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I. Introduction

1. Let the function w=/f(z) be meromorphic in the unit circle |z|<1 and
denote by C,=C,(f, ¢'%) the radial cluster set of f(z) at the point z= €'’ which is defined

as follows: a€C,(f, % if there is a sequence r,<r,<:--<r,<--, limr,=1, such

n—>o0

that lim f(r, €% =a. Evidently C,(f,¢'?) is a closed non-empty set and is either a

n—»00

single point or a continuum. In the former case we say that f(z) has a radial limit

at the point z=e¢'’,

[}

If we donote by p(@) the chord of the unit circle through a point z=¢'® and in-

clined at the angle ¢, *g<<p<g, to the radius through e'®, positive angles being

measured to the right of the radius and negative angles to the left, we define the
chordal cluster set C,q,(f,¢'®) in a similar way. We say that a €C,q,(f, ¢'°) if there

is a sequence t, >t,> -+ >t, >+, lim t, =0, such that lim f(e'®(1 —t,¢'?))=a. Again,
n—a>w

n—»o0
Cow(f, €% is cither a single point or a continuum, and Cyq(f, %) is the radial
cluster set (', (f, '®).

Similarly, let A be an angle in the unit circle formed by two chords passing

i6

through €', and define the corresponding angular cluster set C4(f,¢'®). We say that

a€C4(f,¢?% if there is a sequence of points {z,} contained in A such that lim 2, =¢'°

n—>o00

and lim f(z,)==a. Again, C,(f, €% is a closed non-empty set and is either a single

n—-»w

point or a continuum.! Further, if A, < A, then plainly Oy, (f, e'®) < 04 (f, €.

2. We now define the outer angular cluster set? of f(z) at the point z=¢'® as

the union

Calf, %= Ucadt, ¢'?)

1 This is the notation introduced in CoLLiNgwooD and CARTWRIGHT [5], p. 139. Generally, the
notation we use is either taken from that paper, which will be cited hereafter as C-C, or is derived
from it in an obvious way. A different convention has been adopted by Japanese authors. (Numbers
in brackets refer to the list of references at the end of the present paper.)

The connectivity of (4 and other cluster sets on locally connected sets can be established by
ad hoc arguments (cf. C-C, pp. 90-92). The following general topological method, which puts the matter
in a few lines, I owe to Professor WILFRED KarLaN. Let I, be the set of values taken by f (z) in the inter-
section of 4 with the disc |ew— zl < t. Then, writing D, for the closure of Dy, an equivalent defini-
tion of C4(f, e o) is Cy(f, ¢ 0) =M Ijzn, where t; =0 as n—> oo. Since D; is connected for all ¢ it

n

follows by a well-known theorem (see, for example, HaAusDOR¥F, Mengenlehre, p. 163, XVIII) that
Cylf ¢! 0) is connected.
2 Gross [6] used the term innere Hdufungsbereich for this sot.
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]

taken over all angles A between pairs of chords through z=¢'%. C,(f, ¢'®) is a non-

empty F,.

% with respect to any curve

We can clearly define the cluster set of f(z) at z=¢'
in |2|<1 ending at this point, or any continuum or any sequence having this point
as a frontier or limit point. But these definitions will be introduced as they are
required.

The cluster set C(f, ¢°) of f(z) at the point z=e¢'® is a familiar notion! defined
as follows: a€C(f, €® if there is a sequence of points {z,} contained in the unit

circle such that lim z,=¢% and lim f(z,)=a. C(f, €° is either a single point or a
n—>0

n>oo
closed continuum,

We shall say that a cluster set or union of cluster sets is degenerate if it consists
of a single point; otherwise it is non-degenerate.? We denote the complements of
cluster sets with respect to the closed plane or the sphere on which the plane is
projected stereographically by CC,, CC,, CC,, -+ ete. A cluster set or union of cluster
sets whose complement is empty, so that it covers the whole w-plane or the whole
w-sphere, we shall call total; and one whose complement is not empty we shall call

sub-total,® the degenerate cluster sets being a sub-class of the sub-total cluster sets.

3. The classical Theorem of Fatou? states that if f(z) is regular and bounded in
|z| <1, then Yim f(z) exists uniformly as z—>€'® in the angle |arg (1~ze"0)|sg—6 for

all >0 and p.p. on the circumference |z|=1. That is to say, f(z) has an (outer)
angular limit, and therefore also a radial limit p.p. It was subsequently proved
by R. Nevanlinna that the same property holds in the more general case of a
meromorphic function f(z) whose characteristic 7 (r, f) is bounded.

The companion Theorem of F and M. Riesz states that if f(z) is regular and
tounded in |z|<1 and has the same radial limit a, that is to say, if C,(f, % =a, for
a set of points €'® of positive measure on |z|=1, then f(z)==a. This theorem was also

extended by R. Nevanlinna to meromorphic functions of bounded characteristic.®

! Notation of C-C, p. 120.

? Cf. WuyBURN, Analytic Topology, p. 30.

3 These notions, like that of the cluster set itself, go back to PaiNLEvE, C. R. 131 (1900), pp.
487-492, who spoke of singularities of a function as being points of complete or incomplete indeter-
mination. We avoid the word “‘complete’” because of its other uses in set theory.

4 We use the notation p.p. to denote almost every-where ; and m E or m (E) to denote the measure
of a set E.

5 R. NEVANLINNA, Eindeutige analytische Funktionen (1936), pp. 190-197. Cited hereafter as
E.AF.
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4. These famous theorems have been deepened and extended in a variety of
ways and have given rise to what is now an extensive theory. An important gener-
alisation of Fatou’s Theorem for an unrestricted meromorphic function is due to
Plessner. To state the theorem, and for subsequent developments, it is convenient
to introduce some further definitions and technical terms. We shall call a point z=¢'’
a Fatou point for f(z) if C,(f, €% is degenerate and if lim f(z) exists uniformly as
z—>€'% in any angle A between chords through ¢'°; and the set of Fatou points for f(z)
on the circumference |z|=1 we shall denote by F(f).! We shall call z=¢'® ¢ Plessner
point for f(z) if C4(f,€® is total for every angle A between pairs of chords through e'®
however small the angle may be; and the set of Plessner points for f(z) on |z|=1 we
shall denote by I(f). Another notion that will be useful to us is that of a Fatou
arc for f(z). This is defined as an arc of the circumference |z|=1 which is an open
arc of the frontier of a simply connected Jordan domain in |z|<1 in which either
f(z) or, for some as oo, 1/(f(2)—a) is bounded. It follows at once from Fatou’s
Theorem, by conformal mapping, that F (f) is p.p. on a Fatou arc.?

The theorem of Plessner referred to above is

Plessner’s Theorem A3 If f(2) is meromorphic in |z| <1, then almost all points of
|z] =1 belong either to F(f) or to I(f).

We note that I(f)<C F(f).* Indeed, a Plessner point is in an obvious sense the
antithesis of a Fatou point.

For a bounded function, I(f) is empty and the theorem reduces to Fatow’s
Theorem.

A second theorem of Plessner generalises the Riesz Theorem in a similar way.

This theorem is

Plessner’s Theorem B3 If f(z) is meromorphic in |z| <1 and if f(z) has the same
outer angular limit a, that is if C,(f,€'%) =a, for a set of points ¢'® of positive measure,

then f(z)=a.

! Notation and terminology of C-C, p. 95.

¢ Cf. C-C, p. 98.

3 PLESSNER [10], p. 220. Plessner states his theorem in the slightly weaker form with the set
{ew} for which C 4 ({, ¢ 0) is degenerate in place of the set F (f) for which the angular limits C 4 (f, ¢ 0)
are also uniform. His argument, however, actually proves the theorem as we state it here (and as it
is stated in C-C). It will be noted that C,(/, ¢ 0) degenerate does not necessarily imply that lim f (z)
exists uniformly in every Stolz angle 4 at ¢'? as is the case if '° € F (f).

¢ For sets on the circumference lz‘ =1 the notation C of course denotes the complements with
respect to that space.

5 PLESSNER [10], p. 224. This theorem was first proved for regular functions by PRIVALOFF
(see BIEBERBACH, Funktionentheorie, vol. I1, 2nd ed., p. 158, or LusiN and PRIVALOFF [8], p. 164).
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It has been shown by counter examples! that radial limits cannot be substituted
for outer angular limits in this theorem. To prove a uniqueness theorem of this kind
for radial limits a more stringent condition must be imposed on the set of points e®
at which the limit is attained. Lusin and Privaloff were the first to show the signi-
ficance of sets of category II? in this problem. In order to state their theorem we
require the following definition. A4 set E is said to be metrically dense in (or on) an
interval o if, given any sub-interval B <o, the intersection E NS is of positive measure.
For an open interval this is equivalent to saying that E is metrically dense at every
point of the interval?

We can now state the

Theorem of Lusin and Privaloff.t If {(z) is regular in |z|<1 and has the same
radial limit a, i.e., if C,(f, €% =a for a set M, (0) of points z=¢" M, () being both

metrically dense and of category II on an arc « of |z|=1, then [(z)=a.

More recently, in 1939, F. Wolf5 proved a related theorem which we state in

language of cluster sets as follows:

Wolf’s Theorem. Suppose that f(z) is regular in |z| <1 and that there is « set
MG of points z=¢€° M) being a G, dense on an arc o of |z|=1, such that
o€ COL(f, €% for all €®eM(0). Then if there is a number a# oo such that a € C,(f. ¢'%)

p.p. on a, we have f(z)=a.

5. By combining the ideas in the proofs of these last two theorems we prove
a new theorem, no longer restricted to regular functions, which contains them both.
This is Theorem 1. of the present paper. In addition to the known theorems of
Lusin and Privaloff and of Wolf, which emerge as corollaries, Theorem 1 leads to
new results on the coverage of the radial cluster sets of f(z) on a sufficiently exten-
sive set of points of the circumference |z|=1. The typical result is Theorem 2. This
in turn leads to the introduction of a new notion, namely that of the set, which we
denote by S(f), of points z=¢'? at which the radial cluster set C,(f, ¢'®) is total, and the

investigation of its properties.

1 LusiN and PrIvaLoFF (8], pp. 183-185.

? Sets of the first and second categories are called of category I and of category II respectively.

3 Cf. HossoN, Theory of Functions of a Real Variable, vol. I, 2nd ed., pp. 178-179, for the
definition of a set metrically dense at a point. A set metrically dense on an interval is called by
Lusiy and PRIVALOFF (l.c. p. 187) réduit on that interval.

4 Lusix and PrivavLorr (8], pp. 187-188.

5 F. Worr [13].
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This set S(f) is the antithesis of the set at which f(z) has a radial limit, which
latter is the set that has hitherto been most closely studied; and the relationship
between the two sets may be expected to be analogous to that between I (f) and F (f).
There is no simple relation between S(f) and I(f), such as inclusion of one in the
other. We prove, however, that S(f) and I(f) are topologically equivalent in the
sense that they differ only by a set which is of category I on the circumference
|z] =1 (Theorem 5) and that if either is dense on an arc « of the circumference then
both are residual on « (Theorems 3, 6 and 7). We thus obtain existence theorems
for S(f) and I(f) in terms of one another and, in virtue of Plessner’s Theorem A, in
terms also of the set F(f). We can prove, for example (Theorem 9), that for the
modular function g (z) defined in the cirele |2]|<1, S(p) is residual on |z|=1.

Although our results are stated for the most part for radial cluster sets our
methods are equally applicable to chordal or more general cluster sets, and the basic
lemmas are proved in a form sufficiently general to yield these extensions of the main
results, the formulations of which are obvious.

By the same methods we prove a somewhat stronger form of a recent theorem
of Meier on the distribution of the chords at a given Plessner point on which the
chordal cluster sets are total. This result, which is Theorem 10, does not, however,

0 at which the radial cluster set or a chordal

establish the existence of any point z=¢
cluster set in a given direction is total. It is Theorem 6 that is the existence theorem
for such points.

Finally, for completeness, and although it does not accord strictly with the title
of this paper, we give a theorem on the distribution of the total linear cluster sets
of a uniform function at an isolated essential singularity. This is Theorem 11. It is

an obvious analogue of Theorem 10 and is proved in the same way.

II. A general theorem on linear cluster sets

6. We begin by proving as a lemma what amounts to a generalisation to mero-
morphic functions and to linear, but not necessarily radial, cluster sets of the pre-
liminary part of Wolf's theorem. The proof derives partly from Wolf and partly
from Lusin and Privaloff. We shall use M (0) and M (6) throughout to denote sets

' on the circumference |z|=1.

of points e
Lemma 1. Suppose that f(z) is meromorphic in |z| <1 and that jor some fized

n - Lo .
“, und some complex number a, finite or infinite, there is a set M (0) of

2
|

N
A
hs!
A
Mf
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points z=¢'% of category 11 on a certain arc o of the circumference |z|=1 and such that
a€CCop(f, €% for all €°eM(B). Then the arc o contains an arc B such that (i) p
is a Fatou arc for f(z) in the neighbourhood of which either f(z) or 1/(f(z) —a) is uni-

formly bounded according as a= oo or a+ oo, and (ii) M(0) is dense on B.

It is sufficient to prove the lemma for the case a= oo since otherwise we have
only to make a linear transformation of f(z) which carries ¢ into oo.
Denote by A4,(T, N, 0) the set of points ¢'% 0<§<2zx, such that, for all values

of tin O<t<T,
[f(e?(1—te'?)|<N.
Now take
7,>Ty,> - >T,>--, IimT,=0.

y->0

Then

Ay (T, N, )= A, (T,.y, N, 0).
Also, for any >0,

A (T, N,0)=4,(T, N+n, 0)

so that if we take Ny <N,<---<N,<.--, lim N,= oo, we have

Av:Alp(Tv, va o)gAw(TV+l1 Nl'+l) 0):‘41/Hv
while plainly
mwy=(U 4,)n a. (1)

Since, by hypothesis, M (0) is of category II in « it follows that at least one
of the sets A,N a«, say A4, N a, is of category Il in «. There is therefore an arc S «
such that A4, is dense on f#; and, since 4, SM(0), the set M (D) is dense on f.

For ¢'®e Ax N B and for all 0<t<T, we have

[f®(1—te®)]|<Ny; (2)
and, since 4, is dense on f, it follows from this that the inequality
[f(2)| < N (3)

is satisfied throughout the annular quadrilateral B (not containing the origin) defined
by the arc g, the two chords at the end points of f inclined at the angle ¢ to the
respective radii at these points, and the circular arc |z|=1- T} cos ¢ joining the two
chords. For every interior point of B is, by (2) and the fact that A4, is dense on 8,
a limit of points at which |f(z)| <Ny, so that f(z) can have no poles in B and is
therefore continuous at every interior point of B, and (3) is therefore satisfied at

every such point. This completes the proof of the lemma.
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For ¢=0 the chord p(p) through €'’ becomes the radius at this point and
Coy=0C,(f, €% is the radial cluster set at z=e¢'?. Since in the lemma radial and
chordal cluster sets are on exactly the same footing we shall as a rule limit the later
applications of the results of this section to radial cluster sets, except where the
chordal cluster sets are necessarily involved in the statement of a theorem, leaving
the corresponding generalisation for chordal cluster sets to be understood.

As a first application of Lemma 1 we obtain our general theorem, namely

Theorem 1. If f(z) ts meromorphic in |z| <1 and if, for a constant ¢, —g<<p <g,

there is a set M(0) of points z=e'® of category II on an arc o of the circumference

z|=1 such that the intersection [V CC,uy(f, €% is not empty and if, further, there
‘0 o () 274
et Ve m

is @ number b, finite or infinite, and a set N(0) metrically dense on o such that
be N Cuulf, €, then f(z)=b.

et0eno

By Lemma 1, « contains an arc § which is a Fatou arc for f(z). Therefore, by
Fatou’s theorem, F(f) is p.p. on B and so, since m(H{0)N B)>0 by hypothesis, it

follows that
mMAO)NF(N=mMAO)NBNF(f))=>0.

Now, for ¢?e F(f) we have C,(f, ¢'%) =C,q (f, €% and, by hypothesis, C,q,(f, €% =0
for ¢%eNO)N F(f). Since m(N(O)N F(f))>0 it now follows from Plessner’s Theorem
B that f(z)==b and the theorem is proved.

Corollary 1. If f(z) is meromorphic in |z|<1 and there is « number b and a set
M, (0) which is both metrically dense and of category II on an arc o« of the circum-
ference |z|=1, such that the radial cluster set C,(f, ¢®)=b for all €' € M, (b), then f(z)=bh.

This is immediate. We have only to put
Mmo)="n@©)=m.©®).

This corollary extends to meromorphic functions the theorem of Lusin and
Privaloff quoted in the Introduction (§4 above). These authors also constructed
counter examples which show that their theorem is best possible in the sense that,
given the condition that M, (0) is of category II on «, the condition that it must
also be metrically dense on o cannot be dispensed with, and conversely.! Theorem 1

must therefore also be best possible in a similar sense.

1 LusiN and PrivaLoFF [8], pp. 185-186.
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7. We conclude this section with a remark on the extension of Lemma 1 and
its consequenses to more general linear cluster sets. Consider a curve 4 in |z]|<1
tending to the circumference |z|=1. The “end” of A may be either a point or an
arc of |z|=1 or, as in the case of a spiral, the whole circumference. For simplicity
we may assume that A has only one point of intersection with every circle |z|=r<1 so
that, on 4, |z| is strictly increasing as z tends to the circumference |2|=1. To define
the orientation of A we may take the argument 0, of any point z, on 4 other than
the origin. By rotation about the origin through an angle 0--0, we obtain the
family {1(0)} of rotational transforms of A=4(,), the original curve. Evidently, as
0 sweeps out an interval the curve () sweeps out a domain in |z| <1 whose frontier
includes an arc of the circumference |z|=1 which may be wholly or partly inaccessible
from the domain. The cluster set (4 (f) of f{z) on a curve A(f) is defined as

follows: a € Cy(f) if there is a sequence of points {z,} on A(6) such that lim |z,|=1

and lim f(z,)=a. Ci4(f) is again a non-empty closed set which is a continuum if

n—»00

it is non-degenerate. For a given family of curves {1(f)} the result corresponding

to Lemma 1 is

Lemma 1a. Suppose that f(z) is meromorphic in |z|<1 and that, for a given
family of curves {A(0)}, whick are rotational transforms of one another and on whi s
|z| @s strictly increasing as z tends to the circumference |z|==1, there is a complex
number «, finite or infinite, and a set C(0) of points 0 of category 11 in an interval
o« S (0, 27) such that a € CChup(f) for all 0 €L (0). Then the interval o contains an
interval B such that (i), according as a=co or a# co, either f(z) or 1/(f(z) —a) is
untformly bounded in that part of the domain swept out by A(0) as 0 sweeps out the
<1, and (ii) L(0) is dense in f.

interval B which lies in a certain annulus ry<|z

Again, there is no loss of generality in taking @= co. For a given value of 0
every point of A(0) is determined by |z|, z€4(0). Denote by L (T, N, 6) the set of
values of 0, 0<0=<2xm, such that, for all values of z € 1(0), where l—T<|z|<l, the

inequality |f(z)|<N is satisfied. Taking 7,>7,>--->7T,>---, lim T,=0, and
N,<Ny<--+<N,<:-, lim N,= o0, we have, as before,

Lv:L(Tv, N,, O)QL(TvHa Nv+1: 0)2L1'+1
and

LO)=(U L)na.

Since L£(0) is, by hypothesis, of category II in «, at least one of the sets L, N« is
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of category II in « and is therefore dense in a sub-interval §<«. The proof now
proceeds exactly as for Lemma 1 and need not be repeated.
The result can easily be generalized by relaxing the restriction that |z|, z €4 (6),

is one valued for a given §.

III. A theorem on the coverage of the radial cluster sets

8. As a further consequence of Theorem 1 we prove

Theorem 2. If f(z) is meromorphic in |z|<1 and if there is a set N () of points

z=¢€'?% metrically dense on an arc o of the circumference |z|=1 such that N C,(f, '%)
no

is mot empty, then either given any set M (6) of category II on «, the union U C,(f, €'
m9)
is total, or f(z) is a constant.

Suppose that U C,(f, ¢'?) is sub-total so that its complement N CC,(f, % is
mo mo

not empty. Since M (#) is of category II on « the condition of Theorem 1 is satis-
fied and it follows that if there is a number b € N C,(f, ¢'%), then f(z)=b. This proves
the theorem. "

We denote by W (f) the set of (Weierstrass) points z=e¢'? for f(z), i.c. the points
e'® for which C(f, €% is total.? Theorem 2 supplements the following quite trivial

observation, namely, that if, for a set N (0) metrically dense on a, N C,(f, €'®) is not
n

empty, then oS W (f). For if ¢'®eC W(f) so that CC(f, e'?) is not empty, then '’
is contained in a Fatou arc f#; and, for e”’en(O), we can take S < a. But,by Pless-
ner’s Theorem B, we must have m(H(0)n B)=0; for otherwise there is a subset of
F(fyn B of positive measure in which the angular limit of f(z) is constant, so that
f(z) is a constant. This contradicts the hypothesis that M (0) is metrically dense on
o, and our assertion is proved.

An immediate corollary of Theorem 2 is

Corollary 2. If {(z) is meromorphic in |2]|<1 and if a € C,{f, €% for all £ € N(8),
where N (0) is metrically dense on an arc « of |z|=1, then either CN(0) is residual

on o and U C,(f, em) 18 total, or f(z)=a.
cne

For, if N(0) is of category II on a, then f(z)==a, by Corollary 1.

This corollary is illustrated by a number of known examples, as for instance

1C-C, p. 137.
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Koenigs’ function K (z)!, a function o (z) constructed by Lusin and Privaloff? and a
function f(z) recently investigated by Bagemihl, Erdés and Seidel.? In all these
cases there is a radial limit a=C,(f, ¢'%) in a set N (f) which is p.p. on the circum
ference; and it is easily verified that the complementary set C M (0) is in each case

residual on the circumference.

IV. A property of the set I(f)

9. We shall prove that if the set I(f} of Plessner points of f(z) is dense on an
arc o then it is also residual on that arc. To do this we require two further lemmas

to supplement Lemma 1. First we prove

et 4
<q}< ’

Lemma 2. If f(z) is meromorphic in |z| <1 and if, for some fixed g, -7 >

2
there is a set M (O) of category 1L on an arc o of the circumference |z|=1 such that
Cowy (f, €%) s sub-total for all '€ M(0), then there is a sub-set M, (0)< M (0), also of

category 11 on o, such that N C C,(f, ¢'%) is not empty.
m 0

If C,q(f. €% is sub-total we can find a circle contained in C (', (f, ¢'%), since
this is an open set.

Now suppose the w-plane to be projected stereographically onto the unit w-sphere
so that a circle in the plane is projected onto a circle on the sphere. Adapting
Plessner’s method, we construct on the sphere a sequence of finite triangular lattices
L, Ly, ... L, ... ete., each lattice being a sub-division of its predecessor and such that
the length of the longest side of the lattice I, is less than 27", say. We denote the
individual triangles in the lattice I, by dn 1, dn s, ... dn mn). Denote by I, (0) the set
of points ¢'®€ M (0) such that n is the smallest number for which C,,,(f, ¢’ con-
tains the whole of at least one of the triangles d, ., 1 <v im(n). Then evidently

Ioerly,s---cl0)<--- and
m)= 9 I (0).

We now sub-divide the sets 77, (0) as follows. We assign to each triangle
dn, 1) dn,2a LR dn, m(ny

all those values of ¢'%¢ I', (0) for which d, ,, 1 <v<m(n), is contained in CCup(f, e,

1 C-C, p. 94.
? LusiN and PRrIVALOFF [8], p. 189.
3 BacemIiHL, Erp6s and SEIDEL [1], p. 139; also J. WorrF [14] and [15].

12 —533807. Acta Mathematica. 91. Imprimé le 28 octobre 1954
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and we denote the corresponding sub-sets of I (6) by Dn ,(0), 1=<v<m(n). All but
one of these sub-sets D, .(0) may be empty, but at least one of them must be non-
empty, and any two of them which are non-empty may have common points. With
these definitions we evidently have
MO=U U D). (4)
Since M (0) is of category II on a« one at least of the enumerable set of sets
Dno(0), n< oo, v<m(n), say D;(0), must be of category II on «. But, for all
¢eD; . (0), the triangle d; , is contained in CC,q (f, €% and so, putting M, (0)=

=D; «(0), the lemma is proved.

10. Secondly, we prove

Lemma 3. If f(z) is meromorphic in |z|<1 and if there is a set M(0) of points
z==¢'% satisfying the conditions (a) that M(0)S C I (f), and (b) that M (0) is of category
II on an arc « of the circumference |z|=1, then there is an arc <« such that (i) f is
a Fatow arc for {(z), and (ii) M(0) ts dense on f.

Every point ¢'®eCI(f) is the vertex of an angle A(f) in |z|-:1 in which the
angular cluster set C4,(f, ¢'?) is sub-total. Now denote by E, the subset of M (0)
at each point ¢’ of which there is a 4(0) of magnitude greater than /2 such that
Cao(f, €% is sub-total, by K, the subset of M () at which there is a A(0) of
magnitude greater than x4, by E, the subset of M (0) at which there is a A4 (0) of
magnitude greater than z;2" in which 4, (f, ¢'% is sub-total, and so on for inde-

finitely increasing ». Evidently ¥, K, <.--SK,=---, and

my=u En.

We now proceed to sub-divide each set £, into a finite set of subsets as follows.
Divide the angle »~:_’f (1-2""M<p< 7; {1 —2 "} on the interior normal side of the tangent

to the unit circle at €9 into N=2"—1 equal parts of magnitude =/2" by drawing

'®. Then every angle A4(0) of

the chords p, =0 (®,), 0y~ 0(@,), ... on =0 (py) through e
magnitude greater than 72" and contained in |z|<1 must contain at least one of the
chords g, g5, ... pn. For otherwise it must contain one of the half-tangents at e
contrary to the definition of 4(0). We denote by E, ,, 1 <y <N, the subset of E,

for which there is a 4(f) of magnitude greater than 7/2" such that C,4(f, €% is
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sub-total and which contains g,. Clearly, a point ¢’ may belong to more than one
of the sets £, ,. With these definitions we have
moy=U U E,.. (5)
n 1<v<N
Since M (H) is of category II on o one at least of the sets E, ,, say E,;, must

be of category II on «. Consequently, for all ¢’¢ E, «, C,, (f, €%, which is contained

ok
in a sub-total set C,q(f, €%, is sub-total; and it follows from Lemma 2 that there

is a subset M, (0)<S E; . SM(0), also of category IT on a, such that N CC,, (f, €'’
)

U
is not empty. It now follows from Lemma 1 that there is an arc $< o such that

(i) B is a Fatou arc for f(z), and (ii) M, (0), and therefore also M (0), is dense on f.

The lemma is therefore proved.

11. We are now in a position to prove

Theorem 3. If f(z) is meromorphic in |z| <1 and the set I(f) of Plessner points

of f(z) is dense on an arc a of the circumference |z|=1, then I(f) is also residual on o.

Suppose that CI(f) is of category 1II on «. Then, putting M (6)=C I(f) and
applying Lemma 3, it follows that there is a Fatou arc fSa«. But, since evidently
p< CI(f), this implies that I(f) is not dense on «, and the theorem is proved.

As a further consequence of the argument we have

Theorem 4. If [(z) is meromorphic in |z|-<1 and if on an arc a of the circum-

ference |z|= 1, m(F(f)na)=0, then F(f) s of category 1 on .

For F()cCI(f) so that CI(fyna« is of category IL if F(f) N« is of category
II; and this implies that o contains a Fatou arc f. Since m(F (/)N o) =m (F ()N f)>0

this proves the theorem.

V. The set S(f)

12. The set S(f) is defined as the set of points z=¢e'? for each of which the
radial cluster set C,(f, ¢'%) of f(z) is total. The definition can obviously be extended
to chordal or more general linear cluster sets, as for example the set S, of points
' for each of which C,q,(f, ¢'% is total, or the set S;q (f) on which Cjq(f, €% is
total. We shall, however, confine the detailed discussion to the radial case S(f)
since it will be obvious that our theorems are equally applicable to S, (f) and,

under appropriate limitations on 4(0), to Sy« (f) also. We first prove
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Theorem 5. If f(z) is meromorphic in |z|<1, then the sets S(f) and I(f) differ
by a set of category 1 on the circumference |z|=1.

We prove first that S(f)n CI(f) is of category I. To do this, put M (0)=
=8(HnCI(f) and apply Lemma 3 under the hypothesis that M (0) is of category II.
This implies the existence of a Fatou arc  on which M (6) is dense. But evidently
no point of B can belong to S(f) so that S CS(f) and M(0)N S is empty. This
contradiction proves our assertion.

Similarly, we prove that CS(f)n I(f) is of category 1. Put M D)=CS(f)n I(f)
and apply Lemma 2 under the hypothesis that M (0) is of category II. This implies
the existence of a subset M, (0) < M (0) such that meC C, (f, ¢'%) is not empty. Now,

applying Lemma 1, it follows that there is a Fatou arc f on which M, (0), and there-
fore also M (0), is dense. But evidently no point of § can belong to I(f), so that
B<=CI(f) and we again have a contradiction, since M (0) N § must be empty. The

theorem is therefore proved.

13. As an immediate deduction from Theorems 3 and 5 we may state

Theorem 6. If f(z) is meromorphic in |z]|-<1 and the set I(f) is dense on an urc

a of the circumference |z} - 1, then S (f)N I (f) is residual on a.

Corollary 6.1. If m(F (f) N )= 0, then S(f) is residual on o.
For, by Plessner’s Theorem A, I (f} is dense on a if m (F (f)y0a) -0.

Corollary 6.2. [1f T(f) is dense on a, then F(f) 15 of category 1 on a.
For S(f) is residual on o and S(f)S CF (f) so that C F (f) is residual on .

This is also a coroltary of Theorem 3, since I(f)SC F (f).

14. Theorem 5 shows the sets S(f) and I(f) to be topologically equivalent.
They are not, however, metrically equivalent, as can be shown by known examples.
For instance, in the case of the function w (z) of Lusin and Privaloff referred to in § 8
above, w (z) takes the radial limit zero p.p., from which it follows that C & (w) is
p.p. But m F (w)=0, for otherwise we should have (', (w, €% =0 in a set of points
¢'® of positive measure which, by Plessner’s Theorem B, would imply  (z) =0. There-
fore I (w) is p.p. and hence, by Theorem 6, S(w) is residual and, by Theorem 5,
I (w) is also residual. Thus in this example m I (w)=2x and m S (w)=0 while I (w)

and 8§ (w) are both residual sets.
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VI. Relations between the sets F (f), I(f) and S (f)

15. As counterpart to Theorem 6 we have

Theorem 7. If f(z) is meromorphic in |z|<1 and the set S(f) is dense on an arc
o of the circumference |zi=1, then S(f) is residual on o and consequently S(fy0 I (f)
18 also residual on o.

For, if S(f) is not residual on « then CS(f)N a is of category II and it follows
from Lemmas 1 and 2 that there is a Fatou arc f<Sa. Since, however, S C S (f)
it follows from this that S(f) it not dense and we have a contradiction. That
S(HNI(f) is residual follows from Theorem 5.

This argument also proves that if an arc o is contained in W (f), then S (f)y N I(f)
s residual on o«. For FSC W (f) so that C W (f)N o is not empty if CS(f) N « is of
category II.

Corollary 7. If S(f) is dense on o, then F (f) is of category 1 on «.

For I(f) is dense and the conclusion follows immediately from Corollary 6.2,

In the same order of ideas we prove

Theorem 8. If f(z) is meromorphic in |z|<1 and if the set I(f) (or the set S (f))

s of category 1 on an arc a, then F(f) is metrically dense on o.

For, CI(fyn a is residual and hence, by Lemma 3, every arc o’ S« contains a
Fatou arc f; and m (F(f)yn f')>>0. Hence m(F (fyna’) =m (F (f)n ) >0, and since
o' is an arbitrary arc in « the theorem is proved.

Another metrical relation may be noted. If m (S (f) N a)==ma it follows, since
S(HSCF(f), that m(F(fiNna)=0 and hence that m (I (iN «)—=m a and I (f), and
also therefore S (f), is residual on «. On the other hand, as we saw in the example
of the function w (z), the condition m (I (f) N ) =m «, while it implies that I (f) and
S (f) are residual.on « does not imply that m (S (f) N «) >0. In general terms we may
say that although S (f) and I(f) are topologically equivalent sets S (f) may be smaller
than I(f) by a set of measure mI(f). There is no simple relation, such as inclusion,
between the sets I(f) and S(f) and no simple metrical relation between them. But
Theorems 3-8 and their corollaries have led to a number of relations involving some
metrical element which may be tabulated as follows:

For any function f(z) meromorphic in |z|<1 and any arc « of the circumference
l2)=1,
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m(F ()N a)=0 ‘ F(f)0 a is of category I
~ =TI (fyN o is residual (6 a)
m (I (f)n oc):mocl S (fy N a is residual

m(S(fiNa)=ma = m{I(HHNa)=ma (6 b)

I(f)Nna of category I]
~ = F (f) is metrically dense on o. (6 c)
S(f)na of category I[

VII. A theorem on the modular function

16. Since a set of category II is not empty Theorems 6 and 7 are existence
theorems for the sets S(f) and I (f) under appropriate conditions on the set F (f).
A particular case of interest is that of the modular function u (z) defined in the unit

circle |z|<1. It is known that the enumerable set of vertices of the modular figure

on the circumference |z|=1 are all Fatou points!; and it is easily shown that every
other point of the circumference is spanned by an infinity of copies of all three sides
of the fundamental triangle so that, for these points ' C, (@, e'? is non-degenerate
and hence ¢'®€ C F (n). It follows that F (x) is enumerable, so that I(x) is pp. by
Plessner’s Theorem A, and hence, by Theorems 5 and 6, both I (y) and 8 (p) are

residual on the circumference Izl: 1. We have thus proved

Theorem 9. For the modular function pu(z) regular in 2| <1 the set S(u) of points
z=¢'% at which the radial cluster set C,(u, €'%) is total is a residual set on |z|=1; and
the sct I(u) of Plessner points, whick is p.p. on |z|=1, is also residual.

Recurring to a previous remark (§12 above), the theorem is also true for the

n . on
Ty TP g
It is known that F(u) is dense® and I(u) is p.p. on |z|=1. We now see that

sets S, (1), and S, («) under suitable restrictions on the curve 4 (0).2

S (u), being residual, is also dense on |z|=1.

1 See, for example, CARATHEODORY (4], p. 275.

2 For example, if 2 has an end point on and is non-tangential to |z l =1 while ‘zl is strictly
increasing on Z.

3 C-C, p. 140.
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Other special cases for which S(f), and therefore also I (f), are residual sets are
those functions for which F (f) is empty, such as the unbounded regular functions
which are bounded on a spiral or on a sequence of closed curves enclosing the origin

and converging to the circumference |z|=1.1

VIII. Behaviour in the set of Plessner points

17. We consider the chordal cluster sets C,, (f, ¢'% of f(z) at a given point
e®cI(f). It has recently been proved by Meier? that the set §(f, 0) of values of

@ for which C,, (f, €'%) is total is of category II in the open interval — g <@< 7—;

Our method is immediately applicable to this problem and gives the stronger result

that $(f, 6) is in fact a residual set in the interval. We prove

Theorem 10. If f(z) is meromorphic in |z|<1 and e'®€I(f), then the set $ (f, 0)
of values of @ for which Cyq (f, €'°) is total is a residual set in — 7; <p< :72z
If, for a given value of @, C,q, (f, ¢'?) is sub-total we can find a circle contained
in CC,q(f, €%. We again project the w-plane onto the w-sphere and proceed ex-
actly as in the proof of Lemma 2. Using the same sequence of triangular lattices

I, by ... Ly, ..., m—>00, as in that argument I, (p) now denotes the set of values of
@ in — g <<p<z such that n is the smallest number for which C Cy, (f, e'% con-

tains the whole of at least one of the triangles d,,, 1 <r<m(n). We assign to each
triangle d,,, 1<v<m(n) those values of @€ I, (¢) for which d.,=C C,q (f, €°).
Again, all but one of these sub-sets of I', (p), which we denote by D, (¢), may be
empty, but at least one of them must be non-empty and any two of them may

have common points. We thus obtain the decomposition

CSHh0O=U U Du,(p). (7)

n 1<v<m(n)

If one of the sets D, , (¢), say Dy« (p), is of category II it follows by an argu-
ment similar to the proof of Lemma 1, which it is not necessary to repeat, that there

is an angle 7 contained in (— %, 7—;) such that d; < C O, (f, ' so that C, (f, e'?)

1 LusiN and PRIVALOFF (8], pp. 147-150; BagEminL, Erpos and SEIDEL [1], p. 144; and Va-
LIRON [11] and [12], pp. 430-432. Another example is given by BIEBERBACH, l.c., pp. 152-155.
? MEIER (9], p. 241.
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is sub-total and consequently e'®eCI(f). Therefore, if e'’€l (f) every set D, ()

must be of category I in (— g, g), and the theorem follows from (7).

18. For any given value of ¢, Theorem 10 does not of course establish the
existence of any point z=¢'’ at which the corresponding chordal cluster set C,, (f, €'%)
of f(z) is total. But we have such an existence theorem in Theorem 6, which, as
we have already pointed out, may also be proved for any of the sets .S, (f) and
certain of the sets S;4, (f). This leads at once to the following generalisation of
Theorem 6. Let ¢y, @, ... @n, ..., be any enumerable set of values in the interval

- E) < (pn<§- and denote by Sy, (f) the set f;] Soom (f) 80 that Sz, ,(f) is the

0

sct of points z=e¢'® at cach of which all the chordal cluster sets Cy,,(f, €) are

total. We then have
Theorem 11. If f(z) is meromorphic in |z|-<1 and if either I (f) or a set Sy (f)

. . 4 T ,
for some @ in the open interval — S -<l@-<as dense on an arc o of the circumference
2

|2]=1, then, given any enumerable set @,, @y, ... @n, ..., where — z <@y ;, n=1,2, ...,
the intersection }
Seo@ (N I(f) (8)
s residual on o.
For by Theorems 6 and 7, both of which are valid with S, (f) in place of
S{fy, I(f) is residual on «. Hence, by Theorem 6, Syipm (f) 18 residual on o for every

value of »n and it follows that the complement (U C Sy, (f)) UCI(f) of (8) being

the union of an enumerable set of sets of category I on a, is of category I on «.
This proves the theorem.

Some years ago it was proved by Kierst and Szpilrajn! for regular functions that
in general, ie. in « residual sub-space of the space of functions regular in |z|<1, the
cluster set Cy, (f, €'%) is total for all values of O and . More generally, these authors
proved that for a class of curves A(0) the cluster set Cj4, (f) is total for all values

of 0 and in a residual sub-space of the space of regular functions.2 What Theorem 6

' KiersT and SzZPILRAJIN (7], p. 291.

2 Although KiErsT and SzpiLraJN only discuss regular functions in the circle |z <1 it is clear
that their methods will in fact prove that in the space of functions meromorphic in zl <1 the set
of functions f (z) for which C; (f) is total for ail curves A on which |z|—>1 is residual.
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and its generalisations, of which Theorems 10 and 11 are examples, now show is that
assertions in the same direction, although less sweeping, can be made under specified

conditions applicable to individual meromorphic functions.

IX. A theorem on isolated essential singularities

19. The method of §17 is equally applicable to the case of a uniform function
g (z) having an isolated essential singularity, which we may assume to be at infinity.
We denote by C,q,(g) the cluster set of g(z) as z— oo along the ray p(p) defined
by z=re? 0<r<oo, and by C,(y) the angular cluster set of g(z) as z— oo by

sequences {z,} contained in A. With these definitions we prove

Theorem 12. Suppose that g(z) is non-rational and meromorphic for K <|z| < oo.
The wnecessary and sufficient condition that, given an angle A defined by z=re'",
< @<y, K<r<oco, the angular cluster set C4(g) of g(z) in uny A< A shall be total
is that the set of values of ¢ in @, < @< g, for which the radial cluster set Cy,q, (9) is
sub-total is of category 1.

That the condition is necessary follows at once by an application to the sets
oy (7) and S (g), the set of values of ¢ for which Cy, (9) is total, of the argument
of §17, practically without modification. The sequence of triangular lattices {/,} is
constructed and the corresponding subsets [, (@) of CS§(g) are defined as in §17

above and we obtain the decomposition

CSyp-U U  D..lp), )

n 1 v m(n)

where D, , (¢) Is now the subset of I, () for which CCy,, (y) contains the triangle
dyy, Liivzim@). If a set D;x(p) is of category II in (¢, ¢,) then there is an
angle A contained in @, <@< g, such that d; , S CC,4(y). The angular cluster set
(' 4{g) is thus sub-total and the necessity of the condition follows. For if every 1 (g)
is total then all the D, ,(g) must be of category I and it follows from (9) that
C $ (9) must be of category I in (g, @,).

The condition is also sufficient. For if it is satisfied every angle 4= A contains
aray z=re'?, 0<r< oo, on which C,, (9) is total; and C'4 (g), which contains (', (g),
is therefore total.

The theorem can evidently be generalised for domains swept out by a curve
A (p) rotated about the origin, A (@) being subject to suitable restrictions, as for

example that [z| is strictly increasing on A (g).
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Postscript

It was not until after this paper was finished that I became aware of two very
recent papers of Bagemihl and Seidel [2] and [3]. The authors there study problems
closely related to those studied here and in [2] they prove some of the same results.
Theorem 7 (b) and Corollary 1 of [2] are respectively Theorem 1 and Corollary 1 of
the present paper, while Theorems 7 (a) and 7 (b) of [2] are special cases of our
Theorem 6, and Theorem 9 of [2] contains our Theorem 10. However, the methods
of these two quite independent investigations are sufficiently different to give each
of them an independent interest and there are a considerable number of results which
are not common to both. In particular, our Theorem 5 and its consequences may
be mentioned. It has therefore seemed best, in spite of the overlapping of the re-
sults referred to!, to leave this paper unaltered except for the addition of this

brief note.

Lilburn Tower, Alnwick, England
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