 the estimate 

Ilull,r) < c{Q(u)+~'lIBull(~,,} (5.1) 

holds for all u E F(s C J). Here Q(u) =Q(u, u) �89 = {ll Dull + II D*ull + Ilull }  is the Dirichlet 

norm for sections over ~ ,  and II" II(r) and wl[.ll(o are any  of the equivalent norms in 

~(r)(~, C j) and ~(�89162 C j) respectively. We begin our discussion of (5.1) with some techni- 

cal material and a series of lemmata.  

Recall tha t  ~(m.s~(R n) is defined to be the space of all temperate  distributions u on 

R n such that  with ~ ' =  (~1 ....  , ~n-1), the norm 

Ilull,5, ) = ( 2 = ) - .  j'(1 + o ( 1 +  s i g r  I.d  

is finite. The space - ~  741~.~) (R+) is defined as the space of all distributions on the open upper 
n R n  half space R+={xERnIxn<O} which can be extended to elements of ~m.s)(  ). Thus 

- - n  
~(,n.s)(R+) is the quotient of ~(~.s)(R n) by  the closed subspace of elements with support 

in R~_ = {x E R ~ ] x~ ~ 0}. The space ~(m. ~)(R~ ) is given the quotient inner product and norm. 

See t t6rmander  [5] for the basic properties. 

L]~ M M~, 5.1. Let s be a real number, m a positive integer, and write R~ = {x E R~[xn = 0}. 

Then ]or each u e  ~(m.s)(R~) the restriction u l R  ~ is a well-defined element o/~(m+s-�89 

satis]ying II(ulR~)ll~n+s_�89 ). Moreover, /or each ve~t/(m+~_�89 there exists 

uE - - n  ~(~.s)(R+) such that u[R~ = v. 

Proo]. See H6rmander  [5], Theorems 2.5.6 and 2.5.7. 

L]~MMA 5.2. Let G c  ~ be open in ~n ,  and let P be an elliptic di//erential operator o/ 

order k / r o m  the trivial bundle G • R a to G • R ~. Let m, s, ml, 81, be real numbers satis/ying 
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m + s = m I + s 1. T h e n / o r  each compact  U ~ G there exists a constant c such that 

Ilull,m.:) < c{llP~,ll(m-~.:)+ Ilull,~,.:.,} 
/or sections u o / G  • R a wi th  supp u c U. 

Proo]. See HSrmander  [7], Lemma 2.2.1. 

LEMMA 5.3. For  each 0~s~<l  the estimate 

I[~11,:, < c{Q<u)+~ 
ho/ds/or u~F(~2, CJ). 

Proo/.  We first prove the lemma in the case s = 1. By Lemma 5.1 the restriction map 

u->ulco is a bounded operator from ~(1)(~, C j) onto ~(O(~o, C j) whose kernel K is the 

closure in ~(1, (gs CJ) of the space of smooth sections having support  in the interior of ~ .  

For u E K  the estimate follows from Gs inequality; if u is orthogonal to K, then 

Ilu11(1, ~ c~HuH(�89 by  the closed graph theorem. To prove the estimate we write g for the 

orthogonal projection of :~(1)(~, CJ) onto K and observe tha t  II u II (. = I[~u H.) + II (1 - ~ ) u  II ,~, ~< 

c{Q(=u) + ~ II ~ I1(~,} < c{Q(~)+ o II ~ II (~) + Q((1 -=)u)} .  Since Q((1 - = ) u )  < II (1 - n )u  II (1) < eo[I ~tt II (~), 

we have 

Ilull(i)<.c{Q(u)+~llull(~)}, for uEF(~ ,CJ) .  (5.2) 

We now use (5.2) to prove the lemma in general. Observe tha t  it suffices to prove the 

required estimate locally, for uEF(gs C ~) having support in a coordinate disk U with 

coordinate (x 1 . . . .  , xn). Since the interior case is simpler, we assume tha t  U is a boundary 

disk where ~ N U and eo N U are given by  x n >~ 0 and x n = 0 respectively. By Prop. 2.1 and 

the ellipticity of 9 ,  the map 

Sdx , (n) |  : CJu -+ C ~  |  -~ 

is injeetive. Thus we may  choose frames in C~, C~ 1, and C~ -1 in such a way tha t  s ~ ( D )  

and s~x,(D ) and sd~,(D* ) are represented by  constant matrices; in these frames ~he coeffi- 

cients of ~n in D and D* will then be constant. 

Now let uEF (~ ,  C j) have support  in a compact set U' which is contained in the in- 
- - n  terior of U. Denote by  K the tangential pseudodifferential operator on R+ with Fourier 

integral kernel ~(~') I~' ] -~+s, where ~' = (~1 ..... ~n-,) and ~ E C ~ ( R  n-~) is 0 on a neighborhood 

of the origin and 1 outside a slightly larger set. Let  ~f E C~(U) be 1 on a neighborhood of U'. 

Using (5.2) we obtain 

IIwK~II,, < c(Q(~vKu)+ ~ ,~,}. (5.3) 
Since K has tangential order s -  1, we have ~ I I~KulI(~, < c~ (,-~,. Also, by  the choice 

of frames, the operator [~vK, D] has tangential  order s -  1. Hence 



256 WILLIAM ft. SWEENEY 

I[Dy)Kull <~ [I~pKDu[I +cIIull(o.s-1, <c{llDull + [lull}, 

since s - 1  <0. Treating the other terms in Q(yJKu) similarly, we obtain 

[[~/)K?/" 11 (1' ~ C{Q(qs ,s--~,}" 

Now note that Ilull,o.s, <~{IIK~II,o.I, + I1~11) =~{IIKwulI,,.. + II~ll) ~< o{llwK~ll,1, + I1~11,0.~-~, 
§ I1~11) ~<~{IIwK~II,. § INI ,~ . - - )  ~<~{IIwKulI., +Q(~)+  I1~11), where we have used Lemma 
5.2 to obtain the last inequality.We now have that  I1~11,0.8, <~{Q(~)§ Another 

application of Lemma 5.2 now yields 

I1~11,., < ~{Q(~)+ =11~11.-+,}, 
as required. 

L ~ A  5.4. The estimate (5.1) holds, provided that the estimate 

~ <~{'ollDwll,_,,+~176 (5.4) 

holds/or all w E F(~,  C j) satis/ying (DD* + D*D + I)w =0. 

Proo]. Assume that  (5.4) holds, and let uEF(g2, CJ). Choose wEF(g2, C j) such that  

(DD*+D*D+I)w=O and w=u on to. Using (5.4) and Lemma 5.3 we obtain 

II~ll., < ~{Q(~) § ~ <~c{Q(u)+~'[[Dwll(_�89 ~1[ D*wl[(_�89 +ollwll(_.~)+ ~ 

If  yJEC~ has support in a boundary coordinate disk, then by Lemma 5.1 and 

Lemma 5.2 we have ~ ~< llw~ll(~.-1, <c(I[(DD* + D*D +I)(Ww)[[,_l ._.  + llwwll)- If  
q~ has support in the same disk and if 9 = 1 in a neighborhood of supp W, then we obtain 

l[ (DD* + D*D + I)wwll , -~.- .  ~< [Iw(DD* + 1).1) + I)wwll (-1.-1> + c II+~ll ~o.-1, ~< 0 + ollw II. Thus 
~ ~<~11~11, and since ~ is compact we conclude that ~llwlh-~, ~<~llwll. In a similar 
fashion we find that ~llDwl[(_~, <~[IDwll and ~llD*wll(_~, <cllO*wll. Subst i tut ing into the 

inequality above we have ]]ul[(, , <~c{Q(u)+Q(w)+~HBuI[,v_�89 Since Q(w)4Q(u) by Dirich- 

let's principle, we now have II~ll., ~<o{Q(~)+~llBul[,~,} as required. 

The estimate (5.4) is rather difficult to study directly because it presupposes the 

explicit solution of the Dirichlet problem. In his recent paper [7], L. HSrmander has 

approximated the operators in (5.4) with certain pseudo-differential operators on to, whose 

symbols are, at least in principle, easy to compute. Before stating H6rmander's theorem, 

we must introduce additional data. 

Define r/ to be the unit cotangent vector field ~:to-+T*(M) which is orthogonal to 

T*(to)y at every yEto. Denote by p(~) and r($) the principal symbols of D and DD* +D*D 

respectively. In the notation of Chapter I we have, for example, p(~) = is~(D) : C~ ~ C~ +1 for 

each ~E T*(M)~; thus p is a polynomial function of ~E T*(M)u with values in Horn (C~,C~+I). 
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Note that  the principal symbol of D* is p(~)* and that  r(~)=p(~)p(~)* +p(~)*p(~), where 

the adjoints are defined by the inner product in the bundles C ~. 

Now fix y E~o, 0 =~' E T*(to)u, and consider the initial value problem: 

v(0) = v e ~ 

for a C~-valued function on the half line t >/0. Here r(~' +~Dt) is defined by writing D t for 

~t in the expansion 

r(~' + ,~ )  = ro(~', ~) +h(~' ,  ~)~+r~(~)~, ~e C. (5.6) 

I t  is easy to verify that  r(~' +~Dt) is an elliptic self-adjoint operator in one variable; by a 

trivial application of the general theory we conclude that  (5.5) has a unique exponentially 

decreasing solution. Thus for each ~'E T*(co)~ we have a linear map h(~ e') from C~ to C~ 

defined by h(~')v=DtV(O), where V(t) is the exponentially decreasing solution to (5.5). 

Now define 

~(~') = p0(~', ~) +p~(~) h(~'), (5.7) 
Ic' (~') = Po(~', ~)* + p~(~)*h(~'), 

where Po(~', ~) and P1(~7) are defined by an expansion similar to (5.6). We note that/~(~') 

and k'(~') are homogeneous of degree 1 in ~'E T*(co)y, and we choose pseudo-differential 

operators K and K'  on eo with symbols/c(~') and/c'(~') respectively. 

PROPOSITION 5.5. The estimate (5.1) holds, provided that the estimate 

~ (r-�89 <~ e{'HKvII(-�89 +~189 + ~llvll (-�89189 (5.8) 

holds/or all v EF(eo, CJ). 

Proo]. Let w E F(~,  C j) satisfy (DD* + D*D + I) w = 0, and let v = w]eo. I t  follows from 

(2.3.15) in HSrmander [7] that  

tollKv-nwll(_�89 < ~(~llvll,_�89176 
~ ~<c{~llvll,_~,+~ 

where w 1 = - i (~ /~n)wlw is the normal derivative of w restricted to the boundary. As 

in the proof of Lemma 5.4 we have ~llvll,-�89 and a similar argument shows 
W K t to tha t  tollwlll,-~, ~<ollwll. Hence,  we have ~tlwll (r-�89 ~<~(~ + II vii (-�89 +~ Ilwll,-~, + 

~llBwll,�89 <e{~189 +~llwll,-�89 + Ilwll +~llBwll(�89 In the proof of Lem- 
ma 5.4 we showed that ~llDwll,-�89189 +~189 Thus we have 

~ ~< e{Q(w)+~189 
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As in the proof of Lemma 5.4, this estimate, Diriehlet's principle, and Lemma 5.3 

yield (5.1). 

The following lemma will enable us to prove the converse of Prop. 5.5. 

LE~MA 5.6. Assume that (5.1) holds/or all us CJ). Then the estimate 

Ilull(r+2, < e{llD~ll(2, + II D*ull(2, + Ilul1,2, +~ (5.9) 

also holds/or all u EP(f~, CJ). 

Pro@ Assume that  (5.1) holds, and note that  it suffices to prove (5.9) locally. Let  U 

be a coordinate disk and let U' be a somewhat smaller disk. Since the interior case is simpler, 

we shall assume that  U is a boundary disk. As in the proof of Lemma 5.3 we choose a tan- 

gential pseudodifferential operator P:C~(U)-~C~(U)  of tangential order 2 such that  

[D, P] and [D*, P] have tangential order 2 and such that  HuH (0.r+2)~< c{]]Pul](r)+ HUll(2)} 

holds for u with support in U'. Using Lemma 5.2 and (5.1) we obtain [{ull(:+2 , <--.c{{[Dul[,r , + 

IID*ull (,-, + Ilull ,O.r+:,} <e{llDull (=, + IID*ull+ + Ilull+ + IIDPull + liD*Pull + IIPull + 
~189 <~{111)~1/<~, + IIZ)*ull(2, + Ilull<~, +~ }, as required. 

PROPOSITIO~r 5.7. Assume that (5.1) holds/or all uEF(~ ,  CJ). Then the estimate 

'~ H vii(r+ +) <<. c{'ll gvll<+) + '~ g'vll(~> + ,o[[ v II(~) § ~ By [[(~>} (5.10) 

holds/or all vEF(co, CJ). 

Pro@ Assume that  (5.1) holds and let vEF(eo, CJ). Let  w be the unique element of 

P(f~, C j) such that  ( D D * + D * D + I ) w = O  and w = v  on co. Then by Lemma 5.6 we have 

+llvl[(r++,-<< [[w[[,~+2)-<e{HDwl](2, + liD*vii(e)+ I[w[](2)+~]]Bv[[(_~)}. Using the well-known 

estimate 

[[ u][(2) <~ e{[[ (DD* + D*D + I)u[[ + ~l[ u[[<+)} (5.11) 

for the Diriehlet problem, we see that  

II vll(r+e> < ~{~tl~wll+ + =11D*wll+ + ~llwll+ + =tl Bu l l+ .  

According to (2.3.15) in t tSrmander [7] we have 

=llDw- Kvll+ <- c{=llvll(+) + ~'llwlll+} 

=IID*~-K'vlI+ <e{~176 

where w, has the same meaning as in the proof of Prop. 5.5. Since :[Ivll<+)+ :llw, ll(�89 

cHwlLe ) <~ c+Hwl[<+) by Lemma 5.1 and (5.11), the estimate (5.10) now follows. 
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PROPOSITION 5.8. _For each real number s the estimate 

. llvll < e{ llKvll, , +  llg'vll, , (5.12)  

is equivalent to (5.1). 

Proo]. In  view of Prop. 5.5 and Prop. 5.7 it is enough to prove tha t  the estimates 

(5.12)s are all equivalent. However, this follows easily using pseudodifferential operators. 

6. Local analysis 

We first discuss the boundary condition (3.1). Let U c  M be a boundary coordinate 

disk for g2 with coordinate x = ( x  1 ..... x'~). Assume tha t  UN ~=(x6UIx~>~O} and tha t  

U • o)= {x E U Ix ~ =0}; in fact, assume tha t  x n is the geodesic distance from x E U • ~ to 

the boundary w. Also choose trivializations for the bundles C~. Now note tha t  u 6 F(~,  C j) 

satisfies (3.1) if and only if the mapping 

F(~,  C j-l) 9 v-+ (Dv, u)  (6.1) 

extends to a bounded linear functional on Le(~, C~-1). Thus the validity of (3.1) depends 

only on the principal par t  of D, which is given by  v-~Z~dx v A 8~v in the local coordinate 

x (see section 2). I t  also follows tha t  (3.1) is a local condition on the boundary values of u. 

Thus let u have support  in U and consider 

( ~ d x ~  A ~v '  ~>= ~ f ~ o  (dx~ A S~v' u)x/(x) dx' 

where / is the density for the volume measure. Integrat ing by  parts, we find tha t  (6.1) 

is equal to a bounded functional plus the mapping 

v-+ - f (v, Bu)~,/(x')dx',  
j x  n~O 

where x' = (x 1 . . . . .  x ~-1) and B : CJx,-+C~: 1 is the adjoint of dx n A . I f  Bu = 0 on ~o, then 

(3.1) holds. Conversely, if (3.1) holds, then for any  w E F ( ~ , C  j-l) with support  in the 

interior of ~ we have 

For suitable w the L 2 norm I lBu-w[I is arbitrarily small; thus Bu=O on co. I f  we define 

a(y) to be the geodesic distance from y E ~  to the boundary o ,  then B:CJ~-->Ci~ -1 may  be 

described globally as the adjoint of da A .. 

Expressed in terms of the isomorphism (1.7), da A. becomes the direct sum of the map- 
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pings da A . : R J - I ~ R  j and  - d a  A. :~g~gj+l .  Since C j ~ R J@ :r is an  or thogonal  de- 

composition, the  adj oint B is a direct sum B = B ~ | B 2 : R j | ~gJ + ~-+ R j- ~ | ~gJ. As we noted  

in section 2, the  principal  symbol  p(~)=is~(D)  has a similar decomposi t ion p ( ~ ) = p l ( ~ ) +  

p2(~). Thus  we have  decomposi t ions p(~)* =pl(~)*(~p2(~)*, r(~) = rl(~) (~r~(~), k(~) = k l ( ~ )  

k~(~), etc., corresponding to the  decomposi t ions C ~  R~| ~+~. Since we m a y  choose the 

pseudo-differential  opera tors  K and  K' as direct sums K = K ~ + K  ~ and K ' = K ~ ' + K  ~', 

we find t h a t  the  es t imate  (5.12)s holds if and  only if the  es t imates  

hold for all a~F(~o, R ~) and  ( 6 F ( w ,  xg~+l) respectively.  

I n  order to s tudy  the es t imates  (6.2)~ and  (6.3)~ we choose a bounda ry  coordinate disk 

U, as above,  with coordinate x. We also choose an  or thonormal  f rame  ~ . . . . .  ~" in the  real 

co tangent  bundle over  U; t h a t  is, we choose sections ~ ,  ..., yn of T*(N)v such t h a t  a t  each 

y fi U, ~71 . . . . .  ~" fo rm an  or thonormal  basis for T*(M)v. Assuming t h a t  x n gives the geodesic 

dis tance f rom x fi U fi ~ to co, we m a y  take  ~n = dx n over U f) ~ .  Taking  exter ior  p roducts  

of the  forms ~", we obta in  o r thonormal  f rames  in the  bundles A~T*(M)v; choosing ortho- 

normal  f rames  in R e and  gv, we thus  obta in  or thonormal  f rames  in each of the bundles  

g~ and  R~. We also choose or thonormal  f rames  in the  bundles gg~v. 

As we no ted  in section 2, the principal  symbol  of D is given b y  

p(s e) u = / s , (D)  u = ~ i ~ f  A ~:, u for ~ = ~ ~]~ + - - -  + ~:n 0 n e T*(M)u 

and u 6 C~u. Therefore,  we have  

p~(~) ~ = - i Y ~  ~ A ~ ~, 

i n - -  - ~  ( 6 . 4 )  pl(~)*~ = - ~ 1 ~  a A a ~ ,  

where ~ / ~  is the  vec tor  field dual to ~" and  a is the  or thogonal  project ion of gJ onto  

ag~. Using the  identi t ies 
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we find tha t  r l ( f ) a  = ~ T f ~ a =  if] 2a. Thus for ~ ' =  f1~71 + . . .  f~-1*7 ~-1 e T*(w)u the equa- 

t ion r~(f ' § ~TnD~) V(I) = [~' ]3 V(t) + D~ V(I) = 0 has exponent ia l ly  decreasing solutions 

V(t) = exp ( - If ' i t )  V(0), and we find tha t  h~(f ') a = i I f ' l  a. Therefore,  the operators (6.2)~ 

have symbols: 

~l(f')<,= iZl'-lv"/\ a~ -v "  A If'l<,, 

]r ff : i V n - l ~  ~ + ~ (6.5) 
- : _ . 1  ~ •  ~.  If ' lo• @, 

B l a : a ~  ~n"  

We claim tha t  the map ~-~(]ci(f ')a,  k l ' ( f ' )q ,  Blq) is injcctive if f@0;  indeed, if 

kl(~ :') a = kv(~ ') a = B16 = 0, then  

]~ '[a  = (~ /nA[ f ' i a )  A ~ 4 - ~ n A  ( [ f ' i a A ~ ) = ( r / n A ] f ' i a ) A ~ = - - ( k a ( f ' ) a ) A D = 0 .  

Thus the pseudo-differential operator  K I | 1 7 4  1 is elliptic, and consequently the es- 

t imates (6.2)~ hold with r = I. 

The  symbols of the operators occurring in (6.3)~ are given by  

~( f , )  ~ = iZT-1~  A ~ ~ + r A h*(f ') ~, 

~ ' ( ~ ' ) ~ = - i ~  l:<(~.r ~ ~-]-i~<(h~(~')~ X ~ ] ,  (6.6) 
\ O~bl \ Orl~l 

Suppose t ha t  k2(~ ') ~ = k~'(~ ') ~ = B~$ = 0. We apply  - ia(-  X (0/~y~)) to  the first line in 

(6.6), il7 n A �9 to the second line, and add. We obtain 

NM(f ' )  ~ = h*(f ') ~, (6.7) 

I t  is readily verified t ha t  V(t)=exp (iNM(~')t)~ is a solution to r~(~'+lTnl),)V(t)=O, 

t >70. In  view of (6.7} and the definition of h2(~ ') we see tha t  V(t) is exponential ly  decreasing. 

1 7 -  682902 Acta  mathematica 120. Imprim~ le 24 juin 1968 
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Thus ~ belongs to the direct sum of those spaces in the Jordan decomposition which cor- 

respond to eigenvalues 2 of NM(~') satisfying I m  1 > 0. Since this argument  can be reversed, 

we obtain: 

P ~ o P o s I T I 0 ~ 6.1. A non-zero cotangent vector ~' 6 T*( oo )~ is characteristic/or the pseudo- 

di//erential operator K~| K2'| B 2 i /and only i/ the kernel o / B  ~ in (ag~+l)y has a non.trivial 

intersection with the subspace o/(agJ+~)~ corresponding, in the sense o~ the Jordan decomposi- 

tion theorem, to the eigenvalues o/ N M  (~') with positive imaginary part. 

The estimates (6.3)s hold with r= 1 if and only if K~|174 2 has no charaeterictics; 

thus Prop. 6.1 gives a necessary and sufficient condition for (6.3)~ to hold with r = l .  Be- 

cause of Prop. 5.7 we have: 

COROLLARY 6.2. The estimate (5.1) holds with r = l ,  i /and  only i/ /or each y e w  the 

kernel o/ B 2 in (agj+l)y has a trivial intersection with the subspace o/(ags+l)u corresponding 

to the eigenvalues o~ NM(~') with positive imaginary part. 

Thus Corollary 6.2 gives a necessary condition for the solvability of the D-Neumann 

problem. The condition is unrealistic, however, because it fails to hold even for the Cauchy-  

Riemann equation. In  general one expects the solvability of the D-Neumann problem to 

depend on higher order properties of the boundary o) and of the symbols of the operators 

involved. Thus one is forced to consider the estimates (6.3)~ for values 0 < r < 1, and perhaps 

even for arbitrari ly small positive values of r. In  his paper  [7], L. t t6rmander  gives a 

necessary and sufficient condition for the validity of estimates like (6.3)~ with r = �89 Since 

we are not able to simplify H6rmander ' s  condition in this setting, we do not state it here. 

In  Chapter I I I  we will apply H6rmander 's  condition in a more tractible context. 

Chapter III. The Db-problem 

1. Restriction to the boundary 

In  this chapter we construct a sequence of differential operators on r by  restricting the 

second Spencer sequence for ~ .  This construction generalizes the ~b-sequence of K o h n -  

Rossi (see [8] and [11]) and provides some information about  the convexity required for 

the solvability of the D-Neumann problem. We retain the notation of Chapter I I  and the 

assumption that  V is elliptic. 

Let  e:co-+M denote the inclusion, and choose a real function aEC~176 such tha t  

a(y) =0 and da~=O whenever yea) .  Then for each y e w  and each ] = 0 ,  1 . . . .  , n we obtain a 
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surjective map  t* :A~T*(M)~Ar whose kernel consists of all elements ~ ~A~T*(M)~, 

satisfying da A ~ = O. Accordingly, for each y ~ o  we obtain exact  sequences 

0 ~ a �9 ( R g ) y  �9 

0 r �9 ( g . ) ~  �9 

where ~ a (R.)~ = { a e (R~)~]da A a = O} 

da A . ,  we obtain the diagram 

: 

0 r  

0 �9 [ t + 1  ~a t, g u - l l y  ) (gig+_l)y 

4, 4, 
: 

(R~)~ , 0 (1.1) 

(g~)~ , 0, (1.2) 

and similarly for r ~ (g,)~. Since ~ ant i -commutes  with 

~| ( R , |  

l |  
, (g. | AtT*(~o))y 

$$ 

4, ~b 

. (9, | A~T*(r 

�9 (gg_l| A~+XT*(o)))u 
r 

, 0  

, 0  

where c$b is induced by  ~. Assuming tha t  # is sufficiently large, we know tha t  the middle 

column is exact. I t  follows from the ellipticity of ~ tha t  the first column is also exact.  

E/.J+l ~a satisfy (~ = 0. Since da A ~ = 0, Prop.  II .2.1 shows tha t  ~ = da A ~' I n  fact, let ~ ~ - l j y  

for some ~'e(g~-l)y satisfying ( ~ ' = 0 .  Since ~ ' = - ( ~ "  for some $"E(g~-l)y, we have 

~=6(da A ~") and daA ~"E (g~)a. We m a y  now conclude tha t  the third column in the 

o ~ i a _ _  t a  diagram is exact. Wri t ing ~b g~ = { $ e g~ | AJT*(co) I (~b ~ = 0 } and ( g,)u - { ~ e (g~)y I~$ = 0 }, 

we thus obtain a diagram 

0 0 0 
4, 4, 4, 

, ~ J ~ . (~ogJ.)~ , o o ( g . )~  , (~g~)~ '* 
4, 4, 4, 

0 i a '* ' (g,)~ ' (g~)y , (g,| ~ 0 

r 4, 4, 
0 0 0 

(1.3) 

with exact  columns. The middle row is exact  by  (1.2); and if ] = n -  1, then  the bo t tom row 

is exact. Thus by  induct ion the top row is exact  for all ] = 0 ,  1 . . . .  , n. Note  tha t  we can use 

the exactness on the r ight  to show tha t  abg~ is a vector  bundle over co. 

F rom the top row in (1.3) we obtain an exact  sequence 

o , r o ( ~ ,  ~g~) , r ( ~ ,  ~g~)  ~ . r ( ~ , . 0 a ~ )  . 0 ,  (1 .4 )  
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where F~(~, �9 ) denotes the space of smooth sections ~ satisfying da A ~ = 0  on o and where 

the restriction map  ~ is defined by  ~ = t*~[~o. I f  we write R~, ~ for the bundle R~| A~T*(eo) 

over o9, then (1.1) yields a similar sequence: 

0 Fa(~, R~) - P(f2, R~) ~ P(eo, , , ~ R o . , )  -~ 0 .  ( 1 . 5 )  

Note that  the restriction maps ~ are compatible with exterior multiplication in the 

sense that  ~(~ A q) = ~ A ~q if ~ is a v-form on M and a is a section of R~ or afrO. 

Now define the bundle C~.~ over o) by  the exact sequence 

0 _ .  > ~ J R b ,  p+  1 --> ~bg.+~ -~ C~.. -~ 0 

and consider the diagram 

0 0 0 

0 , r o ( ~ ,  ~g~§ ~ r ( t~ ,  ~g~§ , r ( ~ ,  ~g~+~)  - -  ~ 0 

4 4 
o , r ~ ( ~ ,  R~+~) - *  r ( ~ ,  R~+~) , r(oJ, R~.~+~)J - -  , 0  

vo(~, c~) r(~, c~) r(w, ct..). 

0 0 0 

(1.6) 

B y  (1.4) and (1.5) the rows are exact, and the two columns on the right are exact 
�9 i because of the definitions of C~ and Cb.z. We claim tha t  the left column is also 

exact.  Since exactness at the other places is easily verified, it is sufficient to show that  

Fa(~, R~+I) -~ Fa(~, C~) is surjective. Thus let ~ be a section of C~ such tha t  da A a = 0 

on co. Write p for the mapping R~+I~C] , ,  and choose a section T of R~+I such tha t  

p T = a  on ~ .  Since d a A  a = O  on ~o, we find tha t  (daAT){~o is a section of a "j+1~,+1. By 

Prop.I I .2 .1  there exists T'E F(w, ~g~+l) such tha t  da h "~'= da A v on co. If  v"E F(~2, ~g~+l) 

is any extension of T', then p ( ~ -  T") = g on ~2 and da A (~--  ~") = 0 on co. Thus the re- 

quired surjectivity has been established. Diagram (1.6) now yields an exact sequence 

o , p o ( ~ ,  e~ )  ~ r ( f l ,  c~)  - ~ ~ r (~ , ,  c i . ~ )  , o. (1.7) 

As before ~ is compatible with exterior multiplication. 

We claim tha t  the operator D in the second Spencer sequence maps r a (~ ,  O~) into 

Fa(~, C~+~). Indeed, if a E Fa(~, C~), then there exists v E F(~2, C~ +1) such that  da A (~ = av  

in a neighborhood of w. Thus 
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da A D a  = - D ( d a  A a) = - D(a'~) = - da  A ~: - a D z  = - a D z  = 0 

/-yj __> Dj+I  on o). Using the sequences (1.7) we thus obtain an induced operator  D ~ : ~ . ,  ~ , , .  

Since D *= 0, it follows tha t  D~ = 0; moreover,  D~ is a derivat ion in the sense tha t  

D~(~ A a ) = d ~ A  a + ( -  1)~A D o a  (1.8) 

for a v-form ~ on ~o and a section a of C~.,. To prove this choose TEF(~ ,C~)  and 

E F(~ ,  A~T*(M)) such tha t  ~ = a and ~r/= ~. Then 

Db(~ A a) = ~(d~/A v +  ( -- 1)"~/A Dz) = ~d~ A a + ( -- 1)~ A D~a. 

In  a local coordinate it is easy to verify tha t  ~d~ = d ~  = d~; thus (1.8) holds. 

2. The symbol  sequence 

Our purpose here is to investigate the sequence of symbol maps which is associated 

with the Db-sequence 

0 _ ~ 0 o  ~ C i  _~ . . ._~  ,,-1 Co., -+ 0 (2.1) 

introduced in section 1. I n  view of (1.8) we have tha t  s~(D~)= ~ A" for a non-zero co- 
" ~G'J ,,~ ~ j + l  tangent  vector  ~ET*(co)u. If  we introduce isomorphisms C $ . , ~ , o . u w ~ v  , as in I I ,  

section 1, then the symbol  sequence of (2.1) at  ~ is the direct sum of the sequences: 

0 (RO,,) ,A- (R~.,)u ~^" n - 1  . . . . . . .  (Ro . , )~  , 0, (2.2) 

0 1 --~A" - ~ "  , (O~be,u)y 2 n-1 �9 (~bg,)~ . . . . .  ( : c o g , ) u  , 0. (2.3) 

The first sequence is always exact;  we begin our discussion of the second with the fol- 

lowing: 

D e f i n i t i o n .  Let  ~1 and ~ be linearly independent  elements of T * ( M ) u ,  and  let P be the 

subspace which they  span. Then ~1 A ~ is said to  be characteristic for O:_E~_F if the com- 

position 

S ~ ~ 1 7 4 1 7 4  ~ J~o(E)v %~ F y  

has a non-trivial  kernel. 

I f  x = ( x  1 . . . . .  x n) is a local coordinate at  y and  if ~ l = d X  n - l ,  ~ 2 = d x  n, then  ~1A~2 is 

characteristic for ~ if and  only if (g~~ contains a non-zero element a satisfying (~1 q . . . . .  

(~n_2(T =0 .  I f  ~1 i ~2 is characteristic for 9 ,  it does not  follow t h a t  ~1 A ~ is characteristic for 

? ' ,~,  v > 0. For  example , /% = 1, n =2 ,  and suppose tha t  (gl)u consists of all real multiples 
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of eX~+]X ~, where e and ] are linearly independent elements of R ~. For each (~e(g~)~ 

there exist real numbers t 1 and te such tha t  ~(~=t~(eX~+/X 2) and ~a=t~(eX~+JX~). 

Then t ~ / = ~ a = ~ a = t ~ e ;  and by  linear independence, t~=t~=O. I t  follows tha t  a = 0  

and hence (g2)~ =0.  We find tha t  dx ~ A dx ~ is characteristic for ~ ,  but  not for ~ ~ .  

I f  ~ is elliptic and involutive, however, then ~ A ~ is characteristic for ~ if and only 

if it is characteristic for ] ~ .  Indeed, this will follow from the next  proposition. 

PROPOSITION 2.1. Let lu~ be the integer defined in I ,  section 7, and let daET*(M)y 

be orthogonal to T*(eo)y. Then the sequence (2.3) is exact ]or i~ >~1 i] and only i / ~  A da is 

not characteristic/or ] ~,_~o ~.  

Proo/. For this proof we may  assume tha t  ~) is involutive and of order 1. Then ~b 

sequences are exact for # ~ 1, and the cohomology of (2.3) is independent of ~/> 1. Indeed 

this follows from the argument used in concluding the proof of Prop. II.2.1. 

We introduce a coordinate x = (x 1 ... . .  x ~) on a neighborhood of y in M; we assume tha t  

dx 1, ..., dxn-lET*(a~)y and tha t  dxn=da. We may  also assume tha t  ~=dx ~-1. Using the 

definition of (~, we find tha t  ~b=Z~-ldx v A~, in the fibers over y. Thus the kernel of 

- -dx~-lA �9 in (~og~)y consists of all elements of the form dx ~- l |  where a Eg~ satisfies 

~1 ff . . . . .  ~n--la = 0. Since the cohomology of (2.3) is independent of #, we see tha t  dx n- ~ A dx n 

is characteristic for O. We also see tha t  the condition in the proposition is necessary if (2.3) 

is to be exact. 

The proof of sufficiency follows the proof of Prop. II.2.1 very closely. Using the argu- 

ments given there, we see tha t  it suffices to show tha t  the condition implies the exactness of 

g,+I |  -~ q~| -~ g,_~| (2.4) 

for large ~u. Here ~'=Z~-2dx ~ A ~ ,  and H is the subspace of T*(w)y spanned by  dx 1 .. . . .  

dx n-~. Arguing as in the proof of Prop. II.2.1, we can identify the spaces g~ with spaces 

of polynomials in n - 2  variables and conclude, as before, tha t  (2.4) is exact. 

Note tha t  there m a y  be a large space of ~ E T*(co)y for which (2.3) is not  exact. For 

example, let ~ be the determined operator given in a local coordinate by  ~ s  =Z~  A v~s,  

where A~ is a non-singular matrix. Assume tha t  ~ is defined by  x ~ >~0 and tha t  the metric 

is euclidean in the coordinate x. Then for any  ]EEywe may  set e =  - A ~ I A n / a n d  obtain 

an element eXn-l-~/xnE(gl)y. T h u s  dxn-lA dx n is characteristic for ~ ;  in fact, for any  

0 ~ E T*(eo)~, ~ A dx n is characteristic for O. Since ~ is involutive, (2.3) is never exact. 

In  general, however, the space of characteristic ~'s will be a proper subspace of T*(o))y. 

I f  ~ s  = 0  gives the Cauchy-Riemann equation, then (2.3) fails to be exact for ~ lying in a 

1-dimensional subspace. I f  ~ is the gradient operator, then (2.3) is always exact. 
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3. The D~-problem 

For j = l  . . . .  , n - 1  let H~ be the space of all uEP(co, C~) satisfying D o u = D ~ u = O .  

De/inition: We say that  the D0-problem is solvable for ~ on eo up to dimension m if 

H~ is a closed subspaee of L~(eo, C~) for j = 1, ..., m and if there exist bounded operators 

N0:L2(w, Cg)-~L2(co, Cg), i =  1 . . . . .  m, mapping smooth sections to smooth sections, such 

that:  

(i) N~ Ho = H0 No = 0, where H 0 is the orthogonal projection onto H~; 

(if) each u E F(o,  C~) can be written 

u = D~D*Nbu + D~DbNbu  + Hou, (3.1) 

where the terms are mutual ly orthogonal; 

(iii) Nb commutes with Db and D~. 

Using the arguments described in I I ,  section 5, we obtain: 

PROPOSITION 3.1. Assume that for some 0 <  r<~ 1 and /or  j =  1, ..., m the estimate 

holds/or all u E P(co, C~). 

Now recall the exact 

II ~ II~. ~ c {11 Do u II + II D* u II + II ~ II) (3.2) 

Then the Db-problem is solvable/or 0 on eo up to dimension m. 

sequence (1.7) and consider the commutat ive diagram 

0 0 0 

0 ~ To , i.~a(~2, CO ) D , [~a(~2, C 1) " ... 

0 T F(D, C ~ D . . . .  P(~ ,  C 1) , ... 

r 4 r 

0 �9 To , P ( ~ , V ~  ~ " ~  r ( o ~ , e l )  �9 . . .  

4 

(3.3) 

0 0 

where To, T,  and To are defined as the kernels in the corresponding rows. I f  yEeo and if 

aECOy satisfies dy A a = 0 ,  then a=O because of Prop. II.2.1 and the ellipticity of ~ .  Thus 

F~(~, C ~ consists of those sections in F(~,  C ~ which vanish on ~o. I t  also follows tha t  

C o is isomorphic to the restricted bundle C ~ and thus we may  consider Tb as a subspaee of 

F(eo, CO). I f  the top row is exact a t  F~(f2, C1), then by  diagram chasing we infer tha t  the 

restriction map T-+ T0 is surjective. Thus v E F(o~, CO) is the boundary value of a section 

uEF (~ ,  CO) satisfying D u = O  if and only if Dov=O. Recall from II ,  section 1 tha t  C o is 
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isomorphic to R/~+I and that  the canonical operator ]~+1 gives an isomorphism of T with the 

space of sections u E F(~,  E) satisfying Ou = 0. Thus, under the exactness assumption above, 

the condition Dbv =0 is necessary and sufficient for vEF(o), R#+I) to be the Cauchy data 

for a solution to ]~_~,+2~)u=0. 

The exactness properties of the top row in (3.3) can be studied by a boundary problem 

very similar to the D-Neumann problem; in fact, the new problem is obtained by replacing 

(II.3.1) and (II.3.2) by the adjoint boundary conditions. Thus the fundamental estimate 

is obtained from (II.5.1) by replacing B with B* =da A .. 

The purpose of diagram (3.3) is to compare the exactness properties of the three rows. 

I t  follows by diagram chasing, for example, that  if any two rows have finite dimensional 

cohomology, then the same is true for the third row. I t  is probably true that  if the problems 

corresponding to any two rows are solvable, then the third problem is also solvable. For our 

purposes the following proposition is relevant. 

PROPOSITION 3.1. Recall the notation o / I I ,  section 5, and assume that h(~) commutes 

with the boundary operator B. Assume that the estimate (3.2) holds/or uEF(oJ, C~-I), where 

j >~ 2. Then the estimate (II.5.1) holds/or uEF(~ ,  CJ-1). 

Proo/. The principal symbol of D0 splits into a direct sum q(~)= is~(Do)= ql(~)| 

corresponding to the decomposition C~ ~ R~| j+l. For the purpose of this proof we 

may assume that  D b has a similar decomposition D0 = D~OD~; this is because the esti- 

mate (3.2) depends only on q(~). From the hypothesis of the proposition we now obtain 

the estimate 

for SE F(eo, ~bgJ). 

We rewrite the exact sequence 

L~ 
0 " (O~gt)  a " ~gJ , ~bg j , 0 (3.5) 

from the diagram (1.3). We assume that  the inner product in a0g j is the quotient inner 

product defined by (3.5). Thus the adjoint t of t* is the splitting of (3.5) with least norm. 

I t  follows that  tt* is the orthogonal projection of ~gJ onto the orthogonal complement of 

(~g~)a; that  is, tt* is the orthogonal projection onto the kernel of B ~. 

From (II.5.10) we have 

k2(~) ~ = p~(~) ~ + da A h2(~) 

k~' (~) ~ = p~)(~)*~ + B2h~(~) ~, 
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where po2(~) ~" = ~ h ~. Since t* is compatible with exterior  multiplication, we have q2(~) t* = 

t*p~(~). Taking adjoints,  we obtain @(~)*= p~(~)*t. Note  tha t  t*p~(s ~) = t*k2(Sj) and tha t  

tqZ(Sj) * = k~'(s~)t since B2h~(~) t = h2(~)B~t = 0. We thus obtain 

r  = t*k~(~) t 

r  = t*k~'(~) t 

and hence IID~ ~il < ~ {lIK~t~ll + II~ll} 
(3.6) 

IID~*r < ~{ll~:~'t$1l + II ell} 
for ~eF(~o, zc~gJ). 

For  ~ E F(to, act) we have 

II ~ll+ < Ilt~*~ll<:)+ I1(' - t~*)~ I1<~). (3.7) 

Using (3.4) and (3.6) we see tha t  

{Itt*C{{+ < c{lt*r < c  (IID~ t*r + IID~*t*r + lit*ell} < e {llK~tt*$1] + llK~'tt*r + II r 

~ o t +  t ha t  Ilsc:(~ - t:*) r < ~11 (~ - t~*) ~11<. < ~ {IIB:~II(. + 11-~ll}- A similar est imate holds 

for K ~ ' ( 1 -  tt*)~, and hence we obtain 

li t+ell+ < c{ l lK:~l l  + IIK:'$1[ § II $11 + ][B'~ []<1) } �9 

Combining this est imate with (3.7) and the est imate lt(1-tt*)r 
we obtain the est imate (II.6.3)0 for ~ F ( r  ~j~). B y  the results of II ,  section 5 and II ,  

section 6 we conclude tha t  (II .5.I)  holds for u~F(f2 ,  C ~ 1). The proof is complete. 

We close this section with a cautioning word about  diagram (3.3). Namely,  consider 

the end of tha t  diagram: 

0 0 0 

... - -  �9 F~(g~, C n-~) ~ F~(~), C ~-1) ~ F~(~ ,  C ~) 

... - , r ( ~ ,  C '~-2) ~ r(~) ,  C ~-1) ~ r ( ~ ,  C ~) 
{ 4 4 

. . .  - -  �9 F ( ~ , C ~  -2) , F((o,C~ ~-1) -~ 0 

0 0 

, 0  

� 9  

On the summand agn of C ~-1 the boundary  condition defining F~(f2, C ~ 1) vanishes; thus  

the cohomology of the top row will often b e  infinite dimensional in dimension ?" = n - 1 .  



270 WILLIAM g.  SWEENEY 

Consequently, we cannot expect the bot tom row always to be well-behaved at  j = n - 2 .  

I t  is also possible for this phenomenon to occur in dimension j < n - 2 ;  in section 5 below 

we discuss a case where the Db-problem is solvable only up to dimension � 89  In  general 

we expect the Db-problem to be well-behaved for j = 1 .. . . .  m -  2, where m is the "cohomo- 

logical dimension" of ~ :  _E->_F; tha t  is, where m is the length of the shortest sequence 

O-~ E- r  lC--~ F2-~...--> F_ m-~O 

of differential operators having the same cohomology as the Spencer sequence for D. 

4. Hiirmander's condition 

In  this section we use a recent theorem due to L. H6rmander  in order to s tudy the 

estimate 

Ilu]](~) ~< c{]lD~u]] + ]lD~u]] + HUH}, u e F(o~, c~), (4.1) 

which is a special ease of (3.2). Before stating H5rmander 's  theorem we must  introduce 

new notation. Let  U c  co be a coordinate disk with coordinate y =  (yl . . . .  , y~-l); letting 
(yl, n - 1 .  . . . .  Y , ~1, ' ' . ,  ~ n - 1 )  correspond to the cotangent v e c t o r  ~ l d y l +  . . .  + ~n_ldy n-1 in 

T*(e~)y, we obtain a coordinate (y, ~=) on T*(eo)~. After choosing orthonormal frames 

in the bundles (C~)v, we may  identify the principal symbol of Db with a matrix-valued 

function q(y, ~). We define 

 q(y, and 

For each (y, ~)~ T*(w) we define a differential operator Q(y, ~) by setting 

Q(y, ~) v = ~ q(~)(y, ~) n~ v - i Z q(Y, ~) ~ n~ v + Z q(~)(Y, ~) x~v (4.2) 

for (C~)y-valued functions v of the variable x = ( x  ~ . . . . .  x ~ l )eRn-1.  We write Q(y, ~)* 

for the formal adjoint of Q(y, ~). 

PROPOSlTIO~r 4.1. The estimate (4.1) ho/ds i~ and only i/ /or every compact subset 

K o/ co there exist constadts c and N and a/unct ion e :R-+R vanishing at + ~ such that 

the estimate 

IIv]l~<~ci]lq(y,~)2v+Q(y,~)vll~+IIq(y,~)*2v+Q(y,~)*vll2+e(2 ) ~ [Ix~Dav[[ ~} (4.3) 
I~f+lfll<N 

holds/or all ]~] = 1, y ~ K ,  and all v ~ C~(R~-I,(Cl)~). 
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Proo/. See HOrmander [7], Theorem 1.1.4 and formula (1.1.18)'. 

The estimate (4.3) is rather cumbersome; under additional assumptions t tSrmander 

gives a simpler necessary and sufficient condition. 

PROPOSITION 4.2. Assume that the dimension o/ the kernel o/ q(y, $)| ~)* has 

locally constant dimension on the set where it is not O. Also assume that/or each compact subset 

K o/ca there exists a constant c such that 

d(y,  )llell c{llq(y,  )eil + IIq(y,  )*ell} 

/or all y EK, I~1 = 1, and e E (C~)~, where d(y, ~) denotes the distance ]rom (y, ~) to the charac. 

teristic variety. Let H(y, ~) denote the orthogonal projection o/(C~ )~ onto the kernel o/q(y, ~) | 

q(y, ~)*. Then (4.1) holds i/ and only i / /or  every compact subset K o/ca there exists a constant 

c such that the estimate 

Ilvil < c{llH(y, ~)Q(y, ~)vl] + HH(y, ~) Q(y,  )*vll } (4.4) 

holds for all y e K, I~] = 1, and all v E C~(R=-~(C~)y) satis/ying H(y, ~)v = v. 

Proo/. See HSrmander [7], Theorem 1.1.7. 

5. An example 

Let n = 2 m  and let M be a complex manifold of complex dimension m; let O c M  

and o c ~ be as before. Let  S be the bundle of holomorphic tangent vectors over M, and let 

~q denote the conjugate bundle. Choose an inner product along the fibers of S; this induces 

an inner product on S and, hence, on the complexified tangent bundle To(M)=S|  By 

construction, the conjugation map is a unitary map of To(M) onto itself; and the restric- 

tion of the inner product  to T(M) = {X  E Tc(M)[X-=X} defines a Riemannian metric on M. 

Let  E be the trivial complex line bundle over M, and let ~q* be the bundle dual to ~. 

Define the differential operator 

D:E-+S*  (5.1) 

98 
by setting ~0s = ~ ~ d2 (5.2) 

in a local complex coordinate z = (z 1, ..., zm). Formula (5.2) does not depend on the choice 

of coordinate, and thus (5.1) is well defined. Note that  " / ) s = 0 "  is the Cauchy-Riemann 

equation in m complex variables. I t  is easily verified that  ~ is elliptic and involutive. 

L]~MMA 5.1. Let y ~ ca. Then there exist sections Z 1 ..... Z m o/S* de/ined on a neighborhood 

U o / y  in M such that: (i)/or each x E U N Ft the covectors Z 1 ..... Z m, ~i  ..... ~m/orm an ortho. 



272 WYLLIAM J. SWE]~NEY 

normal basis /or T* ( M )x; and (ii) /or each x E U N e) the covectors Z 1 .. . .  , z m - l , ~ l  . . . . .  ~m-1,  

Re Z m form an orthonormal basis for T*(eo). 

Proof. F o r  each x E U N eo define S~. ~ to  be the  space of al l  ho lomorphic  co tangen t  

vec tors  a t  x which belong to T*(eo). Since "YET*leo~"~ ~ gives a t  mos t  one l inear  condi t ion  

on the  f iber  S~, the  complex  d imension  of Sb*.~ is e i ther  m or m - -  1. I f  the  d imens ion  

were m, then  T*((o)~ would  conta in  eve ry  holomorphic  co tangen t  vector ;  and  since T*(w) 

is s tab le  under  conjugat ion ,  this  would i m p l y  t h a t  T*(eo)~ conta ins  T*(M)x. The con- 

t r ad i c t ion  shows t h a t  S*  ~ has  complex  d imens ion  m -  1, and  hence S~ = [.J * Sb.~ is a sub- 

bund le  of T*(eo). 

N o w  choose sect ions Z 1 . . . . .  Z ~ -  1 of S~" in a ne ighborhood  of y which give a n  or tho-  

no rma l  basis  in each f iber  * Z ~-1 Sb.x. W i t h o u t  loss of genera l i ty  Z 1 . . . . .  can be ex t ended  to 

an  o r thonorma l  set  of sect ions of S* over  a ne ighborhood  of y in M.  

Choose a sect ion X of T*(M) over  U such t h a t  Z 1 . . . . .  Z ~ - I ,  ~1 . . . .  , ~ - 1 ,  X ~orm an  

o r thonorma l  basis for T*(~)x for each x E U. Replac ing  X b y  (X + X)/2 if necessary,  we m a y  

assume t h a t  X = X.  W e  m a y  also assume t h a t  X has  l eng th  1 over  each x E U N ~ .  

Now let  Z m be a sect ion of S* over  U such t h a t  Z 1 . . . . .  Z m give a n  o r thonorma l  basis  

in the  f ibers  of S* over U. Since X is or thogonal  to  Z k a n d  ~k for /c  = 1 . . . . .  m - 1, we have  

X = a Z m + b Z  m for some a, bEC. W i t h o u t  loss of genera l i ty  we m a y  assume t h a t  a is real ,  

a n d  hence f rom X = X  we conclude t h a t  a=b. W e  now have  X = 2 a R e Z  m, and  since 

I X I = I R e  Z~] ;  we m u s t  have  2a = l .  The  proof  is now complete .  

Note  t h a t  Y ~ = I m Z  ~ is o r thogonal  to  T*(e0), a t  each xEeo. Also, if X ~ = R e Z  ~, 

t hen  ~ = • X m are  the  only  co tangen t  vec tors  of un i t  l ength  for which ~ A ym is charac-  

ter is t ic  for  ~ .  Indeed ,  this  is because  the  equa t ion  ' ; ~ s = 0 "  is equ iva len t  to  

~8 
~ g = 0  ( k =  1, . . . ,  m), 

where  ~ / ~ k  is the  vec tor  field dua l  to  2k. Hence  ~ = • X ~ are  t he  only  uni t  co tangen t  

vec tors  for which the symbol  of DbD* § D*Db is no t  in jec t ive .  Denot ing  the  symbol  of 

DbD*+D~D b at  ~ b y  A(~), we s ta te :  

L~MM)~ 5.2. An element ~ o] :r ~i+1 by~ is in the kernel o] A(X ~) if and only if i~ has the 

f o rm  

= ( x  ~ A z )  | ~, (5.3) 

where X m = R e  Z "~, ZEAJS~, and aEff~ satisfies ~ z k a = ~ z ~ a = 0  /or k = l ,  . . . , m - 1 .  Here 

~z~ and ( ~  are the bundle maps representing ~/~Z k and ~ / ~ k  in the sense of jets. 
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Pro@ If ~ denotes the orthogonal projection of g | A~+~T*(w) onto :r then 

A(X~) ~ = X ~  A ~ @  ~ - ~ )  + ~[(Xm A ~) ~ ] .  (5.4) 

Also, for ~fig@A~+XT*(co) the element ~ $  is given by 

(~ ~'-- ~ m - l  Z~ A (5.5)  

To prove sufficiency note that  if ~ has the form (5.3), then (~b~=0 and XmA ~=0. 

Also ~ ~ O/~X m is orthogonal to ~g~. Indeed, (5.5) shows that  a~g~ is contained in the 

ideal generated by X ~ and the Z~'s; by assumption ~ ~ ~/SX" involves only Z~'s. Thus 

~(~ A 8/OX m) =0 and hence A(X~)~ =0. 

To prove the necessity of (5.3) let ~o~bg ~+1 satisfy A(X~)~=0. Since X~A~=0,  

we have ~ = X ~ A v for some v ~ g | A ~(S~ + S~). Since 8~ $ = 0, we find that  v is annihilated by 

(~; = ~ - ~ Z  ~ A 6z~. (5.6) 

If  we consider g =g~ as a subset of S'T*(M), then g consists of all homogeneous polynomials 

of degree # in Z 1 ..... Z ~. I t  follows that  (~z, :g~+v+g~ is surjective, and thus we may choose 

~/Eg~+I| *) such that  ~z, ~/=v A 8/~Z 1. Arguing as in the proof of Prop. 1.6.1, 

we see that  ~/' =T--(~b~/ satisfies 5zW' ~0  and ~/A ~/PZ 1 =0. Repeating the argument several 

times, we obtain ~'Egz+l| such that  ~"=v-5'~v' involves only Z~'s and 

satisfies ~zkv"= 0 for k = 1 ..... m -  1. Multiplying by X ~ on the left, we now obtain 

~" = ~ - X  ~ A tbV', (5.7) 

where ~" has the form (5.3). By the first part of the proof ~" is annihilated by A(Xm); by 

hypothesis the same is true for ~. But the last term on the right of (5.7) is in the range of 

XmA �9 :abgJ-+gog j+l and is thus orthogonal to the kernel of A(Xm). We conclude that  

~'=~", and the proof is complete. 

Let H denote the orthogonal projection of Cj=R~@~bg i+1 onto the space of all 

~Eabg j+l having the form (5.3). We have: 

L~ M~A 5.3. I/  q(x, ~) denotes the symbol o/Db at ~ = ~1 ZI + ~1 ~1+. . .  + ~,~_1 zm-1+ 
~rn-I zm-1 + ~m Xm E Tr then 

m - 1  

[[q(x,~)~H~+l[q(x,~)~[[~=2( ~ [~,[~) $ (5.8) 

/or ~ satls/ying H$ = ~. 
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Proo]. Le t  ~ sat isfy H ~ = ~ ,  and let ~ denote  the or thogonal  project ion of 

g |  A JT*(w) onto ~bg j. Then  

IIq(x, ~)r IIq(~, ~)*r ~= II Y~(~:~ z~ + ~ z~) A r I1~o(r A a/a[~ z" + ~ Z~]) II ~ 

= y 2 ~ . l ~ l ~ = 2 y l ~ l  ~. 

Now let y be a coordinate defined on a coordinate  disk U~o) ;  let q(y, ~) and  Q(y, ~) 

have  the  meaning described in section 4. 

LEMMA 5.4. I /  ~ is given by (5.1), then the estimate (4.1) holds/or all u with support in 

U i /and only i / /or every compact K ~  U there exists a constant c such that 

Ilvll ~ < c{IIHQ(y, ~)vll~+ I[HQ(y, ~)*vl[2} 

holds/or ~ = -4-X m,/or all y EK, and/or all v E C~(R n-l, (Cib)y) satis/ying Hv =v. 

Proo/. We claim t h a t  

I]( 1 -H)vI[~+ IIq(Y, ~)Hv]I~ + Ilq(Y, ~)*Hv]l~ <c{]lq(Y, ~)v[[ ~+ IIq(Y, ~)*vll ~} (5.9) 

holds with a cons tant  c which is uniform in ]~1 = 1 and  for y in a compac t  subset  of U. I n  

fact ,  if (5.9) does not  hold for any  c, there  exist  sequences {yr}, {~v}, and  {v~} such t h a t  

= II(1 -H)v~ll~+ IIq(Y. #,)Hv.[l~ + Ilq(Y., t,)*Hv, ll~ 

b~t IIq(Y. ~)v~l l~+ IIq(Y~, ~)v~ll ~ < ~/~'. 

Withou t  loss of general i ty  we m a y  assume t h a t  y~-->y, ~ ,  and  v ~ v  as v-> oo. B y  con- 

t inu i ty  we mus t  have  q(y, ~)v =q(y, ~)v =0.  Hence  $ = +_ X ~ and  Hv =v. B u t  this contradic ts  

= II(~ - H ) v l l  ~+ [[q(Y, #)Hvl[~ + Ilq(y, ~)*Hvlp. 

Therefore  (5.9) holds for some constant  c. I f  d(y, ~) denotes  the  dis tance f rom (y, ~) to the  

characteris t ic  var ie ty ,  then  b y  L e m m a  5.3 IIq(y, ~)Hv]12 + IIq(y, ~)*Hv]lZ =(d(Y, ~))~]IHvII2. 

Hence  if I~] = 1 then  (5.9) implies t h a t  

d(y, ~)llvll < l/g{llq(y, ~)vll + IIq(Y, ~)*vll}. 

The l emma  now follows f rom L e m m a  4.2. 
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We now compute the operators HQ(y, ~) and HQ(y, ~)* occurring in (4.4). First note 

that  if Hv = v, then 

m - 1  m - 1  
Hq(y, $)v= ~ {H(Z~A t~(y, $)v) §  ~(y, r v)) = ~ 2~A i~(y, ~)v, 

1 1 

where t~(y, ~) is the symbol of the vector field ~/~Z ~. Also 

m - 1  m--1 
Hq(y, ~:)*v = ~ Ho~(~(y, ~)v ~ ~/~Z~ + t~(y, ~)v~0/~Z~) = ~ t~(y, ~)v-f O/'OZ ~. 

1 1 

n - 1  t If T~(y, ~) denotes the operator t~(y, D) § ~1 ~(~)(y, ~) x ~ and if T~(y, ~) denotes the ope- 

rator obtained from T~(y, $) by putting a bar over occurrence of t, then 

HQ(y, ~)v = ~ Z ~ A  T~(y, ~:)v 

HQ(y, ~)*v = ~ T~(y, ~) v A ~/~2 ~. 
(530) 

for v ~ Cff(R ~ 1, (C~b)y) satisfying Hv = v. 

We now set ~ = sX ~, where s = -l-1, and evaluate the expression 

IIHQ(y, ~)vll~ + IIHQ(y, ~)*vll ~ (5.11) 

for v satisfying Hv = v. The first term in (5.11) is equal to 

(Z~ A T~(y, $) v, Z" A T,(y, $) v) 

= ~ (Z ~ A T,(y, ~) v) ~ O/OZ", T~(y, ~) v 

= ~ 1[ T,(y, $) v l[ e - Z (T~(Y, ~) v N O A Z  ~, T,(y ,  ~) v -A OA2" ). 

The second term in (5.11) is equal to 

(T~(y, ~)v A ~/~Z ~, T~(y, ~)v ~ ~/~2 ~) 

= V C?~(y, ~) T.(y, ~) v ~ ~/~2~, v ~ ~/~2 ~) 

= ~ (?~(y, ~) v ~ ~/~Z ,~, T.(y,  ~) ~ -~ ~/~2 ~ ) 

+ ~ ([T~(y, ~), T~(y, ~ ) ] v ~ / 8 2  ~, v ~ / 8 2 ~ ,  

where [T~(y, ~), T.(y, ~)] = T~(y, ~) T.(y, $) - T.(y, ~) T~(y, ~). We now find that  (5.11) is 

equal to 

II T~(y, ~)vll2+ ~ ([T~(y, ~), T~(y, ~ ) ] v ~ / / ~ 2  ~, v ~ / a 2 ~ ) .  (5.12) 
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A straightforward computa t ion  shows tha t  

[T~(y, ~), T,(y, ~)] = - i  ~ ( i~>(y, ~)t,(k)(y, ~ ) -  i~(k)(y, $)t~k)(y, ~)}, 

which is the principal symbol of [~/gZ ~, ~ /gZ "] at  (y, ~). I t  follows tha t  [T~(y, Xm), 

T~(y, Xm)] = c~ satisfies c~ = 5~. Wi thou t  loss of generali ty the Hermit ian  mat r ix  ( c ~ }  

is in diagonal form so tha t  c~, = )~ if v = ~ and  c~ = 0 otherwise. We now have [T~(y, ~), 

T,(y ,  ~)] = sc~, if ~ = s X  ~ so tha t  (5.12) becomes 

5 II T,(Y, ~) v II ~ + Z s~ II v • ~/e2/II ~. (5.13) 

In tegra t ing  b y  parts,  we see tha t  

II T~(y, ~)vll ~= [[T~(y, e)vll ~ -  <[T~(y, ~), T~(y, ~)]v, v) = IIT~(y, ~)vll~- ~ l lv l l  ~ 

Thus (5.13) is equal to 

~. II T,(y, ~)vll = - ~ , X ~ I I 2  ~/x vii =. (5.14) 

PROPOSITION 5.5. (See J.  J .  Kohn  [8].) Assume that /or each y e w  the eigenvalues 

o/ the matrix c~ = [T~(y, xm),  T~,(y, Xm)] are either all strictly positive or all strictly negative. 

Then the Db.problem /or the operator (5.1) on e) is solvable up to dimension m - 2 .  

Proo/. If  1 ~< ~ ~ m - 2 and if v E C~ r (R n- 1, (C0)y) satisfies H v =  v, then the estimates 

m - 1  

m--1 

Ilvll ~ < c  Z l l v ~ / ~ 2 ~ l l  ~ 
1 

hold. Using either (5.13) or (5.14) aocording as ~X~ > 0  or ~Z~< O, we see that  Ilvll ~ is ma- 

jorized by  a constant  multiple of 5.11). The proposit ion now follows f rom L e m m a  5.4 

and Prop. 3.1. 
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