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w 1. Introduction 

In this paper we show that the Bergman projection operator for certain smooth 

bounded pseudoconvex domains does not preserve smoothness as measured by Sobo- 

lev norms. 

Let Q be a smooth bounded pseudoconvex domain in C" and let p~t) denote the 

orthogonal projection from L2(f~) onto the Bergman subspace B(ff~)=L2(~) f3 r with 

respect to the weighted norm I{fll~ J'olf(z)l 2 e-t{lzll2dV)l/2. Let wk(t)) denote the 

Sobolev space consisting of functions whose derivatives of order ~<k are in L2(g2). An 

important result of Kohn [Kol] implies that/~0 maps Wk(f~) to Wk(Q) when t>-to(k, g2). 
On the other hand, there is a large collection of results implying that for certain types of 

domains the unweighted Bergman projection p=pr preserves W k for all k~0. (See 

[FK] for the strictly pseudoconvex case; for results on weakly pseudoconvex domains 

the reader may consult [Ko2], [Ca], [Si] and the recent [BStl], [Ch] as well as the 

references cited therein. Most of these results are focused on the a-Neumann operator 

rather than P; see [BSt2] for the connection. Also, except for [Kol], positive results in 

this area are typically valid for any choice of smooth positive weight function on 0 . )  

The question of whether or not P is similarly well-behaved for all weakly pseudo- 

convex domains has remained open for many years. In this paper we show that this is 

not the case; in fact when Q is the so-called "worm domain" of Diederich and Forna~ss 

then P does not map W* to W k when k>~zr/(total amount of winding). This latter quantity 

is explained in section 4 below, where the construction of the worm is reviewed and the 

main result is proved. The proof depends on computations for a piecewise Levi-flat 

model domain depending in turn on certain one-dimensional computations; these are 

treated in sections 3 and 2, respectively. Section 5 contains additional remarks and 

questions. 
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The papers [Bal] and [BF] provide examples of smooth bounded nonpseudocon- 

vex domains with badly behaved Bergman projections. In these examples the behavior 

of the projection operator cannot be improved by switching to any norm equivalent to 

the standard L 2 norm. 

This paper was inspired in part by Kiselman's related paper [Ki]. 

w 2. Bergman kernels for strips with weights 

For fl>O let Sa denote the one-dimensional strip 

{z = x+iy~C: lyl <fl) 

and let co(y) be a continuous positive bounded function on the interval 18:= {y: lyl<fl}. 
In this section we use the Fourier transform to compute the reproducing kernel 

Ko,(z, w) for the weighted Bergman space 

1. 
ForfEB,o the partial Fourier transform 

f(#, y) := s e -~  dx 

satisfies f(~, y)=e-Y~fo(~), where fo(~)=f(~,O). Thus 

Ilfll~ = (2~r)-' fRxt# e-2yelf~ o)(y) de~ dy 

and an analogous formula holds for weighted inner products. 

Let w E S# and let k E Bo, denote the holomorphic function k(.) = K~(-, w) = Ko,(w, "). 
Then 

.ji/O(~)__ e iw~ d~ = 2:rf(w) 

= 2~ jsof(z)k(z)w(y) dx dy 

= 38f• e-2r~f~ d~ dy 
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for fE  B,o. Thus 

and 

/~o(~) f/a e-2Y~to(Y) dy = e -ia'~ 

/~o(~) = r  -1 e-iW~, 

where e3 denotes the Fourier-Laplace transform of to. (Here we view to as an integrable 

function on R vanishing outside of la.) By Fourier inversion we have 

w) = (2:t)-~ ~ r ei(Z-r d~. Ko,(z, 
JR 

The simplest case is to take to=Xa, where here and in the sequel we let Za denote 

the characteristic function of I a. We have d~(-2i~)=~-1 sinh 2fl~ so that 

(This can of course also be computed by conformal mapping to the disk.) 

We will be interested in the next section in the piecewise-linear weight 

to=~Z3-~12 * Zu/2, 

where * denotes convolution. (Here we assume that fl>:r/2.) Then 

tb(-2i$) = zr~ -2 sinh(2fl-:r) ~ sinh ~r~ 

and 

(2.1) 1 I ~2 ei(Z-a~)r 
K~,(z, w) = 2-~ JR sinh(2fl- ~-) ~ sinh :t~ 

Now ~2/sinh(2fl-:r)~ sinh:t~ has poles at non-zero integer multiples of rti/(2/~-:t) and i 
with good decay as [Re~[--->oo so that standard contour integration arguments furnish 

asymptotic expansions for K~,(z, w). In particular, if fl>:t we have 

K~,(z, w) = C a e-"~(z-r +O(e -ua(z-~)) 

for Re(z-  a))>0, where va=:r/(2fl-er),/z~=min{2va, 1}>v& and Ca=v3~/:t sin v~ :t; similar- 
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ly for R e ( z - ~ ) < 0  we have 

K,o(z, w) = C~ e~a(z-~) +O(eUa(z-~)). 

If f l=z  we have the corresponding expansions 

K~,(Z, w) = .rt'-2(z- if,'-2) e-(Z-c~ -2(z-co)) 

for Re(z-W)>0 and 

Kco(z, w) = ~ -2 ( -z+ t2 -2 )  eZ-r 2<z-r 

for Re(z-t~)<0. 

(The above expansions hold uniformly as z and w range over any substrip S,_,.) 

w 3. Nonsmooth model domains in C 2 

In this section we study the Bergman kernels attached to the nonsmooth unbounded 
domains 

D# = ((zl, Z2) E C2: Re zl e-il~ ~" 0, [log Z2 Z2I < f l - -~ /2} .  

D e is a Hartogs domain invariant under the rotations P0: (zl, z2)~(zl, el~ By Fourier 

expansion the Bergman space B(Da) admits an orthogonal decomposition 

B(D~) = ~) Bj (De), 

where Bj(D~) is the subspace consisting of functions FEB(D e) satisfying FoQo=e~176 
the projection Qj from B(D~) to B] (Dz) is given by 

(3. l) (QjF) (Zl, z2) = (2z) -I F(zl, ei~ e-~176 

The Bergman kernel KD~(z, w) for D e satisfies 

KD~(z, w) = ~.  Kj(z, ~), 
J 

where Kj (z, w) is the reproducing kernel for Bj (De). 

Our computation will be aided by introducing the domains 

O~ = {%, zO e C2: lira zl-log z2 g21 < ~/2,  llog z2 z21 < f l - z / 2 } .  
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zl D~ is biholomorphic to D e via the mapping ~ :  D'~-->D a, (Zl, Z2)V-->(e , Z2).  The mapping qJ 

induces the transformation law 

Ko~(z, w) = K~(q'-lz, ~-%)l(z, all). 

Since �9 commutes with Po we have an analogous transformation law 

~ (z, w) = Iq(z, w)l(z,a~O; 

here Kj is the reproducing kernel for the space Bi(D ~) of square-integrable holomor- 

phic functions F on D~ satisfying F(zl, ei~176 l, z2). Such functions F are neces- 

sarily of the form F(zl, z2)=f(zl)z J2, where f is holomorphic on the strip S a. We have 

2 fo ~ IIFIIBj(Dhj = If(z~)l 2 IZ21Zi dx~ dy~ dx2 @2 

= 2:t f If(z,)l 2 r 2~+, dx, dr, dr 
Z - 2 log r I <:t/2,12 log r 1<8 - zd2 

= :r / If(z0] 2 e ~+l)~ dx I dy I ds 
Jly l -s l<~/2,  Isl<a-~/2 

:r J [f(zl)l 2 e(J+l)s)~:r/2(y I --S) )~a_zd2(S ) dx I dy Ids 

= f.s If(z)12~~ 

where ~o=:r(e-~J+l)<')Xa_~n ) *%~n. 

Thus the kernels Kj(z, w) can be computed by the methods of section I. In 

particular, if fl>:r we have 

K'_I(z, w) = C a e ~€ z~ ~ ~ l  + O(e~,~(z-~)) 

for Re(z-a))<0 so that 

K_~(z, w) = Caz~ ~-~ w~ ~-~ z~ t cv~ +O((ztla, O "~-~) 

for Izd<lwd. (The expansion holds uniformly on subdomains Da_~.) Thus it is easy to 

check that for w fixed we have 

R __i]ogz2Z21S [ ~ ~rn 
ez, e I ~-~zl) K_,(z,w)~LZ(Da) when s<-..m-va; 



6 DAVID E. BARRETr 

since 

a mK_l(z,w)=Q_l Kop(z,w) 

it follows from (3.1) that 

(3.2) IRezl e l---~OZl) Ko#(z,w)~L2(D~) when s~m-v~ .  

If fl=:t then similarly 

K_l(z, w) = :r-2(-log(zl/t00-2) tO-( 2 z21 (v~ l +O((zJtbl) 2) 

for Iz,l<lw,I so that (3.2) follows as before. For x/2<fl<:t (3.2) can again be verified by 

examination of higher order terms in the asymptotic expansion of (2.1). 

The corresponding calculations for j : ~ - I  lead to similar formulas containing 

factors of (Zl/ffOl)-i(j+l)12. 

w 4. Worms 

We turn our attention finally to the so-called "worm domain(s)" of Diederich and 

Forna~ss. We shall write these domains in the form 

[2 = {(zl, z2): Izl+eil~ 2 < 1 --~(log Z2Z2) } 

where ~ is a smooth nonnegative even function which is chosen so that fl is smooth, 

bounded, connected, and pseudoconvex, and moreover ~-~(0) is an interval which we 

will take to be Ip_~/2 ([DF], see also [Ki]). Thus the fiber of f2 over each z2 is a disk, and 

the center of the disk winds by a total of 2fl-x  radians as logz2Z2 varies over lp_~/2. 

THEOREM 1. The Bergman projection operator attached to [2 does not map Wk([2) 
into Wk(f2) when k>~x/(2fl-x). 

COROLLARY. (See [BSt2].) The a-Neumann operator for Q does not map Wk([2) 
into Wk([2) when k>~x/(2fl-x). 

Proof of Theorem 1. Let k>~n/(2fl-x) and suppose on the contrary that the 

projection operator P attached to f2 maps Wk([2) to Vr so that we have an estimate 

Ilefll~r ~< cIIfllw,r 

for f6  wk(f~). 
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For 21>1 let r~ denote the dilation (zl, Z2)~"~(~,Zl, Z2), let fla=r~(s and let Ta denote 

the operator L2(f~)--*L2(f l ) , f~fo r~. We have 

L2(fl~) 

so that 

IITxfll w,<~) ~ Ak-'llfll ~<.~) 

when k is a nonnegative integer; by interpolation, the same estimates hold for all k~>0. 

We will make use of the fact that for s>~0 the W-'  norm of a harmonic function f i s  

comparable to the L 2 norm of Irl'f, where r is a defining function for fl  [Li]. We choose 

r so that it coincides with Iz~ 12 + 2 Re z I e-i log z2 ~2 when log z2 zz E I~_~/2 . Let  r~ =Ar o (r~) - l so 

that ra---~r~:=2ReZl e-i~~ as ) . - - ~ .  

Write k as m-s, where m is an integer and s>~0. 

Let  Pa denote the Bergman projection for f~ .  Then Pa=T-f I PT~ so that 

II'r~'S(a~l)mPxfll&(Qz)=lllr~[S(~zt)mT~lPTxfll&(Q~) 

_-;t~-k Irl s \aZl a--~-~meraf IL2(.) 

~< C~ ).'-~11Tafll ~<.> 

where C1 and C2 are independent of 2. 

We will prove the following lemma momentarily. 

LEMMA 1. If the estimate 

\ z t /  IIL~(O~ 

hoids for fE Wk(~) with C independent of 2~ l then the Bergman projection operator 
P| for D e satisfies 

Ir| ( a-~l)mP| e<oa <<- Cllfll~(c .) 

for fE Wk(C ") with suppfrD--~#. 
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Granting the lemma for now we conclude that since for each w E D, the Bergman 

kernel function KD~(', w) lies in P| [BL] we must have 

Ir~[ ~ ( O~-~I ) m Koa(" , w) E L E(Da). 

But this is false by (3.2). The contradiction proves the theorem. [] 

The proof of Lemma 1 uses the following approximation result. 

LEMMA 2. For any finite M> 1 the space B(DMa) is dense in B(Da). 

Proof of Lemma 2. It suffices to show that each By (D~)  is dense in Bj (D,). But 

from sections 1 and 2 we find that By (D,) is isometric via the Fourier transform to the 

space of functions on R which are in L 2 with respect to the weight 

sinh ((2fl-z0 ( ~ -  ~ ) )  sinh z~ 

But Co(R) is dense in the latter space for any value of fl, so the lemma follows. 

Proof of Lemma 1. The key geometric facts are: 

(1) Each compact subset K of Da is contained in Qa for all 2~>2r. 

(2) Each compact subset K of the complement of Da is disjoint from ~a for all 

Le t fE  Wk(C n) with suppf~D~-~. Let ~a denote the characteristic function of s and 
let ha E L2(C 2) be the function which equals Pa(~xf) in f~a and vanishes outside of f~a. 

Since Ilhalla(c2~-.<llflla~c2) we may choose a sequence {2k}k tending to oo so that hak 
converges weakly to a function h E L2(C2). It is clear that h is holomorphic in D# and 

vanishes outside of D#. Since [r| (a/azl)mh is a weak limit on each compact subset of 

Da of a subsequence of Irakl S (a/azl)mPxk(dPaf) it follows that 

O_a_. m h 
Ilr| ( 0z , )  L2(oa,~Cllf'lw~(oa; 

We will be done if we can show that h=P| We must show thatf-hELZ(Da) is 

orthogonal to B(Da); courtesy of Lemma 2 it will suffice to show that f - h  is orthogonal 

to B(Du#). We choose M so that f~a=DMa for all 2. Then ~ f - h a  is orthogonal to B(DMI~) 
so we reach the desired conclusion by passing to the limit. [] 
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w 5. Remarks 

(1) A domain f2 is said to satisfy "condition R"  if the Bergman projection operator for 

f~ maps C| into C| (This terminology was introduced in [BL].) It is not clear 

from what we have done here whether or not the worm domain satisfies condition R. 

(2) Boas and Straube have shown [BSt3] that for all k~>0 the counterexample 

domain in [Bal] does admit the a priori estimate 

Ilefll~ Ckllfllw~ for all f E W  k such that PfE W k. 

It would be interestering to know whether such estimates hold on the worm domain. 

(3) The importance of the unweighed Bergman projection stems in large part from 

its utility in the study of biholomorphic (and equidimensional proper holomorphic) 

maps. In particular, it is known that any biholomorphic map between smooth bounded 

pseudoconvex domains in C n, one of which satisfies condition R, extends smoothly to 

the boundary [Be]. If condition R indeed fails on the worm domain it is reasonable to 

ask if there is a corresponding failure of regularity for biholomorphic maps. In [Bal] 

badly behaved biholomorphic maps are constructed between cousins of the worm 

domain which do not lie in C n. 

(4) The methods of this paper extend easily to the study of weighted Bergman 

projections on the worm domain taken respect to a positive weight function r/E C~176 

which is invariant under the rotations Oe. In place of Theorem 1 we have the conclusion 

that if the weighted projection maps W ~ to W ~ then the Fourier-Laplace transform cb(~) 

of the function co(s)=r/(e s/2, 0)Za_~/2(s) is zero-free in the strip IRe ~l~<2k. 

Since the only compactly supported distributions with zero-free Fourier-Laplace 

transforms are point masses it follows that it is impossible to choose ~ so that the 

projection maps W ~ to W k for all k~0. On the other hand, it is of course easy to see that 

for any r/the transform cb(~) must be zero-free for 

IRe ~l ~< zc 
2f l -~  

= zff(total amount of winding); 

weights concentrated near the endpoints can be constructed which have zeros lying just 

outside this strip. Thus the best possible weight-independent result would be that all the 

weighted projections map W k to W k when k~<zr/(2xtotal amount of winding). Boas and 

Straube [BSt3] have in fact shown that the unweighted projection maps W k to W k when 

k<zr/(2xtotal amount of winding) and k is an integer or k=l/2;  their method in fact 

works for any smooth positive (not necessarily o0-invariant) r/. 
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