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In this paper the calculus of pseudodifferential and Fourier integral operators in-

troduced in [13] is examined in more detail. There are several alterations which have been

made to extend and simplify the theory. In particular a natural vector bundle 7*M, the

compressed cotangent bundle, is defined for any manifold with boundary. This is the
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150 R. B. MELROSE

appropriate space for microlocalization with respect to the pseudodifferential operators in

the space LY(M). In local coordinates these operators are of the form
Aulg, y) = (27) " f & ale, y, o, n)alE, ) dE d, ©.1)

where (z,y) are the coordinates in the standard manifold with boundary Z=iﬁ x Ry.
The importance of the space T™*M is that it carries, invariantly, functions of the type of
the symbol a(z, y, 2£, %) in (0.1) with its special dependence on the variable, £, dual to .

Under certain mild lacunary conditions on the symbol, 4 in (0.1) preserves the property

that the distribution  has restrictions, or traces, of all orders to the boundary and
Au|(x =0) = Ay(u|(x = 0)) (0.2)

with A4, a pseudodifferential operator on the boundary. This is the fundamental property
of these pseudodifferential operators, and also the Fourier integral operators discussed
here, because it allows the operators to act on distributions satisfying differential or
pseudodifferential equations and boundary conditions. Since no applications are presented
here the interested reader is referred to the lectures in [13], [14] and [15] for an indication
of this approach to the examination of singularities. The details will appear elsewhere.
One of the technical difficulties in a systematic approach to boundary problems is
the abundance of spaces of distributions which enter. The central position here is given
to the space D’ (M) of distributions supported on M, a manifold with boundary. In Chapter
I the more formal properties of boundary problems, posed in this way, are examined. In

the first section the various standard spaces are introduced as is the space

AL =D ()
of almost regular distributions. These are determined by the property that they have
tixed regularity after the arbitrary action of vector fields tangent to the boundary. They
are characterized as the Lagrangian distributions, supported on M, associated to the
conormal bundle N*2M. The elements of 4(M) are regarded as, essentially, negligible
distributions as far as singularities are concerned, although not quite as negligible as
the space

Ceo( My = D'(M)
of ¢ functions vanishing to all orders at the boundary. The standard notion of wavefront

set, taken with respect to an open extension of M, determines C°(M) in ;4(]%( ):

If w€AM) then u€C®(M)«WF (u)=2. (0.3)
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The compressed tangent and cotangent bundles are introduced in Section two as
geometric constructs closely related to the definition of A. Thus, 7'M is the natural bundle
of which the vector fields tangent to the boundary are sections. Then 7*M is the dual of
T M. The natural vector bundle map

™M -~ T*M

has image, of corank one over the boundary, canonically identifiable with
T*oM U T*M < T*M. (0.4)

This space has been used (see for example [5], [11], [16]) as the carrier of the set WF, (u),
for special distributions.
The third section contains a rather formal treatment of noncharacteristic boundary

problems, The important item introduced here is the subspace
A'(M)=D'(M) (0.5)

given as the dual of AC(M , ), the space of compactly supported almost regular densities.
The usual trace or restriction map R: C°(M)—>(C®@M) extends to A4'(M). This allows the
weak formulation of boundary problems (I.3.20), due essentially to Schwartz, to be re-
covered in a strong sense with minimal regularity assumptions on the data. It should be
noted that A4’(M) contains the usual spaces of distributions for which all traces are defined
and can be used in place of the awkward spaces of distribution regular in a normal variable
used previously, for instance in [1].

Chapter II treats the calculus of pseudodifferential operators L{’(M) of totally char-
acteristic type. Some standard properties of symbol spaces are briefly recalled in the first
section and the lacunary condition imposed on the symbol in (0.1) is examined, and shown
to impose conditions only on the residual part, i.e., to be trivial modulo 8-®. The second
section consists of a short exposition of the theory of pseudodifferential operators on open
sets for purposes of comparison. In Section three the operators (0.1) are defined on Z, by
analysis of the formal adjoint, and the simplest mapping properties are deduced.

The next two sections, four and five, treat the more significant properties of the
operators (0.1). First the precise nature of the kernels near the corner 6Z x 07 is investigated.
This is done in terms of the ‘stretched product’ N X M of two manifolds with boundary;
in fact the kernels lift to standard Lagrangian sections of an appropriate line bundle on
Z X Z. This leads to the proof of coordinate invariance and hence the global definition of
LP(M), for any manifold with boundary M. In Section five it is shown that 4 acts on
spaces of distributions with restriction properties to the boundary, even maps A(Z) to
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A'(Z) and that (0.2) holds. In Section six the symbolic properties of the operators are
shown to closely parallel the open case, with the principal symbol defined on 7*M:

O LM LPY(M) = 8™(T* M) 8" (T*M).
This, combined with (0.4), gives a symbolic version of (0.2)
onldo) =0o(4)| T*oM.

Moreover the composition and symbolic properties of the residual operators, L, (M), are
examined. This space is filtered by a sequence of residual symbol maps defined on the
corner oM x &M of the product:

0o, L= =H(M) L==—+=1(M) > §(5%; By) (0.6)

where § is a line bundle on 0M x dM and B, a bundle over 8. In fact the product formula
(11.6.16) involves convolution in the R+ structure of the positive side of S.

After the usual formula for the product of pseudodifferential operators is proved in
Section seven it is applied to the construction of parametrices, modulo L;%, of elliptic
operators. This so closely resembles the familiar case that, in Section eight, the definition

of wavefront set used by Hormander can be applied almost verbatim to fix
WEF, (u) = T*M0, Yu€D'(M). 0.7)

The only real departure from the usual properties of wavefront set is the almost regularity

property: '
WE, (u) =2 < u€AM).

Combined with (0.3) this still gives a rather complete range of indicators of singularity,
with an obvious sheaf-theoretic interpretation on 7% 3.

Using the symbol calculus the space of normally regular distributions, #(M)< A' (M),
is discussed in Section nine and a slightly strengthened form of Peetre’s theorem on hypo-
ellipticity up to the boundary is proved. Again using the calculus in a standard way the
L? boundedness of operators in L)(M) is shown in Section ten.

The analogous spaces of Fourier integral operators on a manifold with boundary are
the subject of Chapter III. First the properties of canonical transformations, on the usual
cotangent space, preserving the boundary, are considered. A boundary-canonical trans-

formation is then taken to be a ¢ diffeomorphism

y: T*M —~ T*N (0.8)
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which is homogeneous and canonical for the singular symplectic structure on the compressed
cotangent bundle. In the second section the existence of suitable local parametrizations of
these boundary-canonical transformations is discussed. After the appropriate lacunary
conditions on symbols are shown to present no problems this leads to the local definition
of Fourier integral operators in terms of oscillatory integrals, in Section three. The kernels
of the totally characteristic Fourier integral operators can be identified with generalized
sections, of an appropriate bundle over N X M, with only Lagrangian singularities at a
Lagrangian submanifold R
A< TN X M)YNO. (0.9)
For a boundary-canonical transformation this Lagrangian can be identified with the
twisted graph. The calculus of these operators can then be routinely developed by com-
bining the methods of Chapter IT with the original work of Hérmander [10]. In particular
the symbol is a section of the Maslov bundle, with an appropriate density factor, over A.
The action of Fourier integral operators as transformations of the pseudodifferential
operator ring, i.e. Egorov’s theorem, follows from the calculus. A suitable formal definition
of non-characteristic boundary problems is given in Section five, to extend these trans-
formation properties.
The author wishes to thank Lars Hormander for the opportunity to lecture, in Lund,

on the material presented here and for his interest and advice.

Chapter I: Manifolds with boundary
L1. Spaces of distributions

Let M be a C* manifold with boundary. If E is any vector bundle over M we shall
denote by C®(M, E)=C>(H) the space of sections of E which are C* up to the boundary,
oM, of M and by CP(E) the subspace of compactly supported sections. Both of these
spaces are equipped with the usual topologies of uniform convergence of all derivatives
on compact subsets of M. By C®(E)< O=(E) and CP(E)< CP(E) we denote the closed
subspaces consisting of those sections vanishing to all orders on M.

The standard spaces of distributional sections of E over M are then defined as the
duals of these spaces of C® sections of E*®(2, where Q is the density bundle of M. Thus,

D'(M, E) =D'(E) = [C2(M, B*@Q)Y
is the space of extendible distributions whereas
D'(M, E) =D'(E) = [C(M, B*®Q)]

is the space of distributions supported by M. If M < N is realized as a submanifold with
boundary of a manifold N, N =@, then 'D’(E’) is naturally identified with the subspace
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of D'(N, E), for any extension of E to N, of distributions supported in M. Similarly the
space D’(E) can be regarded as the set of restrictions to M , the interior of M, of elements of
D’'(N, E), that is as the quotient

DM, B) ~D'(N, B)[D'(N\M, B).
Following Schwartz we shall denote by
EBD®B), EBDD )

the subspaces of compactly supported distributions. For «€D'(E) the support is the
closure in M of the support of u]M €D'(M, E).

Consider the relationship between extendable and supported distributions. Let
D'(M, 8M; E)<D'(M; E) be the subspace of distributions supported in the closed set
OM < M. Then, using the restriction map to M, we have a sequence:

: . | 3
0D (M,oM; By~ D'(M,E)—D'(M; E) - 0. (1.1

LeMma 1.2. The sequence (1.1) is exact.

Proof. The only point not immediately clear is the surjectivity at ). Using a parti-
tion of unity, it suffices to show surjectivity locally. However, the structure theorem of
Schwartz shows that any extension «'€D'(N, E) of w€D'(M, E) is locally of the form
Py with P a differential operator with C® coefficients and v a continuous section of E.
Replacing v by

, (v InM
- { 0 in N\ M

gives an element Pv' € D'(M, E) which restricts to « locally in M. This proves the lemma.

Schwartz in [19] gives a complete description of D'(M; M) each element being
locally a finite sum of Dirac distributions on the hypersurface M. If x €C®(M) is a func-
tion which vanishes to precisely first order on &M, for each integer m >0, consider the

+1.

kernel of the map given by multiplication by =™
DM, 0M; E) = {u€D'(M, oM; B); 2™ 'u =0}, m>0. (1.3)

Prorosition 1.4. For each m >0 there is a vector bundle B, over 0M and a natural
isomorphism

Dn(M, 0M; E) D' (@M; B ) = D'(E ). (1.5)
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There are natural injections By < By, such that

Bl By = Bloy®@(N*oM)™, m>1.

Proof. The theorem of Schwartz shows that in any local coordinates z, ¥, ..., ¥, at a
point in the boundary of M, dim M =n+1, uEb,’,,(M , 0M; E) is of the form:

dim E d}
- — . 1.
* og:zsm 21 u"j(y)®dx’ 0()- e (1.6)

with respect to a local basis e, of E. The coefficients u, ; are distributions on R”. This
clearly provides local trivializations for E,,. The remainder of the proposition is straight.
forward.
Recall the standard continuous inclusions
C(B) < C2(B) D ) 1.7)
D@

where the interpretation of an element of C®(E) as a distribution supported in M is through
‘cutting off at the boundary’. There are similar inclusions for compactly supported distribu-
tions. C®(E) is a natural space of smooth extendible distributions, ignorable within the
context of singularities. It is important, in certain cases, to enlarge the class of smooth

elements of 'lf)’(E’) to include as well the elements
0(0M; Ey,) < D'(E). (1.8)

In fact it is convenient to further enlarge the space of ‘ignorable’ distributions. We

shall proceed to define . . .
AM, E) = AE)<D'(E)

the subspace of almost regular distributional sections of #.

Let
V< O>(TM)

be the space of C® vector fields on M everywhere tangent to o.M:
VEY <« V. €T, 0M<T,M, Vm€oM.

The linear space Diff* (M) of differential operators of order at most £ on M is locally
finitely generated as a C®(M)-module by j-fold products, for 0<j<k, of vector fields

acting by Lie derivation. This allows us to define

Difff (M) < Diff* (M),
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the submodule of totally characteristic operators of order at most k, as the span of the
W="Vo..0¥ (jfactors)

for 0<<j<k. The description of these operators as totally characteristic is only slightly
contrary to standard notation. Thus, multiplication by a C* function is here regarded as
a totally characteristic differential operator of order zero. In general if E,, K, are C® vee-
tor bundles over M the space Ditf* (M; B,, E,), of differential operators of order at most &
from sections of £, to sections of E,, consists precisely of the linear operators

P: C»(M, E,)~ C®(M, B,)
such that g,-P-p, € Diff* (M) whenever g, is a section of Z, and p, is a section of K3. The
formal adjoint of P € Diff* (M; E,, E,),

P*eDitt* (M; E20Q, E{®Q)
is uniquely specified by:

fM(an, = wa,P*«p) (1.9)

for all p€CX(M, E,), pEOP(M; EsRQ), in terms of the sesquilinear pairing between
vector bundle and dual. The totally characteristic differential operators, Difff (M E,, E,),
are then precisely those for which (1.9) holds for all p€CY(M, H,), w€CT(M, EiQ);
those for which no boundary terms arise in usihg the adjoint equation.

Let K<< M be a compact set and put

&K, E) = {uES'(M, E); supp u<K}.
The topology of S'(K , ) is the inductive limit topology

E'(K,B)= lim B¥K, E)

§->—00
over the Hilbertable topologies of the Sobolev spaces H¥(K, E). For each s set
AEK, B) = {uES’(K, E): Puc H¥K, E), VPEDiffY (M; E, C)}. (1.10)
;“;(s)(K , B) is to be topologized as the projective limit of the spaces
{u€&'(K, E); Pue HXK, E), VPEDifts (M; E, )},

which are clearly Hilbertable for each k. Thus each AYK, B)is a Fréchet space with the

inclusions ) )
ANK, B) > AYNK, E),
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for s>¢’, continuous and, as a result of the analysis below, dense. In consequence the
) 5 ¥

inductive limit

AK,B)= U A (K, E)

is a Mackey space (see [18]). A map from A(K, E) into a locally convex topological space

is continuous if and only if it is continuous on each A(s’(K , E). For convenience we also give
AL, B)= U A(K, B)
K

the strict inductive limit topology over an exhaustive sequence of compacta K;—~M.
Since we can always work locally on M, as QuEA(K , B) it p€CP(M) has support in K
and u € AO(M , ), this topology is never really used. Similarly, the space A(M B« b'(M , B)
is defined as consisting of those distributional sections, «, such that guGAc(M , ) when-

ever g ECP(M) and is then topologized in the usual way.
LeEmMa 1.11. CoB)DC(B ) < AM, E), Vm.
Proof. This follows immediately from the fact that
Ditfy (M; E, C)(C(E)® OP(E ) < O(B)® O®(H )
for every m, k. In view of the definition of Diff, this in turn is a consequence of
WC(E)YD CP(EB ) < C(BYDC(E ), (1.13)
which we prove in local coordinates. Any element V € ¥ is of the form

V= z Cj(Z) 31/7' + xb(z) az:
]

z=(z, ¥) so the lemma follows from the identity:

dj . d;’—l .
x(ia—cjé(x)= —7(—&7_—16(39), j=1.

Conversely the elements of A(M , E) are clearly O™ in the interior of M, they are

also singular only in the normal direction at the boundary.

ProrosiTION 1.14. A(M ,» B) is the space of E-valued Lagrangian distributions of
type (1, 0) supported in M and associated to the conormal bundle N*oM < T*M.
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Proof. The result is clearly local in nature and coordinate independent so it suffices
to consider the case M =Z =R; x R}, and to assume that E is trivial and so suppose u € AC(Z).

Then we can show that

u(z)=(2n)7t fe”fd(é, y)dé (1.15)

where the partial Fourier transform ¢ =€ x Ry —C is C® and entire in the first variable with
|g50ka(E, 9)] < Cosl1+|EI™* Vh, @ (1.16)
in Im & <0 for some fixed m. In fact the defining condition (1.10) is just
(@2, &5alz, y) € HY(Z)

for some fixed s. Now, d is defined by (1.15) and the Sobolev embedding theorem shows

that for some fixed m,
|08 058] < Oy (1 + &), Va,p (1.17)

in Im £ <0. A simple inductive argument reduces these estimates to (1.16). This proves the
proposition.

As an immediate consequence of Proposition 1.14
WF (u) < N*@M) < T*M, Vu€ADM) (1.18)

where the wavefront set is calculated with respect to any extension of M to an open mani-
fold.

L2, Compressed contangent bundle

Consider first the geometry of the subspace W= C®(TM) of totally characteristic
vector fields on M. As a locally free C°(M)-module of finite rank ¥ is the space of sec-
tions of a C° vector bundle which we denote 7M. For m€M consider the equivalence

relation on ¥:
(V' =V)yf(m)=0, VfeCO(M);

VaVieq. , . @.1)
if me€oM then d((V'~ V)g)(m)=0, VgEC®(M) with g=0 on oM.

LemMMA 2.2. We can identify T,, M =V so that W=C=(TM) and there is a natural

C= vector bundle map
™ ~TM (2.3)

with range TM U ToM.
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Proof. Near any point m EJIZ\&M the second condition on the right in (2.1) is vacuous
8o defines the fibre of the tangent bundle, clearly

TwM=T,M, médM.

Suppose m €6M then we introduce local coordinates (x, %) in M, with x=0 on ¢M, x>0in
M and Y=(Y1 -.s Yn), B =dim &M. The elements of ¥ are locally of the form:

V= 121 a;(z, y) &,,+ xb(x, y) 0,

a;, bEC®, The equivalence relation (2.1) shows that [V] is exactly determined by the
vector (b(m), a,(m), ..., @,(m)). This agrees with the abstract definition of 7M. That this

structure is coordinate invariant can be seen explicitly; under a change of coordinates, to
@ ¥
n
Op = €go O + 21 €05 0y;
i=

n
3z,k =T €y az' + jzl ekj 81,;

with ey >0, det (¢;)+0. In such local coordinates the vector bundle map (2.3) takes
(0, ay, ..., a,) to (xb, ay, ..., a,) and is clearly C® with the indicated range.
Let 7*M be the dual to TM. The dual to the map (2.3) gives a 0= vector bundle
mapping N
7 T*M - T*M. (2.4)

In local coordinates (x, %) a section of T*M is of the form

a=Ax,y) e  de+ 121 Ny, y) dy;

where dy;, x~dx is the dual basis to Oy,» %0, and 2, n,€C%. Then, (2.4) is the map &dx+

7+dy > (x&)x~1dx +n-dy in local coordinates i.e.

A=xE n=1y, (2.5)
justifying the notation.

The inclusion map ¢ 9M —~ M defines by duality a C*® map
*0T* M —~ T*0M,

where 07 M = T*M |9 M is the boundary of the cotangent bundle of M; ¢* is the boundary
projection of M.
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Lemma 2.6. *:8T*M—~T*0M is an affine line bundle with fibres the leaves of the
Hamilton foliation of 0T*M in T*M. The maps * and x|0T*M can be canonically identified

so that the range of 7 in (2.4) 18
T*oM U T*M < T*M. (2.7)

Proof. We work in the canonically dual coordinates (2, ¥, £, ) to some local coordinates
in M at m€oM, so dT*M is the surface x=0. Since (0, y, £, %) are the coordinates of the
1-form Edx +%-dy at (0, y) and (y, n) are the coordinates of the 1-form 7+ dy = *(&dx 41 dy),

L*(O7 Y, E, 77) = (y; 77)

in these coordinates. Thus ¢* has the structure of an affine line bundle with fibres the &-
lines. The Hamilton vector field of # is — o, so these lines are also the leaves of the Hamilton
foliation of 87*M. A change to new canonically dual coordinates, corresponding to a
change of coordinates in M, is linear in (&, #) so certainly affine-linear along the £-lines.
Thus, the affine structure of ¢* is coordinate-free. Finally, from (2.5), it follows that the
image, A=0, =0 of 07™M under n can be naturally identified with 7*0M, proving the
lemma.

This lemma is fundamental to the philosophy of this paper, in that the space T*M
is regarded as the natural manifold for the micro-localization of boundary problems. Thus,
(2.7) shows that 7*M contains the subspace 7*8M U T*M in which most previous micro-
localization has been carried out (see [16], [11}).

If p€0T*M, let C®(p) be the ring of germs at p of C® functions on T*M. Thus if

U< T*M is an open neighbourhood of p the natural projection C®(U)—(C>(g) is surjective.

Definttion 2.8. A germ f€C%(g) is said to have polynomial traces of order ¢(€Z) if

in any canonically dual coordinates (x, ¥, &, 7)) at g,
O%1(0, y; &, i) is a polynomial in & of degree at most k+¢, Vi > 0. 2.9)

The space of such germs will be denoted C(p). The space CX(U) of C* functions in the
open set U< T*M having polynomial traces of order ¢ consists of all f€C®(U) having
polynomial traces of order ¢ at each p€ U N 27> M.

We remark that (2.9) need only be verified in any one canonically dual coordinate
system. Indeed, the choice of new coordinates (2, y'; £, ') corresponds to the choice of
new coordinates

X = X(xl’ y/)’ Y= Y(x" y,)

80
§ =@ X)e+@Y)n, ' =@, X)&+@ Yy,
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which shows that ', y', &, %’ are respectively functions of polynomial traces of orders
—1,0,1, 0, in the original coordinates. From this it follows easily that f has polynomial
traces of a given order in one canonically dual coordinate system if it satisfies the same

conditions in any other such system. More abstractly we can see this invariance as follows.

ProrosiTioN 2.10. Lef x€C®(M) be positive in M and vanish simply on oM. If
UcT*M is open, t€Z and fEC®(U) then fECT(U) if and only if there exists g€ECX(V), V
some neighbourhood of n(U)< T*M, such that

{ f=x"tn*g (t<0)

a'f =m*g t=0) @1

where we write x for the pull-back of x to T*M.

Proof. The result is clearly local in nature, so introduce (x,y) as coordinates. By
definition of f€CP(U) the Taylor series of xff has as coefficient of &? a polynomial in &
of degree at most p. In view of (2.4) we can write (2.11), taking ¢ >0 for definiteness,

& f(x, y; € 1) = 9(x, ¥, «&, ). (2.12)
So if ¢ is to satisfy (2.11) the Taylor series of the right-hand side must be of the same

form and indeed
k .
Fglx, y; 2&, )| (x=0)= 2, () .8579(0, y,0,7) £,

0<igk
Thus, the Taylor series of g at x=4=0 is uniquely determined by (2.12), with the coef-
ficient of #*A? being fixed by the coefficient of £ in the term 2"** of the Taylor series of
2'f at x=0. By Borel’s theorem we can choose a germ g, with this Taylor series at #=1=0.
Then,

E(x: ’H Ea 7]) = xtf(x’ Y, ‘S: "7) _‘gl(a": Y, x&: 77) (213)
is defined in some neighbourhood of ¢ and vanishes to all orders at #=0. Define
920, Y, 4, 77) =H(x,y, z/xn ) (2.14)

in some region

A, ={(x, y,2,1);0<x<e0<|y|<e |A]| <ea}.
For £>0 small g, is clearly C® on the open set 4,. Since ¥ is always of the form z"E,,
E€EN, where B, is C*, it follows that all derivatives of g, are bounded uniformly in 4, for
¢ small, since A/ is bounded above. Thus g, extends to a C® function on A, and then
obviously g, can be extended to a germ at z{g). This extension does not affect (2.13) or
(2.14) so g=g, 1+, satisfies (2.12). The converse is trivial so the proposition is proved.

Remark 2.15. 11 { is homogeneous in (2.11) it is clear that g can be chosen homogeneous

of the same degree.
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L3. Non-characteristic operators

If P is a linear differential operator, from a vector bundle E to a vector bundle F,
the basic objective of the study of boundary problems is the relation of properties of
w€D'(M, E), specifically regularity properties, to properties of Pu €D'(M, F) under
various conditions on P itself. One such condition, that of being totally characteristic at
OM, is introduced above. At the opposite extreme is the more familiar condition that the

boundary be non-characteristic for P. This is normal ellipticity:

Definition 3.1. PEDiff™ (M; B, F) is non-characteristic at m €0M if ¢,(P): a*E~n*F
is an isomorphism over N0 M)\ 0.
Here we use the usual notions of principal symbol and 7: T*M — M is the projection.

Lremma 3.2. If P is non-characteristic at m €M then for every fGA(M , I') there exists
uEA(M , E) such that Pu—f€C™(M, F) near m; u€ A(M , B) is uniquely specified near m
modulo C°(M, E).

Proof. As a cousequence of Proposition 1.14 this is a standard computation with
Lagrangrian distributions. In local coordinates (z, y) based at m we can take B =F =M x C*
trivial, in view of the existence of an isomorphism ¢,(P). The condition of Definition 3.1

then states that in the formula

P= 3 prax,y) DiD; (3.3)

k+lel<m

the coefficient of D7 is invertible:

det (P, o(0, 0)) = 0. (3.4)
We can take f of the form (1.15) with vector-valued symbol f and look for  in the same
form with symbol 4. Then

Pu=(2n)" fefzé S i o £ DEGAE. (3.5)

We choose successive symbols 4,, r=0, 1, ... by requiring

and the recursion formula o = 2.0 y)]—lf—'nf 39
E"pol0, 1), = = 552000, 9) (- DY (D3) 3.7)
with the sum extended over [—j—s=m—r,I<m. Here p{,=0.p, .(0,y) and (3.7) is

obtained from (3.5) by expanding in Taylor series at =0 and integrating by parts. Clearly
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the 1, are holomorphic in Im & <0 if f is. A suitable asymptotic summation of the 4, com-
pletes the proof of existence. Uniqueness follows from the necessity of the formula (3.6),
modulo lower order terms, and a simple inductive argument. This proves the lemma.

This result shows the degree to which the elements of ,4(M ) are ignorable in the
study of non-characteristic boundary problems; it can be strengthened slightly.

Lemma 3.8. If P is of order k, non-characteristic at m€oM and x€C®(M) vanishes
stmply on M near m then for each ]‘GA(M , F') there exists u € A(M , B) such that #*Pu —f€C®
near m. Similarly there exists u' EA(M , E) such that P¥*u’ —f€C® near m.

Proof. A similar argument to that of Lemma 3.2 applies when P is replaced by 2*P
or Pa¥. Thus, in using (3.5), the initial equation (3.6) becomes

(— D& pio(0, y) i = (3.9)
where f is entire in & and clearly satisfies symbol estimates
| DLD;f(§, y)| < Car|E]", ImE <0, |£]>1 (3.10)

for all 7, a. Tf f is a function holomorphic in |&] >1, Im &£ <0 and satisfying (3.10), integra-
tion of ¢ f(&) along a suitable contour on which Im & is bounded near infinity shows f
to be the Fourier—Laplace transform of an element of ;4(Z) of finite exponential growth at
infinity.
Introducing the variable s =log (£), where s lies in the half-strip
G = {0 <Im (s) <z, Re (s) > 0}
converts the estimates (3.10) on a holomorphic function to

| DiD2g(y, $)| < C0,..e"™® in @, gly,s)=1[ly,&), (3.11)

and the equation (3.9) becomes

(—e=D,Y(e™v) = prog, vy, s) =y, &)

Now, this can be rewritten
(Dy—14) ... (Dy—ik)v = piog.

If ¢ satisfies (3.11) such a linear differential equation with constant coefficients always
has a solution satisfying the same type of estimates with M replaced by M +¢ for any

£>0. To see this it suffices to consider each linear factor separately. In solving

(Ds—ip)o(s) = g(s)
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set v(}+idm)=0 if M >p, v(co +idn)=0 if M <p. Clearly this allows (3.9) to be solved
with the holomorphic symbol 4, of order ¢ greater than f.
Proceeding by induction allows the equation (3.5) to be solved modulo 0®(Z) as in (3.7).
Note that the solution of x*Pu=f is not in general unique modulo (° because z*
annihilates terms supported on the boundary up to order £.

Now we have a continuous injection, with dense range
CX(M, E) > A(M, B).
By duality consider 4'(M, E)=(A(M, E*®CQ))’ as a subspace of D'(M, E),
A'(M, By~ D'(M, E).
We shall always take the weak topology on A4'(M, E).

ProrosiTioN 3.12. If u€D'(M, E) and PEDitf* (M; K, F) is non-characteristic for

oM then
ZPuEA (M, F) = u€A(M,E).

Proof. The construction of Lemma 3.8 actually gives a continuocus parametrix for z*P

on bounded subsets. Thus, if B< A(M , F') is bounded there exists
Q: B~ A(M, E)
continuous and such that
#*PQ —1d: B— 0°(M, E).

Since the formal dual of P,

P*: O°(M, F*®Q) > C~(M, B*®LQ)

is a differential operator non-characteristic with P, Lemma 3.8 applies equally to P*z”.

Observe that
{u, g = {u, P*2Q'g) +{u, R'g> = (&*Pu, Q'g> -+{u, R'g>

where Q': B'—~ A(M, F*®Q) for a bounded set B’'< A4,(M, E*®Q) and R': B'~C%(M, E).
Thus % extends by continuity to AC(M , B*®Q), so is an element of 4'(M, E) as claimed.
The importance of the space A (M, E) is that the elements have well-defined restric-

tion properties. That is, there is a continuous linear map
R A (M, E)-~D'(0M, E) (3.13)
which extends the trace map on C®(M, E). To define (3.13) simply observe that the map

T: C20M, E®Qu)39 - 8() Q@ EAM, ERQ,,) (3.14)
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is continuous, independent of the choice of function x vanishing simply on @M. Then, if

u€4' (M, E) the map
C20M, E®Qan)d>pr><u, Tp)

is linear and continuous, hence a distribution. This defines the mayp (3.13).

The existence of such a restriction, or trace, map allows a strong definition of boundary
problems for non-characteristic operators. We first give the weak definition, due to Schwartz
and then show the usual ‘weak equals strong” theorem.

A boundary problem for an operator P €Dift” (M; B, F) is provided by a = dif-
ferential operator Be€Diff (M; E, @). The classical problem is the search for a solution
ueC®(M, E) to .

Pu=feC*(M,F) in M
(3.15)
{Bu =g€C°M, Q) at oM,

possibly with additional constraints in the form of support or other conditions. We also
assume that B is of lower order than P.
Assuming ©€C0°(M; E) we write (u), for the image of u in D'(M; E). The first equa-

tion in (3.15) becomes
b= Plu) — (). €D'@M; F y_y))- (3.16)

The boundary conditions then specify at least part of k. To give these in weak form con-

sider the map .
P:C°(M, By~ C°oM, F,_ 1) (3.17)

defined by Pu = P(u,) — (Pu),.

ProrosivrionN 3.18. If P s non-characteristic then (3.17) 4s surjective. Moreover if
BeC®(M; E, G) there is a uniquely defined differential operator

B,: C°@M; F iy qy) ~ Co(@M; G)

such that
P/,C“’(BM; Fimv)
C™(M; E )\ Bp
RoB ™o @)
cominutes.

Proof. Working in local coordinates one can easily see the surjectivity of P in (3.17)
(see e.g. [2]). Moreover P has a right inverse Q

PQ=1d4, QP—-Id<ker(P), (3.19)

11~ 812903 Acta mathemarica 147. Imprimé le 12 Février 1982
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and Q: O(M, F(,_4))—~C®(M, E) is well-defined modulo a map into the kernel of P.

Then, B, is well-defined as
Bp = RoBo@
since Ro B(u)=0 if u €ker (P).

With these preliminaries we can recast (3.15) into the form

{Pv —f€D'(OM, Fy_yy)

B(Pv—-f)=g€D'(0M, G) (8.20)

where v =(u,), f=(f),- In this weak form the boundary problem makes sense for arbitrary
data

fED'(M, F), g€D'@M,G),
with the solution sought in D'(M, E).

Now, the space A (M) is closed under differentiation but it is important to realize
that this does not carry over by formal duality to 4'(M). Indeed, by definition, € 4'(M)
if weD’ (M) extends by continuity from CX(M) to A «(M). However, C3(M) as a subspace
of Ac( ) i8 not closed under differentiation because of the appearance of boundary terms.
We shall let B(M) be the minimal extension of 4’(M) which is closed under differentiation.
Elements of B(M ) are just, locally, finite sums of terms each a differential operator applied

to an element of 4'(Z). Clearly, _ _
D'(M, 0M)<=B(M). (3.21)

In fact much more is true since B(M ) splits:
BM) =D'(M,oM)® A (M). (3.22)

R is extended to B(M } by defining it to vanish on the first factor in (3.22). To see this
observe that CP(M )CAC(M ) is a dense subspace closed under differentiation. If P is a
differential operator and {p,} is a sequence in CP(M) converging in AC(M ) then {Pg,}
converges in AC(M ) too. Thus the restriction map, to the interior,

B(M)—~D'(M) (3.23)
actually defines a projection:

B(M) ~ A'(M). (3.24)

Clearly the kernel of (3.24) is 'D'(M ,0M) and it is certainly surjective. In particular it
follows from (3.22) that
D’ (M, oM) 0 A'(M) ={0}. (3.25)

Of course, for sections of a vector bundle over M, (3.22) becomes

B(M; E) = 4'(M; B)®lim D'(0M; E(y). (3.26)
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Now if € A4'(M, E) the map (3.17) extends, by continuity, to
P: A(M, E)~>D'(0M; F _y)) (3.27)

where Pu=Pu—r(Pu), r the map (3.24), on sections. Proposition 3.18 holds with the
maps extended to these more singular spaces and this allows us to extend and strengthen
Proposition 3.12.

ProrositrioxN 3.28. If P is non-characteristic and f€ 4' (M, F), then any solution v to
(3.20) lies in A’ (M, E) and
» RBy =g. (3.29)
Proof. Directly from the definition of B and R it follows that Ro Bv=B,-Pv=g.
This result shows that, for non-characteristic boundary problems, the very weak
formulation (3.20) is equivalent to the natural formulation with boundary values from

B(J, E). We shall also use the notation
B®(M) = A'(M)® DM, 3M),

when there are boundary terms only up to order &, see (1.5).

Chapter II: Pseudodifferential operators
IL.1. Symbols

Recall some standard results on symbols and symbol spaces. A symbol of order m
on the produet manifold R* x R¥ is a C* function which satisfies bounds

|Ia|l‘y’.";.v=(sgp | Dz Dfa(z, 0)[(1 +6]) ™+l < oo, (1.1)
2,0)ey

for each pair «, § of n-, N-multiindices and set y =K x R¥ with K c<R". The space of all
such symbols, 8”(R” x R”) is a Fréchet space with the seminorms (1.1). Moreover, if m' >m
then S™(R" x R¥) & 8™ (R™ x RY) is locally compactly included and 5™ is dense in S™ in the
topology of S™ whenever m” >m'>m. In fact
CPR" xRN < S—*R*xRM = N S*R"xR")
meR

is dense in 8™ in the topology of ™. If ' R” x R¥ is an open cone, so (z, 0) €T if ¢>0
and (2, 0)€T, denote by S™I") the Fréchet space of those functions a@€C®(T") satisfying
estimates (1.1) for each closed cone y<=T' with compact base (projection into R"); the
seminorms of 8™(T') are given by (1.1). If y<T is a closed subset we denote by S™(I', y)
the closed subspace of those symbols which have support in y.
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Let 4: I', =T, be a 0 diffeomorphism of open cones, which is homogeneous. Then
2*: 8™(Lg) = 8™(Ty)

is an isomorphism. Thus, if m: V=M is a vector bundle over a manifold we can define
8™V), SMI") for I'= V an open conic set, and 8™(V, ) for y< V a closed set, by reference
to local coordinates and trivializations (see [107).
When a,€8™(I") for §=0,1, ... and m;~> — oo as j—>oo, a€8™I") is said to be an
asymptotic sum of the a, if
a— > a,€8%TI)

j<N

where dy-> — o as N— co. This relationship is written
a~2a,
and determines ¢ modulo S-®(I"); one can take m =sup m; and dy=sup;.y m;.
The fundamental property of symbols is that inverse Fourier transformation

u(z, t) = (2m)™Y fe”'oa(z, 0)do (1.2)

gives a distribution »€C®(R%; §'(Ry)) which is C® outside {{=0} in R**" and rapidly
decreasing with all its derivatives as [¢|— oo, uniformly on compact subsets of R". The

singularity type of such distributions is coordinate free and this leads to the space
I=R™Y; N*{t =0}) = D'(B™")

of distributions everywhere locally the sum of a distribution (1.2), for some m, and a term
in C®,

Now, suppose @ €S™R" x R¥*!). Consider the splitting R'*'=R x R¥, with variables
6=(6y, 0'). Clearly, a €S™((R" x R¥) x R), so the translated partial Fourier transform

Ma(z,0';8) = few‘(l"”a(z, 6,,0')do, (1.3)

is C* away from ¢=1. We shall say that a €S™(R" x R'*") is lacunary, or satisfies the

lacunary condition if
Ma(z, 6';6) =0 int<0. (1.4)

The subspace of lacunary symbols will be denoted S (R™ x R**Y).

LemMmaA 1.5. There is a continuous linear map
T: 8°o(R" x R1*7) - §-=(R" x R 1Y)
such that (Id+T): S™R® x R )~ 8% (R x R**7) for every m.
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Proof. I p€C®(R) has supp ()=(—oo, 3] with g(t)=1 if ¢<1/4 then the map
Ta=—M-o(t) Ma) has the desired properties. Certainly (Id + T')a satisfies the lacunary
condition (1.4) since Ma+M-Ta=(1—g)(t)Ma=0 in t<0. When a €S-°(R" x R'*") the
integral defining Ma is absolutely convergent and on the support of g integration by parts

using the identity
e1'(1—1,‘)91 — (1 _ t)—l DO ei(l—t)el

allows a to be replaced by (1—t)7*Df a for any kEN. Since, for a€S™, Df a€S™* the
integral with o so replaced is absolutely convergent when k>m+1 and, by the density of
§-® in 8%, valid. Clearly then, T is continuous into S—*®.

m(B" xR} is a closed subspace of S"(B™ x R'*¥) and in view of Lemma 1.5
SEPR™ x Ry o SE(R™ x RMY)

is dense in the topology of S™(R" xR'*Y) for any m’>m. Indeed, if ¢ €S}% and a, €S-
converges to @ in the topology of 8™ then

a,+Ta,~a+Ta in SE,

by the continuity of 7'. Thus, b,=a, + Ta, — Ta €Sy converges to @ in 7. Lemma 1.5

also shows that the inclusion of 87, in $™ defines an isomorphism
SE(Z x RY M [SR2(Z x RMY) = 8™(Z x RM)[S—(Z x RT*Y), (1.6)

since the variables in the base appear as parameters throughout.

In defining totally characteristic pseudodifferential operators in Section 3 below, we
need to examine the properties of Ma more closely. If S’([O, o))< §'(R) is the subspace
of temperate distributions with support in [0, o) then clearly

M: SEZ x RY) > 0o(Z x R¥; §7([0, =0))).

As noted above, Ma is certainly C® away from ¢=1. In fact the proof of Lemma 1.5 shows
that if g €C®(R) is of slow growth in the sense of Schwartz and 1 ¢supp (o) then

o(t) Ma(z, 0'; t) €S—(Z x R¥*Y). (1.7

It is important to note that, even near the singularity at =1, Ma inherits some symbolic
properties from @, in the remaining @ variables. If o €CP(R),

olt), Malz, 0; £)> €8™(Z x RY). (1.8)
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This can be put in a stronger form in which the singularity in the ¢ variable and symbol
order in the 0’ variables are related. Consider the identity for p=(1—¢)0;:
€% =(1+]0]|2)2(—0,D,+1+|0']|2)e".
Inserting this into the definition (1.3) of Ma gives
Ma(z, 05 8) = D, M(—0,(1+ | 0]2)~2a)+ M((1 + [6']2) (1 + | 6]2)a).
Iteration of this identity gives

Ma= 3 DiM((1+|0])7*P, (0)a) (1.9)

0<i<k

where P, ,is a polynomial in 8 of degree 2k, but of degree at most k in 6,. For k>m +1 +7,

M((1+]6]|2)" Py ;(0)a) EC"(R,; 8¥H*™(Z x RY)).
Thus, (1.9) proves:

Lemma 1.10. If a€8™Z xR then for each r€N there exists R (>2(m+r+1)) such

that
Ma= Z Dtjﬂi.r(z’ 6’;t)

0<I<k
where B, ,€C*(Ry; S™R(Z x RY)).

IL.2. Operators on open sets

We briefly review the calculus of pseudodifferential operators on open subsets of
manifolds. If Q<=R" is an open set and a €8™(Q) x R") the map

CXRM3ur>alz, D,)u = J‘e”'ga(z, Hya(d)di(2r)— €C=(Q), 2.1)
where 4(() is the Fourier transform of «, is a pseudodifferential operator. In fact, the bi-
linear map

8-2(Q x Q xR") x CP(Q)3 (@, u)+->(2m)~" J‘e’(z”z')'ga(z, 2, §)u(z'Ydz' dE

which reduces to (2.1) when @ is independent of 2, extends to a separately continuous

bilinear map

8o(Q x Q xR x £(Q)~D'(Q). 2.2)

A pseudoditferential operator 4: £'(Q)— D’(Q) is a linear map which is defined from
a symbol, a €8™(Q x L xR™), through (2.2). The space of such operators will be denoted
by L™Q), with Lo(Q)= U g L™Q) and L~2(Q) = ) ner L) the space of smoothing
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operators. The subspace L5(£2)< L™(Q) of properly supported pseudodifferential operators
consists of those A € L™(€) such that for each K < —Q there exists K’ < <Q with supp (4du) <K'
and supp (A*u)< K’ whenever supp ()< K, u€CX(Q). LF(Q) is a ring under composition,
LY(Q)o Ly (Q)= Lp*™(Q). Moreover, if A€L™CQ) then the full symbol of 4,c,(4)€
8™(Q x R™)/S—=(Q x R™), is well-defined and the sequence

05 Ly2(Q) & LIQ) —» Sm(Q x RY)/S-2(Q x R?) >0, 2.3)

is exact, as is the corresponding sequence without support condition. If 4 €L}(Q), BELy(Q)

then
o/(AoB)~ 3, 80,(4) (2 ) D2a,(B) (2, L)l (2.4)

Any operator 4 €L™(Q) can be written as the sum 4’ + 8 of an operator 4’ €L7(L2) and a
smoothing operator, that is §€L~*(Q).

Now, if y: QL)' is a diffeomorphism then the pull-back operators y*: £'(Q')~ E'(Q),
¥ D'(Q)~>D'(Q) are isomorphisms and the operator (y*)toAdoy*: E(Q)~D'(Q'), ob-
tained by conjugation from a pseudodifferential operator on €, is a pseudodifferential
operator on £2'; in fact the resulting maps y*: L™(Q)—~L™(Q"), LF(Q)—~L; (') are isomorph-
isms. If one makes the identification 7% =Q x R" in each coordinate system, the principal

symbol map
L3 Q)3 Ar>[o,(A)] € 8™(T*Q)|S™ 1 T*Q)

is coordinate-free and the sequence
0 L»L;"‘I(Q) < LNQ) _Gﬂ, S™(T*Q) 8™ 1(T*Q) =0

is exact. This coordinate invariance allows one to define the space L™(M) of pseudodif-
ferential operators acting on generalized functions (or distributional sections of other line
bundles) on a given manifold, M, by reference to local coordinates and with principal

symbol map
Ot ™M) — 8™(T*M)/S™ Y T*M).

If AeL™(M) and (p, v) ET*M 0 then 4 is elliptic at (p, ») if the principal symbol,
6.(4), has a representative a €S™(T* M) which is elliptic at (p, ¥) in the sense that there
is an open conic neighbourhood of (p, ), 'c T*M\ 0, with 1/a €S-"(I"}. The set of non-
elliptic points X(4)c T*M\ 0 is the characteristic set of 4. For « € D'(M),

WF (u) = N {Z(4); A€Ly(M), Au€O®(M)},
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is the wavefront set of u. If x€D'(Q), Q< R", the wavefront set of « is the closed cone
of those points (2, {) such that for every p €CX(Q) with p(£) =0 and every neighbourhood
Bof feR*

sup |#gu(tl)|= oo for some N.

teB,t>1

For general € D'(M), WF (u) is just the unjon of the images of the wavefront sets of its
local coordinate representatives. Under the natural projection n: T*M — M, WK (u) projects
to the closed set sing supp (%) of points at which « is not locally equal to a % function.

Pseudodifferential operators are microlocal: WEF (Au)=WF (u) for all uw€E'(M),
AEL™MYuED (M), A€LHM)) and microlocally invertible at elliptic points. Thus, if
AEL™M) and (p, »)§X(4) there exists BEL,™ M) such that (p, )¢ WF ((4-B—1d)u),
WF (B A —1d)u) for all w€ E'(M).

The main obstacle to the free use of pseudodifferential operators in the treatment of
boundary problems is connected with the non-locality of their operation (indeed if A4 € L°(M)
and supp (Au)<supp (u) for all w€ &' (M) then A is a differential operator, see Peetre
[17]). To define pseudodifferential operators on a manifold with boundary, M, one can
embed M in an open extension M and allow the elements 4 €L*(}) to act on the space

E'(M) = {uc &'(M); supp (u)< M}, of (compactly) supported distributions on M, by
wr>Au| g€ D'(M), M =M~oM

where D'(M)< ‘D’(JIOI ) is the space of extendible distributions on M. Such a definition is
intrinsic, i.e., independent of the choice of extension, modulo 0®(M), but in general the
operators so defined do not preserve regularity up to the boundary. Thus, the space CT(M)
of compactly supported functions smooth on M (i.e. smoothly extendible into elements of
C®(M)) is naturally included in EM ) by cutting off at the boundary (i.e. taking the
unique extension to a locally integrable function on ¥ vanishing in 3\ M) and A(CX(M))<
C’°°(ll°l } but in general Aw is not smooth up to the boundary, 4« ¢ C=(M). In [3] Boutet de
Monvel introduced the fransmission condition on (classical) symbols under which the
corresponding operators 4 do map CX(M) into C*(M). Suppose we introduce local co-
ordinates z=(x, y)€Z=R. xR* in M, so that the boundary is locally defined by z=0
and we can take M =Z. Then the space CP(R; £ (R™) of compactly supported distribu-
tions smooth in the normal variable x is naturally included in S’(Z), by cutting off at the
boundary, and if 4 ELO(R"**") then Au|3€0°(R,; D'(R™). When 4 satisfies the transmis-

sion condition,
A: CPR,; E®RM) ~ C=R,; D'(BRY),
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but in general Au|, o is not closely related to u[z=0; it is not even determined modulo
C*(R™ by a finite truncation of the Taylor series of w at x=0. This is a grave problem
when « is the solution of a boundary problem, since the boundary condition on % can not
be easily reinterpreted as a boundary condition on Au.

In view of these difficulties we proceed to a different notion of pseudodifferential

operators on a manifold with boundary.

I1.3. Definition on Z

The natural coordinates in the standard manifold with boundary
Z =R* xR"

will be denoted z=(x, y). If P€Diff, (Z) is totally characteristic then its action can be

written in pseudodifferential form:

Pufz) = (2m) "1 fe“z’z')‘cﬁ(z, {yulz)dz' dg (3.1)
where §(z, {)=p(x, y, & n)=plx, y, x§, n) is a polynomial in &, n defined by putting P in
the form o

P= |Z| ;.02 y) 2! D} D
Jtlel<m
_ (3.2)
Py dm = 2 pufay)An*
J+lal<m
To define operators written formally as oscillatory integrals (0.1),
Aufz)= (2m)™™! fe“z-z')'f a(z, ¢)u(z') dz' d (3.3)

where d(z, {) =a(x, y, &, ) is a more general amplitude, it is useful to rewrite the formal

adjoint of 4 by making a singular coordinate change. Thus, one expects
A*() = (2m)~ "t f ¢ (2, 0) H(z) dzdl. (3.4)
Suppose that f€CP(Z). In (3.4) introduce A =2&, s=x/x’ as variables of integration.
A*(Z') = 2m) 1 fe“‘”””““y"y"”d(x's, ¥, 4, ) f(&'s, y) dA d—: dydny. (3.5)

ProprosITION 3.6. If a€SL0(Z xR™Y) satisfies the lacunary conditions, (1.4), and
fECX(Z) then the successive integrals in (3.5) converge absolutely und uniformly and so define

a continuous bilinear form
SiP(Z xR x OR(Z) - C™(Z). (3.7)
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Proof. The first integral in (3.5) converges since, by assumption, & is rapidly decreasing
as |A|->co. In fact this integral is just Fourier transformation in A. The resulting function

di

MP o, y,7;5)= f S a(als, g, ) S (3.8)

is discussed following (1.3), in view of (3.17) below. Since

f(@'s, y) €0®(Ziz, sy x BS)
is polynomially bounded:
I DZD{E'D?]‘(:”'S) y) I < Ou.j.k(l + lel )js

the product M*a-f(x's, y) is rapidly decreasing as |(s, )|~ oo, and compactly supported
in y. Thus, not only do the remaining integrals converge but they remain convergent after
arbitrary differentiation. This defines the bilinear form (3.7) and its joint continuity fol-

lows directly from the estimates discussed above.

ProproSITION 3.9. The bilinear form (3.7) extends to a separately continuous form
RZ x R™Y) x OR(Z) — C*(Z). (3.10)

Proof. Fixing f€CP(Z) it is necessary to show that (3.5) extends by continuity to all
lecunary symbols. Since S; (% x R"™1)< 83(Z x R™*!) is dense it suffices to observe that

if o €CP(R*) is identically equal to 1 near 1 then the map
RZ xR ) 3ar>(1 —p(s)) MPa (3.11)

defined using (3.8), is continuous into the space 0®(Z; S(RE'S)). That is, (1 —g(s)) M™a is
C* and rapidly decreasing with all derivatives as |(s, 77)| = co, uniformly for (2, y) in a
compact subset of Z.

Inserting the cutoff ¢ into (3.5) gives
A*() = (2m) ™ fe’“"”'”(l — 0(8)) M af(a’s, y) dsdydn
+ (2m)"" fe“”"w"’g(s) MP af(x's, y)dsdydn, (3.12)

where the first term is absolutely convergent as before and in the second the s-integral,
really the pairing of a compactly supported distribution with 1, gives a symbol with support
in a compactly based cone, in view of (1.8), so the remaining integrals have an oscillatory

sense. The continuity of (3.10) is again easily verified.
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These propositions provide the desired meaning for the oscillatory integral operator
0.1).

Definition 3.13. If a €SZ(Z x R™*') the operator
A: E(Z) D (2),

written formally (3.3), is the adjoint of 4* defined by (3.5), (3.7), (3.10).
Of course this definition by duality actually gives a meaning to the oscillatory integral
(3.83) in the sense that it can be identified with a separately continnous bilinear mapping:

Os: S2(Z x R**Y) x E'(Z) ~ D (Z). (3.14)

Both to justify (3.3) and to deduce some properties of the integral operators defined this
way it is useful to show that (3.14) can be obtained in a fashion quite similar to (3.10).

Consider the formula

Ag(z) = (2m)™" ! jei(l‘t’“"“"y"'"a(x, v, A, 0) g(at, y') dAdidy’ d. (8.15)

PrOPOSITION 3.16. If a€S8:°(Z xR"™), g€CX(Z) the successive integrals in (3.15)

converge and define a continuous bilinear form
0s: SE2(Z x R™™1) x OP(Z) — C*(Z)
which is the restriction of (3.14).

Proof. The convergence of (3.15) can be shown by following the proof of Proposition
3.6. Thus,

Ma(z, y,n; t) = fe"“‘ma(x, y, A, m)dA
is C» and rapidly decreasing as | (¢, )| = oo, and vanishes with all derivatives at ¢ =0. Now,
MW, y,n; 8) = m(x’s, Y, n; %) g1, (3.17)

Since Ma can be approximated by C® functions with support in Z xR"x(0, oo), the
change of variables x=xt, s=1/t relating (3.15) to (3.5), (3.8) is justified, so (3.15) does
define the restriction of (3.14).

CoroLLARY 3.18. With A as in Definition 3.13

A: 02(Z) > 0=(Z).
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Indeed, the proof of Proposition 3.9 applies to show that the bilinear form of Proposi-
tion 3.16 extends to be separately continuous as in (3.10), which shows that Os in (3.14)
has this restriction property.

To obtain the totally characteristic pseudodifferential operators on Z from the opera-
tors of Definition 3.13 it is only necessary to admit certain extra ‘smoothing operators’.
These arise naturally from the fact that the existence of an oscillatory integral representa-

tion (3.3) is not a strictly local condition on the kernel of an operator.

Definition 3.19. The space L;(Z) of totally characteristic pseudodifferential operators

on Z, of order m, consists of those continuous linear maps
A: CP(Z)~ C=(Z) (3.20)

such that ¢’Ap is of the form (3.3) whenever g, o' €CP(Z).
From the discussion above, if A €L;(Z) then

A: E2)~D'(Z). (3.21)

In consequence the adjoints of the operators in L(Z) also have the properties (3.20), (3.21).

IL.4. Kernels and adjoints

The Schwartz kernel theorem shows that a eontinuous linear operator
A Occx)(Rn+l) __>D/(Rn+1)

is represented uniquely by its kernel k(z, 2')€D'(R**?). Any A €LP(Z) defines such an
operator by restriction

4 oz 2. ooz) A Dy o,
0 has a kernel in D’(R**?) with support in Z x Z. These pseudodifferential operators will
be characterized by their kernels. Such a characterization leads directly to the proof of

coordinate invariance and the fact that 4* € LP(Z). First consider a technical result which

helps to simplify the discussion.
Lemwma 4.1. A continuous linear map
A: EZY~D(Z)

such that A(O‘Z’(Zﬂ))c O=™(Z) is determined by the restriction of its Schwartz kernel to the open

quarter space ZxZ.



TRANSFORMATION OF BOUNDARY PROBLEMS. CHAPTER II 177
Proof. Since OZ°(Z°)L>8"(Z) is dense the mapping A4 is determined by its restriction
A4: 02y~ D'(Z).

By assumption Au€C®(Z) if uEOZ"(Zo) so this map is in turn determined by its restriction

to the interior

A: 02(Zy~D'(Z).

By the Schwartz kernel theorem on Z this is determined by, and determines, the restric-
tion to Z x Z of the Schwartz kernel of A.

The continuity properties of the bilinear map of Proposition 3.16 show that in z, ' >0
the oscillatory integral formula (3.3) is valid for the Schwartz kernel of an operator A,
determined by a €Sp(Z x R™*1)

e ) = ) [ ata,y, 0y *2)

where z=(z, y), 2’ = (2, y'). From (3.15) one obtains, with s =2’/

n_1 7’ ,
k(z,z)—xrx(x, Y, w,y y) (4.3)
where

(2, y, s, w) = (2m) "1 fe“'”“““’a(x, y, A, m)didn. (4.4)

Since @ is a symbol in (4, ) this shows that « is a O« function of 2€Z, with values in the
space of Lagrangian distributions associated to the conormal bundle to s=1, u=0. To
formalize the use of these singular coordinates, which serve to simplify the form of the
distributions occurring as the kernels, we shall define the stretck of a manifold with corner.

Let @ be a manifold with corner. That is, each point has a coordinate neighbourhood
and coordinate mapping with image which can be taken to be Euclidean space R?, the

half space Z¢ or else the quarter space
Q= {x€R% 2, >0, 2, >0}.

The corresponding subsets of @ are denoted é, the topological interior, 8,6, the part of the
boundary of codimension one and 8,Q, the corner. We shall show the existence of a new
manifold with corner, @, ‘Q stretched’, which corresponds invariantly to the introduction

of polar coordinates near 9,¢. In terms of the disjoint union:

Q=QU8,QU2,Q
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the underlying set for the stretch of Q is
G=QUaQU@Qx[-1,1)=QUEiGUa P uaQ (4.5)
where 8,0 =5,0, 8§ =8,Q x(—1, 1) and

0,0 =8,Q x ({1} U {1}). (4.6)

To make @ into a manifold with corner so that (4.5) is the decomposition into open

submanifolds of varying dimensions, the natural projection
7:Q>Q
can be used to induce coordinates in @ Here, 7 is the identity on Q U9, @ and
7 6{@U82@—>82Q

is just projection onto the first factor in 8,Q x [ —1, 1]. Now, & is a bijection onto @ U 61@
and can be used to induce the corresponding O structure on that part of Q. Suppose that

A 4.7)

is a C® coordinate system near some point of the corner of Q. In A —=71(A) consider

the map

(3eutp) + 24, 2D 20D
@, (p) + 2(p)

0,7, %4(D), ..., %a(p)) if 21Q U 8,05 =(p, 7).

~ ,xs(p),---,wd(p)) if p’=p€EQUHQ
z(p') =

(4.8)

ProrosiTION 4.9. If & in (4.7) is a coordinate system then % in (4.8) is a bijection

Z: Ao {w, r, 5, ..., w); w =0, |r| <1, (25, ..., 2,) ER}.

These maps, together with the C*® structure on @U o1 @, make @ a C® manifold with corner
such that : @~ Q is C,

Proof. Clearly % is a bijection onto the manifold with corner given by the half strip
w>0, [r| <I. Thus, to prove the proposition, it is only necessary to show the consistency
of the various coordinate systems on Q. Suppose that y: A’—@* is another coordinate
system with 4’ N 4 N 9,0+ ©. Write

g = (w” 7", Y35 ey ?/d)
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for the corresponding map on A’. In the first instance we can suppose that
Y1 =2,a(Z), Yo =2,b(x) (4.10)
with @, 5>0 on A N A’. Then, on QU &,Q,
w' =1y, +42) = $(@a(2) +2,b(z)) (4.11)

and since ,, %, ..., ¥; are C° functions on 2, this shows that w’ is C® in terms of the
coordinates . Similarly the functions y;, ..., y; are C® and
i1~ _(+rae—(1-nb

=y1+y2_(1+r)a+(1__r)b (4.12)

that is,

1+rl=g.1+r 4.13)

so 7’ is also C® in terms of the coordinates Z.

1f the assumption (4.10) does not hold it can be ensured by first exchanging the
variables z,, z,. This latter transformation has a O lift to the coordinates Z, namely
r— —r. Compatibility between the coordinates # and those in Q U ¢, is obvious so the
proposition is proved.

Now, if M, N are C® manifolds with boundary then N x M is a manifold with corner
and the stretched product N X M is defined as

- o
NXM=NxM.

Clearly N X M and M X N are isomorphic in a natural way.

LeMMa 4.14. The part a;’@c @ of the boundary of Q stretched is a fibre bundle over 9,0Q
with fibre (—1, 1) and structure group the real fractional linear transformations preserving it.
The natural subbundle F< T*(c’)i’@), consisting of the conormals to the fibres is itself a fibre

bundle
F
4 (4.15)
T*2,Q
with the same fibre and structure grouwp.

Proof. That & @ =0,Q x (—1, 1) is a fibre bundle follows from the change of coordinate
formulae (4.12), (4.13) since #; =x,=w=0 on 81'@ and by (4.12) the variable r in (—1, 1)

undergoes a fractional linear transformation. Note that the transformations (4.12) together
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with r— —r, which comes from exchanging the roles of z, and ,, give the group of all
fractional linear transformations preserving (—1, 1). The rest of the lemma is obvious.

Note that the transformation r— —r on the fibres of &7 E) comes only from the exchange
of the two local boundary components of @ near 8,Q. Without this transformation the
map #={1+7)/(1 —r) reduces (—~1, 1) to R+ with its self action. Thus we obtain:

CoroLLARY 4.16. If M, N are manifolds with boundary then the part 0{(N X M)= N X M
of the boundary of the stretched product is a principal R+ bundle over ON x oM ; the bundle of
conormals, F, is a principal R+ bundle over T*(ON x o M).

Further specializing we consider the stretched product Z XZ. This has the natural
coordinates w={%(r+2’), r=(x—a')/(x +2'), y, ¥’ identifying it with the half strip

ZXZ={(w,r,y,y)ER™%w>0, [r] <1}
Observe that distributions of the form (4.4) can be transferred to Z X Z by setting

1—7

—— = ) 4.17
T w=(+nw (#.17)

8

Let X™Z X Z)<D’'(Z XZ) be the space of those distributions « with the following
properties:

o is singular only at r =0, y = 9'. (4.18)

a is C* up to the boundary (and corner) of Z X Z away from r =0, y =y’ (4.19)
and vanishes to all orders at the part 81(Z X Z). .

Near r =0, o is the restriction to w=>0 of a Lagrangian distribution (£.20)

of order m associated to the submanifold » =0, y =y’

Since these distributions are regular in the normal variable there is a natural inclusion
K7 R L)< D(Z R Z) as well.

ProrositioN 4.21. If a €S[L(Z x R™1) the distribution given by (4.4) is on X™Z X Z).
Conversely, each 0 € X™Z X Z) can be represented in the form (4.4), with a €87, in any region
(w,y,y)EKccR* xR™ of ZRX Z,

Proof. For a distribution of the form (4.4) the condition (4.18) and its refinement
(4.20) are immediate, essentially from the definition of a Lagrangian distribution. Similarly
the fact that o is the Fourier transform in the s variable of a symbol shows that it is rapidly
decreasing with all derivatives as s— co; this gives the part of (4.19) corresponding to the
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boundary component r= —1, ini view of (4.17). The other part of (4.19) is precisely the
lacunary condition on the symbol @, namely that « vanishes identically in s <0,i.e.r< —1.

The converse part of the proposition is similar. Given « € X™(Z X Z) and g € CY(R¥ x R*")
set

a(z, A,m) = J‘ei(s_l)liiwng(x(l - T)_l’ Y,y — ) o(x(l — r)_l, 1Yy, y—u)dsdu, (4.21)

where r=(1 —s)/(1+5). Note that z is bounded from above on the support of ¢ in (4.21)
so the integrand is a C* function of r, away from r=0, vanishing to infinite order at r=
—1, 1. Thus, after the substitution for s the integrand is rapidly decreasing as s—co,
vanishes to all orders at s=0 and is Lagrangian at s=1, =0 with compact support in
¥, 4. The Fourier transform (4.21) is therefore a symbol satisfying the lacunary condition.
Clearly (4.4) now gives a representation of « in any region where g =1, proving the proposi-
tion.

The fact that the space of kernels X™Z X Z) is invariant under all C® diffeomorphisms
of the manifold with corner Z X Z allows us to use the following direct definition of a
pseudodifferential on any manifold with boundary M.

Definition 4.22. Let E, F be vector bundles over M. A continuous linear map
A: XM, E)—~C=(M, F) (4.23)

is an element of the space Ly(M; E, F) of totally characteristic pseudodifferential operators
if p’Ap is a matrix of elements of L{(Z) whenever ¢’, 0 € O(M) have supports in coordinate
neighbourhoods over which Z, F are trivial. )

The invariant symbol calculus for these operators will be examined in section six.
First we examine in more detail the space L7(Z). Definition 3.19 is consistent with Defini-
tion 4.22 above and we note that the elements of L}(Z) are in one to one correspondence
with those of X™Z X Z) via (4.3), (4.4), (4.17). Using this isomorphism it follows that

Ly ™(Z) = N Li(Z) (4.24)

corresponds via (4.3) to the space X-®(Z X Z)< C*(Z X Z) consisting of those functions

vanishing to all orders at r= +1.

ProrosiTion 4.25. Hach AEL}NZ) can be written in the form A=A4,+ A, where

A, €Ly ®(Z) and A, is of the form (3.3) and properly supported. Associating to A, the symbol
a€Si(Z x R™* Yy defines the full symbol mapping

oy LY(Z) ~ 8™Z x R**1)[S~2(Z x R™*1), (4.26)

which has the property ‘
ker (o) = L, ®(Z). (4.27)

12 — 812903 Acta mathematica 147. Imprimé le 12 Février 1982
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Proof. Suppose g€ CX(R™!) is identically equal to 1 near the origin. Then if 4 has
kernel k(z, z’) the distribution
ky(z, 7)) =plz—2', y —y') k(z, 2) (4.28)

can be taken as the kernel of 4,. That 4, €L}(Z) follows from the fact that the corresponding

distribution on Z X Z, is
ay(w, 1,9, y') = 0(2wr, y—y ) alw, 7, 4, y') € K™Z R Z).

Ifg=1in |z—2'| <¢, |y—y'| <e then ¢y =ain |y—y'| <¢, |2wr| <e which is a neighbour-
hood of r=0, y=y'. Thus ay=a—a, is C%, i.e. 4,€L;°(Z). Similarly, the fact that (4.26)
is well-defined is just the statement that this operator A;€L,;*(Z) precisely when «, is
(%, i.e. a €8™. Note that in defining (4.26) the isomorphism (1.6) has been used.

Prorosition 4.29. If A€LJ(Z) then A*€L}(Z).
Proof. If 4 has Schwartz kernel k(z, ') then the kernel of 4* is
k*(z, 2') = k(z', 2). (4.30)
The distribution «* defined on Z X Z by k* is therefore
oaf(w, r, y, y) =sta(w, —r, ¥, y) (4.31)

where (4.7) holds. Since & vanishes rapidly at = 41 this is again an element of X™Z X Z),
providing the proposition.

Now, Proposition 4.29 shows that g;(4*) is well-defined for all A€L(Z) and is deter-
mined by o/{A4). To obtain an explicit formula it is enough to write «*, modulo €%, in the
form (4.4), starting from the corresponding formula for «. This is just an exercise using
the lemma of stationary phase and a short calculation gives:

(—i)lter & e
o A*)~ azk e E) (£, + A0, +9) i 5 oi(A). (4.32)
This is easily seen to be the usual formula for the full symbol of the adjoint of a pseudo-

differential in the open region if it is used to compute
5(4%) = o (4*) (x, y, x&, 7)

in terms of ,(4). Note that all terms in (4.32) with £+ || =N are of order m —N.
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IL5. Boundary values

In order to consider in more detail the mapping properties of the space L;’(Z) of
totally characteristic pseudodifferential operators it is useful to extend the oscillatory

integral representation (3.15). To do this consider the transformed distribution
x
ut(z)=u(t—,y), t>0. (5.1)

LeMMA 52. If u€E'(Z) then (5.1) defines a C° map u; R+—>E'(Z). If we H:(Z) then
u, € HYZ) for each t>0 and
Notell e < Ol +13) )| . (5.3)

Proof. For w€ H(Z) the Sobolev norm is

ol = [+ 161712 e
Si'nce ﬁ’t(C) =at(§! 7)) =tﬁ(t§’ 17):

2 s
ol = [ @+ 6« Py laes mpagan = [ (1475 +1af) e b aran. 6.4

Using the bounds

2 s (L+r2+]n|2)%, 820,61 ors<0,t<1
L+{c) +nl?) <q 5
¢ 2L +r24 ]2, s20,t<1 ors<0,t>1

(5.3) follows easily from (5.4).
Since D,u,= (1z[t?) (D,u)(z/t, y) it follows inductively from (5.3) that for any j€N,
D1 < €459 D Y.

Summing these inequalities over j we conclude that for any k€N, u€ Hi(Z),

> || Diuflas—» < Co(82 =5+ 817+ t3) | ]| . (5.5)
o<i<k
Now, let us examine the representation (3.15), carrying out the A-integral as Fourier

transform:

Aglz)= (@m) f 90 Moz, 03 8) gue, o) dy dn i, (5.6)

where Ma is defined in (1.3). Choose ¢ € CP(R+) witho(t) =0in |t —1| >4,p(f) =1in |t —1| <}.

Then, for a €8, g€CX(Z)
Ag=A,g+A,9 (5.7)
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where, using the expansion of Lemma 1.10 and integration by parts,

A,g=@2n)" 2 | EUTB, (2, m30) (— DiY (o) gule, y')) dy’ dp dt, (5.8)

J<R
and

Ayg=(2m) " fe“”"'"M a(z, 73 ) guule, ') (1 — 0(8)) dy’ dip di. (5.9)

PrOPOSITION 5.10. If a€SE(Z x R™™) and g€ E'(Z) then (5.7) holds if (5.9) is inter-
preted as Fourier transform in y' followed by integration in n, t and (5.8), with r large enough,

as an oscillatory integral in (y', n) and distributional pairing in t.

Proof. In view of (1.7), (5.5) and Lemma 1.10 it is clear that both terms (5.8), (5.9)
make sense as stated and are separately continuous in a and g provided that r is large
enough. Thus the validity of (5.7), (5.8) and (5.9) follows by continuity.

There are several direct consequences of this representation. First the uniform con-
tinuity of the operators in L7’; these results are by no means optimal but are very useful

in establishing finer continuity properties.

CoroOLLARY 5.11. For each pair s, m €R there exists p=p(s, m) such that every A €L;(Z)

is a continuous linear map HY(Z)-> H%.(Z).

Since the operators in L3’ are modelled on the totally characteristic differential opera-
tors, Diffy (Z), it is to be expected that they have similar mapping properties. To see this

we need an elementary composition result.
Lemwma 5.12. For any mER, kEN,
Diftt (Z)-LP(Z) < span (L}(Z)- Diffs (Z)), Diffs (2)- Ly ®(Z) < Ly ®(Z). (5.13)
Proof. To obtain (5.13) it suffices to prove the individual decompositions: If A €L(Z)

there exist 4, BjL{(Z), j =0, ..., n such that

{xpz-A=A;,-xD,+B{, 5,14

D,-A=A4;-D,+B,.

The continuity properties of the operators in Lj(Z) show that it is enough to demonstrate
(5.14) on the domain C®(Z) where (3.3) converges absolutely with all derivatives. Then one
obtains (5.14) immediately with 4j=A4, j=0, ..., n and B; given by an integral of the
form (3.3) with symbol

bo = xwD,a(z,y,y', 4, n), bf, = (Dy;_Dy})a/(x’ 99,2 7)
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when A is of this form with symbol a. Since (5.13) is local on the kernels this proves the
first part of it; the other part is similar.

Since the remainder term in the first identity (5.14) has a factor x the same argument
establishes

Lemwma 5.15. For any m€R, k€N, Diff* (Z)- L}(Z)< span (L}(Z)- Diff* (Z)).
The analogue of the second part of (5.13) is not valid.

Prorosition 5.16. If A€L}(Z) then

A: ASZ)—~ AZ). (5.17)
If A€L;™(Z) then

A: E(Z)~> AZ). (5.18)

Proof. From the definition (I1.1.10) of A it suffices to show that if u € AC(Z yand g €CX(Z)
then there exists p €R such that

P(oAu)€ H?(Z), VPEDift, (Z). (5.19)
According to Lemma 5.12 we can always write

Plodu)= > 0'Ay- Pyu (5.20)
finite
with P,€Diff, (Z), A4,€L7(Z) and o’ €CY(Z) fixed (with o’=1 on supp ). By assumption
u€ AC(Z) so there exists s€ER such that P,u€ H3(Z), for all k. Using Corollary 5.11, (5.20)
implies (5.19) with p =N(s, m). This proves (5.17). Similarly, one obtains (5.18) by using
the second part of (5.13) and Corollary 5.11 to prove (5.19) for every uGS'(Z).
For special distributions the representations (5.7), (5.8), (56.9) give simple results. Of
particular importance is the action of the pseudodifferential operators on distributions
supported at the boundary. If

Hz, y) =0 (2)@fuly), € ER™
then f(x, y) =¢t"'"%f(z, y). Thus,

Af=@u)™" 2 | &7 0, iy, 1) fuly) dy’ dn 6V(2) (5.21)

i<k

where, if 4 is of the form (3.3) then the symbols ¢, ; are given by

217[ f Ma(z, n; )47 % (@) di = 3 og 4y, ) 07 (@). (5.22)
i<k
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ProrositioN 5.23. If A€L{(Z) then
A: A(Z)—~ A (Z). (5.24)
There 1s a well-defined map
( )o: LNZ) = L™(R") (56.25)
such that for any w€ AZ), A ELY(Z),
Au) ;o = Ap(u]:-0). (5.26)

Proof. Since A'(Z)< E@’(Z) consists of those distributions which extend by continuity
from CX(Z) to AC(Z ) the first part of the proposition is simply the dual statement to (5.17).
Then

CUfa0, P = {u, () Op(y)>, PECT(RT)

and we conclude directly form (5.21) that
CAufzmo, @) = (Au, 8@¢) = (u, A*(3®p)> = <{ds(u|;-0), P)-

This proves (5.25), (5.26) with the explicit formula
Apu=(2m)™"1 f v ( f M(0,y,7;1) dt) u(y) dy' dn (5.27)

given as an oscillatory integral. It should be noted that the terms in the kernel coming
from the difference between (3.3) and the Definition 3.19 can be ignored.
Notice that, directly from (1.3}, if 4 is given by (3.3) then

Ayu=(2m)™" J‘ei(y‘y"'”a(o, ¥, 0,y u(y’) dy’ dn. (5.28)

From (5.21) it follows that
A: E'(Z, 0Z)~ D'\Z, Z). (5.29)

In particular this means that the totally characteristic pseudodifferential operators act in

a natural way on extendible distributions.
Prorosirion 5.30. If ACLHZ) then A: £(Z)~>D'(Z).

Proof. If v€ E'(Z) there exists uGE"(Z) with v =u|z. According to (L.1.1) u is well-
defined up to an element of S’(Z, 0Z). Then one can set Av=Au|3, unambiguously because
of (5.29).



TRANSFORMATION OF BOUNDARY PROBLEMS. CHAPTER II 187

I1.6. Symbols and residual operators
Let Lg{M) be the space of linear operators introduced in Definition 3.19:
A: (M)~ D'(M)
with kernels in X™(M). Following (4.26) we define
S™(T*M) < Co(T*M)

to be the space of O functions on T*M which are of the form n*e =@ with 7: T*M->T*M
the map of (1.2.4) and a €8™(T*M). The results of Section 4 now give:

ProrosiTION 6.1. The principal symbol map
G LE(M)ILE™(M) > Sm(T* D[S H(T* M) = S™(T M) S™(T* M),

18 an isomorphism well-defined by projection from (4.26) in any local coordsnates. If A €L (M)
we denote by 6,,(A) the image of the principal symbol in S™(T*M)[S™*(T*M).

Similarly the results of Section 5 can be restated invariantly. If 4 €Lj (M) then
A: AJM) A (6.2)
and as Ly (M) is closed under the adjoint operation
A: AAM)—~ A (M). (6.3)
Using the trace map of Section 1.3 and Proposition 5.23
E(Au) = Ay(Ru) (6.4)
for every w€ A(M), with A ,€L™2M),
on(dy) = on(A)| T*0M. (6.5)
Now, we consider the residual operators, in Ly*(M). From (5.18) it is clear that
A: E'(M)—~AM) it AEL;™(M). (6.6)

It is possible to define symbol maps which allow one to examine the degree to which such
an operator differs from a smoothing operator. Returning to local coordinates we see from
(4.3) that the function

%9, ¥, 8) = (0, 9, 8, y —y') EC(R™; §(R)) (6.6)

can be associated with the kernel k. Here we extend « as zero into s<(0, using the fact
that o vanishes to infinite order at s =0.
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ProrosiTIoN 6.7. If A€L,;®(Z) the function uy is well-defined and the residual symbol

mapping '
0—00. 0: L;OO(Z) - Cw(B’zn; S([Os oo ))’ A I'—>OC(]:
18 surjective.

Proof. Since, in terms of the kernel k(z, 2’),
%(y,y', 1) =lm 2 k(z, y, 2t, ') (6.8)
z40

it. is- elear that ¢, is well-defined. Moreover, the distribution k defined by (4.3) with «
replaced by «,, which is independent of z, is the kernel of some element of L;®(Z), 80 0_y.q
is surjective.

Consider the behaviour of the kernels under coordinate changes. Let N*=N*2Z be
the conormal bundle to the boundary of Z and on the product 8Z x9Z consider the line
bundle

8 = (@ N)© @z N)
where N is the dual to N *, thus N=T,;Z[T6Z is the normal bundle.

Lemma 6.9. The R+-line bundle S+ is canonically identified with the line bundle 81(Z % Z)
of Corollary 4.16 by (dx)t®dz’ ~s.

Proof. This is just the identification of a vector space and its cotangent space, x ~dx
and is coordinate independent because of (4.13).

If we wish to define this first residual symbol map on L;°(M) we need only take
account of the density terms in the kernel. Thus, k€ H~°(M) transforms as a density on
the second M factor. We therefore have:

ProrosiTioN 6.10. The map

Oco.0t Ly (M)~ S(S*; B),

where S=38{(M X M) over OM xdM and B=T{S)®(m0p0)* (Qon), s well defined and
surjective, with T,(S) the cotangent bundle fo the fibres.

Suppose- we are given two sections y,, 9,€ S(S*; B) one at least properly supported
in dM x 0M. Identifying S+ with the associated B+ bundle we define composition as follows,

in local coordinates. If

Vi = 7'{(?/, 2/': S)dSIdy'l (611)
we seb

, . E\ds "
YAy = (fﬁ(% Y587, (y: Y, ;) ?dy) dtld?/ l (6.12)
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It is straightforward to verify that this is a section of B over S* and is rapidly de-
creasing at 0 and oo. In fact this also follows from

ProrosiTioN 6.13. If A, BEL; (M) and one at least is properly supported then
G—w,o(AOB) =0—-oo,0(A):H:O'—oo,0(B)'

Proof. T k(z,y, ', y")=(1/x)a(x, y, #’'[x,y’) is the kernel of 4 and U, ¥y, =", y") =
(1/z") (', y', 2" [2’, y") is the kernel of B then the kernel in (z, y, ", y") of Ao B is of the
form (1/x)y(z, y, 2"z, y") with

” ! 1 ’ ’ x” 4 7 ?
Y@, 9,6, y") = |2, Y, 8,y );lﬁ T ,?/,;7,_?/ da’ dy
where s=2'[x, t =2"/2. Thus,

ds .,

#” ’ 't ”
Y, ¥, by )=frx(x, Y.8,Y )ﬂ(xs,y oY );dy- (6.14)

Taking the limit as 2 | 0 we obtain (6.12), proving the proposition.
Consider the subspace of L; *(M) defined by the vanishing of this first residual symbol.
In local coordinates the kernel, in L;®(Z) is of the form

w1 x
Ic(z,z)=;zx(m,y,;,y)

with «(0, y, s, ¥') =0. We can then consider higher terms in the Taylor series:

“»]‘(ya ?/l, §)= (7!)—1(3:{:“) 0,9,s, y’)'
If x_;=0 for j<p then

%_p(y, 9y, 8)=Hm 2* ?k(x, y,xs,9’), p=>0. (6.15)
z{0

For each p >0 define the bundles
B, =B, ®((mop)*N*oM)™?, p=>1.

Then, if «_;=0 for all j<p (6.15) defines a coordinate-free map into S(87; B,). Dif-
ferentiating (6.14) with respect to x leads to the following natural definition:

! ’ ” ¢ ds ’
71#V2=f?‘1(?/,?/,8)"2(?/,?/ ,;> s ;dy (6.16)

when y, =r,(y, ¥/, s) (de)"ds|dy’| € S(ST; By,).
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THEOREM 6.17. The spaces Ly *?(M), fixed by the condition that «_;= 0 for j <p in any

(one) local coordinate system, are invariantly defined as is the map
0o, Lo (M)~ $(8*; B,), p=0.
If AeL;® ™M), BEL;®~™(M) and one is properly supported then
AoBEL;™ P P(M), 0-co,—py-p:(A0B) =0 0, p,(A)FH 00, -, (B)
using the product (6.16).

Proof. This follows directly from (6.14).

PROPOSITION 6.18. If A€L; (M) then A has a kernel k€C®(Z x Z) if, and only <f,

AEL;™ (M)= N L™ (M),
=0

v.e. if and only if all the successive residual symbols o_,, _, vanish identically.

Proof. Of course, this result is really local near points of &M x 0M. In local coordinates

the vanishing of all the o_, _,(A4) means that
n_ 1 a
k(z,z)—g—ca(x, Yo (t/)

with « vanishing to all orders at z=0. Clearly then £€0®(Z x Z). Conversely if ¢_y, ,+0

at some point (7, #', 3) for some p, where g_o _; =0 for j<p consider

zAB( ~ 1)@y — ) = oc(x, v, 2 , g) . (6.19)

If this is C® in x>0 we can set y=¢, x=r/8, since certainly 5+0, after differentiating
(6.19) p times. Then we have

=lim (8?«) (z, 9,5, ')+ 0.

z=r/5s >0

r
li g -,_ 78
im ¢! oc(x,y x,y)

>0

However, if 4 :E’(Z)—>C’°°(Z) then this limit must be zero from (6.19).
This result can be refined to give a useful description of the operators in L;* ~*. For

each m €R we can consider inside A(Z) the subspace of Lagrangian distributions of order m:

/i'"(Z) ={u€;4(Z); near x = 0 % is of the form (I.1.15) with symbol of order m+7%1~}
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ProposiTION 6.20. Each A € L; ®(Z) maps A™Z) intoA"‘(Z) for every mER. A: ,4’0"(Z)—>
,4""1’(Z) for some fixed p >0 and every m if, and only if, A €Ly*~?(Z).

Proof. Since A is in L;*(Z), and can be assumed of the form (3.3), we can carry out

the %-integral to give
Au=(2m)" fe“’”"”"EK(x, v, Yy, ) ulx’, y')dx' d&
where K(z, y, y', A) is smooth in all variables and in S;® with respect to the last; in fact

we can take the support to be compact in z, y’. Assuming u€0%(Z) and writing it in Lag-

rangian form

w=(2m)"* Je””‘fb(y, §)d¢
we can substitute directly into the formula for A« and find
Au=(2m)7! fe”f ey, &)
where we have used the Fourier inversion formula in one variable to write

oly, &) = (22)"* f 6 ala,y, o, 2£) by, £) dy dudE.

This can be rearranged to give

_ R -, | # ’ ,/1_5) , Q/j 6.21
c(y, &)= (2m) fo fe ”a(g,y,y,l)b(y,ﬂ dydlﬂ (6.21)

If b€SY the fact that K is rapidly decreasing means that (6.21) can be interpreted as an
oscillatory integral, defining ¢ €.8”. Suppose
oK, y,y,2)=0, forj<p, (6.22)

then the leading term in (6.21) is
D
oy, &)= f (g) SRR E(0, g,/ 4) b(y', f;f) ay’ %" dapl), (6.23)

modulo §¥-#-1, The mapping properties of 4 €L, ?(Z) follow directly from (6.23) since
(6.22) is just the succession of conditions «_; =0, j<p, i.e. the definition of 4;* ~*(Z).
The validity of (6.21) and (6.23) for general u€.4™(Z) follows by the continuity of the
formula (6.21) and the density of 0X(Z) in A,(Z).
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To prove the remainder of the proposition we need to show that if 4 €L;*"?(Z) and
OmplAu) =0, Vu€ANZ) (6.24)
then o_g,, _,(4)=0. To do this we will rewrite (6.23). First note that the symbol map
AZ) ATYZ) - grHe-LiRr R)[§a-Di9-LRe R)

can be considered as an isomorphism:

Am+(n~1)/4(N 3Z)
Am+((n—1)/4)~1(N6Z)’

A™Z) AN Z)~

the image being the space of Lagrangian distributions on the fibres of the normal bundle
to the boundary, NoZ, supported on the positive side. If we apply the Plancherel formula
to (6.23) then, since

X,y 8) = fe‘“‘”‘ai’K 0,9,9,4)d4,

7 p ’ u — ds 4
oy, ) = f sy ) (ﬁ—‘) -ﬂ(y , s—) L gy (6.25)
n n n
where

By, t)= J‘e“”b(y', Aydx.
Now, changing variable in (6.25), u=#n, gives

oy, 1) = fe’”"t” foc_p(y, Y, 8) Py, st)dsdy’ dt. (6.26)

With the interpretation of the symbol above we see that if # €A™ ®~D4( N 3Z) represents
w€E A™(Z) then Au is represented by

t? fa-p(y, Y, 8) By, st)dsdy’. (6.27)

Here § is a Lagrangian distribution in the second variable with support in st =>0.

Taking product distributions f{y, ) =p(y’)h(x) with b Lagrangian on R, associated
to Tg R, and with support in >0, we can now prove the remainder of Proposition 6.20.
We take h{z)=2%, 2€R not a negative integer. Then from (6.27) we must have

v f %oy, Y, 8) (') (st) dsdy’ =57 f a_(y,y',s)ely) #dsdy =0 (6.28)
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since as a homogeneous distribution, it vanishes with its symbol. Thus we must have
f ap(y, Y, 8)ey) s dsdy’ =0 (6.29)

for all o€ CX(R™) and 2€ R\ (—N). By continuity, (6.29) gives the vanishing of the Mellin

transform of «_, in s. Thus, «_,=0, proving the proposition.

CoROLLARY 6.30. Operators in Ly;®(Z) map the classical distributions in AC(Z) to
classtcal distributions.

Proof. This is evident from (6.23).

Remark 6.31. The proofs above, of Propositions 6.10, 6.13 and 6.20 do not really
depend on the assumption that 4 €L;*(M). Thus, for each m the subspaces

WS LMY LR TR M) < L < LY M) = LE(M)
can be defined successively by the conditions
& a(0,y,y,8) =0, forj<k
in any local coordinates. Then the symbol maps and product formula extend with
Om i LEHU) > $'(ST; By), k>0

having values in the space of Lagrangian distributions, supported in S*, of order m—3
associated to the surface s=1, which is invariantly defined in S, and decreasing rapidly
at co on the fibres.

In particular note that if A ELJ(M) then A €L} ~*(M) if and only if

A: AUM) > AH(M), V. (6.32)
The formula (6.27) also carries over, when the symbol isomorphism is viewed as
0, AU M) ALY M) = AL D(N* o M) AT ¥ DY (N* o M), (6.33)

So, for A €LY ~*(M), w€ AYM),

0r_(Au) (t) =t* f%o. -(4) (¥, Y, 5) 0, (w) (st, o) Ay’ ds. (6.34)
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II.7. Composition and ellipticity

The composite of two operators is not defined unless there is a suitable restriction on

the support or growth of the kernels. Recall that an operator
A: E'(M)~D' (M)
is properly supported if the support of its Schwartz kernel
suppa<s M xM
is a proper relation, with proper inverse:

{supp (@)(K)cc M, YKcc M a1

supp (@)Y K')cc M, VK c< M.
Lemma 7.2. If A€Lj(M) there is a properly supported operator A’ €Ly (M) such that
A—A'€L;*(M).
Proof. Cutting off the kernel of 4 away from the diagonal affects it only by an element
in K—®°(M), proving the lemma.

Note that it is not in general possible to modify 4 by a smoothing operator and make

it proper.

TaeoreM 7.3. If AELP(M), BELY (M) and one at least is properly supported then

C=B-A€Ly™ (M) and
Onim(C) = 0p(4) - 0 (B). (7.4)

The main element in the proof of this theorem is the corresponding local result.

ProPoSITION 7.5. If a€SE(Z xR™Y) has support in a compactly based cone and
bEST(Z x R**1) then there exists c € SE™ (Z x R™*Y) such that

b(z, D,)od(z, D,) =é(z, D,).
Proof. Following Corollary 3.18 it suffices to show that
biz, D,)(¢* a2, L)) = €%z, ). (7.6)
Now,

b(z, D,) (€ d(z, £)) E0°(Z x R™*1)

so, provided c€S™™(Z x R"*1), we only need verify (7.6) in >0, and only for b€S,®,

if we show that ¢ depends continuously on & in symbol spaces.
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For x>0, we make successive changes of variable from & to A’'=«&" and from z’ to

s =z'[x to show that
" tb(z, D,) (¢*d(z, 0))
o0
= (27!)""_1 J‘f HE— TN E = O+ -y O ~ 1) b(z, xf', ,,]’) a(z', xlf, ,,7) dx’ dy' df' d’?'
0
o0 s
— (27.6)—11—1 fj‘ AT ID W =25 HY—y) o' —m) b(Z, l', ,rl') a(z" x'é‘, 77) dx'/x d:l/' ar dn'
)
o0 P
= (2m)" ! ff A DX =OHG-VY =D (3 2" nVa(sx,y , sx&, 1) dsdy’ dA d’.
)
Thus, if we take (7.6) as the definition of ¢ we have
o0
e(z, A, 1) = (2m) " ff A DX =DHE= =0 h(y 3 n'Ya(sx,y , sA, 1) dsdy’ dA dy’.
0

(1.7)

To see that this is a symbol we first note that the 4’, %' integrals in (7.7) can be carried

out as the inverse Fourier transform of the symbol b. Setting

v

bz, t, r)=(2m) " ! fem'“""' bz, A, n"YdA dn’
we find

00 v
oz, 4, m) = f fo DIy | — s y—y )a(sz,y', sA, ) dsdy’. (7.8)

Here, I;(z, 1—s,y—y') is a Lagrangian distribution singular only at s=1, y=%" (and 0%
for b€8-). The lacunary condition (1.4) means that l;(z, 1—s, y—v') vanishes identically

in s <0. Thus, we can write (7.8) as
oz, 4, M) = ffﬂ(s) bz, 1—s,y—y') a(sz, ', s, ) €S DI ngg gy

with the integrand still C® away from s=1, y=v'. In fact, the integrand is rapidly de-
creasing as s—oo or |y'|—>co, so if p€CY(R) has p(s)=1 in |s—1|<1/4 and supp p<
[1/2, 3/2] then

oz, 2, 7) = fe(s) bz, L — s,y — ') alss, y, sk, m) DA ds gy

= (2m)~"- f 0(s) A-IF DI D5 17 ') (s, o, s, ) dsdy’ dA d’

(7.9)
modulo §-®; the amplitude is a symbol since s is bounded away from zero.
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The standard stationary phase argument, as used to prove the composition law for
pseudodifferential operators (see Hérmander [9]), now applies to the last integral in (7.9)

and shows that ¢ is indeed a symbol depending continuously on @ and b. Indeed,

e(z, A, m)~ 3 (— )i orb(z, A, m) O 02 a(sa, y, sA, ) Is=1/k!<x! (7.10)

k.o

Returning to (7.7), it remains to show that ¢ satisfies the lacunary conditions (3.9).

Calculating directly,
Me(z, 9, 1) = (27)"* fei(s—m a(sz, y', 84, 1) €AINTOIITD o(5) bz, X', ') dsdA’ dy' dny’ dA
=(2m) "1 fei(l“ts'l’” a(sx, y', u, )€YV Yb(z, ', s)o(s) s  dsdudy’ dy’

iy B8 4
=(2m)~ "1 fMa(sx, ¥, ;s Mb(z, 1"y 8) V7Y “"’g-sfdy dn'. (7.11)

The lacunary conditions on @ and b show that this vanishes identically if £ <0, so ¢ satisfies
(1.4) too and the proof of the theorem is complete.

The formula (7.10) specifying ¢ modulo §—*® is actually just the usual asymptotic
series for the symbol of the product of two pseudodifferential operators, in that it implies

é(z, O)~ 2 (— i)t b(z, C) - & a(z, L)/B!. (7.12)
2

Proof of Theorem 7.3. Decomposing the kernels of A and B by a locally finite partition
of unity we can apply Proposition 7.5 to all terms except those with one factor in L, *.
Since the latter contributions are shown to be in L;*® below it follows that C' €Ly"™ (M)
and the formula (7.4) follows directly from (7.12).

ProrosiTIiON 7.13. Suppose B: CP(Z)—~C®(Z) is defined by an integral

Bplz) = f B9 Plas, )y ds (7.14)

where Z3z (2,9, 8) E'D’(Z) is a O° map such that § is C® in all variables in s<e, s>1fe
for some & >0 and vanishes rapidly as s—0Q, s—> oo then for any A€L, $(Z)A- BEL,®(Z).

Proof. Clearly it is enough to suppose that 4 is also of the form (7.14) with kernel
o €C0®, compactly supported in the y’ variable and vanishing rapidly as s—0, co. Similarly
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one can suppose that § is supported in 2 <1. Then the composite operator can be written
in the same form (7.14) with kernel

’ ¥ 4 n ! ” ds
Y2,y )= fz a(z, 4", 8) Bxt, y", y', slt) dy L (7.15)

which is clearly in H~®(Z).
For A€L} (M) we define the characteristic variety

(M) = {p€T*M\0; 0,,(4) is not elliptic in a cone around p}.

The standard microlocal invertibility of pseudodifferential operators at elliptic points

comes over to this setting.

Prorositron 7.13. If A€L(M) is elliptic at o then there exists BEL,™M) with

proper support such that
R, =1d—-AB, R,=1d—-B4

have full symbols (in any coordinates) of order — oo in a conic neighbourhood of g.

Proof. Since the construction just depends on the formal properties of the symbol

maps we refer the reader to [4].

I1.8. Wavefront set

The notion of wavefront set of a distribution on an open set, as introduced by Hér-
mander [10] and by Sato in the analytic category, is the basic starting point of microlocal
analysis. It is intimately related to the invertibility of pseudodifferential operators, dis-

cussed in Proposition 7.13.
Definition 8.1. Tt w€ D' (M)
WE, (u) =N {Z,(4); 4 €LY M) is properly supported and AuEA(M )}

The notation used here is not quite the same as that of [11], [16]. We shall show in
Section I1.9 below that the various definitions agree in their common domain. The most
straightforward properties of WF, can be proved as in the standard case of WEF.

LeEMMA 82. WF, (u) = @ <u€AH).

Proof. This result follows from the locality of the symbol product (7.10). Thus, if
A;ELY(M) are proper such that the 7*M\ (0U Z,(4,)) give a locally finite open covering
of T*M\0 and A,uGA(M ) for every j then one can find B;€L)(M) proper such that

1d=X B, 4}-mod L;*, (8.3)

13 - 812903 Acta mathematica 147. Imprimé le 12 Février 1982
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where A,—A;€L;* are such that the sum in (8.3) is locally finite. Then w€ A(M) because
of (6.6). The converse is trivial.
Also as a direct consequence of the definition we have the microlocality of pseudo-

differential operators. If A €L (M) we define the essential support of 4 as

WF, (4) = {0 € T*M\0; 0,(4) is not of order — oo in any conic neighbourhood of g}.
{8.4)

This is clearly independent of the choice of coordinates. Then,
WEF, (4u)y < WF, (4) N WF, (u). (8.5)

For distributions with additional regularity we can strengthen (8.1). We need a preliminary

result:

ProrosiTiON 8.6, If a €S™R" xR¥) has support in a compactly based cone and
b(b, a) extends by continuity from S—°(R" x R¥) to SO(R"™ x R") then a €S—°R" x RY).

Proof. Choose ¢€CP(RY) with ¢=>0 and o(f)=1 for 6 near 0. Since a €S™(R" x R¥)

for any choice of multiindices «, 3, ¢ there is some M €R such that
¢, = D5 DEO”a(0/n) 6" DE Dfa  is bounded in S™(R™ x RY)

for all n€N. The continuity assumption implies that
(Cny @) = Jg(@/n)|0"D§D§a]2 is bounded as 7 —> co.

Thus certainly, « € S—°(R" x R¥),

LemMma 879. If Z +=IT; xRy, Z_=I—i;‘ x Ry then the space of Lagrangian distributions
splits: A )
IoRY™™ N*{x = 0}) =A(Z,) + AZ_).

Proof. Clearly we can assume that w € I°(R*"; N*{z—=0}) n £'(R**"). Thus, for some £,
(«D,) Diw€H *R,; L3R")).
Define v €L (R by Dfv=w, v=0 for 2> 0. Now, for some constants Co.i

Di(a"DiDiv) = > ¢, ;Dia? D Div= 3 ¢, ;Dix D7 w.

i<p i<p

This shows that 2? DZ D%v € L, (R**") for all p, .
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Consider u = H(x)v(, y), with H the Heaviside function. For ¢ ECX(R™*™),
(" Dy Djw, o) =u, D, D" ¢

o0
= f oz, y) D ¢ 2" "D D, pdxdy
0

<p

o0
= > &+ D22 Divg dz dy,
0 r<p
where the last integration by parts is justified by the fact that 2 "v is in the Sobolev
space HE(R'™) and vanishes with its first p —r 1 derivatives at =0, Thus, 2” D} Diu €
L2(R™") for all p, @ so u€A(Z,). In consequence, Diu€A(Z,) and w—Diu€A(Z_)

proving the lemma.
ProrositIion 8.8. On any manifold with boundary
A'(M) 1AM = O=(A).

Proof. The result is clearly local in nature so we can assume u € AZ) N AC(Z). We first
observe that the trace Ru of u is (. For g €CP(R™)

) . {(Ru, ) = {u, 6(x)@p)
where 8(2) @ € 4,(Z). Now,

8 Op = (HE)D9)

and clearly H(z)®@€C™(Z) is in A4'(Z). Moreover we can choose a sequence y,~>H(z)®¢
in A4'(Z) with y, €CT(Z) and 2,1, converging in AC(Z). Since % € 4,(Z) and 9, u EAC(Z) this
implies

(Ru, @) = — (04, Hz)®p).
Now the map & (R*) 3¢ H(x) @@ € A'(Z) is (weakly) continuous, so shows that Ru extends
by continuity to £'(R"). Thus Ru€CP(R"™). The same argument applies to all boundary
values of u, so using Borel’s theorem we can choose 4’ €CX(Z)< A4LZ) N ,40(Z) such that

v=u—u'€A4(Z) N Ac(z)
has the property

dk
(v, 7 @) ®<P) =0, Vi @€C7R"). (8.9)

Using this we can extend v€ S’(Z)C E'(R*™) to a linear form on the space of Lagrangian
distributions, on R"*, associated to N*{x~=0}. By Lemma 8.8, if w€ I°(R""}; N*{x=0})
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there exists w’ EAC(Z), the subspace supported in >0, such that w=w' in >0. Moreover

w' is unique up to a term

dlc
2 77 0@ ®Rly) P ECX(RT). (8.10)

finite
Now, if we set
(v, w) = (v, w') (8.11)

the fact that v vanishes on all distributions of the form (8.10), i.e. (8.9) holds, means that
this extension is well-defined and continuous.

Taking the partial Fourier transform of v with respect to z we have
8(&, y) €C2(Ry; S™(R)),

since v€A(Z). The topology in I™R™'; N*{z=0}) is defined by the C® and symbol
norms, so the continuity of (8.11) means that 4 extends to S°(R" x R). Applying Proposi-

tion 8.6 we conclude that
PES—°(R" x R).

Thus, v is ¢, This completes the proof of the proposition.
ProrosiTioN 8.12. If u€ A4’ (M) then
WE, (u) = N {Z,(4); A ELYM) is properly supported and Au€C®(M)}.

Proof. If u€ A'(M) and A is properly supported then Au€ 4'(M). So, for all 4 in
Definition 8.1 Au€A'(M)n A(M )y=C®(M) from Proposition 8.8 and the proposition
follows.

THEOREM 8.13. If u€ 4 (M) then
WF (Ru) = WF, (u) N T*0M.

Proof. If p€T*0M < T*M is not in WF, (u) then we can find 4,€L™(@M) elliptic at
¢ and such that there is an element 4 € L}(M) with

R(Auw)= Ay(Ru) (8.14)

and WEF, (4) N WF, (u) =©. Proposition 8.12 shows that the left side of (8.14) is C® so
0§ WF (Ru) and the theorem is proved.
Using the notion of wavefront set we can introduce the usual formal structures of

microlocal analysis. Let 5 .
S*M = (T*M\0)/R+
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be the compressed cosphere bundle of M. The ring of pseudodifferential operators on M
induces a sheaf of rings on §*M, the sheaf of totally characteristic microdifferential opera-

tors. Thus, suppose Q< S*M is an open set. Let
X™Q) ={A€LP(M); WF, (4) = Q°}
be the subspace of operators with essential support in the complement of 2. We define
L3(Q) = LE(M)| X™(8).
TurorEM 8.15. LL is @ sheaf of filtered rings on S*M.

Proof. This is essentially immediate from the results proved above concerning L7'(M).
The definition and properties of the restriction map, from Q to Q'< (), are clear. The
presheaf property, that a section over {) vanishes if it vanishes in a covering of Q follows
from the definition of essential support. The intrinsically global nature of the definition
then implies the sheaf property.

Prorosition 8.16. L7 is a fine sheaf.

Proof. Clearly microlocal partitions of unity can be constructed as in the theory of
pseudodifferential operators on open manifolds.

We remark that the support of a section of £ is just the essential support of a defining
pseudodifferential operator. Similarly we define

MQ) =D’ (M) Y () (8.17)

where .
Y(Q) = {u€D'(M); WF, (u) = Q°}. (8.18)
M(Q) is the space of microfunctions on Q< S*M.
THEOREM 8.19. M is a sheaf of C-modules over S*M.

Next we consider some simple functorial properties of distributions on manifolds with
boundary related to this notion of wavefront set. Let WM be a submanifold in the
sense that W is an embedded submanifold with boundary defined by the transversal

intersection.

oW =0MA4AW.
Near a point m €8W local coordinates «, ¥ can be chosen so that >0 on M and
W={y;=0, 0<j<pyu} nearm.

In particular from the standard theory of Lagrangian distributions we have:
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ProrositioN 8.20. The restriction map
AM)Iur>u| WeAN)

ts well-defined by continuous extension from the dense subspace C°(M) and is surjective.

The inclusion of W in M induces a projection
Oy THM - T*W.
The inverse image in 7' M of the zero section is the compressed conormal bundle of W in M
Nwe ThM.

Lemma 8.21. N*W is a vector bundle of rank equal to the codimension of W in M and
can be canonically identified with N*W so that the diagram
T*M —— T*M
3 Y
N*W «--> N*W
commutes.

Proof. The map a: T M~ T*W is the dual of the inclusion TW < T M of tangent
vectors tangent to the boundary. Thus, in local coordinates of the type introduced above
we have

n-dy+ i de € N*W

if, and only if, =0, ;=0 for j >pu. Clearly 275" 7,dy; can be canonically identified with
the corresponding covectors in N*W in a coordinate independent way. Observe that in
(8.22) the image of N*W always lies in 7*0M over W so the lemma is proved.

If "< T*M is a closed cone, let

DM, T) = {n€D'(M); WF, (u) =T’}

be topologized by the seminorms of D'(M) and by the seminorms |Au| where | | is a
continuous seminorm on A(M ) and A €Ly(M) is properly supported with essential support
in I

TuarorEM 8.23. If W M is an embedded submanifold with boundary oW =M & W
and D' T*M is a closed cone with
T'niw=0
then the restriction map

| W:D'(M, T)~D'(W)
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is well-defined by continuity from the dense subspace C°(M) and
WE, (u| W) <ol (WEF, (w) n T%M).

The proof is omitted since this result will not be used below.

I1.9. Normal regularity

Although the ring of operators L¥(M) behaves well on the space of distributions 4'(M),
for which boundary values are well defined, the solutions of non-characteristic boundary
value problems have more special regularity properties. We introduce below a coordinate
independent space of distributions in which these lie, in particular the boundary values
are then taken in the strong sense. This approach gives a new proof of Peetre’s theorem
(see [8]) on hypoellipticity at the boundary, which implies that the solutions to non-

characteristic problems satisfy

u€0®([0, 0); D'(R™) > D'(Z), (9.1)

in terms of local coordinates on M.
In any local coordinates the conormal direction at the boundary is always the span
of dx, x=0 on &M, and this is the kernel of the map

a: T*M -~ T*M,

However, the choice of local coordinates does define a compressed conormal direction
o1 .
n,=:;dx€T*M. (9.2)

ProrosiTioN 9.3. If m€oM and w€ 4" (M) has
7o, ¢ WE, (u)
for some local coordinates (x, y) then near m, u is regular wp to the boundary in the sense of (9.1).

Proof. Clearly we can assume that u has compact support near m. By assumption
there is an operator A € LY(M) which is properly supported and elliptic at %, and for which
AuEAc(M ). Propositions 8.7 and 8.12 show that Auw€CP(M). Thus, in the given local
coordinates there is a symbol a(4, 5) €S, with a =0 (mod 8~®) in [1| >C|y|, and

u=da(D)u+v, vE€C®Z).
To complete the proof we use:
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LeEMMA 9.4. If a(z, y, A, 1) €8 has a=0 (mod 8~®) in |A| =2C|n| for some C then

d(z, D,)u€0=([0, oo ); D'(RM) = D'(Z)
for each w€ A(Z).

Proof. Let Q€L,*(R") be a properly supported smoothing operator. Then,
Qe” "alx, y, 4, m)) = €*"b(x, y, A, 1)
with b €SL*. Applying this to the representation (3.15) of Au we conclude that
Qa(z, D,)u =b(z, D,)u€C®(Z)

since b(z, D,)€L; (%) and u € A.(Z). Thus, u lies in the space (9.1) and the lemma is proved.
To exploit this result we introduce the following space of distributions.

Definition 9.5. Let M(M)< A'(M) be the space of normally regular distributions,
u€N(M) if _
WF, (u) n 8T*M = T*oM. (9.6)
COROLLARY 9.7. If w€ (M) then in every local coordinate system (x,y) near the
boundary,
#€0([0, £); D' (R™) for some ¢ > 0.

Proof. For any coordinates, #i,€6T*M\ T*oM.
Recall, from section 1.1, that ‘D;,,(M , 0M) is the space of distributions supported in
&M which are annihilated by 2™,

THEOREM 9.8. Let PEDift™ (M) be a C® differential operator for which &M is non-
characteristic. If w€D'(M), € N(M) and g€ Dlp_y(M, OM) with

Pu=f+g (9.9)
then w € P(M).

Proof. Proposition 1.3.12 shows that » € 4’ (M ). Moreover the operator 4 =2™P €Ly (M)
is clearly elliptic in 87 M away from T*2M since its symbol is a non-vanishing multiple
of ™ over x =0. Thus, the fact that

WE, (@™ +9)) = W, (f) = T*oM U T*}
implies the same for % and the proof is complete.

CoroOLLARY 9.10. If P is non-characteristic, u € D'(M) and Pu€C®(M) then near each

boundary point and in any local coordinates w is in the space (9.1).
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Proof. We can easily choose an extension of u to v€D'(M) so that (9.9) holds with
gE€EDH_1(M, OM).

It is a consequence of Theorem 9.8 that WF, (), as defined in Section 8, agrees with
the definition given in [16] for distributions satisfying non-characteristic differential equa-
tions. This latter definition states that (y, ) ET*R™ 0 is not in WEF, (»), in any local
coordinates, if there is a properly supported pseudo-differential operator @ in the tangential
variables such that for some £ >0

Qy, D) u(z, y) €C([0, &) xR, (9.11)
and @) is elliptic at (y, ).

By Theorem 9.8 if 4 €LY(Z) has A=1d in a conic neighbourhood of T*R*< T*Z then

Au—u€0o([0, £) x R™).

We can further suppose that 4 =0 in a conic neighbourhood of the compressed conormal
direction in these coordinates. The composition formula for pseudo-differential operators,
in this case with parameters, shows easily that QA €LP([0, &) x R™) is elliptic or not at
any point (y, 7)€ T*R" with (. This shows the equivalence of (9.11) and the characteriza-
tion of WF, for elements of 4, hence Y, in Proposition 8.12.

The occurrence of boundary terms in (9.9) makes it natural to consider
(M) = M) @ DM, 9M)

and the inductive limit, (M), over k. These spaces are easily characterized as in Defini-
tion 9.5: )
w€N(M) <« u€B(M) and WF, (u)yc T*8M U T*M = BM.

There is, apart from Proposition 8.7, another intrinsic relation between certain spaces
of distributions on a manifold with boundary which can be obtained using the calculus.
In [12] the set of distributions Dy(M)<D’'(M) was defined, as a general class admitting
boundary values. Explicitly, «€D)(M) if near each point m€JM there is a coordinate
system (z, y) and £ >0 such that

u(®, ¥) ] 2. €C=([0, £); D'(R™), (9.12)

in the coordinate patch. Since the coordinate system in which (9.12) holds may vary from

point to point D;(M) is not even a linear space. The span
sp (Do(M)) = D'(M)

is not, at least a priori, an easy space to deal with nor is it of obvious general significance.

However, this is precisely the space introduced above.
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TaEOREM 9.13. For any manifold with boundary, M,
D'(M)> A'(M) = Dy(M) + Dy M) = sp (Dy(M)).
Proof. In view of the definition (9.12) it is clear that
Dy(M) < A'(M).

To prove the result it is therefore only necessary to show that any u € 4’ (M) can be written
as the sum of two elements u,, u, € D3(M). As vector bundles 7*M = T*M since near the
boundary both bundles are isomorphic to T*0M ®N*oM. For T*M this follows from the
usual isomorphism

TiuM|N*oM =~ T*oM.
For the compressed cotangent bundle 7*8M < T3, M and the isomorphism

T M|T*oM ~ N*oM
is dual to
TaMM/lVEM =ToM

where NoM < T,y M is the kernel of the natural restriction from T, M to ToM. It is
therefore possible to choose a global compressed conormal subbundle, spanned by #,,€
TEM~TEoM for all m€dM.

Now, choose a symbol b€ 8°(7*M) with €8-= in a conic neighbourhood of + %, near
éM. Clearly using the symbol calculus there exists B€L)(M) with g,(B)=b. More par-
ticularly, given an open conic neighbourhood I' of T*2M, b can be chosen so b=1 and
B=Id on I, provided #,,¢ I, for all m €9M. Furthermore B can be chosen properly sup-
ported.

With such a choice of B set

Uy = Bu, u,=(Id—B)u.

By construction #,¢WF, (u,), T*0M N WF, (u,) =D. Near each m€2M Proposition 9.3
can be applied to w, in local coordinates with da/x=4#,,; similarly Proposition 9.3 applies

to u, in any local coordinates with da’[«’ €1". This proves the theorem.

I1.10. L? estimates

Tt is relatively straightforward to show that operators in LY(Z) are locally L? bounded
modulo a continuous seminorm on C®(R¥; L¥R")). The main step in showing that these

operators are actually locally L2 bounded is the boundedness of the residual operatorsin L, ™.
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Lemma 10.1. If a €85°(Z x R* x R™*1) then the operator d(z, D,) defined by (3.16) maps
L3(Z) to Lo Z).

Proof. If u€ CP(Z) then

e, D,y u= (2m) " Je’““”““”‘”"a<z, Y A ) ulsw, ') ds dy dAdn
=(2m)~" 1 Joc(z, Y, syu(sx, y')dy ds, (10.2)
where «(z, ¥, s) €C2(Z x R?; §([0, oo)). Thus, if ¢ €CP(Z) then

2
dz

loaz, D,y ulfts = LIe(z) g f e,y 8) wlsz, ') dsdy’

< f dz{(f la(z, ', )2 (1 +6%) s‘ldsdy')
[0, RIx Ky Rt x Ky
x (f | (s, y') |2 s(1 + %)~ dsdy')}
R xEK,
R 00
<Of f f |u(sz, ') (1 + &) dsxdy’ ds
0 Ky J0O
<Ol

where, supp (g} Usupp (¢)<=[0, B] x K,, K; =< R" The lemma follows from the density of
OX(Z) in LXZ).

TueorEM 10.3. For any manifold with boundary, M, if A €LY M) then

A: LM~ L2 (M). (10.4)

Proof. The result is local and follows form the construction of an approximate square
root for an elliptic self-adjoint operator in L)(M). Thus, in (10.4) it can be assumed that 4
is properly supported, the error term being handled by Lemma 10.1. Then, it suffices to

construct a square root, modulo L; ®(M), for
C—A*A€LYM), C>0 large.

Since the proof follows as in the standard caleulus (see [4]) it is omitted.
The local boundedness of operators in L), on L2, together with certain commutation

results easily leads to boundedness on Sobolev spaces of integral order. Recall from Lemma
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5.15 that if P is a differential operator of order k and 4 €L}(Z) then there exist finitely
many differential operators P, s€8, of order at most % and operators 4,€L;(Z) such that

P.-A=73 A,-P.,. (10.5)
5¢8

Now, for any k€ Z define
H¥Z) = {u€ H*R™"); supp () < Z}.

The standard properties of Sobolev spaces show that if k<0 then w € H*R"*?) if, and only

if, it can be written in the form

w= 3 Dfuyz), uz€L¥Z)=H"Z). (10.6)

1BI<~k
Applying (10.5) repeatedly to the adjoint of 4 €L7(Z) shows that

A-DE= 3 Dr-4, 10.7)
lrI<igl
with A, €L(Z).

THEOREM 10.8. If kEZ then any A €LY M) maps HE(M) into Hio(M).

Proof. Of course this is purely local, and for k<0 follows directly from (10.6), (10.7)
and Theorem 10.3. For k>0 it follows similarly, since u€ H*(Z) if, and only if,

DEwEIXZ) V|B|<k. (10.9)
Thus, using (10.5) and assuming « € H¥(Z)
DfAu= 3 A, DYu€Li(Z)

I¥1<181
for all |B] <E.

The spaces Hio(M)< D’(M) of distributions extendible to elements of Hi,o(M), when-
ever M is an extension of M across &M, can be characterized as the duals of the corre-
sponding H;“(M), k€Z. Tt follows that any A €LY(M) defines maps

A: HY{M)~ HL (M) VYEEZ, (10.10)

the details of the proof being left to the reader.

Chapter III: Fourier integral operators

III.1. Boundary canonical transformations

A canonical transformation from a boundaryless manifold X to a manifold Y is a
C* map y: Q—T*Y\ 0 defined on an open conic subset Q< T*X\ 0 which is symplectic

{roy=0wx (L.1)
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and homogeneous
rM;=Myy >0, (1.2)

where M, is multiplication by s in the fibres. In view of (1.2) the condition (1.1) that ¥
pulls the fundamental 2-form of Y back to the corresponding form on 7*X implies that

2oty = o (13)
with ax, ay the fundamental 1-forms.
If X and Y are both manifolds with boundary it is natural to demand that, in addition

to (1.1), (1.2) y preserve the boundary 6Q =€ n oT*X:

2(@Q) < 8T*Y. (1.4)

Prorosition 1.5. If X and Y are manifolds with boundary and y: Q—~T*Y\0 is
a canonical transformation satisfying (1.4) then, provided (1%)1(¢ko) N 082 s connected for
each ¢ €90, there is a unique canonical transformation oy: tHOQ\N*0X)—>T*0Y\0, from
0X to 0Y such that the following diagram commutes:

oT*X o (BQ\N*8X) —%_, gT*Y
" (1.6)

T*0X 50, — % mepy

Proof. Recall from Lemma 1.2.6 that 07" X < T*X has Hamilton foliation defined by
the projection *. Since this is a symplectic invariant y must map the fibres of ¢} in 2Q
into the fibres of ¢. As the fibres are connected y projects to a map as indicated in (1.6)

and it remains only to show that 9y is canonical. Since ¢* is homogeneous, so is &y and

(L%)* (@2)* ooy = 2 (67) @y = 2ty orey) = 2%x|o0
shows that (dy)* sy =%, concluding the proof.

We have defined Q,=¢*(@Q\ N*9X), excluding the conormal directions from 2Q,
since (M N*0X) is the zero section of T#8X. If y is a canonical transformation satisfying
(1.4) and 9Q N N*0X # @ then the projection dy is C° on all of ¢*(2Q), which meets the
zero section Opy. As Oy is canonical it must be given near 0,5 N ¢*(6Q) by the lift of a co-
ordinate transformation, and is then essentially trivial from the point of view of canonical
transformations.

To remove the awkwardness associated with the assumption of connectedness of the
fibres of ¢* in #Q we shall work at the germ level. Recall that OF ,(Q)< C®(Q), the subspace
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of O functions on ) satisfying the trace conditions (of order k) is invariantly defined for

Qc T*X open. Let
C31(0) = CFule, X)

be the space of germs at p € 0T* X of such functions. Since the symbols of elements of Ly’
are functions of this type, it is natural to examine the canonical transformations preserving

these spaces.

Definition 1.7. If o’ € 9T* X\ N*0X, 0 € 0T*Y, a germ of boundary canonical transforma-
tion is a germ y: T*X, o'>T*Y, 0 of canonical transformation satisfying (1.4) which in

addition satisfies
2 CFuo, YY)~ C5ilo’, X), YEE€EZ. (1.8)

The fact that y is a canonical transformation implies that the preservation of the

spaces of functions having polynomial traces, (1.8), follows from a particular case.

ProrositioN 1.9. If y: T*X,o'>T*Y,p is a germ of canonical transformation
satisfying (1.4) then y is @ germ of boundary canonical transformation provided y*u has
polynomial traces of order 1 for some germ u€C3q(p, Y) which is not constant along the fibre
(¢*)"1(c*p) through p.

Proof. Certainly the condition given is necessary, since it follows from (1.8). To prove
sufficiency we introduce local coordinates z'=(z’, y’) near mp’ in X and z=(x, y) near mp
in Y, with corresponding dual coordinates (', %', &,%’) in T*X and (z,y, &, %) in T*Y.
Now, the assumption on y is that u(z, y, &, ) is not constant along the fibres of ¢* through
0=(0,0, £, 7). As u has polynomial traces of order 1 this means

Iu'(09 0, E>-ﬁ»)=a/+b§ with b:i: 0.

We introduce new Darboux coordinates (i.e. coordinates in which the 1-form is still

&dz+n-dy)(X, Y, E, H) in T*Y near g by setting E=u and
HzY=HzH=0, HzX=1, H=7, Y=y, X=0 onz=0. (1.10)

Since b =0 the Hamilton field of E is transversal to =0 so (1.10) has a unique local solu-
tion. The new coordinates are Darboux since from the initial conditions in (1.10), EdX +
H-dY =§dx+n-dy=a when restricted to x=0 and —{a, Hz>=E so

LHEIX =H3_Lw+d:‘ =U.
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Next we observe directly from (1.10) that X €C5,_1(0"), Y;, H,;€CFo{0"). For example
the differential equation for the ¥’s is

n-1

2:20,Y~o,E0: Y + 2 (0,,£0,,Y - 9,50, Y)=0. (1.11)
' i=1
The initial conditions for ¥ show Y|,., to be independent of £ so
n-1

0:50,Y=— ;1 @,E20,Y—0,80,Y)

and 9, Y is therefore a polynomial of degree one in &. Proceeding by induction we can
assume that &% Y |,_, is a polynomial of degree at most k in & for k¥ <j. Applying &} to (1.11)

. n-1
9 Y = — S (7) HIEPNY 45 (aza‘aEY— b aﬂjaain—aija,,,Y)
j=

i>p

is easily seen to be a polynomial of degree at most j+1 in & at z=0.
Let us write @ for the canonical transformation (z, y, & )~>(X, ¥, &, H) in T*R"
The pull-back of a function f is

q)*f(x’ ?/, £9 77) :f(X; Yy E; H)
80, carrying out the differentiation

A D*f |y = 2 Qi 5 0L, 1 f(0, Y, B, H)

where Y, B, H are evaluated at x=0 and for each pair [, § of integers and each (2rn—2)-
multiindex «, @y, is a polynomial in the derivatives of the X, ¥, &, H. Now, ¥, H|,_,
are independent of & and E|,_, is linear so 8,8.0%,,,f is a polynomial of degree at most

I+t—jin £ if f has polynomial traces of order ¢. Moreover, Q;, is a sum of terms
1
ITez T,
s=1

where for each s,£,€{l,..,2n+2}, T,=X, T,=Y,, 2<q<n+2, T,,=5, T,=
Hy , n+2<q<2n+2 the total order >, r,=k and the numbers of appearances of X and
E are #{t,=1} =1, #{f,=n+2}=4. Thus, 65D*f|,., is a polynomial in & of degree at most
k—1+j+(+t-—-5)=k-+t and we have shown that

(I)*: g?t((oa O: Z:, 7_7)) - Og?t((07 0’ ﬁ’ ﬁ))’ Vt:

In the local coordinates z’,z introduced in X and Y the canonical transformation

Ox from &X to 0Y has a natural ‘flat’ extension to a boundary canonical transforma-



212 R. B. MELROSE

tion g, from X to Y, where yg(x)=a', x3(&)=¢&, x¥,n)=(0x)*(.,n). Thus, replacing y
by x5!+ it suffices to consider the special case 8y =1d. Let ® be the boundary canonical
transformation from Y to R™ defined above by demanding that 8® be the lift of the co-
ordinate map y: ¥ ~R""" and ®*(&)=pu. If ¥ is the boundary canonical transformation
from X to R" with 0¥ the lift of the coordinate map y’ and ¥*(&) = y*(u), we have y = @-1.F,
80 % is a boundary canonical transformation. This completes the proof of the proposition.

We can easily restate this proposition in terms of the compressed cotangent bundle:

ProrositioN 1.12. 4 germ of canonical transformation y: T*X, o' ~T*Y, o satisfying
(1.4) is a germ of boundary canonical transformation if, and only if, it lifts to a local dif-
feomorphism.

7:1*X, 6 —— T*Y,0
] (1.13)
1:T*X, o' —— T*Y, 0,

for ' =n(0')€T*X, g=n(o) € T*Y.

Proof. The condition that the lift ¥ be € is simply that y preserve the rings of O%
germs, CF; on T*X at §. For k<0 OF,(X) is just the space of functions vanishing to order
k at £=0 and for k>0 0% is just the space of functions f such that *f€CZ,. Thus if y
preserves (¢ it preserves all the CF,.

The region of definition of the lift j of a realization of the germ y is not a neighbourhood

of §’; it can be taken to be of the form
B={(z,y,4,m); (y,n€B,0<z<¢ |A] <C|z||n|} (1.14)

where B’ is a smoothly bounded conic region. Using Proposition 1.2.10 it follows that 7
is a diffeomorphism on its domain, so it can be extended to a local diffeomorphism as
claimed.

To extend Definition 1.7 to be global, and also to include some transformations more
general than symplectic diffeomorphism on 7*X we simply choose (1.13) as the fundamental

concept.

Definition 1.15. A boundary canonical transformation from X to Y is a diffeomorphism
defined in an open cone I'c 7*X:
T —>TY
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such that (' n @7*X)<dT*Y and the transformation

T*Y

x: T*X
(1.16)
T*X\oT*X —— T*Y\oT*Y
is canonical.

Observe immediately that near each point ¢’ €T*2X NI, ¥ projects to a germ of
boundary canonical transformation, in the sense of Definition 1.7.

To properly reconcile Definition 1.14 and Definition 1.7 it is necessary to imprdve
Proposition 1.12 slightly so that the extension of y, provided by %, is everywhere canonical
in its domain of definition. The last condition (1.16) can be replaced by an intrinsic condi-
tion on the compressed cotangent bundles, namely that y relates the invariantly defined

singular symplectic forms:

B.= 2 dn; Ady,+d log z A dA (1.17)
i<i

and is homogeneous. Thus a 0% map from 7*X to 7*Y is a boundary canonical transforma-
tion if, in canonical coordinates (x,y, 4,7), (X, ¥, A, H) in T*X, T*Y, (x, y, 4, )=
(X, Y, A, H) it satisfies the Poisson bracket conditions:

A.,Y,=H;H;=0, HyA=-1, H\,X=1, H,Y,=H,H,=0,
ng'X:ﬂYkA=ﬁYkY]=O’ ﬁYkH]=—6kj, HHkx=ﬁHkA=HHkHj=O’ ﬁHij':akj.
(1.18)

Here, for f=f(x, y, 4, 7)

o o+ . —x%aa—?i-a (1.19)

Hf=5j 817 v a ay )

is the Hamilton vector field of f with respect to (1.17).

The system of equations (1.18) holds for the lift § of ¥ in the region B in (1.14). Using
Proposition 1.2.10 E=A/X can be extended to a ° function near the base point, E=
alx, y, A, )+ (A/x)b(y, A, 7), b=+=0. Since the system (1.18) is in involution it is only neces-
sary to solve

B:X=1, HzY,=HzH,=0, (1.20)
using the given initial data on x=1=0. The solution is unique and smooth since

wHg = b(x0, +18,) + 2V

where V is tangent to 2 =0. This is essentially radial in x, 4 and since the ¢ extension of

% gives solutions to infinite order at x=A=0 smoothness of the solution follows. In view

14 — 812903 Acta mathematica 147. Imprimé le 12 Février 1982



214 R. B. MELROSE

of this identification the same notation, y, will be used for the action of a boundary canonical
transformation either on 7*X or 7*X.
Since the volume form %" of the 2-form @ in (1.17) is 2~1e, with @ a non-vanishing
O™ volume form it is clear that a diffeomorphism (1.16) which is singular-canonical in the
sense that it is homogeneous and
1Dy, =0, (1.21)
is automatically a boundary canonical transformation. Indeed ¥ must map the two singular
surfaces x=0, ' =0 to each other. Now, since y is homogeneous the symplectic condition

(1.21) is equivalent to the canonical condition:
1y =d, (1.22)

where &,, &, are the singular-canonical 1-forms:

= 2 n;dy,+id logx (1.23)
=1
Levma 1.24. If (%, 9,4,7), (&, 4y, X, %) are canonical coordinates in T*X, T*Y and

¥ 18 @ boundary canonical transformation from X to Y then
LAY (e =0)=1.
Proof. Since y*(x') =xa with ¢ >0 and C®

y¥ logz)=logxz mod C=.
Thus, condition (1.22) implies
Adx =y*(A)dx atx=0,
proving the lemma.

IIL.2. Local parametrization

To define totally characteristic Fourier integral operators using oscillatory integrals,
by analogy with the work of Hérmander [10], it is necessary to show that boundary canoni-
cal transformations can be parametrized by phase functions with the special dependence
on the one phase variable effectively dual to the normal variable. To do this we recall the
definition of the stretch of a manifold with corner, introduced in Section II1.4, and more
particularly the stretched product N X M of two manifolds with boundary.

The principal reason that the stretched product enters here is that a boundary canoni-
cal transformation from M to N sits as a Lagrangian manifold in 7*(N X M). First observe

that the dual to the projection
T NXM->NxM
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gives a C® mapping
T*N x T*M »~ T*(N x M)~ T*(N X M) 2.1

which is an isomorphism away from the corner.

ProrositioNn 2.2. The identification T*N x T*M ~ T*N x T*M over the interior

combined with (2.1) gives a C° map
T*N x T*M -~ T*(N X M) over N x M (2.3)

which, restricted to the twist (graph y)' of the graph of a boundary canonical transformation,
extends by continuity and embeds it as a C® Lagrangion submanifold of T*(N X M) meeting
the boundary 8T*(N X M) only in the part over N x8M x (—1, 1) of the codimension one

boundary and transversally.

Proof. It is only necessary to resort to local coordinates to see this. Let (x, y), (=, y')
be coordinatesin N, M with (z, y, &, n), (', y', &', ), (x, y, A, 5), (=, ', ', ') the canonical-
ly dual coordinates in T*N, T*M, T*N, T*M respectively. Near ON xoM x[~1,1]Jc N X M
local coordinates are given by w=4(z+2'), r =(x —2')/2w, y and y'; let (w, 7, y, ¥'; 0, 0,79, 7")
be the corresponding dual coordinates in 7*(N X M). Under the isomorphism (2.3) in the
interior the forms

’

yl A
;:dx+;,dx'+n-dy+n'-dy' and wdw+todr+n-dy+n -dy’

are identified. So,

w=(1+r)£—l—(l—r)ii,
(2.4)

The singularity in (2.4) shows that (2.3) does not itself extend to a smooth map up to
the boundary, though as we shall see below its inverse does. The submanifold obtained

from graph x by reflection in the fibres of the second factor is of the form:
(graph )’ ={((=, ¥, 4, n), (&', ¢', =X, —9'); &’ =wa, ) =A+2g,y =Y, 5 =H'} (2.5)

with >0, ¢, Y’ and H' C* functions of (z, y, 4, 7). Thus, r=(1-a)/(1+a) is C* and
bounded away from +1 on (graph y)'. From this it follows that

w=—g(l+r) (2.6)
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is also O as is

24 22
g=1+r+1—r' =7
So the map (2.3) extends smoothly to
(graph 7)o Ao T*(N X M) (2.8)

as a 0 lagrangian submanifold with the stated intersection property.
Suppose that Ac T*(N X M)\ is a Lagrangian submanifold which is the image of
the graph of a boundary canonical transformation under the map (2.8). As noted above,

A & Thosw(N R M) (2.9)

AN Thsn(N R M) =2. (2.10)

Now, A actually satisfies a stronger form of (2.9), namely the intersection is symplectically

transversal as well:

the Hamilton foliation of T'%,wsz(N X M) is not tangent to A. (2.11)

To see this just observe that in the canonical coordinates (w, 7, ¥, ¥; w, g, %, 7") used in the
proof of Proposition 2.2 the Hamilton foliation of the surface, given by w=0, consists of
the w-lines. From (2.6) we see immediately that 9, is not tangent to Ac {w+g(1+7)=0}.

Now, from (2.11) it follows that if A is the image of a boundary canonical transforma-

tion under (2.3) then the quotient
Ay =A N Thwom(N R M)[H < THE(N R M) (2.12)

by the Hamilton foliation H of T%,wzm(N X M) is again a Lagrangian submanifold. From
the defining relations (2.4) a further transversality condition can be deduced, involving the
fibre bundle F considered in (I11.4.15) and Corollary 11.4.16.

Kl meets F transversally and the fibres cleanly in F. (2.13)

Indeed, from the coordinates (w, 7, y, y"; 0, 0,%,%’) used in the proof of Proposition 2.2
one gets canonical coordinates (r,y,y’;0,%,7’) in T*01(N X M) in terms of which F is

defined by
F ={p=0} (2.14)

and the fibres are the r-lines. From (2.7) :’Xl meets 0 =0 transversally and as r = (1 —a}/{1 +a)
on A &, is not tangent to ﬁl.
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Finally the Lagrangian A satisfies the usual ‘no zeros’ condition for a relation. If
ai: T*N—>T*(N x M), 3: T*M~T*(N X M) are dual to the projections

NXM
!
RN
N / \M
then
A does not meet either 73 (T*N) or 3 (T*M). (2.15)

To see this first note that af(T*N)c T*(N X M) is defined in the coordinates
(w,r, 9,y w,0,7,7') by

(1+r)o=ww, n'=0 (2.16)
and similarly, a3 (T*M)< T*(N X M) is defined by

(1-ro=0ww, n=0. (2.17)
Now, |r|+1on A near w=0 and from (2.4), (2.5)

44 g
_ 2ag 2.18
=11, (2.18)

30 (2.16) cannot hold on A N {w=0} since it would imply A'=0, #'=0 and y is a map
from T*M\ 0 to T*N\ 0. Similarly (2.17) cannot occur on An {w=0}. Away from w =0,
i.e. 83(N X M), the condition (2.15) is just the usual statement that A avoids the zero sec-
tions of T*M, T*N.

The intersection conditions (2.9), (2.10), (2.11), (2.13) and (2.15) characterize Lag-
rangians which come from (2.8), except for the condition that y should be a mapping. We

therefore introduce:

Definition 2.19. A boundary canonical relation from a manifold with boundary M

to a manifold with boundary & is a conic submanifold
A< TN X M)NO

which is Lagrangian and satisfies (2.9), (2.10), (2.11), (2.13) and (2.15).
We can now give a converse to Proposition 2.2,

ProrosiTion 2.20. The mapping over the interior

T*(N X M)~ T*N x T*M (2.21)
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extends to a C° map of manifolds with corner. This resiricts to an isomorphism of each boundary
canonical relation A to a submanifold Ac (T* N~ 0) x (T* M~ 0) with the following properties:

A meets the topological boundary of T*N x T*M only in the corner. (2.22)

A meets each hypersurface dT*N x T*M, T*N x 8T*M transversally in 111. (2.23)
Ais Lagrangian and conic. (2.24)

/‘il meets T*ON x 0T* M, 8T* N x T*oM transversally and only in T*3N x T*0M.
(2.25)
Conversely each C® submanifold ./KC(T*N‘\O) X (T*M~0) with these properties is the
image of a boundary canonical relation which is (locally) the twisted graph of a canonical
diffeomorphism precisely when the two projections from A to T*N and T*M are (locally)

diffeomorphisms.

Proof. Tn terms of canonical coordinates (x, ¥, 4, %), (&, %', A, n’) in T*N, T*M and
(w, 7,9,y 0, 0,1, 1) in T*(N X M) the map (2.3) is given by (2.4) and

w=3Yx+a), r=@—2)(x+z). (2.26)
Tnverting this gives
z=w(l+r), & =w{l—r) (2.27)
and
A=3o(1—r)+3ww(l+7), A =-—1o(l —r?)+iwew(l—r), (2.28)

showing that (2.21) is .

On A, [7[ #1 by (2.10) and &, is not tangent to A at w=0 by (2.11). From this it is
clear that (2.21) resticts to an isomorphism of A to A which has the properties (2.22),
(2.23) and (2.24). Finally, since (2.18) holds and A satisfies (2.13), _/il meets T*ON xoT*M
transversally, i.e. 1 =0, and only inside A’ =0. Thus, (2.25) also holds.

The converse part of the proposition is similar so, together with the characterization
of local boundary canonical transformations, the details are omitted.

The first use we shall make of Proposition 2.20 is in showing the existence of useful
parametrizations of boundary canonical relations, which term will be used for the Lag-
rangians A and A interchangeably. A preliminary result is needed. Suppose that M is
any C® manifold with boundary and A< T*M\ 0 is a conic Lagrangian submanifold with

A & oT*M. (2.29)

If Mz> M is an open extension of M across oM then, at least locally, A can be extended
across 01 M to a Lagrangian Agin T*M;. To see this just observe that there must always
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be, near any given p €0A, a Hamilton vector field V on T*M tangent to A and transversal
to 0T*M. Indeed if V =H,, feC®(T*M) this just requires =0 on A and df==0 on 87T*M.
The existence of such a function follows from (2.29). Extending f across 2T*M to g€
O=(T*M;) gives an extension Az as the H,-flow-out of A, near p.

Recall that a parametrization of a conic Lagrangian submanifold A< T*M ™\ 0 near

PEA is provided by a homogeneous C® function
p: Qxy—=R

where y ©RY\ 0 is an open cone with variables denoted 0,, ..., 6y, and Q is an open neigh-

bourhood of 7(p) €M, such that everywhere on
Cp = {(m, 0)€EQ xy; dg =0} (2.30)
the N differentials d(8gp/00;) are independent and the map

C,3 (m, 6) > (m, d,, @) € T*M (2.31)

is a local isomorphism onto a neighbourhood of p in A. The existence of such parametriza-
tions is, of course, an integral part of the theory of Fourier integral operators as described
by Hormander [10]. The transversality properties of the Lagrangians A allow one to find

special parametrizations.

Prorosiriow 2.32. If Ac T*(N X M) is a boundary canonical relation and (w, r,y, y')
are coordinates in N X M induced by coordinates (x, y) in N and (2, y') in M then, near each

point p in the boundary of A there is o paramelrizing phase function of the form

1—7r
1+

Yw, 9,9 p0)—p (2.33)

where v is homogeneous of degree one in the phase variables (u, 6) €y RN and satisfies the

non-degeneracy conditions

o » % ( 32)) -
3,“4:0 and rank (daﬁl’ ees daON’ d ”aﬂ N+1 (2.34)
on .
Cp={(w, 4,9, 1, 0); dpyp = 0}. (2.35)

Proof. This can be shown directly by reviewing the construction of parametrizations,
instead we shall take as starting point the existence of local parametrizations even when

the Lagrangian is non-homogeneous and depends smoothly on a parameter. First, change
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variable from r to s =(1 —7)/(1 +r), which is possible since r 3 41 on A. In the new canonical
coordinates (w, s, ¥, ¥'; w, o, 7, %’) in T*(N X M) the bundle F is still given by ¢=0. Near
w=0, 0=0 the transversality condition (2.13) means that the projection of An {o=¢}
along @, is Lagrangian in the variables (w,y, ¥’; w,7,7’) and depends smoothly on e. If
pi(w, y, ¥, ¢, 0) is a parametrizing phase function, depending smoothly on ¢ then the
phase function

@ =vi(w, 4, ¥, g, 0) —pu(s—9) (2.36)

parametrizes A for a suitable choice of constant d. Clearly this fulfills all the conditions
of the Proposition, since y; can be chosen homogeneous in (u, 6). Away from ¢ =0, but
still near w=0, the vector field ¢, has no invariant meaning, but coordinates can always
be chosen so that it is not tangent to A, then the same method yields a parametrizing phase
function (2.36)

Remark 2.37. In the proof above the variable w =2+ can be replaced by = without

other alteration, so A has local parametrizations of the form

1—7r

v .y w0 —p (2.37)
with ¢ satisfying (2.34) and (2.35). Then the parametrizing map
Co3 (@ 4, Y's s 0) - (@, s Bat Py Y3 ¥ W' Bs — ) (2:38)

is easily seen to be a local isomorphism of €, and the relation A. Alternatively using the

coordinate invariance of parametrization the original variables can be reintroduced so that
v, 9,y 2, 0)—2'¢ (2.39)
is seen to be a parametrizing phase function for the Lagrangian
A=T*NxT*M

which is just the image of A. In fact, starting from A the standard construction of a param-
etrization can be modified to give a phase function of the form (2.39), with its special
dependence on the one variable  ‘dual to «’. The approach adopted above, whilst more
abstract, is more natural in view of the importance of the manifold N X M as the carrier

of the kernels discussed below.
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Finally we observe that Ais locally a boundary canonical transformation if, and only

if, it can be represented by a phase function (2.39) satisfying

v’ Pue Yyu
det | wor Yoo  You +0, on(,. (2.40)
By MPu (MY,

H1.3. Oscillatory integrals

As for the pseudodifferential operators of Chapter IT the amplitudes of the oscillatory
integral operators considered here are of the form a(z, ¥, x&, 0) with special dependence
on the one variable ‘dual’ to the normal variable to the boundary, x. Suppose that @€
Co(Z x R™ x (R¥*1\0)) is real-valued and homogeneous of degree one in (u, 6) ER¥**. Con-
sider an open cone I' in which ¢ is a phase function in the sense that (2.34), (2.35) holds on

I'n {x=0},
9,p>0 inT (3.1)

and in- >0, in [, p(z, ¥, &, 0) is a non-degenerate phase function in the usual sense.

Set
S™I) = {a€S™(Z xR" x R""; a is in S~ outside a closed subcone of T'}. (3.2)

If a€8™I) and (2, y')EK =<Z x R" the integral

Lp)a= fewy"”' D~alz,y, u, 0) dp (33)

is well-defined in the oscillatory sense for
s<g(K), s>1/e(K), eK)>0. (3.4)

Indeed, subtracting a term in S~ from @ allows one to assume that ¢<d,p<1l/e on

supp () N K x R¥**. Integration by parts using
a‘u eiq:—z's,u — i(a"w —8) ei(p—is;z

allows (3.3) to be replaced by a convergent integral with symbol of arbitrarily low order,
provided (3.4) holds. In particular,

Lip)a €C=([0, £] U [1/e, o0) x K; S(RY)). (3.5)
Now note that

L(g): 8~°(Z x R" x RY*1) > 0([0, o0 ) x Z x R*; S(RY)) (3.6)
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and for any a€S™(I")L(g)a is always rapidly decreasing as | (s, 0)] = oo. It follows from
Lemma 11.1.5 that the map (3.6), restricted to s€[0, €], £ >0, is surjective, since if @ €8~
so is e%a and conversely. This proves the existence of lacunary symbols for the phase
function ¢, since L(p)a=M(e~**d), with M as in (I1.1.6).

Prorositiox 3.7. If 8L, ¢)< 8™T") consists of the symbols a such that Lig)a is

rapidly decreasing as s{0 and st oo then there is a conlinuous linear map

B: S™I) -~ 8=
such that 1d + B,: 8™(T')~S5(T, ¢).

If @ is a phase function with (3.1) holding in I', consider the oscillatory integral operator
Fu(z)= J‘ei"’(z'”"’”é' O-iwl o a y, 2k, 0)ulz) dz’ d&d6. (3.8)
Making the usual change of variable s =2'[x, u =« reduces (3.8), formally, to

Fulz)= fe‘“"z'y"“"’"is”a(z, ¥, u, ) ulws, y')dy dsdudb. (3.9)

To investigate (3.9) it is necessary to recall, briefly, the theory of Lagrangian distribu-
tions which is to be found, in part implicitly, in Hérmander [10] and for example in Guil-
lemin and Sternberg [7]. In fact following the elementary definition in Chapter I of the
Lagrangian distributions associated to the conormal bundle to the boundary it is relatively
easy to give a direet definition of the more general space I°(M, A). Here, A< T*M™0
is a homogeneous Lagrangian submanifold. The local representation theorem, a straight-
forward extension of Darboux’s theorem shows that near each A€ A there are n=dim A C®
functions g; which are real-valued, homogeneous of degree one and vanish on A, simply

near 1. In consequence,
{79} =0 on A. (3.10)

To extend this geometric structure to analysis, choose properly supported pseudo-
differential operators G;€LYM) with principal symbols g¢;,7=1, ..., n. Then consider a

distribution « € £ (M) which has
WF (u)< A (3.11)

and for which there exists s€R such that

G,y ... Gou€Hio(M), V. 3.12)
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Definition 3.13. I°(M, A)c D’(M) consists of those distributions » € D’(M) such that
(3.11) holds and for each p €CP(H), (3.12) holds for u=pv and all local defining functions
g; for A; s depending only on v.

Note that (3.12)is independent of the choice of G; with ¢,(G;) =g, since pseudodifferential
operators of order zero are bounded on Hi,, if properly supported, and we assume (3.12)
for all local defining functions. A straightforward application of the theory of Fourier
integral operators which, for completeness, is outlined below, shows that this definition is
actually equivalent to the usual one in terms of oscillatory integrals and local parametriza-
tions.

It is clear that (3.12) is microlocal; that is it holds for « if and only if it holds for all
B;u when the B;€L*M) form a pseudodifferential operator partition of unity. Thus, it
is enough to assume that for a preassigned neighbourhood A’ of some 1€ A,

WF (u) < A'.
Taking a canonical transformation

¢: T*M, A', A T*R*, N*{z, = 0}, (0,0, ..., 0; 1,0, ..., 0)

and associated properly supported Fourier integral operator, F, elliptic over WF (u), it
is immediate that (3.12) holds for u if and only if it holds for Fu with respect to the Lag-
rangian N*{z, =0}. This case is analysed in Section I, where it is shown, in equation (I.1.5),
that Fu can be written, modulo C®, as an oscillatory integral with phase function x,&
parametrizing N*{z; =0}. The fact, namely the Lemma of stationary phase, that Fourier
integral operators associated to canonical transformations act on such oscillatory integrals,
together with the calculus developed in [10] proves the following result, with respect to
Definition 3.13.

THEOREM 3.14. For each u€I°(M, A) there exists m €R such that if ;€ C°(M x RY7)
are local parametrizations of A in open cones T, in the sense of (2.81), covering the whole of A
then there exist symbols a,€ 8753~ ¥i( M « RY) and uy € C®(M) such that the following sum is

locally finite and
> fei"’f(”’"”aj(m, 0) d0 = u— ug, (3.15)
i

The symbol tsomorphism

ot I, A) I Y M, Ao 8™ YA, Lo QL @Q5)/8™ YA, Lo QleQx}), (3.16)

defined by Hormander, has L the Maslov bundle on A, QY the 3-density bundle on A and Qyt
the pull back to A of the dual to the }-density bundle on the base, M. With respect to the local
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coordinates introduced by the parameirizations p;, and corresponding local trivializations of
the bundles over A, o,,(u) s just @ linear combination with C* coefficients of the a; on C,,.

Now, suppose that M is a C® manifold with boundary and that AcT*M\0 is a

homogeneous Lagrangian manifold with
ARoT*M, N*OMNA=0Q. (3.17)

It was shown above that, under condition (2.29), such a submanifold A can be extended
to a Lagrangian submanifold in the cotangent bundle of any extension of M across that
boundary.

If Ay, A, are two extensions of A, near 4, in extensions My, M, of M then there always
exist parametrizations g;€C®(M; x R¥) of A, near A, with ¢, =g, over M xR” near the
hase point. Indeed, in view of the first condition in (3.17), it is possible to introduce local

coordinates (z, y) in M so that A is given by
a ’ ” ’ ” .
™ Y& Y1) Y =W on Y 0= Ok W)y T=REL s m

Then the same is true for A;, A, in local coordinates in M,, M, extending these coordinates

with y;, 9, replacing p and both extensions of it into 2 <<0. The phase functions

(pi — y”"’]”—%(ﬂ’?’ y/’ 17//)
are parametrizations as desired. This means that any u, €I™(M,, A,) with wavefront set

near 1 is equal in M to some u, € I™(M,, A,).

Definition 3.18. Let A< T*M\ 0 be a homogeneous Lagrangian submanifold satisfying
(3.17). The space I™(M, A= D'(M) consists of those distributions which can be written
as the restriction to M of a locally finite sum of distributions in the spaces I™(Mz, Ay)
corresponding to extensions of M, A.

The independence of extension discussed above shows that the symbol isomorphism
(3.16) remains valid when M is a manifold with boundary and (3.17) holds if the symbol
spaces on the right are interpreted in the obvious way for A a manifold with boundary,
ie. as the restrictions to A of symbols on an extension. Note that, because of the second
condition in (3.17), each element of I™(M, A) is C® up to the boundary with respect to
any normal variable, so is in 4'(M). In particular one can equally well consider, unam-
biguousty, .

I™M, A) =D'(M),
by cutting off at the boundary. Note also that

NI™M, A) = O=(M).
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ProrositioN 3.19. The integral in (3.9):

O~ om0 bratsy', u, 0)dpat

defines a linear map R
®: SiT, @) > I™Z X Z, A) (3.20)

whenever A is a boundary canonical relation in T*(Z X Z), parametrized by o in the sense of
Section 2. Moreover, ®(a) vanishes to all orders on the parts 0Z x Z and 7 x 07 of the boundary
ZXZ.

Proof. It should be noted that the abuse of notation in (3.20), arising from the fact
that Z X Z is not a manifold with boundary, is minor since the Lagrangian A only meets
the boundary away from the corner and does have the transversality properties (3.17)
there. Thus, I™(Z X Z, .&) consists of distributions which are C'* up to the corner. In fact,
since it is shown in Proposition 2.20 that ¢(z, y', u, 0) —su does parametrize A the proposi-
tion has already been proved.

Following this preliminary investigation of (3.9) the space of kernels of interest can
be defined directly on N X M.

Definition 3.21. Let M, N be C® manifolds with boundary. If Ac TN X M) is a

boundary canonical relation in the sense of definition (2.19), the space
KMA)< I"(N R M, A; Q) D'(N R M; Q)
consists of those Lagrangian sections of ﬁN associated to A and vanishing to all orders at
N x0M and 6N x M in N X M.
The residual space K~°(A)=X-°(M, N) is clearly independent of A. In fact,
K-=(M, N) < C(N R M; Qy)

consists of those smooth sections vanishing at the part N x8M UaN x M of the boundary.
Suppose that M and N have the same dimension so are locally diffeomorphic to the same
standard manifold Z. Clearly X~®(M, N) is just, locally, the space of kernels of operators
in L;®(Z). Indeed, by the definition of ﬁN any k€X-°(M, N) is of the form

1 ’ ’ 7 ’
) d 2
k oc(x, vY, )dx dy (3.22)

with o €C®; this proves the following result.
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Prorositiox 3.23. If M, N are manifolds of the same dimension the injection,
K-o(M, NY>D'(N R M, Qy),

given by (3.22) in local coordinates, maps onto the space of Schwartz kernels, of the operators
in Ly ®(M, N), the elements of which give maps in Ly, °(Z) in any local coordinates.

Even when the dimensions of the two manifolds are different the residual kernels are,
essentially, the same in local coordinates except for the differing number of y and ¥’ vari-
ables. Since these are basically parameters all the results for operators in L—®(Z) apply,
simply by the addition of an appropriate number of extra variables.

Similarly it is now possible to define the space of totally characteristic Fourier integral
operators associated to a given boundary canonical relation. Each element F€I(M, N; ]X)
is fixed uniquely by an element of X™A) by noting that in any local coordinates z = (z, y),
2'=(z',y’) on M and N the formal definition (3.9) can be written

Futz) = f K(@, ., s)ulsz, ) dy'ds, w€CE(N) (3.24)

where K dy'dsE.']{”’(fX). It can be assumed, by adding a term in L-°(M, N) that K has
compact support in s€(0, o) and then the integral is just the distributional pairing of
integrand and 1. The assumption (2.15) on the boundary canonical relation A means that
(x, y)—~K(x, y, -, - )ED'RB*xR,) is C® so any FE€I™M, N; A)is a map

F. C2(M)— C=(N).

I1.4. Operator calculus

The definition of totally characteristic Fourier integral operators given above in terms
of the kernels in JC’"(K) can be extended to other vector bundles over M and N. If E, F
are vector bundles over M, N respectively the space of kernels is just the space of distribu-
tional sections of QN® E'®F, Lagrangian over A and vanishing to all orders at oN x
MUN xoM. The corresponding space of operators will be denoted I(E, F; A), with M
and N understood.

ProrosiTion 4.1, If FEI(M, N; ]X) the adjoint operator F* € I}(Qy, Qs 11‘1).

Proof. In computing the adjoint it suffices, in view of continuous dependence on the
kernel, to assume F €L, (M, N). Then, in local coordinates in which (3.24) holds

F*op(z) = f K (tx’, %9, %) p(ta, y)%t dy. (4.2)
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The mapping
7 d ! r s 7 7 7 —_
Kz, 9,9, ) %dy > %K(tx Y s %)‘i—?dy.dx dy’ - (dzdy) (4.3)

is the coordinate version of an isomorphism:
I™N R M, Ay Q) > I"(M XN, A% Oy @ Q@ Q57). (4.4)

In fact the only point not immediately clear is the identity of the Lagrangian on the right
in (4.4). However, the fact that (4.4) is valid in the interior, which follows from the standard
theory of Fourier integral operators, shows this Lagrangian to be A,
By duality it follows from this proposition that any element F € I7(M, N; A) has the
mapping property:
F: E' (M)~ D'(N). (4.5)

Next consider the formula for the product of two pseudodifferential operators in
L;™(Z), given in (I1.7.9). Writing this out in terms of the kernels of F,, F, of the form

(3.24), assuming supports to be compact:
F Fp(z) = le(z, .y, 8) Kylsx, y', 4", ') g(ss'e, y")dy" ds' dsdy’.

Since K, K, are rapidly decreasing as s—0, oo the change of variable t =ss’ is permissible,
so F'=F, F,is of the form

Fo(z) =fK(z, ¥, t) oz, y")dy" dt (4.6)
where

” ’ r ” t /ds
K(z,y,y ,t)=fK1(z, 1,y ,8) K, (sx,y Y ,;) dy o (4.7)

Noting that an operator in I;(M, N; A) is properly supported if and only if the two projec-
tions from the support of K in N X M, to M and N are proper, let the corresponding sub-
spaces of properly supported operators and kernels be I7 o(M, N; A) and KZ(A) = D'(N R M).

ProrositioN 4.8. If y: T*N—T1*Q, y,: T*M—~T*N are boundary canonical trans-

formations the mapping (4.7) extends by continuity to a separately continuous bilinear form
K™o1) x K () = K™ (o1 x2)- (4.9)

Proof. It is enough to suppose that K,, K, have compact supports away from s =0, oo
in (4.7), since the other terms are certainly in L~*°(M, @). Thus, (4.7) reduces to a computa-
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tion with Lagrangian distributions. Restoring the oscillatory integral representation of the

kernels K, into (4.7) gives

Kz, y,9".t)= feXp (912, 4, ', p, 0) —isp +igy(sz, ', 4", ', 0°) ~ ity [s)
X ey(2, Y s th, 0) colsz, 9y, ', 0" ) dudu' dG ds’. (4.10)

The phase function in (4.10) is non-degenerate, so K is a Lagrangian distribution. It can
be checked directly that this phase function parametrizes y,-y, but, again, this is not
necessary since from the standard theory of Fourier integral operators it is known to be
true in the interior. This proves (4.9) with the continuity in symbols obvious from (4.10).

Thus, if F,€I}(N,Q; %) and F,€I7(M,N;yx,) then F,-F,€Iy"™(M,Q; 11 X2)
provided one at least of F,, F, is properly supported. If F, is properly supported this
follows directly from Proposition 4.8 and (4.7), if ¥, is properly supported then it follows

by considering the adjoints.
Observe that the analogue of Proposition 11.5.10 holds for these Fourier Ptegral
operators. Indeed, the vector field D, on T*(N X M), near 0N xoM x[0, o] N A is not

tangent to A. Thus, one easily deduces the extension of (I1.1.9) for the kernels in JC'"(./AX);
namely regularity in the ¢-variable can always be obtained by integration by parts. Thus,

F: HYM) - Hio(N) (4.12)

where S=8(s, m). If 4€L} »(N) then using the composition formula above there exists

BEL; »(M) such that
A-F=F-B+G (4.12)

with F'€Iy"(M, N; ) and GEL; (M, N). If % is not globally a diffeomorphism then it
may be necessary to assume that A in (4.12) has small essential support. In any case, for
u€ A (M), such that Bu€H:(M) for all BELL (M),

A-(Fu)€HS(N)
with §’, sufficiently negative, independent of 4. This shows that
F: A (M)~ AD). (4.13)
By duality it follows that
F: AYM)—~ 4 (N) (4.14)
if FEIY(M, N; x). Naturally we expect that there is a map

( )o: I8(M, N; ) > I™(6M, ON; o7), (4.15)
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extending (I1.5.25), such that
Fulon=Fy(u|on), Yu€A(M). (4.16)

To see this, consider (3.24). For u€CP(M), (4.16) follows directly with
(Fop)(y) = J‘K(O, ¥, 9 8)ply')dy ds (4.17)

in local coordinates. Naturally (4.16) follows in general from the (weak) continuity of

boundary values.
ProrosiTioN 4.18. The map (4.15) is defined on the kernels by
X™(x)3 K> c, i*K € I™(0M x 0N; Q,y; (graph 9x)) (4.19)

where 1: 8M x 8N x[—~1,1]>M X N is the inclusion and c: 2M x 8N x [—1,1]~0M xON is
the projection.

Proof. Naturally (4.19) is just the invariant form of (4.17). It is really only necessary
to check the behaviour of the bundles. Note however that the restriction #* is well-defined
because of the second condition in (3.17), on M X N. The integration c, is meaningful since
K vanishes rapidly at 0, co. Now note that K is a generalized section of QM, that is of the
form gv/x with ¢ Lagrangian and v a O section of the density bundle Q,, lifted to M X N.
Thus the restriction to M x &N x [0, oo] gives, invariantly, a section of

Qo (N*aN)-1- (N*0 M) (4.20)

since at OM, Q=0 @ (N*6M) and x transforms at ON as N*ON. The 1-form ds trans-
forms as (N*oN)-1- (N*0M) at the component oM x &N x [0, o] of the boundary so (4.19)
holds independently of coordinates.

Next let us note the symbolic versions of these properties. First define the symbol of
a Fourier integral operator in terms of the symbol of its kernel, using (3.16):

I(M, N; A) > 80 (A; Lo QL @0, @Q;1 ) g+t 4.21)

If x is a diffeomorphism this can be simplified in the usual way. The map (2.33) gives an
isomorphism

2 T*N >A,. (4.22)
Pulling back the various bundles over -&x and using the isomorphism
OT*N) 90y @Q-HM X N) = Q4 Q5 @ (6)H*D, (4.23)

15 — 812903 Acta mathematica 147. Imprimé le 12 Février 1982
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where @ is the singular 2-form on T*N, gives
Ozt ™M, N; ) > S™(T*N; Lo Qi@Qy /8" (4.24)

the left- or image-reduced symbol. In local coordinates (4.23) is just the relation

¥

(dzdAdydn)t-(dsdy’)- (dsdzdydy’)—? = ¢, (da’ dy' )t - (dxdy)~*- (i dacdlclydn)

where ¢, is a constant and s=2z'/x.

Naturally one can define, instead of (4.24), the right- or domain-reduced symbol:
Op.r: I™MM, N, ) > S™T*M; Lo QL Q51871 (4.25)

and then one has Egorov’s theorem:
Omn,."X =Om,E- (4.26)

This is most often seen in combination with the product formula. If FeI}(M, N; x,) and
GEIT(N, Q; x,) with at least one properly supported then

Omr, 1(G* F) = O, o F) 11 O, n( ) (4.27)
where the product involves the tensorial cancellation
QO @QieQ: =QheQs} over T*M. (4.28)

For a pseudodifferential operator, ¢, =0, ;80 if A€L} p(N) and BELY o(M) with 4-F =
B-F, F elliptic then (4.27) becomes
2¥on(4) = o.(B). (4.29)

For adjoints one has the usual simple formula
O, r(F*) =0, 1 (F), (4.30)
where we use the obvious extension of (4.24) for operators on vector bundles

O, 2 I™E, F; 4) > S™T*N; LQQLEQQ*QE'® F) (4.31)

and cancellation amongst the density bundles. Similarly, consider the restriction to the

boundary. Here,
Om,1{F5) = G, o(F) [ 7 on - (4.32)

Over the inclusion T*9N<>dT*N< T*N the isomorphism

QL0 = 0, Q5 @ [(V*M) (N*aN)-1]
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together with the trivialization
N*0M = N*aN over 9A,, (4.33)

given by the transversality of D, and f&x, ie. s=dx'/de=f(y,n) at x=2"=0, shows that
(4.3) is meaningful with
O, 1(F5) €S™(T*0N; Ly @ Q@ Q) [ 87
as it should be.
To complete the caleulus it should be noted that the symbol map (4.24) can also be
given an oscillatory test definition. The usual oscillatory test method (see [6]) defines
(4.21) by examining the behaviour for large T of the pairing of the kernel (with C* section

of (), removed) with an oscillatory term:
(@, 9, Y, 8), 02, Y, Y, 5)e™E 1V

where ¢ €07 localizes near a chosen point and yp€C® is real-valued and such that the
Lagrangian A, =graph dy meets ]\x transversally. The transversality properties of Kx
show that to test near the boundary y can always be chosen in the form

y=p 4 y)+alogs (4.34)
with o constant and f€C%, df + 0. It suffices to consider curves
fa', ¥') = 0™ (@ V1" €A M) (4.35)

in M, where 0 <a€ C®(M) vanishes simply on &M, § is real-valued and df =0 on the sup-
port of o. A

ProrosiTioN 4.36. If FEI™M, N; y) then
F(f,) = a,é™ (x) 4.37)
where ' €CP(N), x€C®(N) are real-valued, x vanishes simply on 8N and a,€S™(M x R).

Proof. Substituting (4.35) into (3.34) gives

F(fr) — (x)i_"_m J‘K(x’ ¥, yl’ 8) eirﬂ(zs.l/’)ﬂmlogsdyld&

The standard theory of Lagrangian distributions now gives (4.37).
The details of the formula relating a,, modulo §™°1, to g,, ,(F) are left to the interested
reader to glean from [6].
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IIL.5. Boundary value problems

The operators in L (M) are totally characteristic and one would not normally expect
to prescribe boundary conditions on elements of their kernels. To give a general setting
for boundary value problems, transformed by the Fourier integral operators described

above, we can easily extend the definition of L7'(M).

Definition 5.1. If LEN we let L7"*(M) be the space of operators S’(M )—>T:)’(M ) locally

of the form
ﬂn%e A4,P;+ @B,
where B;, A,€L7"™(M) and P;, @, are differential operators of order m,<k.

First consider the kernels of operators in L; ®*(M). Directly from the definition we
see that in local coordinates these kernels are at most k-fold derivatives on the right or
left of kernels in L;®. Certainly A €L;** has the mapping property demanded in Lemma
11.4.1, so is determined by its Schwartz kernel in the open quarter space.

Recall that on M X M the bundle ﬁM has 0% sections which are of the form, with
respect to local coordinates, av/z with v a 0 density lifted from the first factor and «€
C™(M % M). More generally let Q¢ be the line bundle with sections w =av/2**L, KEN. Tt
is meaningful to say that such a section vanishes to all orders at the part oM x MU M x2M
of the boundary of M x M, i.e. that & can be chosen to vanish to all orders there. For such
a section, and working in local coordinates (x, y, y', s)s=2"/x,

w= 2 & w,y,y,s)dsdy +w, (5.2)
1<p<k
where wonw(ﬁM) also vanishes to all orders at 8M x M U M x 2. The expansion (5.2)

is not coordinate invariant, but the conditions
0
f sSwy(y, ¥, 8)ds =0, on oM xoM forO0<r<p, 1<p<k (5.3)
0
are invariant. This can be seen directly, but follows indirectly from the next result.

ProrositionN 5.4. The kernels of operators in Ly™"(M) constitute the space of C*
sections over M X M of QO vanishing to all orders on 2M x M U M x M and satisfying (5.3).

Proof. The definition of L;**(}) is local so it suffices to work on Z. Consider 4- DE€
L;**(Z) where 4 € L;*(Z). Ignoring a term in (®(Z x Z), which is clearly unimportant,
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(4-D)glz) = f«(z, ¥, 9, (Do) (ws, y')dsdy’
=f w(z, ¥, Y, s)x ¥ Diglas, y')dsdy’
~ [# =Dty v s,y asdy’ 55)

Observe that a kernel w satisfying (5.3) can always be written in the form

K= 3 a(—Dyu, (5.6)

0k
with o, € K~. Indeed the conditions (5.3) are precisely the requirement that the solution of
Diw,=w, Dlaf0)=0 0<j<p,

should be rapidly decreasing as s->co and hence in X-®. This shows that all sections of
the stated type can be obtained as kernels from L; ®¥.
Now the converse follows from (5.6) and the fact that for A€L;® there exists B,

E €eL;® such that
A-D,=L-B+E. (5.7)

To see (5.7) just observe that if the kernel of B is x'f(z, y’, s) then that of D, - B is

YD, f)—x2D(sp). So if A has kernel 1« it is only necessary to take f=s1a and &

with kernel 2-1( D, s~1«). Iteration of (5.7) shows that '
GEL, > "Z) < G= 3 A;-Di A,€L;,®Z), (5.8)

0k

which completes the proof of the proposition.
We remark that the continuity properties of the operators in L(M), with respect to
their kernels, allow one to deduce immediately the behaviour of the finite order operators.

COROLLARY 5.9, The kernels of Ly**(M) are the generalized sections of ﬁﬁ.’? over M X M
which are Lagrangion over the image in M X M of the diagonal, of order m, and which vanish
to all orders on the part oM x MU M xoM of the boundary.

It also follows directly from (5.8) that the properly supported elements form a bi-

filtered ring: . . -
LPMM)Y - Lyt (MY < L™ (M), (6.10)

Away from the boundary, elements of Lj**(M) are again just pseudodifferential operators
in the usual sense. We briefly discuss the symbolic properties of this space.
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As a consequence of Proposition 5.4 the symbol of an element in Lj*(M) is well-
defined as a formal quotient of a symbol of order m in T*M, a, which vanishes to order
k at T*0M, by a function homogeneous of degree zero vanishing to precisely order & at
oT*M.

On(d) === a2 (5.11)

a
xk i<k

The calculus clearly extends to these enlarged spaces in a straightforward manner. All dif-
ferential operators of order k lie in L¥*(M) so we can extend the ideas of Section 1.3 by
extending the condition that an operator be non-characteristic with respect to the boundary.

Definition 5.12. PEL7-*(M) is non-characteristic with respect to oM if the leading

part of the symbol
2%6,,(A4) ECP(T*M\0)

is elliptic on 87* M\ (T*2M) and hence vanishes to precisely kth order at T*5M.
Following the computations above this normal elliplicity condition can be restated as

follows. P€Ly"*(M) is non-characteristic if, locally, it can be written in the form
P=AQ mod LP*Y(M)+ L;>"(M) (5.13)
where @ is a differential operator of order %, non-characteristic, and 4 € L7 ~*(M) is elliptic,

PROPOSITION 5.14. If PELP*(M) is non-characteristic then uw € E' (M), Pu€B*-V(M),
i.e. PuGB(M ) with boundary terms only to order k—1, implies that

w€ A (M) + A(M) (5.15)
Proof. Suppose Pu=f€B*(M). Using (5.10) and applying a parametrix for 4 gives
Pu=3 A,Qu=f—Ru, [EB*Y (5.16)

i<k
where A,€LF?, A,=1d and R€L-*-%, Thus Ru€ 4. Now, the terms 3., 4,0, in P’ map
A into AS*D for every s€R. It follows from the proof of Lemma 1.3.2 that P’ is an

isomorphism, mod €, from A® to4°*®, By induction then P’ is an isomorphism of 4
to 4 mod €. We can therefore add a term to u, u’ € A(M ), so that

Po~g €B*D, p=u—u. (5.17)

The proofs of Lemma 1.3.8 and Proposition 1.3.12 therefore apply to P’ and it follows that

v€ A4’ as asserted.
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Since ALM) N A(M)=CP(M) it follows from Proposition (5.10) that, at least modulo
C®, boundary value problems can be stated for non-characteristic operators in Lj*¥. Thus,
if P is a pseudodifferential operator in Lj**(M; B, F) acting on vector bundle sections and
is non-characteristic and f€ 4'(M, F) a differential operator, or pseudodifferential operator

BEeLP¥M, E, C) can be used to impose boundary conditions

) RByv=geD'(6M,F) mod C® (5.18)
and any solution »€D’(M) to
Pv—f mod D'GM, Fe_1) (5.19)

since by (5.11) BvEE’(M ) +,4(M ) so the boundary condition (5.18), interpreted as acting
on the first term, is well-defined modulo €.

In terms of the microdistributions discussed in Section II.8 this problem, (5.18),
(5.19) is well-defined with microdistributional data. The basic problem of the theory of the
singularities of non-characteristic boundary value problems is the examination of the
relationship between WF, (f), WF (g) and WF, (u), i.e. the supports of microdistribution
solutions. We also remark that the Fourier integral operators discussed above act by
conjugation on the space LJ“*(M). Under such transformation the form of a boundary
value problem (5.18), (5.19) is preserved. Thus, the standard transformation method used
in the analysis of pseudodifferential operators on boundaryless manifolds can be extended

to the case of boundaries.
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