
TRANSFORMATION OF BOUNDARY PROBLEMS 

BY 

RICHARD B. MELROSE 

Massachusetts Institute of Technology, Cambridge, Mass., U.S.A. 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 

I. MA1N~IFOLDS WITH BOU'IqDAI%Y 
1. Spaces of distributions . . . . . . . . . . . . . . . . . . . . . . . . . .  153 
2. Compressed cotangent bundle . . . . . . . . . . . . . . . . . . . . . . .  158 
3. Non-characteristic operators . . . . . . . . . . . . . . . . . . . . . . .  162 

II. PSEUDODIFFEI%ENTIAL OPERATORS 

i. Symbol spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 

2. Operators on open sets . . . . . . . . . . . . . . . . . . . . . . . . . .  170 

3. Definition on Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 

4. Kernels and adjoints . . . . . . . . . . . . . .  ~ . . . . . . . . . . . .  176 

5. Boundary values . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183 

6. Symbols and residual operators . . . . . . . . . . . . . . . . . . . . . .  187 

7. Composition and el]iptieity . . . . . . . . . . . . . . . . . . . . . . . .  194 

8. Wavefront set . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197 

9. Normal regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203 

i0. L ~ estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 

III. FOURIER INTEGRAL OPERATORS 

1. Boundary-canonical transformations . . . . . . . . . . . . . . . . . . . .  208 

2. Local parametrization . . . . . . . . . . . . . . . . . . . . . . . . . .  214 

3. Oscillatory integrals . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 

4. Operator calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226 

5. Boundary problems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 

I~EFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~35 

Introduction 

I n  this paper  the calculus of pseudodifferential  a nd  Fourier  integral  operators in- 

t roduced in  [13] is examined in  more detail.  There are several al terat ions which have been 

made to extend and  simplify the theory.  I n  par t icular  a na tu ra l  vector  bundle  T ' M ,  the  

compressed cotangent  bundle,  is defined for a ny  manifold  wi th  boundary .  This is the  

10- 812903 Acta raathematica 147. Imprim6 le 12 F~vrier 1982 
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appropriate space for microlocalization with respect to the pseudodifferential operators in 

the space L~(M). In  local coordinates these operators are of the form 

Au(x, y) = (2~) -n-1 f e ~+'~''~a(x, y, x~, ~) ~(~, ~) d~ d~7, (0.1) 

where (x, y) are the coordinates in the standard manifold with boundary Z =Rx + • R~. 

The importance of the space ~*M is that  it carries, invariantly, functions of the type  of 

the symbol a(x, y, x~, ~]) in (0.1) with its special dependence on the variable, ~, dual to x. 

Under certain mild lacunary conditions on the symbol, A in (0.1) preserves the property 

that  the distribution u has restrictions, or traces, of all orders to the boundary and 

Au [(x = O) = A o ( u  I(x = 0))  (0 .3)  

with A 0 a pseudodifferential operator on the boundary. This is the fundamental property 

of these pseudodifferential operators, and also the Fourier integral operators discussed 

here, because it allows the operators to act on distributions satisfying differential or 

pseudodifferential equations and boundary conditions. Since no applications are presented 

here the interested reader is referred to the lectures in [13], [14] and [15] for an indication 

of this approach to the examination of singularities. The details will appear elsewhere. 

One of the technical difficulties in a systematic approach to boundary problems is 

the abundance of spaces of distributions which enter. The central position here is given 

to the space ~'(M) of distributions supported on M, a manifold with boundary. In Chapter 

I the more formal properties of boundary problems, posed in this way, are examined. In 

the first section the various standard spaces are introduced as is the space 

A(M) c D'(M) 

of almost regular distributions. These are determined by  the property that  they have 

fixed regularity after the arbitrary action of vector fields tangent to the boundary, They 

are characterized as the Lagrangian distributions, supported on M, associated to the 

conormal bundle N*~M. The elements of A(M) are regarded as, essentially, negligible 

distributions as far as singularities are concerned, although not quite as negligible as 

the space 

of C ~176 functions vanishing to all orders at the boundary. The standard notion of wavefront 

set, taken with respect to an open extension of M, determines C~176 in ~(M):  

If  uE.,4(M) then uEC~176 (0.3) 
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The compressed tangent and cotangent bundles are introduced in Section two as 

geometric constructs closely related to the definition of ~ .  Thus, TM is the natural bundle 

of which the vector fields tangent to the boundary are sections. Then ~*M is the dual of 

TM. The natural vector bundle map 

T*M ~ ~*M 

has image, of corank one over the boundary, canonically identifiable with 

T ' a M  U T*.~I ~ T*M. (0.4) 

This space has been used (see for example [5], [11], [16]) as the carrier of the set WF b (u), 

for special distributions. 

The third section contains a rather formal treatment of noneharacteristie boundary 

problems. The important item introduced here is the subspace 

A'(M) c ~ ' (M)  (0.5) 

given as the dual of ~c(M, ~), the space of compactly supported almost regular densities. 

The usual trace or restriction map R: C~(M)--)-C~176 extends to A'(M). This allows the 

weak formulation of boundary problems (I.3.20), due essentially to Schwartz, to be re- 

covered in a strong sense with minimal regularity assumptions on the data. I t  should be 

noted that  A'(M) contains the usual spaces of distributions for which all traces are defined 

and can be used in place of the awkward spaces of distribution regular in a normal variable 

used previously, for instance in [1]. 

Chapter I I  treats the calculus of pseudodifferential operators LT(M) of totally char- 

acteristic type. Some standard properties of symbol spaces are briefly recalled in the first 

section and the lacunary condition imposed on the symbol in (0.1) is examined, and shown 

to impose conditions only on the residual part, i.e., to be trivial modulo S-% The second 

section consists of a short exposition of the theory of pseudodifferential operators on open 

sets for purposes of comparison. In Section three the operators (0.1) are defined on Z, by 

analysis of the formal adjoint, and the simplest mapping properties are deduced. 

The next  two sections, four and five, t reat  the more significant properties of the 

operators (0.1). First the precise nature of the kernels near the corner ~Z • ~Z is investigated. 

This is done in terms of the 'stretched product '  N ~ M of two manifolds with boundary; 

in fact the kernels lift to standard Lagrangian sections of an appropriate line bundle on 

Z ~ Z. This leads to the proof of coordinate invariance and hence the global definition of 

L~(M), for any manifold with boundary M. In Section five it is shown that  A acts on 

spaces of distributions with restriction properties to the boundary, even maps ,,4'o(Z) to 
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A'(Z) and that  (0.2) holds. In Section six the symbolic properties of the operators are 

shown to closely parallel the open case, with the principal symbol defined on T 'M:  

am: L'~(M)[L'~-I(M) ~ sm(~*M)[Sm-I(~*M). 

This, combined with (0.4), gives a symbolic version of (0.2) 

am(Ao) = a(A)] T*OM. 

Moreover the composition and symbolic preperties of the residual operators, L~oo(M), are 

examined. This space is filtered by a sequence of residual symbol maps defined on the 

corner ~M • ~M of the product: 

a_oo _~:: L-OO,-k(M)]L-OO,-~:-I(M) ~ $(g'+; B~) (0.6) 

where S is a line bundle on aM • 021/and B k a bundle over S. In fact the product formula 

(II.6.16) involves convolution in the R+ structure of the positive side of S. 

After the usual formula for the product of pseudodifferential operators is proved in 

Section seven it is applied to the construction of parametrices, modulo Lffoo, of elliptic 

operators. This so closely resembles the familiar case that,  in Section eight, the definition 

of wavefront set used by HSrmander can be applied almost verbatim to fix 

WF~ (u)c ~'*M\O, u (0.7) 

The only real departure from the usual properties of wavefront set is the almost regularity 

property: 
WF~ ( u )  = O ~ u~.,4(M). 

Combined with (0.3) this still gives a rather complete range of indicators of singularity, 

with an obvious sheaf-theoretic interpretation on T*M. 

Using the symbol calculus the space of normally regular distributions, ~/(M)c 14'(M), 

is discussed in Section nine and a slightly strengthened form of Peetre's theorem on hypo- 

ellipticity up to the boundary is proved. Again using the calculus in a standard way the 

L 2 boundedness of operators in L~ is shown in Section ten. 

The analogous spaces of Fourier integral operators on a manifold with boundary are 

the subject of Chapter III .  First the properties of canonical transformations, on the usual 

cotangent space, preserving the boundary, are considered. A boundary-canonical trans- 

formation is then taken to be a C ~ dfffeomorphism 

z: ~*M ~ ~*N (0.8) 
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which is homogeneous and canonical for the singular symplectic structure on the compressed 

cotangent bundle. In  the second section the existence of suitable local parametrizations of 

these boundary-canonical transformations is discussed. After the appropriate lacunary 

conditions on symbols are shown to present no problems this leads to the local definition 

of Fourier integral operators in terms of oscillatory integrals, in Section three. The kernels 

of the totally characteristic Fourier integral operators can be identified with generalized 

sections, of an appropriate bundle over N ~ M, with only Lagrangian singularities at a 

Lagrangian submanifold 
c T*(N ~ M ) ' \ 0 .  (0.9) 

For a boundary-canonical transformation this Lagrangian can be identified with the 

twisted graph. The calculus of these operators can then be routinely developed by com- 

bining the methods of Chapter I I  with the original work of t tSrmander [10]. In  particular 

the symbol is a section of the Maslov bundle, with an appropriate density factor, over A. 

The action of Fourier integral operators as transformations of the pseudodifferential 

operator ring, i.e. Egorov's theorem, follows from the calculus. A suitable formal definition 

of non-characteristic boundary problems is given in Section five, to extend these trans- 

formation properties. 

The author wishes to thank Lars tISrmander for the opportunity to lecture, in Lund, 

on the material presented here and for his interest and advice. 

Chapter I: Manifolds with boundary 
1.1. Spaces ot distributions 

Let M be a C ~176 manifold with boundary. If E is any vector bundle over M we shall 

denote by C~(M, E)= Coo(E) the space of sections of E which are C ~ up to the boundary, 

~M, of M and by C~(E) the subspace of compactly supported sections. Both of these 

spaces are equipped with the usual topologies of uniform convergence of all derivatives 

on compact subsets of M. By COO(E)cC~(E) and C~(E)cC~(E) we denote the closed 

subspaces consisting of those sections vanishing to all orders on ~M. 

The standard spaces of distributional sections of E over M are then defined as the 

duals of these spaces of C r176 sections of E*| ~,  where s is the density bundle of M. Thus, 

D'(M, E) = D'(E) = [~T(M, E* |  

is the space of extendible distributions whereas 

~ ' (M,  E) =D'(E) =- [CT(M, E*| 

is the space of distributions supported by M. If M ~ N  is realized as a submanifold with 

boundary of a manifold N, ~N = •, then ~ ' (E )  is naturally identified with the subspace 



154 R . B .  ~XlmOSV. 

of ~ ' (N,  E), for any extension of E to N, of distributions supported in M. Similarly the 

space D'(E) can be regarded as the set of restrictions to M, the interior of M, of elements of 

Z)'(N, E), that  is as the quotient 

�9 o 

7D'(M, E) ~- O'(N, E)/O'(N'~M, E). 

Following Schwartz we shall denote by 

C ,~ (E) D'(z), ,~'(E) c~ , (E)  

the subspaces of compactly supported distributions. For uEO'(E) the support is the 

closure in M of the support of u l ~ / e  Z)'(2]:/, E). 

Consider the relationship between extendable and supported distributions. Let 

~'(M, ~M; E)cO'(M; E) be the subspace of distributions supported in the closed set 

8 M c  M. Then, using the restriction map to ~r, we have a sequence: 

o 

0 ~  "'  (1.1) O (M, SM; E) ~, O'(M, E ) ~  O'(M; E) -> O. 

L~M~IA 1.2. The sequence (1.1) is exact. 

Proo/. The only point not immediately clear is the sttrjectivity at  9 ' .  Using a parti- 

tion of unity, it  suffices to show surjectivity locally. However, the structure theorem of 

Schwartz shows that  any extension u ' e  ~ ' (N,  E) of u E Z)'(M, E) is locally of the form 

Pv with P a differential operator with C ~~ coefficients and v a continuous section of E. 

Replacing v by 

in N ' ~ M  

gives an element Pv' E~'(M, E) which restricts to u locally in .~/. This proves the lemma. 

Schwartz in [19] gives a complete description of ~ ' (M;  OM) each element being 

locally a finite sum of Dirae distributions on the hypersurface ~M. If x EC~176 is a func- 

tion which vanishes to precisely first order on 8M, for each integer m >10, consider the 

kernel of the map given by multiplication by xm+l: 

DIn(M, eM; E) = {ueD'(M, ~M; E); ~ §  = 0), m 1> 0. (1.3) 

PI~O~OSlTION 1.4. For each m >~O there is a vector bundle E(m~ over ~M and a natural 

isomorphism 

Z)'~(M, 8M; E) ~-~ Z)'(aM; E[m))= ~'(E(m)). (1.5) 
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There are natural injections E~m) ~, E(m+l> such that 

E(~)/E(m_I) ~ E[eM| -m, m>~ 1. 

Proof. The theorem of Schwartz shows tha t  in any local coordinates x, Yx, ..., Yn at  a 
"n 

point in the boundary of M, dim M = n + 1, u EO~(M, aM; E) is of the form: 

dim E d~ 

u= ~ ~ uT.j(y)| ~ (1.6) 
O<j~<rn r ~ l  

with respect to a local basis e r of E. The coefficients uT.j are distributions on R ". This 

clearly provides local trivializations for E(m). The remainder of the proposition is straight.  

forward. 

Recall the standard continuous inclusions 

~(E) C~176 c (1,7) 
~'(E) 

where the interpretation of an element of Coo(E) as a distribution supported in M is through 

'cutting off at  the boundary ' .  There are similar inclusions for compactly supported distribu- 

tions. C~(E) is a natural  space of smooth extendible distributions, ignorable within the 

context of singularities. I t  is important ,  in certain cases, to enlarge the class of smooth 

elements of ~ ' ( E )  to include as well the elements 

Coo(3M; Er ~ ~)'(E). (1.8) 

In  fact  it is convenient to further enlarge the space of ' ignorable' distributions. We 

shall proceed to define 

~(M, E) -- ~(E) ~ ~'(E) 

the subspace of almost regular distributional sections of E. 

Let  
"~ c COO(TM) 

be the space of C ~ vector fields on M everywher e tangent  to aM: 

VE~ .~ VmET,~aMc T,~M, u 

The linear space Diff ~ (M) of differential operators of order a t  most  k on M is locally 

finitely generated as a Coo(M)-module by  j-fold products, for O<~j<~k, of vector fields 

acting by  Lie derivation. This allows us to define 

Diff~ (M) r Dill* (M), 
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the submodule of totally characteristic operaf~rs of order at most k, as the span of the 

~ = ~o  ... o ~ (] factors) 

for 0 <~'~<k. The description of these operators as totally characteristic is only slightly 

contrary to standard notation. Thus, multiplication by a C ~ function is here regarded as 

a totally characteristic differential operator of order zero. In general if E 1, E~ are C ~ vec- 

tor  bundles over M the space Diff ~ (M; El, E~), of differential operators of order at most k 

from sections of E 1 to sections of E~, consists precisely of the linear operators 

P: C~(M, El) -~ C~(M, E2) 

such that  ~ . P . ~ l E D i f f  ~ (M) whenever ~1 is a section of E 1 and Q~ is a section of E~. The 

formal adjoint of P E Diff ~ (M; E 1, E~), 

P* EDiff k (M; E~| E~| 
is uniquely specified by: 

fM(Pq~, ~f)= fM(q~,P*~,) (1.9) 

for all ~EC~(M, El) , ~EC~(M; E~ |  in terms of the sesquilinear pairing between 

vector bundle and dual. The totally characteristic differential operators, Diff~ (M; E~, E2) , 

are then precisely those for which {1.9) holds for all qDEC~(M, El), y)EC~(M, E* |  

those for which no boundary terms arise in using the adjoint equation. 

Let  K c c M be a compact set and put  

~ ' (g ,  E) = {ue~ ' (M,  E); supp ucK}. 

The topology of ~ '(K, E) is the inductive limit topology 

~ '(K,  E) = lira/~S(K, E) 
8 - - > - - 0 0  

over the Hflbertable topologies of the Sobolev spaces/~S(K, E). For each s set 

.,4(')(g, E) = {uE~'(K, E): PuEIt~(K, E), u  Diff~ (M; E, C)}. (1.10) 

~(~)(K, E) is to be topologized as the projective limit of the spaces 

{ue~'(K, E); PueI:P(K, E), VPeDiff~ (M; E, e)}, 

which are clearly Hilbertable for each k. Thus each A(S)(K, E) is a Frgchet space with the 

inclusions 
f4(S)(K, E) ~ A(~')(K, E), 
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for s >~ 8', continuous and, as a result of the analysis below, dense. In  consequence the 

inductive limit 

A(K,  E) = [J ~(~>(K, E) 
s 

is a Mackey space (see [18]). A map from ~ ( K ,  E) into a locally convex topological space 

is continuous if and only if it is continuous on each ~(S)(K, E). For convenience we also give 

At(M, E) = I..J A(K, E) 
K 

the strict inductive limit topology over an exhaustive sequence of compacta K ~ M .  

Since we can always work locally on M, as QuE.~(K, E) if ~EC~(M) has support  in K 

and u e.,4c(M, E), this topology is never really used. Similarly, the space A(M, E) c ~ ' ( M ,  E) 

is defined as consisting of those distributional sections, u, such tha t  ~u E A~(M, E) when- 

ever ~ E C~(M) and is then topologized in the usual way. 

LEMMA 1.11. C~(E)| ~ A(M, E), u 

Proof. This follows immediately from the fact tha t  

Diff~ (M; E, C) (C~~ | C~(E(m))) ~ C~(E) | C~(E(m)) 

for every m, k. In  view of the definition of Diff b this in turn is a consequence of 

~(C~(E) | C| ~ C| | C| (1.13) 

which we prove in local coordinates. Any element V E ~ is of the form 

v = ~ e~(z) ~;  + zb(z) ~, 
J 

z = (x, y) so the lemma follows from the identity: 

d t dJ-~ 
X~xxJ6(x)= - j  d~-16(x ), j>~ l. 

Conversely the elements of A(M, E) are dear ly  C ~ in the interior of M, they are 

also singular only in the normal direction at  the boundary. 

PROPOSITION 1.14. ~4(M, E) is the space of E-valued Lagrangian distributions of 
type (1, 0) supported in M and associated to the conormal bundle N*gM~ T*M. 
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Proo/. The result  is clearly local in na ture  and coordinate independent  so it  suffices 

to  consider the ease M = Z  = R-~ • R~, and to  assume t h a t  E is trivial and so suppose u G A~(Z). 

Then we can show tha t  

u(z) = (2g) -1 ['e~ d(~, y) d~ (1.15) 
d 

where the  part ial  Fourier  t ransform d = (3 • R~-~ C is Coo and entire in the first variable with 

I~(~,y)l vk, 

in I m  ~ < 0  for some fixed m. I n  fact  the defining condition (1.10) is just  

(xe~F~a(x, y)ef-P(Z) 

(1.16) 

for some fixed s. Now, d is defined by  (1.15) and the Sobolev embedding theorem shows 

tha t  for some fixed m, 

I l l ) ' ,  v <,p (1.17) 

in I m  ~ ~<0. A simple inductive a rgument  reduces these estimates to (1.16). This proves the 

proposition. 

As an immediate  consequence of Proposi t ion 1.14 

W F  (u) c N*(aM) ~ T 'M,  Yue.,,l(M) (1.18) 

where the wavefront  set is calculated with respect to any  extension of M to an open mani-  

fold. 

1.2. Compressed contangent bundle 

Consider first the  geometry  of the  subspace ~cCoo(TM) of to ta l ly  characteristic 

vector  fields on M.  As a locally free C~176 of finite rank  ~ is the space of sec- 

tions of a Coo vector  bundle which we denote TM.  For  m E M  consider the  equivalence 

relation on ~:  

I # __ V co . v v' (v v)l(m)-o, leo  (M), (2.1) 
[ if m E OM then  d((V - V)g)(m) = 0, Vg E Coo(M) with g = 0 on ~M. 

L]~MMA 2.2. We can identi/y ~,nM=~q/~ so that ~ = C ~ 1 7 6  and there is a natural 

C ~ vector bundle map 
~ M  ~ T M  (2.3) 

with range T51I U T~M. 
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Proo/. Near any point m E ~ M  the second condition on the right in (2.1) is vacuous 

so defines the fibre of the tangent bundle, clearly 

Tram ~- TmM, mr 

Suppose mE~M then we introduce local coordinates (x, y) in M, with x=O on ~M, x > 0 i n  

$~/and Y=(Y l  . . . . .  y,) ,  n = d i m  ~M. The elements of ~ are locally of the form: 

V = ~ a / x ,  y) ~s + xb(x, y) ~ 
j - 1  

% beC+. The equivalence relation (2.1) shows that  [V] is exactly determined by the 

vector {b(m), al(m ) . . . . .  a,(m)). This agrees with the abstract definition of ~M.  That  this 

structure is coordinate invariant can be seen explicitly; under a change of coordinates, to 
(z', y'), 

with e00>0 , det (eks)#0. In such local coordinates the vector bundle map (2.3) takes 

(b, a 1 . . . .  , an) to (xb, a 1 . . . . .  an) and is clearly C ~ with the indicated range. 

Let  T * M  be the dual to ~M.  The dual to the map (2.3) gives a C ~ vector bundle 

mapping 
~: T * M  ~ T*M.  (2.4) 

In  local coordinates (x, y) a section of ~*M is of the form 

=2(x,  y ) x - l d x +  ~ ~j(x, y)dy~ 
J-1 

where dye, x - l d x  is the dual basis to ~j, x~x and 2, ~ E C  ~. Then, (2.4) is the map ~dx+  

�9 dy ~ (x~)x- ldx  +~ .dy in local coordinates i.e. 

= x~, v = V ,  (2.5) 
justifying the notation. 

The inclusion map t: ~M ~ M defines by  duality a C ~ map 

t*: a T * M  ~ T*~M, 

where ~T*.M = T * M  I ~M is the boundary of the cotangent bundle of M; t* is the boundary 

projection of M. 
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LEMMA 2.6. t*: ~ T * M ~ T * ~ M  is an a/line line bundle with fibres the leaves o/ the 

Hamilton/oliation of ~T*M in T*M. The maps t* and ~IaT*M can be canonically identified 

so that the range o/ ~r in (2.4) is 

T*~M U T*~I c T*M. (2.7) 

Proo/. We work in the canonically dual coordinates (x, y, ~, ~) to some local coordinates 

in M at m E , M ,  so ~T*M is the surface x =0 .  Since (0, y, $, ~) are the coordinates of the 

1-form Sdx +~. dy at (0, y) and (y, ~) are the coordinates of the 1-form ~. dy = t*(~dx +~. dy), 

t*(O, y, ~, ~) = (y, ~) 

in these coordinates. Thus t* has the structure of an affine line bundle with fibres the ~- 

lines. The Hamilton vector field of x is -0~ so these lines are also the leaves of the Hamilton 

foliation of eT*M. A change to new canonically dual coordinates, corresponding to a 

change of coordinates in M, is linear in (~:, ~7) so certainly affine-linear along the ~-lines. 

Thus, the affine structure of t* is coordinate-free. Finally, from (2.5), it follows that  the 

image, ~ =0,  x = 0  of ~T*M under ~r can be naturally identified with T*~M, proving the 

l e m m a .  

This lemma is fundamental to the philosophy of this paper, in that  the space T*M 

is regarded as the natural manifold for the micro-localization of boundary problems. Thus, 

(2.7) shows that  ~P*M contains the subspace T*~M U T*~r in which most previous micro- 

localization has been carried out (see [16], [11]). 

If @E~T*M, let Coo(@) be the ring of germs at @ of Coo functions on T*M. Thus if 

U ~ T*M is an open neighbourhood of ~ the natural projection C~176 Coo(0 ) is surjective. 

De/inition 2.8, A germ /ECoo(@) is said to have polynomial traces of order t(EZ) if 

in any canonically dual coordinates (x, y, $, ~) at @, 

0~/(0, y; ~, ~) is a polynomial in ~ of degree at most k+t,  Vk >10. (2.9) 

The space of such germs will be denoted C~(@). The space C~~ of Coo functions in the 

open set U c T * M  having polynomial traces of order t consists of all ]ECOO(U) having 

polynomial traces of order t at each @ ~ U N ~T*M. 

We remark that  (2.9) need only be verified in any one canonically dual coordinate 

system. Indeed, the choice of new coordinates (x', y'; ~', ~') corresponds to the choice of 

new coordinates 
x = X(x' ,  y'), y = Y(x', y') 

SO 

~' = (a~,x)~+(~, r)~,  ~' = (G,x)~+(G,  r )~ ,  
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which shows tha t  x', y', ~', 7 '  are respectively functions of polynomial traces of orders 

- 1 ,  0, 1, 0, in the original coordinates. From this it  follows easily tha t  / has polynomial 

traces of a given order in one canonically dual coordinate system if i t  satisfies the same 

conditions in any other such system. More abstract ly we can see this invariance as follows. 

PROPOSITION 2.10. Let xEC~(M) be positive in ~I and vanish simply on ~M. I] 

U c  T*M is open, fEZ and /EC~(U)  then/EC~(U) i / a n d  only i/there exists gEC~(V), V 

some neighbourhood o! z (  U) c T ' M ,  such that 

/ = x - ~ * g  ( t < 0 )  
(2.11) 

x~! = ~*g (t >/0) 

where we write x /or  the pull-back o / x  to T*M. 

Proo/. The result is clearly local in nature, so introduce (x, y) as coordinates. By 

definition of /EC~~ the Taylor series of xt/ has as coefficient of x ~ a polynomial in 

of degree at  most  p. In  view of (2.4) we can write (2.11), taking t >~0 for definiteness, 

xt/( x, Y; $, 7) = g(x, y, x$, ~7). (2.12) 

So if ~ is to satisfy (2.11) the Taylor series of the right-hand side must  be of the same 

form and indeed 

~g(x,y;x~,~),(x=O)=:o<j<~ (~) ~ - ' g ( 0 '  y '  0, ~) ~ - ' "  

Thus, the Taylor series of g at x=)~=O is uniquely determined by  (2.12), with the coef- 

ficient of xk~ ~ being fixed by  the coefficient of ~ in the term x ~+k of the Taylor series of 

x t ] at x =0. By Borel's theorem we can choose a germ gl with this Taylor series at  x = ~  --0. 

Then, 
E(x, y; ~, 7) = xt/( x, Y, ~, ~7) -g l (  x, Y, x~, 7) (2.13) 

is defined in some neighbourhood of Q and vanishes to all orders at  x = 0. Define 

g2( x, Y, )~, 7) = E(x, y, )./x, 7) (2.14) 
in some region 

{(x, 0 < x  < lyl  

For ~ > 0 small g2 is clearly C ~176 on the open set A~. Since E is always of the form xkEk, 

/c EN, where E k is C ~, it follows tha t  all derivatives of g~ are bounded uniformly in A~ for 

small, since ,~/x is bounded above. Thus g2 extends to a C r176 function on A~ and then 

obviously ge can be extended to a germ at  ~(ff). This extension does not  affect (2.13) or 

(2.14) so g=gl § satisfies (2.12). The converse is trivial so the proposition is proved. 

Remark 2.15. I f  / is homogeneous in (2.11) it is clear tha t  g can be chosen homogeneous 

of the same degree. 
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1.3. Non-character l s t i c  operators  

I f  P is a linear differential operator, from a vector bundle E to a vector bundle F, 

the basic objective of the s tudy of boundary problems is the relation of properties of 

uEO'(M, E), specifically regularity properties, to properties of Pue~'(M, _~) under 

various conditions on P itself. One such condition, tha t  of being totally characteristic at  

~M, is introduced above. At the opposite extreme is the more familiar condition tha t  the 

boundary be non-characteristic for P.  This is normal ellipticity: 

De/inition 3.1. P E Dfff m (M; E, F) is non-characteristic at  m E~M if am(P): ~*E~z*F 

is an isomorphism over N*(~M)~O. 

Here we use the usual notions of principal symbol and g: T*M-+M is the projection. 

L~MM.r 3.2. I / P  is non-characteristic at mEaM then/or every/E+4(M, F) there exists 

ue/l(M, E) such that P u - / e ~ ( M ,  F) near m; ueA(M, E) is uniquely speci]ied near m 

modulo ~:~ E). 

Proo/. As a consequence of Proposition 1.I4 this is a standard computation with 

Lagrangrian distributions. In  local coordinates (x, y) based at  m we can take E = F = M  • (~n 

trivial, in view of the existence of an isomorphism (~m(P). The condition of Definition 3.1 

then states tha t  in the formula 

P= ~ pk.a(x,y) D~D~ (3.3) 
k+ I~[~<m 

the coefficient of D m is invertible: 

det (pro,0(0, 0))g= 0. (3.4) 

We can take / of the form (1.15) with vector-valued symbol / and look for u in the same 

form with symbol d. Then 

= (2:r) -~  jd=~ Z pk, ~ ~kD~ d~. ( 3 . 5 )  Pu 

We choose successive symbols 4~, r =0 ,  1 . . . .  by  requiring 

u0 -- [Pm.0( 0, y)]-l~-~] (3.6) 
and the rccursion formula 

~ = - Z ~ p~)~(0, y) ( - D~)S@D~)  (3;7) Y) 

with the sum extended over l - ] - s = m - r ,  l<m. Here (J) J pz,~=~pl.a(O, y) and (3.7) is 

obtained from (3.5) by expanding in Taylor series at  x = 0  and integrating by  parts.  Clearly 
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the ur are holomorphic in Im ~ < 0 if f is. A suitable asymptotic summation of the ur com- 

pletes the proof of existence. Uniqueness follows from the necessity of the formula (3.6), 

modulo lower order terms, and a simple inductive argument. This proves the lemma. 

This result shows the degree to which the elements of ~ (M)  are ignorable in the 

study of non-characteristic boundary problems; it can be strengthened slightly. 

LEMMA 3.8. I ] P  is o] order I~, non-characteristic at m E ~ M  and xEC~(M)  vanishes 

simply on ~ M near m then/or each ] e A(M, F) there exists u E ~ (  M , E) such that x~Pu - ] E ~ o  

near m. Similarly there exists u' E A ( M ,  E) such that p x k u ' - - ] E C  ~ near m. 

Proo]. A similar argument to that  of Lemma 3.2 applies when P is replaced by xkP 

or Px  ~. Thus, in using (3.5), the initial equation (3.6) becomes 

( - D~)k~kP~. 0( 0 , Y)~0 = f (3.9) 

where ~ is entire in ~ and clearly satisfies symbol estimates 

]n~D~](~,y)l  <~C~.~[~I M-~, I m p < 0 ,  [~l > 1  (3.10) 

for all r, a. If ] is a function holomorphic in I~[ > 1, Im ~ <0  and satisfying (3.10), integra- 

tion of eiZ~(~) along a suitable contour on which Im ~ is bounded near infinity shows 

to be the Fourier-Laplace transform of an element of ~(Z) of finite exponential growth at 

infinity. 

Introducing the variable s =log (~), where s lies in the half-strip 

G = {0 < Im (s) < 7e, Re (s) > 0} 

converts the estimates (3.10) on a holomorphic function to 

]D~D~g(y, s)[ <~ Cr.ae MRe(s) in G, g(y, s) =](y,  ~), (3.11) 

and the equation (3.9) becomes 

(_e_~Ds)~(ekSv) -1 =Pk.og, v(y, s) =uo(y, ~). 

Now, this can be rewritten 
( D s - i )  ... (Ds-- ik)v  -~ =P~.og. 

If g satisfies (3.11) such a linear differential equation with constant coefficients always 

has a solution satisfying the same type of estimates with M replaced by  M +e  for any 

> 0. To see this it suffices to consider each linear factor separately. In solving 

(Ds--ip)v(s)  = g(s) 
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set v ( + + i l ~ ) = 0  if M~p,  v(o+ + i l g ) = 0  if M<i0. Clearly this allows (3.9) to be solved 

with the holomorphic symbol u0 of order s greater t h a n / .  

Proceeding by induction allows the equation (3.5) to be solved modulo C:~ as in (3.7). 

Note that  the solution of xkPu ~-f is not in general unique modulo 0oo because x ~ 

annihilates terms supported on the boundary up to order ]c. 

Now we have a continuous injection, with dense range 

OF(M, E) ,-+ do(M, E). 

By duality consider A'(M, E)=(~o(M,  E* |  as a subspace of ~ ' (M,  E), 

~4'(M, E) =+ O'(M, E). 

We shall always take the weak topology on +4'(M, E). 

PROPOSITIO~I 3.12. I~ uE~'(M, E) and PEDif f  ~ (M; E, av) is non-characteristic/or 

~M then 
x~Pue+4'(M, F) ~ ue A'(M, E). 

Proo/. The construction of Lemma 3.8 actually gives a continuous parametrix for xkP 

on bounded subsets. Thus, if B c  +4(M, F) is bounded there exists 

continuous and such that  

Since the formal dual of P, 

Q: B-+ A(M, E) 

xkPQ-Id: B-+ Coo(M, E). 

p*: CoO(M, ~v*| -+ C~(M, E*| 

is a differential operator non-characteristic with P, Lemma 3.8 applies equally to P*x k. 

Observe that  
(u, g) = (u, P*xkQ' g~ + (u, R' g) = (x~Pu, Q' g) + (u, R' g) 

r__>.  " where Q': B +4o(M, F* | ~)  for a bounded set B' ~ Ao(M, E* | ~)  and R': B'--+ C~(M, E). 

Thus u extends by continuity to At(M, E*| so is an element of A'(M, E) as claimed. 

The importance of the space +4'(M, E) is tha t  the elements have well-defined restric- 

tion properties. That  is, there is a continuous linear map 

R: ~4'(M, E)-+~'(aM, E) (3.13) 

which extends the trace map on C~176 E). To define (3.13) simply observe that  the map 

T: C~c (~l~, E | ~~M) g q9 v+ ~(x) |  E | ~M) (3.14) 
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is continuous, independent of the choice of function x vanishing simply on 8M. Then, if 

uE~4'(M, E) the map 

is linear and continuous, hence a distribution. This defines the map (3.13). 

The existence of such a restriction, or trace, map allows a strong definition of boundary 

problems for non-characteristic operators. We first give the weak definition, due to Schwartz 

and then show the usual 'weak equals strong' theorem. 

A boundary problem for an operator P E Diff ~ (M; E, F) is provided by  a C ~ dif- 

ferential operator B E Diff (M; E, G). The classical problem is the search for a solution 

u e C~(M, E) to 

{ Pu= /EC~(M, F) in .~l (3.15) 
Bu = g ~ C (M, G) at ~M, 

possibly with additional constraints in the form of support or other conditions. We also 

assume that  B is of lower order than P. 

Assuming u E C~176 E) we write (u)~ for the image of u in ~'(M; E). The first equa- 

tion in (3.15) becomes 
h = P(u~) - (/)c e O'(~M; F(m_~) ). (3.16) 

The boundary conditions then specify at least part  of h. To give these in weak form con- 

sider the map 
.~: C~(M, E) -~ C~~ F(m_~l ) (3.17) 

defined by_Pu =P(uc) - (Pu)c. 

PROPOSITION 3.18. I/ P is non-characteristic then (3.17) is sur]ective. Moreover i] 
B E C~(M; E, G) there is a uniquely de]ined di]]erential operator 

such that 

com?nute8. 

t~: C~(~M; F(m_li ) -~ Coo(SM; G) 

C~(M; E ) ~  C~(SM Ft~-I))B~ 

C~(aM; G) 

Proofi Working in local coordinates one can easily see the surjectivity of/~ in (3.17) 

(see e.g. [2]). Moreover _P has a right inverse Q 

PQ = Id, Q / ~ - I d ~ k e r  (/~), (3.19) 

11 - 8 1 2 9 0 3 . 4 e t a  mathemorica 147. Imprim6 le 12 F6vrier 1982 
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and Q: C~(M, F(m_I~)-+C~(M, E) is well-defined modulo a map into the kernel of P.  

Then,/~v is well-defined as 
J~v = Ro BoQ 

since RoB(u)=0 if uEker (_P). 

With these preliminaries we can recast (3.15) into the form 

Pv - / e  D'(aM, tz(,,_~)) 
B(Pv - / )  = ge O'(aM, G) 

(3.20) 

where v = (uc), / =  (/)c. In this weak form the boundary problem makes sense for arbitrary 

data 
/E~'(M, F), gEO'(aM, G), 

with the solution sought in ~ ' (M,  E). 

Now, the space ~,(M) is closed under differentiation but it is important to realize 

that  this does not carry over by formal duality to .,4'(M). Indeed, by definition, u E A'(M) 
if ueO'(M) extends by continuity from C~(M) to At(M). However, C~(M) as a subspace 

of ~c(M) is not closed under differentiation because of the appearance of boundary terms. 

We shall let ~(M) be the minimal extension of ,,4'(M) which is closed under differentiation. 

Elements of ~(M) are just, locally, finite sums of terms each a differential operator applied 

to an element of M'(Z). Clearly, 
D'(M, aM) c B(M). (3.21) 

In fact much more is true since B(M) splits: 

B(M) = ~'(M, aM)| (3.22) 

R is extended to B(M) by defining it to vanish on the first factor in (3.22). To see this 

observe that  CT(M)c M~(M) is a dense subspace closed under differentiation. If P is a 

differential operator and {q~} is a sequence in CT(M) converging in At(M) then {Pq~} 

converges in M~(M) too. Thus the restriction map, to the interior, 

~(M) --> D'(M) (3.23) 
actually defines a projection: 

B(M) -+ J4'(M). (3.24) 

Clearly the kernel of (3.24) is ~'(M, ~M) and it is certainly surjective. In particular it 

follows from (3.22) that  
~ ' (M,  aM) n M'(M) = {0}. (3.25) 

Of course, for sections of a vector bundle over M, (3.22) becomes 

B(M; E) =• ' (M; E) |  ~'(OM; E(m~). 
r n  

(3.26) 



TRAI~SFORMATION O]~ BOUNDARY PROBLEMS. CHAPTER I I  167 

Now if u6~4'(M, E) the map  (3.17) extends, by  continuity, to 

P:  A'(M, E)-~D'(~M; F(~_~)) (3.27) 

where P u = P u - r ( P u ) ,  r the map  (3.24), on sections. Proposition 3.18 holds with the 

maps extended to these more singular spaces and this allows us to extend and strengthen 

Proposition 3.12. 

PROPOSITXON 3.28. I / P  is non-characteristic and/6 .4 ' (M,  iF), then any solution v to 

(3.20) lies in A' (M,  E) and 
RBv = g. (3.29) 

Proo/. Directly from the definition of/~ and R it follows tha~ R o B s  =l~.fPv =g. 

This result shows that ,  for non-characteristic boundary problems, the very weak 

formulation (3.20) is equivalent to the natural  formulation with boundary values from 

B(M, E). We shall also use the notation 

) = A ' ( M )  O 

when there are boundary terms only up to order/c, see (1.5). 

Chapter H: Pseudodifferential operators 

I L l .  Symbols 

Recall some standard results on symbols and symbol spaces. A symbol of order m 

on the product  manifold R ~ • R n is a C ~ function which satisfies bounds 

(m) I D~ D~oa(z , (1 co, sup 0)l 
(z.0)e~, 

for each pair ~, fl of n-, 1V-multiindices and set 7 = K • R N with K c c R ~. The space of all 

such symbols, Sm(R n • R N) is a Fr4chet space with the seminorms (1.1). Moreover, ff m'  > m  

then Sm(R n • R N) ~ S'~'(R n • R N) is locally compactly included and S m is dense in Sm' in the 

topology of S ~" whenever m" > m'  > m. In  fact 

~c~(R n • 1~ N) c S - 0 o ( R  n • R N) = N S m ( R  n • R N) 
m e R  

is dense in S ~ in the topology of S ~'. I f  F c R n • R N is an open cone, so (z, tO) 6 F if t > 0 

and (z, 0)eF, denote by SIn(F) the Frdchet space of those functions a6C~(P) satisfying 
estimates (1.1) for each closed cone 7 c F  with compact base (projection into Rn); the 

seminorms of S~(P) are given by  (1.1). I f  7 o F  is a closed subset we denote by  S~(F, 7) 

the closed subspace of those symbols which have support  in 7" 
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Let  Z: FI-+F~ be a C ~176 diffeomorphism of open cones, which is homogeneous.  Then  

Z*: SIn(F2) -~ SIn(F1) 

is an  isomorphism. Thus, if z~: V ~ M  is a vector  bundle over a manifold we can define 

Sin(V), SIn(F) for F c  V an open conic set, and SIn(V, 7) for ~ V a closed set, by  reference 

to  local coordinates and trivializations (see [10]). 

When  a, ESz~(F) for ] = 0 ,  1 . . . .  and m j - + - ~  as ? ' ~ ,  aESa(F)  is said to be an 

asymptot ic  sum of the ar if 
a -  Y acZS~(r) 

J<N 

where dn-~ - ~ as N-+ c~. This relationship is wri t ten 

a ~ E a  s 

and determines a modulo S-~176 one can take  r e = s u p  m; and dn=supj>N me. 

The fundamenta l  p roper ty  of symbols is t h a t  inverse Fourier  t ransformat ion 

u(z, t) = (270 -N fea'~ O) dO (1.2) 

gives a distr ibution uEC~(R~; S'(R~V)) which is C ~ outside { t=0}  in R n+N and rapidly 

decreasing with all its derivatives as It[--> ~ ,  uniformly on compact  subsets of R n. The 

singulari ty type  of such distributions is coordinate free and this leads to the space 

~ ( R ~ + ~ ;  iV*{t = 0}) ~ ~ ' ( R  ~§ 

of distributions everywhere locally the sum of a distr ibution (1.2), for some m, and a term 

in C% 

Now, suppose a ESm(R= x R~+I). Consider the spht t ing R N + I = R  •  ~, with variables 

0 = (01, 0'). Clearly, a ESa((R" x R N) • R), so the t ranslated partial  Fourier  t ransform 

Ma(z, 0'; t) = f e~~ a(z, 01, 0')dO 1 (1.3) 

is C ~ away f rom t = l .  We  shall say tha t  aES"~(R"xR I+N) is lacunary,  or satisfies the 

laeunary condition if 
Ma(z, 0'; t) = 0 in t < 0. (1.4) 

The subspace of lacunary  symbols will be denoted S~(R" • RI+~). 

L E ~ I A  1.5. There is a continuous linear map 

T: S~ " • R ~+~) -~ S - ~ ( I t  ~ • R ~+~) 

such that ( I d +  T): S~(R= • RI+#)-+S~(R" • R 1+~)/or every m. 
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Proo]. I f  ~EC~~ has s u p p ( ~ ) c ( - o o , � 8 9  with ~ ( t )= l  if t < l / 4  then the map 

T a= -M- l (~ ( t )Ma)  has the desired properties. Certainly ( I d +  T)a satisfies the laeunary 

condition (1.4) since M a + M .  T a = ( 1 - ~ ) ( t ) M a = O  in t < 0 .  When aES-~ ~ •  i+N) the 

integral defining Ma is absolutely convergent and on the support  of Q integration by  parts  

using the identity 
e ~(i-t)~ = (1 - t)-iDo~e ~(1-t)~ 

allows a to be replaced by  (1- t ) -ZD~,a  for any  kEN. Since, for aES "~, D~,aES " ~  the 

integral with a so replaced is absolutely convergent when k > m  + 1 and, by  the density of 

S - ~  in S ~~ valid. Clearly then, T is continuous into 2-~ 

S~(R ~ x R i+N) is a closed subspace of Sa(R ~ x R ~+N) and in view of Lemma 1.5 

S-~176  = • R I+N) • R i+N) ~a ~ ~ S~(I~ = 

is dense in the topology of Sm'(R n x R  l+N) for any  m'>m.  Indeed, if aES~ and anES -~~ 

converges to a in the topology of S z' then 

an + Tan ~ a + Ta in S~a', 

by the continuity of T. Thus, bn=a=+Ta n -  TaES~  ~176 converges to a in S m' in. Lemma 1.5 

also shows tha t  the inclusion of S~ in S m defines an isomorphism 

s~( z  • R'+:~)/Ss x n 1+~) -~ Sm(Z x R I + ~ ) / S - ~ ( Z  • nl+N),  (1.6) 

since the variables in the base appear  as parameters  throughout. 

In  defining totally characteristic pseudodifferential operators in Section 3 below, we 

need to examine the properties of Ma more closely. If  S'([0, ~ ) ) c $ ' ( R )  is the subspaee 

of temperate  distributions with support  in [0, ~ )  then dear ly  

M: S~(Z x tt 1§ -~ r  z RN; S'([0, oo ))). 

As noted above, Ma is certainly C ~176 away from t = 1. In  fact the proof of Lemma 1.5 shows 

tha t  if o E C~ is of slow growth in the sense of Schwartz and 1 t supp (0) then 

~(t) Ma(z, 0'; t)ES-~176 x RN+i). (1.7) 

I t  is important  to note that,  even near the singularity at  t =  1, Ma inherits some symbolic 

properties from a, in the remaining 0 variables. I f  Q E C~(R), 

<~(t), Ma(z, 0'; t)> ESm(Z x RN). (1.8) 
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This can be put  in a stronger form in which the singularity in the t variable and symbol 

order in the 0' variables are related. Consider the identity for ~--(1 -t)01: 

e *~ = (1 + ]01~)-1(-01D,+1 + [0'l~)e% 

Inserting this into the definition (1.3) of Ma gives 

Ma(z, 0'; t) = DtM(-OI(1 + [Ol~)-la)+ M((1 + 10']~)(1 + } 0l~)-la). 

Iteration of this identity gives 

Ma = ~. D~M((1 + IOl~)-~P~a(O)a) (1.9) 
0~<]<k 

where Pk.~ is a polynomial in 0 of degree 2k, but  of degree at most k in 01. For k > m +  1 +r ,  

M((1 + ] 0 ] ~)-kPk.l(O ) a) e C'(Rt; Sk+2m(z • Rv)). 
Thus, (1.9) proves: 

L•MMA 1.1O. I] afiSm(Z •  1+~) then ]or each tEN there exists R ( > 2 ( m + r + l ) )  such 

that 
Ma = 2 D~&.r(z, 0'; t) 

O~t<<.R 
where ~S.r ~ cr(Rt; zm+~( Z • RN)) �9 

IL2. Operators on  open sets 

We briefly review the calculus of pseudodifferential operators on open subsets of 

manifolds. If  ~2cR ~ is an open set and aESm(~ • R n) the map 

OT(1r ~ u ~ a(z, D~) u = f e ~ ~ a(z, ~) ~(~) d~(2~) -~ e C ~(~), (2.1) 

where 4(~) is ~he Fourier transform of u, is a pseudodifferential operator. In fact, the bi- 

linear map 

• ~2 • R n) • C7(~) 9 (a, u) ~-> (2~) -~ f e~(~-~')';a (z, z', ~) u (z') S-~ (~  dz' d~ 

which reduces to (2.1) when a is independent of z', extends to a separately continuous 

bilinear map 
s~~ x ~ x R '~) x s  ~ D ' ( ~ ) .  (2.2) 

A pseudodifferential operator A: ~'(~2)-~ Z)'(~) is a linear map which is defined from 

a symbol, aeS~(~  x ~2 • through (2.2). The space of such operators will be denoted 

by  Lm(~), with L~ = Om~RLm(~) and L-~(f2) = f ) ~ a L ~ ( ~ )  the space of smoothing 
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operators. The subspace L~(~)cLm(~)  of properly supported pseudodifferential operators 

consists of those A ~Lm(~) such that  for each K ~  ~ there exists K '  ~ ~ with supp (Au) ~K'  
and supp (A'u)~ K' whenever supp (u)~ K, u ~ CT(~2). L~~ is a ring under composition, 

L'~(~)oL'~'(~)~L'~+m'(~). Moreover, if A~Lm(FZ) then the full symbol of A, ar(A)q 
Sz(~  • Ra)/S-~(~ • R~), is well-defined and the sequence 

o ~ L ~ ( ~ )  ~Lg'(~) ~ S"(~ x 1~'~)/,~-~(~ x R '~) ~ O, (2.3) 

is exact, as is the corresponding sequence without support condition. If  A qL~(s B EL~"(s 

then 
crr(A o B) ,-, Z cq~as(A) (z, ~).D~(~I(B ) (z, ~)/od. (2.4) 

~X 

Any operator A ELm(~) can be written as the sum A ' +  S of an operator A' EL~(~) and a 

smoothing operator, tha t  is S ~L-~(~) .  

Now, if Z: ~ s  is a diffeomorphism then the pull-back operators Z*: E '(~ ' )  "~ ~'(~),  

Z*: D'(~')-+ ~ ' (~ )  are isomorphisms and the operator (Z*)-loAoff:  E'(~')-+ D'(~ ') ,  ob- 

tained by conjugation from a pseudodifferential operator on ~ ,  is a pseudodifferential 

operator on ~2'; in fae~ the resulting maps g*: L'n(g2)->Lm(~'), L'~(~)~L'p(g2') are isomorph- 

isms. If one makes the identification T*~ = ~ x R = in each coordinate system, the principal 

symbol map 
L~(~) ~ A ~+ [a/A)]  ESm(T*~)/Sm-I(T*~2) 

is coordinate-free and the sequence 

0 r r (Tin, Sm(T*~)/sm-x(T*~) -~ 0 

is exact. This coordinate invariance allows one to define the space Lm(M) of pseudodif- 

ferential operators acting on generalized functions (or distributional sections of other line 

bundles) on a given manifold, M, by reference to local coordinates and with principal 

symbol map 
am: Lm(M) -+ Sm( T*M)/S m-i( T*M). 

If  A EL'~(M) and (p, v) E T*M~O then A is elliptic at (p, v) if the principal symbol, 

am(A), has a representative aES"(T*M) which is elliptic at  (p, v) in the sense that  there 

is an open conic neighbourhood of (p, v), F c  T*M~O, with 1/aES-m(F). The set of non- 

elliptic points E ( A ) c  T*M~.O is the characteristic set of A. For  u E ~'(M), 

WF (u) = ['1 {Z(A); AEL~ AuEC~~ 
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is the wavefront set of u. If u E ~ ' ( ~ ) ,  g 2 cR  n, the wavefront set of u is the closed cone 

of those points (~, ~) such that  for every ~ e C~(~) with ~(~)~: 0 and every neighbourhood 

B of ~eR ~ 

sup [tN~'~(t$)[= ~ for some N. 
~cB, t>~I 

For general u E D'(M), WF (u) is just the union of the images of the wavefront sets of its 

local coordinate representatives. Under the natural proj ection z: T*M ~ M, WF (u) projects 

to the closed set sing supp (u) of points at which u is not locally equal to a C ~ function. 

Pseudodifferential operators are microlocal: WF ( A u ) ~ W F  (u) for all u EE'(M), 

A ELm(M)(uE D'(ML A ~L~(M)) and microloeally invertible at  elliptic points. Thus, if 

AELm(M) and (p, v)~E(A) there exists BeL~'~(M) such that  (p, v)~WF ((A.B-Id)u),  

WF ((B.A-Id)u)  for all uE E'(M). 

The main obstacle to the free use of pseudodifferential operators in the treatment of 

boundary problems is connected with the non-locality of their operation (indeed if A eLoo(M) 

and supp (Au)csupp  (u) for all ueS'(M) then A is a differential operator, see Peetre 

[17J). To define pseudodifferential operators on a manifold with boundary, M, one can 

embed M in an open extension ~ / a n d  allow the elements A ELoo(~7/) to act on the space 

~'(M) ~ {u e ~'(31); supp (u) ~ M}, of (compactly) supported distributions on M, by 

u~-->AuI~Et)'(M), ffl= M ~ M  

where ~ ' ( M ) c  D'(M) is the space of extendible distributions on M. Such a definition is 

intrinsic, i.e., independent of the choice of extension, modulo C~176 but in general the 

operators so defined do not  preserve regularity up to the boundary. Thus, the space C~(M) 
of compactly supported functions smooth on M (i.e. smoothly extendible into elements of 

C~(2~)) is naturally included in ~'(M) by cutting off at the boundary (i.e. taking the 

unique extension to a locally integrable function on 3I vanishing in ~ ' \ M )  and A (C~(M)) 

C~~ but  in general Au is not smooth up to the boundary, Au ~ C~(M). In [3] Boutet  de 

Monvet introduced the transmission condition on (classical) symbols under which the 

corresponding operators A do map C~(M) into Coo(M). Suppose we introduce local co- 

ordinates z=(x, y ) E Z = R +  •  = in M, so that  the boundary is locally defined by x = 0  

and we can take M =Z. Then the space C~(R+; E'(Rn)) of compactly supported distribu- 

tions smooth in the normal variable x is naturally included in ~'(Z), by cutting off at the 

boundary, and if A ELOO(R ~+1) then Au[~ ~C~(R+; D'(R=)). When A satisfies the transmis- 

sion condition, 
A: C7(~+; E'(R~)) -~ C~(R+; ~'(It~)), 
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but in generM Au[~o is not closely related to u I~0; it is not even determined modulo 

C~176 n) by a finite truncation of the Taylor series of u at  x = 0 .  This is a grave problem 

when u is the solution of a boundary problem, since the boundary condition on u can not 

be easily reinterpreted as a boundary condition on Au. 

In  view of these difficulties we proceed to a different notion of pseudodifferential 

opera~ors on a manifold with boundary. 

I I . 3 .  D e i i n i t i o n  o n  Z 

The natural  coordinates in the standard manifold with boundary 

Z = R  + • R ~ 

will be denoted z = (x, y). If  P E Diff b (Z) is totally characteristic then its action can be 

written in pseudodifferential form: 

PU(Z) = (e:7~) - n - 1  fei(z-z')~(z, r (3.1) 

where p(z, ~) =p(x,  y, ~, ~) =p(x,  y, x~, ~) is a polynomial in ~, ~7 defined by putting P in 

the form 
P =  Z pj.~(x,y) J J x DxDy 

J+l~l<m (3.2) 
p(x,y,;~,~)= ~ pj.~(x,y))/~% 

To define operators written formally as oscillatory integrals (0.1), 

Au(z) = (2=) -n-1 fei(Z-~')'~d(z, ~) u(z') dz' d~ (3.3) 

where d(z, ~) =a(x, y, x~, ~) is a more general amplitude, it is useful to rewrite the formal 

adjoint of A by making a singular coordinate change. Thus, one expects 

A*/(z') = (27~) - n - 1  f ei(z'-z)'r ~) /(z) dzd~. (3.4) 

Suppose tha t  /E C~(Z). In  (3.4) introduce 2 = x~, s =x/x' as variables of integration. 

A*/(z ' )  = (2~) -~-~ d(-~+~")~§ y, ~, ~) /@'s, y) d~, ~ dyd~l. (3.5) 

PROPOSITION 3 .6 . . / /  a E S ~ ( Z •  n+l) satis/ies the laeu~,wtry conditions, (1.4), and 

/E C~(Z) then the successive integrals in (3.5) converge absolutely and uni/ormly and so de/ine 

a continuous bilinear/orm 
S~~ • R "+~) • C~(Z) -+ C~ (3.7) 
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Proo]. The first integral in (3.5) converges since, by assumption, 5 is rapidly decreasing 

as [2[ -~ c~. In fact this integral is just Fourier transformation in ~. The resulting function 

M(*) a(x ', y, ~; s) -~- f e'( y, ~, ~) d_~s (3.8) 

is discussed following (1.3), in view of (3.17) below. Since 

[(x's, y)EC~ • n-~ ) 
is polynomially bounded: 

J k t . �9 [D~DzD~/(x s, y)[ <~ Ca, ~(1+ Is[ )', 

the product M(*)a./(x's, y) is rapidly decreasing as [(s, V)]-> o% and compactly supported 

in y. Thus, not only do the remaining integrals converge but they remain convergent after 

arbitrary differentiation. This defines the bilinear form (3.7) and its joint continuity fol- 

lows directly from the estimates discussed above. 

PROrOSITIO~ 3.9. The bilinear /orm (3.7) extends to a separately continuous/orm 

n + l  S~a(Z • ~ ) • C?(Z) -~ Ooo(Z). (3.10) 

Proo/. Fixing /E C~(Z) it is necessary to show that  (3.5) extends by continuity to all 

leeunary symbols. Since S~~176 • •  n+l) is dense it suffices to observe that  

if e E C~(R +) is identically equal to 1 near 1 then the map 

S~(Z • Rn+l) 9 a v->(1 -~(s))M(*)a (3.11) 

defined using (3.8), is continuous into the space C~176 S(R~+~))). That is, (1-Q(s))M(*)a is 

Coo and rapidly decreasing with all derivatives as I (s, ~)1 -+ oo, uniformly for (x', y) in a 

compact subset of Z. 

Inserting the cutoff ~ into (3.5) gives 

(err) - n f e  ~(~'-y)" (1 - o(s)) M(*) a/(x's, y) dsdyd~ A*/(z') 

+ (27r) -~ f e~(~'-~)'~Q(s) M (*) a](x's, y) ds dy d~?, (3.12) 
J 

where the first term is absolutely convergent as before and in the second the s-integral, 

really the pairing of a compactly supported distribution with 1, gives a symbol with support 

in a compactly based cone, in view of (1.8), so the remaining integrals have an oscillatory 

sense. The continuity of (3.10) is again easily verified. 
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These propositions provide the desired meaning for the oscillatory integral operator 

(0.I). 

Definition 8.18. If  a ES~a(Z x R n+l) the operator 

A: ~ ' ( z ) - ~ ' ( z ) ,  

written formally (3.3), is the adjoint of 2t* defined by (3.5), (3.7), (3.10). 

Of course this definition by duality actually gives a meaning to the oscillatory integral 

(3.3) in the sense that  it can be identified with a separately continuous bflinear mapping: 

0s :  S~a(Z • R n+l) • ~ ' ( Z )  -->~'(Z).  (3.14) 

Both to justify (3.3) and to deduce some properties of the integral operators defined this 

way it is useful to show that  (3.14) can be obtained in a fashion quite similar to (3.10). 

Consider the formula 

Ag(z) = (2=) -~-1 f eia-t)~+'(~-Y')"a(x, y, ~, V)g(xt, y') d~dtdy' d~. (3.15) 

PROPOSITIO~r 3.16. / /  aES~~176 • gECT(Z) the successive integrals in (3.15) 

converge and define a continuous bilinear form 

Os: S~~ • R n+l) • CT(Z) ~ C~176 

which is the restriction o/(3.14). 

Proof. The convergence of (3.15) can be shown by following the proof of Proposition 

3.6. Thus, 

Me(x, y, ~; t) = j e*(1-t)~a(x, y, ~, ~l)d2 

is Coo and rapidly decreasing as [ (t, ~/)] ~ r and vanishes with all derivatives at  t =0. Now, 

M(*)a(x', y, ~; s) = Ma(x' s, y, ~l; ~) .s -1. (3.17) 

Since Ma can be approximated by Coo functions with support in Z • R ' •  (0, ~ ) ,  the 

change of variables x=x't, s=l/ t  relating (3.15) to (3.5), (3.8) is justified, so (3.15) does 

define the restriction of (3.14). 

COROLLARr 3.18. With A as in Definition 3.13 

A: OT(Z) -+ r176 
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Indeed, the proof of Proposition 3.9 applies to show that  the bilinear form of Proposi- 

tion 3.16 extends to be separately continuous as in (3.10), which shows that  Os in (3.14) 

has this restriction property. 

To obtain the totally characteristic pseudodiffcrential operators on Z from the opera- 

tors of Definition 3.13 it is only necessary to admit certain extra 'smoothing operators'. 

These arise naturally from the fact that  the existence of an oscillatory integral representa- 

tion (3.3) is not a strictly local condition on the kernel of an operator. 

De]inition 3.19. The space L'~(Z) of totally characteristic pseudodifferential operators 

on Z, of order m, consists of those continuous linear maps 

A: CT(Z) -~ C~(Z) (3.20) 

such that  ~'A~ is of the form (3.3) whenever Q, ~' ECc~(Z). 

From the discussion above, if A ELF(Z) then 

A: ~ ' ( Z ) - ~ ' ( Z ) .  (3.21) 

In consequence the adjoints of the operators in L~(Z) also have the properties (3.20), (3.21). 

II.4. Kernels and adjoints 

The Schwartz kernel theorem shows that  a continuous linear operator 

A': C~(R n+i) -~ ~ ' (R "+l) 

is represented uniquely by its kernel k(z, z')eD'(tt~+~). Any A EL~(Z) defines such an 

operator by restriction 

A': CT(R "+1) ~ C7(Z) A ~'(Z) ~ ~'(Rn+l), 

so has a kernel in O'(R 2n+2) with support in Z x Z. These pseudodifferential operators will 

be characterized by their kernels. Such a characterization leads directly to the proof of 

coordinate invarianee and the fact that  A* EL~~ First consider a technical result which 

helps to simplify the discussion. 

LEMMA 4.1. A continuous linear map 

A: ~'(Z)-~ ~'(Z) 

such that A(C~(Z))c C~(Z) is determined by the restriction o/ its Schwartz kernel to the open 

quarter space Z x Z. 
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Proo/. Since CT(Z)~* ~'(Z) is dense the mapping A is determined by its restriction 

A: C7(Z) -~ D'(Z). 

By assumption Au E Coo(Z) if u e C~(Z) so this map is in turn determined by its restriction 

to the interior 
A: VT(z)-~'(~). 

By the Schwartz kernel theorem on Z this is determined by, and determines, the restric- 

tion to Z x Z of the Schwartz kernel of A. 

The continuity properties of the bflinear map of Proposition 3.16 show that  in x, x ' >  0 

the oscillatory integral formula (3.3) is valid for the Schwartz kernel of an operator A, 

determined by a eS~(Z • R ~+1) 

k(z, z') = (2~) -~-1 f e~(~-~')'~(x, y, ~)d~ (4.2) 
3 

where z=(x, y), z'=(x', y'). From (3.15) one obtains, with s=x'/x 

where 

X i 
k(z,z')= ~ x , Y , x , y - y  

o~(z, y, s, #)  = (2~) -~-1  f " a(x, y, 2, 7) d~ d*l. 

(4.3) 

(4.4) 

Since a is a symbol in (2, 7) this shows that  ~ is a C ~ function of z EZ, with values in the 

space of Lagrangian distributions associated to the conormal bundle to s= l ,  Iz=O. To 

formalize the use of these singular coordinates, which serve to simplify the form of the 

distributions occurring as the kernels, we shall define the stretch of a manifold with corner. 

Let  Q be a manifold with corner. That  is, each point has a coordinate neighbourhood 

and coordinate mapping with image which can be taken to be Euclidean space R ~, the 

half space Z ~ or else the quarter space 

Qd = {xeR~;  xl >/0, x~/> 0}.  

The corresponding subsets of Q are denoted Q, the topological interior, ~IQ, the part  of the 

boundary of codimension one and ~9_Q, the corner. We shall show the existence of a new 

manifold with corner, Q, 'Q stretched', which corresponds invariantly to the introduction 

of polar coordinates near ~zQ. In terms of the disjoint union: 

Q = Q 13 ~IQ u ~ Q  



178 =. B. M~m~OSE 

the underlying set for the stretch of Q is 

~) ~ Q (J ~IQ (j (O2Q • [ - 1, 1]) = Q u (~IQ u ~1 Q) u a2Q (4.5) 

where ~IQ= 1Q, ~IQ=~2Q x ( - 1 ,  I) and 

$~Q =O~Q x ({ -1 }  u {1}). (4.6) 

To make ~) into a manifold with corner so that  (4.5) is the decomposition into open 

submanlfolds of varying dimensions, the natural projection 

can be used to induce coordinates in ~). Here, ~ is the identity on Q U ~IQ and 

~: ~I Q u ~2Q-+ ~2Q 

is just projection onto the first factor in ~Q  • [ - 1 ,  I]. Now, ~ is a bijection onto Q u ~ Q  

and can be used to induce the corresponding C ~ structure on that  part  of Q. Suppose that  

x: A -+ Q~ (4.7) 

is a C ~~ coordinate system near some point of the corner of Q. In .4=:~-l(A) consider 

the map 

I (  1 x~(p)-x2(P) ) p '  ~(p') = ~(x~(P) + x~(P))' ~ - ~  +- x,(p)'  xa(P) . . . . .  x~(p) if = peQ. U ~ Q  (4.8) 

t (0, r, . . . . .  u p' = (p, r). 

PROP0SITION 4.9. I /  X in (4.7) is a coordinate system then ~ in (4.8) is a bi]eetion 

~: A ~-~ {(w, r, x a ..... Xd); W >/0, Irl ~ 1, (x a ..... xa) ~Ra-~}. 

"~ ' ~ C ~~ mani/old with corner These maps, together with the C ~ structure on Q U ~ Q, make Q a 

such that ~, : Q ~ Q is Coo. 

Proo/. Clearly ~ is a bijection onto the manifold with corner given by the half strip 

w/> 0, I rl < I. Thus, to prove the proposition, it is only necessary to show the consistency 

of the various coordinate systems on Q. Suppose that  y: A'-~Q a is another coordinate 

system with A'  (~ A N ~,Q =~ ~.  Write 

{ W  r r I . , .~  = ~ , , Ya, Y~) 
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for the corresponding map on .4'. In  the first instance we can suppose that  

Yl = xla(x), Y2 = x2b(x)  

with a, b > 0 on A A A'.  Then, on Q U 01 Q, 
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(4.10) 

w' = �89 +Y~) = �89 +x~b(x)) (4.11) 

and since xl, x 2 ..... x a are Coo functions on .4, this shows that  w' is Coo in terms of the 

coordinates ~. Similarly the functions Ya ..... Ya are Coo and 

r , _ _ y l - y  ~ (l + r ) a - ( 1 - r ) b  (4.12) 
yl+y~ ( 1 + r ) a + ( 1 - - r ) b  

l + r '  a l + r  
(4.13) 

that  is, 

1 - r '  b 1 - - r  

so r '  is also Coo in terms of the coordinates 3. 

If  the assumption (4.10) does not hold it can be ensured by first exchanging the 

variables Xl, xe. This latter transformation has a C ~ lift to the coordinates 3, namely 

r - ~ - r .  Compatibility between the coordinates ~ and those in Q U ~ Q  is obvious so the 

proposition is proved. 

Now, if M, N are Coo manifolds with boundary then N • M is a manifold with corner 

and the stretched product N ~< M is defined as 

N ' 2 M = N •  

Clearly N ~ M and M ~ N are isomorphic in a natural way. 

LEMMA 4.14. The part ~I Q= Q of the boundary o / Q  stretched is a fibre bundle over ~2Q 

with fibre ( - 1, 1) and structure group the real ]ractional linear trans/ormations preserving it. 

The natural subbundle F =  T (31 Q), consisting o/ the conormals to the/ibres is itsel/ a ]ibre 

bundle 

with the same/ibre and structure group. 

F 

T*3~Q 
(4.15) 

Proo/. That 01 Q = ~ Q  • ( - 1 ,  1) is a fibre bundle follows from the change of coordinate 
H A 

formulae (4.12), (4.13)since x l=x2=w=O on axQ and by (4.12) the variable r in ( - 1 ,  1) 

undergoes a fractional linear transformation. Note that  the transformations (4.12) together 
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with r - > - r ,  which comes from exchanging the roles of x 1 and x2, give the group of all 

fractional linear transformations preserving ( - 1 ,  1). The rest of the lemma is obvious. 

Note that  the transformation r-> - r on the fibres of a~ (~ comes only from the exchange 

of the two local boundary components of Q near ~Q. Without this transformation the 

map u =  (1 + r ) / ( 1 - r )  reduces ( - 1 ,  1) to R+ with its self action. Thus we obtain: 

C o ~ o L LAR r 4.16. I / M ,  IV are manifolds with boundary then the part ~(IV ~ M) ~ ~Y ~< M 

of the boundary of the stretched product is a principal R + bundle over ~iV • ~M; the bundle ol 

conormals, F, is a principal It+ bundle over T*(~N • 8M). 

Further specializing we consider the stretched product Z ~ Z. This has the natural 

coordinates w = l (x + x'), r = ( x -  x')/(x + x'), y, y' identifying it with the half strip 

z ; z  = {(w, r, y, y ' ) e~n§  w 1> 0, [r I < 1}. 

Observe that  distributions of the form (4.4) can be transferred to Z ~ Z by setting 

1 - r  
s = ~ r ,  , x = ( l  +r)w.  (4.17) 

Let :Km(Z ; Z ) c D ' ( Z  ~Z) be the space of those distributions a with the following 

properties: 
is singular only at r = 0, y = y'. (4.18) 

is C ~176 up to the boundary (and corner) of Z ~ Z away from r = 0, y = y' 

and vanishes to all orders at the part  ~(Z ~ Z). 
(4.19) 

Near r=O, o~ is the restriction to w ~>0 of a Lagrangian distribution 

of order m associated to the submanifold r = 0, y = y'. 
(4.20) 

Since these distributions are regular in the normal variable there is a natural inclusion 

~m(Z 2 Z ) ~ D ' ( Z  ~ Z) as well. 

PROPOSITION 4.21. I] aES~(Z • R n+l) the distribution given by (4.4) is in ~ 'n(z  ~ Z). 

Conversely, each ~ E~)('n(z ~ Z) can be represented in the form (4.4), with a E S~ in any region 

(w, y, y ' ) E K c c : - ~  •  ~n o] Z ~Z .  

Proof. For a distribution of the form (4.4) the condition (4.18) and its refinement 

(4.20) are immediate, essentially from the definition of a Lagrangian distribution. Similarly 

the fact that  ~ is the Fourier transform in the s variable of a symbol shows that  it is rapidly 

decreasing with all derivatives as s-~ c~; this gives the part  of (4.19) corresponding to the 



TRAI~SFORMATION OF BOUNDARY PROBLEMS. CHAPTER II 181 

boundary  component  r =  - 1 ,  ixi view of (4.17). The other  par t  of  (4.19) is precisely the  

lacunary  condition on the symbol  a, namely  t h a t  ~ vanishes identically in s <0 ,  i.e. r < - 1 .  

The converse par t  of the proposit ion is similar. Given ~ E :~m(Z ~ Z) and ~ E CT(R -~ • R ~n) 

set 

a(z, 2, ~) = J e  i(s-1)~" ~"p(x(1  - r) -1, r, y, y - ~u) ~(x(1 - r) -1, r, y, y "  ~) dsd#, (4.21) 

where r = ( 1 - s ) ] ( 1  +s) .  Note  tha t  x is bounded f rom above on the  support  of ~ in (4.21) 

so the  integrand is a C ~ funct ion of r, away  f rom r = 0, vanishing to  infinite order at  r = 

- 1 ,  1. Thus, after the subst i tut ion for s the integrand is rapidly  decreasing as s-~oo,  

vanishes to  all orders at  s = 0  and is Lagrangian  a t  s = l , / z = 0  with compact  support  in 

y,/z. The Fourier  t ransform (4.21) is therefore a symbol  sat isfying the lacunary  condition. 

Clearly (4.4) now gives a representat ion of a in any  region where Q = 1, proving the proposi,  

tion. 

The fact  t ha t  the space of kernels :~m(Z ~ Z) is invar iant  under  all C ~ dfffeomorphisms 

of the manifold with corner Z ~ Z allows us to  use the following direct  definition of a 

pseudodifferential on any  manifold with boundary  M.  

De/inition 4.22. Let  E,  F be vector  bundles over M. A continuous linear map  

A: C~(M, E)-> C~(M, F) ( 4 . 2 3 )  

is an element of the space L'~(M; E, F) of tota l ly  characteristic pseudodifferential operators 

if ~'A~ is a matr ix  of elements of L'~(Z) whenever  ~', ~ E C~(M) have supports  in coordinate 

neighbourhoods over  which E, F are trivial. 

The invar iant  symbol  calculus for these operators will be examined in section six. 

First  we examine in more detail  the space L~(Z). Definition 3.19 is consistent with Defini- 

t ion 4.22 above and we note  t h a t  the  elements of L~(Z) are in one to  one correspondence 

with those of :gm(z ~, Z) via (4.3), (4.4), (4.17). Using this isomorphism it follows t h a t  

L ~ ( Z )  = n L'C(Z) (4.24) 
m 

corresponds via (4.3) to  the space ~-r ~< Z ) ~  C~(Z ~< Z) consisting of those functions 

vanishing to  all orders at  r = _ 1. 

PROPOSITION 4.25. Each AEL~(Z) can be written in the /orm A = A I + A  ~ where 

A2EL~~ and A 1 is o/the/orm (3.3) and properly supported. Associating to A 1 the symbol 

a ES~a(Z • R ~+1) de]ines the ]uU symbol mapping 

(~r: L~(Z) ~ Sm(Z • R~+x)/S-~~ • R~+i), (4.26) 
which has the property 

ker (al) = L~~176 �9 (4.27): 

12 - 812903 Acta mathematica 147. Imprim6 le 12 F6vrier 1982 
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Proo[. Suppose ~EC~(R n+l) is identically equal to 1 near the origin. Then if A has 

kernel/c(z, z') the distribution 

kl(z, z') = ~ (x -x ' ,  y - y ' )  k(z, z') (4.28) 

can be taken as the kernel of A r That  A 1EL~(Z) follows from the fact that  the corresponding 

distribution on Z ~ Z, is 

o~(w, r, y, y') = O(2wr, y - y ' )  ~(w, r, y, y') e ~m(z  ~ g). 

If Q = 1 in Ix - ~'1 < ~, l y -  y'l < e then =~ = ~ in l Y -  Y'l ~< ~, [2wr [ ~ e which is a n e i g h b o u r -  

h o o d  of r = 0 ,  y=y ' .  Thus ~ 2 = a - a a  is C ~~ i.e. A~EL'~~ Similarly, the fact that  (4.26) 

is well-defined is just the statement tha t  this operator A1EL-g~~ precisely when ~a is 

C ~, i.e. aES~  ~. Note tha t  in defining (4.26) the isomorphism (1.6) has been used. 

P~OPOSITIO~ 4.29. I l A EL~(Z) then A* EL~(Z). 

Proo]. If  A has Schwartz kernel/c(z, z') then the kernel of A* is 

k*(z, z') = ~(z', z). (4.30) 

The distribution a* defined on Z ~ Z by  k* is therefore 

~*(w, r, y, y') =s-l~(w,  - r ,  y', y) (4.31) 

where (4.7) holds. Since ~ vanishes rapidly at r = • 1 this is again an element of :~m(z ~ Z), 

providing the proposition. 

Now, Proposition 4.29 shows that  a1(A* ) is well-defined for all A EL'~(Z) and is deter- 

mined by at(A ). To obtain an explicit formula it is enough to write a*, modulo C ~176 in the 

form (4.4), starting from the corresponding formula for ~. This is just an exercise using 

the lemma of stationary phase and a short calculation gives: 

a~(A*)~ ~ FI ( x G + ~ + j ) 3 ~ G ~ a r ( A ) .  (4.32) 

This is easily seen to be the usual formula for the full symbol of the adjoint of a pseudo- 

differential in the open region if it is used to compute 

~(A*) = af(A*) (x, y, x& V) 

in terms of ~r(A). Note that  all terms in (4.32) with k +  [a[ = N  are of order m - N .  
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II.5. Boundary values 

In order to consider in more detail the mapping properties of the space L~(Z) of 

totally characteristic pseudodifferential operators it  is useful to extend the oscillatory 

integral representation (3.15). To do this consider the transformed distribution 

(;) ut(z )=u , y  , t > 0 .  (5.1) 

L]~MMA 5.2. I /uE~' (Z)  then (5.1) de/ines a C ~~ map ut: R + ~ ' ( Z ) .  1[ ueI:I~(z) then 
u t E I:I~(Z)/or each t > 0 and 

ll'~]J~, ~< o(t~-~ +t�89 (5.3) 

Proo/. For u E//s(Z) the Sobolev norm is 

Since at(~) =~d~, rj)= t~(tL r/), 

llu, ll~.=t~ f (l+l~l,+lvl,),l~(t~,n)l,d$a~=t f (1 ~ , 

Using the bounds 

( (r) ~ )s { (l+r~+]rl]~)~' s>~O't>ll ~  
l + i  +1~1~ < t-'(l+r~+l~l"y, s ~ O , t < . l  o r s - < O , t > t l  

(5.3) follows easily from (5.4). 

Since Dtut = (ix/t 2) (Dxu)(x/t, y) it follows inductively from (5.3) that  for any j EN, 

I1D~,11~,-, < 6(t~-" +t�89 (~D~)'~II~'-,. 
Summing these inequalities over ~ we conclude that  for any k EN, u E/ts(Z), 

O</.<<k 

Now, let us examine the representation (3.15), carrying out the 2-integral as Fourier 

transform: 

Ag(z) = (2z0 -"-x ~; t)gilt(x, y') dy' d~7 dr, (5.6) 

where Ma is defined in (1.3). Choose ~ E CT(R+) with e(0  - 0 in I t -  11 > 1 e(t) = 1 in I t -  11 < �88 
Then, for a E S~ ~ g E CT(Z) 

Ag = Axg + A~g (5.7) 
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where, using the expansion of Lemma 1.10 and integration by parts, 

A1 g = (2~)-~-1 j<R ~ f e'(~-~') "" flj' ~(z, 7; t) ( - D~)' (~(t) gla(x, y') ) dy' d 7 dr, 

and 

(5.8) 

A2g = (27g) - n - i  f "Ma(z, 7; t) gl/t(X, y') (1 - ~(t)) dy' d7 dr. (5.9) 

PROPOSITION 5.10. / /  aES~(Z •  l+n) and gEm'(Z) then (5.7) holds if (5.9) is inter- 

preted as Fourier transform in y' followed by integration in 7, t and (5.8), with r large enough, 

as an oscillatory integral in (y', ~) and distributional pairing in t. 

Proof. In view of (1.7), (5.5) and Lemma 1.10 it is clear tha t  both terms (5.8), (5.9) 

make sense as stated and are separately continuous in a and g provided that  r is large 

enough. Thus the validity of (5.7), (5.8) and (5.9) follows by continuity. 

There are several direct consequences of this representation. First the uniform con- 

t inuity of the operators in L~n; these results are by no means optimal but  are very useful 

in establishing finer continuity properties. 

C o R o L L A R Y 5.11, For each pair 8, m E R there exists p = p (s, m ) such that every A E L~ (Z) 

is a continuous linear map I:I~(Z)-> H~oo(Z). 

Since the operators in L~ ~ are modelled on the totally characteristic differential opera- 

tors, Dfff~ (Z), it is to be expected that  they have similar mapping properties. To see this 

we need an elementary composition result. 

LEMMA 5.12. For any mER, kEN, 

Diff~ (Z).L'C(Z) c span (L~(Z). Diff~ (Z)), Diff~ (Z).L;~~ ~ L ~ ( Z ) .  (5.13) 

Proof. To obtain (5.13) it suffices to prove the individual decompositions: If  A EL'~(Z) 
t ! m there exist Aj, BjL~ (Z), j =0  ..... n such that  

t x D x ' A  = Ao .xD~§  (5.14) ! ! 

Dyj. A = Aj" Dyj + B~. 

The continuity properties of the operators in L'~(Z) show that  it is enough to demonstrate 

(5.14) on the domain C~(Z) where (3.3) converges absolutely:with all derivatives. Then one 

obtains (5.14) immediately with A ~ = A ,  ]=0  .. . . .  n and B~ given by an integral of the 

form (3.3)with symbol 

b'o = xDxa(x, y, y', ~, 7), b~ = (Dyj -  Dy~)a(x, y, y', ~, 7) 
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when A is of this form with symbol a. Since (5.13) is local on the kernels this proves the 

first part of it; the other part is similar. 

Since the remainder term in the  first identity (5.14) has a factor x the same argument 

establishes 

LEMMA 5.15. For any m fiR, keN, Diff k (Z)-L'~(Z)~ span (L~(Z). Diff k (Z)). 

The analogue of the second part of (5.13) is not valid. 

PROPOSITION 5.16. I/AEL~(Z) then 

A: Me(Z) -~ A(Z). (5.17) 
I / A  EL;~176 then 

A: ~'(Z) ~ ,,4(Z). (5.18) 

Proo/. From the definition (I.l.10) of ~ it suffices to show that  if u E ~e(Z) and ~ q C~(Z) 
then there exists p f R such that  

P(eAu) fI:IV(Z), VPfDiff~ (Z). (5.19) 

According to Lemma 5.12 we can always write 

P(eAu) = ~ e'A~. Pku (5.20) 
finite 

with PkfDiffb (Z), AkfL~(Z) and ~'fCT(Z) fixed (with Q '=I  on supp ~). By assumption 

uf.~c(Z) so there exists s f R  such that  PkufI:I~(Z), for all k. Using Corollary 5.11, (5.20) 

implies (5.19) with p =/V(s, m). This proves (5.17). Similarly, one obtains (5.18) by using 

the second part of (5.13) and Corollary 5.11 to prove (5.19) for every uf~'(Z).  
For special distributions the representations (5.7), (5.8), (5.9) give simple results. Of 

particular importance is the action of the pseudodifferential operators on distributions 

supported at the boundary. If  

/(x, y) = ~(k)(x)| /~f ~'(R ~) 

then/~(x, y)=t-l-~/(x, y). Thus, 

A/= (27~)-n ~ k f e'(V-v')"gk.r , ~) /k(Y') dy' d~] ~(r (5.21) 

where, if A is of the form (3.3) then the symbols ak.j are given by 

1 J fMa(z,  ~; t)t-k-l~(k)(x)dt = ~ ~k.j(Y, ~) 5(J)(x). (5.22) 
t~<k 
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PROPOSITIO~ 5.23. I /AeL~(Z)  then 

A: A~(Z)-~ A'(Z). (5.24) 
There is a weU.defined map 

( )~: L~(z) -~Lm(R ") (5.25) 

such that for any u e A'c(g), A EL~(Z), 

Au]x-o = Ao(ulx-0). (5.26) 

Proof. Since ~4'(Z)c ~)'(Z) consists of those distributions which extend by  continuity 

from CT(Z) to At(Z) the first part  of the proposition is simply the dual statement to (5.17). 

Then 

(u[~o, q~) = (u, ~(x)| ~ECT(R n) 

and we conclude directly form (5.21) that  

(Aul~_o, cp) = (Au, ~| ) --- (u, A*(O| = (A~(u]~o), of). 

This proves (5.25), (5.26) with the explicit formula 

given as an oscillatory integral. I t  should be noted that  the terms in the kernel coming 

from the difference between (3.3) and the Definition 3.19 can be ignored. 

Notice that,  directly from (1.3), if A is given by (3.3) then 

= ( 2 ~ )  - ~  fe"~-~"'~a(O, y, O, V) u(y') gy'dv. ( 5 . 2 S )  A~u 

From (5.21) it  follows that  

A: ~'(Z, ~g)-- ~'(Z, eZ). (5.29) 

In particular this means that  the totally characteristic pseudodifferential operators act in 

a natural way on extendible distributions. 

P a o ~ o s I T I o ~  5.30. If  A eL~(Z) then A: ~'(Z)-~D'(Z). 

Proof. If  ve t ' (Z)  there exists ue~'(Z) with v=u]~. According to (I.l.1) u is well- 

defined up to an element of ~'(Z, ~Z). Then one can set Av =Au lL  unambiguously because 

of (5.29). 
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H.6. Symbols and residual operators 

Let  L~(M) be the space of linear operators introduced in Definition 3.19: 

A: ~'(M)-~ ~)'(M) 
with kernels in ~m(M). Following (4.26) we define 

~m(T*M) c C~(T*M) 

to be the space of C ~ functions on T*M which are of the form 7e*a=~ with ~: T*M-~T*M 

the map of (I.2.4) and a ES'~(rI'*M). The results of Section 4 now give: 

PROPOSITIO~ 6.1. The principal symbol map 

~,,: L'~(M)]L'~-I(M) --> ~m( T*M)]~m-I( T*M) ~ S"(~*M)/Sm-I(~*M), 

is an isomorphism well-de/ined by projection/tom (4.26) in any local coordinates. I / A  ELF(M) 

we denote by am(A) the image o/the principal symbol in S'~(T*M)/Sm-~(~*M). 

Similarly the results of Section 5 can be restated invariantly. If A EL~(M) then 

A: At(M) -*~(M)  (6.2) 

and as L'~(M) is closed under the adjoint operation 

A: A~(M)-* ~4'(M). (6.3) 

Using the trace map of Section 1.3 and Proposition 5.23 

R(Au) = Ao(Ru ) (6.4) 

for every u E A'c(M), with A o ELm(~M), 

am(A0) = am(A) I T* ~M. (6.5) 

Now, we consider the residual operators, in L-~~176 From (5.18) it  is clear tha t  

A: ~'(M)-~A(M) if AEL;~(M), (6.6) 

I t  is possible to define symbol maps which allow one to examine the degree to which such 

an operator differs from a smoothing operator. Returning to local coordinates we see from 

(4.3) tha t  the function 

ao(Y, Y', s ) =  ~(0, y, s, y - y ' )  EC~176 $(R)) (6.6) 

can be associated with the kernel k. Here we extend ~ as zero into s~<0, using the fact  

tha t  ~ vanishes to infinite order a t  s = 0. 
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P R o r o s I ~I o N 6.7. I / A  EL~(Z) the/unction o~ o is weU-de/ined and the residual symbol 

mapping 
a_~,0: L;~~ -> C~(R~; 5([0, ~ ) ) ,  A~+~ 0, 

is sur]ective. 

Proo/. Since, in terms of the kernel ]r z'), 

~0(Y, Y', t) = lira x- k(x, y, xt, y') (6.8) 
x40 

i t  i s  clear tha t  ~0 is well.defined. Moreover, the distribution ]c defined b y  (4.3) with 

replaced by  ~0, which is independent of x, is the kernel of some element of L~(Z) ,  so ~-~.0 

is surjeetive. 

Consider the behaviour of the kernels under coordinate changes. Le t  N* =IV*~Z be 

the conormal bundle to the boundary of Z and on the product ~Z x ~Z consider the line 

bundle 
= (Tt:~ ~V) -1 ~) (g~ ~ )  

where N is the  dual to N*; thus N = T~zZ/T~Z is the normal bundle. 

LEMMA 6.9. The R+-line bundle S + is canonically identi/ied with the line bundle ~'~(Z ~, Z) 

o/Corollary 4.16 by (dx)-l| ' ms. 

Proo/. This is just the identification of a vector space and its cotangent space, x ~dx 

and is coordinate independent because of (4.13). 

I f  we wish to define this first residual symbol map on L ~ ( M )  we need only take 

account o~ the density terms in the kernel. Thus, kE:~-~(M) transforms as a density on 

the second M factor. We therefore have: 

PROpOSITIO~ 6.10. The map 

a_~.o: L ~ ( M )  -+S(S+; B), 

where S=~'I'(M~,M) over aM• and B=T:(S)| is well de/ined and 

surjective, with Ts(S ) the cotangent bundle to the/ibrez. 

Suppose we are given two sections Yl, y~E S(S+; B) one a t  least properly supported 

in ~M • aM. Identifying S+ with the associated R + bundle we define composition as follows, 

in local coordinates. I f  

~ = r,(y, y', s)dsIdy' I (6.11) 
we set 

7 1 ~ =  l(y,y,s)r~ y,y", s d Y  dt]dy"]. (6.12) 
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I t  is straightforward to verify tha t  this is a section of B over S § and is rapidly de- 

creasing at 0 and c~. In fact this also follows from 

])ROPOSITIOii 6.13. I / A ,  B E L ~ (  M ) and one at least is properly supported then 

(~-o~. o(A o B) = a-oo. o(A ) ~ a-oo. o( B). 

Proo/. If It(x, y, x', y')=(1/x)o~(x, y, x'/x, y') is the kernel of A and l(x', y', x", y")= 

(1/x')fl(x', y', x"/x', y") is the kernel of B then the kernel in (x, y, x", y~) of A o B  is of the 

form (1/x)~(x, y, x"/x, y") with 

~ ( x , y , t , y " ) =  e ( x , y , s , y ) ~ , f l  x ' , y , ~ - , y  ~ dx'dy' 

where s =x'/x,  t =x"/x. Thus, 

~,(x,y,t,K')= e(x,y,s,y)fl  xs, Y,s, -~dy. (6.14) 

Taking the limit as x r 0 we obtain (6.12), proving the proposition. 

Consider the subspace of L~~ defined by the vanishing of this first residual symbol. 

In  local coordinates the kernel, in L ~ ( Z )  is of the form 

X t 

with ~(0, y, s, y') ~ O. We can then consider higher terms in the Taylor series: 

•_j(y, y', s) = (?'[)-l(0~a) (0, y, s, y'). 

p>~0. 

If  ~ _ j -  0 for j < p  then 

~_,(y, y', s) = lim xl- 'k(x, y, xs, y'), (6.15) 
x~o 

For each p >/0 define the bundles 

B,  = B~_I| -1, p >~ 1. 

Then, if ~ _ j - 0  for all ] < p  (6.15) defines a coordinate-free map into S(S+; B~). Dif- 

ferentiating (6.14) with respect to x leads to the following natural definition: 

yl:~7~= ~r l (y ,y , , s )r~y , ,  ,, t~ s~ ds , Y ' v d Y  (6.16) J \ 

when y, =r~(y, y', s) (dx)-'dsldy' I E $(S+; Bk,). 
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T E ~  OR~M 6.17. The spaces L~'P(M),  /ixed by the condition that o~_j - 0/or j < p in any 

(one) local coordinate system, are invariantly de/ined as is the map 

a_~._~: L ;  ~ ' -~(M) -~ S(S+; B.), p >~ O. 

I / A  EL~ ~176 B EL; ~176 and one is properly supported then 

A o B E L ;  ~176 -PI-'~(M), a_o~. _,,_p,(A o B) = a_o~._;,(A) :~a_o~. _p,(B) 

using the product (6.16). 

Pro@ This follows directly f rom (6.14). 

PROPOSITIO~  6.18. I f  A EL~~176 then A has a kernel IcEC~176 • i[, and only i[, 

A E L ~ ' - ~ ( M ) =  I"1 L ;~ ' -~ (M) ,  
p>~0 

i.e. i /and only i /al l  the successive residual symbols a_~o.-~ vanish identically. 

Pro@ Of course, this result  is really local near  points of ~M • ~M. I n  local coordinates 

the vanishing of all the a_~_~(A) means tha t  

X r 

with ~ vanishing to all orders a t  x =0 .  Clearly then /~EO~(Z • Z). Conversely if ~-o0.~ 4= 0 

at  some point  (~, y ,  ) for some p ,  where q-~o.-j - 0 for ?" < p  consider 

xA(~(x' - r) | ~(y' - , ')  ) = o~(x, y, ; , , ' )  . (6.19) 

I f  this is C ~ in x~>0 we can set y=~, x=r/~, since certainly ~ 4 0 ,  after differentiating 

(6.19) p times. Then we have 

However ,  if A:~'(Z)---,C~176 then this limit mus t  be zero f rom (6.19). 

This result  can be refined to  give a useful description of the operators in Z~ ~'-p.  For  

each m ER we can consider inside A(Z) the subspace of Lagrangian distributions of order m: 

Am(Z) = uEA(Z) ;  near x = 0 u is of the form (1.1.15) with symbol  of order m +  ~ - -  . 
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PROPOSITION 6.20. Each A EL~~176 maps f4~(Z) into f4m(Z) [or every m ER. A: f4~(Z) 
~m-~(Z) /or some ]ixed p >0  and every m i], and only i/, A EL~~176 

Proo[. Since A is in L~~176 and can be assumed of the form (3.3), we can carry out 

the q-integral to give 

f t r t Au = (2~t) -1 e~(X-x')~K(x, y, y', x~) u(x , y ) dx d$ 

where K(x, y, y', ~) is smooth in all variables and in S~a ~ with respect to the last; in fact 

2: ' we can take the support to be compact in , y .  Assuming uE0~(Z) and writing it in Lag- 

rangian form 

= (2~) -1 j'etX~b(y, ~)d~ U 

we can substitute directly into the formula for Au and find 

Au = (2~) -1 f eiX~c(y, ~) 

where we have used the Fourier inversion formula in one variable to write 

c(y, ~')-~ (2st) -1 e~(e-r)~a(x, y, y', x~) (y ,  ~)dy' dxd~. 

This can be rearranged to give 

y, b [y  , 

If  bES N the fact tha t  K is rapidly decreasing means that  (6.21) can be interpreted as an 

oscillatory integral, defining c E S N. Suppose 

~K(O, y, y', ~) =- O, for ] < p ,  (6.22) 

then the leading term in (6.21) is 

, , t , b  [ , 

modulo S N-~-I. The mapping properties of A ELg~'-~(Z) follow directly from (6.23) since 

(6.22) is just the succession of conditions zc_j-~O, j < p ,  i.e. the definition of Ag~176 

The validity of (6.21) and (6.23) for general uEf4~(Z) follows by the continuity of the 

formula (6.21) and the density of OF(Z) in f4c(Z). 
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To prove the remainder of the proposition we need to show that  if A ELff ~176 and 

am_~(Au) = O, u  e , ~ ( Z )  (6.24) 

then a_r =0. To do this we will rewrite (6.23). First note tha t  the symbol map 

Am(z)/A"-~(z) ~ sm+(~-~)l~(a ~, R)/S~+((~-l)/4)-l(R~, R) 

can be considered as an isomorphism: 

A~(z)/A~-~(z)_. 
A~+((~-I)/4)~I(N~Z)' 

the image being the space of Lagrangian distributions on the fibres of the normal bundle 

to the boundary, N~Z,  supported on the positive side. If we apply the Planeherel formula 

to (6.23) then, since 

' f ' 
o~_p(y, y ,  s) = e~(1-~)a~K(O, y, y ,  ~) d2t, 

c(y, ~) = f ~_Ay, y', 8) . (~) ~ . fl(y', 8 ~) e-" ~ d# dy ' (6.25) 

where 

fl(y', t) = ~ ettr b(y ', ~') d~'. 
J 

Now, changing variable in (6.25),/z =t~l, gives 

c(y, ~ ) = f e-'t't" f ~_~(y, y', s) fl(y', st) ds dy' dt. (6.26) 

With the interpretation of the symbol above we see that  if flE.,4'n+(n-1)/4(N~Z)represents 

u E Am(Z) then A u  is represented by 

f t" a T(y,y' ,s)f l(y' ,  s t)dsdy' .  (6.27) 

Here fl is a Lagrangian distribution in the second variable with support in st >~ O. 

Taking product distributions fl(y, x)=p(y ')h(x)  with h Lagrangian on R, associated 

to T~R, and with support in x>~0, we can now prove the remainder of Proposition 6.20. 

We take h(x)=x~+, z E R  not a negative integer. Then from (6.27) we must have 

t'f~-~(y,y',8)e(y')(st)~dsdy'=t~++'fa-,(y,y',8)~(y')8~dsdy'=O (6.28) 
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since as a homogeneous distribution, it vanishes with its symbol. Thus we must have 

f ~_p(y, y', s) ~(y') dy' = (6.29) 8 z ds 0 

for all ~ E C~(R') and z E R ~ ( - N ) .  By continuity, (6.29) gives the vanishing of the Mellin 

transform of ~_~ in s. Thus, ~_p = 0, proving the proposition. 

COROLLARY 6.30. Operators in L~~176 map the classical distributions in Ac(Z) to 

classical distributions. 

Proo/. This is evident from (6.23). 

Remark 6.31. The proofs above, of Propositions 6.10, 6.13 and 6.20 do not really 

depend on the assumption that  A EL~~176 Thus, for each m the subspaces 

... c L~"-k(M) ~ Z~'-k+I(M) c ... ~L'~.~ = L~n(M) 

can be defined successively by the conditions 

~ ( 0 ,  y, y', s) = 0, for j < k 

in any local coordinates. Then the symbol maps and product formula extend with 

~(m).~: L~'-k(M) -~S ' (~ ;  Bk), /~ >~ 0 

having values in the space of Lagrangian distributions, supported in S +, of order m - � 8 9  

associated to the surface s = 1, which is invariantly defined in S, and decreasing rapidly 

at oo on the fibres. 

In particular note tha t  if A EZ'~(M) then A EL~'-k(M) if and only if 

A :  "r ~4~(M)-~A~-k(M), Yr. (6.32) 

The formula (6.27) also carries over, when the symbol isomorphism is viewed as 

~ :A~(M)/A~-~(M) ~- fit~ + ~(~-~)(X* ~M)/A~ + ~(~-~)-~(_X* ~M). (6.3a) 

So, for A EL'~'-k(M), u eA~(M), 

(~_k(A u) (t) = t ~ ~ a(,n).-k(A ) (y, y', s) a~(u) (st, y') dy' ds. (6.34) 
J 
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II.7. Composition and elliptieity 

The composite of two operators is not defined unless there is a suitable restriction on 

the support or growth of the kernels. Recall that  an operator 

A: ~ ' (M)-~O'(M) 

is properly supported if the support of its Schwartz kernel 

supp a c  M •  

is a proper relation, with proper inverse: 

supp ( a ) ( K ) c c M ,  V K c c  M 
(7.1) 

supp (a ) - l (K ' )~c  M, u c c  M. 

LEMMA 7.2. I /  A EL~(M) there is a properly supported operator A'  EL~(M) such that 

A - A'  EL;~176 

Proo]. Cutting off the kernel of A away from the diagonal affects it only by an element 

in K-~176 proving the lemma. 

Note that  it is not in general possible to modify A by a smoothing operator and make 

it proper. 

T H E O a E ~  7.3. I /  A EL~(M), BEL~'(M) and one at least is properly supported then 

C= B" A EL~§ (M) and 
am+m,(C) = am(A)'am,(B). (7.4) 

The main element in the proof of this theorem is the corresponding local result. 

PROPOSITIO~ 7.5. I /  aES~(Z•  n+l) has support in a compactly based cone and 

b ES~(Z • R n+l) then there exists e E~la+m'(z • 1{ n+l) 8uch that 

~(z, D~)oa(z, D~) =~(z, Dz). 

Proo/. Following Corollary 3.18 it suffices to show that  

~(z, D~)(e~z'~g(z, ~)) = e~Z'~5(z, ~). (7.6) 
~OW: 

~(z, Dz) (e~Z'~a(z, ~)) EC~(Z • R re+l) 

so, provided cEsm+m'(Z • we only need verify (7.6) in x>0, and only for bES~ ~, 
if we show that c depends continuously on b in symbol spaces. 
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For  x > O, we make  successive changes of var iable  f rom ~' to  4 ' =  x~' and  f rom x' to 

s =x'/x to show t h a t  

e-'Z':~(z, D~) (et~'Cd(z, ~)) 

= (2~)-n- t  e~(Z ~')(~'-~)+~(~-y').(~'-n)b(z,x~',~l')a(z',x'~,~)dx'dy'd~'d~' 

H: o = (2~)-~-~ e~(~-~'~)(r-~)§ ~')(~'-n) b(z, 4', rf) a(z', x'~, 7) dz'/x dy' d2' drf 

= (2:~) -~-~ d (~-~)(~'-x~)+~(~-~')'(~'-~) b(z, 4', ~') a(sx, y', sx~, ~) ds dy' d2' d~'. 

Thus,  if we take  (7.6) as the  definit ion of c we have  

yf ~ C(Z, 4, ~) = (2~) -n-1  e t(1-s)(~'-~)+~(y-y')'(v'-n) b(z, 2', ~') a(sx, y', s2, ~) ds dy' d2' d~'. 

(7.7) 

To see t h a t  this is a symbol  we first  note  t h a t  the  2', ~/' integrals in (7.7) can be carried 

out  as the  inverse Fourier  t r ans form of the  symbol  b. Set t ing 

b(z, t, r) = (2zt) -n-1 ~ e  itr+~'n" b(z, 4', V') d2' d~' 

we find 

c(z ,~ ,~)=f f~d(s-~)~-~(~-~ ' )"b(z , l - s ,y -y ' )a(sx ,  y ' ,s2,~)dsdy '. ,7.8) 

Here,  b(z, 1 - s ,  y - y ' )  is a Lagrangian  dis tr ibut ion singular only  a t  s = 1, y=y '  (and C ~ 

for b eS-oo). The  lacunary  condit ion (1.4) means  t h a t  b(z, 1 - s ,  y - y ' )  vanishes identical ly 

in 8 < 0 .  Thus,  we can write (7.8) as 

c(z, 2, v)= f f H(s)g(z,l-s,y-y')a(sx, y',s~,V)e ~(~-~)~-~(~ ~')"~dsdy', 

with the  in tegrand still C ~ away  f rom s = l ,  y=y' .  In  fact ,  the  in tegrand is rap id ly  de- 

creasing as s-+oo or l Y ' I - + ~ ,  so if e e C T ( R )  has ~ ( s ) = l  in I s - l l  < 1 / 4  and  s u p p p c  

[1/2, 3/2] then  

4, 7) =- f ~(s) b(z, 1 - s, y - y') a(sx, y', s2, 7) e~(S-1)~-~(Y-Y')'~ dsdy ' C(Z, 

= (2~t) -~-1 . I0(s  ) e ~a-~)(r-~)+~(y-y')'(~'-~) b(z, 4", ~') a(sx, y', s2, ~) ds dy' d2' d~' 

(7.9) 
modulo  S-oo; the  ampl i tude  is a symbol  since s is bounded  away  f rom zero. 
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The standard stationary phase argument, as used to prove the composition law for 

pseudodifferential operators (see H6rmander [9]), now applies to the last integral in (7.9) 

and shows that  c is indeed a symbol depending continuously on a and b. Indeed, 

( - i )k+i~JO~b(z ,~ ,~)8~a~a(sx ,  y , s~ ,~) l s=l / IC!a!  (7.10) 
k, ot I 

Returning to (7.7), it remains to show that  c satisfies the lacunary conditions (3.9). 

Calculating directly, 

Mc(z, % t) = (e=) -n-1 f e '(s-t)a a(sx, y', s2, ~l) e'(a-s)r+(u-Y')'("-") e(s) b(z, 2', ~]') ds d2 ' dy' d~' d2 

---~ (22"g) - n - 1  fe a(sx, y', tt, V) e~(U-u')'("-') Mb( z, ~', s) e(s) 8 -1 ds dtt d~' dy' 

f ' ' s  ~(u-Y')'("-~) dSd~' = (2~) - ' -1  Ma(sx,  y ,  ~; ts -1) Mb(z,  ~ ; ) e ~ s y d~'. (7.11) 

The laeunary conditions on a and b show tha t  this vanishes identically if $ < 0, so c satisfies 

(1.4) too and the proof of the theorem is complete. 

The formula (7.10) specifying c modulo S -~  is actually just the usual asymptotic 

series for the symbol of the product of two pseudodifferential operators, in tha t  it implies 

~(~, ~) ~ V ( - i ) ~  ~ 6(z, ~) . e~z a(z, ~)/ ~ !. (7.1~) 

Proo/ o/ Theorem 7.3. Decomposing the kernels of A and B by a locally finite partition 

of unity we can apply Proposition 7.5 to all terms except those with one factor in L~ ~. 

Since the latter contributions are shown to be in L ;  ~176 below it follows that  C eL~+m'(M) 

and the formula {7.4) follows directly from (7.12). 

PROPOSITIO~ 7.13. Suppose B: C ~ ( Z ) ~ C ~ ( Z )  is de/ined by an integral 

Bq~(z) = Jz  fl(z, y', s) q~(x8, y') dy' ds (7.14) 

where Z 9 z ~-->fl(z, y', s )e  ~ ' (Z )  is a C ~ map such that fl is C ~ in all variables in s < e, s > 1/e 

/or some e > 0 and vanishes rapidly as s ~ 0 ,  s ~  ~ then/or any A eL;.~(Z)A. B eL;~(Z) .  

Proo/. Clearly it is enough to suppose that  A is also of the form (7.14) with kernel 

E C ~, compactly supported in the y' variable and vanishing rapidly as s->0, oo. Similarly 
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one can suppose that  fl is supported in x ~< 1. Then the composite operator can be written 

in the same form (7.14) with kernel 

f~ Y 7 '  (7.15) ~(z, y,' t ) -- ~(z, y", t) fl(xt, y", y', s/t) d "ds 

which is clearly in ~-~176 

For A EL~'(M) we define the characteristic variety 

Z(M) = {e e ~ * M \ 0 ;  a~(A) is not elliptic in a cone around @}. 

The standard microloeal invertibility of pseudodifferential operators at  elliptic points 

comes over to this setting. 

~:)ROPOSITION 7.13. I f  A EL~(M) is elliptic at @ then there exists BEL~m(M) with 

proper support such that 
R i = I d - A B ,  R 2 = I d - B A  

have lull symbols (in any coordinates) o/order - oo in a conic neighbourhood of @. 

Proof. Since the construction just depends on the formal properties of the symbol 

maps we refer the reader to [4]. 

II .8 .  Wavefiront set  

The notion of wavefront set of a distribution on an open set, as introduced by H6r- 

mander [10] and by Sato in the analytic category, is the basic starting point of microlocal 

analysis. I t  is intimately related to the invertibility of pseudodifferential operators, dis- 

cussed in Proposition 7.13. 

De/inition 8.1. If  u E ~ ' (M)  

WFb (u) = ['l {Z~(A); A EL~ is properly supported and A u E A ( M ) } .  

The notation used here is not quite the same as that  of [11], [16]. We shall show in 

Section II.9 below that  the various definitions agree in their common domain. The most 

straightforward properties of WFb can be proved as in the standard case of WF. 

LEMMi 8.2. WFb (u)= ~ ~ u E A ( M ) .  

Proo]. This result follows from the locality of the symbol product (7.10). Thus, if 

Aj EL~~ are proper such that  the ~ * M ~ ( 0  U Z~(Aj)) give a locally finite open covering 

of T * M ~ 0  and Ar E ~(M) for every j then one can find Bj EZ~ proper such that  

t - - 0 0  Id -~E B j .A j .modLb  , (8.3) 

13 - 812903 Acta mathematica 147. I m p r i m 6  le 12 F6vr ier  1982 
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where A j - A ~  EL~ ~ are such tha t  the sum in (8.3) is locally finite. Then u EA(M) because 

of (6.6). The converse is trivial. 

Also as a direct consequence of the definition we have the microlocality of pseudo- 

differential operators. I f  A EL'O(M) we define the essential support  of A as 

WF~ (A) = (~ e T * M ~ 0 ;  a1(A) is not of order - ~ in any  conic neighbourhood of ~}. 

(8.4) 
This is clearly independent of the choice of coordinates. Then, 

WFb (Au) c WF~ (A) f/WF~ (u). (8.5) 

For distributions with additional regularity we can strengthen (8.1). We need a preliminary 

result: 

P~OPOSITION 8.6. I /  aESm(R~xRN) has support in a compactly based cone and 

b~->(b, a) extends by continuity/rom S-~(R n • R/g) to S~(R n x R/g) then a E S-~(R" • R/g). 

Proo/. Choose aECT(R/g) with a~>0 and a ( 0 ) = l  for 0 near 0. Since aESm(R n • 

for any  choice of multiindices ~,/3, ~ there is some M ER such tha t  

c~ = D~ D~Or a(O/n) Or D~ D~a is bounded in S M ( R  n X R/g) 

for all n E N. The continuity assumption implies tha t  

(c~, a)-~ f e(o/n)lO" D~D~ap is bounded as n-~  ~ .  

Thus certainly, a ES-~(R~ • R/g). 

LEMMA 8.7. I / Z + = R  + • R~, Z_ =It; • R~ then the space o/Lagrangian distributions 

splits: 
z~(R~+-; N*{x = 0}) =A(z+)+~i(z_). 

Proo]. Clearly we can assume tha t  w E I~(R~+n; N*{x =0}) N ~'(Ra+"). Thus, for some/r 

(xn~Fn~w EH-k(R~; L~(R")). 

Define vEL~or 1+~) by  D~v=w, v = 0  for x>~0. Now, for some constants %.~ 

~ p , j ~ y ~  ~ x  ~ X  v ~  = cp.jDyx D~ w. 
i<~p t<~p 

p ce This shows tha t  x~D~D~v e L~oo(R ~+~) for all p,  a. 
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Consider u =H(~c)v(x, y), with H the Heaviside function. For ~ E C~(R~+n), 

--- f :  vix, y) 5 q,.~x'-*Df-~-D~dxdy 

- r x P - r  , r  V X 

where the last integration by parts is justified by  the fact tha t  x~-rv is in the Sobolev 

space H~ -~Rl+~loo ~ j and vanishes with its first p - r -  1 derivatives at x =0.  Thus, x~D~D~u E 
L[oo(a x+~) for all p, ~ so ueA(Z+). In consequence, D~uEA(Z+) and w--D~uEA(Z_) 
proving the lemma. 

PRO~OSlTIO~ 8.8. On any mani/old with boundary 

A'(M) N A(M) = C~(M). 

Proo]. The result is clearly local in nature so we can assume u E A~(Z) N ~ ( Z ) .  We first 

observe that  the trace Ru of u is C% For ~ E C~(R ~) 

where 3(x) | E~r Now, 

<Ru, ~> = <u, 8(x)| 

~(x) | = d  (H(x) | 

and clearly H(x)| is in A'(Z). Moreover we can choose a sequence ~vn--->H(x)| 
in A'(Z) with yJ~ e C~(Z) and ~zv/n converging in A~(Z). Since u E A'c(Z) and O:~u e..4c(Z ) this 

implies 
( Ru, cp) = - (e=u, H (z) | 

Now the map E'(R n) ~ ~ ~->H(x) | E.,4'(Z) is (weakly) continuous, so shows that  Ru extends 

by continuity r ~'(R~). Thus RuEC~(R'*). The same argument applies to all boundary 

values of u, so using BoreI's theorem we can choose u' E C~(Z) ~ A'~(Z) N ~(Z)  such that  

has the proper~y 
v = u - ~ '  e A~(z) n A0(z) 

d ~ 
(v, ~-~ ~(x) | ~-O, Vk, ~EC~(R~). (8.9) 

Using this we can extend v E ~ ' (Z)~ E'(R ~+1) to a linear form on the space of Lagrangian 

distributions, on R ~+1, associated to N*{x--0}. By Lemma 8.8, if welC~ N*{x=0}) 
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there exists w' E~c(Z), the subspace supported in x >~0, such tha t  w = w' in x > 0. Moreover 

w' is unique up to a term 
d ~ 

~t~___ h-~ ~(~) | ~eVT(R"). (8.10) 

Now, if we set 
(v, w) = (v, w') (8.11) 

the fact  tha t  v vanishes on all distributions of the form (8.10), i.e. (8.9) holds, means tha t  

this extension is well-defined and continuous. 

Taking the partial Fourier transform of v with respect to x we have 

~(~, ~ n. y) e C~ (Ry, SIn(R)), 

since vE.~c(Z ). The topology in Im(Rn+l; N*{x=0}) is defined by the C ~ and symbol 

norms, so the continuity of (8.11) means tha t  ~ extends to S~(Rn • R). Applying Proposi- 

tion 8.6 we conclude tha t  
~ eS-~~ ~ • R). 

Thus, v is C% This completes the proof of the proposition. 

P~OPOSITION 8.12. I] uE,4 '(M) then 

WF~ (u) = [1 {Zb(A); A eL~ is properly supported and AueC~176 

Proo/. I f  uE~t'(M) and A is properly supported then AuE~I'(M).  So, for all A in 

Definition 8.1 AuE.,4'(M)N f l (M)=C~176 from Proposition 8.8 and the proposition 

follows. 

T~EOREM 8.13. I /uE. ,4 ' (M) then 

WF (Ru) ~ WF~ (u) N T*~M. 

Proo[. I f  Q E T * O M ~  T*M is not in WFb (u) then we can find A o ELm(aM) elliptic a t  

and such tha t  there is an element A EL'~(M) with 

R(Au) - Ao(Ru ) (8.14) 

and WFb (A) N WF b (u)= IZ/. Proposition 8.12 shows tha t  the left side of (8.14) is C ~ so 

~WF (Ru) and the theorem is proved. 

Using the notion of wavefront set we can introduce the usual formal structures of 

microlocal analysis. Let  
~*M = ( T*M~O) /R  + 
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be the compressed eosphere bundle of M. The ring of pseudodifferential operators on M 

induces a sheaf of rings on ~*M, the sheaf of totally characteristic microdifferential opera- 

tors. Thus, suppose ~ ~*M is an open set. Let  

X~(f~) = {A ELF(M); W~b (A) ~ f~*} 

be the subspace of operators with essential support in the complement of ~.  We define 

s = L'd(M)/Xm(~). 

THEOREM 8.15. E~ ~ is a shea] o/filtered rings on ~*M. 

Proo]. This is essentially immediate from the results proved above concerning L'~(M). 

The definition and properties of the restriction map, from ~ to s are clear. The 

presheaf property, tha t  a section over ~ vanishes if it vanishes in a covering of ~ follows 

from the definition of essential support. The intrinsically global nature of the definition 

then implies the sheaf property. 

PROPOSITION 8.16. s  is a fine shea]. 

Proo/. Clearly microlocal partitions of unity can be constructed as in the theory of 

pseudodifferential operators on open manifolds. 

We remark that  the support of a section of • is just the essential support of a defining 

pseudodifferential operator. Similarly we define 

~ ( ~ )  = ~ ' (M) /  Y (~) (8.17) 
where 

Y(~) = {ueD'(M);  WFb ( u ) c  ~~ (8.18) 

~ ( ~ )  is the space of microfunctions on ~ c  ~*M. 

THEOREM 8.19. ~ is a sheaf o/s over ~*M. 

Next we consider some simple functorial properties of distributions on manifolds with 

boundary related to this notion of wavefront set. Let  W ~ M  be a submanifold in the 

sense that  W is an embedded submanifold with boundary defined by the transversal 

intersection. 
~W = a M ~  W. 

2qear a point mEaW local coordinates x, y can be chosen so that  x>~0 on M and 

W = ( y j = 0 ,  0~<?'~<#} nea rm.  

In particular from the standard theory of Lagrangian distributions we have: 
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PROPOSITION 8.20. The restriction map 

A(i)~u~+u[ W ~A(N) 

is well.dr by continuous extension/rom the dense subspace ~~176 and is sur~eetive. 

The inclusion of W in M induces a projection 

4: ~M-+ ~*W. 

The inverse image in ~wM of the zero section is the compressed conormal bundle of W in M 

2~*W c ~ M .  

L E I ~ A  8.21. I~*W is a vector bundle o] rank equal to the codimension o[ W in M and 

can be canonically identified with N*W so that the diagram 

T*M �9 ~*M 

N*W . . . .  R * W  
c o m m u t e s .  

Proof. The map ~: ~ M ~ * W  is the dual of the inclusion ~ W ~  TwM of tangent 

vectors tangent to the boundary. Thus, in local coordinates of the type introduced above 

we have 

v . d y + ~ d x e ~ * W  
X 

if, and only if, ~=0, ~j=0 for j>/~. Clearly ~TZ~ ~jdyj can be canonically identified with 

the corresponding covectors in N*W in a coordinate independent way. Observe that in 

(8.22) the image of i~*W always lies in T*~M over ~W so the lemma is proved. 

If F ~ ~*M is a closed cone, let 

~'(M, 1 ~) = {uED'(M); WFb (u) oF}  

be topologized by the seminorms of ~'(M) and by the seminorms IAul where [ [ is a 

continuous seminorm on ~(M) and A EL~ is properly supported with essential support 

in P~. 

THEORV~ 8.23. I] W ~ M is an embedded submani]old with boundary ~W=DM ~ W 

and F c T*M is a closed cone with 

then the restriction map 

I w: ~'(M, r)+~'(w) 
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is well-de]ined by continuity/rein the dense subspace O~176 and 

WF~ (u I W) = 4 (WFo (u) n ~ i ) .  

The proof is omitted since this result will not be used below. 
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II.9. Normal regularity 

Although the ring of operators LT(M) behaves well on the space of distributions M'(M), 

for which boundary values are well defined, the solutions of non-characteristic boundary 

value problems have more special regularity properties. We introduce below a coordinate 

independent space of distributions in which these lie, in particular the boundary values 

are then taken in the strong sense: This approach gives a new proof of Peetre's theorem 

(see [8]) on hypoellipticity at the boundary, which implies that  the solutions to non- 

characteristic problems satisfy 

ueO| ~); ~'(R~))~D'(z), (9.1) 

in terms of local coordinates on M, 

In any local coordinates the conormal direction at the boundary is always the span 

of dx, x = 0 on ~M, and this is the kernel of the map 

~: T*M ~ ~*M. 

However, the choice of local coordinates does define a compressed conormal direction 

nx = 1 dx E ~*M. (9.2) 
X 

PROPOSITION 9.3. I] mE~M and uE A'(M) has 

a~ r WFb (u) 

/or some local coordinates (x, y) then near m, u is regular up to the boundary in the sense o/(9.1). 

Proo/. Clearly we can assume that  u has compact support near m. By assumption 

there is an operator A eL~ which is properly supported and elliptic at  nx and for which 

AuEAc(M ). Propositions 8.7 and 8.12 show that  AuEC~(M). Thus, in the given local 

coordinates there is a symbol a()t, 7)E S~ with a---0 (mod S -~176 in [41 ~> C I~l, and 

u=5(D~)u+v, veC~/g). 
To complete the proof we use: 
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L ~ M~A 9.4. I / a ( x ,  y, 2, 7 )e  S~ has a-~ 0 (rood S -~~ in ]21 >~ C I~]] /or some C then 

a(~, D~)ueC| ~ ) ;  D'(R~)) ~ ~O'(Z) 
/or each u e ~'c(Z). 

Proo/. Let Q e L ~ ( R  ~) be a properly supported smoothing operator. Then, 

Q(e~'na(x, y, 2, ~)) = e~Y'nb(x, y, 2, 7) 

with b ES~ ~. Applying this to the representation (3.15) of Au  we conclude that  

Qa(z, D~)u =b(z, D~)uEC~(Z) 

since b(z, Dz) EL'~(Z) and u E A'c(Z). Thus, u lies in the space (9.1) and the lemma is proved. 

To exploit this result we introduce the following space of distributions. 

Definition 9.5. Let  ~ ( M ) ~ A ' ( M )  be the space of normally regular distributions, 

u ~ ~ ( M )  if 
WF b (u) n ~T*M ~ T*~M. (9.6} 

COROLLARY 9.7. I /  u E ~ ( M )  then in every local coordinate system (x, y) near the 

boundary, 
ueC~([O, e); ~)'(R~)) /or some ~ > O. 

Proo]. For any coordinates, fi~ E ~ T * M ~ T * ~ M .  
�9 ! 

Recall, from section 1.1, that  O~(M, ~M) is the space of distributions supported in 

~M which are annihilated by x ~+~. 

T~EOR~M 9.8. Let PEDif f  ~ (M) be a C ~176 di]/erential operator/or which ~M is non. 

characteristic. I] uE~ ' (M) ,  /E ~(M) and gE~'~_~(M, aM) with 

Pu = f + g (9.9) 
then u E ~(M).  

Proo/. Proposition 1.3.12 shows that  u E A'(M). Moreover the operator A = x~P EL'~(M) 

is clearly elliptic in ~T*M away from T*~M since its symbol is a non-vanishing multiple 

of 2 m over x =0. Thus, the fact tha t  

WF~ (x~(/ +g)) ~ WF~ (/) c T*~M U T*~I 

implies the same for u and the proof is complete. 

C o R 0 L ~. A R Y 9.10. I / P  is non-characteristic, u ~ O'(M) and Pu ~ C ~ then near each 

boundary point and in any local coordinates u is in the space (9.1). 
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Proo/. We can easily choose an extension of u to v E~ ' (M)  so tha t  (9.9) holds with 

E " r  g Dm_I(M, ~M). 
I t  is a consequence of Theorem 9.8 tha t  WFb (u), as defined in Section 8, agrees with 

the definition given in [16] for distributions satisfying non-characteristic differential equa- 

tions. This latter definition states tha t  (y, 7)E T * R ~ 0  is not in WFb (u), in any local 

coordinates, if there is a properly supported pseudo-differential operator Q in the tangential 

variables such tha t  for some s > 0 

Q(y, Dz)u(x, y)EC~([0, s) • (9.11) 
and Q is elliptic a t  (y, ~]). 

By Theorem 9.8 if A EL~ has A -= Id  in a conic neighbourhood of T*R nC T*Z then 

A u -  u e C| e) • R~). 

We can further suppose tha t  A -~ 0 in a conic neighbourhood of the compressed conormal 

direction in these coordinates. The composition formula for pseudo-differential operators, 

in this case with parameters,  shows easily tha t  QA EL~([0, s ) •  R n) is elliptic or not  a t  

any  point (y, ~])E T*R ~ with Q. This shows the equivalence of (9.11) and the characteriza- 

tion of WF~ for elements of • ' ,  hence ~,  in Proposition 8.12. 

The occurrence of boundary terms in (9.9) makes it natural  to consider 

~k(M) = ~ ( M ) |  ~M) 

and the inductive limit, ~(M),  over/c. These spaces are easily characterized as in Defini- 

tion 9.5: 

u E ~ ( i )  ~ uEB(M) and W F ~ ( u ) c T * ~ M U T * M = B M .  

There is, apar t  from Proposition 8.7, another  intrinsic relation between certain spaces 

of distributions on a manifold with boundary which can be obtained using the calculus. 

In  [12] the set of distributions O'~(M)c~D'(M) was defined, as a general class admitt ing 

boundary values. Explicitly, ueO'~(M) if near each point mE~M there is a coordinate 

system (x, y) and e > 0 such tha t  

u(x, y)]~<~ e C~([0, ~); ~'(R~)), (9.12) 

in the coordinate patch. Since the coordinate system in which (9.12) holds may  vary  from 

point to point D~(M) is not even a linear space. The span 

sp (~(~)) ~ D'(M) 

is not, at  least a priori, an easy space to deal with nor is it of obvious general significance. 

However, this is precisely the space introduced above. 
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THEOREM 9.13. For any manifold with boundary, M, 

D'(M) ~ A'(M) = D~(M) + ]0~(M) = sp (D~(M)). 

Proof. In  view of the definition (9.12) it is clear tha t  

~'~(M) c A'(M). 

To prove the result it is therefore only necessary to show tha t  any u e A'(M) can be written 

as the sum of two elements ul, u~eO'~(M). As vector bundles ~ * M ~  T*M since near the 

boundary both bundles are isomorphic to T*~M| For T*M this follows from the 

usual isomorphism 
T~MM/N*~M ~ T*~M. 

For the compressed cotangent bundle T*~M ~ ~$MM and the isomorphism 

~MM/T*~M ~ 1V*~M 
is dual to 

T ~ M M ] ~ M  -~ T~M 

where 2 ~ M  ~ ToMM is the kernel of the natural  restriction from ~ M  to T~M. I t  is 

therefore possible to choose a global compressed conormal subbundle, spanned by ~ E  

m M \ T ~ M  for all mE~M. 

Now, choose a symbol b ~S~ with b ES -~~ in a conic neighbourhood of __+ fi~ near 

~M. Clearly using the symbol calculus there exists BELO(M) with (~o(B)=b. More par- 

ticularly, given an open conic neighbourhood 1 ~ of T*~M, b can be chosen so b=l  and 

B = Id  on F, provided ~ q Fm for all m E aM. Furthermore B can be chosen properly sup- 

ported. 

With such a choice of B set 

u l = B u ,  u 2 = ( I d - B )  u. 

By construction ~ W F b  (ul), T*~M N WFb (u2)=0 .  Near each ~ n ~ M  Proposition 9.3 

can be applied to u 1 in local coordinates with dx/x=~,~; similarly Proposition 9.3 applies 

to u~ in any local coordinates with dx'/x' EF. This proves the theorem. 

II .10.  L 2 es t imates  

I t  is relatively straightforward to show tha t  operators in L~ are locally L ~ bounded 

modulo a continuous seminorm on C~(R-~; L2(R~)). The main step in showing tha t  these 

operators are actually locally L 2 bounded is ~he boundedness of the residual operators in L~ ~~ 
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LEMMA 10.1. 1] a ~ S~~176 • R n • R ~+1) then the operator d(z, Dz) defined by (3.16) maps 
L (Z) to  5o(Z). 

Proof. If u E CT(Z) then 

~(z, D~) u = (2~)-~-1 f e~a-~)~+i(~-~,)., a(z, y', 2, ~) u(sx, y') ds dy' d~ d~ 

-- (2~) -~-1 f zc(z, y', s) u(~x, y') dy' ds, (lo2) 

where a(z, y', s)EC~(Z • Rn; S([0, ~ )). Thus, if ~eCT(Z) then 

f I II~a(z, Dz)ull~,= IQ(z)l ~ ~(z,y',s)u(sx, y')dsdy' dz 

<~ f~o.,]• dz{ (f~.• '~(z, Y',S)12(l + s~)s-l dsdy ') 

where, supp (~) U supp (u )c  [0, R] • K1, K 1 CCR n. The lemma follows from the density of 

CT(Z) in Z~(Z). 

T~EOREM 10.3. For any manifold with boundary, M, if A EL~ then 

A: L~(M)-~ L~oo(M), (10.4) 

Proof. The result is local and follows form the construction of an approximate square 

root for an elliptic self-adjoint operator in L~ Thus, in (10.4) it can be assumed that  A 

is properly supported, the error term being handled by Lemma 10.1. Then, it suffices to 

construct a square root, modulo L[~176 for 

C-A*A eL~ C > 0 large. 

Since the proof follows as in the standard calculus (see [4]) it is omitted. 

The local boundedness of operators in Z~ on L ~, together with certain commutation 

results easily leads to boundedness on Sobolev spaces of integral order. Recall from Lemma 



2 0 8  R.  B.  MELROSE 

5.15 that  if P is a differential operator of order/~ and .4 EL~(Z) then there exist finitely 

many differential operators P~, 8 ES, of order at  most k and operators As ~L~(Z) such that  

P .  A = ~ As. P~. (10.5) 
S~S 

Now, for any k E Z define 
/te(Z) = {uEHk(Rn+I); supp (u) c Z}. 

The standard properties of Sobolev spaces show that  if k ~< 0 then u E Hk(R ~+1) if, and only 

if, i t  can be written in the form 

u= ~ D~zuz(z), u~eL2(Z)-~I:I~ (10.6) 

Applying (10.5) repeatedly to the adjoint of A EL'~(Z) shows that  

A . D ~ =  Z D r . A  r (10.7) 
[rl-<<lfll 

with A v eLg~(Z). 

T H e O r e M  10.8. 1] ]ceZ then any A eL~ maps t:I~(M) into H[oc(M). 

Proo/. Of course this is purely local, and for/c~<0 follows directly from (10.6), (10.7) 

and Theorem 10.3. For ]c > 0 it follows similarly, since u E/Jk(Z) if, and only if, 

D~uEL3(Z) u <~1r (10.9) 

Thus, using (10.5) and assuming u E/~(Z) 

n~Au= Z Av'D~uEL~oo(Z) 
I~l<lfll 

for all [fl{ <k.  

The spaces H~oc(M)~ ~'(M) of distributions extendible to elements of H~oo(M), when- 

ever _7~ is an extension of M across ~M, can be characterized as the duals of the corre- 

sponding I:I[k(M), k E Z. I t  follows that  any A EL~ defines maps 

A: H~(M)-~ H~oc(M) u  (10.10) 

the details of the proof being left to the reader. 

Chapter IH: Fourier integral operators 

III.1. Boundary  canonical transformations 

A canonical transformation from a boundaryless manifold X to a manifold Y is a 

C ~176 map Z: ~-+ T*Y~O defined on an open conic subset ~ c  T * X ~ 0  which is symplectic 

Z*eor =oo x (1.1) 
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and homogeneous 
z ' M ,  = M, .Z  s > O, (1.2) 

where M~ is multiplication by s in the fibres. In  view of (1.2) the condition (1.1) tha t  

pulls the fundamental  2-form of Y back to the corresponding form on T*X implies tha t  

Z*~r = ~x (1.3) 
with ax, a r  the fundamental  1-forms. 

If  X and Y are both manifolds with boundary it is natural  to demand that ,  in addition 

to (1.I), (1.2) Z preserve the boundary 8~  =/2 A ~T*X: 

y .(~)  c ~T* :Y. (1.4) 

PROPOSITION 1.5. I/  X and Y are mani/olds with boundary and Z: ~ T * Y ~ O  is 

a canonical trans/ormation satis/ying (1.4) then, provided (t~)-I(t~Q)A ~ is connected /or 

each Q 6 ~ ,  there is a unique canonical trans/ormation ~:  t*(O~N*~X)--> T*~ Y'~O, /rom 

~X to ~ Y such that the/ollowing diagram commutes: 

OT*X ~ (OO\N*OX) g , aT* Y 

T* OX ~ ~o OZ , T* 0 Y 

(1.6) 

Prool. Recall from Lemma 1.2.6 tha t  aT*Xc T*X has Hamil ton foliation defined by  

the projection t*. Since this is a sympleetic invariant  )~ must  map  the fibres of t* in a ~  

into the fibres of t~. As the fibres are connected Z projects to a map as indicated in (1.6) 

and it remains only to show tha t  ~Z is canonical. Since t* is homogeneous, so is ~Z and 

shows tha t  (~Z)*~r=  a~x, concluding the proof. 

We have defined ~=t*(@~2~.N*~X), excluding the conormal directions from ~ ,  

since t*(N*~X) is the zero section of T*~X. I f  X is a canonical transformation satisfying 

(1.4) and ~ A N*@X# ~ then the projection @X is C ~176 on all of t*(@~), which meets the 

zero section 0~x. As ~Z is canonical it must  be given near 0~x A t*(@~) by  the lift of a co- 

ordinate transformation, and is then essentially trivial from the point of view of canonical 

transformations. 

To remove the awkwardness associated with the assumption of connectedness of the 

fibres of t* in ~ we shhll work at  the germ level. Recall: that C ~ ( ~ ) c  C~(~), the subspace 
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of C w functions on ~ satisfying the trace conditions (of order k) is invariantly defined for 

~ T*X open. Let  
oo COO C'~,k(~) = ~.k(~, X) 

be the space of germs at  ~ E ~T*X of such functions. Since the symbols of elements of L~ 

are functions of this type,  it is natural  to examine the canonical transformations preserving 

these spaces. 

De/inition 1.7. I f  ~' E aT*X~N*aX,  Q E ~T* Y, a germ o/boundary canonical trans/orma- 

tion is a germ Z: T'X,  ~ '~T*Y,  ~ of canonical transformation satisfying (1.4) which in 

addition satisfies 
Z*:C~.k(~, Y)-* ~ ' C~.k(~, X), VkeZ.  (1.8) 

The fact tha t  Z is a canonical transformation implies tha t  the preservation of the 

spaces of functions having polynomial traces, (1.8), follows from a particular case. 

PROPOSITIO~r 1.9. I/ Z: T*X, ~' ~ T* Y, ~ is a germ o/ canonical trans/ormation 

satis/ying (1.4) then Z is a germ of boundary canonical trans/ormation provided Z*# has 

polynomial traces o] order 1/or some germ la E C~.1(~, Y) which is not constant along the ]ibre 

(t*) -1(t-Q) through ~. 

Proo/. Certainly the condition given is necessary, since it follows from (1.8). To prove 

sufficiency we introduce local coordinates z ' =  (x', y') near zQ' in X and z = (x, y) near zt~ 

in Y, with corresponding dual coordinates (x', y', ~', ~') in T*X and (x, y, ~, ~) in T*Y. 

Now, the assumption on # is that/x(x, y, ~, ~/) is not constant along the fibres of t* through 

= (0, 0, ~, 7). As ju has polynomial traces of order 1 this means 

~t(0, 0, ~,~, ) = a + b ~  with b #  0. 

We introduce new Darboux coordinates (i.e. coordinates in which the 1-form is still 

~dx +~?.dy)(X, Y, ~, H) in T* Y near Q by  setting 7~=# and 

HaY=H=~H=O, H ~ X = I ,  H=~,  Y = y ,  X = 0  o n x = 0 .  (1.10) 

Since b # 0 the Hamil ton field of E is transversal to x = 0  so (1.10) has a unique local solu- 

tion. The new coordinates are Darboux since from the initial conditions in (1.10), E dX + 

H.dY=~dx+~.dy=o~ when restricted to x = 0  and - ( ~ ,  H=> = E  so 

LR~o: = H~ ~co +dE = 0 .  
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Next  we observe directly from (1.10) tha t  X E Ca ~,_1(9'), Yj, Hi E C~.0(Q'). For example 

the differential equation for the Y/s  is 

n - I  

8~ES~Y-SxES~Y+ ~ ( a ~ E S y j Y - a ~ E S ~ Y ) = 0 .  (1.11) 

The initial conditions for Y show Y[~-o to be independent of ~ so 

~--1 

and 8~ Y is therefore a polynomial of degree one in ~. Proceeding by  induction we can 

assume tha t  8~ Y]~:0 is a polynomial of degree a t  most k in ~ for k <1- Applying 8~ to (1.11) 

( " '  ) 
i > p  t=1  

is easily seen to be a polynomial of degree a t  most  ] + 1 in ~ at  x = 0. 

Let  us write (I) for the canonical transformation (x, y, ~, ~)~->(X, Y, E, H) in T*R n. 

The pull-back of a function / is 

r y, ~, v) = / ( x ,  r ,  =_, H) 

so, carrying out the differentiation 

t t ~ 0 ~r = Z Q~j~Ox~(y.H)/( , Y, E, H) 

where Y, ~., H are evaluated a t  x = 0  and for each pair l, ] of integers and each (2n -2 ) -  

multiindex ~, Qzja is a polynomial in the derivatives of the X, Y, 7, H. Now, Y, H[z=o 
1 t a are independent of ~: and ~[~=0 is linear so ~ ( ~ . ~ ) / i s  a polynomial of degree at  most 

l + t - ]  in ~ if / has polynomial traces of order t. Moreover, Q1j~ is a sum of terms 

l 

where for each s,t~6{1 ..... 2 n + 2 ) ,  T I = X  , Tq=Yq_l, 2 ~ < q < n + 2 ,  T~+2=E, Tq= 

Hq_n_ 1 n + 2 < q ~< 2n + 2 the total  order ~ r s = k and the numbers of appearances of X and 

7z are @{t~= 1) =l ,  @{t~=n+2}  =]. Thus, ~q5*/[~.  0 is a polynomial in ~ of degree a t  most  

]~- l  § + (1 + t - - j )  = ]c + t and we have shown tha t  

r c7.,((0, 0, 8, ~)) -~ c7.~((0, 0, ~, ~)), vt, 

In  the local coordinates z', z introduced in X and Y the canonical transformation 

~Z from ~X to ~Y has a natural  ' f lat '  extension to a boundary canonical transforma- 
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tion Zo from X to Y, where Z~(X) =x ' ,  Z~(~)=~', Zo(y,~)=(~Z)*(y,~).* Thus, replacing Z 

by Xo I"Z it suffices to consider the special case ~Z = Id. Let  (1) be the boundary canonical 

transformation from Y to R" defined above by  demanding that  ~q) be the lift of the co- 

ordinate map y: ~Y-+R ~-1 and (I)*(~)=/x. If ~F is the boundary canonical transformation 

from X to R" with ~ F  the lift of the coordinate map y' and ~F*(~) =Z*(#), we have Z = (I)-1AF, 

so ;~ is a boundary canonical transformation. This completes the proof of the proposition. 

We can easily restate this proposition in terms of the compressed cotangent bundle: 

P~  oF o sI~I  o ~ 1.12. A germ o/canonical trans/ormation Z: T ' X ,  ~' ~ T* Y, ~ satis/ying 

(1.4) is a germ o/boundary canonical trans/ormation i/, and only i/, it lifts to a local di/. 

/eomorphism. 
2 : ~ * X , ~ '  " . . . .  ~ * r , ~  

i l (1.13) 

Z: T ' X ,  Q' ~ T ' Y ,  ~, 

/or O' =z@') e ~*X, ~ ==(e) E ~* Y. 

Proo]. The condition that  the lift 2 be C ~ is simply that  Z preserve the rings of Coo 

germs, C~.z on T*X at  6. For  k < 0  C~.k(X) is just the space of functions vanishing to order 

k at x = 0  and for k > 0  C~176 is just the space of functions / such that  xk/EC~.o. Thus if Z 

preserves C0,oo 0 it preserves all the C0,oo ~. 

The region of definition of the lift ~ of a realization of the germ Z is not a neighbourhood 

of ~'; it can be taken to be of the form 

B = { ( x , y , ~ , V ) ;  (y,~)eB', 0 < z <~, I~] < e l x l  ]7]} (1.14) 

where B' is a smoothly bounded conic region. Using Proposition ]~.2.10 it follows that  

is a diffeomorphism on its domain, so it can be extended to a local diffeomorphism as 

claimed. 

To extend Definition 1.7 to be global, and also to include some transformations more 

general than symplectic diffeomorphism on T*X we simply choose (1.13) as the fundamental 

concept. 

Definition 1.15. A boundary canonical transformation from X to Y is a diffeomorphism 

defined in an open cone F ~  ~*X: 
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such tha t  ~(P f3 ~ * X ) c  ~ *  Y and the transformation 

is canonical. 

z:T*ff , T * ~  

~ * X \ O ~ ' * X  , ~ * Y  O~*Y 

(1.16) 

Observe immediately tha t  near each point r  O F, ~ projects to a germ of 

boundary canonical transformation, in the sense of Definition 1.7. 

To properly reconcile Definition 1.14 and Definition 1.7 it is necessary to improve 

Proposition 1.12 slightly so tha t  the extension of Z, provided by  ~, is everywhere canonical 

in its domain of definition. The last condition (1.16) can be replaced by  an intrinsic condi- 

tion on the compressed cotangent bundles, namely tha t  Z relates the invariantly defined 

singular symplectic forms: 

r = ~. d~j A dyr + d log x A d2 (1.17) 
i=i 

and is homogeneous. Thus a C w map from T*X to T* Y is a boundary canonical transforma- 

tion if, in canonical coordinates (x, y, 2, ~1), (X, :Y, A, H) in ~*X, ~*Y, Z(x, y, 2, ~) = 

(X, Y, A, H) it satisfies the Poisson bracket  conditions: 

f f l xY j=[ txHj=O,  / / ~ A =  - 1, 

/tr~ X = / t r k A  = / i rk  Yr = 0, / / rkHj  = -- ~kj, 

Here, for /= / (x ,  y, 2, ~) 

R A X = I ,  /1A Yj = /~AHj  = 0, 

t~ ,kX=nH~A=I~,~Hj=O,  [IHkY,=(~k j. 

(1.18) 

vx vy 
(1.19) 

is the Hamil ton vector field of f with respect to (1.17). 

The system of equations (1.18) holds for the lift ~ of Z in the region B in (1.14). Using 

Proposition 1.2.10 E = A / X  can be extended to a C ~176 function near the base point, E =  

a(x, y, 2, ~) + (2/x)b(y, 2, ~7), b # 0 .  Since the system (1.18) is in involution it  is only neces- 

sary to solve 
f l z x  = 1, ~ Yj =/t_~Hj = 0, (1.20) 

using the given initial data  on x = 2  =0.  The solution is unique and smooth since 

xA= = b(xax + 2~) + x V 

where V is tangent  to x = 0. This is essentially radial in x, 2 and since the C ~~ extension of 

gives solutions to infinite order a t  x = 2 = 0  smoothness of the solution follows. In  view 

1 4 -  812903 Acta  mathemat ica  147. Imprim6 le 12 F6vrier 1982 
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of this identification the same notation, %, will be used for the action of a boundary canonical 

transformation either on T*X or T*X. 

Since the volume form r "+I of the 2-form ~5 in (1.17) is x-lco, with r a non-vanishing 

C ~ volume form it is clear tha t  a diffeomorphism (1.16) which is singular-canonical in the 

sense tha t  it is homogeneous and 
Z*oSu =~Sx (1.21) 

is automatically a boundary canonical transformation. Indeed Z must  map the two singular 

surfaces x = 0 ,  ~' = 0  to each other. Now, since ~ is homogeneous the symplectic condition 

(1.21) is equivalent to the canonical condition: 

%*% = Sx (1.22) 

where $~, Sy are the singular-canonical 1-forms: 

= ~ ~bdyj+ ),d log x 0.23) 
j = l  

LEMMA 1.24. I /  (X, y, ~, U), (X', y', A', 7') are canonical coordinate8 in ~*X, T* Y and 

g is a boundary canonical transformation from X to Y then 

z*(z')l (~ = o) = z. 

Proo]. Since Z*(z') =xa with a > 0  and C ~ 

Thus, condition (1.22) implies 

proving the lemma. 

Z* (log x') - log x mod C ~ 

Adx =%*()J)dx at  x = 0 ,  

III.2. Local  parametrizat ion 

To define totally characteristic Fourier integral operators using oscillatory integrals, 

by analogy with the work of HSrmander [10], it is necessary to show tha t  boundary canoni- 

cal transformations can be parametrized by  phase functions with tile special dependence 

on the one phase variable effectively dual to the normal variable. To do this we recall the 

definition of the stretch of a manifold with corner, introduced in Section II.4, and more 

particularly the stretched product  N 2 M of two manifolds with boundary. 

The principal reason tha t  the stretched product enters here is tha t  a boundary canoni- 

cal transformation from M to N sits as a Lagrangian manifold in T*(N ~ M). First observe 

tha t  the dual to the projection 
~ : N ~ M ~ N •  
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gives a Coo mapping 
T*N • T * M  ~ T*(N • M)  --~ T*(N  ~ M)  (2.1) 

which is an isomorphism away from the corner. 

PROPOSITION 2.2. The identi/ication T*IV • T * M  ~ T * N  x T * M  over the interior 

combined with (2.1) gives a C ~ map 

T * N  x T * M  -~ T*(N ~< M)  over N x M (2.3) 

which, restricted to the twist (graph Z)' o / the graph o / a  boundary canonical trans/ormation, 

extends by continuity and embeds it as a C ~ Lagrangian submani/old o/ T* (N  ~< M)  meeting 

th~ boundary ~T*(N ~ M)  only in the part over ~IV •  • ( - 1 ,  1) o/ the codimension one 

boundary and transversally. 

Proo]. I t  is only necessary to resort to local coordinates to see this. Let  (x, y), (x', y') 

be coordinates in N, M with (x, y, ~, 7), (x', y', ~', 7'), (x, y, 4, 7), (x', y', 4', 7') the canonical- 

ly dual coordinates in T 'N ,  T ' M ,  T ' N ,  T * M  respectively. Near ~/V • ~M • [ - 1, 1 ]c  N ~ M 
r .  t , (~O r local coordinates are given by w = �89 + x'), r = (x - x')/2w, y and y ,  let (w, r, y, y ,  , Q, 7, 7 ) 

be the corresponding dual coordinates in T*(N ~ M).  Under the isomorphism (2.3) in the 

interior the forms 

4' 
~- dx § - ,  dx' § ~ . dy + ~' . dy' and eo dw § 9 dr § ~ . dy + ~]' . dy' 
X X 

are identified. So, 
r 

~ =  (1+ r)-~+ ( l - r )  
X X 

9 =  \x x / "  

(2.4) 

The singularity in (2.4) shows that  (2.3) does not itself extend to a smooth map up to 

the boundary, though as we shall see below its inverse does. The submanifold obtained 

from graph Z by reflection in the fibres of the second factor is of the form: 

(graph Z)' = {((x, y, 4, 7), (x', y', - 4 ' ,  -7 ' ) ;  x' = xa, 4" = 4 +xg, y' = Y' ,  7'  = H ' }  (2.5) 

with a > 0 ,  g, Y' and H'  Coo functions of (x, y, 4,7). Thus, r = ( 1 - a ) / ( l + a )  is Coo and 

bounded away from • 1 on (graph Z)'. From this it follows that  

c o = - g ( l + r )  (2.6) 
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is also C ~ as is 
2~ 2A' 

0 = ~ r +  1 _  r �9 

So the map (2.3) extends smoothly to 

(graph g)'~-~Ax~ T*(N ") M) 

(2.7) 

(2.s) 

as a C ~ lagrangian submanifold with the stated intersection property. 

Suppose that  A c  T*(N ~ M)~O is a Lagrangian submanifold which is the image of 

the graph of a boundary canonical transformation under the map (2.8). As noted above, 

~k ~ T~ics'~)(N ~ M) (2.9) 

N T~;(N;M)(N ~ M) = | (2.10) 

~ow, A actually satisfies a stronger form of (2.9), namely the intersection is symplectically 

transversal as well: 

the Hamilton foliation of T~7(N~M)(N ~ M) is not  tangent to /~ .  (2.11) 

To see this just observe that  in the canonical coordinates (w, r, y, y'; w, ~, 7, 7") used in the  

proof of Proposition 2.2 the Hamilton foliation of the surface, given by w =0,  consists of 

the c0-1ines. From (2.6) we see immediately that  ~ is not tangent to X ~  {co +g(1 +r)  =0}. 

Now, from (2.11) it follows that  if A is the image of a boundary canonical transforma- 

tion under (2.3) then the quotient 

hi =s N T~,~(N~M)(N "~ M)/H c T*(~[(N ; M)) (2.12) 

by the Hamilton foliation H of T~;(N~M)(-N" ~ M) is again a Lagrangian submanifold. From 

the defining relations (2.4) a further transversality condition can be deduced, involving the 

fibre bundle E considered in (H.4.15) and Corollary II.4.16. 

-~1 meets F transversally and the fibres cleanly in F. (2.13) 

Indeed, from the coordinates (w, r, y, y'; co, Q, ~, ~') used in the proof of Proposition 2.2 

one gets canonical coordinates (r, y, y'; ~, ~, ~') in T*~(N ~ M) in terms of which F is 

defined by 
F = {~ = 0}  (2.14) 

and the fibres are the r-lines. From (2.7) A1 meets o = 0 transversally and as r = (1 -a ) / (1  +a)  

on A ~, is not  tangent to A1- 
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Finally the Lagrangian A satisfies the usual 'no zeros' condition for a relation. If  

:z~: T*N~T*(N  • M), ~*" ~. T*M ~ T*(N ~, M) are dual to the projections 

then 

N ; M  

does not meet either ~ ( T * N )  or ~*(T*M). (2.15) 

To see this first note 

(w, r, y, y'; co, ~, 7, ~') by 

that  ~ ( T * N ) ~ T * ( N ~ M )  is defined in the coordinates 

(1 +r)Q = o)w, ~ ' = 0  (2.16) 

and similarly, :r~(T*M)~ T*(N ~ M) is defined by 

(1-r )~=eow,  ~=0 .  

Now, ]r] # 1  on A near w = 0  and from (2.4), (2.5) 

42 2xg 
Q = l _ ~ + l _ r  

(2.17) 

(2.1s) 

so (2.16) cannot hold on A N {w=0} since it would imply 2'--0, ~' =0 and Z is a map 

from T * M ~ 0  to T*/V~0. Similarly (2.17) cannot occur on s fl {w =0}. Away from w =0, 

i.e. ~ ( N  ~ M), the condition (2.15) is just the usual statement that  A avoids the zero sec- 

tions of T'M,  T*N. 

The intersection conditions (2.9), (2.10), (2.11), (2.13) and (2.15) characterize Lag- 

rangians which come from (2.8), except for the condition that  Z should be a mapping. We 

therefore introduce: 

De/inition 2.19. A boundary canonical relation from a manifold with boundary M 

to a manifold with boundary N is a conic submanifold 

~ T*(N ~ M ) \ 0  

which is Lagrangian and satisfies (2.9), (2.10), (2.11), (2.13) and (2.15). 

We can now give a converse to Proposition 2.2, 

PROPOSITION 2.20. The mapping over the interior 

T*(1V ~ M) -~ T*IV • ~*M (2.21) 
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extends to a C ~ map o/mani/olds with corner. This restricts to an isomorphism o/each boundary 

canonical relation A to a submani]old }k ~ (T*N'~.0) • ( T * M ' \ 0 )  with the/ollowingprot)erties: 

meets the topological boundary o / T * N  • T*M only in the corner. (2.22) 

meets each hypersur/ace ~T*N • T ' M ,  rT*N • ~T*M transversally in A~. (2.23) 

is Lagrangian and conic. (2.24) 

A1 meets T*~N •  ~T*N • T*~M transversally and only in T*~N x T*~M. 
(2.25) 

Conversely each C ~176 submani/old A c ( T * N ' ~ O )  • ( T * M \ O )  with these properties is the 

image o/ a boundary canonical relation which is (locally) the twisted graph o/ a canonical 

di//eomorphism precisely when the two projections /tom A to T*N and T*M are (locally) 

di//eomorphisms. 

Proo/. In terms of canonical coordinates (x, y, 4, ~]), (x', y', 4', ~]') in T 'N ,  T*M and 

(w, r, y, y'; ~o, Q, ~], ~') in T*(N ~ M) the map (2.3) is given by (2.4) and 

r = ( x - x ' ) / ( x + x ' ) .  

x' = w ( 1 - r )  

4' = -�89 - r  2) § �89 - r ) ,  

w = �89 (2.26) 
Inverting this gives 

x = w(1 +r),  (2.27) 
and 

4 = �89 - r  ~) + �89 +r),  (2.28) 

showing that  (2.21) is C% 

On A, lrl # 1  by (2.10) and ~ is not tangent to A at w = 0  by (2.11). From this it is 

clear tha t  (2.21) resticts to an isomorphism of A to A which has the properties (2.22), 

(2.23) and (2.24). Finally, since (2.18) holds and A satisfies (2.13),/kl meets T*~N • ~T*M 

transversally, i.e. 4 =0,  and only inside 4' =0.  Thus, (2.25) also holds. 

The converse part  of the proposition is similar so, together with the characterization 

of local boundary canonical transformations, the details are omitted. 

The first use we shall make of Proposition 2.20 is in showing the existence of useful 

parametrizations of boundary canonical relations, which term will be used for the Lag- 

rangians A and A interchangeably. A preliminary result is needed. Suppose that  M is 

any C ~ manifold with boundary and A c T * M ~ O  is a conic Lagrangian submanifold with 

A [~ ~T*M. (2.29) 

If M~ ~ M is an open extension of M across 9M then, at  least locally, A can be extended 

across 9T*M to a Lagrangian A~ in T*Mz. To see this just observe that  there must always 
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be, near any given p q~A, a Hamilton vector field V on T*M tangent to A and transversal 

to ~T*M. Indeed if V=HI ,  f6C~(T*M) this just r e q u i r e s / = 0  on A and d r # 0  on ~T*M. 

The existence of such a function follows from (2.29). Extending / across ~T*M to gfi 

C~176 gives an extension AE as the Hg-flow-out of A, near p. 

Recall tha t  a parametrization of a conic Lagrangian submanifold A c  T * M ~ O  near 

p 6 A is provided by  a homogeneous C ~ function 

q: ~ •  

where 7 ~  RN'~0 is an open cone with variables denoted 0, . . . .  ,0N, and ~ is an open neigh. 

bourhood of ~(p) eM,  such that  everywhere on 

Cr = {(m, 0 ) 6 ~  • doq~ = 0} (2.30) 

the N differentials d(~q)/~Oj) are independent and the map 

C~9 (m, O) ~-> (m, dm q~) 6 T*M (2.31) 

is a local isomorphism onto a neighbourhood of p in A. The existence of such parametriza- 

tions is, of course, an integral part  of the theory of Fourier integral operators as described 

by HiSrmander [10]. The transversality properties of the Lagrangians A allow one to find 

special parametrizations. 

P~OPOSITION 2.32. I / ~ k c  T*(N ~< M) is a boundary canonical relation and (w, r, y, y') 
, X  r t~ are coordinates in N ~< M induced by coordinates (x, y) in N and ( , y ) in M then, near each 

point p in the boundary of A there is a parametrizing phase/unction of the form 

i - r  
~p(w, y, y', ix, O) - /~  1 + r (2.33) 

where V is homogeneous of degree one in the phase variables (/x, O)67c  R l+y and satisfies the 

non-degeneracy conditions 

~ #o ~g 
o n  

( and rank d ~ l ,  ..., d ~ d /x ~ = N + I 

C~ = {(w, y, y', ~, 0); d~v = 0}. 

(2.34) 

(2.35) 

Proof. This can be shown directly by reviewing the construction of parametrizations, 

instead we shall take as starting point the existence of local parametrizations even when 

the Lagrangian is non-homogeneous and depends smoothly on a parameter. First, change 
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variable from r to s = ( 1 -- r)/(1 + r), which is possible since r # _ 1 on/~. In  the new canonical 

coordinates (w, s, y, y'; w, a, ~], ~]') in T* (N  T< M )  the bundle F is still given by  a = 0 .  Near  

w = 0 ,  a = 0  the transversali ty condition (2.13) means tha t  the projection of A f3 {a=e )  

along ~s is Lagrangian in the variables (w, y, y'; co, ~1, ~') and depends smoothly on ~. I f  

~l(w, y, y' ,  e, 0) is a parametrizing phase function, depending smoothly on e then the 

phase function 

= ~0~(w, y, y', #, 0)-/~(s-(~) (2.36) 

parametrizes 2r for a suitable choice of constant ~. Clearly this fulfills all the conditions 

of the Proposition, since YJ1 can be chosen homogeneous in (/~, 0). Away from a = 0 ,  but  

still near w = 0, the vector field ~s has no invariant  meaning, but  coordinates can always 

be chosen so tha t  it is not tangent  to A, then the same method yields a parametrizing phase 

function (2.36) 

Remark  2.37. In  the proof above the variable w = x + x '  can be replaced by  x without 

other alteration, so A has local parametrizatious of the form 

l - r  
' (2.37) y~(x, y, y , g,  O) -/X l + r 

with ~ satisfying (2.34) and (2.35). Then the parametrizing map 

(2.38) 

is easily seen to be a local isomorphism of C~ and the relation A. Alternatively using the 

coordinate invariance of parametrization the original variables can be reintroduced so tha t  

t X ~v(x, y, y ,  ~, O)--x'~ (2.39) 

is seen to be a parametrizing phase function for the Lagrangian 

A c T * N  • T * M  

which is just the image of/~. In  fact, starting from A the standard construction of a param- 

etrization can be modified to give a phase function of the form (2.39), with its special 

dependence on the one variable $ 'dual to x'. The approach adopted above, whilst more 

abstract,  is more natural  in view of the importance of the manifold N ~ M as the carrier 

of the kernels discussed below. 
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Finally we observe tha t  A is locally a boundary canonical transformation if, and only 

if, it can be represented by a phase function (2.39) satisfying 

det | YJ0~, Y)00 Y~0~ | # 0, on C~. 
! J 

(2.40) 

III.3. Oscillatory integrals 

As for the pseudodifferential operators of Chapter I I  the amplitudes of the oscillatory 

integral operators considered here are of the form a(z, y', x$, O) with special dependence 

on the one variable 'dual '  to the normal variable to the boundary, x. Suppose tha t  ~ E 

C~(Z x R ~ x (RN+I~0)) is real-valued and homogeneous of degree one in (#, 0)ER N+I. Con- 

sider an open cone F in which ~ is a phase function in the sense tha t  (2.34), (2.35) holds on 

r n =0}, 
~ , ~ > 0  i n F  (3.1) 

and i n x  >0,  in F, T(z, y', x~, 0) is a non-degenerate phase function in the usual sense. 

Set 
~ ( F )  = {a ES~(Z • R n • RN+I; a is in S - ~  outside a closed subcone of F}. (3.2) 

I f  a E ~ ( F )  and (z, y ' ) E K  c ~ Z x R ~ the integral 

a = f Y', t t', O) dtt (3.3) 

is well-defined in the oscillatory sense for 

s <s (K) ,  s > lie(K), s(K) > 0. (3.4) 

Indeed, subtracting a term in 8 -~  from a allows one to assume tha t  s<ds~<l/s on 

supp (a) A K • R N+I. Integrat ion by parts  using 

a~ e ~ - ~  = i ( ~ -  s) e ~-~'~ 

allows (3.3) to be replaced by  a convergent integral with symbol of arbitrarily low order, 

provided (3.4) holds. In  particular, 

L@)aEC~176 e] U [l/s, c o ) •  S(R~)). 
Now note tha t  

(3.5) 

L@): S-~(Z • R ~ • R N+I) -~ C~([0, ~ ) • Z • R~; S(RN)) (3.6) 
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and for any a E ~z(F)L(~)a is always rapidly decreasing as I(s, O) l ~  ~ .  I t  follows from 

Lemma II.1.5 that  the map (3.6), restricted to s E [0, s], e > O, is surjective, since if a E S -~  

so is e~r and conversely. This proves the existence of lacunary symbols for the phase 

function q, since L@)a=M(e-~V5), with M as in (II.1.6). 

P ~ o P o s l T I O ~  3.7. I /  S~a(F, q~)~ ~(F)cowsis ts  o/ the symbols a such that L@)a is 

rapidly decreasing as s ~ 0 and s ~ ~ then there is a continuous linear map 

B: ~m(F) "-> S - ~ 1 7 6  

such that Id + B~: ~m(F)-~S~(F, ~v). 

If  q is a phase function with (3.1) holding in F, consider the oscillatory integral operator 

( e~(~'~"~e'~ a(z, y', x~, O) u(z') dz' d~ dO. (3.8) Fu(z) 
J 

Making the usual change of variable s =x'/x, tt =x~ reduces (3.8), formally, to 

= ~e~(~'~""~ y',/~, O) u(xs, y') dy' dsd~ dO. Fu(z) 
J 

(3.9) 

To investigate (3.9) it is necessary to recall, briefly, the theory of Lagrangian distribu- 

tions which is to be found, in part  implicitly, in HSrmander [10] and for example in Guil. 

lemin and Sternberg [7]. In fact following the elementary definition in Chapter I of the 

Lagrangian distributions associated to the conormal bundle to the boundary it is relatively 

easy to give a direct definition of the more general space I~(M, A). Here, A ~  T * M ~ O  

is a homogeneous Lagrangian submanifold. The local representation theorem, a straight- 

forward extension of Darboux's theorem shows that  near each ~ E A there are n = dim A C r 

functions gj which are real-valued, homogeneous of degree one and vanish on A, simply 

near ),. In consequence, 
{g~, gj) = 0 on A. (3.10) 

To extend this geometric structure to analysis, choose properly supported pseudo- 

differential operators GjELI(M) with principal symbols g~, ]= 1 ..... n. Then consider a 

distribution u E E'(M) which has 
WF (u) ~ A (3.11) 

and for which there exists s E tt  such that  

G~I... G~uEH~o~(M), Yk. (3.12) 
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Definition 3.13. I~176 A)= D'(M) consists of those distributions v EO'(M) such that  

(3.11) holds and for each Q E C~(M), (3.12) holds for u =~v and all local defining functions 

g~ for A; s depending only on v. 

Note that  (3.12) is independent of the choice of Gj with al(Gj) = gj since pseudodifferential 
8 operators of order zero are bounded on H~oo, if properly supported, and we assume (3.12) 

for all local defining functions. A straightforward application of the theory of Fourier 

integral operators which, for completeness, is outlined below, shows that  this definition is 

actually equivalent to the usual one in terms of oscillatory integrals and local parametriza- 

tions. 

I t  is clear that  (3.12) is microlocal; that  is it holds for u if and only if it holds for all 

Biu when the B~EL~ form a pseudodifferential operator partition of unity. Thus, it 

is enough to assume that  for a preassigned neighbourhood A' of some ~ E A, 

WF (u) c A'. 
Taking a canonical transformation 

c: T 'M,  A', ~ ~ T ' I t  ~, N*(x~ = 0}, (0, 0 ..... 0; 1, 0 .. . .  ,0) 

and associated properly supported Fourier integral operator, F,  elliptic over WF (u), it 

is immediate tha t  (3.12) holds for u if and only if it holds for Fu with respect to the Lag- 

rangian ~*{x 1 =0}. This case is analysed in Section I, where it is shown, in equation (L1.5), 

tha t  Fu can be written, modulo C ~, as an oscillatory integral with phase function xl~ 

parametrizing N*(x1=O ~. The fact, namely the Lemma of stationary phase, that  Fourier 

integral operators associated to canonical transformations act on such oscillatory integrals, 

together with the calculus developed in [10] proves the following result, with respect to 

Definition 3.13. 

THEOREM 3.14. For each uEI~176 A) there exists mER such that i/ q~jEC~~ • Nj) 

are local parametrizations o/ A in open cones Fj, in the sense o/ (2.31), covering the whole o / A  

then there exist symbols aj E ST.+o ~n- �89 • It~) and u R E C~176 such that the/ollowing sum is 

locally finite and 

~ f e~(~'~ O)dO=u-u~. (3.15) 

The symbol isomorphism 

(~,,: Ir~(M, A)/Im-I(M, A)~Sm+I~(A, L|174189189 L Q ~ | 1 8 9  (3.16) 

defined by H6rmander, has L the Maslov bundle on A, f2~h the 1-density bundle on A and ~M �89 

the pull back to A o~ the dual to the �89 bundle on the base, M. With respect to the local 
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coordinates introduced by the parametrizations pj, and corresponding local trivializations o] 

the bundles over A, am(U) is ]zest a linear combination with C ~ coe/]icients o/the aj on C~. 

Now, suppose tha t  M is a C ~ manifold with boundary and tha t  A =  T * M ~ O  is a 

homogeneous Lagrangian manifold with 

A ~ ~T*M, N*~M (1 A = •. (3.17) 

I t  was shown above that,  under condition (2.29), such a submanifold A can be extended 

to a Lagrangian submanifold in the cotangent bundle of any  extension of M across tha t  

boundary. 

I f  A1, A2 are two extensions of A, near ~, in extensions M1, M 2 of M then there always 

exist parametrizations ~ E C~~ • R N) of A~ near 2, with ~1 =~2 over M • R N near the 

base point. Indeed, in view of the first condition in (3.17), it is possible to introduce local 

coordinates (x, y) in M so tha t  A is given by 

y j = ~ p ( x , y ' , ~ " ) ,  Y '=(Y l  .... ,Yk), ~ " = ( ~ + 1  ....  , ~ ) ,  i = k + l  ..... n. 

Then the same is true for A1, A~ in local coordinates in M~, M 2 extending these coordinates 

with YJ1, Y~ replacing ~0 and both extensions of it into x < 0. The phase functions 

~ = Y"'7" - ~ ( x ,  y', ~") 

are parametrizations as desired. This means tha t  any u 1 E Ira(M1, A1) with wavefront set 

near 2 is equal in M to some u~ E Im(M~, A2). 

De/inition 3.18. Let  A = T * M ~ O  be a homogeneous Lagrangian submanifold satisfying 

(3.17). The space Ira(M, A ) =  O'(M) consists of those distributions which can be written 

as the restriction to M of a locally finite sum of distributions in the spaces I'~(Ms, A~) 

corresponding to extensions of M, A. 

The independence of extension discussed above shows tha t  the symbol isomorphism 

(3.16) remains valid when M is a manifold with boundary and (3.17) holds if the symbol 

spaces on the right are interpreted in the obvious way for A a manifold with boundary, 

i.e. as the restrictions to A of symbols on an extension. Note that ,  because of the second 

condition in (3.17), each element of Ira(M, A) is C ~176 up to the boundary with respect to 

any normal variable, so is in A'(M).  In  particular one can equally well consider, unam- 

biguously, 
Ira(M, A) c D'(M),  

by cutting off at  the boundary. Note also tha t  

f'l I'n(M, A) = Coo(M). 
m 
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PROPOSITIO~ 3.19. The integral in (3.9): 

(I)(a) .l etr176 a(z, y', #, O) d/~dO 

de/ines a linear map 
(I): S~(F, ~) -+ Im(Z ~ g, A) (3.20) 

whenever A is a boundary canonical relation in T*(Z ~ Z), parametrized by q~ in the sense o/ 

Section 2. Moreover, ~P(a) vanishes to all orders on the parts ~Z • Z and Z • OZ o/the boundary 

Z ~ Z .  

Proo/. I t  should be noted that  the abuse of notation in (3.20), arising from the fact 

that  Z ~ Z is not a manifold with boundary, is minor since the Lagrangian/~ only meets 

the boundary away from the corner and does have the transversality properties (3.17) 

there. Thus, Im(Z ~ Z, A) consists of distributions which are C ~ up to the corner. In fact, 

since it is shown in Proposition 2.20 that  ~(z, y', ju, 0) -s/~ does parametrize A the proposi- 

tion has already been proved. 

Following this preliminary investigation of (3.9) the space of kernels of interest can 

be defined directly on N ~ M. 

De/inition 3.21. Let  M, N be C ~ manifolds with boundary. If A c  T*(N ~< M) is a 

boundary canonical relation in the sense of definition (2.19), the space 

•m(A) c Im(N ~ M, A; ~N)c-* ~)'(N ~< M; ~ )  

consists of those Lagrangian sections of ~N associated to A and vanishing to all orders at 

N • 0M and ON x M in N ~ M. 

The residual space :K-~(A)=~-~ N) is clearly independent of A. In fact, 

X-| N) c C~(N ~ M; fi~) 

consists of those smooth sections vanishing at  the part  N • 0M U ON • ~ / o f  the boundary. 

Suppose that  M and N have the same dimension so are locally diffeomorphic to the same 

standard manifold Z. Clearly ~K-~(M, N) is just, locally, the space of kernels of operators 

in L;~176 Indeed, by the definition of ~N any k e X - ~ ( M ,  N) is of the form 

- x o: x, y, y ,  x dx' dy' (3.22) 

with ~ 6 Ca~ this proves the following result. 
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PROPOSITIO~ 3.23. If M, N are mani/olds of the same dimension the injection, 

~-~(M, N)~  D'(N "2 M, ON), 

given by (3.22) in local coordinates, maps onto the space o/Schwartz kernels, o/the operators 
in L;~176 N), the elements o/which give maps in L~(Z) in any local coordinates. 

Even when the dimensions of the two manifolds are different the residual kernels are, 

essentially, the same in local coordinates except for the differing number  of y and y '  vari- 

ables. Since these are basically parameters  all the results for operators in L-~(Z) apply, 

simply by  the addition of an appropriate number  of extra variables. 

Similarly it is now possible to define the space of totally characteristic Fourier integral 

operators associated to a given boundary canonical relation. Each element 2' E I~(M, N; A) 
is fixed uniquely by an element of ~ ( A )  by  noting tha t  in any local coordinates z = (x, y), 

z'= (x', y') on M and N the formal definition (3.9) can be written 

2,u(z) = f K(x, y, y', s)u(sx, y')dy'ds, nECk(N) (3.24) 

where Kdy'dsE~'~(A). I t  can be assumed, by  adding a term in L-~(M, 57) tha t  K has 

compact  support in sE(0, ~ )  and then the integral is just the distributional pairing of 

integrand and 1. The assumption (2.15) on the boundary canonical relation A means tha t  

(x, y)~+K(x, y , . ,  . )ED ' (R  ~ • is C~ so any  FEI~(M, 57; A) is a map 

F: r  -~ C~(57). 

III.4. Operator calculus 

The definition of totally characteristic Fourier integral operators given above in terms 

of the kernels in ~ ( A )  can be extended to other vector bundles over M and 57. I f  E, F 

are vector bundles over M, N respectively the space of kernels is just the space of distribu- 

tional sections of ~N|174 Lagrangian over A and vanishing to all orders at  ~57 • 

M U N • ~M. The corresponding space of operators will be denoted I~(E, F; A), with M 

and N understood. 

PROPOSITIOZ~ 4.1. I/ F E I~(M, N; ~k) the adjoint operator 2,* E IT(~N, ~M; s 

Proo/. In  computing the adjoint it suffices, in view of continuous dependence on the 

kernel, to assume 2, ELf'(M, N). Then, in local coordinates in which (3.24) holds 

F*q~(z)= f K(tx' ' ~) ) dt (4.2) , y ,  y ,  q~(tx', y dy.  
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(4.3) 

Next consider the formula for the product of two pseudodifferential operators in 

L~~176 given in (II.7.9). Writing this out in terms of the kernels of F 1, F 2 of the form 

(3.24), assuming supports to be compact: 

F~ F2q~(z ) = f K (z, y, y', s)K2(sx , y', y", s') ~(ss' x, y")dy" ds' dsdy'. 

Since K1, K 2 are rapidly decreasing as s-~0, o~ the change of variable t =ss' is permissible, 

so F = F 1 F 2 is of the form 
f .  

= |  " r Fq~(z) K(z, y, y ,  ) q~(tx, y") dy"dt (4.6) 
.2 

where 

K(z , y , y  ,t) f K l ( z , y , y  ,s)K~(sx,  y ,y" , ; )  ,ds " = ' ' dy -~. (4.7) 

Noting that  an operator in I~(M, N; A) is properly supported if and only if the two projec- 

tions from the support of K in N R M, to M and N are proper, let the corresponding sub- 

spaces of properly supported operators and kernels be I~. p(M, N; A) and :K~(/~) c P ' ( N  ~ M). 

PROPOSITION 4.8. I] Zl: T * N ~  ~*Q, Z2: T * M ~  T*N are boundary canonical trans- 

/ormatious the mapping (4.7) extends by continuity to a separately continuous bilinear /orm 

X (ZlX~)- (4.9) 

Proo]. I t  is enough to suppose that  K 1, K~ have compact supports away from s = 0, co 

in (4.7), since the other terms are certainly in L-~176 Q). Thus, (4.7) reduces to a computa- 

In fact the only point not immediately clear is the identity of the Lagrangian on the right 

in (4.4). However, the fact that  (4.4) is valid in the interior, which follows from the standard 

theory of Fourier integral operators, shows this Lagrangian to be ~-1. 

By duality it follows from this proposition that  any element F E I~(M, N; A) has the 

mapping property: 
F: ~'(M) -~ D'(N). (4.5) 

(4.4) 
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tion with Lagrangian distributions. Restoring the oscillatory integral representation of the 

kernels K~ into (4.7) gives 

/ ,  
K(z, y, y", t) = Jexp (iq~(z, y, y', /~, O) - is/z + ig~2(sx, y', y", #', 0') - it/~'/s) 

• c1(z, y', I ~, O) c2(sx, y', y", Iz', 0') dl~ d#' dO ds'. (4.1o) 

The phase function in (4.10) is non-degenerate, so K is a Lagrangian distribution. I t  can 

be checked directly that  this phase function parametrizes ZI"Z2 but, again, this is not 

necessary since from the standard theory of Fourier integral operators it is known to be 

true in the interior. This proves (4.9) with the continuity in symbols obvious from (4.10). 

Thus, if FIEI~(N, Q; Z1) and F2EI'~'(M, N; Z2) then FI"F2EI~+'n'(M, Q; Zl"Z2) 
provided one at  least of F~, F~ is properly supported. If F 2 is properly supported this 

follows directly from Proposition 4.8 and (4.7), if F 1 is properly supported then it follows 

by considering the adjoints. 

Observe that  the analogue of Proposition II.5.10 holds for these Fourier integral 
operators. Indeed, the vector field D 8 on T*(N ~ M), near ON • 0M • [0, oo] N A is not 

tangent to ff~. Thus, one easily deduces the extension of (II.1.9) for the kernels in ~ ( / ~ ) ;  

namely regularity in the t-variable can always be obtained by integration by parts. Thus, 

F: /~(2~)  ~ ~/~oo(;V) (4.11) 

where S=S(s ,  m). If A EL~.e(N) then using the composition formula above there exists 

B EL~.p(M) such that  
A . F  = F ' . B + G  (4.12) 

with F'EI~'e(M, N; Z) and GELg~(M, IV). If Z is not globally a dfffeomorphism then it 

may be necessary to assume that  A in (4.12) has small essential support. In any case, for 

u E At(M), such that  Bu E HI(M) for all B EL~.p(M), 

A. (Fu) e H~Io(N) 

with S', sufficiently negative, independent of A. This shows that  

By duality it follows that  
F: .,4c(M)-~ A(N). (4.13) 

F: A'o(M) ~ A'(N) (4.14) 

if FEI~(M,  N; Z). Naturally we expect that  there is a map 

( )~: IF(M, N; Z) ~ Ira( OM, ON; OZ), (4.15) 
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extending (II.5.25), such that  

Fu]e~= Fo(u]o~), u 

To see this, consider (3.24). For u E C~(M), (4.16) follows directly with 

(Fe~) (y) - - f K ( 0 ,  y, y', s)q~(y')dy'ds 
J 

(4.16) 

(4.17) 

in local coordinates. Naturally (4.16) follows in general from the (weak) continuity of 

boundary values. 

PROPOSITION 4.18. The map (4.15) is de/ined on the kernels by 

~m(~) ~ K w-> c, i*K E Im(OM • ON; ~eN; (graph 0Z)') (4.19) 

where i: 0M x ON • [ - 1, 1 ] ~ M  ~ N is the inclusion and c: 0M • ON x [ - 1, 1]-+0Mx ON is 

the projection. 

Proo/. Naturally (4.19) is just the invariant form of (4.17). I t  is really only necessary 

to check the behaviour of the bundles. Note however that  the restriction i* is well-defined 

because of the second condition in (3.17), on M ~ N. The integration c. is meaningful since 

K vanishes rapidly at 0, ~ .  Now note that  K is a generalized section of ~M, that  is of the 

form q~r/x with ~0 Lagrangian and v a C ~ section of the density bundle ~M lifted to M ~ N. 

Thus the restriction to 0M • ON • [0, ~ ]  gives, invariantly, a section of 

Oe~" (N* ON) -1" (N* 0M) (4.20) 

since at 8M, s163174 and x transforms at ON as N'ON. The 1-form ds trans- 

forms as (N'ON) -1. (N*OM) at the component 0M • • [0, ~ ]  of the boundary so (4.19) 

holds independently of coordinates. 

Next  let us note the symbolic versions of these properties. First define the symbol of 

a Fourier integral operator in terms of the symbol of its kernel, using (3.16): 

IF(M, N; A) -+ Sm+�89 L |  |174189 (4.21) 

If Z is a diffeomorphism this can be simplified in the usual way. The map (2.33) gives an 

isomorphism 
Z' : T*N --" Ax" (4.22) 

Pulling back the various bundles over Ax and using the isomorphism 

f2i(~*N)|174189 7< N) ~ f,~�89174189174162 �89 (4.23) 

15 - 812903 Acta mathematica 147. Imprim6 Ic 12 F6vrier 1982 
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where e5 is the singular 2-form on ~P*N, gives 

am.L: Ira(M, N; y,)--> Sm(~*N; L|174189 ~-1 (4.24) 

the left- or image-reduced symbol. In local coordinates (4.23) is just the relation 

(dxd2dyd~l)'.(dsdy'). (dsdxdydy')- '  = c~. (dx' dy')t. (dxdy)-t. ( l  dxd~ dyd~)) ~" 

where c n is a constant and s =x'/x. 

Naturally one can define, instead of (4.24), the right- or domain-reduced symbol: 

am, R: Ira(M, N, Z)"-'>sm(~'*M; L|174189 (4,25) 

and then one has Egorov's theorem: 
am.s" g = (rm,• . (4.26) 

This is most often seen in combination with the product formula. If F fi I'~(M, N; Z1) and 

G fi I?'(N, Q; g2) with at  least one properly supported then 

am+m,, n(G" F) = am. n(F)" Z~ am,. n(G) (4.27) 

where the product involves the ~ensorial cancellation 

,.('2~M|174174 �89 = [2~M| over T*M. (4.28) 

For a pseudodifferential operator, am.R =am.L so if A eLSe(N) and B eLSe(M) with A. F = 

B.  F,  F elliptic then (4.27) becomes 

z*a,n(A) ~- an(B). (4.29) 

For adjoints one has the usual simple formula 

am, R(F*) =am, z(F), (4.30) 

where we use the obvious extension of (4.24) for operators on vector bundles 

am.L: Ira(E, F; Z) ~ SIn(T'N; L| f2~| ~| E'| F) (4.31) 

and cancellation amongst the density bundles. Similarly, consider the restriction to the 

boundary. Here, 
am.L(-Fe) = am.L( J~) l r* ~N. (4.32) 

Over the inclusion T * S N ~ 8 ~ * N c  ~*/V the isomorphism 
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together with the trivialization 
N*~M = N*92V over 9Az, (4.33) 

given by the transversality of D 8 and Az, i.e. s=dx ' /dx=/(y ,  ~) at x = x '  =0, shows that  

(4.3) is meaningful with 

a~. ~.(Fo) ES~(T*~N; L o | 1 7 4  IS  ~-~ 
as it  should be. 

To eomplet~ the calculus it should be noted that  the symbol map (4.24) can also be 

given an oscillatory test definition. The usual oscillatory test method (see [6]) defines 

(4.21) by  examining the behaviour for large w of the pairing of the kernel (with C ~ section 

of ~M removed) with an oscillatory term: 

r S 8)e t~p(x'y'y''s)) (a(x, y, y ,  ), e(x, y, y', 

where ~ E C~ localizes near a chosen point and yJ E C ~ is real-valued and such that  the 

Lagrangian A~ =graph d~ meets -~z transversally. The transversality properties of Ax 

show that  r test near the boundary y~ can always be chosen in the form 

=fl(x, y, y ' ) + ~  log s (4.34) 

with ~ constant and fl E Coo, dfl 4: O. I t  suffices to consider curves 

/,(x', y') = qe"~(x')~ ~ e ~ ( M )  (4.35) 

in M, where 0 <~ x E C~(M) vanishes simply on OM, fl is real-valued and dfl 4:0 on the sup- 

port  of ~. 

P ~ o r o s i T I O ~  4.36. 1 / F ~ I m ( M ,  IV; Z) then 

F(/~) = a~e'~" (x)~ ~ (4.37) 

where fl' e Coo(N), x e C~~ N) are real-valued, x vanishes simply on ~N and a~ e Sm(M • It). 

Proo/. Substituting (4.35) into (3.34) gives 

F(/~) = (x)~  f K(x, y, y', s)d~(xs'~')+~l~ 
J 

The standard theory of Lagrangian distributions now gives (4.37). 

The details of the formula relating a,, modulo S m-l, to am.L(F) are left to the interested 

reader to glean from [6]. 
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m.5. Boundary value problems 

The operators in L~(M) are totally characteristic and one would not normally expect 

to prescribe boundary conditions on elements of their kernels. To give a general setting 

for boundary value problems, transformed by the Fourier integral operators described 

above, we can easily extend the definition of L'~(M). 

De/inition 5.1. I f  k E N we let L~" k(M) be the space of operators ~ ' (M)-+ ~ ' ( M )  locally 

of the form 

f in i te  

where Bj, A~EL~-%(M) and P~, Qt are differential operators of order m~ ~<k. 

First  consider the kernels of operators in L;~176 Directly from the definition we 

see tha t  in local coordinates these kernels are at  most k-fold derivatives on the right or 

left of kernels in L ;  ~. Certainly A EL~ ~176 has the mapping property demanded in Lemma 

II.4.1, so is determined by  its Schwartz kernel in the open quarter space. 

Recall tha t  on M ~ M the bundle ~M has C ~ sections which are of the form, with 

respect to local coordinates, ~v/x with v a C ~ density lifted from the first factor and cr E 

C~(M T< M). More generally let ~(~) be the line bundle with sections w=ztv/x k+x, keN.  I t  

is meaningful to say tha t  such a section vanishes to all orders at  the par t  3M x ~/U ,~/x 3M 

of the boundary of M x M, i.e. tha t  ~ can be chosen to vanish to all orders there. For such 

a section, and working in local coordinates (x, y, y', s)s =x'/x, 

w= ~, x~w~(y,y ' , s )d~dy'+wo (5.2) 

where woECc~(~M) also vanishes to all orders at  ~M• 2~/• The expansion (5.2) 

is not  coordinate invariant,  but  the conditions 

f /  srw~(y, y', s)ds = O, for O <~ r < p, l <<. p < k (5.3) on ~M • ~M 

are invariant.  This can be seen directly, but  follows indirectly from the next  result. 

PROPOSITIO~ 5.4. The kernels el operators in L~ ' k (M)  constitute the space el C ~176 

sections over M 7< M of ~(~) vanishing to all orders on ~M • ~I U ~I • ~M and satis/ying (5.3). 

Proo/. The definition of L ~ ' k ( M )  is local so it  suffices to work on Z. Consider A.  Dz~E 

L~ 'k (Z)  where A ELg~(Z). Ignoring a term in C~(Z • Z), which is Clearly unimportant ,  



T R A N S F O R M A T I O N  O F  B O U N D A R Y  I~ROBLEMS. C H A P T E R  I I I  233 

(A" D~)cf(z) = f a(z, y, y', s)(D~.cf)(xs, y')dsdy' 

= f ~(z, y, y', s)x-~D~f(~cs, y')d~dy" 

= f x - k ( -  D~)k~(z, y, y', s)T(xs, y')dsdy'. (5.5) 

Observe that  a kernel w satisfying (5.3) can always be written in the form 

K = ~ x-~( - Ds) ~ a~ (5.6) 
O~p~k 

with z% E ~ - ~ .  Indeed the conditions (5.3) are precisely the requirement tha t  the solution of 

D~p=w~, D ~ ( 0 ) = 0 0 < . ] < p ,  

should be rapidly decreasing as s-~ cr and hence in :~-~. This shows that  all sections of 

the stated type can be obtained as kernels from Lg ~'~. 

~ow the converse follows from (5.6) and the fact tha t  for A EL~ ~ there exists B, 

E EL~ ~176 such that  
A" D~ = L~" B + E. (5.7) 

To see (5.7) just observe that  ff the kernel of B is x-lfi(z, y', s) then tha t  of D~.B is 

x-l(D~fl)-x-2D~(sfl). So if A has kernel x-l:r it is only necessary to take fl=s-l~ and E 

with kernel x-l(Dxs-1~). Iteration of (5.7) shows that  

GEL;~176 ~ G= ~ Aj.D~, AteL~~176 (5.8) 
O<<.j<~k 

which completes the proof of the proposition. 

We remark that  the continuity properties of the operators in L'~(M), with respect to 

their kernels, allow one to deduce immediately the behaviour of the finite order operators. 

COROLLARY 5.9. The kernels o/ L~'k(M) are the generalized sections o/~(~) over M ~< M 
which are Lagrangian over the image in M ~ M o/the diagonal, o/order m, and which vanish 

to all orders on the part ~M • ~I 0 fl~ • ~M o/the boundary. 

I t  also follows directly from (5.8) tha t  the properly supported elements form a bi- 

filtered ring: 
L~'k{M) �9 L~k" (M) ~ L'~+m"k +k' (M). (5.10) 

Away from the boundary, elements of L'J'k(M) are again just pseudodifferential operators 

in the usual sense. We briefly discuss the symbolic properties of this space. 
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As a consequence of Proposition 5.4 the symbol of an element in L~' k(M) is well- 

defined as a formM quotient of a symbol of order m in T 'M,  a, which vanishes to order 

/c at  T*~M, by a function homogeneous of degree zero vanishing to precisely order k at  

OT*M. 

am(A) a ~. _~ ~_j ----~= Z at x/ 2 (5.11) 
J<k 

The calculus clearly extends to these enlarged spaces in a straightforward manner. All dif- 

ferential operators of order k lie in L~'~(M) so we can extend the ideas of Section 1.3 by 

extending the condition that  an operator be non-characteristic with respect to the boundary. 

De/inltion 5.12. PEL~'k(M) is non-characteristic with respect to 0M if the leading 

part of the symbol 
x~m(A) E C * ( ~ * M \ 0 )  

is elliptic on O~*M\(T*~M) and hence vanishes to precisely ]cth order at T*OM. 

Following the computations above this normal elliplieity condition can be restated as 

follows. P EL~'e(M) is non-characteristic if, locally, it can be written in the form 

P=- AQ modL~'~-l(M) +L~~ (5.13) 

where Q is a differential operator o~ order It, non-characteristic, and A EL~-k(M) is elliptic. 

PROPOSITION 5.14. I] PELg~'k(M) is non-characteristic then u E~'(M), Pu EB(~-I)(M), 

i.e. Pu E B( M) with boundary terms only to order ]c- 1, implies that 

uE ~4'(M) + fd(M) (5.15) 

Pro@ Suppose Pu =/E~(k-1)(M). Using (5.10) and applying a parametrix for A gives 

P'u= ~ A j Q j u = / - R u ,  /EB (k-l) (5.16) 
J<~k 

where A~EL ~-~, A z = I d  and REL -~176 Thus RuEfd. Now, the terms ~j<k A~Q~ in P' map 

~r into ~(s+~-~) for every sER. I t  follows from the proof of Lemma 1.3.2 that  P '  is an 

isomorphism, rood ~oo, from ~(s) t o ~  (s+~). By induction then P' is an isomorphism of 

to ~ mod ~oo. We can therefore add a term to u, u'  E~(M), so that  

P ' v - ~ g ' ~  (~-~), v = u - u ' .  (5.17) 

The proofs of Lemma 1.3.8 and Proposition 1.3.12 therefore apply to P '  and it follows that  

v E ~4' as asserted. 
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Since A'c(M) N ~c(M)= C~(M) it follows from Proposition (5.10) that,  at least modulo 

C ~, boundary value problems can be stated for non-characteristic operators in L~' ~. Thus, 

if P is a pseudodifferential operator in L~' k(M; E, F) acting on vector bundle sections and 

is non-characteristic and /E~ ' (M,  F)  a differential operator, or pseudodifferential operator 

BEL~ 'k (M,  E,  C) can be used to impose boundary conditions 

R B v  ~ gE ~ ' (~M,  G) rood C ~ (5.18) 
and any solution v E~' (M) to 

Pv  = / mod ~ ( a M ,  F(k-1)) (5.19) 

since by (5.11) B y E S ( M ) + f 4 ( M )  so the boundary condition (5.18), interpreted as acting 

on the first term, is well-defined modulo C% 

In terms of the microdistributions discussed in Section II.8 this problem, (5.18), 

(5.19) is well-defined with microdistributional data. The basic problem of the theory of the 

singularities of non-characteristic boundary value problems is the examination of the 

relationship between WF b (/), WF (g) and WFb (u), i.e. the supports of microdistribution 

solutions. We Mso remark that  the Fourier integral operators discussed above act by 

conjugation on the space L'~'k(M). Under such transformation the form of a boundary 

value problem (5.18), (5.19) is preserved. Thus, the standard transformation method used 

in the analysis of pseudodifferential operators on boundaryless manifolds can be extended 

to the case of boundaries. 
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