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Introduction

In his paper [15], D. C. Spencer has given a canonical procedure for associating to a
differential operator D a sequence of differential operators

D

0—9—0 202 . 2o, (1)

which, in the sense of formal exactness, resolves the sheaf § of germs of solutions to the
homogeneous equation Ds=0. In the case where D is elliptic Spencer has proposed a certain
boundary value problem for the purpose of studying the cohomology of (1), or more
precisely, the cohomology of

T(Q, 0% 2 I'(Q, Y 2> ... = T(Q, C") — 0, 2)

where (Q is a compact manifold-with-boundary and I'(Q, C?) is the space of smooth sections
of C* over Q. This boundary value problem, the D-Neumann problem, is the topic of this
paper.

The D-Neumann problem is closely related to the existence problem for elliptic
differential equations; a theorem due to D. G. Quillen asserts that the exactness of (2)
at TY(Q, C) is equivalent to the existence of global solutions on Q to the equation Ds=t¢,
where ¢ satisfies the appropriate compatibility conditions in the overdetermined case.
Similarly the exactness of (1) at C? is equivalent to the local solvability of Ds=t¢.

Our efforts here yield some sufficient conditions for the solvability of the D-Neumann
problem. These take the form of sufficient (and, for the most part, necessary) conditions
for certain a priori estimates to hold. However, the conditions which have wider scope
are also more difficult to interpret; in general, the problem of interpreting the conditions
remains.

Chapter I begins with the definition of the jet bundles and a description of the jet
representation of differential operators. In section 5 we define the first Spencer sequences,
and we establish the stability of these sequences in section 7. The results in section 8 prove
the theorem of Quillen quoted above. Almost all of the definitions and propositions in
Chapter I can be found in Quillen [12]; however, to suit our purposes, we give different
proofs in several cases. In particular, the proof of the main proposition in section 7 is due
to the author.

In Chapter II we construct the second Spencer sequence and show that its cohomology
is isomorphic to the stable cohomology of the first Spencer sequences. We also show that
the associated symbol sequence is exact whenever the original operator is elliptic. We then
state the D-Neumann problem and give a priori estimates which imply its solvability.

Following along lines suggested by the work of Hérmander [7], we reduce the study of
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these estimates to the study of similar estimates on the boundary. By taking advantage of
certain formal properties of the Spencer sequence we obtain estimates which are simpler
than those given in [7]. At the end of Chapter II we discuss sufficient conditions for the
solvability of the D-Neumann problem.

In Chapter IIT we consider the restriction of the Spencer sequence to the boundary and
define the D,-problem. In section 3 we give a condition under which the solvability of the
Dy,-problem implies the solvability of the D-Neumann problem. In section 5 we discuss the
D,-problem corresponding to the Cauchy—Riemann equation; our results here agree with
those of Kohn-Rossi [11].

Chapter I. The first Spencer sequence
0. Notation

Whenever the word “smooth” oceurs in connection with manifolds, bundles, or maps
of these objects, it is to be interpreted as meaning differentiable of class 0. If X is a vector
bundle, we denote by Z the sheaf of germs of smooth sections of E. Unless stated otherwise,
a bundle map between two bundles over the same manifold M is assumed to cover the
identity map M; we do not require that a bundle map have constant rank. In this chapter
we consider only vector bundles whose fibers are real vector spaces; this is only for the sake
of being definite, and all the results hold for complex vector bundles also.

By multi-index in »n variables we mean an n-tuble x=(a, ..., «,) of non-negative
integers, We write |a| =0, +... +«, and al = ;! - ... - &r,). If f is & smooth function on R”, we
write 0, f for the partial derivative of f with respect to the y-th coordinate place; we also
write 9, =& - ... - &;» for a multi-index . If z= (2, ..., 2% ER™, then x= = (a")* - ... - (™).

Multi-indices will be used similarly in other contexts.

1. The jet bundles
Let B— M be a real vector bundle over a smooth n-manifold M, let x €M, and let U be

a non-negative integer. We denote by §,(E) the space of smooth local sections of E at x.
‘We define an equivalence relation on §(#) by calling two local sections s, 5,€ S,(E)
equivalent if they agree up to order 4 at . This means that for every smooth curve g:R->M
with @(0)=2z and for every smooth function y:E—R which is linear on each fiber the

derivatives
dk

VO s)op()

should vanish at =0 for k=0, 1, ..., u. We denote the set of equivalence classes by J (E),
and write J (&) for the disjoint union, over all z in M, of the sets J Bz J (B} is called
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the set of u-jets of sections of £; the equivalence class in J (&), of a local section s is called
the u-jet of s at z.

Our aim in this section is to show that J,(E) is a vector bundle over M. Indeed, there
is an obvious projection J ,(E)->M, and it is easy to see that the fiber J (&), inherits from
S.(E) the structure of a vector space over R. However, before putting additional structure
on J (&), it is convenient to establish the functorial properties of J .

Let E,—~M, be another vector bundle, let g: MM, be a diffeomorphism, and let
h:E—~E, be a bundle map which covers ¢g. The mapping from $,(E) to $,,,(Z,) defined by

s—>hosog™!

is compatible with the equivalence relation defining the jets and with the operations of

addition and scalar multiplication. Thus we obtain a mapping
Julg, B):J (B) = J ((Er) (1.1)
which maps the fiber over z linearly into the fiber over g(x). If M =M,, E=E,, and if g

and & are the identity maps, then J (g, k) is the identity map. If K, M, is a third bundle
and if g,: M, ~M, and h,: E,—~ B, have the same properties as g and b, then
Ju(g10g, byoh) =J (g:, hi)od (g, B).
Finally, we note that for an open subset U of M we have J (E),=J ,(Ey); that is, J,
commutes with the operation of restricting to U.
We now give .J,(£) a bundle structure in the special case where M is an open subset

G of R" and E— M is the trivial bundle G x R"—G. For z= (2, ..., 2") in G an element s
of §.(@ xR™) can be considered as a local R™valued function

s(y) = (s1(¥); -, s™(y))
defined for y=(y%, ..., ¥™) in a neighborhood of x. The section s is equivalent, in the sense
of u-jets at 2, to a unique R™-valued polynomial in (y —«), namely, the truncated Taylor
series

Dlat<uly — )"0e 8(x) /!
of s at z. If we denote by F}’ the vector space of all R™-valued polynomials of degree at
most g in the indeterminate X =(X1, ..., X"), then we obtain a bijective map from
J (@ xR™) to @ x F} which sends the u-jet of s at 2 to the pair

(@, Djujaen X*0us()/art).
This mapping is linear on the fibers and thus defines a bundle structure on J,(G x R™).
If o is the u-jet of s at x, then we write a,, =9, s(x) s0 that the mapping J ,(G xR™)~>G x F}/
is given by
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o—>(x, ZIMKMUMXOZ/“!) (1.2)

for ¢ in the fiber over z. The vectors o, ER™ are called the components of .
Now let g be a diffeomorphism of G with another open subset G, of R", let (x, e)—
(9(x), h,e) give a bundle map % from G x R™ to G, x R*, and consider the map

3,9, B):J 4(G xR™)—~J ,(G; x R¥).
An element ¢ of J (& x R™), is the u-jet at x of the section

8(y) = Zjat<uly — ¥)0a/l;
7=J,(g, k)0 is the u-jet at g(z) of the section kosog™’, and thus
5= 21a1<u 0897 (¥) = 2)hg=105) 0u/ ]y = co>- (1.3)
The map J,(g, k) is thus given by
(@, Diai<u 0= X/ al) > (9(2), Zipi<uts X7/ 1), (1.4)

where 7, is defined by (1.3). It is clear that J (g, &) is smooth, and thus it is a bundle map
from J,(G xR™) to J (G, xR¥).

We are now ready to put a bundle structure on J,(E). Let U be an open subset of M
which is diffeomorphie to an open subset @ of R”, and assume that E; can be trivialized
by a mapping E,— U x R™. Composing with the diffeomorphism UG, we obtain a bundle
isomorphism

By —2— GxR"
{ ¥ (1.5)
U —— @

We thus obtain a commutative diagram

Jy@.m)
J By J (G x R™)
} } {1.6)
U g G

where J (g, h) is bijective since J (g, h)~1=J (97, k') exists. We use this diagram to
transfer the bundle structure of J,(¢ xR") to J,(£)y and claim that the structure so ob-
tained is independent of the choice of g and &. Indeed, if

By — @, xR"

¥ }

v > q
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is another bundle isomorphism, then J (g, h)oJ ,(gy, by)~1 =J ,(gogr 1 hohki') is a bundle
isomorphism of J,(Gy xR") with J,(GxR") so that the bundle structures on J,(E),
obtained by transfering are the same. If U ranges through a covering of M by coordinate
disks, the resulting diagrams (1.6) thus define a bundle structure on J,(#). A local co-
ordinate in J,(E) is obtained by composing the bundle map (1.6) with the bundle map
described by (1.2); in such a local coordinate a jet o will have components o, ER™ for || <u.
The eoordinate changes for J,(E) are expressed by (1.3) and (1.4). Note finally that the

mapping (1.1) is smooth and hence a bundle map.

2. An exact sequence
Let £ M be a real vector bundle with fiber dimension m. Since the equivalence rela-
tion defining the (u-+1)-jets of sections at x€M is stronger than the one defining the
p-jets, there exists a mapping
n:d i (B) > J () (2.1)

which sends the (u +1)-jet at  of a local section s to the u-jet of s at . In a local coordinate,
7 is given by
@, Dialcni1 X500/ o)) > (2, D jaicp X702/ o). (2.2)

It is clear that 7 is smooth and hence is a bundle map.
Denote by S#H1T* the (u+1)-fold symmetric product of the cotangent bundle 7™

of M, and define a mapping
VSEFT*Q B~ J 4 (E) (2.3)

as follows. If w € (S#HT*® KE), has the form w=v'Qv20...C)vr®e, then choose a local
section s of B with s(x) =¢ and local functions f!, ..., f#+1, vanishing at z, such that df>=v>
at x. Then define iw to be the (u+1)-jet at = of the sectionfl-...- f#+1.5. Tt is easily verified
that the definition of iw depends only on w and that ¢ can be extended to all of (S#1T™* & ),

by linearity. In a local coordinate ¢ is given by
(.’Z’, z,al:uﬂ(dx)“@ O'a/a!) - (x, ZIWI:,L“FI X“o',x/oc!). (24)

Thus ¢ is a bundle map, and in view (2.2) the sequence

44

0 —— SFIT*QE —— J,.1(B) J () 0 (2.5)

is exact. It follows immediately from the definitions that the sequence (2.4) is natural in

the following sense.
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ProrosiTioN 2.1. Let E and F be two bundles over M, and let h: E— F be a bundle map
which covers the identity map of M. Then the diagram
0 —— S *"QE —— J, 1 (B) —— J(B) —— 0
} 1®n V paadm R (2.6)
0 —— S¥"'MM*QF —— J,(F) —— J(F) —— 0

commules.

3. Differential operators

Let B and F be real vector bundles over M with fiber dimensions m and k respectively.
A differential operator of order u from F to F is'defined to be a sheaf map D: E— F which
in local coordinates is given by a differential operator of order u in the usual sense. This
means that for a local coordinate « = (a1, ..., ") defined on an open subset U of M and for
trivializations E,—U xR™ and F,—~U xR¥ there should exist smooth (k x m)-matrix-
valued functions 4% 0< || <y, defined on U such that

Ds(x) = D jaycu A*(%) 04 8(2) (3.1)

for a section s(z)=(s'(x), ..., s™(x)) of U xR"~ E,.

To provide an example we construct a canonical differential operator

Gu B~ J ().

To a section s of B we assign the section of J,(E) which maps x to the u-jet of s at . The
sheaf map thus defined is denoted by 7,. In local coordinates j, sends the section s(x)=
(s'(z), ..., s™(%)) of E to the section o(x) of J,(E) with components (0y2), ..., o7 (x)) =
0,() =0,8(x), |a| <. Thus j, is a differential opeator of order y on E.

ProrositroN 3.1. To each differential operator D:E—F of order y there corresponds
a bundle map 0,(D):J (E)—> F such that the diagram
)
) 2 F
1\ 7# T 1 (32)

E ——7F
commutes. Moreover, the correspondence D—p,(D) is one-to-one and onto the set of bundle
maps from J ,(E) to F.

Proof. Let D be a differential operator of order u from E to F. In view of the local
representations (3.1) of D the mapping

S(E)3s— Ds(x)EF,
15 — 682902 Acta mathematica 120. Imprimé le 19 juin 1968
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is compatible with the equivalence relation defining the jets and thus induces a mapping
0,/D):J (E)~>F. If D is given by (3.1) in some local coordinate, then ,(D) is given by

QM(D)U=ZWI<# Aa(x) Go» GGJM(E)I; (33)

in the same coordinate. The mapping g ,(D) is smooth and thus is a bundle map. The asser-
tions in the proposition are now easily verified.
Following Quillen’s presentation [12], we illustrate the correspondence D->g,(D)

with several examples which will be used in the sequel.

Example 3.1. We let D: E—F be a differential operator of order y and form the
differential operator j,D:E->J,(F), which has order u-+v. The bundle map g,.,(j, D)
from J,,,(E) to J,(F) is called the y-th prolongation of g,(D). By Prop. 3.1 the diagram

2y 45D

J s B) Jy(F)
T j,u—HJ T jv (34)
E 2 F

commutes. We use this diagram to compute g,,,(j, D) in a local coordinate. Given

o €J,.,(E), we consider the section

8(Y) = 2 a1<urs(y — %)70/ !

of E, which is defined for y=(y, ..., y¥") in some neighborhood of x=(2, ..., 2"). Now
ju+vs is a section of J ,, ,(E) through o, and thus by (3.4) v=0,,(j , D)o is equal to the value
of 4, Ds at w; that is,

73 =05 Ds() = Op(Za1<v 2y Ap(Y) Oy (Y — zy/al)|y-z (3.5)

for |B] <» if D is given by (3.1) in the local coordinate. If either the coefficient matrices
4, (y) are constant, or if ¢ is in the kernel of n:J,, ,(E)~J ., ,(E), then (3.5) simplifies to

7ﬁ=2(7I<HAv(x) Og+ys "5' <. (3.6)
Example 3.2. If ( is an open subset of R?, then 0, is a first order differential operator

from the trivial bundle G x R™ to itself. We will denote g,(2,) and all of its prolongations by
d,. By (3.6) if 0€J (G xR"), then

(8,0)p=0411,, |B]<p, (3.7)

where 1, is the multi-index with 1 in the »-th place and 0’s elsewhere. More generally for a
bundle E-M and a coordinate neighborhood U< M one can define 8,:J ,,,(EB)y—>J (E)y
in terms of the coordinate on U and a trivialization E,— U xR™. The definition depends,

of eourse, on the choice of coordinate and trivialization.



THE D-NEUMANN PROBLEM 231

Ezxample 3.3. In view of (3.2) we have g,(j,) =1 for the canonical operator j,: & —J,(&).

In local coordinates we have
G 8(2) = 21 X 0o 8(2) /tl;

thus by (3.6) the »-th prolongation of g,(j,), which we denote by ¢:J,,,(E)—~J(J (E)),
is given by
(po)s= ZlaKu Xprp/al, )ﬁl <7, (3.8)

in local coordinates. It is clear that g is injective.

Example 3.4. Let h: E—~F be a bundle map which covers the identity map of Mf;
passing to sheaves, we obtain a differential operator k: E— F of order 0. Note that J(E)=E
and that g,(h) =k. Comparing (1.3) with (3.5) we see that the v-th prolongation is the map
J (k) =J (1, k) defined near (1.1).

Example 3.6. The identity map 1 of ¥ may be viewed as a first order differential
operator from E to E. From (3.6) we see that g, ,(j, 1) is the map n:J, (E)=~J (E).

The following technical result will be useful later on.

ProrositioN 3.2. Let E,, E,, K, be bundles, and let D,: E,~E, and Dy: E,~ E, be
differential operators of order u and A respectively. Then
Q,u+l+v(j1/ Dz Dl) = Qi—iv(jv Dz) Qu+l+v(jv +2 D1) (3-9)
forv=0,1, ...

Proof. From the definitions we compute that j,, ;,, followed by the map on the right
side of (3.9) is equal to g, ,(j, Ds)jy11 D1 =7, Dy D;; the identity (3.9) now follows from the

uniqueness assertion in Prop. 3.1.

4. Properties of differential operators

Let D: E— F be a differential operator of order u,; for each p=>u, we define subsets
R,=R,(ju—p, D) and g,=9,(j,_, D) of J,(E) by the exact sequences

Qe
0 —— B, —— J(B) —— J,_,(F)
0—— g, — R, —— J,(E),
where g, =0,(j,_,, D) and a is the restriction of 7:J ,(E)—>J,_,(E). We claim that g, =
047 indeed, by Prop. 3.2

700u+1 = Qut1- o 1) Q1111 D) = 01— D) = 0u(Ju-po D) @u1(fu 1) = gum.
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Thus for each u=>p, we have an exact commutative diagram

0 0 0
' ' ¢
0 —— gy —— ST QE L grl-mpeg P
' 4 '
0 —— By —— JuaB) =% Jur D) (4.1)
ya Va j
0 —— B, —— JB) —s  J,.F)
| ¢
0 0

where the columns on the right are instances of (2.5).

Definition. The differential operator D) is said to be regular if (i) for each u>pu,,
g, and E, are vector bundles over M and (ii) if for each u>u, the map =: R, ,,~ R, is
surjective.

The condition (i) in the definition requires that the maps g, and g,|S"7T*® E have
constant rank; the condition (ii) is more subtle and requires that the homogeneous equation
Ds =0 be completely solvable in a formal sense. For example, if the data E, F, M, D are
all real analytic, then (ii) implies that every c€ R, can be prolonged to a formal power

series solution of the equation Ds=0.

Prorosition 4.1. Let D be as above, let = py, and let Dy be the operator j,_,,D: E—~
J o F) of order p. Then for each v=u we have
Rv(jv-yD1) = Rr(jv-,u, D)' (42)

In particular, if D is reqular then so is D.
Proof. By Prop. 3.2 we have
Qv(jV—uvl) = Qv(iv-,u jﬂ“ﬁu D) = Qv~ﬂa(jv~ﬂju—uo) Qv(jvﬂtn D) = (PQV(jv—un D),

where @:J,_, (F) > Jo_u(J - (F)) is the map defined in Example 3.3. Since g is injective,
(4.2) holds.

For a non-zero cotangent vector £ €7"; we define the symbol s;=s:(D) of D at & to
be the composition

B, —— (S"T*QE), —— J,(B), —2~ F,,

where ¢ is the injection (2.3) and the first map on the left is defined by e—>£“®@e/u,!.
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If £=¢& dat+ ...+ &,d2" in a local coordinate x=(z',...,a"), then
8= 3= po(d2) € (||l /al);
thus by (2.4) and (3.3) we have
8e(D) €= 21a1=ruo Auly) &%, (4.3)

where the 4,’s are the coefficient matrices for D in the local coordinate .

Definition. A non-zero cotangent vector £ is said to be characteristic for D if the
symbol sg(D) is not injective. D is said to be elliptic if s;(D) is injective for each non-zero

cotangent vector §.

ProproSITION 4.2. With the notation of Prop. 4.1, & is characteristic for D if and only

if it is characteristic for Dy. In particular, D is elliptic if and only if D, is.

Proof. Let z= (2%, ..., ") be a local coordinate defined on a neighborhood of y€M,
and let £=& dal+...+£&,de” be a non-zero cotangent vector at y. Let e€E, and let
7=8¢(D1)e€J,_,,(F),. In view of (3.6) and (4.3) we have:

e { 5ﬂ2|yl=m Ay(?/) Ee= Eﬂsi(D) e, |ﬂ| =40 Mo
5=

(4.4)
0, |Bl<p— o

The proposition now follows.

Definition. The differential operator D is said to be under-determined (resp. deter-
mined) if for each y€M there exists £€T;, such that s/(D):E,—~F, is surjective (resp.

bijective).

ProrositioN 4.3. If D is under-determined, then D is regular and the mappings

0ulfu-1ua D) I B) >y (F) (4.5)

are surjective for u= pq.

Proof. Assume for the moment that the maps

0u:8*T*@ B S+ #T*@ F (4.6)

are known to be surjective for u > pu,. The surjectivity of (4.6) for y =u, implies the surjec-
tivity of (4.5) for u=p,, and using diagram (4.1) we can conclude by induction that (4.5)
is surjective for all > u,. It follows from the surjectivity of (4.5) and (4.6) that the corre-
sponding kernels B, and g, are vector bundleé, and by chasing diagram (4.1) we can in-
fer the surjectivity of the maps @: R, ,~R,, u>u,.
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Thus it suffices to show that the maps (4.6) are surjective. To do this we work in the
fibers over y €M and with a local coordinate z=(z!, ..., ") defined near y. By hypothesis
s¢(D) is surjective for some & €T, and thus by continuity, for all £40 in some cone ¢
containing &,. Since the range of (4.6) contains the range of s,(j,_,, D), it follows from (4.4)
that ¢,(5*T*® E), contains all elements of (S* “T*® F), of the form

Sibt-u-u E (Y @ 1/ (4.7)

where f€F, and £=§,da? +... +£,dx"€C. Since ¢,(S*T*® E), is trivially a closed subset
of (8* M TI™*® F),, it must contain all partial derivatives of (4.7) with respect to the &,’s
evaluated at points £ in C. Taking the §-th derivative at 0, we see that (dz)f®f is in the
range of (4.6) for each |8| =u —pu, and each f€ F,. The proof is now complete.

5. The first Spencer sequence

Let & be a vector bundle as before, Following R. Bott’s presentation [1] we consider
the diagram

n

0 —— T*"QJyn(f) —— J1(Jusi(B)) —— Jyur(f) —— 0
1®n 111(7:) //zu/ Jn 5.1}
0 —— T*QJB) —— J(JUB) —— J(B) — 0.

The map ¢ is the injection given in Example 3.3, and the rest of the diagram is an instance
of the exact commutative diagram (2.6); we have used primes to distinguish the various
7’s. 1t follows from Prop. 3.2 that n"¢=n. Indeed, denoting by 1 the identity map on
Ju(B), we find that w—g,.1(j,) =0,u11(17,) =01(1)@u41(i1j,) =n"@. Thus if k=J,(n) —gn',
we have n"k=n"J,(n) —n"pn’ =nan' —nn’=0; and by exactness we may consider k as a
map from JI(J wiilB)) to T*®J (E). The sheaf map kj, is thus a first order differential
operator from J,,,(E) to T*®J ,(E), which we denote by D.

We now compute D locally. Let x = (!, ..., ") be a coordinate on an open disk U< M,
and let E,—~U x R™ be a trivialization. An element 7 of J,(J,,(£)) is now identified with a
polynomial

1=1+21 Y7,

where Y%, ..., Y" are indeterminates and each 7,= J\ucu+1 X7/l is an R™valued

polynomial in the indeterminate X = (X?, ..., X™). By (3.8) we have
@7 T= 9T = Qacn X Tou/ 2 + 21 Y (Dt X“TO.HI,,/“!) =aty+ 21 Y8, 7,,

where §, is the map in Example 3.2 defined by the coordinate and trivialization chosen
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above. By (1.3) and (1.4) we have Ji(w)r=n7,+ > Y’n7, so that Ji(#n)r—ea't=
2t Y (ar, — 6, 7) and kv €T*®J,(E) is equal to >1dx’ ® (wr, — 6, 7,). Thus

Do{z)=21de’ ® (70, o(x) — 8, 6(x)) (6.2)

for sections o of J ,,1(&)y.

We now imbed our discussion of D in the following:

Prorosirron 5.1. For each pair of non-negative integers i, u there exists a first order
differential operator
D:AT*®J,11(B)~A'"T*® J (E) (5.3)

such that

(i) DENo)=déAno+ (—1)Y&A Do for each section ¢ of ANT*®J,(E) and each
j-form & on M,

. Tu+1 D " ,
(ii) § —— J,(ll) —— T*QRJ,(E) is an exact sequence,

(iii) D*=0.
Moreover, (1) and (ii) determine D uniquely.

Proof. We first verify the uniqueness statement. Suppose there are two operators
D satisfying (i) and (ii) and denote their difference by K; we must show that K=0. By (i)
K(& A o)=(—1)& A Ko for j-forms &; so it suffices to show that K annihilates sections of
J,11(E). Again by (i) K is linear over the functions and therefore must be a differential
operator of order 0. Thus K operates on elements of J,,,(E), and it suffices to show that
K annihilates J , ,,(E). Now if 6 €J ,;(E),, we can find a section s of E such that j,,;s(x)=0.
By (ii) we have Ko =(Kj,,s)(x) =0. Therefore the uniqueness statement holds.

A similar argument shows that (i) and (ii) imply (iii). From (i) we compute that
D¥E A ) = D(dE A mo)+ (—1) D(E A Do) = (—1)*'dEA Dro+ (—1)dé AaDo+ & A D*a=
& A D?¢. Thus it suffices to show that D* annihilates sections of J,,,(%). Since D? is linear
over functions and D?%,.; =0 we can conclude as before that D2=0.

It remains to establish the existence of D satisfying (i) and (ii). Because of the uni-
queness statement, it suffices to prove existence locally. In a local coordinate x = (a1, ..., )
we define

Do(x) = >1dx” A (70, o(x) — 8, o(x)) (6.4)

for local sections o of A'T*®J ,,,(E). By (5.2) this agrees with our previous definition in
the case ¢ =0, and (i) clearly holds. To verify (ii) we let o be a section of J ,,,(¥) satisfying
Do =0. Then by (5.2) we have 8,06 =4,0 in each local coordinate, and thus by (3.7) we have
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Our1,=0,0,. It follows by repeated use of this identity that o, =8,0, for each |a| <p+1,
and thus ¢=j,,,06, By reversing the argument just given one sees that Dj,=0. Thus (ii)
holds and the proof is complete.

From the operators (5.3) we may form a sequence

j n
0 —— B J, (B) —2 T*@J 1 o(B) —2— ... —2— AMT*QJ () — 0
(5.5)

for each u>0. The following proposition, together with (3.4), shows that these sequences

are compatible with the jet representation of differential operators.

ProrosiTIiON 5.2. Let D: E— F be a differential operator of order p,. Then for p=u,
the diagram
; [ .
AT*©J i a(B) —25 AT*® J 1 (F)
D P (5.6)
AHIT*@J (E) AH—IT*@JM M”(F)

commautes, where we have written g, for 1®0,(j - D) and g,y for the corresponding expres-

ston.

Proof. Write K=g,D—Dg,,,. By (i) of Prop. 5.1 and by (4.1) we have K(§ A o) =
dE N (0,7 —70,41)0+(—1)E A Ko=(—1)’4 A Ko for j-forms & Thus it suffices to prove
the proposition in the case ¢ =0. Now X is linear over functions, and by (ii) of Prop. 5.1 we
have Kj 11 =0,Dju1—D0urafusr=0—Djui1-p D=0. Arguing as in the proof of Prop.
5.1 we conclude that K =0.

1f D: E- F is a differential operator of order p,, then Prop. 5.2 shows that D restricts to
a differential operator from A'T*® R, to A1 T*® R, for > p,. Thus for y >y, we obtain
a sequence

Jpsn D D D

Rywn —2— T*@Ryinr . > A"T*®R, —— 0,
(5.7)s

0—90

where 0 is the subsheaf ?;H—n(R/A +n) Of E.From (3.4) we see that 0 is the sheaf of germs of
solutions s to the homogeneous equation Ds=0, and by (ii) of Prop. 5.1 the sequence (5.7)
is exact at R,,,. The sequences (5.7) are called the first Spencer sequences for D (see
Spencer {15]).

The fundamental problem, of course, is to determine when the Spencer sequences are
exact. From experience with the Dolbeault sequence in complex analysis one would expect

a wealth of applications in the case where exactness holds. Indeed, an important theorem
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of D. G. Quillen (see Prop. 8.3 below) shows that the exactness of (5.7) implies the local
solvability of the inhomogeneous equation Ds=¢, and in D. C. Spencer’s deformation theory

of pseudogroup structures (see [15] and [16]) the exactness of (5.7) plays an important role.

6. The trivial operator

Let E be a vector bundle over M, and consider the trivial differential operator which
maps each section of E into the zero section of E. For this operator we have R,=J (E)
for u=>0, g,=G,=ker (J #(E’)iJ w-1({E)), and go= Gy = E. Thus the first Spencer sequences
are the sequences (5.5). From Prop. 5.2 (with D =1, considered as a first order operator)

we obtain a commutative diagram

0 0 0
V v '
00— G — G, — . @, —0
v v 4
0 — B —— J(B) —— JLy(B) —>— ... =2 Jr(B) — 0 (6.1)
1 Vn Vm V=
0 —— E —— E, (B) —2— J. oB) —2> ... —2 Jr . (B) — 0
v v ¥
0 0 0

with exact columns. Here we have made the abbreviations Jy(E)=A'T*®J ,(E) and
G;=AiT*®Gﬂ, and we have written —¢& for the restriction of D to ﬂ It follows from
Prop. 5.1 (i) that dis linear over functions and thus must be a bundle map; in fact, from

(5.4) we see that in a local coordinate

do=2tda" A S, 0 (6.2)

for elements o in G,. Since J, is the formal jet representation for differentiation with re-
spect to z¥, (6.2) suggests that J be interpreted as formal exterior differentiation (see
Spencer [14]).

Our aim here is to establish the exactness of the first Spencer sequences for the trivial
operator. The diagram (6.1) leads us to the following proposition.

PrROPOSITION 6.1. If we interpret G, as O whenever u <0, then for each y > 1 the sequence

0 —— @ —— Gy —— .. g, ., 20

s exact.
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Proof. It suffices to work in the fibers over a single point and with a local coordinate
x=(x*, ..., "). Thus for the purposes of this proof we may interpret @, as the space of forms
0=25-;0.dz', where o, is a homogeneous R™valued polynomial of degree x4 in z=
(%, ..., ). The proof is by induction on =.

If n=1, then in view of (6.2) we are to verify that the map d,:G,~G,_, is bijective if

u=>1. The injectivity is immediate, and surjectivity holds even for n>1, ¢€G,_; being
the image under §, of the element

6~n0‘:zfa|=,u—1 X“””o’a,/(oc-i- l,,)! (6.3)
in G,

Now assume that the proposition holds when = is replaced by n— 1, and let ¢ €G}_,,
satisfy do=0. We may assume that u >k since otherwise there is nothing to prove. Thus
by the remark above we can choose 7 €GF.{_; such that 6,7= 0 A 8/62". Now consider
0, =0—0t=(d2" A o) A 8/0x™+ da A (6 A 8/0x™) —da" A 8,7 — 217 da’ A d,v=(da" A o) A
&/0a™ — 277 'da” A bt 0y A8/0a"=0; and since 0=do=do,=dx" A 8,0, + (terms inde-
pendent of dx"), we must have §,0;=0. Having seen that o, is independent of " and
dz", we use the inductive hypothesis to conclude that o,, and hence o, is in the range

of 4. The proof is complete.

ProrosITION 6.2. If we interpret Ji(E) as O whenever u <0, then for each >0 the

sequence
0 —— B —— J(B) —2— JL_(B) —— ... —2> J2_(B) — 0
78 exact.

Proof (by induction on g): For ¢4 =0 the sequence reduces to 0—~ & 3 E—Q. The induc-
tive step is given by Prop. 6.1 and diagram 6.1.

Prop. 6.2 states that the Spencer sequences for the trivial operator are exact. Note
that the arguments leading to Prop. 6.2 do not carry over immediately to the case of an
arbitrary differential operator D:E—F of order u, For example, the map 8,:9,,1>9.’
discussed in the proof of Prop. 6.1, is not always surjective; and even assuming the ana-
logue of Prop. 6.1, the induction used to prove Prop. 6.2 does not always have a trivial
beginning. In the next two sections we will discuss the analogues of Props. 6.1 and 6.2 in
the general case.

At several points in the discussion to follow it will be convenient to consider first order
operators only. The following proposition shows that this can be done without loss of

generality.
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Prorositiox 6.3. Let D:E-~F have order p, and let u=>u,. For each v=>1 denote
by R, the image of R, ,(jurr-u, D) under the injection @:J ., (B)—~J(J (E)). Then there
exists a first order differential operator D’ :J (B}~ F' such that

R, (j,,D)=R,, »=12, ... (6.4)

Proof. Assume at first that D is the trivial operator on E, and write @ for the quotient
bundle J(J,(B))/¢(J 1(E)). For D' we choose the differential operator K: Ju(E)~>Q
defined by

K =kj,,

where k:J,(J ,(E))—@Q is the natural map. It follows immediately that
B\(K) = ¢(J yn(B))

so that (6.4) holds for y=1. Thus 0=0,(K)@,,(j17,) =0,+1(Kj,), and hence Kj,=0. This
shows that j, maps F into the kernel 6 of K. Also ¢,(j, 1 K)9o=0,0,—1 K)0us(i,7,4) =
0u+v(iv-1K74,) =0 so that ¢ maps J,,,(E) into R,(j,_; K). To prove that

By(j1 K) = @(J 1o H))
we may now use the following diagrams which commute by Prop. 5.2:

0—— 0 2 BR(K) —2— JE)OT*

Piu 1o t1
7
0 —— E % Juu(B) —2— JUE)QT",

t iy ‘e ‘o 1
0 —— E 22 J, oB) —2 J(B)0T* —2 J(B)® AT*.

0 —— 0 2> R,LK) —2> R(K)®T* —2— J.E)®AT*

In the first diagram the bottom row is exact, and ¢ is an isomorphism. It follows by diagram
chasing that j, gives an isomorphism of E onto 0. Thus, in the second diagram, we may use
the exactness of the bottom row to conclude by diagram chasing that Ry(j; K) =¢(J ,.5(E)).
The proof of

R,(jy 1 K) =p(J () (6.5)

for v 223 now follows by an inductive argument based on the diagram

0 —— 0 —— B(jy-1K) —— B, 1(j, 2 K)®T* —— R, s(j,_3s K)@ A?T*

T te te te
0 — E — J,u+v(E) - J,quv—l(E)@T* - u+v—2(E)®A2T*'
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In the case of a general differential operator we write p for o.(f,—,, D) and define D’

to be the operator
Kojie:JuE) » QO 1Sy u(F)).

The first summand in D’ has already been discussed; as to the second, we claim that the

diagram
Ju+v(E) Cut vUp ot p—pug0) Jv+n—ﬂo(F)
$o
k4 J”(J:“*Mo(F))
o

e,(0y_151@)
J(T(B)) ———————— T, 1(J (o F)))

commutes. Indeed, by Prop. 3.2 0,(j,-14;0) 9= 0:{js-171 0) Qu++(Js Ju) = Ouss(fr-17107,) =
Qutv(Fo-171 Ju—pa D)= 0u(Fr-171) Ovt s suolB Frumo) 9M+v(j”+u—ﬂo D)= 000u+v(Jo+ 1o D). To estab-
lish (6.4) we let g€J,(J (E)) be in the kernel of g,(j,_1 D)= 0,(jv-1 K)D0,(jo-1j: 0)- By
(6.5) we have o= g7 for some t€J,.,(E}). Thus, using the preceding diagram, we have
0=0,(»-1710) T= @@ 0u+»(Jo+u—uo, D)} 7. Since the maps ¢ are injective, T € Ruis(fy+p—p, D)
and o €R,. Therefore R,(j, 1D’')< R,. Be reversing the argument we obtain the opposite
inclusion, and the proof is complete.

Prop. 6.3 states that ¢ restricts to an isomorphism of R, ,(j,+u-p, D) With B,(j,_; D).
Since gz =n@ by Prop. 3.2, @ restricts further to an isomorphism of g, .(jp+u-p, D) With
g,{jy_1 D). Since ¢ commutes with the maps §, defined by a local coordinate, these iso-

morphisms are compatible with ¢ and §,. We will use this fact in the next section.

7. Stabhility of the first Spencer sequences
Let D:E—F be a regular differential operator of order u,, and let B, g,, 0,, pt= o,
be the corresponding data as previously defined. Combining Prop. 5.2 with diagram (6.1)

we obtain for each y>u, a commutative diagram

0 0 0
+ ¥ M
- 1 —d -6 n
0O —— Jpin+1. 7> Gusn GJu+1 — 0
\ R + " R +
0 —> 0 —— Bypni —— RL,, Ry —— 0 (1.1)
i/" D \Ln D D ¢n
0—— 08— Run ——— Rlypy—>> .. —— BRI —— 0
¥ | \
0 0 0

where the columns are exact because D is regular,
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Let U< M be a coordinate disk with coordinate = (2, ..., 2"), and choose a trivializa-
tion Ey—U xR™ In terms of this data we have maps 6,,:J,,+1(E)U—> ﬂ(E)U, y=1, ..., n.
Note that if 0€g,,,, then §,0=d0 A /02" €g,. We will use the following notation for various
objects P (e.g., for one of the bundles (g,), or for a fiber (g,),, y€U):.

P™=p,
P® ={g€P|d,06=...=08,,10=0}, 1<p<m, (7.3)
PO =0,

Definition. The local coordinate x is said to be D-regular at y € U if the maps
01 (gus)y > (47 (7.4)

are surjective for each y >p, and each 1 <y <n. The operator D is called involutive if there
is a D-regular coordinate at each y €M.

Using (1.3) one can check that the choice of trivialization does not effect the D-regu-
larity of coordinate at a point; we decline to prove this fact, however, as it will not be used
in an essential way. Note that involutiveness is exactly the property required to carry

out the induction used in the proof of Prop. 6.1. Thus we have:

Prorosition 7.1. If D is involutive, then for each u > p, the sequence

0 ) 2]
0 Ju+n 9}¢+n—1 gﬁ 0 (7.5)

18 exact.

The usefulness of Prop. 7.1 is extended by the following proposition.

Prorositrow 7.2. There exists an integer u,(n, m, u,), depending only on n=dim M,
m={iber dim E, and p,=order of D, such that for each u= u,(n, m, p,) the operator j,_,, D is
involutive.

Postponing the proof for a moment, we use Prop. 4.1 to reformulate Prop. 7.2 as follows.

ProrosiTioN 7.2, For each y€M there exists a coordinate such that the maps (7.4)
are surjective for each u=p,(n, m, ug) and each 1 <y <n.

Also using Prop. 4.1 we combine Props. 7.1 and 7.2 to obtain:

Prorosirion 7.3. For each p = pu,(n, m, u,) the sequence (7.5) is exact.

Diagram (7.1) and the preceeding proposition now establish the stability of the first
Spencer sequences:
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ProrositioN 7.4. If D is regular, then for each pu=p,(n, m, u,) the sequence (5.7),
has the same cohomology as the sequence (5.7),,;.

We now turn to the proof of Prop. 7.2, which will occupy several pages. Recalling
the remaks at the end of section 6, we may assume that uy=1; we may also work in the
fibers over a single point y € M. As in section 6, we will write G;=E and G, =ker(J M(E)—”»
Jy1(E)) for u=1.

Lemya 7.5. For each p =1 the maps
&1 (gue)y > (@)Y, v=1, ..., (7.6)
are surjective if and only if the maps
0us1:(Gu1)y = (Qur1(Guar)y)” »=1, ..., n—1 (7.7)
are surjective.

Proof. Suppressing the subseript y, we consider for 0 <y <n—1 the following exact

commutative diagram:

0 0 0
\ + i
0 —— g1 —— Gy —— 0un(GET)”
¥ } {
0 —— g —— G —— Qun(GT) —— 0
¥ ¢ .
0 gg—)-l) GEH-I) » QM(G,S:JA)) > 0
¥ +
0 0

By diagram chasing we find that the surjectivity of the maps (7.6) is equivalent to
0ur1(Gh 1) = 0,1 (GLP)” for 1<y<n—1. Thus if the maps (7.6) are surjective, then
Qu+1(G}fll)=eﬂ+1(G§7++11’)‘"’=‘[9y+1(G§fif))‘”+”]‘”’=@M+1(G§f+*12))‘”= '--=9u+1(Gu+1)(v), and the
maps (7.7) are surjective. Conversely, if the maps (7.7) are surjective, then for
1<vy<n—1 we have g, 1(G511) S 0ur (V) C e 1(Gur ) < 0us2(G534), and the maps

(7.6) are surjective.

LEMMA 7.6. If the maps (7.6) are surjective for u=r, then they are surjective for y=r+1

and hence for all p>r.

Proof. By Lemma 7.5 the maps (7.7) are surjective for y=r. We show by induction on
v that they are surjective for g =r+1. The inductive step follows from the five lemma and

the following diagram.
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- 4
0 — ey — G, _— Gy —— 0
§ Or+2 J @r+2 § o+l

(S’U
00— Qr+2(Gr+2)(v‘D - Qr+2(Gr+2)(u) N Qr+1(Gr+1)(V) — 0

Note that the left column consists of zeros when y=1; thus the induction has a be-
ginning.

Our proof of Prop. 7.2" (in the case y,=1) is by induction on #. If n=0,
the proposition holds trivially; assume that it holds when = is replaced by n—1. Set

+n

a=u(n—1,m,1) and c= m(a ) +a+3. Among all coordinates at y choose a coor-

n—1

1

dinate x= (', ...,2") which maximizes

6mava dim 65 (g,),. (7.8)

Since the data (g,), depend only on the first order coefficients of D at y, we may
assume that D is given by

Ds=214,0,s

in the coordinate x, where 4, is a constant k x m matrix. Since the data (g,){ P
correspond to the operator >{ 14,0, in n—1 variables, the inductive hypothesis per-
mits us to assume that (7.6) is surjective for each 1<y<n—1 and each u>a.

Suppressing the subsecript y, we claim that

g P = 027"g.) (7.9)
for p=a+1,a+2, ..., c. Otherwise, we can choose an integer u in this range and an

element €97 " such that o¢d; “(g,). By hypothesis we can choose 7 €g " such

that 6;°in=0. We also choose #,...,7y€g, such that 8 “#, ..., 8, "5y form a
basis of 85 #(g,). Now consider the new coordinate x,_, =2, | —tz,, o, =, for v+=n—1.
Corresponding to differentiation with respect to z, we have the map d, =5, + 0, 1.
For small t the elements (8,)° "9y, ..., (02)° “ny are linearly independent and span a
subspace which converges to 077 %(g.) as t—0. Since 0¢07,7"(g.), o must be linearly
independent of (8,)° “ny, ..., (0,)° “qx for small ¢>0. Since g=#"°(6,)° "y is in
(82)°"g.), this means that dim (6,)° *(g.) >dim 65 #(g,) for small £>0. By semi-con-
tinuity this is also true for the other summands in (7.8), only with “>"" replaced
by “>7”. Thus we have obtained a contradiction to the maximal property of «.

Now let a+1<p<c, and let c€g,. We write ¢ as a polynomial

o= Sha, X5/ (u— ), (7.10)
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where each ¢, is a homogeneus R™-valued polynomial of degree »in X, ..., X, 1. A
straightforward calculation shows that

th o= ZE&(Q»H Oy+1 + An Uv) X/;i“V‘l/(M —vrT 1)’) (7'11)

where 4,0, is the polynomial obtained by applying 4, to each coefficient of the poly-
nomial ¢,. We extend the usual inner product in R™ to R™-valued polynomials by
O X% > XL = 3l &> and let 71, be the orthogonal projection of 1., on gi%".
By the preceeding paragraph there exists 7 €g,,1 such that 65 %t = 714, Thus if we ex-
pand ¢’ = ¢ —d, 7 in powers of X,, as at (7.10), when we find that o1, L g{%.". Applying
the same argument to the coefficients of successively lower powers of X, we reduce o

modulo 8,(g,+1) to an element
*o=25% X0/ (n—),

where *¢,=g¢, for »=0, ... @ and *o, Lg"* P forv=a 41, ..., c.

Define *g,={*c|c€g,} for each a+1<u<c—1. Then d,(*j, ,)<*g,; and since by
(7.11) *o,, ..., *o, determine *¢ uniquely, d,:%*g,,,—*g, is injective for a+1l<pu<c—2.
The number of maps here is equal to ¢ —a —2 which is greater than dim &, , =>dim *g,,;.
Thus at least one of them must be surjectivé. Therefore by Lemma 7.6 the maps 0,:9,.1>9,
are surjective for all u=>c—2. The proof is complete.

CoRrOLLARY 7.7. We can define the integer p,(n, m, o) by the following relations:

i)  w(0,m,1)=0,

(i) yl(n,m,1)=m(a+n)+a+l i a=pn—1,m,1),

n—1
. y+n—1
(lll) lu‘l(n: m, lu’()) = Ml(na b5 1) if b= Zga ( n—1 ) m

Prop. 7.3 was first stated by D. C. Spencer [14] in the special case of the partial dif-
ferential equations defining the infinitesimal transformations of a pseudogroup. Later
8. Sternberg recognized the connection with E. Cartan’s notion of involutiveness and
introduced this concept into the theory. In [4] J. P. Serre proves that involutiveness is
equivalent to the § sequences being exact. For other proofs of the main theorem in this
section see [3] and [12].

8. Exactness of the first Spencer sequences
We begin our discussion with the following proposition due to D. G. Quillen.

ProrosiTioN 8.1. Let D, be a regular differential operator of order v, from E, to E,.
Then there exists a sequence
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B, 2> B 2> B, 2> E, (8.1)

of regular differential operators D; of order v; such that by passing to the jets we obtain exact
sequences
J,u+ui(Ei) -> J,u(Ei+1) g Jﬂ—vi+1(Ei+2) (82)

for i20 and u>v,, ;.

Proof. It suffices to construct D,; the rest of (8.1) can then be obtained by itera-
tion. We set »,=n+u, (n, fiberdim E, »j) —v,, and define E, to be the cokernel of
Ol Do) i psvo Bo) =, (Ey). Since D, is regular, E, is a vector bundle. Composing
7, with the natural map J, (E,)— E,, we obtain a differential operator D, of order », from
E, to E,.

For i=0, 1, 2 we write G;(=E, and G, ,=ker (w:J ,(E;)~>J (&) for u=1. We

prove by induction on u that the sequences
GO, Hu+ro g Gl,u - GZ,,u‘vl (83)

are exact for u>y;. (The maps here are g,,,(j, Do) and 0,(j,_,, Dy).) Indeed, the case

u=v, follows from the definition of E,, and the inductive step is obtained by chasing the

diagram

0 0 0 0
Vv ¥ ¥ ¥

0 —— Gutiw, — Go ps140, — Gy — Gs, p+1-v,
¥ 1 ¥ \

0 —— Ghiwy —— G, — G —— G4,
{ { \

0 — 9/21+w.,—1 _— G(zl, ptv-1 T G%.;hl
4 }

3 3
0 gu-2+vo GO, uAvo—2s

where the vertical maps are §’s and the columns are exact because of the choice of »,.
It now follows by induction on g that the sequences (8.2) are exact for i =0 and u=>v,.
The case y =v, is trivial, and the inductive step is furnished by the diagram:

0 0 0
\ ¥ \

Go. ptldw, T G, url T Gz‘ prl—vy
\ \ ¥
J,u+1+v.;(E) - Ju+1(E1) - ,u+1~.v1(E2)
} 4 \
Juin(Bo) — Ju(B) — Sy (B3)-
\ ¢ ¥
0 0 0

16 — 682902 Acta mathematica 120. Imprimé le 24 juin 1968



246 WILLIAM J. SWEENEY

Since the regularity of D, follows from (8.2), (8.3), and the diagram above, the proof
is complete.

The following proposition shows that as far as exactness is concerned, the sequence
(8.1) is ““the best possible.”

ProrosiTiON 8.2. Let D, and D, be as above, and suppose there exists an operator D:

E—~F of order v which makes ¥, —2 B, ~L2  F exact. Then E, 2, b, LN b,

18 exact.
Proof. Since j,_,D satisfies the same hypotheses as D, we may assume that y=>v,.
Note that 0= g,.,,(DDq) = 0,(D) gr++,(j» Dy}, and recall that the sequence

Oyt 34lFp Do) 2,y —y, DD

Jv-Hm(EO) - Jv(El)

JV"’I(E2)

is exact. Thus we may factor g,(D) through coker g, ,,(7, D,), which is a bundle since D,
is regular, and extend the resulting map to a bundle map k:J,_, (E,)~F. Thus ¢,(D)=
ko,(7,_», Dy), and composing with j, we obtain D =hj,_,, D;. Thus ker D; cker D=im D,,
and the proof is complete.

The relationship between (8.1) and the first Spencer sequence is expressed by the com-

mutative diagram

0 0 0
1 ¥ 1
0 —— 6 — R, -2 By .,
¥ ¥ \:
0 E, JBy) ——  Jhal) —— ..
§ o y ¥ (8.4)
0 B, JucwdBy) — ThalBy) —— .
y D \ 4
0 E, Ty wilBy) =2 Ty sl —— ...

¥ D + {

where § is the solution sheaf for Dys=0 and y is large. By Props. 6.2 and 8.1 the diagram
is exact except possibly for the first row and first column. Thus by diagram chasing the
cohomology of (8.1) is the same as the stable cohomolgy of the first Spencer sequences.

ProPOSITION 8.3. Let D: E— F be a regular differential operator of order . Then for

1= py(n, m, pg) the Spencer sequence (5.7), is exact



THE D-NEUMANN PROBLEM 247

(i) if M<R" and D has constant coefficients.
(i)  for real analytic germs if M, E, F, and 0,,(D) are real analytic,

iii) at RL,,-1 of and only if there exists an operator D’ making B =N F N F' exact.
u Y

Proof. (iii) follows from Prop. 8.2 and the remark following (8.3); (i) depends in addi-
tion on the theorem of Ehrenpreis and Malgrange. By the remarks following (8.4) statement
(ii) is equivalent to the classical Cartan—Kéhler theorem. Recently, L. Ehrenpreis, V. Guille-
min, and 8. Sternberg (3] have obtained estimates which, together with diagram chasing,
yield a simple proof of this theorem. Using similar estimates obtained by the author
[17], C. Buttin has given another proof of (ii) in [2].

Chapter II. The D-Neumann problem
1. The second Spencer sequence

At the end of Chapter I we saw how the exactness of the first Spencer sequences
can be used to obtain existence theorems for the differential equation Ds=*¢. To this extent
the theory generalizes the situation in complex analysis, where the Dolbeault sequence
has proved to be an important tool for studying the Cauchy-Riemann equation. The
problem of proving exactness is, of course, much more difficult in the general theory than
in the case of the Dolbeault sequence; and, in fact, it is more difficult than it should be.
To be specific, the sequence of symbol maps associated with (1.5.7) « I8 exact only in the
most trivial cases; thus the harmonic methods which establish exactness for the Dolbeault
sequence cannot be applied to (1.5.7), even when “Ds=0" is the Cauchy—Riemann equa-

tion. Thus we are led to consider the second Spencer sequence
0—>6—>ﬁ‘i—>_0_,14—>...—>%—>0, {1.1)

which will be constructed from (I.5.7), by factoring out the degeneracy in the symbol
sequence.

Let D:E—~F be a regular differential operator of order u,, and consider the corre-
sponding data g, and R,. For u>u; =pu, (n, fiber dim E, p,) define agl,= {Z € g',|6¢ = 0}.
From the exactness of the d-sequences for x>y, we conclude that agl is a vector
bundle; thus the cokernel of the inclusion map «g} ;> R}. is a vector bundle C',. For

M= p, we have an exact sequence

0 g1 i1 —— C 0 (1.2)

and thus a commutative diagram
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i i i i
0 —— gy — Biys —— Rlyy —— 0

§ -8 y D y o (L3)

where the rows are exact and D’ is induced by D. We claim that D’ factors through
9’_"&. Indeed, if o€ E-’_]:‘_*‘.l then o= — 4t for some 7€ gﬁgg and hence o= — dnr, for some
7, € Ri%; thus D'e= — D'ént; = D'aDvy = pDD7y = 0. Accordingly, we obtain a ditferential
operator D":C,—~C,* such that D’=D"p. To show that D" squares to zero we note
that pa®: Ry.s—>C,, is subjective and that D"D"pn*=D"D'n®=D"pDn=D'Dn=D'nD =
pDD=0. Finally, we claim that the kernel of D":C.~C; is the solution sheaf 6 for
Ds=0. In fact, by (1.2) we have C.=R,.;, and by chasing (1.3) we infer that the se-
quence

7u+l Dy

0 6 Russ o (1.4)

is exact. Thus the construetion of (1.1) is complete. It follows from (i) of Prop. 1.5.1 that

D" is a derivation in the sense that
D'(ENG)=dEN G+ (—1YEA D (1.5)
for each section o of C%, and each j-form &. In fact, writing o= pn7, we find that
D"(ENo)=D"pr(EA7)=pDE A T)=p(dEAnt+ (—1YEAD1)=dé Ao+ (~1YEA Do.

It will be convenient later to have a more explicit description of C}. For u> u, we
choose maps P:R,~R,,; such that P =1; tensoring with 1 we thus obtain maps

P:R,—~R.,, with aP=1. Setting @ =1— Pr, we consider the commutative program

0 0
{ 4
0 —— agin Gor —— agitt —— 0
‘1 +De \J/
0 —— aghsr —— Rl — ¢, —— 0 (1.6)
a}DF \’
B - R,
v \
0 0
where the last column is induced and is exact. We claim that the map Ri., to RL® g™

defined by o> (g, 6Qg) induces an isomorphism

Ci, ~ RL@og ™. (L7)
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Sinee 70 = Qo =0, when o € ag’, 1, the map (1.7) is well defined. To prove injectivity we
let o€R:,, satisfty mo=0Qo=0. Then since o= Pnro+ Qo=Qo, we have ng=0dc=0.
Thus o €agl1=ker p. To prove surjectivity we let 7€ R., { € agl"", choose £ €g}.1 such
that 6£={, and note that (1.7) maps p(Pz+ &) to (7, {). A straightforward calculation

shows that D" is given by
(0,8) = (DPo~{, (DP)?c — DP{)

in terms of the isomorphisms (1.7); however, we shall not use this fact.

2. The symbol sequence

Let E and F be vector bundles over M, E having fiber dimension m. Let D be a
regular differential operator of order p, from ¥ to F, let y be a point in M, and £ be a
non-zero cotangent vector at y. We choose a coordinate z = (2, ..., ") on a small neigh-
borhood U of y, and by trivializing (R.); and (xgi')y for =0, ..., n we obtain triviali-
zations for the bundles (O%)y, 1=0,1,...,n. Because of (1.5), the principal part of
D": 0~ 04 is given by o— 2> 7da’ A @, ¢ near y, where 9, is defined by the coordinate »
and the trivializations. In terms of the isomorphisms (1.7) the principal part is given by
(0, 0)~ (C¥dx" A 8,0, — 21dx’ A3, (). Thus the symbol sequence of (1.1) at £ is the direct
sum of the sequences

EA EA

0 — (BE,), (RL), (R;), — O, (2.1)

—&A

-&
0 — (‘xg;lt)y - (“glzt)y :

(aguly — 0. (2.2)

The first sequence is always exact; the second is the subject of the following proposition
due to D. G. Quillen.

Prorosirion 2.1. The sequence (2.2) is exact for p=u,(n, m, py) if and only if & is

not characteristic for D.

Proof. By the remark at the end of I, section 6 we may assume that y;=1; we may
also assume that & =da". Throughout the proof we will suppress the subscript y.

To prove necessity assume that dz® is characteristic for D. Then by (I.4.4) there exists
a non-zero element o of g, such that ¢,=0 unless a,=u. Thus §,6=0 for v=1, ..., n—1,
and {®o 0 is in the kernel of the first map in (2.2).

To prove sufficiency assume that da™ is not characteristic, and let o € agl, satisfy
dx® A 6=0. Writing H for the subspace of 7™ spanned by da',...,d2z""', we choose
7€9,® A'"'H such that dz" A 7=o0. Then, setting &' =>7"'dz’ A J,, we obtain —do=
da™ A dv=da" A &'t and hence §'t=0. Thus, if the sequence
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G ®AH —2 s g @ AT H —X g, @ AH 2.3)

is exact, we can write o= —&Ad'p= —&A oy, where dy €g4 1. Therefore it suffices to
show that (2.3) is exact for > u,.
For a polynomial o= 3 ,-.0,X%/a! in g, we define
po= 2 0, X%/al.
]

Thus ¢ is a mapping of g, into a space %, of homogeneous R"-valued polynomials in
X, ..., Xy_1. We claim that g is an isomorphism for each > 1. Indeed, suppose o € g,,
o+0, satisfies po=0. Among all multi-indices « with |«|=u and ¢,+0 choose a multi-
index § for which f, is minimal. Since po=0 we have §,>1, and by minimality we
have §,0° '*g=0 for =1, ..., n— 1. Thus 6’ "¢ is an element of g; which depends only
on X,. By (1.4.3) this contradicts the assumption that dz” is not characteristic. Since the
isomorphisms ¢ are compatible with d,, ..., §,_1, it now suffices to show that

B ® A H 2 B@AT'H —— h, 1@ A H (2.4)
is exact for p > u,.

Since the spaces h, do not come directly from a differential operator, we cannot
immediately apply the proposition in I, section 7. Instead we introduce the inner pro-
duct X X%0,/al, > X%T,/a!> = D{0s Tap/a! on h, and note that the adjoint of d, is mul-
tiplication by X,. Since 8,(h, 1) <h, for =1, ...,2—1, the space ht =2 °h} is a submo-
dule of the R[X,, ..., X,_;]-module of all R™-valued polynomials in X,,...,X,_;. Thus by
the Hilbert basis theorem there exists an integer u, such that for u > u, we have c€hj11
if and only if 6=X,0,+ ...+ X, 0, for some g, ..., o, €ki. Thus if a homogeneous po-
lynomial ¢ satisfies 8,0 €h, for y=1, ..., n— 1 then we can infer from 0=73,{6,0, ht)=
>0, X, ht> =<0, bt,1> that o€h, if and only if 8’ €h,, for each |y|=u — u,. It now
follows from (1.3.6) that the spaces k,, u > p,, are the g,-data for a differential operator
of order u,. Thus by Prop. 1.7.3 the sequence (2.4) and hence is exact for u= u,+
i(n, m, uy). Using the diagram

0 0 0
{ 2\ v
aght —— agy — agi”!
1 2\ ¥
gi* g ' g —— g’
{ \ \
agiy —— agh1 —— aghth
¥ ¥ \
0 0 0
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we conclude by downward induction that (2.2) is exact for all u >pu,. The proof is complete.
Prop. 2.1, together with the following proposition, removes the difficulty described

at the beginning of section 1.

ProrosiTION 2.2. For p=p,(n, m, ty) the cohomology of the second Spencer sequence

(1.1) 7s the same as the stable cohomology of the first Spencer sequences.

Proof. Consider the commutative diagram

0 g’;,+z R;+2 - ELH — 0
AN
_ol D l D’l > Q; -0
s
0 aghih iy —2— ol 0
0

For each 7 we choose a map ¢:C%— R}, such that pg=1; we claim that p and g fur-
nish the required isomorphism in homology. Since pg=1 modulo coboundaries, we need
only show that  maps cocycles to cocycles and coboundaries to coboundaries. The sec-
ond assertion follows immediately from the diagram; to prove the first we let ¢ € %
satisfy Do =0. By chasing the diagram we can find 7€ R, ,, such that 77 = ¢ and Dr=0.
Thus D"po=D"prr=D'mr=pDr=0.

3. The D-Neumann problem

Our first task is to fix the notation which will be used in the rest of this chapter.

Let M be a smooth Riemannian n-manifold, and let Q<M be a compact, smooth
n-manifold-with-boundary which is imbedded smoothly in /. Thus from the Riemannian
metric on M we obtain Riemannian metrics on Q and its boundary w. Let £ and F be
vector bundles over M, and let D be a regular elliptic differential operator from ¥ to F.
Whenever the data R 1w 9 e, oceur in the future, it will be tacitly assumed that u is
greater than the integer u, given in I, section 7. In situations where only one value of
[t > py oceurs, the subscript will be suppressed. We will denote the operator in the second
Spencer sequence by D instead of D",

We choose an inner product along the fibers of J,(E); using the Riemannian met-
ric we thus obtain an inner product in each J/(¥) and hence in each of the sub-bundles
R, g, agl. Using the isomorphism O}~ R ®ag,"™, we obtain an inner product in C%.

We denote by I'(Q, €V) the space of all smooth sections of 07 over Q. In accordance
with the usual definition for manifolds-with-boundary, each section in I'(Q, C¥) can be
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extended smoothly across the boundary w. We refer to Hérmander [5] for the definitions
of the spaces (€, 7). In the sequel we shall always consider U (Q, 07)=Ly(Q, C9)
as a Hilbert space with inner product (s, 7> = | {0, >, dv, where dv is the Riemannian volume
element and (-, - ), is the inner product in ¢7. The notation given here will also be applied
to the bundles R’, g/, ete and to their restrictions to w.

With the introduction of the Fourier transform spaces above, we assume that all
bundles occurring have complex fiber. With ¢ = V=1 we write D,=—49, in a local co-
ordinate.

Now let D be the operator in the second Spencer sequence, and let .D* be its formal
adjoint. Define the Neumann space N’ to be the space of all sections u €I'(Q2, C7) satisfying

the boundary conditions
{Dv, uy =<{v, D*u> for each v€I(Q, C-1), (3.1)
{Dv, Du)> = v, D*Du)> for each v€I(Q, C). (3.2)
Define the harmonic space H’ to be the set of all sections 4 € N’ which are annihilated by
the laplacian DD*+ D*D. Since <(DD*+ D*D)u, u) —= | Du||? + || D*u|? for w €N?, we have
H’ = {u €N’| Du = D*u=0}.

Definition. We say that the D-Neumann problem is solvable for D on Q if H’ is closed
in Ly(Q, C%) for j=1, ..., n and if there exist bounded operators N :L,(Q, CV)—~Ly(S2, ¢V},
j=1, ..., n, mapping I’(Q, ¢7) into N/, such that:

(i) NH=HN=0, where H: L,(Q, C/)>H’ is the orthogonal projection;

(i1} each u€I'(Q, CY) can be written

u=DD*Nu-+D*DNu + Hu, (3.3)

where the terms are mutually orthogonal in view of (3.1) and (3.2);
(iii) DN =ND holds.
Note that (iii) follows from (i) and (ii). Indeed, if »€I(Q, ¢7), then
(D*D+DD*) (DN —ND)u =D*D+ DD*)Nu—(D*D + DD*) N Dy = Du—Du =0.
Also (DN —~ND)u€N’ and H(DN —ND)u=0. It follows that (DN — N D)u=0.

In view of (iii) the decomposition (3.3) gives a cochain homotopy 1 —H = D(D*N) -+
(D*N)D; thus the cohomology of the sequence

0->T(Q, ") >T(Q, OV~ ...~ T(Q, O >0

is isomorphic to H=27H’. Since the argument following (I1.8.4) and the arguments leading
to Prop. 11.2.2 work for sections as well as for germs, it follows that if the D-Neumann
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problem is solvable for D on €, then there exists an operator D,:F—F, such that in

the sequence

(Q, B) —— T(Q, F) —2— T(Q, F,)

we have ker D,/im D~H! Moreover, this is the best possible result; for by the proof of
Prop. 1.8.2 if D’: F—~ F’ satisfies D' D=0, then ker D' >ker D,.

4. General methods

In this section we recall some of the general Hilbert space methods which are relevant
to the D-Neumann problem. Since much of the material presented here is classical, we will
omit several proofs.

We first form the Friedrichs extension L of DD*+D*D on N’ (see [13], p. 335). This
is done as follows: Complete N’ abstractly to a Hilbert space B? with the Dirichlet inner
product Q(u, v) =<{Du, Dv) +<{D*u, D*v) +{u, v>, and show that B’ can be considered as
a subset of Ly(Q, 7). Define the domain of L to be the space of all # €B? such that v—Q(v, )
extends to a bounded functional on L,(Q, (); and for such « define f=Lu by Q(-, u)=
{+, > +<-, uy. The operator L is self adjoint, and L -+ I has an inverse which is a bounded
operator from L,(Q, C%) to B’

If w€N’ and v€T(Q, ), then |{(Dv, u)|=|<v, D*u>| <||v|Q(u, u)*. Thus for any
w€B’, v—={Dv, u> extends to a bounded functional on L,(Q, C7), and hence u satisfies the
boundary condition (3.1). On the other hand, an element »€B’ need not satisfy (3.2),
even if % is smooth. However, if u€T(Q, (V) is in the domain of L, then |{Dv, Du}|<
[{D*s, D*uy| + |Q(v, w)| + |<v, w>| <||v|| {|[ DD*u|| + || Lu|| +2]u||} for »EN’, and hence u
satisties (3.2).

ProrosiTioN 4.1. Assume that D is elliptic and that the inclusions B'—L,(Q, ¢V)

are completely continuous for 1. Then:

(i) we have w€I(Q, C?) whenever Lu€lNQ, C%) and §=1;
(il) for j=1, H is finite dimensional, and the range of L on T'(Q, C7) is closed;

(iii) the D-Neumann problem is solvable for D on Q.

Proof. (1) is a recent theorem due to J. J. Kohn and L. Nirenberg (see [9], Theorem
3). Our assumption that D is elliptic enters here via Prop. 2.1, which shows that DD*+ D*D
is then elliptic. The Kohn-Nirenberg theorem requires that the boundary w be non-charac-
teristic for DD*+ D*D.

Since H'=ker L by (i), statement (ii) is part of the standard theory of compact
operators. To prove (iii) we first note that since L is self adjoint, 1 —H is the orthogonal
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projection on the range. Given u € L,(Q, 07), we define v=Nu to be the unique element in
the domain of L satisfying Hv=0, Lv=u— Hu. Then N is bounded because of the closed
graph theorem, and it maps I'(Q, () into N’ because of (i) and because of the remark pre-

ceeding this proposition.

5. Reduction to the houndary

As one easily verifies (see section 6 below), the boundary condition (3.1) on # €I(Q, C7)
is given by Bu=0 on o for a certain bundle map B:C’—(’-1. Thus in order to establish
the complete continuity required in the hypothesis of Prop. 4.1, it suffices to show that for

some 0<r<1 the estimate

l[ullor < e{Q()+*[| Bull s} (5.1)

holds for all »€I(Q, ¢). Here Q(u) =Q(u, w)! ={|| Du||2+ || D*u||2+ ||u||2}? is the Dirichlet
norm for sections over , and |||, and *||-||;) are any of the equivalent norms in
H(Q, €7) and W y)(w, C7) respectively. We begin our discussion of (5.1) with some techni-
cal material and a series of lemmata.

Recall that W, (R is defined to be the space of all temperate distributions % on
R” such that with & =(&,, ..., §,_,), the norm

[[lfn.0r= @)= FA+{E[" X+ [£7]2)° [4(6) | *dé

is finite. The space H, , (R%) is defined as the space of all distributions on the open upper
half space R} ={z€R"|2,<0} which can be extended to elements of 3, ,(R"). Thus
Hin. s (RY) is the quotient of H, ., (R") by the closed subspace of elements with support
in R” = {z€R"|x, <0}. The space W, ,(R”) is given the quotient inner product and norm.

See Hoérmander [5] for the basic properties.

LEMMA 5.1. Let s be a real number, m a positive integer, and write R§ = {z € R*|x, = 0}.
Then for each u€ Hou, »(RY) the restriction u|RE is @ well-defined element of Him+s—3(RY)
satisfying || (@|RS)|lon+s-1 <||#|lon.s). Moreover, for each v€Wumis 1»(RG) there exists
U € Wim, sRE) such that u|Rj =v.

Proof. See Hérmander {5}, Theorems 2.5.6 and 2.5.7.

LeMmA 5.2. Let GC R be open in R, and let P be an elliptic differential operator of
order k from the trivial bundle G x R® to G x R°. Let m, s, m,y, s,, be real numbers satisfying
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m+s=m, +8;. Then for each compact U< Q there exists a constant ¢ such that

ellim. o < e{1Pufl e, sr + 12l o5}

for sections u of @ x R* with supp u< U.
pp

Proof. See Hérmander [7], Lemma 2.2.1.

LeEMMA 5.3. For each 0<s<1 the estimate

flello < e{@@)+“Jluflo-n}
holds for weT(Q, CY).

Proof. We first prove the lemma in the case s=1. By Lemma 5.1 the restriction map
u-ulw is a bounded operator from (2, C?) onto W (w, ¢7) whose kernel K is the
closure in Y, (Q, (") of the space of smooth sections having support in the interior of Q.
For u€K the estimate follows from Garding’s inequality; if u is orthogonal to K, then
|||y <¢®||n] (3, by the closed graph theorem.To prove the estimate we write 7 for the
orthogonal projection of H,y,(C2, C) onto K and observe that || u/| o, = |lwu] ) + || A —7)u| o) <
Q)+ [|w| (1)} <e{@(w)+ ||l +Q((L —7)w) }. Since Q((1 —7)u) < || (1 — ) w| 1) < ||| cps
we have

leflay < e{@(u) +“||u| (3}, for w€I(Q, V). (6.2)

We now use (5.2) to prove the lemma in general. Observe that it suffices to prove the
required estimate locally, for #€I'(Q, ¢?) having support in a coordinate disk U with
coordinate (x', ..., 2"). Since the interior case is simpler, we assume that U is a boundary
disk where QN U and wN U are given by #">0 and 2" =0 respectively. By Prop. 2.1 and
the ellipticity of D, the map

8ge(D) @ 84n(D¥) : Oy ~ CF' @ C!
is injective. Thus we may choose frames in O, C%?, and 0% ' in such a way that sg.(D)
and s;(D) and s;«(D*) are represented by constant matrices; in these frames the coeffi-
cients of 9, in D and D* will then be constant.

Now let u€T'(Q2, CY) have support in a compact set U’ which is contained in the in-
terior of U. Denote by K the tangential pseudodifferential operator on R’} with Fourier
integral kernel p(&')|&| 7", where & =(&,, ...,&,_;) and ¢ €C®(R" ') is 0 on a neighborhood
of the origin and 1 outside a slightly larger set. Let  €C§°(U) be 1 on a neighborhood of U’.
Using (5.2) we obtain

lwKullo) < c{@uEu)+°|pKul| 1} (5.3)

Since K has tangential order s —1, we have “||pKu|| ;) <¢”||%||(s—3)- Also, by the choice

of frames, the operator [pK, D] has tangential order s—1. Hence
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| DyKul|| <[[pK Du| +eclfullq, sy Sc{|| Dull + [Ju])},

since s —1 <0. Treating the other terms in Q(pKu) similarly, we obtain
wEull < ef@) +“llufle-n}-

Now note that |[ll«.s <e{[|Kulfw,v + [} =c{li Kyull 0.0+ [} <e{llpKullw + [l 0.s-2
+ |l } Se{llpKulf o)+ |ullq, -0} <c{|lyKull o) +@(u) + |||}, where we have used Lemma
5.2 to obtain the last inequality. We now have that ||, <e{Q(u) +“||u[(;—p)}- Another

application of Lemma 5.2 now yields

el s < e{@(w0) +“Jull s-10 3
as required.

Lemma 5.4. The estimate (5.1} kolds, provided that the estimate

“lwlle~p < {2 | Dwlf iy + [ Dl gy + 0] gy + Y Bl 3y} (5.4)

holds for all wel(Q, C7) satisfying (DD*+ D*D+ I)w=0.

Proof. Assume that (5.4) holds, and let »€I'(Q, 07). Choose weI(Q, 7) such that
(DD*+D*D+Nw =0 and w=u on . Using (5.4) and Lemma 5.3 we obtain

eell oy <cf@(w) +*wl] —p} <c{Q(w) + || Dwll -y + || D*w | =ty + [l s +* | Bl 1y}

If y€C<(M) has support in a boundary coordinate disk, then by Lemma 5.1 and
Lemma 5.2 we have “|lywl]_;, <|lpw|lq, 1, <c{{(DD* +D*D +I)(ypw}|| q. - + [fpro]]}. T
@ has support in the same disk and if p=1 in a neighborhood of supp y, then we obtain
((DD*+ D*D + Dyw]|(_y, sy < W(DD* + D*D + Dgw|| (_y, -1y +¢||gw]] o, 1) <O +o|wf|. Thus
“lpwl](_3 <cllwl|, and since & is compact we conclude that “|jwl|[_;, <c|lw||. In a similar
fashion we find that || Dwl||_y, <c||Dwl|| and “|| D*wl|_y, <c|| D*w]||. Substituting into the
inequality above we have |jul|(,) <c{Q(x) +Qw) +*|| Bul|,_3,}. Since Q(w) <@(u) by Dirich-
let’s principle, we now have |u| ¢ <c{@(x)+*|| Bulf;,} as required.

The estimate (5.4) is rather difficult to study directly because it presupposes the
explicit solution of the Dirichlet problem. In his recent paper [7], L. Hérmander has
approximated the operators in (5.4) with certain pseudo-differential operators on @, whose
symbols are, at least in principle, easy to compute. Before stating Hormander’s theorem,
we must introduce additional data.

Define 7 to be the unit cotangent vector field #:w—T*(M) which is orthogonal to
T*(w), at every y €w. Denote by p(£) and r(£) the principal symbols of D and DD*+D*D
respectively. In the notation of Chapter I we have, for example, p(§) =iss(D):C}—>C%"" for
each &€ T*(M),; thus p is a polynomial function of & € 7*(M), with values in Hom (C},C5").
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Note that the principal symbol of D* is p(&)* and that 7(&) =p(&) p(&§)* +p(&)* p(§), where
the adjoints are defined by the inner product in the bundles C".
Now fix y €w, 0 4£’ € T*(w),, and consider the initial value problem;

& +9D) V() =0, >0 (Dt=_ii)

dt (5.5)
V(0)=veC)

for a C,-valued function on the half line ¢ >0. Here r(&’' +.D,) is defined by writing D, for
A in the expansion
(& +n) =ro(&', n) +11(&, MA-+ra(m)A2, A€C. (5.6)

It is easy to verify that r(&'+#D,) is an elliptic self-adjoint operator in one variable; by a
trivial application of the general theory we conclude that (5.5) has a unique exponentially
decreasing solution. Thus for each & € T*(w), we have a linear map k(&) from C} to ()
defined by A(&')v=D,V(0), where V(t) is the exponentially decreasing solution to (5.5).
Now define

k(E') = pol&', m) +pr(m) WE),
E' (&) = po(&', n)* + pa(n)*h(&),
where py(&’, n) and p,(n) are defined by an expansion similar to (5.6). We note that k(&)

(5.7)

and k'(§’) are homogeneous of degree 1 in &' € T*(w),, and we choose pseudo-differential

operators K and K’ on o with symbols k(&) and &'(&’) respectively.
ProPosIiTION 5.5. The estimate (5.1) holds, provided that the estimate
“lolle-n < | Kol -y +JE vl o +lloll - + )| Bof| 4} (5.8)
holds for all vET (w, C7).

Proof. Let weI'(Q, 0) satisfy (DD*+ D*D + I)w=0, and let v =w|w. It follows from
(2.3.15) in Hoérmander [7] that
“Il Ko~ D]l ey < e{®[[ofl -+ ol -}
K= D*wl| -y < e{®[[p)l iy +Jleenl| -}
where w; = —i(0/on)w|m is the normal derivative of w restricted to the boundary. As
in the proof of Lemma 54 we have “|v|_;, <c|w| and a similar argument shows
that “[|lw,[| (-3 <c|lw|. Hence, we have “||w||_y, <c{*||Kv|| 3+ K|y +illwlln+
| Bull 1y} <e{l Dl oy + 1Dy ol 3y + ] +) B} Tn the proof of Lem.
ma 5.4 we showed that “|| Dwf|_;,+“|| D*w||_y, +°]lw]l(—s) <c@(w). Thus we have

“llwlle—p) < e{@w)+2|| Bwl| 1) }-
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As in the proof of Lemma 5.4, this estimate, Dirichlet’s principle, and Lemma 5.3
yield (5.1).

The following lemma will enable us to prove the converse of Prop. 5.5.

LeMMa 5.6. Assume that (5.1) holds for all w€T(Q, C7). Then the estimate
lleell 42y < efl| Duelf o+ | D*ull  + [Jf] 0 + | Bual] 50} (5.9)

also holds for all w€T(Q, ¢V).

Proof. Assume that (5.1) holds, and note that it suffices to prove (5.9) locally. Let U
be a coordinate disk and let U’ be a somewhat smaller disk. Since the interior case is simpler,
we shall assume that U is a boundary disk. As in the proof of Lemma 5.3 we choose a tan-
gential pseudodifferential operator P:Cy(U)—Cy(U) of tangential order 2 such that
[D, P] and [D* P] have tangential order 2 and such that ||« rse < ¢{||Pu| o+ || %] 2}
holds for » with support in U’. Using Lemma 5.2 and (5.1) we obtain {[u{| (. <c{{| Dull,+
1 D%l el oo} eC Dl + | Dy + o + | DPu] 4 | D% + 1Pl +
*l| BPul| )} <efl| Du| ey + || D*ull ) + |ull 2y + )| Bull o1} as required.

ProrosiTION 5.7. Assume that (5.1) holds for all w€T(Q, C%). Then the estimaie

“Nolleryp <c{N Kol + “I K 2l + Il o)l + 2l Boll g} (5.10)

holds for all v€I(w, C7).

Proof. Assume that (5.1) holds and let v€I'(w, C%). Let w be the unique element of
Q, C7) such that (DD*+ D*D+I)w=0 and w=v on w. Then by Lemma 5.6 we have
“Pellern <@l osn <e{l| Dwll @ + | D*wl| @ + [[0]| @ + || By

estimate

(). Using the well-known

[/l < {[|(DD*+ D*D + Iy || + || uf|es} (5.11)
for the Dirichlet problem, we see that

[[olle+2> < A} Deollegy + I D*0llcay + | wl|egy + 1| Beo

@
According to (2.3.15) in Hoérmander [7] we have

“|| Dw — Koy < e{l|ollep + “Ilown ||}

“|| D*w—K'vl|g, <c{l|v]lep + “lfeenll}s

where w, has the same meaning as in the proof of Prop. 5.5. Since || v||g + “}je01 |l <
¢||wl|@ < c¢”||w||p by Lemma 5.1 and (5.11), the estimate (5.10) now follows.
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PROPOSITION 5.8. For each real number s the estimate
o)l erer < 2| Kol o+ 2| K 0] o) + (|2l o) + | Bo || s+ (5.12),
1s equivalent to (5.1).

Proof. In view of Prop. 5.5 and Prop. 5.7 it is enough to prove that the estimates

(6.12), are all equivalent. However, this follows easily using pseudodifferential operators.

6. Local analysis

We first discuss the boundary condition (3.1). Let U< M be a boundary coordinate
disk for Q with coordinate z=(z!, ..., 2"). Assume that UNQ={z€U|2">0} and that
UNw={x€U|z"=0}; in fact, assume that 2" is the geodesic distance from z€UNQ to
the boundary . Also choose trivializations for the bundles ¢%. Now note that » €T'(Q, (V)
satisfies (3.1) if and only if the mapping

T'(Q, ¢ Y39 Dv, ©) (6.1)

extends to a bounded linear functional on L,(Q, ¢7-?). Thus the validity of (3.1) depends
only on the principal part of D, which is given by v—2X{da¥ A 8,v in the local coordinate
z (see section 2). It also follows that (3.1) is a local condition on the boundary values of «.

Thus let % have support in U and consider

Crda’ Nd,v, uy =% f {da” A o, v, wd, f(x) da,
>0

Zn

where f is the density for the volume measure. Integrating by parts, we find that (6.1)

is equal to a bounded functional plus the mapping
v —f (v, Bu), fx'yda',
T,=0

where ' = (2%, ...,2"Y) and B:05 05! is the adjoint of da™ A . If Bu=0 on w, then
(3.1) holds. Conversely, if (3.1) holds, then for any w€T'(Q, (’"') with support in the

interior of (3 we have

<c¢||Bu—w).

f » {Bu, Bu), f(x')dx’

For suitable w the L, norm || Bu—w|| is arbitrarily small; thus Bu=0 on w. If we define
a(y) to be the geodesic distance from y€Q to the boundary w, then B:C},—Ci ! may be
deseribed globally as the adjoint of da A -.

Expressed in terms of the isomorphism (1.7),da /A - becomes the direct sum of the map-
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pings da A -:R'"'>R! and —da A -:ag’—>ag’t’. Since O/~ RI@ag’*! is an orthogonal de-
composition, the adjoint B is a direct sum B=Bl® B*: R'®ag’*'> R *®ag’. As we noted
in section 2, the principal symbol p(£) =4ss(D) has a similar decomposition p(£) =p'(§)+
p*&). Thus we have decompositions p(£)* =p'(&)*Dp2(&)*, r(&) =r(E)Dr*(&), k(&) =k (&)D
k*(&), ete., corresponding to the decompbsitions C'~R'®ag’**. Since we may choose the
pseudo-differential operators K and K’ as direct sums K=K'+ K? and K'=K' + K?,
we find that the estimate (5.12); holds if and only if the estimates

“Nolliren < {1 K00+ BV 0]l 51 +ll0l 61 + 1| B0l o4} (6.2),
NN s < LI K2 || oy +NEZ L |0y NS 90 + U B2 s} (6.3),

hold for all 6 € (w, B’) and { € (w, ag’*') respectively.

In order to study the estimates (6.2); and (6.3), we choose a boundary coordinate disk
U, as above, with coordinate z. We also choose an orthonormal frame %2, ..., %" in the real
cotangent bundle over U; that is, we choose sections 5!, ..., 5™ of T*(N), such that at each
y€U, %', ..., n" form an orthonormal basis for T%(M),. Assuming that »™ gives the geodesic
distance from x€U N Q to w, we may take 4" =dz" over UN ). Taking exterior products
of the forms %”, we obtain orthonormal frames in the bundles A’T*(M)y; choosing ortho-
normal frames in R; and gy, we thus obtain orthonormal frames in each of the bundles
g and R’. We also choose orthonormal frames in the bundles ag’;.

As we noted in section 2, the principal symbol of D is given by
pE)u=ise(D)yu=27rm" NEu for E=&qt+... +E " eTHM),
and u € 0}. Therefore, we have
prE)o=i2in A& o,

P& L=~ A&,

PEFo= —iSTEoR é% (6.4)

PUEE=iSIE (cx a%)

where /27" is the vector field dual to " and « is the orthogonal projection of g’ onto

ag’. Using the identities

— 0 -0 o if v=pu
Y A N Y A Y=
O o) A 817"+n (6/\817”) {O if vy
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we find that r'(&)o=1&80=]|&[%0. Thus for & =& ' +...&_19" "€ T™(w), the equa-
tion 7M& +9"D,) V(t)=|E PV (t)+ D V(t)=0 has exponentially decreasing solutions
V(t)=exp (—|&'|?) ¥(0), and we find that 2(¢') 6 =1i|£'| 6. Therefore, the operators (6.2),
have symbols:

F()o=i>r " A Eo—n" A |§'|0‘,

o cmts — B i — B
kl (E )0‘= MQZI ISVO‘/\ ;9—77,;_*—‘5 |6/\ 67;2"’ (65)
_ 9
Blo=on —.
0=0N g

We claim that the map o~ (k'(&')o, kV(&')o, B'o) is injective if £+0; indeed, if
B(&)o=k"(&)o=DB'c=0, then

, aa sl 0 | R 0oy — -
€1o=0r AE1D T ot 1 (18107 ) = 08 A€ 10T = = BN T =0
Thus the pseudo-differential operator K'@® KY @ B' is elliptic, and consequently the es-

timates (6.2), hold with r=1.

The symbols of the operators oceurring in (6.3), are given by
RHEY =027 A& L +in" ARYE) L,

B(EY = - iZi”Ot(&CW—a%;) - ia(hz(é’)éxé%), (6.6)

2= o2 70 2
Bé’—zx(é‘/\ann).

Suppose that F(&'){=k(&) =B =0. We apply —ix(- A (8/6n™)) to the first line in
(6.6), in™ A -to the second line, and add. We obtain

NM(E)=h(E)L, (6.7)

where Nlg=9"A a(zﬁa%)-!-a[(n"/\z)ﬂé%],

’ n-1 n ~ a v A a
ME)=21 Ev{n /\a(C/\ any)Jﬂx[(n /\C)/\é;?;]}-

It is readily verified that V{¢)=exp (iNM(&')t){ is a solution to r%H& +%"D,) V(t)=0,
t>0.In view of (6.7) and the definition of 2%(£’) we see that V (¢} is exponentially decreasing.
17 — 682902 Acta mathematica 120. Imprimé le 24 juin 1968
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Thus £ belongs to the direct sum of those spaces in the Jordan decomposition which cor-
respond to eigenvalues A of N M (&’) satisfying Tm 4> 0. Since this argument can be reversed,

we obtain:

ProrosiTION 6.1. A non-zero colangent vector £ € T*(w), ts characteristic for the pseudo-
differential operator K2 K? ® B2 if and only if the kernel of B2 in (ag’™), has a non-trivial
intersection with the subspace of (ag’*'), corresponding, in the sense of the Jordan decomposi-

tion theorem, to the eigenvalues of N M (&) with positive imaginary part.

The estimates (6.3), hold with r=1 if and only if K2® K* @ B? has no charactericties;
thus Prop. 6.1 gives a necessary and sufficient condition for (6.3); to hold with »=1. Be-

cause of Prop. 5.7 we have:

COROLLARY 6.2. The estimate (5.1) holds with r=1, if and only if for each y€w the
kernel of B2 in (axg'*Y), has a trivial intersection with the subspace of (ag’*'), corresponding

to the eigenvalues of NM(&') with positive imaginary part.

Thus Corollary 6.2 gives a necessary condition for the solvability of the D-Neumann
problem. The condition is unrealistic, however, because it fails to hold even for the Cauchy-
Riemann equation. In general one expects the solvability of the D-Neumann problem to
depend on higher order properties of the boundary w and of the symbols of the operators
involved. Thus one is forced to consider the estimates (6.3), for values 0 <r <1, and perhaps
even for arbitrarily small positive values of #. In his paper [7], L. Hormander gives a
necessary and sufficient condition for the validity of estimates like (6.3), with r=4. Since
we are not able to simplify Hérmander’s condition in this setting, we do not state it here.

In Chapter 11T we will apply Hérmander’s condition in a more tractible context.

Chapter III. The D;-problem
1. Restriction to the boundary

In this chapter we construct a sequence of differential operators on w by restricting the
second Spencer sequence for D. This construction generalizes the G,-sequence of Kohn-
Rossi (see [8] and [11]) and provides some information about the convexity required for
the solvability of the D-Neumann problem. We retain the notation of Chapter Il and the
assumption that D is elliptie.

Tet ¢:cw—>M denote the inclusion, and choose a real function a€C®(HM) such that

a(y) =0 and da, +0 whenever y € w. Then for each y€w and each §=0, 1, ..., n we obtain a
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surjective map ¢*: AYT*(M),~ A’T*(w),, whose kernel consists of all elements &€ A/T*(M),

satisfying da A £ =0. Accordingly, for each y€w we obtain exact sequences

0 —— (RLE —— (Bl), = (R,®AT*w)), — 0 (1.1)
0 — (@) — @) —— GuONT*w), — 0, (1.2)

where (R.);={o€(R}),|dar =0} and similarly for (g})2. Since § anti-commutes with

da A -, we obtain the diagram

Vo }o Lo

0 —— (@) —— @)y, —— @GONTw), — 0
|9 V90 I %
0 — (gi"h)) — (@), —— Gu-1 AN THw)), —— 0

+ \ \

where &, is induced by J. Assuming that g is sufficiently large, we know that the middle
column is exact. It follows from the ellipticity of D that the first column is also exact.
In fact, let Z€(gl"1)j satisfy 6 =0. Since da A { =0, Prop. 11.2.1 shows that {=da A ¢’
for some ['€(g)1), satisfying 8.'=0. Since {'= —9{” for some "€ (g} 1), we have
=0(daNl") and daAl"€(g)):. We may now conclude that the third column in the
diagram is exact. Writing o, g}, ={{ €9, ® A'T*()|6,{ =0} and (ag}) = {L € (g})2[6, =0},

we thus obtain a diagram

0 0 0
’ { . ¢
0 —— (gl —— (agl)y, ——  (wgl), —— 0
I 4 . A
0 —— @) —— @) — G.OATHw), — 0 (1.3)
y 9 V9 . V%
0 — (aglt)) —— (i), — (wglih)y, ——— 0
| i \
0 0 0

with exact columns. The middle row is exact by (1.2); and if j =» —1, then the bottom row
is exact. Thus by induction the top row is exact for all =0, 1, ..., n. Note that we can use
the exactness on the right to show that «,g), is a vector bundle over .

From the top row in (1.3) we obtain an exact sequence

0 —— TuQ,09}) —— T(Q, a9l) —— D0, ag,) — 0, (1.4)
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where I',(Q, -) denotes the space of smooth sections £ satisfying da A { =0 on @ and where
the restriction map g is defined by of =¢*¢|w. If we write B} , for the bundle B, @ A'T*(w)
over w, then (1.1) yields a similar sequence:

0 — [L(Q, Ry —— INQ,R)) —*— Do, B},) — 0. (L.5)

Note that the restriction maps g are compatible with exterior multiplication in the
sense that g(é A o) =& A go if & is a v-form on M and ¢ is a section of Ri, or agl,.

Now define the bundle C} , over w by the exact sequence
O - acbg,fud - R{),/H—l - 0{),11 - O

and consider the diagram

0 0 0
\ Jr {4
0 — To(Q, agh) —— D(Q, aglie1) — Do, ayg/1) —— 0
¥ ¥ {
00— Fa<Q’ RL+1) - F(Q’ R;{t+1) _ F(w, Ré.ﬂ+1) — 0 (16)
¥ ) ¥
r'(Q, ¢ Q, CL) Nw, CF, ).
{ + \
0 0 0

By (1.4) and (1.5) the rows are exact, and the two columns on the right are exact
because of the definitions of €’ and C} .. We claim that the left column is also
exact. Since exactness at the other places is easily verified, it is sufficient to show that
I',(Q, Bl1q) = Tu(Q, O7) is surjective. Thus let ¢ be a section of ¢ such that da A 6=0
on . Write p for the mapping Rl ,—C), and choose a section 7 of R}.; such that
pr=c on Q. Since da A o=0 on o, we find that (daA7)|w is a section of ag)’}. By
Prop.11.2.1 there exists 7' € ['(w, agl+1) such that da A 7' =da A 7 on w. If " €L(Q, agl+1)
is any extension of v/, then p(r—17")=¢ on Q and da A (zr—7")=0 on w. Thus the re-
quired surjectivity has been established. Diagram (1.6) now yields an exact sequence

0 —— T, (Q,0) —— T(Q, ) —— TN, C}) — 0. (1.7)

As before g is compatible with exterior multiplication.

We claim that the operator D in the second Spencer sequence maps I',(Q, O)) into
[L(Q, C111). Indeed, if 0 €,(Q, C%), then there exists v €(Q, C)"") such that do A o=ar
in a neighborhood of w. Thus
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da A Dg= —D({da A 6)= —D(ar)= —daAt—aDr= —aDr=0
on . Using the sequences (1.7) we thus obtain an induced operator D,: 0} ,—Cil..

Since D?=0, it follows that D} =0; moreover, D, is a derivation in the sense that
DytANo)y=dENo+(—1VEAND,o (1.8)

for a y-form £ on w and a section o of C} ,. To prove this choose 7€I'(Q,C]) and
n €1(Q, A’T*(M)) such that gr=0 and gn=§&. Then

DyEN o)=pldn A v+ (—1yg A Dr)=pdy A+ (= 1) & A Dyo.

In a local coordinate it is easy to verify that gdny = doy = dé; thus (1.8) holds.

2. The symbol sequence

Our purpose here is to investigate the sequence of symbol maps which is associated

with the D,-sequence
00, > Chu— ... > 03> 0 (2.1)

introduced in section 1. In view of (1.8) we have that s(D,)=& A - for a non-zero co-
tangent vector &€ 7T*(w),. If we introduce isomorphisms C} ,~ R} ,®a,g.'! as in II,

section 1, then the symbol sequence of (2.1) at & is the direct sum of the sequences:

En- A~ -
0 —— (B),) —= (Rb,), —= ... (RpH, —— 0, (2.2)

—En~r

(mgn ™)y —— 0. (23)

_E~
0 —— (wgu)y — (%),

The first sequence is always exact; we begin our discussion of the second with the fol-

lowing:

Definition. Let &, and &, be linearly independent elements of T*(M),, and let P be the
subspace which they span. Then &, A &, is said to be characteristic for D: £ — F if the com-
position

24y

S4P@QE,c8"T*Q E, - J,(B), —— F

Yy

has a non-trivial kernel.

If #=(a, ..., 2" is a local coordinate at y and if & =dz™"?, &, =da", then & A&, is
characteristic for D if and only if (g,,), contains a non-zero element ¢ satisfying 6,6 =...=
0,90 =0. If & A&, is characteristic for D, it does not follow that &, A &, is characteristic for

iy D, v>0. For example, u,=1, n=2, and suppose that (g,), consists of all real multiples
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of eX'+fX2?, where ¢ and f are linearly independent elements of R2. For each ¢€(g,),
there exist real numbers ¢, and t, such that 8,0=t,(eX*+fX?) and §,0 =1f,(eX' +/X?).
Then #,f=08,0,0=06,0,0=1,¢; and by linear independence, ¢, =¢,=0. It follows that ¢=0
and hence (g,), =0. We find that da! A da? is characteristic for D, but not for j, D.

If D is elliptic and involutive, however, then &, A £, is characteristic for D if and only

if it is characteristic for 4, D. Indeed, this will follow from the next proposition.

Prorosirron 2.1. Let u, be the integer defined in I, section 7, and let da€T*(M),
be orthogonal to T*(w),. Then the sequence (2.3) is exact for u=u, if and only if & Ada is

not characteristic for §,,_,, D.

Proof. For this proof we may assume that D is involutive and of order 1. Then d,
sequences are exact for y>1, and the cohomology of (2.3) is independent of y>1. Indeed
this follows from the argument used in concluding the proof of Prop. I1.2.1.

We introduce a coordinate z=(z!, ..., ") on a neighborhood of y in M; we assume that
dat, ..., da" 1€ T™"(w), and that da"—da. We may also assume that &=dz""*. Using the
definition of §,, we find that §,=X7 'dx*AJ, in the fibers over y. Thus the kernel of
—da" A\ - in (apgy), consists of all elements of the form dz"~'®o, where o€g, satisfies
0,0 =...=8,_,6=0. Since the cohomology of (2.3) is independent of u, we see that de” " A da™
is characteristic for D. We also see that the condition in the proposition is necessary if (2.3)
is to be exact.

The proof of sufficiency follows the proof of Prop. I1.2.1 very closely. Using the argu-
ments given there, we see that it suffices to show that the condition implies the exactness of

1 ®ANH » g, @ A" 'H —» g, 1@ A'H (2.4)

for large u. Here &' =X7 ®da? Ad,, and H is the subspace of T™(w), spanned by da?, ...,
dz"~2. Arguing as in the proof of Prop. IL.2.1, we can identify the spaces g, with spaces
of polynomials in n —2 variables and conclude, as before, that (2.4) is exact.

Note that there may be a large space of £€T*(w), for which (2.3) is not exact. For
example, let D be the determined operator given in a local coordinate by Ds=274,9,s,
where 4, is a non-singular matrix. Assume that Q is defined by #">0 and that the metric
is euclidean in the coordinate x. Then for any f€ E, we may set e=—A4;', 4,f and obtain
an element eX" 1+fX"€(g,),. Thus da™ ' Adz" is characteristic for D; in fact, for any
0£€T*(w),, & Ada™ is characteristic for D. Since D is involutive, (2.3) is never exact.

In general, however, the space of characteristic £’s will be a proper subspace of T™(w),.
If Ds=0 gives the Cauchy-Riemann equation, then (2.3) fails to be exact for £ lying in a

1-dimensjonal subspace. If D is the gradient operator, then (2.3) is always exact.
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3. The D;-problem
For j=1,..,n—1 let H} be the space of all u€l'(w, C}) satisfying D,u=Dju=0.

Definition: We say that the D,-problem is solvable for D on @ up to dimension m if

H} is a closed subspace of Ly(w, C}) for =1, ..., m and if there exist bounded operators
Ny: Ly(w, O})—~ Ly(w, C}), j=1, ..., m, mapping smooth sections to smooth sections, such
that:

(i) N,H,=H,N,=0, where H, is the orthogonal projection onto H};

(i) each w€T'(w, C}) can be written
w=D,D; Nyu+ Ds D,N,u+ H,u, (3.1)

where the terms are mutually orthogonal;

(ili) N, commutes with D, and Dj.
Using the arguments described in II, section 5, we obtain:
ProrosiTioN 3.1. Assume that for some 0<r<1 and for j=1, ..., m the estimate
lleellers <] Do) + || DF l| ]|} (3.2)
holds for all uw €T (w, C}). Then the D,-problem is solvable for D on o up to dimension m.

Now recall the exact sequence (1.7) and consider the commutative diagram

0 0 0
y y y
0 T, ryQ, 0% —2- QoY — ...
v ' V
0 T e, —2— NQ,0YH — ... (3.3)
V y i '
0 —— T, — D(w,?) —— [(w,C}) — ...
' y
0 0

where T, T, and T, are defined as the kernels in the corresponding rows. If y€w and if
o €0 satisfies dy A 0=0, then g=0 because of Prop. I1.2.1 and the ellipticity of D. Thus
I'.(€, C°) consists of those sections in I'(Q, C°) which vanish on w. It also follows that
(% is isomorphic to the restricted bundle €%, and thus we may consider 7, as a subspace of
I'(w, C°). If the top row is exact at I';(Q, C1), then by diagram chasing we infer that the
restriction map 7'— T, is surjective. Thus v€I'(w, C°) is the boundary value of a section
w€T(Q, €% satisfying Du=0 if and only if D,»=0. Recall from II, section 1 that Cp is
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isomorphic to R, and that the canonical operator j,,; gives an isomorphism of 7' with the
space of sections u €I'(Q, E) satisfying Du =0. Thus, under the exactness assumption above,
the condition D,v =0 is necessary and sufficient for v€'(w, B,,;) to be the Cauchy data
for a solution to j,_,,., Du=0.

The exactness properties of the top row in (3.3) can be studied by a boundary problem
very similar to the D-Neumann problem; in fact, the new problem is obtained by replacing
(11.3.1) and (11.3.2) by the adjoint boundary conditions. Thus the fundamental estimate
is obtained from (IL.5.1) by replacing B with B*=da A -.

The purpose of diagram (3.3) is to compare the exactness properties of the three rows.
It follows by diagram chasing, for example, that if any two rows have finite dimensional
cohomology, then the same is true for the third row. It is probably true that if the problems
corresponding to any two rows are solvable, then the third problem is also solvable. For our

purposes the following proposition is relevant.

PrOPOSITION 3.1. Recall the notation of 11, section 5, and assume that M§) commutes
with the boundary operator B. Assume that the estimate (3.2) holds for € w, O} "), where
j=2. Then the estimate (11.5.1) holds for w€T'(Q, O’ ).

Proof. The principal symbol of D, splits into a direct sum ¢(£) = isg(D,) = ¢"(£) D ¢*(£)
corresponding to the decomposition C}~ R @a,¢’*'. For the purpose of this proof we
may assume that D, has a similar decomposition D, = Dj®D}; this is because the esti-
mate (3.2) depends only on ¢(£). From the hypothesis of the proposition we now obtain

the estimate

1 e <e {1 DRI+ DR 2| + |11} (3.4)
for £ € Nw, ag7).

We rewrite the exact sequence

*

0 (oeg’)® og’ g —— 0 (8.5)

from the diagram (1.3). We assume that the inner product in «,¢’ is the quotient inner
product defined by (3.5). Thus the adjoint ¢ of (* is the splitting of (3.5) with least norm.
It follows that £:* is the orthogonal projection of ag’ onto the orthogonal complement of
(ceg?)%; that is, #2* is the orthogonal projection onto the kernel of B2

From (IL.5.10) we have

K(&) C=p3(&) C+da AR (&)L
k(&)L =By L + BRAE) L,
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where p3(£) £ = £ A £. Since ¢* is compatible with exterior multiplication, we have ¢*(&)¢*=
*p3(E). Taking adjoints, we obtain #g*(£)* = pa(£)*. Note that (*py(&) = *k*(&) and that
b (E)* = k¥ (&)t since B2A%(&)t=R%(£) B%=0. We thus obtain

&) = *EA(E)t
QP& = k" (8)t

and hence 10z cll <cdll &2+ 11} 5.0
D3zl <cdl B> )+ ]| C ]I}
for e (w, o g7).
For { eMNw, ag’) we have
1<l < Hte*Cller + 1A= t%) CHlen- (3.7)

Using (3.4) and (3.6) we see that
el <clle*tllor <UD |+ DR || + e[|} < el Kot + | K> 82 ] + | 213

Note that ||KX1—t*) || <ell(d—t*) )l <ei]| B )|l +)|Cl}. A similar estimate holds
for K¥(1 —t*){, and hence we obtain

el < el K2Z|| + | B2 C ]+ 21+ 1| B [l -

Combining this estimate with (3.7) and the estimate [[(1—t*)Cfje <c{||B%|m-+ICH}
we obtain the estimate (I1.6.3), for €T (w, ag’). By the results of II, section 5 and II,
section 6 we conclude that (I1.5.1) holds for w €I'(Q, ¢ ). The proof is complete.

We close this section with a cautioning word about diagram (3.3). Namely, consider

the end of that diagram:

0 0 0
4 { {

L T, 0" ——— T,(Q, 0" —— T(Q, 0" ——— 0
\ M {

— TQ, 07 —— T(Q,0"Y —— I(Q, 0" —— 0
¥ 2\ {

. .0 —— DNo, Y —— 0
4 {
0 0

On the summand ag” of C*"! the boundary condition defining I',(Q2, C" ') vanishes; thus

the cohomology of the top row will often be infinite dimensional in dimension j=n—1.
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Consequently, we cannot expect the bottom row always to be well-behaved at j—=n—2.
It is also possible for this phenomenon to occur in dimension j < —2; in section 5 below
we discuss a case where the D,-problem is solvable only up to dimension n—2. In general
we expect the D,-problem to be well-behaved for j=1, ..., m —2, where m is the “‘cohomo-
logical dimension” of D: E— F; that is, where m is the length of the shortest sequence

of differential operators having the same cohomology as the Spencer sequence for D.

4. Hormander’s condition

In this section we use a recent theorem due to L. Hérmander in order to study the
estimate
Nl <c{l| Dyu)) + |DFull +]jll},  w€Dl(,C), (4.1)

which is a special case of (3.2). Before stating Hérmander’s theorem we must introduce
new notation. Let Ucw be a coordinate disk with coordinate y=(y*, ..., y™'); letting
(Y ... ¥ Y &, ..., Eny) correspond to the cotangent vector & dy'+ ...+ &, 1dy" 1in
T*(w)y, we obtain a coordinate (y, £) on T™*(w),. After choosing orthonormal frames
in the bundles (C}),, we may identify the principal symbol of D, with a matrix-valued
function ¢(y, &). We define

v 7 ]
9"y, &)= 3, 9y, &) and gy, &)= @q(y, &).

For each (y, £) € T*(w) we define a differential operator Q(y, &) by setting

Qy, &)v= Z 9y, &) D,v—% Z 9y, £)&, Do+ Z doy, )’y (4.2)

for (C'f,)y-Valued functions v of the variable z= (2, ..., x"’l)ER"‘l. We write Q(y, &)*
for the formal adjoint of Q(y, £).

ProrositioN 4.1. The estimate (4.1) holds if and only if for every compact subset
K of w there exist constants ¢ and N and a funciion ¢:R—R vanishing at + oo such that

the estimate

[0l <c{llqly, &) v+ Qy, &) vl -+ lqly, E)Iv+ Qy, Ev|F+ &) > [[«*D[*} (4.3)

le +Al<N

holds for all || =1, y €K, and ol v€ CER",(0}),).
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Proof. See Hérmander [7], Theorem 1.1.4 and formula (1.1.18)".
The estimate (4.3) is rather cumbersome; under additional assumptions Hérmander

gives a simpler necessary and sufficient condition.

PrOPOSITION 4.2. Assume that the dimension of the kernel of q(y, £)@qly, &)* has
locally constant dimension on the set where it is not 0. Also assume that for each compact subset

K of w there exists a constani ¢ such that
Ay, &)|lell < c{llaty &)ell + llaty. &) ell}

for all y€K, |&| =1, and e€(C}),, where d(y, &) denotes the distance from (y, £) to the charac-
teristic variety. Let H(y,&) denote the orthogonal projection of (C}), onto the kernel of q(y, &)@
q(y, &)*. Then (4.1) holds if and only if for every compact subset K of w there exisis a constant

¢ such that the estimate
ol < c{llH(y, £)Qy, &)o|| + || H(y, &) Qly, &)*[|} (4.4)
holds for all y€K, |&| =1, and all v€C®(R"Y(C}),) satisfying H(‘y, Ev=nv.
Proof. See Hérmander [7], Theorem 1.1.7,

5. An example

Let n=2m and let M be a complex manifold of complex dimension m; let Q< M
and o< (2 be as before. Let S be the bundle of holomorphic tangent vectors over M, and let
§ denote the conjugate bundle. Choose an inner product along the fibers of S; this induces
an inner product on § and, hence, on the complexified tangent bundle T ,(M)=S®8. By
construction, the conjugation map is a unitary map of 7 (M) onto itself; and the restric-
tion of the inner produet to T(M)={X € T'(M)| X = X} defines a Riemannian metric on M.

Let E be the trivial complex line bundle over M, and let §* be the bundle dual to .
Define the differential operator

D:E-~8* (5.1)
Z 08
by setting Ds=73 e dz (5.2)
1

in a local complex coordinate z= (2, ..., 2"). Formula (5.2) does not depend on the choice
of coordinate, and thus (5.1) is well defined. Note that “Ds=0" is the Cauchy-Riemann
equation in m complex variables. It is easily verified that D is elliptic and involutive.

LemMMA 5.1, Let y€Ew. Then there exist sections Z*, ..., Z™ of 8* defined on a neighborhood
U of y in M such that: (i) for each x€ U N Q the covectors Z1, ..., Z", Z1, ..., Z™ form an ortho-
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normal basis for THM),; and (i) for each x€U Nw the covectors ZY, ..., Z" 1 71, ..., Z" 1,

Re Z™ form an orthonormal basis for Te(w).

Proof. For each z€UNw define SF , to be the space of all holomorphic cotangent
vectors at & which belong to T't(w). Since “Y € T3 (w)” gives at most one linear condition
on the fiber S%, the complex dimension of Sy, is either m or m—1. If the dimension
were m, then T"(w), would contain every holomorphic cotangent vector; and since Ts(w)
is stable under conjugation, this would imply that 7T (w), contains T (M),. The con-
tradiction shows that S; . has complex dimension m —1, and hence S} =S} , is a sub-
bundle of T%(w).

Now choose sections Z1, ..., Z™ ' of 8} in a neighborhood of y which give an ortho-
normal basis in each fiber S} .. Without loss of generality Z, ..., 2™ ! can be extended to
an orthonormal set of sections of S* over a neighborhood of y in M.

Choose a section X of T%(M) over U such that 2%, ..., 2" % Z2, ..., Z""?, X form an
orthonormal basis for 7";(w), for each 2 € U. Replacing X by (X + X)/2 if necessary, we may
assume that X =X. We may also assume that X has length 1 over each x€U N Q.

Now let Z™ be a section of S* over U such that Z, ..., Z™ give an orthonormal basis
in the fibers of 8* over U. Since X is orthogonal to Z* and Z* for k=1, ..., m—1, we have
X =aZ"+-bZ™ for some a, b€C. Without loss of generality we may assume that a is real,
and hence from X =X we conclude that ¢ =b. We now have X =2z Re Z™, and since
| X| =]|Re Z"|, we must have 2a=1. The proof is now complete.

Note that ¥Y”=Im Z™ is orthogonal to Th(w), at each z€w. Also, if X™=Re 2™,
then &= 4 X™ are the only cotangent vectors of unit length for which £A Y™ is charac-

teristic for D. Indeed, this is because the equation “Ds=0" is equivalent to

where 8/0Z" is the vector field dual to Z¥. Hence £= + X™ are the only unit cotangent
vectors for which the symbol of D, D + D} D, is not injective. Denoting the symbol of
D, D; + Di D, at £ by A(&), we state:

Lemma 5.2. An element { of o,g.7! is in the kernel of A(X™) if and only if it has the
form
[=(X"\Z)®o0, (5.3)

where X™=Re Z", ZEAISE, and c€g, satisfies Spo=0ma=0 for k=1, ..,m—1. Here
8 and Oz are the bundle maps representing 8/0ZF and 8/0ZF in the sense of jets.
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Proof. If &, denotes the orthogonal projection of g® A+ T™(w) onto «,g'*", then

_ 0 _ 2
AX™)=X"A oc,,(é‘ A E)X_’") + o [(X”‘ ALYA 87(5‘] . (54)
Also, for { €g® AP"'T*(w) the element §,¢ is given by
Sl =T 1Z" NSl + X™ A Sxml. (5.5)

To prove sufficiency note that if { has the form (5.3), then §,{ =0 and X" A{=0.
Also I A 8/0X™ is orthogonal to og’. Indeed, (5.5) shows that «,g’ is contained in the
ideal generated by X™ and the Z*’s; by assumption £ A 8/6X™ involves only Z*s. Thus
o(C A 2joX™) =0 and hence A(X™){=0.

To prove the necessity of (5.3) let {€wx,g’+! satisfy A(X™){=0. Since X" A (=0,
we have { = X" A ¢ for some 7€¢g® A (S} +85). Since 8, =0, we find that 7 is annihilated by

Oy =>T"YZ" A . (5.6)

If we consider g =g, as a subset of S* T (M), then g consists of all homogeneous polynomials
of degree y in Z1, ..., Z™. It follows that 6,:9,,,—>g, is surjective, and thus we may choose
7€ 40 @ A-Y(S} +83) such that dz: =7 A6/0Z'. Arguing as in the proof of Prop. 1.6.1,
we see that 7' =7 —d,7 satisfies 19’ =0 and 9’ A 8/0Z' =0. Repeating the argument several
times, we obtain 7' €g,,,® A '(S; +8;) such that v"=7—0,7" involves only Z¥s and
satisfies §,47t" =0 for k=1, ..., m —1. Multiplying by X™ on the left, we now obtain

0" =0—X"Ng', (5.7)

where {” has the form (5.3). By the first part of the proof {” is annihilated by A(X™); by
hypothesis the same is true for £. But the last term on the right of (5.7) is in the range of
X™A - o9’ >0,g'tt and is thus orthogonal to the kernel of A(X™). We conclude that
¢={", and the proof is complete.

Let H denote the orthogonal projection of C]=R}®ax,g’*" onto the space of all
{€a,g’*" having the form (5.3). We have:

Lemma 5.3. If q(z, &) denotes the symbol of Dy at E=& Z* +E ZM+ ...+ En_ 2™ 1+
En 1 Z7 1+ £, XM € THw),, then

m—1
lla(, &¢I +[lg(=, &) Z|[F= 2( ; leyiz) ¢ (5.8)

for ¢ satisfying HE =,
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Proof. Let { satisfy H{={, and let «, denote the orthogonal projection of
g® ANT*(w) onto o, g’. Then
g, &¢I+ llate, &P =136 2+ £ Z) A LI+ (& A 2/21E, 2" + E 2D
=IZ@z+ L2 (n P+ 2L Re/a, 27+ & 2|1
=245, 0,

F] - 0 vy E 77y A _8“ s, 2
ot gyg—zy)Jr(évZ +&Z)N [5’\ (5”azv+§”aZ”)]

=226, 4|6 =226

where Q, . (=[(&2Z"+EZYANEIA ('fv

Now let y be a coordinate defined on a coordinate disk U< w; let ¢(y, £) and @y, &)

have the meaning described in section 4.

LeEmMA 5.4. If D is given by (5.1), then the estimate (4.1) holds for all u with support in

U if and only if for every compact K< U there exists a constant ¢ such that
l[oll® < e{|| HQ(y, &) 0|+ || HQ(y, &) o[}
holds for E= + X™, for all yEK, and for all vECFR™1, (C}),) satisfying Hv=v.
Proof. We claim that

1@ —H)vl|*+[laty, &) Ho|l*+ [laty, &)*Ho |2 <c{|lay, &)2[*+ laty, E*2l[*}  (5.9)

holds with a constant ¢ which is uniform in |£| =1 and for y in a compact subset of U. In
fact, if (5.9) does not hold for any ¢, there exist sequences {y,}, {£,}, and {v,} such that

1={[A—H)v,[*+ g, &) Ho, > + gy, &) Ho|?

but g, &) 0,12+ |a@ss &) 0,12 < 1v.

Without loss of generality we may assume that y,—y, §,—~¢, and v,~v as v— oo, By con-
tinuity we must have ¢(y, £)v =q(y, £)v=0. Hence £ = + X" and Hv =v. But this contradicts

1 =[[(L—H)v||*+ |lq(y, &) Ho|[* + fla(y, &)* Ho[*.

Therefore (5.9) holds for some constant ¢. If d(y, &) denotes the distance from (y, &) to the
characteristic variety, then by Lemma 5.3 [q(y, &) Hv]|2+ ||g(y, &)* Hv||2=(d(y, £))2|| Hv|).
Hence if |&| =1 then (5.9) implies that

d(y, &0l <Ve{llgt, &vl| + lat, &*||}-

The lemma now follows from Lemma 4.2.
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We now compute the operators H@(y, &) and HQ(y, £)* occurring in (4.4). First note
that if Hv=v, then

1

m— — m—1_ _
Hyly, §)v= ; {H(ZF Ny, &) o)+ H(ZF Ay, £) o)} = Zl ZF Ny, &),
where #(y, £) is the symbol of the vector field 8/0ZF. Also

m—1 _ m-1 ., =
Hqly, &yv= ; Hou(fily, &) oA 8/0ZF + by, E)v A 8/6Z%) = 12 tuly, E)v A 8/OZF.

If TW(y, &) denotes the operator ti(y, D)+ 21 ey, £)&” and if Ti(y, &) denotes the ope-

rator obtained from 7%(y, &) by putting a bar over occurrence of ¢, then

{ HQly, &)v =2 ZF A Tily, &) ) 5.10)
HQy, &)*v="73 Tyly, E)v A 8/dZ .
for ve O (R™ 1, (C}),) satisfying Hv=v.
We now set, §=sX™, where s= + 1, and evaluate the expression
| HQy, &)v|[* + || HQ(y, &)*»|* (5.11)

for v satisfying Hv=wv. The first term in (5.11) is equal to
> <7 ATy, &), 2" N Ty, &)v)
v, p
=2 (Z NIy, ©)0) £ 8/0Z", Tuly, &)v

=SIIT, &0l = 3 Tty 07 2/0Z, Ty, §)v T 0/025.

The second term in (5.11) is equal to

2 (T, §)vR8/0Z", Ty, §)v R o/0Z")
=2 Ty, ) Tuly, &) v R 8/0Z", v R o/0Z")
=Ty, v A 8/0Z", Tuly, &)v 1 3/0Z">
+ 3 ATy, &), Tuly, &1 A 0/0Z", v R 0/0Z",

where [T,(y, &), Tu(y, £)1=Ty, ) Tuly, &) — Tuly, &) To(y, £). We now find that (5.11) is
equal to

STy, ol + 2 ATy, &), Tuly, 80 R 8/0Z, v R 8/0Z">. (5.12)
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A straightforward computation shows that

[Ty, &), Tuly, &= — i 2L W, &) tua(, &)~ Laoly, 100y, 8},

which is the principal symbol of [8/0Z, 8/2Z"] at (y, £). It follows that [T,(y, X™),
Ty, X™]=c,, satisfies ¢,, =¢,. Without loss of generality the Hermitian matrix {c,,}
is in diagonal form so that ¢,,= 4, if =y and c,, =0 otherwise. We now have [T,,(y, £),
T.(y, £)]=sc,, if £=sX™ so that (5.12) becomes

STy, &)v|F+ 3 shllo K /02| (5.13)
Integrating by parts, we see that
Ty, & vl =1Toy, &)v|— <(Tuly, &), Tuly, Ov, v>=|T,(y, &) 0| — sd || o]I*

Thus (5.13) is equal to
STy, EyollF = s || Z Ao (5.14)

ProroSITION 5.5. (See J.J. Kohn [8].) Assume that for each y € w the eigenvalues
of the matriz ¢,,=[T,(y, X™), Ty, X™)] are either all strictly positive or all strictly negative.

Then the D,-problem for the operator (5.1) on w s solvable up to dimension m — 2.

Proof. If 1<j<m—2 and if v€CFR" ", (0}),) satisfies Hv=1v, then the estimates
m=1
loll* < 3 1127 Aol
m—1 _
lolf <e 2 |lvAa/ez|P
)

hold. Using either (5.13) or (5.14) according as s4, >0 or si,< 0, we see that ||v||* is ma-
jorized by a constant multiple of (5.11). The proposition now follows from Lemma 5.4
and Prop. 3.1.
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