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I. Introduction 

Suppose t h a t  [ is an  L ~ func t ion  on the torus T n = 21 • S a • • 21. Must the par t ia l  

sums of the  mul t ip le  Four ier  series of [ converge to / in  the  L v norm? For  the one-dimen-  

sional case, T = S 1, an  aff irmative answer has been know n  for m a n y  years. More speci- 

fically, suppose t h a t / E L ~ ( S  1) has the Four ier  expansion ~ ~oo _ _tk0 / ~ / _ k = _ ~ , k ~  , and  set/re(O)= 

~ - - m  ake tk~ T h e n / m  converges to / in  Lv(S1), as m-~ co - p r o v i d e d  1 < p  < + oo (see [14]). 

A whole slew of n-d imensional  analogues of this theorem suggest themselves. Here 

are two na tu r a l  conjectures. 

(I) Let  /EL~(T n) have the mul t ip le  Four ier  expansion 

/(01... 0n) = 
k l  . . . k n =  - Qo 

For  each positive integer  m, set 

/m(01... 0n) = 
Ikll~m. lk, l<.m ..... Ik~l<m 

Then /m-~ f  in  I 2 (Tn ) ,  as m-~ oo. 

6~k~ ... kn  e f (k l  01 + ... + knOn).  

a k l  ... kn  e t ( k l  O: + ... + ~,~ 0~) 

(1) This work was supported by the National Science Foundation. 
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(II) Let I and its multiple Fourier series be given as above. For each positive real 

number R, define 

/ . ( 0 1  . . .  0n) = ~ a~, . . .~,  e~(~, ~247247176  
Ik, I'+ I k,l'+ ...+ I~l'<R' 

Then ]~-~1 in/2(Tn),  as R-~ oo. 

Conjectures (I) and (II) turn out to be enormously different, similar though they 

seem at first glance. 

Elementary functional analysis reduces conjectures (I) and (II) to problems about 

"multiplier transformations". Every bounded real-valued function ~ on R n induces a bounded 

operator Te on L2(Rn), defined by the equation (Tj)" (x) =~0(x)/(x). (As always, " denotes 

the Fourier transform on Rn). Tr is called the multiplier transformation corresponding 

to ~. 

Conjecture (I) is equivalent to the assertion that  T,, is a bounded operator on/2(Rn), 

where ~1 denotes the characteristic function of the unit cube in R ". Similarly, conjecture 

(II) is equivalent to the assertion that  T,, is a bounded operator on/2(Rn),  where ~ 

denotes the characteristic function of the unit ball in R n. 

The operator T~I can be handled, simply by using the one-dimensional result of M. 

Riesz; and it is well known that  T,, is a bounded operator on /~ (R  n) for 1 <p  < + ~ .  This 

proves conjecture (I). 

On the other hand, the behavior of T~, is far more subtle, and something stronger 

than Riesz's theory is needed to deal with it. To see what makes the problem of Tv, so 

thorny, let us examine it a little more closely. T~, can be written as a convolution operator, 

Tr162 Grubby computation shows that  q~2(x) is essentially sin lxl[Ixl (n+~)/2 as 

I xl-+ + c~. Thus, the order of decrease of 1~2(x) l at infinity is far from sufficient to put 

in the class Ll(Rn). By way of contrast, SR<I~I<2R I~(Y)Idy=O(Rs) as R - ~ ,  so that  

~1 is "almost" L 1. 

Let us apply T~, to the simplest, most trivial kind of function--say, for instance, 

the function 
/o(x)={lo if I x l < l / 1 0  

if 1/10. 

If we merely had q~2(x)=l/]x](n+l)'2, then we would find that  ~e[o(x)~A/]x] Cn§ as 

I x l - ~  for some constant A, so that  ~2~r does not belong t o / 2 ,  unless p>2n/(n+l). 
But a moment's thought will convince the reader that  the factor sin Ix[ in q~2 produces no 

significant cancellation in S~, ~(x-Y)[o(Y)dY, so indeed, T~,]o~I2(R" ) if p~<2n](n+l).  

Since [0 belongs to all t h e / 2  classes, it  follows that  T** cannot be a bounded operator on 
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/2(R n) for l<~]o<~2n/(n+l). Furthermore, an "adjoint"  argument using the duality of 

L2-spaces shows that  if T~, is not bounded on/2(Rn),  then neither is it bounded o n / 7 '  (Rn), 

where ~o' is the exponent dual to p. Thus we have shown that  T ~  cannot be a bounded o2aeralor 

on IF( R n) excel~t /or 19 in the range 2n/ (n + 1) < l ~ < 2n/ (n - 1). 

The natural conjecture is tha t  T~. is bounded o n / 2 ( R  ~ for 2n/(n + 1 ) < p  < 2 n / ( n -  1). 

But  how can we go about proving this conjecture? The standard methods for producing 

bounded operators o n / 7 ,  singular integrals and Lit t lewood-Paley theory, break down 

completely here, because they do not  distinguish between different Io. In  other words, 

these techniques will only produce linear operators which are bounded on all t h e / 2  spaces 

(1 <Io < + o~), and therefore they cannot be used to study an operator which is only bounded 

for some i0 in (1, + oo). 

There is only one (previously) known method for handling operators which fail for 

some io - t h e  method of interpolation. We shall illustrate this method by  applying it  to our 

conjecture on T, ,  to produce a weak partial result. For 2>0 ,  consider the operator T~ 

defined by  T~/=(s in}x] / ]x l~)~e / .  Then, as we saw before, T~, is essentially T(~+,)t~. 

T Break up the operator T~ as ~ = ~.~=x Tax + T~0 where 

TAJ(x) = .12~,.<1vl <~'+, (sin Ivl/lyP) l(~ -v )~v  and ~ol(~) = j3~ ,.< (sin Ivl/Ivl*) 1(~ --V)dr. 

The operator T~0 is bounded on a l l / 7  spaces, (if 2 <n)  so we needn' t  won T about it. 

Each operator T ~  is a convolution with a n / 2  function of norm 2 r ~. Hence 

(A) IITMIII-<< 2 '~-~'~ II]11, for any ]e L' (Rn). 

On the other hand, an easy computation with the Plancherel formula shows that  

(B) IIT~k]]12 < 2 '(n+l)'~-~) ~ ]1]]]~ for any / e  L ~ (R~). 

Using the convexity theorem of M. Riesz, we can interpolate between the L 1 inequality 

(A), and the L 2 inequality (B), to obtain the inequality 

CO) IITMII,<2~("-~'~II]II ,, where b ( ~ ) = W - + ( ~ - l )  - , l < p < 2 .  

If  2>b(p),  then we can sum inequality (C) over all k, to obtain IITa/ii~<A~,,ll/ll~ 
for any /e/2(Rn).  In  other words, T ~ is a bounded opera$or on I_2(Rn), i] ~t > b(p). 

This simple theorem is the best result previously known about the operators T~, 

and possibly represents the ultimate achievement obtainable by  nothing more than some 
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clever decomposition T ~ = ~ = I  T~k. I t  is far from optimal. For suppose that  T(n+l)/2 is 

indeed bounded on L v for 2n/(n+ 1 )<p  <2n/(n-1). Then by applying the same "inter- 

polation" argument as before, we could deduce that  T~ is a bounded operator o n / 2 ,  

whenever ~ >~(p)=nip .  For every ~<n ,  this range of p is strictly larger than the range 

2>b(p).  So it is plausible that  /or no 2 < n ,  is the result "]]T~]IIv<~A~I]/IIp/or ~>b(p), 

p ~2" optimal. The optimal theorem should be "II T ~/II~<~A ~v[I/II~ /or ~ >n/p, p <~2". An 

argument like the one we gave for T(~+I)/~ shows that  T~ cannot be bounded on LV(R ~) 
for 2 <~n/p. 

Following a suggestion of E. M. Stein, we seek to understand the operators T~, by 

first studying some simpler operators, too singular to fall within the scope of the Calder6n- 

Zygmund inequality of [1], but  which can almost be handled by interpolation. 

We begin by considering a sublinear operator g~ on/2(R~),  one of the variants of the 

classical Lit t lewood-Paley g-function, g~(/) is defined in terms of a certain "quadratic 

integral" involving the gradient of the Poisson integral of the function ]. In  [8], Stein proved 

by interpolation, that  g~ is a bounded operator o n / 2 ( R  ~) for all p larger than a critical 

exponent, P0. As an application of that  theorem, we mention the following result on the 

"smoothness" of fractional integrals: 

The 2th fractional integral F,  of a function /E/2(R~), is so well-behaved, that  the 

function 

l I" ' 
Ok(l) (x)=-- lJr~ I ,1 dy) 

is finite almost everywhere, and even belongs to L~(Rn)--provided 0 < ~ < 1  and 

2n/(n+~) <p. See [9]. 

The purpose of section I I  of this paper is to show, without using interpolation, that  if 

/ belongs to the  critical space LV*(Rn), then g~(/) is finite almost everywhere. This fact con- 

tains the/2-boundedness of g~ for 2 ~>p >P0, and might be used to show that  D~(/) is finite 

almost everywhere f o r / E L  snl(n+a) (Rn). But in fact, the technique of section I I  also shows 

how to estimate D~(/), without ever mentioning g~. 

In  section I I I  we study certain hypersingular integrals, of which the operator 

~ e|ly 
T : I J_. dy 

is a typical example. T is not a Calder6n-Zygmund operator, since its convolution kernel 

oscillates far too violently near zero. An interpolation argument shows that  T is a bounded 

operator o n / 2 ( R  1) for 1 <p  < + oo, but  is not precise enough to say anything about T/ 
for /ELl(R1). Our theorem 2 generalizes the CalderSn-Zygmund inequality to cover T 
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and similar operators, and implies in particular that  T] is finite almost everywhere if 

] ELl(R1). 

Finally, in section IV, we return to the question of the operators Tx, and apply the 

techniques of sections II  and I I I  to prove a partial result more powerful than any now 

known from interpolation. For certain ~ <n,  we are actually able to prove the optimal 

estimate for T~, namely II A II/II  for < p  <<. 2. 

II.  Air  on  the g-funct ion 

The first operator which we study is the g~-function, a certain subhnear operation 

which arises in Litt lewood-Paley theory (see [10]). For /E/2(R"),  let u(x, t) denote the Pois- 

son integral o f / ,  defined on R~ +1 = R" • (0, co). Then for any number )t > 1, the g~-function 

is a real-valued function on R ~ defined by the equation 

t t)"~tl_,,Vu(y, t)12dydt)'" 
(Vu denotes the  gradient  of u). 

A routine computation with the Plancherel formula shows that  g~ is (up to a constant 

factor) an isometry on L2(Rn). With much greater difficulty, it can be proved that  for 

any p ( l < p <  A-co), ]]g~(f)ll~ and H]Hv are equivalent norms. More precisely, suppose 

l < p < + ~ o ,  and 2>2]p. Then for some constants A and A', Ail/II <IIg (/)II <-A'II/II  
(see [8]). In  a moment, we shall see why the restriction 2>2/p is needed. 

Littlewood and Paley introduced 9~ as a technical tool to prove the/2-boundedness  

of various hnear operators. In  order to show that  T is bounded o n / 2 ,  one need only prove 

that  IIgIT/)ll -< llgL (/111 , (g(/I is an auxiliary function, defined in much the same way as 

9~) which is often an easy task, even when the operator T is rather subtle and delicate (see 

[10] again). 

At any rate, we have a family of operators {g~}. Each g~ is bounded on s o m e / 2 -  

spaces, but  not all. We seek to understand why. Two independent observations show that  

g~ cannot be bounded on/2 ' (R =) if p <2/~t. 

(~) Let  Q be the cylinder {(y, t)G R~+I [ ly I < 1 and 1 < t<  2). Then 

t n,~ 2 

But  the right-hand side of this inequality simplifies enormously. For  t ~ 1; and if Ix I> 10, 

then I -ul when (y, t)e Q. Therefore, we have 
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1 ~ O 

for all x of absolute value greater than 10. The constant 

is non-zero unless / = 0 .  Thus, in general, there is a constant C > 0  such that  g~([)(x)>~ 

C/Ix I n~'~ for Ix I > 10. If  • ~ 2//), then C/Ix In~,2 decreases so slowly at intinity, that  g~(/) 

could never belong to /2(R") .  

There is a deeper objection, which hints at  the inner workings of g~. 

(fl) Let Q denote the cylinder {(y, t)eR~+l[ ]y[ < l ,  [t[ <2}. Then 

, o, 
i 

if [x l>10.  I t  is not difficult to nnd functions te~(Rn),  /~<2/,~,forwhieh le t  n~+l-n 

IOu(v, t)/OtlUdvdt diverges. (In fact, we can take / (x)= Ixl -"",~ if Ixl <l,](x)=Oother- 
~se.) Thus g~(l)(~)= + ~  for Ix[ >10.  

On the other hand, suppose p ~> 2/~. Then 

I ~ J R~• I ~ 

by the Plancherel theorem (the Fourier transform ^ is taken in the y variable), 

(this follows from doing the t-integration f ~ s t )  = IIJ=/[ll, again by the Planeherel theorem, 

where J~ denotes the Bessel potential of appropriate order. By  the theory of fractional 

integrals (see [6], [11]) IlJ~/ll~ <A [[/llg if p >~2/,~ and p > 1. 

Thus, we have shown that  if p 1> 2/2, then 

r (y, t) dy dt < a II/ll~, 

so that observation (/~) poses no objection to the IP-boundedness of g~ i f  p > 2/)l. 

We shall use the information and viewpoints provided by observations (~) and (fl), 

to prove that q~' is bounded on I~(R ~) for p>2/;~, without using interpo]ation or special 
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tricks. In  fact, we shall prove a stronger theorem, valid for I0 =2/2. That  there should be 

a positive result for 19=2/2 seems reasonable, since objection (fl) does not apply, and ob- 

servation (a) suggests that  although g~(/) does not belong to L~/a(R~), it almost does. 

THV.OREM 1. For 1 < p < 2 and 2 = 2//9, the o/gerator g~ has weak-ty/ge (/9, P). In  other 

words, I {x e.R,,I g,t (l) > < lllll, ,/or I e IF (Rn). 

In  Theorem 1, A is some positive "constant ,"  independent of /; and I EI denotes the 

Lebesgue measure of a set E c  R n. 

The/2-boundedness  of g~ for 2>2//9,/9 ~<2 follows from Theorem 1, by the Marcin- 

kiewiez interpolation theorem. 

One of the basic ideas of the proof of Theorem 1 is a carry-over from Calder6n-Zygmund 

theory. The idea is basically tha t  R n can be divided into two par t s - -a  set f~ of small measure, 

on which the function / is large; and the rest of the world, R ' - f ~ ,  on which / is small. 

Since f~ is a small set, we can suppose that  f~ is written as a union of (essentially) disjoint 

cubes with small total volume. (A "cube" always means '% cube with sides parallel to the 

coordinate axes", and two cubes are said to be "disjoint" if they have disjoint interiors.) 

The following lemma not only makes this idea precise, but  also shows that  the cubes can 

be picked to satisfy very strong conditions. 

DECO~IPOSITION LEMMA. Let ] be an L ~ function on R", and let a > 0  be given. There 

is a collection {Ij} o//gairwise disjoint cubes, with the/oUowing/gro/gerties. 

The It's have small total volume, i.e. ~t Iz, I < A II111 . (1) 

I/(x)l  for = U , Z , .  (2) 

1 
f I](y)lndy<A~ ~,/or any one o] the cubes {Ij}. (3) 

II, I ,, 

For any cube Ij  o/the collection, let l j  be a cube with the same center as Ij,  but with twice 

as large a side. Then no/goint o / R  n lies in more than N o/the cubes l j. We say that the l j (4) 

have "bounded overla/gs". 

The numbers h r and A depend only on the dimension n, and not  on ] or/9. Sketch of 

Proof of the Decomposition Lemma: The function I](x)I T belongs to/_~(R ~) and has norm 

[I]11~" Consider ]*, the Hardy-Lit t lewood maximal function of [](x) [~, given by 
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/*(x)=sup 1 f )  �9 ~i ~1 t(y)l"dy. 

I some cube. 

By the Hardy-Lit t lewood maximal theorem, the open set ~ = {xE R"l/*(x)>a ,} has 

measure at most (A/a ~) I]/[[~" (See [14], [10].) 

The proof of the Whitney extension theorem (see [10]) includes a method which breaks 

down any open set U as a union of disjoint cubes, in such a way that  the diameter of any 

cube is comparable to its distance from the complement of U. Applying this method to 

~ ,  we obtain a decomposition f~ = U j Ij,  where the I j  are pairwise disjoint cubes, satisfying 

10.diam (I j )<distance (Ij, Rn-~2)~<20.diam (Is). 

We shall prove that  the collection {Ij} satisfies conditions (1) through (4). Condition 

(1) is immediate, since [~ [ ~< (A/a T) []/l[•" Condition (2) is no harder, since x e R n - fs implies 

/*(x) ~< a p, which implies that  [/(x) [ ~< a almost everywhere outside of ~2. To prove condition 

(3), take a cube l j  from the collection, and let 1~ be the cube concentric with ls, but  with 

diameter 21n times as large. By construction, I~' contains a point x E R ~ - f2 ,  i.e. a point x 

where 

1 f) Pdy sup /(y)[ <~ a p. 

I a n y  cube 

I t  follows that  (1/I/*1) S1?[/(y)l~'dy<~ a ~, and since 11~1 = (21 n)" Ix, l, (3) follows, with A = 

(21 n) ~. 

Condition (4) follows from the geometry of the situation. For, if x Eli, then it follows 

that  9. diam (Ij) ~< distance (x, R ~ - D) ~< 21. diam (Ij). Therefore, the cube I s has diameter 

at least 1/21 distance (x, R ~ - D ) = d / 2 1  and is contained in a ball centered about x, of 

radius �89 distance (x, Rn-D)=d/2.  Since at most N pairwise disjoint cubes of diameter 

>d/21 can be packed into a ball of radius d/2, condition (4) holds. Q.e.d. 

Proo/ o/ Theorem 1. L e t / E L ~ ( R  n) and a >0  be given. We have to show that  

with A independent of / and a - - fo r  this is equivalent to the conclusion of Theorem 1. 

Apply the decomposition lemma to / and a, to obtain a collection {ls} of cubes, satis- 

fying conditions (1) through (4) above. Set ~ =  I.Jjlj. We shall use the cubes l j  to decom- 

pose the function / into two parts, as follows. Define a funct ion/ '  on R ~ by saying that  
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1' (x) = ~ /(y) dy if xE I~ 

[/(x) if x r ~ .  

17 

S e t t i n g / " = / - / ' ,  we obtain a decomposition / = / ' + / "  with the following properties. 

I1'(~)1 <A~ almost everywhere, a n d  IIr II, ~ I1111~, (5) 

/" is supported on ~ .  (6) 

l f,, [i,[ ll"(Y)l~dy<<.Aa ~ for each c u b e / j  from the collection. (7) 

fljl" = 0 for each cube from the collection. (y) dy i ,  (s) 

Proper ty  (5) clearly implies tha t  [[1']]~ ~< A ~2-~[[1][ ~. As we remarked earlier, g~ is a bounded 

operator on L=(Rn), so tha t  by  the Chebyshev inequality, 

I { ~  Rnl g~(/')(~)> ~}1-< ~ llfll~ -< ~ (A~-~IIr = A II/llg. 

On the other hand, g~'(/) < g~(/') + g~'(/") which implies that I{~ e R~l g~'(l) (~) > (A + ~) ~}1 
< I{xeR~lg%(/') (x) > ~}l + I{xe R~lg%(/") (x)>A~}I < (A/~)II/llg + I{xe R~I g%(/*) (x)> 
A~} ], by  what  we have just proved. So in order to prove Theorem 1, it will be enough 

to prove tha t  

l{xe Rnlg~(/') (x) >A~}] .<<A ll/llg. (9) 

This inequality is much easier to get a hold on than  Theorem 1 itself, because/"  lives on a 

small set, and has various other good properties. 

In  order to obscure things further, we introduce some notation. I f  x E R n and I s is a 

cube from our collection, then x ~ I j  means tha t  x belongs to a cube Is (also from the col- 

lection), which touches or coincides with Ij.  Roughly speaking, x ~ I t means tha t  x is not 

much further away from I j  than  diam (Ij). Note tha t  for fixed x, x ~  l j ,  holds for at  most  

N Whitney cubes; and tha t  if x r  then x,~Ij never holds. Finally, l e t / j= /" 'Zz~ where 

X~ always denotes the characteristic function of the set E, and let hi(x, t) denote the gradient 

of the Poisson integral o f / j .  

Now we can give the basic decomposition of g~. By definition, 

g~(/") (x)= ~++~ Ix-y[ +t , 

2 -- 702909 AcSa mathematica 124. I m p r i m 6  le 1 Avr i l  1970 
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Therefore g~ (!') (x) ~ g~ (! ) (x)+  g~(/")(x), 

where 

and 
g~(/)  (~)= V ~ yi +t  ~~~ 

So to prove inequality (9), and thus to prove Theorem l, it  will be enough to prove 

]{xe R"IgI(V)(x) >A~}I <A ll/ll  (10) 

and i{xe R~lg~(r)(x)>A~}I II/II - 

Of these two inequalities, (1O) is relatively easy, while (11) is deeper, and uses the 

relation p =2/~t. In order not to spoil the plot, we prove (1O) first. 

To do so, wee need a trivial inequality for ~ + ~j hj (y, t). Specifically, I ~-y § z~ hi(y, t) l 
Aa/t. For if R denotes the convolution kernel for the gradient of the Poisson integral, then 

by inequality (7). On the other hand, anyone can verify that  supz, ~j ] R(y - z, t) I I I, i < A 

~j lR(y - z ,  t) ldz for any cube Ij satisfying y + Ij, and the "constant"  A is independent of t. 

Therefore, 

I ~ h,(Y,t)l<A ~. ~ IR(Y-Z, Oldz<'<A~fR IR(Y-Z, OI dz<A~ 
u & z j  u ~ , l l  j z j  . t 

(since the cubes I, are pairwise disjoint). Thus [~y+ljh,(y, t)[ < Aa/t. 
Putting our estimate into the definition of g~, we obtain 

I ffl(I")(x)[2<A~ ~+1 I x - y l + t /  t-"l~+1j ~ hj(Y't)ldydt-~A~Y(x)" 

So to prove (10), we need only show that  I(x e n"[ Y(x) > ~}1 4 (A/r162 v) II/[[~ which in turn 

follows from the Chebyshev inequality and the estimate (as yet  unproved) 
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f .  ~(~) d~ < A~ ~-, II/11~. (12) 

So (10) holds, provided (12) holds. 

To prove (12), we compute ~R, ~J(x)dx explicitly, using the definition of Y. In fact 

;+' - I '~ -y l  + t  .,,. , ,  : . +  . . i ,  

A y~ ~ Ih,(y, Oldydt=a~ y Ih,(y,t)ldydt. (13) 
~ + l u +  0 t 

(y, t)ER~. +1 
v+1~ 

Consider ~ I ht (y, t) ldy dr, the jth summand in the right-hand side of (13). Written 
(y, t )e l~ +1 

out in full, the summand is ~ I SIjR(y -z, t) b(z)dz I dydt. Since I1j/r =0  (see (S)). 
(y, t)eRn+ +1 

u+li 

f lhj(y,t)[dydt=f Ifo(R(Y-Z,t)-R(Y-zj, t))]j(z)dzldydt 
(~, t)~R~+ + I r t)~n~+ + ~ 

(where zj denotes the center of the cube I~) 

<~ f f~j IR(y-z't)-R(y-zj't)l[]j(z)ldzdydt 
(y, t) ER~b +1 

u '4.'0 

= L [ f [R(Y-z,t)-R(Y-z,,t)ldydt] l]t(z)ldz<~A~l],(z)l dz, 
(u. t)eR~_ +1 

u@r~ 

for the term in brackets is bounded by a constant A which depends only on the dimen- 

sion n. Thus, the j th summand in (13) is at most A I , , I / , (~) I~ ,  so that  Sn,:l(x)dx<~ 
Y, Ab, I1" (~)1 d~.< A Y, ~ I I~1 (by (7)), = A~t l a l  < A~'-" II/11~. by (1). This completes the 

proof of (12). Since we have reduced inequality (10) to inequality (12), we have also 

proved (10). 
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Where do we stand? We began by reducing Theorem 1 to the proof of two inequalities, 

(10) and (11). By a laborious but conceptually simple argument we proved inequality (10), 

without resorting to the critical equation p = 2 / L  To complete the proof of Theorem 1, 

it remains to prove inequality (11). Any proof of (l l)  will have to use p =2]2. The argument 

below is neat, in that  it  not only proves (11), but also shows that  the two objections (~) 

and (fl) mentioned above are exactly the reasons why Ln-boundedness of g*: fails for p < 2/~. 

Recall tha t  inequality (11) states that  I{xe Rnlg~([ ") (x) >A~}I ~< (A/or ~) H/H~. Since 

I~ I  <<- A] ~ ]]/I]~, it  will be enough to prove that  

Now if x E R n - FZ, then C: Ix - y, I ~< ] x - y] ~< C a Ix - y, I where y, denotes the center 

of l j  and y is any point in Ij. Therefore, for x e R" - O ,  

f a  ( t ) '~t:_,, ~ hl(y,t)]~dydt (15) 
(z)) = I x - y l  + t x(O.oo) ~ N h  

(since ~y~ zz hi (y, t) is an empty sum if y ~ ~) 

I -yl+t 

t f,,f:t.x+:_.[ ~ hz(y,t)[2dydt" "<A* 
We shall study the double integral in the far right-hand side of inequality (15). 

Since the relation y-~ Iz depends only on which cube y is located in, we can rest assured 

that  t~~~hz(y ,  t)l ~ = 15~~~,hz(Y, t)l" for ye  Ij. On the other hand, ~j~~hl(y ,  t) is just 

the gradient of the Poisson integral of the function fl = ~yj~~/z. So 

t"~+l-"lR~fl(y,t)[ 'dydt<AlM]~ 

if )i = 2/to--we verified the last inequality of the chain, during the discussion of observa- 

tion (fi), above. But []/Jll~45yj~,II/ilI~<<.Azt~y~~izlIzl 1'~ (by (3))<~Ao~]Ij111p, because of 

the geometry of the cubes. Therefore, 

f,, Z 
�9 y ~ I I  

Putting this inequality into (15), we obtain 
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1 (g~(/") (x))2<<.A:c2~j {x_y~p a [Ij{2'~-~Aa~y(x). (16) 

So in order to complete the proof of inequality (14), and with it, that  of Theorem 1, we 

have only to prove that  

y(x)> {111] . (17) 

This last inequality is a standard lemma on the "Marcinkiewicz integral", and is proved 

by the following simple argument. 

y(z) d x : 5  
j J J n n - ~  x - - y y  n ~ ' ~ z ' ' l - j i  " ' In;t . -a j Je~-~ Ix-yfl 

= A ~ ]i,{2/,+z-a = A ~  {I,I (if p= ~)<~ A [[,[{~ 

by inequality (1). (17) now follows from the Chebyshev inequality. The proof of Theorem 

1 is complete. Q.e.d. 

Note again, that  the two applications we made of p=2/2 ,  reflect observations (~) 

and (fl). 

The method of proof of Theorem 1 also establishes a weaker result on the behavior 

of fractional integrals. In fact, suppose that  ]EI2(R ~) (1 <p  <2), and that  0 <~ < 1. A 

theorem of Stein [9] asserts that  the fractional integral I~(/) satisfies the "smoothness" 

condition tha t  

Da(/) (x)= (f~,)l~(/) (x)-I~(/) (x-Y)[2 dy) + 

belongs to/2(Rn),  provided that  2n/(n§ This result is a consequence of t h e / 2  

inequalities for the g$-function, which Stein proved in [8]. The connection between g~ 

and # ~ is that  if 2/fl > 2n/(n + 2)t), there is a pointwise inequality D ~ (/) (x) ~< Cg~ (/) (x) for x e R ~. 

T~EORE~ 1': .For 2n/(n § 22)=p, 0<) .<1 ,  1 < p < 2 ,  the operator D~. has weak-type 
(p, p). 

HI. Weakly strongly singular integrals 

We turn now to the study of linear operators which are bounded on some, but not all, 

of the L p spaces. Our first example of such an operator is the "multiplier" transformation 

TaB, defined by the equation 

( x ) = ~  O(x) f(x), if / e  C~(R"). (18) (T~I) ^ 
i x v  
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Here 0 < a < l ,  f l>0;  and 0 is a C ~ function on R ' ,  which vanishes near zero, and equals 1 

outside a bounded set. For  a discussion of T.p, see Hirschmann [4], Wainger [12], and 

Stein [7]. These papers demonstrate tha t  the operator Tap is bounded on Lr(R ~) when 

_ - - - < - _ _ - - : - - : - _ _  w h e r e  --= 
' 1 - a  

The proof of this result is an "interpolation" argument  not much different from the one 

le*," )^ 
sketched in Section I above - - the  interpolation is possible because ~ Ixl 0 (x) , the con- 

volution kernel for Ta~, can be computed roughly. I t  turns out tha t  essentially, 

(e tl~l . ) " e'l~l" 

i l O(x) (y): 
where a' = a / ( a -  1) and ~ is as above. Wainger shows tha t  Ta~ is unbounded o n / P  if 

~ - ~  ~ [ ~ ] .  In  [51, [71, and elsewhere, the question has been has been raised, 

whether Tar is bounded on the critical L ~ space, L ~~ (Rn). But  nothing at  all was known 

about  the behavior of Tar on /2" .  

THEOREm2.  I ] O < a < l ,  fl>O, and 1 1 ~[n l2+~]  p 2 -- - [-~-+-~-]' then Ta~ extends to a bound- 

ed linear operator /rom I2'(R n) i nk  the Lorentz space L2,.~.(Rn), where p' is the exponent 

dual to p. 

For  a discussion of Lorentz spaces, see [6]. 

Theorem 2 is stronger than  a weak-type inequality, but  not as strong as an inequality 

To prove Theorem 2, we interpolate between the two special cases p = 1 and p = 2. 

The simple-minded interpolation technique sketched in the introduction is inadequate, 

but  we can use more sophisticated results related to the Riesz-Thorin convexity theorem. 

The exact results can be found in [2]. Here, we content ourselves with stating tha t  Theorem 

2 is essentially a consequence of the two special cases p = 1 and p = 2. 

Of course, Theorem 2 is a triviality for p = 2. We are thus left with the task of proving 

tha t  for fl =hal2,  the operator Tap has weak type (1, 1). More precisely, we have to prove 

tha t  for f l=na/2 ,  the operator Tap, defined on C ~ functions of compact support, extends 

to an operator of weak type (1, 1). This s ta tement  is a special case of the following generali- 

zation of the Calder6n-Zygmund inequality. 
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THEOREM 2': Let K be a temperate distribution on R n, with compact support; and let 

0 < 0 < 1  be given. Suppose that K is equal to a locally integrable /unction away/rom zero, 

that the Fourier trans/orm I~ is a/unction, and that 

(i) IRCx)l<<.ACl+lxl)-(ne~) /or x~R" 

fN>~lylX_oIK(x)-K(x-y)ldx<~A /or all yER'(]yl<~ 1). (ii) 

Then the convolution operator T:/-~K-x-/, defined for /EC~(R"), satisfies the a priori 

inequality I(xER~]lT/(x) l >~}] < (A'/~)II/II 1 for any /EC~(R ' ) .  Moreover, the "constant" 

A' depends only on A, n, 0, and the diameter of the support of K. 

Obviously, then, T extends to an operator which has weak-type (1, 1) and is therefore 

bounded on/2~(Rn), 1 <p  < c~. A typical concrete application of Theorem 2' is that  the 

convolution operator/4/-)e (et/Z/x), defined for / E C~ (R1), has weak-type (1, l). 

Proo/ el Theorem 2'. 

We shall prove the theorem for K ELI(R~), to avoid trivial technical problems. Since 

the constant A' in the conclusion of the theorem is independent of Ilglll, a routine limiting 

argument will allow us to conclude that  Theorem 2' is valid for a general K. 

(Indeed, we need only prove Theorem 2' with K replaced by K~-~e, where ~0e(x)= 

e-~q~(x/e) and ~ is a Cff function with integral 1. (g-)ecf~)^(x)=l~(x)~(x)=O(Ixl -N) as 

I x l - ~ ,  for any N; so K~-~p~ belongs to C~(R~). We have only to check that  conditions 

(i) and (ii) hold uniformly in e. Condition (i) is obvious. To prove condition (ii), we consider 

t w o  c a s e s .  

(a) Suppose ly]>10e.  Then 

Jl~ >3 ~11-0 

by condition (ii) on K. 

(b) Suppose lYl ~< 10e. Then 

fl,] >,1_ a I K-x- ~0~(x ) -K~e~o~(x -Y)I dx<~A 

by the argument of (a), so we need only show that  
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fl,l<,~_olK ~%(x  ) - y ) [  dx<.A'. ~ K ~ ~ ~ ~ 

Let  F(x)--K-)eqJ,(x)-K-)erf,(x-y). Easy computation shows tha t  

(1 - ee't~Y), so that  

P (x) = r  (:~) _~ (:~) 

llFIh < l l r  sup I-,r (~ - ~"' : ' )  I < al lv ,  ll. l y I "''" ( b y  ( i ) )  = A '  e -<"'~> ly I ~~ 
XEx~n 

By Hhlder's inequality, 

~:i < ~1-. IF(~)I dx < IIFII: (~1-.).,~ ~< A' ~-<"'~> ly I "''" w :-"~ < A' 

since lyl<10e. This completes the proof of condition (i i)for K~e~0s. We can assume 

that  diam (supp K ) <  1. 

Very well, let / eLI(R n) and ~ > 0 be given. We want to show that  l {x e R~[ Ig~/(x)  l > 

a'~<) I < (A'/~)IIIII1. 
Apply the decomposition lemma with p = 1, to / and a, to obtain cubes {Is} ( U s I j  = ~),  

satisfying (1) through (4) above. Using the cubes, we can split [ into two p a r t s , / = [ '  +/",  

simply by setting /'=/ZR,,-n and /"=/ga. /"=Z/s ,  where ]s=/Zsj. Exact ly  as in the 

proof of Theorem 1, /'eL2(R"), etc., so that  [{xeRnl IK-)e/'(x)l >e}l  <~(A'IoOll/Hr So to 

prove Theorem 2', we need only show that  I{xe R~[I g-)e/"(x)l>A'a}l<~ (A'loOl]/ll r Since 

I~1~< (A'/a)ll/l[1, it is also enough to show that  

I{ E  --al IK~ I " (~ ) I  < Illlh. (19) 

We shall return to (19) after a brief digression. 

Let  ~ be a C ~ function on R n, equal to zero outside the unit ball, and satisfying the 

conditions ~R~ ~(y) dy = 1, and T(y) >~ 0 for all y E R n. For any e > 0, set ~(y; e) = e-ncf(y/8); 
and set %(y) =el(y; (diam (ls))ln-o). Thus %(y) is a Coo function with integral 1 and "thick- 

ness" (diam (I1))1/(1-a)). 

Now define fs=/s-)eqOs and /=~am(sp<l /s .  We are going to show that  for xeRn-~, 
K-)e/"(x) is approximately equal to K~-[. 

First of all, note that  if x E R n - ~ ,  then K--)e/s(x)=O when diam (Is)~>l, for then 

K ~ / s  will live inside a cube concentric with I s, and with side twice that  of I s. So, for 

x E R n - ~ ,  we have K-)e/"(x)=~s~K-)e/s(x), where for convenience we have set J= 
{jldiam (Is)<1}. 
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N o w  we can write 

K +e t" (x) - K +e ](x) = ~.. (K-)e  l j (x )  - K-)+ ] j (x) )  = ~ ( K  ++ l j (x )  - K-)e  ~j-)e / j (x ) )  (20) 
J~J IcY 

for x E R ~ - ~ .  Bu t  for ?'E J .  

f~._ lK~l~(~)-K~l~(x)ld~< f~._~f, IK(~-y)-K~(~ Y)III~(y)Idyd~ 

= L [f,._olK(x-Y)- K ~(~-Y)I d~] II,(Y)I dy 

(since we can make the change of var iable z = x - y, and then note tha t  I z l > d iam ( I j )  i f  

e R~ - ~ and y e 1~) < A'  SI, Ih(y) l dy, since 

f ~z~>d~am(1p ]K(z) - K-)e cPj(z) ] dz = f ~>~am(1p ] K (z) - f ~y~ <~'n(1j)~-~) cPj(y) K(z - y) dy dz 

= f ,z,>~a,~(,j) f l~l<~am(ij)il(i-o) ~l(Y) [K(z) - K(z -Y) ]dy l dz 

< f ,~l<~a~(ij)ll(~-o) ~J(Y) l f H>~a~(i~)lK(z) -K(z-Y)ldz] dY 

<~ A' f 11(1 o) q~ (y) dy = A'. 
JlY] < diam (I i) - 

Summariz ing the last sentence, we have Inn- a [ K ~- 1, (x) - K ~+ ~0j -~ 1, (x) l dx <~ A'" 
.fI+]/j(Y)l dy for jeJ. I f  we sum this inequal i ty  over all jeJ, and look at  equat ion (20), 

we see at  once t h a t  

fR._ l K ~ 1" (x)- K ~/(x)l d~<A ~ f,, II,(Y)I dy < A'  l l l lb 

So I{xeR~-~ I ]K+e/"(x)-K++hx.)l >~}]  <(A'/~)II/II1, by  the Chebyshev inequality.  

Therefore, to  prove (19), and with it Theorem 2', we have only to prove tha t  

[ { x e R = - ~ ]  lg%[(x)] > A ' a } t  <(A'I~)II/][. (21) 

The idea behind the proof of (21) is perfectly simple. We are going to  show tha t  

[[gn~ , where jno12 denotes the Bessel potential  of order nO/2. I f  this in- 
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equality can be proved, then by (i), IIK~tll~ = II (K ++ j-ha,2)~_ (j~0/~ ~_[)ll~ <A~ll Jn~ ~[ll~ < 

A'~ll/ll, and (21) follows, by the Chebyshev inequality. 
So Theorem 2' reduces to the statement 

IIJn~ <A'~[I/I[,. (22) 

To prove (22), it will be convenient to use the notation " x ~  I j" ,  which means the 

same thing as it did in the proof of Theorem 1. 

Now 

jno12 ->e ](x) = ~ jno,~ _~ ]j (x) = ~, jno,~ ->e qg, ~ l~ (x) 
t e J  t E I  

= ~ Jn~ ~, J '~~ 
x ~  l l .JeJ  x.,~ l t . je .r  

First we shall show that  IIF=U~ ~< A' ~ ]l/l[,. Obviously, 

n x@l t , l e . v  n x,,~l~,Je.r 

JR te3" l~.J .~EJ" 

(since IIJ ~~ * ~11, < A' for any i). On the other hand, ]]F~I ]~ < d'  a. To see this, note that  
if x + I~, then 

~,) ~/,(x) I < f l(J ~~ ~ ~,) (x - y) l I/, (y)Idy < [sup [J na,~ ~ ~ , ( x -  y)l I Ij ~< 
y e I t  

1 

(since x + I~ implies tha t  j n 0 ~  ~ ( x -  y) is roughly constant over the cube I~) 

so that  by (3), I(Jn~176 

Hence, If~(x)l~< ~ [jno~s-~/~(x)I<<.A'~ :~ (Jn~ 
x,'~ l t . l e J  x,'~ l~ . leJ  

<A'~2J"~176 "~A :lIJ:~ II %+~:11 <A ~, 

since the supports of the ~ Z~ have bounded overlaps. 
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So we have proved that IIF~III< A'll/Ih and that I1~11~ < A' ~. (Note the strong re- 

semblance between the proof that  []F~I[~ -< ' -~A ~, and the proof that  I~+zjhj(y, t) l <A~/t, 
which occurred in the argument proving Theorem 1). I t  follows that  

I1~11~ = f~ IF~(~)I ~ d~ < IIP~II= f~ I F~(~) I d~ = IIF~II~ I IF& < A'~ IlYlh. 

I t  remains only to prove that  

IIF, II~-~A ~llflh, 

for then equation (22) is proved, and with it, Theorem 2'. Set 

(23) 

I JnOl2-Yr~t-~ /t(x), if x~ Ij. 
F{ = [0 otherwise 

Then F 1 = ZjejF~, and for each x E R n there are at most N values of i for which F~(x)~ 0 
(by (4)). Hence IF1 (x)I ~ ~< N~,I  ~i (~)5 so IIFIlI~ < ,v~,ll~ill~. on the other hand, 

IIF'~II~: f~~ ii (Jn"~ ~ m,)~ 1,(~)I ~ d~ ~< f~l  (;~~ ~ ~,)~ 1,(~)I S d~ 

< II z~''~ ~ ~,11~ II/,lff < ~ II/Aff 

(by an elementary computation) 

~/~ (A'a~l/jl ~) (by (3))=A'~II~I. 

So IIFIII~<NZj~,A'~ ~lx,I <A '~ ln l  <A~ll/lh by 0). Thus, inequality (23), to which 
we reduced the proof of Theorem 2', holds. Q.e.d. 

Under reasonable conditions on K, we can sharpen Theorem 2' by showing that  the 

"maximal operator" Ml(x)=sup~>o[Sl~l>6K(y)/(x-y)dy [ has weak-type (1, 1). This is 

the case when, say, [K(x)[ ~<l/[x[ and (K-)eqJ~-K~)~/ is dominated uniformly by the 

maximal function of /. (Here, q~(x)=e-nq~(x/e) as usual, and K~(x)=g(x) if Ix[ >e I-0, 

K~(x) =0 otherwise.) The sharper estimates prove, for instance, that  the operator 

o < . < a  j a>l~i>6--y - / ( x - y )  d y  ' 

defined for/ELl(R1), has weak-type (1, 1), and is bounded o n / 2  (1 < p <  oo). 
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I V .  R e s u l t s  o n  the operators T x 

In  this section, we apply the methods developed in sections I I  and III ,  to the study 

of the operators Tx defined in section I. Our result is the following. 

TI~EOREM 3. Let 1 <p<4n/(3n+l) be given. I[ p>n/,t, then T~ is a bounded linear 

operator on L~( R~). 

In other words, the conjecture stated at the end of section I is true if p <4n/(3n + 1). 

As we have just said, the proof uses the same basic ideas as the arguments in sections 

I I  and I IL  This time, however, instead of the standard inequalities for fractional integrals, 

we make use of a remarkable observation by  E. M. Stein, namely: 

LEMMA. Let/6C~'(Rn)(n>l), and let 1 <p<4n/(3n + l) be given. Then we have an a 

priori inequality 

where dO denotes hypersur/ace measure on the unit sphere S "-1. 

This lemma allows us to define the restriction f ls,-~ for /6L'(R~), 1 < p  < 4n/(3n + 1), 

even though S n-1 has measure zero in R ~. 

Proo[ o/ the lemma. By the Fourier inversion formula, SS,-ll[(o) lidO=IR,[fdO= 

[-)e[~edO(O). But d~0 is a function on R ~, which belongs to Lq(R ~) for all q>2n/(n-1).  (To 

see this, we write d0(x)=Ss,-le~~ el~ltd~l(t), where t-l(t) denotes the hypersur- 

face area of the set {OeS"-llx/l~ 1.0-<t}. The integral can be evaluated explicitly in 

terms of Bessel functions by formula (3) p. 48 of [13], and the approximate size of the Bessel 

functions is given in formula (1) on p. 199 of [13]. Thus, Id0(x) I can be computed approxi- 

mately.) Therefore, S~.-llf(o) 12dO = ( / * l ) * & ( 0 )  ~< li/*/llo. II e?llo ~<A~III*/II~., where q' is 

the exponent dual to q. In  other words, Ss.-~lf(O)l~dO<<-A~[[/./ll~ for any r<2n/(n+l). 

By Young's theorem on convolutions, II/./ll~<ll/llN (where 1/r=2/p-1, so that  if 

p<4n/(3n + l) then r<2n/(n+ l). Hence Ss,-,i/(O)]~dO<~Aa]]/I] ~ for l <<-p<4n/(3n + l). 

Q.e.d. 

This lemma is not the best possible such result, a point to which we shall return later. 

Proo/o/ Theorem 3. By the Marcinkiewicz interpolation theorem, it will be enough 

to prove that  under the stated conditions on t and p, Tx has weak-type (p, p). So let 

/fi/2(Rn), and let a > 0  be given. We want to show that  [(xeRn[ IT~/(~)I>A~}I<-< 
(A/o~)ll/]l~. We can suppose that  / is positive. 
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Because we are proving an inequality for p > n/2 rather  than  a sharp result for p = n/2, 
we shall encounter a few minor technical nuisances which did not occur before. To avoid 

trouble, it is convenient to arrange things so tha t  when we apply the decomposition lemma, 

we will not have to worry about the small cubes. Therefore, we proceed as follows. 

Let  ~ be a C ~ function of rapid decrease on R ~. We are going to prove a weak-type 

inequality for T ~ ( ~ - / )  instead of for T~.]. The advantage is tha t  ~0~/ is  much smoother 

than  /, so tha t  local problems (which would arise from small cubes) disappear. We can 

deduce the inequality for T~/from tha t  for T~(~ ~e/), since by  using a suitable ~, we obtain 

IIT~/- T~ (~./)l[~ < A[I/[[~. (24) 

To see this inequality, we write (T~ / -T~(q~ / ) )  ^ (x)=m~(x)f(x)-m~(x)~(x)f(x) = 

Imp(x)(1-~(x))] ' t (x)  where m~ is the multiplier corresponding to T~. Since m~ has no 

singularities except at  the sphere I xl =1 ,  inequality (24) follows for all p (1 ~<p ~< + ~ )  

if 1 - ~ ( x )  vanishes to high enough order at  Ixl = 1. 

So to prove our theorem, we need only show tha t  

Now we have a pointwise inequality ~ ( - / ~ < ~ - ! ,  where ~0(x)--A(l+ Ixl) -2n, since 

~0 is of rapid decrease. On the other hand, I[V~/l[, <-..AlI/ll,, since yELl(R").  We shall apply 

the decomposition lemma to ~( - [ ,  a, and/o ,  to obtain a collection of cubes {It} and an 

exceptional set t l  = IJ j / j ,  with the properties 

I~l = } II, I <~ ~ II/ll;. (25) 

I ~ - ] ( x ) ]  ~<Ag if xe R n - f l .  (26) 

't  Iz l (2'7) 

for each cube I j  from the collection, and satisfying all the various geometrical conditions 

which we have noted before. 

Since 0 ~ < ~ / ~ < ~ e [ ,  (26) and (27) imply 

]cf-)el(x)l <~Aoc if xER'~-~ ,  (28) 

and II, I IV~I(Y)]~'dy<A~' (29) 

for each cube I s from the collection. 
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Set /~  = (~ ~-/) ZIj, and  set f = (~ ~-/) Z~--~. Then  of course ~ ~- / = f 4- ~ j  ~j. We  are 

t ry ing  to show t h a t  ]{xE Rnl]T~(ep-~])(x)] > Ao~}]< (A/og')U/II~. B u t  b y  (28), ]]]']]~ 

A~ 2-v [[][[W, and  thus,  as in the  proof  of Theorems  1 and  2' ,  I{xE R n] IT~/'(x) l> ~}1 ~< 

(A/~')  H~. Therefore,  in order  to prove  Theorem 3, we need only show t h a t  

I(,,, ~ R"I I~ r~t,(~)l > ~o~}. I < ~ Iltllg. (30) 

B y  the construction,  each cube l j  has d iameter  2 k for some (possibly negative)  integer  k. 

Le t  {~k denote  the  collection of all W h i t n e y  cubes of d iamete r  2 k, and  let ff=~.XjEQ~ ]j- I n  

our new notat ion,  (30) becomes 

li.,'li,~. (31) 

We  shall dispose of the  t e rms  ~ = _  ~ Ta f t  in one fell swoop. For  since ] >~ 0, i t  follows f rom 

the  definition of ~0 t h a t  Ax <~ (~ ~e/(x))[(7~ ~e/(y)) ~< A 2 if [ x - y [ ~< 1, i.e. ~0 ~+ ] is roughly cons tant  

over  the  cubes of Qk, k ~< 0. F r o m  inequal i ty  (27) it follows t h a t  (1/] I j] ) S~]v2 ~e/(y) 12dY <~ 
A~ 2 if d iam (Ir ~ 1. Adding up these inequalities, we obta in  

U ~:l"ll~<Ao~" ~ II'I<A~I~I<~A~-~II/II~. 
k~O filam(I/) ~<1 

Since Ta is bounded  on L ~, we conclude t h a t  IlYO=_oor~.e'll~<A,~ ~-" II.tll;. So by  the  
n o T >/ Chebyshev  inequal i ty ,  l{x6 R II Y~--oo ~r(~)l ~ ao~}l-< (Alo~,)lltllr,. 

To prove  (31), then,  we have  only to  p rove  t h a t  

A I{xe R"II~ TaP(x)l >A~}I < ~ II111~- (32) 
k ~ l  

So far, we have  really done nothing to the  prob lem except  r emove  some tr ivial  error 

terms.  As soon as we set  up  some notat ion,  we shall give the  decomposi t ion t h a t  proves  the  

theorem.  Using this decomposit ion,  we shall reduce (32) to  more  and  more  complicated 

inequalities, which finally become trivial .  

P ick  a small  n u m b e r  ~ > 0  to be de te rmined  later.  For  each k>~0, let 0~ be a C ~ 

funct ion on R ~, satisfying 

(i) 0 ~<0~, ~ 1  

(iX) O~(x) = 1 in a neighborhood {x 6 R '  I I x - 1 [ < c 2-  ~'~ -a'} of x = 1. 

(iii) 0~ has "width" 2 -~r I n  other  words, 

~ 0e(x) ~<A,~2 e~(~-~ for  all x ~ R  ~ and  m > 0 ;  

and  O~(x)=0 if ] x - I  l >~A 2 -~m-'b. 
Set ~0~ = 1 -0~ .  
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Recall that  the "multiplier" m~, defined by the equation (T~])^(x)=m~(x)](x) on 

R ~, is spherically symmetric and U ~ away from the unit-sphere S ~-1 and that  near S ~-1, 

Imz(x)l = 0 ( [ 1 - I x  I [~), where r = ~ - ( n + l ) / 2 .  For /ELg(R ~) we can write (T~/)"(x)= 

The operators S~ and R~ are given b y  convolution with L t kernels, which we call 

s~(x) and rk(x), respectively. If, finally, we define operators Kk by setting 

= j ~ ( ~ )  f(~) if IJ~ l -  I I  ~ A 2 - ~ - ~ '  
(KJ )^ (x )  

[ 0 otherwise 
then we obtain the equations 

T a = TaSk+R~ = KkSk+Rk. (33) 

Our basic decomposition is T ~ = K k ( S J k ) + R ~ ,  which we shall use to prove the 

estimate (32). Of the two terms of the decomposition, the second is a trivial remainder term, 

and we shall rid ourselves of it right away, with a simple L 1 argument. 

~qote that  ~lvl>elr~(y)ldy<~A, for all ]r 0. (Actually, we could do much better. In 

fact ~1~1>~ Irk(y) ldy = 0(2 -Mk) for any M > 0. This is because r~ is a kernel with "thick- 

ness" only 2 k'l-#), which is far smaller than 2 k. More precisely, Irk(y)1% lyl -'~. I[Vm(m~(x) 

v2~(Ix]))]^(y)l<A~]yl-m2 km(1-~), so that  by taking m very large, we can deduce that  

.fill> ~ IrK (Y) I dy = O(2-M~). The same trick shows that  J'lyl > ek ]s~ (Y) I dy = 0 ( 2 - ~ ) ,  a fact 

which we shall soon use.) Therefore, 

c o  co 

II~,J%.,, , . -~) ~< A ~,11/% < A ~ II/,Ih < A~II ,  I < Ao~-'lllll;. 

so that  [{xf i  R n - ~ [  [~_ lR~ l~ (x ) [  > ao~}[ <~ (A/od') II/llg. Hence, also 

since ~ is a small set. In view of the basic decomposition of Ta] ~, inequality (32) now 

reduces to 

k ~ l  

Look carefully at S~]~- ]  k = Zz~a,h, so that  S~=Zz~ ,a .S~h .  For each i, let _~ de- 

note the cube concentric with I~, and having diameter twice as large. As we already noted, 

the 1~'s have bounded overlaps. 
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We shall prove that  the second term on the right is a trivial remainder term. Thus, (35) 

has the effect of "localizing" the problem to the individual cubes. 

First of all, 

II Z (,,* l ,)z.._,~,lh ~< ~: I1(,~1,)11,..,.._~ 

I t s o k  l~r 

(recall that  ~lul >2, [s~ (y) l dy = 0(2 -u~) for any M > 0). On the other hand, for any x fi R' ,  

I Z( ,~. l , )z . ._~, (~) l= l  E ( ,~*t , ) (~) l< E IIl, lhsup. , , I , , (~-u) l  

<A~ Z II, I sup~,,,l~(~-y)l<A=~ I~(~-y)Idy<A~. 

In other words, 

and 
ljeO~ 

So llKk( ~. (sk~-lj) g~,_~)li, ~< All ~. (~ ~ h) x.._~ll~ < A 2 -~,~ ~(~-,,~llfllg ,~. 
]~eQ~ 1teO~ 

By the triangle inequality, 

II ~- Kk( ~- (s~ ~e/j) x.._~)ll~ < A~-~II/II~, 
k - 1 l~eQk 

which proves that  

l{xeR-II~, g~( Z (s~ ~ /3 Z~._5) (x)l >~ ~I < A  lllllg. 
k - 1 l l~Qk ) ' ~ P  

This is exactly the inequality needed to estimate the last term in equation (35). 

So to complete the proof of (34), which in turn proves Theorem 3, we have only to 

show that  
A 

I{~e R"I I :~ Kk( Z (sk*lJ)Z 5) (x) l >a~}l ~ j II111~. 
k = 1 lleQJ~ 

This inequality follows from the Chebyshev inequality and the estimate 

k = 1 / jeQk 

(36) 

We shall finish off the proof of Theorem 3 by proving (36). 
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(To prove  this chain of inequalities, 

l e m m a  of Stein)<AII/ , II~ l-v,l - (1-~ ' '  
these  inequalit ies in (37), we obta in  
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Le t  us examine  ~X~Qk(sk-X-/j) gS. Since t h e / , ' s  have  hounded  overlaps,  i t  follows t h a t  

II ~ (s~-/,)Z~,II~<N 2; IIs~-/AI~=N E Ilm~/,ll~. (37) 

~< A 111,112, f :  r ~ -' l  0~ (r)I' dr < A II/,11 ~, 2 k(1-~) 

we have  used proper t ies  (i)-(iii) of 0~, and  the  

(since I~E O,) <~ Ao~ = ]5[ (21p)-((i-e)ln). Subs t i tu t ing  

/~eO~ //eOk 

B y  definition, K k is a bounded  opera tor  on L ~ (Rn), with  no rm roughly  2-k(1-8) 0l-(n +1)12). 

Hence,  

11eQk lieQk 

= A a  ~ 5 [I,[ -((1-~),~)(2~-~-1)+~,'-(<1-~)'n) (3S) 
xieo~, 

(since eaeh I, in the summation has II, I =.4 2~) 

lj6ok 

Now r e m e m b e r - - a t  the  beginning of the  proof we considered a small n u m b e r  ~ > 0, and  all 

the  es t imates  we have  proved  so far  are val id no m a t t e r  which ~ We take.  The  t ime  has come 

to  pick a value for c3. I f  ~ > n/p, then  we can find a d > 0, so small  t h a t  - (1 - 8) (2X - n)/n + 

2/p < I,  say  - (I - $ )  (22 -n ) /n  + 2/p = 1 - s .  With  such a d, (38) becomes 

lIKe( 7~ (s~/,)g)l[~<.4:r Y~ Iljp-~=A:r 2 II, l<Ao~2-"~"lnl<.2-~*.4d-'ll/llg. 
ljeOk IJE~ IjCOk 

Since e > 0, the  tr iangle inequal i ty  shows t h a t  ]IE~=I Kk(E,,,a, (s~-)e/,) z~,)ll~ ~<.4~-~ 
which is exac t ly  inequal i ty  (36). This completes  the  proof  of Theorem 3. Q.e.d. 

As we ment ioned  jus t  before the  proof  of Theorem 3, Stein 's  l emma  is not  the  best  

possible inequal i ty  for the  restr ict ion of a Fourier  t r ans form to S ~-1. I n  part icular ,  the  

author ,  in collaborat ion with  Stein, has proved  the  following 

L]~MMA. Let/EL4IS-O(R~). Then the Fourier trans/orm [ restricts to an L413/unction on 

the circle S z, and satisfies the a priori inequality 

3 -  702909 Acta mathematica 124. Imprim6 lo 2 Avril 1970 
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Illlb/',~., < A,II/II~','-',..,. (39) 

((~, (~", etc. denote small numbers). 

Interpolation between (a9) and IItll~o<ll/lll yields, among other things, I I I I1-,~)< 
A ,  IV Il-(~) for 1 < p < 6/5. Using this improved L~-estimate, we can easily extend theorem 
3 to cover the case n=2, 1 ~<p<615. Stein's lemma covers only the case 1 ~<p<8/7. On 

the other hand, the present result deals only with R ~. Presumably, both lemmas are ap- 

proximations to an optimal n-dimensional restriction theorem. 

Sketch o/proo/o/the lemma. Boundedness of the operator ]-+fls, from L 4/a-~ to L 4/a 

is obviously equivalent to the boundedness of the adjoint operator T* from L4(S 1) into 

L4+~'(R~). If/EL4(S1), then T*/ is  simply the Fourier transform of the measure/dO, where 

dO denotes Lebesgue measure on SL To check tha t  (/dO) ~ EL4+~'(R~), we shall prove tha t  

(/dO)" (/dO) ~ EL2+~'I2(R2). This follows from the assertion (/dO)-)e (/dO) EL2-~"(R2), by  the 

Hausdorff-Young inequality. 

So to prove our restriction lemma, we merely have to show tha t  I[(]dO)~e (/dO)[l,_a. 4 
A~[[/]I~. If  we set F = (]dO)~e (/dO), then obviously 

e-2fl~_~,< F(y ) dy = e-~ffBl(Wl)t(w,)dwldW~, (40) 

where U=((w~, w~)ESI I I(w~+w~)-x I <el .  What  does the set B look like? First of all, 

for 0 < ] x ] < 2, there are precisely two pairs (wl, w2) E S 1 • S 1 such tha t  w 1 + w~ = x. Call 

these two pairs (wl(x), w~(x)) and (~l(X), ~ (x ) ) .  Then B = B 1 U B.~, where B 1 consists entirely 

of pairs (w~, w~) which are close to (w~(x), w~(x)) in S i x  S 1, and similarly B~ consists of 

pairs close to (~l(x), ~2(x)). Equation (40) now shows that ,  approximately,  

e-2 

Letting e tend to zero, we obtain F(x)= (/(wl(x))/(w,(x))+/(ff~l(X))/(@2(x)))q~(x), where ~(x) 

is defined as the common hmit  of the two quantities in square brackets. In  view of its 

elementary definition, ~ can be computed explicitly. We spare the reader the details of our 

computation, but  it turns out tha t  q~(x)=O([x] -1) near x = 0 ,  ~ ( x ) = 0 ( ( 2 - I x ] ) � 8 9  near 

I xl = 2, and ~ is bounded elsewhere. Of course, q0 is a radial function of x. 

Now, using polar coordinates for x, we write 
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~-o --. A r l ~ ( r ) p  -~" I/(w~(,, 0 ) ) l (w~( , ,  O))p-~"dO 

+ I/(~l(r,O))l(~(r,O))p-e"dO dr. 
o 

I t61der ' s  i nequa l i t y  shows eas i ly  t h a t  the  f i rs t  in tegra l  in b r acke t s  is smal ler  t h a n  

( l l l (wl(r, ' ))11, I I / ( ~ ( r , "  ))11,)~-~" < I I t l I P  ~'', �9 

Similar ly ,  the  second in tegra l  in b racke t s  is a t  mos t  II/llP - ' , .  Thus  

F ~::: < AlllllP-O'" (f~ rl~(r)l~-O" dr). 

The final  in tegra l  converges  for ~ " >  0, which proves  t he  a pr ior i  inequa l i ty .  Q.e.d. 

The  reader  m a y  no te  the  sys t emat i c  completeness  wi th  which eve ry  single s tep  in the  

above  a r g u m e n t  breaks  down in n d imensions  (n > 2). 
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