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The hypercenter of a finite group may be characterized by various properties which, 

however, cease to be equivalent if applied to infinite groups. Of the possibilities thus 

arising we investigate here only one, the terminal member of the upper central chain; 

and our problem is the intrinsic characterization of the normal subgroups contained in 

this hypercenter. These hypercentral subgroups may be defined as exactly those subgroups 

N of G which satisfy the following simple condition: If M is a normal subgroup of G and 

if M < N, then N/M contains a center element, not 1, of G/M. 

Of the fundamental properties of hypercentral subgroups N of G the following seem 

to be outstanding: (a) if the normal subgroup M of G is a proper part of N, if x is an element 

of order a power of p in N/M and if g is some element in G/M, then there exists an integer 
pm 

m such that xg ~''~ = g x; (b) if T is a subgroup of G such that T < N T, then the normalizer 

of T in N T is different from T; (c) if the normal subgroup M of G is a proper part of N, 

then there exists a normal subgroup V of G such that M < V ~ N and such that M is the 

intersection of all the normal subgroups X of G which satisfy: M ~ X < V and V]X is a 

finite minimal normal subgroup of G/X. Actually it will be shown that each of the two 

combinations (a, c) and (b, c) is characteristic for hypercentrality. 

One of the most interesting phenomena encountered in the course of this investigation 

is the fact that hypercentral subgroups are never "very infinite". To make this rather 

vague statement more precise we mention two results: The maximum condition is satisfied 

by the subgroups of every finitely generated subgroup of the hypercenter; and finitely 

many elements of finite order in the hypercenter generate a finite subgroup. The latter 

remark points to a fascinating undercurrent of complications arising from encounters 

with Burnside's celebrated conjecture which had to be either circumvented or, in rather 

special instances, proved. The preparatory discussions of section 1 are very much concerned 

with just this situation; and some concepts and results of independent interest may be 

found there. 
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Notations. 

C(S < G) = centralizer of the subset S ill the group G 
--totality of elements z in G which comnmte with every element s in S. 

Z (G)= center of the group G. 
Ix, y] = x -1 y -1 xy. 
[X, Y]-~ subgroup G which is generated by all tile commutators [x, y] for x in X and y in Y. 

x a = totality of elements g -1 xg for g in G. 
{S} = subgroup generated by subset S. 
X < Y signifies that X is a proper part of Y and X < Y signifies that X is contained in Y. 

X fl Y ~ intersection of X and Y. 
G-~H signifies isomorphy of the groups G and H. 

p-group = group all of whose elements have order a power of p. 
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1. Finiteness, Minimality, Maximality. 

In this section a mmlber of general concepts and principles arc collected which will 

prove useful in the course of our investigation. We begin by stating the following well 

kuown 

Finiteness Principle: I1 the group G is finitely generated, and i / N  is a normal subgroup 

o] finite index in G, then N too is [iuitely generated. 

This one proves by straightforward application of the Reidemeister-Schreier method; 

see, for instance, Baer [1; 1 I. 396, (1.3)]. 

L e m m a  1: I[ the/initely generated ~wrmal subgroup N o/G is infinite, then N contains 

a normal subgroup M o] G such that N / M  is infinite though N/U is ]inite whenever the normal 

subgroup U o] G satisfies M < U < N. 

Proof :  Denote by r the set of all the normal subgroups V of G such that V < N  

and N/V  is infinite. Since N is infinite, 1 belongs to q). Suppose that  O is a not vacuous 
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subset o[ ~ which is ordered by inclusion. Form the join J o[ M1 t.]',c sub,~roul)s in O. I t  

is clear that  J is a normal subgroup of (; and t hat~ d :~ N. Assume by way of contradiction 

that  N/J is finite. Since N is finitely generatcd and N/J is finite, we deduce from the 

Finiteness Principle that  J is finitely generated. Denote by F a finite set of generators 

of J .  Then it follows from the construction of J that  there exists to every ] in F a subgroup 

S(]) in O which contains ]. Since O is ordcred by inclusion, there exists among the finitely 

many subgroups S(]) a maxiuml one, say ti. Then we have F < H  < J  and this implies 

J = H, since J is generated by F. Consequently J belongs to O and hence to qs; and this 

contradiction proves that  N/J is infinite. Thus wc have shown that  J belongs to q~. Now 

we may apply the Maximum Principle of Set Theory on the set q~. Hence there exists a 

maximal subgroup M in q}; and it is fairly clear that  211 has all the desired properties. 

L e m m a  2: Suppose that the nor,real subgroup N o] G satis]ies the/ollowing condition. 

(F) I / M  is a normal subgroup o] G such that M ~. N, t/~ea there exists a normal subgroup 

K o] G such that M < K < N and K/M is finite. 

Then finite subsets o /N  generate ]i~i~e s~bgroups o] N. 

Proof :  Consider a finite subset F of N and denote by S the subgroup generated by 

F. Assume by way of contradiction that  S is infinite. Then we deduce from Lcmma 1 the 

existence of a normal subgroup W of S with the following properties: S/W is infinite; 

if V is a normal subgroup of S such that  W <( V, then S~ V is finite. 

Denote by q~ the set of all normal subgroups X of G such that  X ~ N and X N S ~ W. 

This set q~ contains X = 1. If O is a non vacuous subset of (/) which is ordered by inclusion, 

then denote by J the set theoretical join of all thc subgroups X in qs. I t  is fairly clear 

that  J too belongs to (/); and thus the Maximum Principle of Set Theory may be applied 

on (/). Consequently there exists a maximal subgroup M in q~. I t  is clear that  M is a normal 

subgroup of G, that  M_<N and that M fi S_~ iV <:S. If M and N wcrc cqual, then we 

would have S < W < S  which is i)npossible. Hence 211 < N .  Now we deduce from (F) the 

existence of a normal subgroup K of G such that  M < K  < N and K/M is finite. Since 

M < K,  K is not in ~.  Hence K tl S ~_ IV. Consequcutly iV < (K N S) IV g S. Remembering 

the characteristic properties of W it follows now that  S / (K 0 S) W is finite. Next we note 

that  (K fl S)M/M gK/M.  Thus the first of these groups is finite as a subgroup of the 

finite second group. From the isomorl~hism theorem we deduce that  

(K O S)M/M ~- (K N S)/(K O S N M) = (K n S)/(M o S). 

But M [3 S g W so that  M N S g K N W g K N S and K N W is a normal subgroup of K n S. 

Thus (K N S)/(K n W) is isomorphic to a quotient group of the finite group (K (1 S )M/M.  

I t  follows finally from the Isomorphism Theorem that  (K N S) W/W ~- (K n S)/(K N W). 
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Consequently (KN S)W/W is finite. Since S/(KN S)W has been shown to be finite, it  

follows that  S[W is finite contradicting our choice of W. Thus we have been led to a con- 

tradiction by assuming the infinity of S. Hence S is finite, as we wanted to prove. 

Slightly extending a terminology that we adopted elsewhere we shall term the normal 
subgroup N of G locally finite, if every finite subset of N is contained in a finite normal sub- 
group of G which without toss in generality may be assumed to be part of N. I t  is clear that 
locally finite normal subgroups have the property (F) of Lemma 2 and that this property (F) 
is weaker than local finiteness. A still weaker property is the following one: (WF) Every/inite 
subset o] N generates a finite subgroup o/N. I t  is the content of Lemma 2 that every normal 
subgroup with property (F) has likewise property (WF). The converse is false as there exist 
infinite groups with property (WF) without finite normal subgroups r 1; see, for instance, 
Baer [1; p. 412, Example 3.4]. All the elements in a normal subgroup with property (WF) 
are clearly of finite order; whether the converse is true is a question essentially equivalent 
with the strongest from of Burnside's celebrated conjecture. 

It  will be convenient to speak of WF-subgroups instead of subgroups with property 
(WF) and to denote by W(G) the product o] all normal WF-subgroups o/the group G. Then 
we prove the following fact. 

W (G) is a normal W F-subgroup and WIG/W(G)] = 1. 

Proof :  We begin by verifying the following simple proposition. 

(1) I] M and N are normal subgroups o] G, i] M < N  and i / M  is a normal WF-subffroup 
o] G and N / M is a normal W F-subgroup o/G/M, then N is a normal W F-subgroup o/G. 

To prove this consider a finite subset F of N and denote by S the subgroup generated by F. 
Theu SM[M is a finitely generated subgroup of N/M. Hence SM]M is finite. But S M / M  ~- 
~_ S/(S fi M) so that the latter group is finite too. Since S is finitely generated, it follows from 
the Finiteness Principle that S N M is finitely generated. But M is a WF-subgroup. Hence 
S N M is finite. Since S N M and S ] (S N M) are finite, S is finite. Consequently N has property 
(WF). 

(2) The product o] two normal W F-subgroups is a normal W F-subgrou p. 

Suppose that A and B are normal WF-subgroup. Then AB is a normal subgroup. Every 
finite subset of A B / A  may be represented by a finite subset of B. Hence A B / A  is a normal 
WF-subgroup of G/A. Now we deduce from (1) that AB is a normal WF-subgroup of G. 

(3) The product o~ a/inite number o/normal W F-subgroups is a normal W ~-subgroup. 

This follows from (2) by an obvious inductive argument. 

(4) W (G) is a normal W F-subgroup. 

If g is an element in W(G), then there exist, by definition of W(G), finitely many normal 
WF-subgroups N(1) . . . .  , N(k) such that g belongs to their product N(1) . . .  N(k). Conse- 
quently every finite subset F of W(G) is contained in a product P of finitely many normal 
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WF-subgroups of G. It  follows from (3) that P is a normal WE-subgroup of G. Hence F generates 
a finite subgroup. Consequently W(G) has property (WF). 

(5) W[G]W(G)]~-I. 

There exists one and only one normal subgroup T of G such that W (G) _< T and T / W  (G) = 
: :  W[G/W(G)]. It follows from (4) that W(G) and T/W(G) are normal WF-subgroups of G 
and G/W(G) respectively. It follows from (1) that T is a normal WF-subgroup of G. Now it 
follows from the definition of W(G) that T ~ W(G) ~ T or T ~ W(G). Hence 1 = T] W(G) -~ 
~-WIG~ W(G)]. This completes the proof. 

Def in i t ion  i :  N is a ]initely reducible subgroup o] G, i] N is a normal subgroup o] G, 

i] N r 1 and i] 1 is the intersection o] all normal subgroups X of G with the property: 

(M) X < N  and NIX is a finite minimal normal subgroup of G/X. 

The exclusion of N = 1 is just a matter of technical convenience. 

We note that  every product of finite minimal normal subgroups of G is a finitely 

reducible subgroup of G; and tha t  direct products of finitely reducible subgroups of G 

are finitely reducible subgroups of G. But it is not true that  every product of finitely re- 

ducible subgroups is finitely reducible; if, for instance, G is the additive group of rational 

numbers, then every cyclic subgroup, not 0 of G is finitely reducible whereas their product 

G does not have this property. - -  Every free group G r 1 is a finitely reducible subgroup 

of itself; but their exist quotient groups of G which do not have this property [at least if 

the rank of G is greater than 1]. 

D e f i n i t i o n  2: The subgroup N o/ G is locally /initely reducible, i/ to every normal 

subgroup M o] G satis]ying M < N there exists a ]initely reducible subgroup o] G/M which 

is part o[ N/M. 

I t  is almost obvious that  locally finitely reducible subgroups need not be finitely 

reducible. Conversely consider the free group G possessing a normal subgroup N with 

the property: G[N is an infinite simple group. Then G is finitely reducible, but cannot be 

locally finitely reducible, since GIN does not contain finitely reducible subgroups. 

Every locally ]initely reducible subgroup is normal. 

To verify this consider a locally finitely reducible subgroup N of G and form the 

product P of all the normal subgroups of G which are part of N. I t  is clear tha t  P is a 

normal subgroup of G which is part of N; and an immediate application of Definition 2 

shows the impossibility of P ~ N. 

L e m m a  3: If  N is a locally ]initely reducible subgroup of G, and i~ M is a normal 

subgroup o] G, then N M / M  i8 a locally ]initely reducible subgroup o/G/M. 
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R e m a r k :  This propositiol~ becomes particularly interesting, if we remember that  

quotient groups of finitely reducible groups need not be finitely reducible. 

Proof:  Consider a normal sul)group U of G/M such that  U <MN/M.  Then there 

exists a uniquely determined normal subgroup H of G such that  M <_H < M N  and 

U = HIM. I t  follows from Dedekind's Law that H = M ( H  N N); and this implies H N N < N. 

Since N is a locally finitely reducible subgroup of G, there exists a finitely reducible 

subgroup R of G~ (H N N) which is part of N/(H N N). There exists a uniquely determined 

normal subgroup K of G such that  H N N < K _< N and R = K/(H N N). 

Clearly KM is a normal subgroup of G such that  

H = M ( H  N N) ~ M K  <MN.  

Next wc deduce from Dcdekind's Law that  

N NH g ( N  AH) (K NM)= K NM(N NH)= K NH <_N NH 

o r  

N N H = (N (1H) (K N M) =K N H; 

and this implies in particular that  K N M < h" N H. 

If the normal subgroup W of G is situated between H and MK, then it follows from 

M g H  and Dedekind's Law that  tV : M(K N W). It  is clear that  K N W is a normal 

subgroup of G satisfying 

H f l N = K N H  <KN W <K, W K = M ( K t l  W)K:::MK, H(KN W ) = W N H K = W ,  

K/(K N W) ~- WK/W = MK/W. 

If on the other hand the nornml sul>gr<)ul) V of G is situated between H N N and K, 

then HV is a normal subgroup between H and HK =M(H N N)K =MK satisfying 

H V N K = V (H N K) = V (H N N) = V. Recalling that  R = K/(H N N) is a finitely reducible 

subgroup of G/(H N N) it is now easily verified that  KM/H is a finitely reducible subgroup 

of G/H which is part  of NM/H. Consequently NM/M is a locally finitely reducible sub- 

group of G[M. 

Every/inite normal subgroup is locally finitely reducible. 

This is practically obvious. Slightly deeper is the following criterion. 

L e m m a  4: 1/the normal subgroup N o] G is a/initely generated abelian group, then 

N is locally finitely reducible. 

Proof:  Consider a normal subgroul) M of G such that  M < N .  Then N[M is a finitely 

generated abelian group and the totality F of elements of finite order in N/M is a finite 

subgroup of N/M which is naturally a normal subgroup of G/M. 
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If F # 1, then F contains, as a finite normal subgroup of G/M, a finite minimal normal 

subgroup of G/M; and this proves the existence of a finitely reducible subgroup of G/M 

which is part of N/M. 

If F = 1, then N/M and all its subgroups are free abelian groups of finite rank. Among 

the normal suhgroups, not 1, of G/M which are part  of N/M there exists one, W/M, of 

minimal rank. Denote by J the intersection of all the normal subgroups X of G/M with 

the property: 

X < W/M and (W/M)/X is a finite minimal normal subgroup of (G/M)/X. 

I t  is clear that  J is a normal subgroup of G/M and that  J <_ W/M. 

Consider now a prime number p. Then (W/M) ~ < W/M, (W/M) ~ is a normal subgroup 

of G/M [as a characteristic subgroup of a normal subgroup] and (W/M)/(W/M) ~ is finite, 

since W/M is a free abelian group of finite rank. But  then there exists clearly at  least one 

normal subgroup X of C,/M such that  (W/M) ~ <_X < W/M and such that  (W/M)/X is a 

finite minimal normal subgroup of G/X. Clearly J < X and the order of (W/M)/X is divisible 

by p. Thus (W/M)/J  possesses quotient groups of order a multiple of p for every prime 

p. tIence (W/M)/J  is infinite. The rank of the free abelian group J is therefore smaller 

than the rank of W/M. Since the rank of W/M is minimal, it follows that  J = 1. Applica- 

tion of Definition 1 shows that W/M is a finitely reducible subgroup of G/M which is 

part of N/M. This completes the proof of the fact that  N is a locally finitely reducible 

subgroup of G. 

(2orol la ry  l :  If N is a normal subgroup o] G such that the centralizer C(N < G )  has 

finite index in G, then N is a locally ]initely reducible subgroup o] G. 

Proof :  Consider a normal subgroup M of G such that  M < N  aud let G* = G/M 

and N* - N]M. Since MC(N <G)/M <_C(N* <G*),  it follows from our hypothesis tha t  

C(N* < G*) has finite index in G*. Now we distinguish two cases. 

Case 1: N* N C(N* <G*) = 1. 

Then N* is isomorphic to the subgroup N*C(N*<G*)/C(N* <G*)  of the finite 

group G*/C(N* <G*).  Hence N* is a finite normal subgroup, not l, of G*; and as such 

N* contains a finitely reducible subgroup of G. 

Case 2: N* .q C(N* <G*)  # 1. 

I t  is clear that  A =  N* N C(N* <G*)  is an abelian normal subgroup of G* which is 

part of N*. From the hypothesis of our case we deduce the existence of an element a # 1 

in A. Let B be the subgroup of G* which is generated by the totality of elements conjugate 

to a in G*. I t  is clear that 1 < B  <=.A < N * .  Since the index of C(N* <G*)  in G* is finite, 

the number of elements conjugate to a is finite. Thus the abelian normal subgroup B of G* 
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is finitely generated. I t  follows from Lemma 4 that B is a locally finitely reducible sub- 

group of G*. Since B r 1, this implies the existence of a finitely reducible normal sub- 

group of G* which is part of B and hence of N*; and this completes the proof. 

Bemark :  If N is a normal subgroup of G and G/C(N <G) is finite, then it may be 

seen that [G, N] is finite too; see Baer [2; Folgerung p. 167]. Our Corollary 1 is a simple 

consequence of this somewhat deeper fact. 

Gorollary 2: I] N is a normal subgroup o] G, and i[ there exists to every normal sub- 

group M o] G such that M < N an element t # 1 in N / M which possesses only a ]inite number 

ot conjugate elements in G/M, then N is a locally/initely reducible subgroup ot G. 

This is an almost immediate consequence of Corollary 1. 

L e m m a  5: It  the locally [initely reducible subgroup L o/ G is [initely generated, and 

i t M is a normal subgroup ot G such that M < L  and L / M  is a p-group, then L / M  is finite. 

Bemark :  Whether or not the first hypothesis of this lemma can be omitted, is an 

open problem [Burnside's Conjecture]. 

Proof: Assume by way of contradiction that L[M is infinite. Since L is finitely 

generated, L / M  is finitely generated too; and thus we may deduce from Lemma 1 the 

existence of a normal subgroup N of G with the following properties: 

M < N  <L, L / N  is infinite, 

if H is a normal subgroup of G such that N < H  < L ,  then L/H  is finite. 

Since N < L ,  and since L is a locally finitely reducible subgroup of G, L / N  contains 

a finitely reducible subgroup of GIN. Since finitely reducible subgroups are normal sub- 

groups different from 1, there exists a normal subgroup K of G with the following properties: 

N < K _< L and N is the intersection of all the normal subgroups X of G which satisfy: 

( + ) N  < X  < K  and K / X  is a finite minimal normal subgroup of G/X. 

Consider now some subgroup X with property (+). Since L / M  is a p-group, K / X  

is a p-group. But K / X  is a minimal normal subgroup of G/X and therefore can not possess 

proper characteristic subgroups. Thus K / X  is a finite p-group without proper characteristic 

~ubgroups. Hence K / X  is abelian and this is equivalent to saying that [K, K] ~ X .  

Since N is the intersection of all these subgroups X, it follows that [K, K] < N. Hence 

K I N  is abelian. 

From N < K < L and the choice of N it follows that L / K  is finite. Since L is finitely 

generated, it follows from the Finiteness Principle that K too is finitely generated. Thus 

K[N is a finitely generated abelian group. Since L / M  is a p-group, K I N  is a p-group. 

Consequently K I N  is a finitely generated abelian p-group; and this shows that K I N  is 
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finite. Since L / K  is likewise finite, we see that L / N  is finite. But this contradicts our 

choice of N. Thus we have been led to a contradiction by assuming that L / M  is infinite, 

proving the desired finiteness of L/M. 

2. Hypercentrality. 

Of the various possible concepts of hypercentrality only two will be investigated. 

These we introduce in tile present section which is devoted to a derivation of their basic 

properties. 

Definition ~1: The normal subgroup N o/ G is a lower hypercentral subgroup o/G, i/ 

it meets the/ollowing requirement. 

(L) I] the normal subgroup M o/ the subgroup S o] G is /initely generated, and i/ 

1 < M ~ N, then [M, S] < M. 

If in particular G itself is a lower hypercentral subgroup of G, then we term G a lower 

nilpotent group. It  is easily deduced from a Theorem of Magnus that every free group is 

lower nilpotent, though quotient groups of free groups are not always lower nilpotent. 

On the other hand it is quite obvious that N N S is a lower hypercentral subgroup of the 

subgroup S of G whenever N is a lower hypercentral normal subgroup of G. 

From the fact that free groups are lower nilpotent, it follows that lower hypercentrality 

will generally prove too weak a concept. This concept will accordingly only play a minor 

r61e in our discussion. Tile important concept for us is the following one. 

Definit ion 2: The subgroup N o/ G is an upper llypercentral subgroup o] G, i/ N 

meets the/ollowing requirement. 

(U) I/ M is a normal subgroup o/G, and i [ M  < N, then (N / M) N Z(G / M) ~ 1. 

If in particular G itself is an upper hypercentral subgroup of G, then we term G an 

"upper nilpotent group. Note that the nonabe]ian free groups are lower nilpotent, but clearly 

not upper nilpotent. 

Upper hypercentral subgroups are normal. 

To prove this consider an upper hypercentral subgroup N of G and form the product 

P of all the normal subgroups of G which are part of N. It is clear that P is a normal sub- 

group of G and that P ~ N. Assume by way of contradiction that P < N. Then it follows 

from the upper hypercentrality of N that 1 r ( N / P) N Z (G / P) = Q / P where Q is a uniquely 

determined subgroup of G such that P < Q ~ N. But subgroups of the center are normal 

so that Q itself is normal. Hence Q g P <Q, an impossibility. Consequently N = P is a 

normal subgroup of G. 
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Lemma i :  The /ollowing properties o] the finitely reducible subgroup N o]G are 

equivalent. 

(i) N <Z(G). 

(ii) I] the normal subgroup M o]G is part o] N, then N / M is a lower hypercentral sub- 

group o] O / M. 

(iii) N is an upper hypercentral subgroup o]G. 

(iv) I] M is a normal subgroup o] G, i] M < N  and i] N / M  is a finite minimal normal 
subgroup o~ G, then N / M  <_Z(G/M). 

Proof:  I t  is fairly obvious that  conditions (ii) and (iii) are consequences of condi- 

tion (i). 

Assume next the validity of one of the conditions (ii) and (iii). Consider a normal 

subgroup M of G such that  M < N  and M / N  is a finite minimal normal subgroup of 

G/M. If  condition (ii) is satisfied by N, then N / M  is a lower hypercentral subgroup of 

G/M. Since N / M  is finite, N]M is a finitely generated normal subgroup. Thus we may 

apply (L) and find that  [N/M, G/M] < N/M. But N / M  is a minimal normal subgroup 

of G/M. Hence [N/M, G/M] = 1 or N / M  <_ Z (G/M). Thus (iv) is a consequence of (ii). - -  

If (iii) is satisfied by N, then we deduce from M < N and (U) that  (N/M) N Z (G/M) ~ 1. 

But N / M  is minimal. Hence N / M  = (N/M) N Z (G/M) or N / M  < Z (G/M). Thus (iv) 

is a consequence of (iii). 

Assume finally the validity of (iv). If  M is a normal subgroup of G such that  M < N 

and N / M  is a finite minimal normal subgroup of G/M, then it follows from (iv) that  

N/M<Z(G/M) .  This is equivalent to saying that  [G, N]<M. Hence [G, N] is 

part of the inteTsection J of all the normal subgroups X of G such that  X <  N and N / X  

is a finite minimal normal subgroup of G. But N is a finitely reducible subgroup of G. 

Hence J = 1 and consequently [G, N] = 1. This last statement is equivalent to N < Z (G); 

and this completes the proof. 

I t  is clear that  this lemma is our principal reason for introducing the concept of a 

finitely reducible subgroup. -- Essential improvements upon this result will be found in 

section 4. 

P r o p o s i t i o n  t :  I] N is an upper hypercentral subgroup o/G, and i / M  is a normal 

subgroup o] the subgroup So] G, then (S N N)M/M is an upper hypercentral subgroup o]S / M. 

Proof :  I t  is clear tha t  S A N is a normal subgroup of S and that  therefore 

(S N N) M / M  is a normal subgroup of S/M. If U is a normal subgroup of S /M such that  

U < (S N N) M / M, then there exists a normal subgroup V of S such that  M K V < (S N N) M 

and V/M = U. Consider the set ~ of all the normal subgroups X of G such that  X K N 
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and X n S ~ V. This set q~ is not vacuous, since it contains X = 1. If  the subset O of q~ 

is not vacuous and is ordered by inclusion, then the set theoretical join J of all the sub- 

groups in O is clearly a normal subgroup of G which is part of N. If j belongs to J N S, then 

there exists a subgroup Y in O which containsj.  Hence j  is in Y N S _< V so that  J N S _< V. 

Thus J belongs to r and we have shown that  the Maximum Principle of Set Theory 

may be applied to r  Hence there exists a maximal subgroup W in ~.  We note that  W 

is a normal subgroup of G, that  W _< N and W fi S ~ V. Assume by way of contradiction 

that  W = N. Then. 

(S N N)M = (S N W)M <~ VM = V < (S N N)M, 

an impossibility. Thus W < N and we may apply condition (U). Hence 

D =(N/W) N Z(G/W)r  1. 

Denote by T the uniquely determined normal subgroup of N such that  W < T < N and 

T / W  =D. From the maximality of W it follows that  T n S ~ V. Thus there exists an 

element t in T N S which does not belong to V. Since t is in T, Wt belongs to Z(G/W). 

If s is an element in S, then Wt and Ws commute so that  the set [t, S] of commutators 

is part  of W. But  t is in S so that  It, S] <_SN W ~ V  and then Vt~ 1 belongs toZ(S /V) .  

On the other hand t is in T fl S and Vt therefore in (T N S) V ~ ( N  N S)M. This shows that  

[(N n S)MIV] N Z ( S / V ) r  1 
o r  

[(N N S)M/M]/[V/M] N Z[(S/M)/(V/M)] = [(N N S)M/M]/U N Z[(S/M)/U] ~ ]. 

Hence condition (U) is satisfied by (S N N)MSM and we have shown tha t  (S N N)M/M 

is an upper hypercentral subgroup of S/M. 

R e m a r k :  We have pointed out before that  no statement of this type can be true 

for lower hypercentral normal subgroups. 

Gorollary' t :  Every upper hypercentral subgroup is a lower hypercentral normal sub- 

group. 

Proof :  Suppose that  N is an upper hypercentral subgroup of G, tha t  M is a normal 

subgroup of the subgroup S of G, tha t  1 < M _ N and that  M is finitely generated. I t  is 

a consequence of Proposition 1 that  S N N is an upper hypercentral subgroup of S. Form 

the set ~b of all the normal subgroups X of S such that  X < M. This set r is not vacuous, 

since X = 1 belongs to ~. If  O is a non-vacuous subset of r and if O is ordered by inclusion, 

then we may form the set theoretical loin J of all the subgroups in O. I t  is clear tha t  J 

is a normal subgroup of S and that  J ~ M. Assume by way of contradiction that  J = M. 

There exists a finite set F of generators of M. To every element t in F g M = J there 
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exists a subgroup X(/) in O which contains ]. Since O is ordered by inclusion, there exists 

among the finitely many subgroups X(]) in O a greatest one U. Then we have $' ~ U _< M 

so that  U = M belongs to O _< q), an impossibility. Hence J < M so that  J belongs to 4 .  

Thus we have shown that  the Maximum Principle of Set Theory may be applied to q); 

and this shows the existence of a maximal subgroup V in ~b. Then V is a normal sub- 

group of S such that  V < M  and M / V  is a minimal normal subgroup of S/V.  Since 

M < N ~ S, and since N N S is an upper hypercentral normal subgroup of S, we may apply 

condition (U). Hence (M/V) (~ Z(S/V)  # 1. But M / V  is a minimal normal subgroup of 

S~ V; and thus it follows that  (M / V) N Z (S / V) = M~ V or M~ V <_Z (S / V). This, however, 

is equivalent to saying that  
[S, M] g V <M.  

Hence condition (L) is satisfied by N and N is consequently a lower hypercentral normal 

subgroup of G. 

Remark: The converse of this corollary is false, as has been pointed out before. 

P r o p o s i t i o n  2: The ]ollowing properties o] the normal subgroup N o]G are equivalent. 

(i) N is an upper hypercentral subgroup o]G. 

(ii) N is a locally finitely reducible subgroup o] G; and i / H  and K are normal subgroups 

o]G such that H < K ~ N and K / H .is finite, then K / H is an upper hypercentral subgroup o] 

G/H. 

(iii) N is a locally finitely reducible subgroup o] G; and i] H and K are normal subgroups o/ 

G such that H < K  ~ N  and K / H  is finite, then K / H  is a lower hypercentral subgroup o~ 

O/H. 
(iv) N is a locally finitely reducible subgroup o] G; and i /H  and K are normal subgroups 

o] G such that H < K g N  and K / H is a finite minimal normal subgroup gIG/H, then 

K / H  gZ(G/H). 

(v) I] M is a normal subgroup o]G and M < N ,  then N / M contains a normal subgroup 

o/ G ] M which is a finitely generated abelian group di]]erent /tom 1; and i / H  and K are 

normal subgroups o/G such that H < K <_ N and K ] H is a ]inite minimal normal subgroup 

o /G/H,  then K[H KZ(G[H). 

(vi) I] M is a normal subgroup o]G and M < N, then N / M contains an element di]/erent 

/tom 1 which possesses only a finite number o~ conjugates in G/M; and i] H and K are normal 

subgroups o/G such that H < K <_ N and K / H is a finite minimal normal subgroup o~ G ] H, 

then K / H  <_Z(G/H). 

(vii) There exists an ascending central chain o~ G which terminates in N. 

(viii) N <_Z, ( G) ~or some finite or infinite ordinal a. 

(ix) N is part o] the upper hypereenter U ( G) o]G. 
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No ta t i ona l  R e m a r k :  An ascending central chain of G which terminates in N is a 

well ordered set of normal subgroups No such that  

1 = N 0 ~  ... <_N~ ~ ... ~N~ : :N,  [G, No+~] _<N,, 

No is the set theoretical join of all the N, with v < a  in case a is a limit ordinal. 

The upper central chain Zo = Zo(G) is defined inductively by the rules: 1 = Z o, 

Zo+I/Zo = Z[G/Zo] and ZQ is the set theoretical join of all the Z, with ~ <~  ill case ~) is 

a limit ordinal. Clearly there exists a [first] ordinal ~ such that  Z~(G)=Z~+I(G). This 

terminal member of the upper central chain is the upper hypercenter U (G) o/G. 

Proof:  Assume first that  N is an upper hypercentral subgroup of G. If M is a normal 

subgroup of G such that  M<N,  then (N/M)N Z(G/M) is different from 1 and contains 

therefore a cyclic subgroup different from 1. But subgroups of the center are normal; 

and cyclic normal subgroups, not 1, are finitely reducible. Thus we see that  N is a locally 

finitely reducible subgroup of G; and the validity of the second part of condition (ii) is 

an immediate consequence of Proposition 1. Hence (i) implies (ii). 

That (ii) implies (iii), may be deduced from Corollary 1; and that  (iii)implies (iv), is 

a fairly immediate consequence of Lemma 1. Assume now the validity of (iv) and consider 

a normal subgroup M of G such that  M < N .  Then there exists a finitely reducible sub- 

group V of G/M such that  V ~N/M; and it follows from Lemma 1 and the second part 

of condition (iv) that  V gZ(G/M). Thus N is an upper hypercentral sul)group of G, 

proving the equivalence of the first four conditions. 

Assume next the validity of the first four conditions. Then the second part of condi- 

tions (v) and (vi) is just a restatement of the second part of condition (iv). If M is a normal 

subgroup of G and if M < N ,  then we have (N/M) ,q Z(G/M) r 1 [because of (ill. Thus 

(N/M) N Z(G/M) contains a cyclic subgroup V ~ 1. Clearly V is a normal subgroup of 

G/M and the elements in V possess exactly one conjugate clement in G/M. This shows 

that  also the first parts of conditions (v) and (vi) are valid. 

If conversely (v) or (vi) is true, then (iv) is valid too, as follows from w 1, Lemma 

4 and w 1, Corollary 2. This completes the proof of the equivalence of the first six conditions. 

Assume again the validity of (i). Suppose that  we have constructed an ascending central 

chain No of G all of whose terms are contained in N. If this chain has no last term, then 

its order type is a limit ordinal ~; and we let N, be the set theoretical join of all the No 

[with a < v ] .  If the chain has a last term N~, then NQ<_N. If N =NQ, then we have 

completed our construction. If N~<N, then we deduce from condition ( U ) t h a t  

1 ~ (N/No)N Z(G/NQ). We denote by Nq§ the uniquely determined normal subgroup 

of G which contains NQ and satisfies No+~/N~ =(N/No)N Z(G/Nq). Thus we sec that  
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there exists an ascending central chain of G which terminates ill N. Hence (vii) is a 

consequence of (i). 

If the normal subgroups No form an ascending central chain which terminates in 

N [ = Na], then one proves inductively that  N,  <_ Zo(G) and now it is clear that  (viii) is a 

consequence of (vii). That (viii) and (ix) are equivalent properties, is immediately clear, 

if one recalls the definition of the upper hypercenter U(G) of G. 

Assume finally the validity of (viii) and consider a normal subgroup M of G such 

that  M < N .  Then there exist ordinals a, for instance the "terminal a",  such that  

Z~ N N ~ M.  Consequently there exists a first ordinal fl such that  Zp N N ~ M. From Z o = 1 

we deduce 0 <ft.  If fl were a limit ordinal, then every element w in Zp N N, but not in M, 

would belong to some Z~ N N with v <fl,  contradicting the minimality of ft. Hence fl =~ + 1 

and it follows from our minimal choice of fl tha t  Z r N N <- M. Let K = M (N N Z~). Then K 

is a normal subgroup of G such that  M < K _< N. Furthermore 

[K, G] = [M, G] IN N Zp, G] < M ( N  N [Z~, G]) <_M(N N Zr) = M. 

Hence 1 < K / M  <_(N/M)N Z(G/M).  Thus condition (U) is satisfied by N and this com- 

pletes the proof of the equivalence of our nine conditions. 

~ o r o l l a r y  2 : 1  t the normal subgroup N ol G is part ot an upper hypercentral sub- 

group ot G, then N is an upper hypercentral subgroup o t G. 

This is an immediate consequence of the equivalence of conditions (i) and (ix) of 

Proposition 2. 

3. The Commutativity Relations. 

We want to show in the present section that  elements in hypercentral normal sub- 

groups commute with "many"  elements in the group. 

L e m m a  t: 1 t x is an element in the lower hypercentral normal subgroup N ot G, i / g  

is an element in G and i t the orders ot x and g are finite and relatively prime, then xg = gx. 

Proof:  Denote by S the subgroup of G which is generated by x and g; and let M = 

= [S, S] be the commutator subgroup of S. Then S / M  is an abelian group which is genera- 

ted by two elements of finite order so that  S / M  is finite. Since S is finitely generated, 

it follows from w 1, Finiteness Principle that  M is finitely generated. 

Assume now by way of contradiction that" c = x- lc- lxg r 1. Then M ~ 1. Since x 

belongs to N, c belongs to N. Since M is generated by c and elements conjugate to c, M 

is part of N. Thus we may apply condition (L). Hence [M, S] < M. 

From xc = g--lxg one deduces easily that  

g-~xg ~ -  xc t modulo [M, S], 
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since c is in M and g is in S. If  h is ttle order of g, then it follows that  

x = g-hxgn -~ xc h modulo [M, S]. 

Consequently c a belongs to [M, S]. If  k is the order of x, then we see likewise that  c k belongs 

to [M, S]. Since h and k arc relatively prime, it follows that  c belongs to [M, S]. But  

M / [ M ,  S] is generated by [M, S] c. Hence [M, S] = M. This is the desired contradiction 

which proves tha t  c = 1 or xg = gx. 

L e m m a  2: I / x  is an element o] ]inite order m in the upper hypercentral subgroup N 

o/ G, and i /  g is an element in  G, then there exists a positive integer n all o /whose  pr ime 

divisors are divisors o / m  such that xg n = gnx. 

Proof :  Assume first tha t  g is an element of finite order. Then g = g' g" = g" g' where 

the orders of x and g' are relatively prime whereas every prime divisor of the order n of g" 

is a divisor of the order m of x. I t  follows from w 2, Corollary 1 tha t  N is a lower hyper- 

central normal subgroup of G. Since the orders of x and g" = g,n are relatively prime, it 

follows now from Lemma 1 tha t  xg n = g ' x  as we wanted to show. 

Assume next tha t  g is of infinite order and suppose by  way of contradiction tha t  

x g n r  g"x for every positive n. We form the subgroup S generated by x and g; and we 

deduce from w 2, Proposition 1 tha t  N N S is an upper hypercentral normal subgroup 

of S. I t  is clear tha t  x belongs to N N S and tha t  therefore S / ( N  fi S) is a cyclic group 

generated by  (N N S)g.  Now we form the set O of all the normal subgroups X of S such 

that  X g N  fl S and such that  x g " ~ g " x  modulo X for every positive n. This set ~b is not 

vacuous, since it contains X = 1. I f  O is a non vacuous subset of ~ which is ordered by 

inclusion, then we form the set theoretical join J of all the subgroups in O. I t  is clear 

that  J is a normal subgroup of S, and that  J g N  N S. If  x g  ~ ==g"x modulo J for some 

positive n, then the commuta tor  [x, g"] would belong to J and hence to some X in O. 

But  then x g  n - g " x  modulo X which is impossible. Thus x g " ~  gnx modulo J for every 

positive n so tha t  J belongs to ~ .  Now we have shown tha t  the Maximum Principle of 

Set Theory may be applied on the set ~b. Thus there exists a maximal subgroup W inO.  

Since x is in N N S, we have x g  ~ g - - g x  modulo N N S. But  x g ~  g x  modulo W. Since 

W is part  of N N S, we have shown that  W ~ N N S. Since N N S is an upper hypercentral  

normal subgroup of S, it follows now tha t  

1 r  N S ) / W ]  N Z ( S / W )  = V / W  

where V is a uniquely determined normal subgroup of S. From W < V g N N S and the 

maximali ty of W we deduce now the existence of a positive integer n such that  x g ~ :~ g~x 

modulo V. 
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I t  will be convenient to let s* = Ws for every s in S. Then it follows from our construc- 

tion of V that  1 < V *  = V / W g Z ( S * ) = Z ( S / W ) ;  and it follows from our choice of n 

that  x*g *'~ ~_= g*'~x* modulo V*. Tim commutator [x*, g*'~] belongs therefore to V* _~ Z (S*); 

and it is well known that  this implies 

[x *~, g*"] = Ix*, g.n]~ = Ix*, g*"~] for every positive i. 

If we apply this in particular on the order m of x, then we deduce from x m = 1 succes- 

sively that  x* . . . .  1 and that  therefore 

[x*, ~*nm] = IX,m, q*n] = 1. 

This is equivalent to saying that  Ix, gmn] belongs to W. Hence xg"~--gmnx modulo W 

which is impossible, since W belongs to r  Thus we have been led to a contradiction and 

consequently there exists a minimal positive integer n such that  x g ~ = gnx. 

Since gn commutes with the two generators x and g of S, gn belongs to Z(S). Suppose 

now by way of contradiction that  the prime divisor p of n is not a divisor of the order 

m of x. Let  y = gn~-l. Denote furthermore by C the cyclic subgroup of Z(S) which is gene- 

rated by g~. Since g is an element of infinite order, Cy is an element of order p. Thus Cy 

and Cx are elements of finite relatively prime orders. I t  follows from w 2, Proposition 1 

that  (N N S )C/C  is an upper hypercentral normal subgroup of S/C; and it follows from 

w Corollary 1 that  it is lower hypercentral too. Thus it follows from Lemma 1 that  Cy 

and Cx commute. Hence Ix, y] belongs to the subgroup C of the center of S; and it follows 

from the customary arguments that  1 = [x '~, y] = [x, y]m. Since g and hence g" is an element 

of infinite order, C is an infinite cyclic group; and we deduce Ix, y] = 1 from [x, y]'~ = 1. 

Consequently xg '~'-* =g'~'-'x contradicting thc minimal choice of n. Thus every prime 

divisor of n is a divisor of m; and this completes the proof. 

R e m a r k :  I t  is impossible to substitute in Lemma 2 for the hypothesis of upper 

hypercentrality the weaker hypothesis of lower hypercentrality. This may be seen from 

the following interesting example. Denote by B a direct product of countably many cyclic 

groups of order 10 and denote by b(i) for i = 0, _+ 1, • 2 . . . . .  a basis of B. Then there 

exists a well defined automorphism a of B which maps b (i) upon b(i  + 1 ) for every i. 

The group G arises by adjoining to B the automorphism a. Then G/B is an infinite cyclic 

group. 

If S is a subgroup of G which is not part  of B, and if B N S r 1, then B N S has always 

an infinite basis. From this one sees that  G is lower nilpotent. On the other hand it is clear 

that  the result of Lemma 2 does not hold in G. I t  is furthermore worth noting that  every 

proper quotient group of G is upper nilpoteut. 
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L e m m a  3: Suppose that N is an upper hypercentral s~bgroup o/G and that the element 

g in G induces in N an automorphism o] ]inite order n. I / t h e  prime number p is a divisor 

o] n, then N contains elements o/order p. 

Proof :  Clearly n = n ' p~  where 0 < m  and n' is prime to p. Let  g ' =  g"'. Then g' 

induces in N an automorphism of exact order p~. Denote by C the totality of elements 

in N which commute with g'. I t  is clear that  C is a subgroup of N. Since g' induces in N 

an automorphism of order p~ # 1, g' does not commute with every element in N so that  

C < N .  

Denote now by D the product of all the normal subgroups of G which are contained 

in C. I t  is clear that  D is a normal subgroup of G and that  D < C < N. We apply condition 

(U) and find that  1 # (N /D)  N Z(G/D)  = T / D  where T is a uniquely determined normal 

subgroup of G such that  D < T < N and [G, T] < D. I t  follows from our construction of 

D that  T is not part  of C. Hence there exists an element t in T which does not belong to C. 

I t  is clear that  [t, g'] belongs to [G, T] < D _< C. Consequently g' commutes with [t, g']. 

Now we deduce from g,-1 tg,= tit, g'] that  g,-i tg,~ = t[t, g,]i for every positive i. Since t 

belongs to T_<N, and since g' induces in N an automorphism of order p~, we have 

t = g '-vm tg 'vm = t [t, g'] vm or [t, g'] vm = 1. 

Since t is not in C, [t, g'] # 1. Thus [t, g'] is an element in D < N whose order is a multiple 

of p; and this shows the existence of elements of order p in N. 

4. Subgroups of the Center. 

In the light of w 2, Lemma 1 and w 2, Proposition 2 it is important to have criteria 

for a finite minimal normal subgroup or a finitely reducible subgroup to be part  of the 

center. In this section such criteria will be obtained. 

P r o p o s i t i o n  1: The ]ollowing properties o] the/inite minimal normal subgroup M o~ 

G are equivalent. 

(i) M gZ(G) .  

(ii) I / T  is a maximal subgroup o/the subgroup S o/G, and i ] M  N S ~: T, then T is a 

no~mal subgrou~ o /S .  

(iii) I /  the element x in M is o] order a power o] ~, and i] g is an element in G, then 

there exists an integer m = re(x, g) such that x g v'~= gv" x. 

(iv) There exists an element t # 1 in M whose order is a power ot p such that to every g 

in G there exists an integer m = m (g) satis/ying tg ~m = gym t. 

1 2 -  533805. Acta Mathematica. 89, Imprlm6 le 22 avril 1953, 
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Proof :  Assume first that  M gZ(G) .  Consider the maximal subgroup I '  of the sub- 

group S of G which satisfies MN S ~  T. Then M f1S<_Z(G)and T < T ( M  f ) S ) K S .  I t  

follows from the maximali ty  of I '  that  S =~ (M fl S)T.  To every element s in S there exist 

consequently elements u and v in M N S and T respectivcly such that  s ~ ~v. Since u 

belongs to Z(G), we find that  

s -1 Ts =v -1 u -~ T uv = v -1 T v  = T. 

Hence T is a normal subgroup of S proving tha t  (ii) is a consequence of (i). 

Assume next the validity of (ii). I f  g is an element in G, then we form the subgroup 

S = { M ,  g) of G. Clearly M is a normal subgroup of S and S/M is a cyclic group. The 

element g induces in M an automorphism of finite order, since M is a finite normal sub- 

group of S. If  k is the order of this automorphism, then gk commutes with every element 

in M. But  gk commutes with g too. Hence gk belongs to Z(S). This implies in particular 

that  S / M Z ( S )  is a finite cyclic group. Since M is. finite, MZ(S) /Z (S )  is likewise finite; 

and thus we have shown that  S /Z (S )  is finite. 

Consider now a maximal subgoup of S~ Z(S). Such a maximal subgroup has the form 

T/Z(S )  where Z ( S ) <  T < S  and 7' is a maximal subgroup of S. If  T contains M, then 

T is a normal subgroup of S, since S / M  is cyclic and since therefore every subgroup of 

S / M  is normal. If  T does not contain M ~: M N S, then we apply (ii) to see that  T is a 

normal subgroup of S. Thus we have shown that  every maximal subgroup of the finite 

group S /Z (S )  is normal. Now it follows from a Theorem of Wielandt that  S/Z(~q) is a 

finite nilpotent group; see, for instance, Zassenhaus [1; p. 108, Satz 13]. But  then it folh)ws 

from w 2, Proposition 2 that  S is upper nilpotent. If  the element x in M is of" order a power 

of p, then we may now deduce from w 3, Lemma 2 the existence of '~n integer m such tha t  

xg rm= g~mx; and thus we have shown that  (iii) is a consequence of (ii). 

I t  is almost obvious that  (iv) is a consequence of (iii), if we remember only that  M is 

finite. 

Assume finally the validity of (iv). Then there exists an element t r 1 in M whose 

order is a power of p with the property: 

( + )  To every g in G there exists an integer m =: re(g) such that  to "'~ = g~,m t. 

Since M is a finite normal subgroup, every element conjugate to t in G t)clongs to M 

and their number is finite. Consequently there exists a finite set F in G such that  the set 

of elements/-1 t /w i th  / in F is the totali ty of elements conjugate to t in G. 

Consider now an element g in G and denote by k(.q) the maximum of the finitely 

many  integers m(/g/-1) for ] in F. Since (/-i t/)g~'= g~(/-1 t/) and t(/g/-1) ~i= (/g/-I)'it 

are equivalent properties of the integer i, one sees easily the following fact. 
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( +  + ) To every element g in G there exists an integer ], ..... ],~(.q) such that  s.q 7,1' '= .q~'l' s 

for every element s conjugate to t in G. 

Since t # 1 and since M is a minimal normal subgroup of G, M is generated by the 

elements conjugate to t in G. Thus it follows from ( +  + )  tha t  

(*) to every element g ill G there exists an integer k = k(g) such tha t  gV~ commutes 

with every element in M. 

Denote now by C the centralizer of M in G. Since M is a finite normal subgroup, C 

is a normal subgroup of finite index in G and G/C is essentially the same as the group of 

automorphisms of M which are induced by elements in G. I t  follows from (*) tha t  to every 

g in G there exists an integer k = ],:(g) such that  g~'~ belongs to C. Consequently G/C is a 

finite p-group. 

I f  M f3 C = 1, then M is isomorl)hie to tim subgroup MC/C of the p-group G/C so 

that  M is a p-group. If  M/3 C #  1, then we infer M N C = M from the minimality of M. 

Consequetly M g C. Hence M is abelian. Since M is a finite minimal normal subgroup 

of G, M does not contain proper characteristic subgroup. This implies that  M is a pr imary 

abelian group. But  M contains the element / r 1 of order a power of p: and thus it follows 

again that  M is a p-group. 

Since M is a finite p-groul), n~)t l, and since G/C is essentially a finite p-group of 

automorphisms of M, it follows by the customary arguments that  this p-group of auto- 

morphisms possesses fixed elements different from 1. Hence M N Z(G)# 1. I t  follows 

from the minimali ty of M tha t  M N Z(G) = M or M <Z(G). Hence (i) is a consequence 

of (iv); and this completes the proof. 

Remark: We used in the preceding proof Wielandt 's Theorem asserting tha t  a 

finite group is nilpotent if, and only if, all its maximal subgroups are normal. Thus one 

may wonder whether condition (ii) may be weakened correspondingly. That  this is impos- 

sible, may be seen from the following simple exa~t~ple: 

Consider an odd prime p, a divisor i # 1 of p - 1 ,  for instance i -  - - 1 .  Denote by V 

a cyclic group of order p~ and by a the automorphism of V which maps every element in 

V upon its i-th power. Adjoin to V the automorl)hism a. Then we obtain a finite group G. 

This group G contains V and V p as norm'd subgrou])s and every maximal subgroup of G 

contains V v. Hence V v is a minimal normal subgroul) M of G which satisfies [by default] 

the condition: 

If  the maximal  subgroup S of G does not contain M, then S is a normal subgroup of G. 

But  M = V v is not part  of the center Z(G) of G, since a does not leave invariant any 

element in V except l. 



184 Reinhold Baer. 

Coro l l a ry :  The ]ollowing properties o] the ]initely reducible subgroup M o] G are 

equivalent. 

(i) M _ Z (G). 

(if) I / T  is a maximal subgroup o] the subgroup So]  G and i / M  N S-~ T, then T is a 

normal subgroup o~ S. 

That (i) implies (if), is shown by a verbal repetition of the argument in the first step 

of the proof of the preceding proposition where neither the finiteness nor the minimality 

of M has been used. - -  That  conversely (i) is a consequence of (if), is easily deduced from 

the preceding proposition and w 2, Lemma 1. 

5. The Main Criteria for Hypercentrality. 

The type of criterion for hypercentrality that  we obtain will depend on the extent  to 

which elements of infinite order are admitted. 

T h e o r e m  1: The normal subgroup N o[ the group G without elements o/ in/inite order 

is a lower hypercentral normal subgroup o/G i], and only i], the [ollowing two conditions are 

satis/ied by N and G. 

(a) I/  x is an element in N and g an element in G, and i/the orders o / x  and g are 

relatively prime, then x g = g x. 

(b) I/  the nqrmal subgroup M o/ the subgroup S o ]  G is finitely generated, and i] 

1 ~ M <_ N, then there exists a normal subgroup K o] S such that K ~ M and M / K is finite. 

Proof :  If N is a lower hypercentral normal subgroup of G, then we deduce the 

validity of (a) from w 3, Lemma 1. If furthermore M is a normal subgroup of the subgrot~p 

S of G, if M is finitely generated and 1 -< M < N, then if follows from condition (L) that  

[S, M] < M .  But M/[S, M] is a finitely generated abelian group without elements of in- 

finite order and such groups are finite. This proves the necessity of (b). 

Assume conversely the validity of conditions (a) and (b). If M is a normal subgroup 

of the subgroup S of G, if M is finitely generated and 1 < M  _<N, then we deduce from (b) 

tile existence of a normal subgroup K of S such that  K < M and such that  M / K  is a finite 

minimal normal subgroup of S /K .  Consider an element x* of order a power of p in M / K  

and an element s* in S /K .  If s is an element in S such that  s* - Ks, then s is of finite 

order and there exists an integer m such that  the order of s rm is prime to p. Since every 

element in G is of finite order, there exists an element x of order a power of p in M such 

that  x* = Kx. I t  follows from condition (a) that  x s ~m = s "mx and this implies clearly tha t  

x* s *~m = s*rmx *. Thus condition (iii) of w 4, Proposition I is satisfied by the finite minimal 
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normal subgroup M / K  of S /K .  Consequently M / K  g Z ( S / K )  and this is equivalent to 

saying that  [M, S] _< K < M. Thus condition (L) is satisfied so that  N is a lower hyper- 

central normal subgroup of G. 

R e m a r k :  If Burnside's celebrated conjecture were true, then finitely generated 

groups without elements of infinite order would be finite and condition (b) could certainly 

be omitted. Thus indispensability of condition (b) can only be proven by showing that  

Burnside's conjecture is false. 

T h e o r e m  2: Suppose that the normal subgroup N o /G has the ]ollowing property. 

(C) To every element x o/order a power el p in N and to every element g in G there 

exists a non-negative integer m - m (x, g) such that x g~m = g~m x. 

Then the ]ollowing properties o / N  are equivalent. 

(i) N is an upper hypercentral subgroup without elements o/infinite order. 

(if) I/  M is a normal subgroup o /G and M < N ,  then N / M  contains a finite normal 

subgroup, not 1, o /G/M.  

(iii) N is a locally finitely reducible subgroup o/G without elements o/infinite order. 

(iv) N is a locally finitely reducible subgroup o/G; and i / R  and S are normal subgroups 

o/ G such that R < S < N, then there exists an element o/finite order in S which does not 

belong to R. 

R e m a r k :  I t  is a consequence of w 3, Lemma 2 that  upper hypercentral subgroups 

of G have the property (C). 

Proof:  Assume first the validity of (i). Suppose that  M is a normal subgroup of G 

such that  M < N .  Then it follows from condition (U) that  1 # Z(G/M) N (N/M).  Every 

element in this subgroup is of finite order, since every element ill N is of finite order; 

and every subgroup of this subgroup is a normal subgroup of G/M, since subgroups of the 

center are normal. I t  is clear now timt Z(G/M) fl (N /M)  contains a finite subgroup, not 

1, which is a normal subgroup of G/M. Thus (if) is a consequence of (i). 

I t  is obvious that  subgroups with property (if) are locally finitely reducible; and it is 

a consequence of w 1, Lemma 2 that  subgroups with property (if) do not contain elements 

of infinite order. Thus (if) implies (iii); and it is obvious that  (iii) implies (iv). 

Assume finally the validity of (iv). Suppose that  R and S are normal subgroups of G 

with tim properties: 

R < S  ~ N  and S / R  is a finite minimal normal subgroup of G/R. 

We deduce from (iv) the existence of elements of finite order in S which do not belong 

to R; and this implies the existence of an element s of order a power of p in S which does 

not belong to R. I t  is clear s* = Rs is an element different from 1 in S / R  whose order 
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is a power of p. If g is an element in G, then there exists by (C) an integer m -  re(g) 

such that  s and g~m commute. Consequently s* and (Rg) ~'m commute too. Thus we have 

shown that  the finite minimal normal subgroup S i R  of G/R satisfies condition (iv) of 

w 4, Proposition 1; and this implies S / R  <_Z(G/R). Now we have shown that  condition 

(iv) of w 2, Proposition 2 is satisfied by N. Consequently N is all upper hypercentral 

subgroup of G. 

There exists clearly a maximal normal subgroup H of G which is part of N and does 

not contain elements of infinite order. Assume by way of contradiction that  H < N. Then 

we deduce from the upper hypercentrality of N that  1 ~ Z (G/H) N (N/H) = K / H  where K 

is a uniquely determined normal subgroup of G such that  H < K _< N. We deduce from (iv) 

the existence of an element w of finite order in K which does not belong to H. From the 

normality of H it follows that  {H, w}/H is a finite group, not 1. Hence H <{ H, w} and 

every element in {H, w} has finite order. Since every subgroup of the center is normal, 

{H, w} is a normal subgroup of G. This contradicts the maximality of H. Our hypothesis 

that  H < N has led us to a contradiction. Hence H = N, proving that  every element in N 

has finite order. Thus (i) is a consequence of (iv), completing the proof. 

L e m m a  l :  The ]ollowing two properties o/the normal subgroup N o/G are equivalent. 

(i) I] T and S are subgroups o/G such that T < (S N N) T < S, then the normalizer o/ 

T in S is di][erent ]rom T. 

(if) I / T  is a subgroup o/ G such that T < N T, then the normalizer o] T in N T is di//erent 

~tom T. 

R e m a r k  t: If we let in particular N = G, then we obtain an earlier result of the 

author; see Baer [1; p. 423, Theorem 4.15]. 

R e m a r k  2: The condition T < ( S  n N ) T  is equivalent to S N N ~ T. 

Proof :  Assume the validity of (i) and consider a subgroup T of G such that  T ,< N T. 

Let  S = N T. Then T < N  T = (S n N ) T  ~ S ;  and it follows from (i) that  the normalizer 

of T in S = N T is different from T. 

Assume next the validity of (if) and suppose that  S, T are subgroups of G satisfying 

T ~ (S N N)T  g S. We define by transfinite induction an ascending chain of subgroups 

R (a) as follows: R (0) = T, R (a + 1) is the normalizer of R (a) in N T, R (v) is the set theoret- 

ical join of all the R(a) with a <:v whenever v is a limit ordinal. Clearly every R(a) is" part  

of N T  and there exists a first ordinal a such that  R(a)= R(a + 1). From T <_R(a) it 

follows that  N T  =NR(a); and from (if) and R(a)= R(a + 1) we infer the impossibility 

of R(a) < N  T. Thus N T = R(a). 

Now we let S (a) = S N R (a). I t  is clear that  

S ( 0 ) = S N T  = T  and T < ( S N N ) T = S N N T = S N R ( a ) = S ( a ) .  
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Consequently there exists a first ordinal ~ such that  T <S(~).  I t  is clear that  0 < v  and 

that  v is not a limit ordinal. Hence v =~ + 1; and it follows from our choice of ~ that  

S(e ) = T. Since R(Q) is a normal subgroup of R(Q + 1), T=S(~)  is likewise a normal 

subgroup of S (~ + 1). Since S(Q + 1) is part of the normalizer of T in N T  N S, we have 

shown that  the normalizer of T in S is different from T. Thus (i) is a consequence of (ii), 

completing the proof. 

I t  is a consequence of w 2, Proposition 2 that  every upper hypercentral subgroup is 

a locally finitely reducible subgroup.Thus it suffices to characterize the upper hypercentral 

subgroups among the locally finitely reducible subgroups; and this we are going to do next. 

T h e o r e m  3: The /ollowing properties o/the locally /initely reducible subgroup N o] 

G are equivalent. 

(i) N is an upper hypercentral subgroup o] G. 

(ii) I] Q and R are normal subgroups o~ G, Q < R  <17, and i] R/Q is a ]inite minimal 

normal subgroup o] G/Q, then R/Q <Z(G/Q). 

(iii) If  T is a subgroup o/G such that T < N  T, then the normalizer o] T in N T is di/]erent 

]rom T. 

(iv) I /T  is a maximal subgroup o] the subgroup S o] G, and i] N fl S ~  T, then T is a 

normal subgroup o] S. 

(v) I] the normal subgroup M o] O is part o] N, i] x is an element o! order a power o/ 

p in N / M  and g an element in G/M, then there exists an integer m =re(x, g)such that 
x~m = gym X. 

(vi) I[ x is in N and g is in G, then {x, g} is an upper nilpotent group. 

(vii) I / x  is in N and g is in G, then N N {x, g} is an upper hypercentral subgroup o] 
{x,g}. 

Proof:  We note first that  the equivalence of conditions (i) and (ii) is an immediate 

consequence of w 2, Proposition 2 - -  we have stated (ii) only, since this condition will be 

used several times during this proof. 

Assume now that  N is an upper hypercentral subgroup of G and consider a subgroup 

T of G such that  T <: N T. Denote by M the product of all the normal subgroups of G 

which are part of N n T. Then M is a normal subgroup of G and M < N, since otherwise 

N ~ T  contradicting T < N T .  From the upper hypercentrality we infer now that  

1 #Z(G[M) fl (N/M) = H I M  where H is a uniquely determined normal subgroup of G 

such that  M < H. Because of the maximality of M the normal subgroup H which is part of 

N cannot be part of T. Thus there exists an element h in H which is not in T. I t  is clear 

that  the set of commutators [h, t] for t in T is part of M _< T, since [H, G] K M. But  then h 

belongs to the normalizer of T in N T, since h belongs to N. Thus (iii) is a consequence of (i). 
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Since our condition (iii) is identical with property (ii) ol Lemma 1, the condition (i) 

of Lemma 1 may be deduced from our condition (iii). But our condition (iv) is a special 

case of Lemma 1, (i); and thus we see that  (iii) implies (iv). 

Assume next the validity of (iv) and consider normal subgroups Q and R of G with 

the following properties: Q < R < N and R~ Q is a finite minimal normal subgroup of G/Q. 

Consider furthermore a maximal subgroup T* of the subgroup S* of G/Q such that  

S* (1 R / Q ~ T*. There exist uniquely determined subgroups S and T of G such that  S* = S / Q 

and T* = T/Q. Then T is a maximal subgroup of S which does not contain R 0 S _<N N S. 

Hence T does not contain N (I S and it follows from (iv) that  T is a normal subgroup of S. 

Consequently T* is a normal subgroup of S*. Thus we see that  tile finite minimal normal 

subgroup R/Q of G/Q satisfies condition (ii) of w 4, Proposition 1. Hence R/Q <Z(G/Q). 

Thus (ii) is a consequence of (iv) and we have verified the equivalence of the first four 

conditions. 

If N is an upper hypercentral subgroup of G, and if the normal subgroup M of G is 

part of N, then it follows from w 2, Proposition 1 that  N/M is an upper hypercentral 

subgroup of G/M. Now it follows from w 3, Lemma 2 that  (v) is a consequence of (i). - -  If 

conversely (v) is satisfied by N, then we consider normal subgroups Q and R of G with 

the following properties: Q < R < N  and R/Q is a finite minimal normal subgroup of 

G/Q. The condition (iii) of w 4, Proposition 1 is satisfied by R/Q as a consequence of our 

present condition (v). Hence R/Q <Z(G/Q). Thus (ii) is a consequence of (v); and this 

completes the proof of the equivalence of the first five conditions. 

If x is an element in N and g is an element in G, then {x, g}/[N N {x, g}] is a cyclic 

group. It  follows therefore from w 2, Proposition 2 that  {x, g} is an upper nilpotent group 

if, and only if, N N {x, g} is an upper hypercentral subgroup of {x, g}. This proves the 

equivalence of conditions (vi) and (vii), 

I t  is a consequence of w 2, Proposition 1 that  (vii) is a consequence of (i). Assume con- 

versely the validity of (vii). If the normal subgroup M of G is part of N, if x* is an element 

of order a power of p in N/M and g* is an element in G/M, then we select elements x and 

e such that  x* = Mx and g* = Mg. Let S = { x, g}, H = M 0 S and K = N N S. I t  follows 

from (vii) that  K is an upper hypercentral normal subgroup of S. If  p~ is the order of x*, 

then x pk belongs to M N S. Hence the order of Hx = x** is likewise a power of p. Because 

of the upper hypercentrality of the subgroup K of S we may apply condition (v) on the 

element x** in K/H and g** = Hg in S/H. Consequently there exists an integer i such 

that  x** and g**~ commute. This is equivalent to saying that  the commutator [x, g~] 

belongs to H g M. But then x* - Mx and g*~ = Mq ~ commute too, Thus we have shown 
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that  our condition (v) is satisfied by the subgroup N of G. But (i) and (v) have been shown 

to be equivalent. Hence (i) is a consequence of (vii); and this completes the proof. 

R e m a r k :  Quite a few of the implications of the preceding proof did not actually 

involve the hypothesis that  N is a locally finitely reducible subgroup of G. But this condi- 

tion is indipensable for the validity of this theorem, since there exist infinite p-groups 

whose center is 1 [though finitely many elements generate finite subgroups]; see, for inst- 

ance, Baer [1; p. 412, Example 3.4]. This shows that  (i) is not a consequence of conditions 

(v) to (vii) if we omit the hypothesis that  N be locally finitely reducible. - -  I t  should be 

noted furthermore that  this theorem generalizes well known characterizations of upper 

nilpotent groups, like those of Baer [1], (~ernikov [1, 2] and Schmidt [1] in two directions, 

since it not only characterizes the upper hypercentral subgroups instead of the upper 

nilpotent groups, but also substitutes for the customary solubility hypothesis the weaker 

hypothesis of local finite reducibility. 

As a companionpiece to the preceding theorem we are now going to give a characteri- 

zation of upper hypercentral subgroups which does not involve local finite reducibility 

and which may be related to chain conditions. 

T h e o r e m  4: The normal subgroup N o] G is an upper hypercentral subgroup o /G i/, 

and only i/, the/ollowing conditions are saris~fed. 

(a) I] S is a subgroup o~ G such that S < N S ,  then the normalizer o] S in N S  is di/- 

]erent /rom S. 

(b) If M is a n~mal subgroup of G such that M < N, then N / M  contains an element, 

not 1, with maximal centralizer in G/M. 

(e) I / M  is a normal subgroup o] G such that M < N, and i] S is a subgroup o] G / M such 

that (N/M)C(N/M <G/M) g S  < G / M  and (N/M) fi Z(S) ~ 1, then there exists a subgroup 

T r 1 o~ (N/M) N Z(S) such that the normalizer o / T  in G/M is di]/erent /tom S. 

Proof:  Assume first that  N is an upper hypercentral normal subgroup of G. Then 

we deduce the necessity of condition (a) from Theorem 3. Consider next a normal subgroup 

M of G such that  M . < N .  Then N / M  is an upper hypercentral subgroup of G/M [w 2, 

Proposition 1]. This implies that  Z(G/M) N (N/M) ~ 1. Thus there exists an element z r 1 

in Z(G/M) N (N/M). The centralizer of z in G/M is naturally G/M and is therefore maximal. 

This proves the necessity of (b). Next consider a subgroup S of G / M  satisfying: 

(N/M) C ( N / M  .<G/M) g S  < G / M  and (N/M) N Z ( S ) ~  1. 

Then we deduce from the upper hypercentrality of N that  

1 ~ V =Z(G/M)  N (N/M) g C ( N / M < G / M )  <S.  
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Clearly V < (N / M) ,q Z (S) and the normalizcr of V equals G / M # S. This proves tile neces- 

sity of (c). 

Assume conversely tile validity of conditions (a) to (c) and consider a normal subgroup 

M of G such that  M < N .  It  is clear that  the normal subgroup N* - N / M  of G* = G/M 

likewise satisfies conditions (a) to (c); and we note that,  as a consequence of Lemnla l,  

condition (a) is equivalent with the following condition: 

(a') If T and ~ are subgroups of G* such that  1' < (S N N*) T <_ S, then the normal- 

izcr of I '  in S is different from 1'. 

From N* # 1 and (b) we deduce now the existence of an element z # 1 in N* whose 

centralizer S = C(z < G*) is maximal. Assume by way of contradiction that  S # G*. Then 

wc show the following fact. 

(c') There exists a subgroup V # 1 of N* N Z(S) such that  the normalizer of Y in 

G* is different from ,~. 

hi  the proof of (c') we distinguish two cases. 

Case 1: N* ~S .  

Since z belongs to N*, C(N* < ( / * ) < C ( z < G * ) .  Thus S satisfies the conditions 

N* (;(-V* -4(I*) < S  <G*.  It is furthermore clear that  z # 1 belongs to N* 1"1Z(S). Hence 

N* rl Z(,q) r I. Thus we may apply condition (c), proving the validity of (c') in this case. 

C~tse 2: N* :i- '~. 

Then S < N * S  and it follows from (a) that  the normalizer T of S is different from S. 

SilW~e Z(S) is a characteristi(~ subgroup of ,~, it is clear that  Z(S) i s  a normal subgroup of 

T. l{encc T is part of the nonnalizcr of 5"* N Z(,~) = V. Thus the normalizer of the sub- 

~zroup V of N* N Z(N) is different from S. But z # l 1)elongs to V so that  V # l; and thus 

we ~ c  again the validity of (c'). 

(:onsi(ler now some subgroup V such that l < V _<:_- N* N Z (,~) and such that the normal- 

izcr of V is different from ,S. ls clear tl!at N is part of the nonnalizer of V. Hence there 

exists an clement t in G* which does not belong to N, but which does belong to the normal- 

izcr of V. We let T : : I t}  and R : {  V, t}. I t  is clear that  V is a normal subgroup of R, 

since t l>clongs to the normalizer of V; and that  consequently R = V T  and R / V  is cyclic. 

Wc prove next that  

(d) V contains an clement ~, ~ I which commutes with t. 

This is certainly true, if V :; T. Hence we may assume that  V ~  T. Since V ~ R  N N*, 

it follows that  R N N* is not part of T either; and this is equivalent to saying that  

T < (R N N*) T ~ R. Thus we may al)ply condition (a'). Consequently the normalizer o f T in R 
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is different from T. There exists therefore an clement r in R which belongs to the normal- 

izer of T, but which does not belong to T. From R = V T  we deduce the existence of elc- 

ments v and v' in V and T respectively such that  r =y d .  Since r does not belong to T, we 

have v # 1; and since r and v' both belong to normalizer of T, v belongs to the normalizer 

of T. Since v is an elenlent in the normal subgroup V of R, and since v belongs to the 

normalizer of T =~ t}, the c o m n m t a t o r c -  [v, t] belongs to V 0 T. If c -  1, then vt = tv; 
and v # 1 is the desired element, not 1, in V which commutes with t. If c # l, then c com- 

mutes with t as an element in T =(t}; and c is the desired clement, not l, in V which 

commutes with t. 

Consider now any element v # 1 in V which commutes with t. Then t certainly belongs 

to C(v <G*).  Since V _~N* N Z(S), v belongs to N* and S is part of C(v <G*).  Hence v 

is an element, not l ,  in N* whose centralizer in G* is greater than S = C (z ~ G*). But this 

contradicts our maximal choice of C(z<G*). Our assumption that  S<G* has conse- 

quently led us to a contradiction. Hence G* is the centralizer of the element z # 1 in N*. 

Thus z is in the center of G*; and we have shown that  N* N Z(G*) # 1. This completes 

the proof of the fact that  N is an upper hypercentral normal Subgroup of G. 

Clorollary t :  I] the maximum condition or the minimum co~dition is satis/ied by the 
subgroups o/G, then condition (b) o/ Theorem 4 is saris~fed by the nor~nal subgroups o/G. 

Proof :  Consider normal subgroups M and N of G such that  M < N. If the maximum 

condition is satisfied by the subgroups of (/, then the maximum condition is satisfied 

by the subgroups of G/M. Consequently there exists among the elements z #  1 in N/M 
one with maximal centralizer C(z<G/M). - .... If, however, the minimum condition is 

satisfied by the subgroups of G, then the minimum condition is satisfied by the su})groups 

of G/M. Consequently there exists among the elements z # 1 in N/M one with minimal 

Z [C (z < G / M)]. Suppose now that  z r 1 is an element in N / M such that  Z [(C (z < G / M) ] 

is minimal; and suppose that  u , # l  is an element in N/M such that  C(z<G/M) G 
< C(w <G/M). If t is an element in Z[C(w <G/M)], then t conmmtes with z, since z 

belongs to C(z<G/M) and therefore to C(w<G/M). Hence t belongs to C(z<G/M) 
and to the centralizer of C(z<G/M). Thus t belongs to Z[C{z<G/M)] so that  

Z[C (w <G/ M)] <Z[C(z <G/ M)]. I t  follows from the minimal choice of Z[C(z <G/ M)] 
that  Z[C(w<G/M)] =Z[C(z<G/M)]. This implies in particular that  z belongs to 

Z[C(w<G/M)]. Hence C (w<G/M)<_C (z<G/M)<C (u,<G/M) or C(z<G/M)= 
= C (w <G/M), proving the desired maximality of C(z <G/M). 

R e m a r k :  If N = G, then condition (c) is satisfied by default; and thus it follows 

from Theorem 4 that  
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the group G is upper nilpotent i], and only i], 

(a) every subgroup S ~ G o] G has a normalizer di]]erent ]rom S and 

(b) every quotient group, not 1, o] G contains an element, not 1, with maximal centralizer. 

If the maximum or the minimum condition is satisfied bY the subgroups of G, then 

it follows from Corollary 1 that  condition (b) may be omitted. Thus we see that  this result 

contains as special cases theorems due to Hirsch [1], (~ernikov [1] and O. Schmidt [1]. 

C o r o l l a r y  2: I] N is a normal subgroup o] G such that G/NC(N <G) is upper nil- 

potent, then condition (c) o] Theorem 4 is saris/led by N. 

Proof :  Suppose that  M is a normal subgroup of G and that  M < N .  Then 

NC(N<G) /M ~_(N/M)C(N/M <G/M); and hence it follows from our hypothesis and 

w 2, Proposition 1 that  (G/M)/[(N/M)C(N/M <G/M)] is upper nilpotent. Suppose now 

that  S is a subgroup of G/M which satisfies (N/M)C(N/M <G/M)<_S <G/M. Then 

it follows from Theorem 4 that  the subgroup S/[ (N/M)C(N/M <G/M)] of the upper 

nilpotent group (G/M)/[(N/M)C(N/M<G/M)] is different from its normalizer. Hence 

the normalizer T of S in G/M is greater than S. But  T is likewise part  of the normalizer 

of the characteristic subgroup Z(S) of S; and T is consequently part  of the normalizer 

of (N/M) N Z (S). Now it is clear that  cortditioa (c) of Theorem 4 is satisfied by N. 

Remark: I t  is easily deduced from Theorem 3, (v) that  G/C(N<G) is a finite 

nilpotent group whenever N is a finite upper hypercentral normal subgroup of G; and 

in this case G/NC(N <G) would be a finite nilpotent group too. But  in general this is 

not the case as may be seen from the following example. 

Denote by A a direct product of a countable infinity of cyclic groups of the same 

prime number order p; and denote by al, ...., ai, a~+l . . . . .  a basis of A Then a group is 

formed by the totality O of automorphisms a of A which satisfy the following condition: 

ag aF 1 belongs to (a l  . . . . .  al-i } for every i. 

The group G arises from A by adjunction of this group O of automorphisms of A. 

I t  is clear tha t  A is a normal subgroup of G and one sees easily tha t  A 0 Zi(G ) = 

=(  al . . . . .  , a~}. This shows in particular that  A is an upper hypercentrat subgroup of G. 

One verifies that  A = C(A <G). Hence ~ is isomorphic to G/AC(A <G). But Z(O) = 1 

proving that  �9 is not upper nilpotent. 

6. Hypercentral Subgroups without Elements of Infinite Order. 

We begin by characterizing the finite upper hypercentral subgroups among the normal 

subgroups. 
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T h e o r e m  1: The /ollowing properties o[ the normal subgroup N o] G are equivalent. 

(i) N is a ]inite upper hypercentral subgroup o] G. 

(ii) N is a ]inite lower hypercentral subgroup el G. 

(iii) N is a finitely generated lower hypercentral subgroup o/G and the minimum condition 

is satis/ied by the normal subgroups o /G  which are part o~ N. 

(iv) I / t he  maximal subgroup T o/the subgroup S el G does ~wt contain N ~ S, then T 

is a normal subgroup el S; N is/initely generated and the minimum condition is satisfied by 

the normal subgroups o / G  which are part el N. 

(v) N is an upper hypercentral subgroup which is generated by a/inite number o~ elements 

of finite order. 

(vi) I f  x is an element o/order a power el p in N and 4] g is an element in G, then there 

exists an integer m = re(x, g) such that xg vm = gvm x; N is a locally finitely reducible subgroup 

oi G which is generated by a finite number o~ elements o~ finite order. 

(vii) I~ x is an element el order a power o /p  in N and i] g is an element in G, then there 

exists an integer m = re(x, g) such that xg v'~= g v'n x; N is generated by a / in i te  number el 

elements o] finite order; if M is a normal subgroup o~ G such that M < N and N / M is a p- 

group, then N / M is finite. 

(viii) 1] the order o/the element x in N is a power o/p, then there exists an integer m = re(x) 

such that xg v'n = g v'n x /or  every g in G; N is generated by a finite number oi elements o/finite 

order; N / N n is finite/or every prime power n. 

R e m a r k :  Note that the first of the three conditions (vii) is weaker than the first 

condition (viii) whereas the third condition (vii) is stronger than the third condition (viii). 

Proof:  I t  is a consequence of w 2, Proposition 1 that  (i) implies (ii); and it is obvious 

that  (ii) implies (iii). 

Assume next the validity of (iii). Then there exists a minimal normal subgroup M of G 

such that  M < N  and such that  N / M  is a finite upper hypercentral subgroup of G/M.  

Assume by way of contradiction that  M # 1. Since N is finitely generated and N / M  

is finite, M is finitely generated [w 1, Finiteness Principle]. Since N is a lower hypercentral 

subgroup of G, it follows now that  [M, G]-< M. Since M is finitely generated, M~ [M, G] 

is a finitely generated subgroup of Z (G/[M, G]). From M/[M,  G] # 1 we deduce now the 

existence of a normal subgroup H of G such that  [M, G] ~ H < M and M / H  is finite. 

N / H  is finite, since N / M  and M / H  are finite. N / H  is an upper hypercentral subgroup of 

G/H,  since N / M  is an upper hypereentral subgroup of G / M  and M / H  < Z ( G / H ) [ w  2, 

Proposition 2]. Thus H < M contradicts the minimal choice of M. Our assumption M # 1 

has led us to a contradiction. Consequently M - 1 and N - N / M  is a finite upper hyperccn- 
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tral subgroup of G = G/M. l:[cnce (i) is a consequence of (iii), coml:leting tile proof of tlle 

equivalence of the first three conditions. 

I t  is a consequence of w 5, Theorem 3 that  (i) implies (iv). Assmne conversely the 

validity of (iv). Then there exists a minimal normal ~';ubgroup M of G such that  M g N 

and N/M is finite. Since N is finitely generated and N/M is finite, N/M is finitely 

generated [w 1, Finiteness Principle]. Assume by way of contradiction that  M # 1. Since M 

is a finitely generated group, not l, we may deduce from the Maximum Principle of Set 

Theory the existence of a maximal subgroup T of M. Since T does not contain N ~ M = M, 

it follows from the first condition (iv) that  T is a normal subgroup of M. But then M~ T 
is a group without proper subgroups. Hence M / T is a cyclic group of order a prime. Conse- 

quently [M, M] <T<M. Since M/[M, M] is a finitely generated abelian group, there 

exists a prime p such that  M/Mv[M, M] is a finite abelian group different from 1. Since 

MP[M, M] is a characteristic subgroup of thc norlnal subgroup M of G, it is a normal 

subgroup of G. Since N/M and M/M ~ [M, M] are both finite, N/MP[M, M] is finite 

too. This contradicts the minimality of M, since M"[M, M] <M. Hence M = 1 proving 

tim finiteness of N. This implies in particular that  5" is a locally finitely reducible subgroup 

of G. Condition (iv) implies furthermore the validity of condition (iii) of w 5, Theorem 3. 

Consequently N is a finite upper hypercentral subgroup of G so that (i) is a consequence 

of (iv). 

I t  is clear that  (i) implies (v); and it is a consequence of w 2, Proposition 2 and w 5, 

Theorem 3 that  (v) implies (vi). That (vi) implies (vii) may be deduced from w 1, Lemma 5. 

Assume now the validity of (vii) and suppose by way of contradiction that  N is infinite. 

Since N is finitely generated, we may deduce from w 1, Lemma 1 the existence of a normal 

subgroup M of G with the following properties: 

~ M < N ; N / M is infinite; (a) ( if H is a normal subgroup of G and M < H < N ,  then N/H is finite. 

Next we prove the following fact. 

(b) Z(N/M) =1. 

If this were false, then we would deduce from (a) the finiteness of (N/M)/Z(N/M), 
since the center of N/M is a normal subgroup of G/M as a characteristic subgroup of a 

normal subgroup of G~ M. The finiteness of the central quotient group implies the finiteness 

of the commutator subgroup [N/M, N/M]; see, for instance, Baer [2; p. 163, Zusatz]. 

Since N is generated by a finite number of elements of finite order, the same is true of the 

abelian group (N / M) / [N / M, N / M] and this abelian group is consequently finite. Thus 

(N[M)/[N/M, N/M] and IN~M, N/.M] are both finite; and this implies the finiteness 
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of N/M, contradicting (a). Hence we have beell led to a contradiction by assuming tha t  

Z(N/M) ~ 1; and this proves (b). 

The following notations will prove couvenient for tile i)urlJoses of this proof. Tlm 

element x in N/M is a proper element, if x r 1 and if there exists an element y of prime 

power order in N such that  x = My. I t  is clear tha t  such a proper element has order a 

power of p; and this prime number  p we shall call the characteristic of the proper element x. 

(c) N/M is generated by its proper elements. 

This is clear once we remember that  N is generated by its elements of finite order and 

that  N is therefore generated by its elements of prime power order. 

(d) All the proper elements in N/M have the same characteristic p. 

Since N/M is infinite [by (a)], there exist proper elements [by (c)]. Hence there exists 

some prime number p such tha t  there exist proper elements of characteristic p. Assume 

now by  way of contradiction the existence of proper elements of characteristic different 

from p. Then we denote by P the subgroup of N/M which is generated I)y the proper 

elements of characteristic p and denote by Q the subgroup of N/M which is generated 

by the proper elements of characteristic different from p. Both these subgroups P and Q 

are different from 1. Clearly P = R/M where the uniquely determined subgroup R of N 

is obtained by adjoining to M all the elements of order a power of p. Since M and N are 

normal subgroups of G, R too is a normal subgroup of 6' and hence P is a normal subgroup 

of G/M. Similarly we see tha t  Q is a normal subgroup of G/M; and it follows from (c) 

that  N/M = PQ and from (a) tha t  (N/M)/P and (N/M)/Q ~Jre l)oth finite. 

If  x and y are elements of prime power order in N, an(l il' the orders of x and y are 

relatively prime, then it follows from the first condition (vii) that  xy--yx. Tiffs implies 

that  proper elements in N/M commute whenever their characteristics are different. 

Thus each of the proper elements generating P commutes with each of the proper elements 

generating Q: and this implies tha t  every element in P commutes with every element in Q. 

From N/M--PQ we deduce now that  P N Q <Z(N/M). But it follows from (b) tha t  

Z(N/M) = 1; and thus we have shown that  N/M is the direct product of P and Q. 

Thus Q is isomorphic to the finite group ( 5 ' / M ) / P  and P is isomorphic to the finite 

group (N/M)/Q. Hence P and Q and their product N/M are finite, contradicting (a). 

Our assumption of the existence of proper elements of characteristic different from p has 

led us to a contradiction. This completes the proof of ((l). 

(e) N/M is a p-group. 

Since N is generated by a finite number of elements of finite order, N is also generated 

by a finite number of elements of prime power order. I t  follows from (d) that  every element 
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in N whose order is a power of a prime, not p, belongs to M. Consequently N / M  is generated 

by a finite number of proper elements of characteristic p. Hence there exists a finite set 

S of elements of order a power of p in N such that  N - - (M,  S}. 

Every element in N / M  has the form Mg with g in N. If s is an element in S, then 

we deduce from the first condition (vii) the existence of an integer m(s, g) such that  

sg ~(8' g~ = g~(8' g) s. Let  re(g) be the maximum of the finitely many integers re(s, g) for s 

in S. Then we have clearly 

sg ~m(g)~ g~m(g) S for every s in S. 

The element [Mg] ~'(g) commutes therefore with every Ms with s in S. Since N / M  is 

generated by these elements Ms, it follows that  [Mg] ~m (g~ belongs to the center Z ( N / M )  

of N~ M which is 1 by (b). Hence [Mg] ~m c v) = 1 and we have shown that  the order of every 

element in N / M  is a power of p. This proves (el. 

From (el and the last condition (vii) we deduce the finiteness of N / M  which contradicts 

(a). Thus we have been led to a contradiction by assuming that  N is infinite. Henc~ N is 

finite. 

The first condition (vii) assures us of the validity of condition (C) of w 5, Theorem 2 

and the finiteness of N implies the validity of condition (iii) of w 5, Theorem 2. Hence N 

is a finite upper hypercentral group; and we have shown that  (vii) implies (i). 

Assume again the validity of (i). If C denotes the centralizer of N in G, then C is a 

normal subgroup of G and G/C is essentially the same as the group of automorphisms 

of N which are induced in N by elements in G. Since N is finite, every group of automor- 

phisms of N is finite. Thus G/C is finite; and this implies the existence of a positive integer 

k such that  gk belongs to C for every g in G. If the order of the element x in N is a power 

of p, and if g is in G, then we deduce from (vii) [which is equivalent to (ill the existence 

of a minimal integer m such that  xg ~'~ = g~" x. One verifies easily tha t  pm is a divisor of 

the order of the automorphism of N which g induccs in N; and this implies tha t  10 m is a 

divisor of k. If we denote by p~ (~) the highest power of p which divides k, then it follows 

from what we have shown just now that  xg ~'~(~) = g~m(~ x; and now it is clear that  (viii) 

is a consequence of (i). 

Assume conversely the validity of (viii). There exists a finite set F of elements of finite 

order in N which generates N; and we may assume without loss in generality tha t  every 

element in $' is of prime power order. We denote by P the finite set of primes which occur 

in the orders of the elements in F. 

If p is a prime in P, then we denote by F ( p )  the finite and not vacuous subset of 
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those elements in F wllose order is a power of p. If x belongs to F(p), then there exists 

by (viii) an integer re(x) such that  xg ~'m(~l =k g~m(x) x for every g in G. Denote by re(p) tile 

maximum of tile finitely many integers re(x) for x in F (p). Then 

( + ) x g  ~mr = g~m~')x for every x in F(p) and every g in G. 

We denote by J the intersection of the subgroups N ~m r for p in P. I t  is clear that  

N ~'~(~) is a normal subgroup of G; and it follows from (viii) that  N / N  ~ ' ~  is finite. But 

the intersection of a finite number of normal subgroups of finite index is a normal subgroup 

of finite index. Hence J is a normal subgroup of G and G / J  is finite. 

Consider an element y in J.  If x is an element in F, then x belongs to some iV(p). Since 

y belongs to J _<N ~ ,  and since x commutes by (+)  with every element in N ~'~r~, we 

have xy = yx. Thus y commutes with every element in F. Since N is generated by F, y 

belongs to Z(N).  Thus we have shown that  J < Z ( N ) .  Since N / J  is finite, N / Z ( N )  is 

finite too. But the finiteness of the central quotient group implies the finiteness of the 

commutator subgroup; see, for instance, Baer [2; p. 163, Zusatz]. Hence [N, N] is finite. 

Since N is generated by a finite number of elements of finite order, the abelian group 

N~ [N, N] is generated by a finite number of elements of finite order. Such abelian groups 

are finite. Hence N/ [N,N]  and [N, N] are both finite. Thus N is finite. Now it is clear 

that  (viii) implies (vii) which condition has been shown to be equivalent to (i). Hence all 

conditions (i) to (viii) are equivalent. 

If S is a subset of the group G, then we denote by _F(S) the totality o/elements o//inite 

order in the set S. If G is a group, then F(G) may or may not be a subgroup of G. But 

F (G) will certainly be a characteristic subset and it will generate a characteristic subgroup. 

T h e o r e m  2: The [ollowing properties o[ the normal subgroup N o / G  are equivalent. 

(i) F(N)  is an upper hypercentral subgroup o] G. 

(ii) F(N)  is contained in an upper hypercentral subgroup o] G. 

(iii) I] x is an element o/ order a power o~ p in N and g is an element in G, then there 

exists an integer m = m(x, g) such that xg ~m=. g~mx; /inite subsets o~ F(N)  generate/inite 

subgroups and ( F (N)  } is a locally/initely redudble subgroup o~ G. 

(iv) I / x  is an element o] order a power o[ p in N and g is an element in G, then there 

exists an integer m = re(x, g) such that xg ~m= g~m x; {F(N))  is a locally finitely reducible 

subgroup o /G  and the subgroups generated by ]initely many elements o] /inite order in N are 

locally /initely reducible [in themselves]. 

Proof:  I t  is clear that  (i) implies (ii). If F (N) is contained in an upper hypercentral 

subgroup of G, then H = ( F (N)} is an upper hypercentral subgroup of G [ by w 2, Corollary 

2]. We deduce the Validity of the first and third condition (iii) from w 5, Theorem 3. I t  
] 3  - -  533805.  Ac'.a Mathematica. 89. lml ) r im6  le 22 avr i l  1953. 
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follows from w 2, Proposition 1 that  every subgroup of H is upper nilpotent; and now it 

follows from Theorem 1 that  finitely many elements in F(N) generate a finite subgroup. 

Thus (iii) is a consequence of (if) and it is obvious that  (iii) implies (iv). 

That (iv) implies (iii), may be deduced from Theorem 1. If (iii) is true, then it is clear 

that  F(N) is a subgroup and hence a normal subgroup of G. The normal subgroup F(N) 

of G is a locally finitely reducible subgroup of G which satisfies condition (C) of w 5, Theo- 

rem 2. Hence F(N) is an upper hypercentral subgroup of G; and this completes the proof. 

(~orollary 1: G is an upper nilpotent group without elements o] in/inite order i/, and 

only i], G is the direct product o] primary locally finitely reducible subgroups. 

R e m a r k :  This is an improvement on Baer [1; p. 409, Theorem 3.2]. 

Proof:  Assume first that  G is an upper nilpotent group without elements of infinite 

order. Consider elements x and y of order a power of p in G; and denote by S the subgroup 

generated by x and y. I t  follows from w 2, Proposition 1 that  S is upper nilpotent; and now 

it follows from Theorem 1, (v) that  S is a finite nilpotent group. But a finite nilpotent group 

is the direct product of its primary components; see, for instance, Zassenhaus [1; p. 107, 

Satz 11]. Since S is generated by elements of order a power of p, S is a p-group. Hence 

xy -1 too has order a power of p; and we have shown that  

the totality G~ o] elements, o/order a power o] p in G is a subgroup o/G. 

Since G does not contain elements of infinite order, it is evident that  G is the direct 

product of its primary components G~. Normal subgroups of upper nilpotent groups are 

upper hypercentral subgroups [w 2, Proposition 2]. Hence every G~ is an upper hyper- 

central normal subgroup of G and as such it is locally finitely reducible [w 2, Proposition 2]. 

Assume conversely that  G is the direct product of primary locally finitely reducible 

subgroups G,. Then it is clear that  G does not contain elements of infinite order. Consider 

now some definite Go. This is a p-group. If g is an element in G, then g = g' g" where g' 

belongs to Go and g" belongs to H GT. I t  is clear that  g' and g" commute and that  g" 
T ~ ( 7  

commutes with every element in Go. But g' has order pn; and so g~n= g,,~n commutes 

with every element in Go. Thus we see that  G, satisfies conditions (C) and (iii) of w 5, 

Theorem 2, proving that  Go is an upper hypercentral subgroup of G. But then if follows 

from w 2, Proposition 2 that  the product G of all the Go is an upper hypercentral subgroup 

of G. Hence G is an upper nilpotent group as we wanted to show. 

T h e o r e m  3: I] the order o/the element t in G is a power o/p, then the ]oUowing ~roperties 

o~ t [and G] are equivalent. 

(i) t belongs to the upper hypercenter U (G) of G. 
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(if) {t ~ is an upper hypercentral subgroup o/ G. 

(iii) To every g in G there exists an integer m(g) such that tgVm(g)=gVm(g) t; and to 

every normal subgroup M o] G such that M <{ t ~ } there exists a ]initc normal subgroup, 

not 1, o / G / M  which is part o / { t a } / M .  

(iv) To every g in G there exists an integer m (g) such that tg ~m (g) = g~" (g~ t ; / in i te ly  many  

elements in t ~ generate a locally/ ini tely reducible group; (t ~ } is a locally finitely reducible 

subgroup o~ G. 

Here as always we denote by t ~ the totali ty of elements in G which are conjugate 

to t in G. 

Proof :  I t  is an obvious conseqt~ence of w 2, Proposition 2 that  (i) and (if) are equiva- 

lent. Assume now the validity of (if). Then it follows from Theorem 2 that  every element 

in (t  a } is of finite order; and it follows from Theorem l, w 3, Lemma 2 and w 5, Theorem 2 

that  (iii) is a consequence of (if). If (iii) is true, then it follows from w 1, Lemma 2 that  

finite subsets of ( t  ~ generate finite subgroups; and now it is clear that  (iii) implies (iv). 

Assume finally the validity of (iv). If s is an element in t ~ then there exists an ele- 

ment x in G such tha t  s = x -1 tx. If g is an element in G, then let g' = xgx -1. Then it follows 

from (iv) tha t  tg '~m(g'~ = g"'~(g'~ t. Hence 

( + ) 8g ~m(~') = X - 1 t o  '~m(a') X = X -z g,~m(g') t x  = g~m(g') S. 

Consider now a finite subset T of t ~ and denote by S the subgroup generated by T. 

If w is an element in S and s is an element in T, then we infer from (+ )  the existence 

of an integer n(s) such that  sw ~'(') = w ~"(") s. Denote by n the maximum of the finitely 

many integers n (s) for s in T. Then sw ~" = w ~" s for every s in T. Since w ~" commutes 

with every element in the set T generating S, w ~" belongs to the center Z ( S )  of S. Hence 

S / Z ( S )  is a finitely generated p-group. I t  follows from (iv) that  S, and consequently 

S ] Z (S), is a locally finitely reducible group. Application of Theorem 1 shows that  S / Z  (S) 

is a finite p-group. But then S is an upper nilpotent group which is generated by a finite 

number of elements of order a power of p; and it follows from Theorem 1 [and Corollary 1] 

that  S is a finite p-group. 

Having shown that  finitely many elements in t ~ generate a finite p-group we see that  

(t  ~ } is a p-group. If x is an element in (to}, then there existz a finite subset T of t ~ such 

that  x belongs to S = ( T}. If g is an element in G, then we deduce from ( + ) the existence 

of integers n(s) for s in T such that  sg ~"(s)= g~,(8~ s. Denote by n t h e m a x i m u m  of the 

finitely many integers n(s) for s in T. Then sg ~ = g ~ s  for every s in T;  and this implies 

that  g~" commutes with every element in S = ( T}. Hence we have in particular xg ~" = g~" x. 
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Tlms we have shown that  the p-group { t ~ } satisfies e()nd itions (C) and (iii) of w 5, Theorem 2. 

Consequently {t c} is an upper hyperccntral subgroup of G so that  (if) is a consequcncc of 

(iv). This completes the proof. 

7. Torsionfree Hypereentral Subgroups. 

A group is called torsion~fee, if it does not contain elements of finite order except 1. 

Their importance for our discussion stems from the following fact. If N is an upper 

hypercentral subgroup of G, then the totality F(N) of clcments of finite order in N is an 

upper hypercentral subgroup of G [w 6, Theorem 2]. N/F(N) is then a torsionfrcc upper 

hypercentral subgroup of G/F(N) [w 2, Proposition 1]. 

P r o p o s i t i o n  l :  I /C  is the centralizer o/the torsion/fee upper hypercentral subgroup 

IV o/G, then G/C is torsion~fee. 

Remark: This implies in particular that  F(G)<0. 

Proof :  If G/C were not torsionfrce, then G/C would contain elements of prime 

number order; and this is equivalent to saying that  G contains an clement w which induces 

in N an automorphism of order 7). But  this would imply, by w 3, Lcmma 3, the existence 

of elements of order p in N, an imi)ossibility. Hence G/C is torsionfrce. 

In order to obtain a simple and interesting generalization of this fact we introduce 

the iterated centralizers of a normal subgroup N inductively as follows: 

Co(N) = 1 ;  

Co+I(N)/Co(N) is the centralizer of NC,(N)/C~(N) in G/Co(N); 
if a is a limit ordinal, then C,(N) is the set theoretical join of all the C,(N) with v < a .  

It  is not difficult to verify that  the Co(N) form an ascending chain of normal sub- 

groups of G; and that  Z,(G) ~'-_ C,(N) for every a. Onc may then dcducc from w 2, Proposi- 

tion 2 that Co(N) = G for some a, if N is an upper hypcrcentral subgroup of G [the converse 

is naturally not true, witness any abelian normal subgroup with abelian quotient group]. 

C o r o U a r y  1: I / N  is a torsio~dree upper hypercentral subgroup o/G, then G/Co(N) 

is torsion~fee/or every a > O. 

ProoI :  Our assertion is true for o" = l,  since CI(N) is just the centralizer of the tor- 

sionfree upper hypcrcentral subgroup N of G, and since we may apply therefore Proposi- 

tion 1. Consequently we assume that  1 < a and that  G/C, (N) is torsionfree for every ~, < a. 

Case 1: a = ~ + 1 .  

Then it follows from our inductive hypothesis that  G~ C~(N) is torsionfree; and it fol- 

lows from w 2, Proposition 1 that  NC~(N)/C,(N) is a torsionfree upper hypercentral 

subgroup of G/C,(N). I t  follows from Proposition 1 that  the centralizer quotient group 
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is torsion[ree; and this centralizer quotient group is, by definition, just G/C,+ , (N)=  

= G / C , ( N ) .  

Case 2: a is a limit ordinal. 

If g is an element ill G, n a positive integer such that  g n belongs to C,(N), then there 

exists all ordinal v < a such that  gn belongs to C~ (N). I t  follows from our inductive hypothe- 

sis that  G/C~(N) is torsionfree. Hence g itself belongs to C~(N)< C, (N); and this proves 

that  G/Co(N) is torsionfree. Tids completes the inductive proof. 

( ]o roUary  2: I] x ~ 1 is an element in the torsion]tee upper hypercentral subgroup N 

o~ G, i / g  is an element in G, and i/ xn gm=g~n x n/or positive m, n, then x g = g x .  

Proof :  Let  S = (x, gin}, M = N N S and denote by C the centralizer of M in S. I t  

follows from w 2, Proposition 1 that  M is a torsionfree upper hypercentral subgroup of S; 

and it follows therefore from Proposition 1 that  S I C  is torsionfree. I t  follows from our 

hypothesis that  x n belongs to Z (S) ~ C. Hence x itself belongs to C, since S /C  is torsionfree. 

Thus x belongs to M fi C =Z(M).  The torsionfree abelian group Z ( M )  is a characteristic 

subgroup of the normal subgroup M of S. Hence Z ( M )  is a normal subgroup of S. The 

element g,n induces therefore in Z(M)  an automorphism which leaves invariant x ~. But  

x is the one and only one solution in Z(M)  of the equation t n = x  n so that  x itself is a 

fixed element of the automorphism which g~ induces in Z(M).  Thus we have shown that  
xgm = gm X. 

Let T-={x,  g}, P = N n T and denote by Q the centralizer of P in T. We conclude 

as before that  P is a torsionfree upper hypercentral subgroup of T and that  T / Q  is tor- 

sionfree. I t  follows from xg m =gm x that  gm belongs to Z(T)  <Q.  Since T / Q  is torsionfree, 

g itself belongs to Q. But x is in P. Hence xg = gx, as we wanted to show. 

P r o p o s i t i o n  2: The torsion/ree subgroup N o] G is an upper hypercentral subgroup 

ol G il, and only i/, N [and G] satis/y the/ollowing conditions: 

(a) N is a locally/initely reducible subgroup of G. 

(b) I] M is a normal subgroup o~ the subgroup S o /  G, i] M < N  n S and (N fl S ) / M  

is torsion/ree, t]~en M, N, S have the/ollowing properties: 

(b') I] x belongs to (N N S ) / M  and s to S / M  and i/ x i s ~ = s j x i /or positive i and j, 

then xs = sx. 

(b") I] s belongs to S / M ,  then [(N N S) / M] n C (s < S / M )  contains a normal subgroup, 

not 1, o / S / M .  

Proof: We assume first that  the torsionfree subgroup N of G is an upper hypercentral 

subgroup of G. Suppose that  M is a normal subgroup of the subgroup S of G and that  

M < N n S and (N N S) / M is torsionfree. I t  follows from w 2, Proposition I that  (N N S ) / M  
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is an upper hypercentral subgroup of S/M. Now we deduce the validity of (b') from 

Corollary 2 and the validity of (b") is animmediate consequence of [(N fi S)/M] N Z (S/M) ~ 1. 

The validity of (a) may be deduced from w 2, Proposition 2. 

Assume conversely the validity of conditions (a) and (b). Consider an element a in 

N and an element g in G. Let S = ( a, g} and T - N n S. We begin by proving the following 

fact. 

(1) If  M is a normal subgroup of S such that M < T and T IM is torsion]tee, then 

(T/M) n Z(S/M) # 1. 

I t  will be convenient to let s* = Ms for s in S; and if Y is a subset of S, then Y* is 

the totality of elements y* for y in Y. Denote by D* the product of all the normal sub- 

groups of S* which are part of T* N C(a* <S*).  This is naturally a normal subgroup of S* 

which is part of T* N C(a* <S*);  and there exists a uniquely determined normal subgroup 

D of S such that  M _<D and DIM = D*. I t  is a consequence of (b" ) tha t  D * #  1. Hence 

M <DK_N NS. 

Next we form/i:  = {D, g}. I t  is clear that  D is a normal subgroup of E and that  E/D 

is cyclic. Let N N E=H. Then D<H so that  H i~ a normal subgroup of E and F,]H is 

the cyclic group generated by Hg. Note now that  M < D  <_H K E  KS. Since T / M  is 

torsionfree, H/M is likewise torsionfree. Thus we may apply (b") on the element 9" = Mg 

in F,/M =F,*; and it follows that  H* n C(g* <E*)  contains normal subgroups different 

from 1. I t  follows that  the product P* of all the normal subgroups of E* which are part 

of H* r C(g* <E*)  is different from 1. 

Assume by way of contradiction that  D* q C(g* < E*) = 1. If we recall that  g* belongs 

to C(g*<E*} and that  E * - { D * ,  g*}, then it follows that  C (g*<E*)={g*} .  From 

1 < P *  ~ C(g* <E*)  = { g*} we deduce now the existence of a positive integer i such tha t  

P* ={g*~}. Since P* and D* are normal subgroups of E* such that  P* N D* = 1, g*~ 

commutes with every element in D*. Since D* is torsionfree, D* __%(N N S)/M, we may 

apply (b'). Consequently g* itself commutes with every element in D*. But then 1 < D* 

gC(g* <E*)  contradicting our assumption that  D* N C(g* < E * ) =  1. Thus we have 

shown that  D* n C(g* <E*)  # 1. 

If we remember that  every element in D* commutes with a* and that  S* = { a*, 17" }, 

then we find that  
1 < D *  N C(g* <E*)  ~Z(S*) N T*; 

and this completes the proof of (1). 

(2) I] M is a normal subgroup oi S such that M < T and T IM is torsio~]ree, then 

(TIM)/[TIM N Z(S / M)] is torsionfree. 

This is an almost obvious consequence of condition (b'). 
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(3) S is upper nilpotent. 

By a fairly obvious transfinite induction using (1) and (2) one proves the existence 

of an ascending central chain of S which connects 1 and T. But S~ T is cyclic, since a is 

in T. Consequently there exists an ascending central chain of S which terminates with 8, 

The upper nilpotency of S is now an immediate consequence of w 2, Proposition 2. 

From (3) we deduce that  condition (vi) of w 5, Theorem 3 is satisfied by the normal 

subgroup N of G. I t  follows from (a) that  w 5, Theorem 3 is applicable. Thus N is an upper 

hypercentral subgroup of G. This completes the proof. 

(vi). 

8. Finitely Generated Nilpotent Groups. 

The importance of this class of groups for our discussion stems from w 5, Theorem 3, 

Theorem: The/ollowing properties o/the group G are equivalent. 

(i) G is a finitely generated upper nilpotent group. 

(ii) G is a locally /initely reducible group whose maximal subgroups are normal; and 

the maximum condition is satis/ied by the subgroups o~ G. 

(iii) G is a ]initety generated, locally/initely reducible group whose/inite quotient groups 

are nilpotent; and the maximum condition is satis/ied by the normal subgroups o~ G. 

Proof:  We assume first that  G is a finitely generated, upper nilpotent group. Then 

G is locally finitely reducible [by w 2, Proposition 2] and the maximal subgroups of G are 

normal [by w 5, Theorem 3]. 

In order to prove the validity of the maximum condition we have to analyze the 

descending central chain of G. I t  is defined inductively for integral n by the rules: 

~ = G, n+lG = [G, nG]. 

The transfinite terms of this series will not be needed. 

Since G is finitely generated, there exists a finite set S of elements in G with the 

following two properties: 

(1) G=(  S}. 

(2) If s is in S, then s -1 belongs to S. 

Next we define inductively sets of elements S(i) as follows: 

8(0) = 8; S(i + 1) is the totality of commutators [t, s] with s in S and t in S(i). 

The set theoretical join of the sets S(j) with i < j  will be denoted by J(i). 

(3) Every set S (i) is finite. 

If 8 contains n elements, then one verifies inductively that  8(i) contains at most. 

n i+1 elements, proving the validity of (3). 
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(4) ~a={J( i ) } .  

From (1) we deduce that  ~  Thus we may make 

the inductive hypothesis that  iG = (  J(i)}.  I t  is clear that  J ( i  + 1)_<i+'G. Letting 

U = { J (i + 1) } we have therefore U <_ i+lG. 

If t is in J ( i  + 1) and s is ill S, then s -1 ts = t[t, s] and t belongs to some S(k) with 

i + 1 < k  so that  [t, s] belongs tc S(k  ~ 1) < J ( i  + 2) < J ( i  + 1) ~ U. Hence s -1 ts belongs 

to U too; and thus we have shown that  s - 1 J ( i  + 1)s < U. Since U is generated by J ( i  + 1), 

it follows that  
s -1 Us <_ U for every s in S. 

But it follows from (2) that  s -1 belongs to S. Hence we have likewise sUs-l<<_ U or 

U<s-~Us; and thus we have shown s-xUs = U for every s in S. Since G is generated 

by S[by  (1)], we have shown tha t  

U is a normal subgroup of G. 

If t i~ in J(i)  and s is in S, then [t, s] belongs to J ( i  + 1), as we have shown in the 

preceding paragraph of our proof. This implies 

t s -  st modulo U for every s in S and every t in J (i). 

Since G = (  S} and 'G = { J ( i ) }  [by (1) and the inductive hypothesis], it follows that  

'GI V <_Z(Ul V), 

if we only note that  U = { J  (i + 1)} <{ J( i )}  ='G. Now we see that  

~+'G = [G, ~G] _< U _<'+'G or ~+~G = U = { J ( i  + 1)}. 

This completes the inductive proof of (4). 

(5) There exists an integer m such that  S (m) consists of the identity only. 

If this were false, then the totality S* (i) of elements, not l ,  in S(i) would not be 

vacuous for any i. I t  follows from (3) that  every S* (i) is finite. 

If h is in S*(i), s in S and [h, s] # 1, then [h, s] belongs to S*(i + 1) an d may be called, 

for the purposes of this proof, a direct descendent of h. Descendents are now defined 

inductively by the rules: direct descendents are descendents; if k is a descendent of h and k' 

is a direct descendent of k, then k' is a descendent of h. 

The element u in S*(i) shall be termed a distinguished element if it possesses des- 

cendents in every S*(i +j)  for 0 < j .  Since every element in S*(i +j)  is a descendent of 

at  least one element in S* (i) and since S* (i) is finite [by (3)], there exist distinguished 

elements in every S* (i). 

Consequently there exists in particular a distinguished element u(0) in S* (0). Assume 

now that  we have already constructed distinguished elements u(0) . . . .  , u(i) such tha t  
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u(j) belongs to S* (j) and such that  u( j  + 1) is a direct descendent of u(j). Since S* (i + ]) 

is finite [by (3)], u(i) possesses only a finite number of direct descendents. If none of them 

were distinguished, then u(i) could not be distinguished either. Consequently there exists 

a distinguished element u (i + l) which is a direct descendent of u (i). 

Thus we have constructed a sequence of elements 

u(0), ..., u(i), u(i + 1), ... 

such that  u(i) belongs to S*(i) and u(i + 1) = [u(i), s(i)] for some s(i) in S. To prove the 

impossibility of the existence of such a sequence we recall that  G is upper nilpotent. Conse- 

quently there exists, by w 2, Proposition 2, an ordinal a such G = Zo(G). There exists 

therefore to every integer i a first ordinal a(i) such that  u(i) belongs to Za(!)(G). 

Since ordinal numbers are well ordered, there exists among the ordinals a(i) a first 

one a(m) [where m is a suitably selected integer]. Since u(m) r 1 belongs to Zo(m) (G), 

0 < a ( m ) ;  and since Z,(m) (G) is tile first Z,(G) containing u(m), ~r(m) is not a limit ordinal 

either. Hence a(m)= v + 1 for some ordinal v. Since u(m + 1) = [u(m), s(m)] belongs to 

[Z~(m), G] = [Z,+I, G] <Z~, it follows that  

a(m + 1) g v  < v  + 1 =a(~n) <a(m + 1), 

a contradiction which proves the validity of (5). 

{6) mG = 1 for some m. 

From S(m) = 1 one deduces immediately S(i) = 1 for every i exceeding m; and this 

implies J (m) = 1. I t  follows from (4) that  "G = { J (m) } = l, as we claimed. 

(7) Every ~G is finitely generated. 

I t  follows from (3) and (5) that  every J ( i )  is finite; and thus it follows from (4) that  

~G = { J (i) } is finitely generated. 

Now it is easy to prove the validity of the maximum condition. I t  follows from (6) 

that  the descending central chain terminates with 1. Hence 

l = m G <  ... g i+1G<_~G<...G~ 

I t  follows from (7) tha t  every ~G/i+IG is a finitely generated abclian group. Thus the 

maximum condition is satisfied by each of the factors ~G/~+IG of the finite descending 

central chain; and now it is a well known fact that  the maximum condition is likewise 

satisfied by the subgroups of G. 

This completes the proof of the fact that  (ii) is a consequence of (i), a fact ttJat we are 

going to use below. 

Assume next the validity of (ii). Since the maximum condition is satisfied by all the 
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subgroups of G, the maximum condition is likewise satisfied by the normal subgroups of G; 
and from the maximum condition we deduce furthermore that  every subgroup of G is 

finitely generated. Hence G itself is finitely generated. If N is a normal subgroup of finite 

index of G, then GIN is a finite group all of whose maximal subgroups are normal. I t  

follows from Wielandt's Theorem that  GIN is nilpotent; see, for instance, Zassenhaus 

[1; p. 108, Satz 13]. Now it is clear that  (iii) is a consequence of (if). 

Assume finally the validity of (iii) and assume by way of contradiction that  G is not 

upper nilpotent. Then the class ~ of normal subgroups X such that  G ] X is not upper nil- 

potent is not vacuous, since it contains X = 1. Consequently there exists a maximal normal 

subgroup W in ~ [maximum condition]. Clearly W has the following properties: 

(8) W is a normal subgroup of G. 

(9) G/W is not upper nilpotent. 

(10) If H is a normal subgroup of G such that  W < H  <G,  then G/H is upper nil- 

potent. 

We prove next the following property of W. 

(11) Z(G/W) = 1. 

If this were not true, then there would exist one and only one normal subgroup T 

of G such that  W <T<G and T/W = Z(G/W). I t  follows from (10) that  G/T is upper 

nilpotent. Hence (G/W)/Z(G/W) would be upper nilpotent; and it would follow from 

w 2, Proposition 2 that  G/W itself would be upper nilpotent which is impossible by (9). 

Thus (11) is true. 

(12) G/W does not contain finite normal subgroups except 1. 

If this were false, then there would exist a normal subgroup N of G such that  W < N  

and N] W is finite. I t  follows from (10) that  GIN is upper nilpotent. But G is finitely 

generated. Thus GIN is a finitely generated, upper nilpotent group. Since we have shown 

in the first part of our proof that  (i) implies (if), it follows that  the maximum condition 

is satisfied by the subgroups of GIN. Since GIN is upper nilpotent, it follows from w 6, 

Theorem 2 that  the elements of finite order in GIN form a normal subgroup F. From the 

maximum condition it follows that  F is finitely generated. Thus $' is an upper hypercentral 

subgroup of GIN. which is generated by finitely many elements of finite order. I t  follows 

from w 6, Theorem 1 that  F is finite. There exists a uniquely determined normal subgroup 

M of G which contains N and satisfies M/N = F. Since M/N and N]W are finite, M/W 
is finite. I t  follows from our choice of F that  (GIN)IF ~- G/M is a torsionfree group. 

If G = M, then G/W would be finite; and G/W would be nilpotent [by (iii)] contradicting (9). 

Thus G / M  is an infinite torsionfree group which is upper nilpotent [by (10)], since W < N 
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~M.  It  follows in particular that Z(G/M)# 1. Consequently there exists an clement 

z in G such that Mz#  1 and Mz belongs to Z(G/M). 

We denote by n the order of the finite group M/W.  It  is clear that z induces in M] W 

an automorphism of finite order m. This is equivalent to saying that m is the minimal 

positive number such that [z m, M] < W. If g is any element in G, then [z m, g] belongs to 

M, since Mz and Mz ~ belong to the center z(G/M). Hence 

g-lz~ng = ((g-lz~g)n =(z~[z ~, g])~ ~ z ~ [ z  m, g]~=z m" modulo W, 

since Wz ~ commutes with every element in M / W  and since M ~  W. Thus we see that 

Wz ~ belongs to Z(G/W)= 1 by (11). Hence (Wz) ~ =  1. But this is impossible, since 

M z #  1 and G/M is torsionfree. We have arrived at a contradiction which proves (12). 

So far we have not made any use of the fact that G is, by (iii), locally finitely reducible. 

Since G/W # 1 [by (9)], there exists a normal subgroup IT of G such that W < V and such 

that V/W is a finitely reducible subgroup of G/W. We denote by O the set of all the 

normal subgroups X of G with the following properties: 

W ~ X < V and V / X  is a finite minimal normal subgroup of G/X. 

Since V/W is a finitely reducible subgroup of G~ W, W is the intersection of all the 

normal subgroups X in O. 

Consider now some X in O. If X were W, then F / X  = V / W #  1 would be a finite 

normal subgroup of G~ W contradicting (12). Hence W < X ;  and it follows from (10) that 

G/X is upper nilpotent. But finite minimal normal subgroups of upper nilpotent groups 

are part of their center [w 2, Lemma 1]. Hence V / X  ~Z(G/X)  and this implies [G, V] KX. 

Since this is true for every X in O, and since W is the intersection of all the X in O, it 

follows that [G, V] K W. Consequently 1 < V~ W ~ Z {G/W) and this contradicts (ll). 

Thus we have been led to a contradiction by assuming that G is not upper nilpotent; and 

this proves that (i) is a consequence of'(iii), completing the proof of our theorem. 

Corollary: I~ G is a /initely generated upper nilpotent group, then Z~(G)= G and 

"~G = 1 ~or some ~inite m; and the elements o//inite order/orm a ]iniSe subgrou~ o~ G. 

This corollary has been derived, more or less, in the course of the proof of our theorem; 

and a direct derivation from our theorem would be easy enough. 

Reraa rk  i :  The implication of (i) by (if) improves upon a result of Hirsch [1; p. 194, 

Theorem 3.3] who shows that the group G is upper nilpotent, if every maximal subgroup 

of G is normal, the maximum condition is satisfied by the subgroups of G and if G c~ = 1 

for some finite m. [Here the derived series is defined inductively by the rules G ~~ = G, 

G c~+z) = [G c~, G(O]]. But the last two conditions imply, by w 1, Lemma 4, that G is locally 

finitely reducible; and thus our condition (if) is a consequence of Hirsch's conditions. 
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R e m a r k  2: Whether or not it is possible to omit from (ii) the hypothesis that  G 

be locally finitely reducib]e, is all open question. I t  is, however, impossible to omit this 

hypothesis from (iii), since Higman [1] has constructed an example of an infinite, finitely 

generated, simple group. 

Cp. also our Remark to w 5, Corollary 1. 
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