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1. Introduction 

In the theory of functions of one complex variable, the proof of the theorem which 

states tha t  a proper ho]omorphic mapping between domains with real analytic boundaries 

extends holomorphically past the boundary consists of two relatively simple steps: first 

prove that  such mappings extend continuously to the boundary; then apply the classical 

Schwarz reflection principle. Attempts to generalize these techniques to mappings in 

several complex variables have not been entirely successful. The principle reasons for this 

are: (1) there is not a satisfactory reflection principle for weakly pseudoconvex hyper- 

surfaces in l? n, and (2) proper maps in 13 ~ may branch at boundary points. In this paper, 

we at tempt  to expose the connection between the problem of extending proper holomorphic 

mappings and the real analytic hypoellipticity of the ~-Neumann problem. To be precise, 

we prove that  if D 1 and D 2 are bounded domains with real analytic boundaries, and if the 

~-Neumann problem for D 1 is globally real analytic hypoelliptic, then any proper holo- 

morphie mapping [ of D 1 onto D e extends holomorphically to a neighborhood of D r This 

result allows us to prove that  there can be no proper holomorphic mapping of a bounded 

domain with real analytic boundary which is strictly pseudoeonvex onto such a domain 

which is weakly pseudoeonvex. When our techniques are localized, we are able to prove 

that  if ]: Df-->D e is a proper holomorphic mapping between bounded pseudoconvex domains 

with real analytic boundaries, then [ maps the set F of strictly pseudoconvex boundary 

points of D 1 into the set of strictly pseudoconvcx boundary points of D e. Furthermore, ] 

extends holomorphieally past F and is unbranched on F. 

I t  should be pointed out that  the general problem of proving the global analytic 

hypoelliptieity of the ~-Neumann problem in a weakly pseudoconvex domain with real 
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analytic boundary is currently a leading open question in the theory of functions of several 

complex variables. Hence, it might appear that  our main theorem is not entirely worthwhile. 

However, there are many known examples of weakly pseudoconvex domains for which 

global analytic hypoellipticity is known to hold. Furthermore, if a counterexample to the 

problem of extending holomorphic mappings between real analytic domains could be 

found, our theorem would yield a counterexample to the problem of analytic hypoellipticity 

of the ~-Neumann problem. 

2. The Bergman projection 

The Bergman projection P associated to a bounded domain D contained in C n is the 

orthogonal projection of Le(D) onto its closed subspace H(D) consisting of L a holomorphic 

functions. The ~-Neumann problem and the Bergman projection for a smooth bounded 

pseudoeonvex domain D are fundamentally related via Kohn's  formula: P = I -~*N~.  Here, 

N is the ~-Neumann operator mapping L~.I(D) to L2o.I(D) and ~* is the adjoint of ~ (see 

Kohn [11]). The operator ~* is defined via ~* (~ v~dS~) = - ~  ~vJ~z~. 

If D has a real analytic boundary, we say that  N is globally real analytic hypoelliptie 

if whenever ~ is a R-closed (0, 1)-form whose coefficients extend to be reM analytic in a 

neighborhood of bD, then Nx is a (0, 1)-form whose coefficients also extend to be real 

analytic in a neighborhood of bD. Kohn's formula reveals that  whenever N is globally 

analytic hypoelliptic, then P is also. I t  is this property of P which is crucial to our arguments 

in this paper. We shall see momentarily that  global analytic hypoellipticity of the Bergman 

projection associated to a domain with real analytic boundary is equivalent to the ap- 

parently weaker condition, 

Condition Q. A bounded domain D will be said to satisfy condition Q if P9  extends 

holomorphically to a neighborhood of /)  whenever ~0 e C~(D). 

For convenience, we also define 

Local condition Q. If z is a boundary point of a domain D, we say that  D satisfies 

condition Q at z if P~ extends to be holomorphic in a neighborhood of z whenever 9 E C~(D). 

Smooth bounded strictly pseudoconvex domains with real analytic boundaries satisfy 

condition Q because the ~-Neumann problem is globally real analytic hypoetliptie for such 

domains (Tartakoff [13], Komatsu [12], Derridj and Tartakoff [5]). Furthermore, a domain 

D satisfies condition Q whenever the Bergman kernel function K(z, w) associated to it 

satisfies the condition that  for each compact subset E of D, there is an open set GE con- 

t a in ing / )  such that  K(z, w) extends holomorphically to GE as a function of z for each w E E. 

Hence, for example, bounded complete Reinhardt domains satisfy condition Q. 



A~ALYTIC HYPOELLIPTICITY OF THE ~-NEUMANN PROBLEM 111 

The ~-Neumann problem is locally real analytic hypoelliptic at strictly pseudoconvex 

boundary points of pseudoconvex domains with real analytic boundaries (TrOves [16], 

Tartakoff [15]). Hence, pseudoconvex domains with real analytic boundaries satisfy local 

condition Q at  their strictly pseudoconvex boundary points. 

With these preliminaries behind us, we can now state our principal results. 

Our main result is 
3. Results 

THEOREM 1. Suppose that D1 and D~ are smooth bounded domains contained in C ~, 

that D 1 satis/ies condition Q, and that D~ has a real analytic boundary. I / / i s  a proper holo- 

morphic mapping o/ D 1 onto D e, then / extends to be holomorphic in a neighborhood o / D  1. 

Remarks made in section 2, together with Theorem 1, yield 

COtCOLLARr 1. I /  D 1 and D2 are smooth bounded pseudoconvex domains contained in 

C n with real analytic boundarie~s, and i/the ~-Neumann problem/or D 1 is globally real analytic 

hypoelliptic, then a proper holomorphic mapping / o / D  1 onto D 2 extends to be holomorphic in 

a neighborhood o / D  1. 

When the techniques used in the proof of Theorem 1 are localized, we obtain 

T~EOREM 2. Suppose that/: DI-+ D ~ is a proper holomorphic mapping between smooth 

bounded pseudoconvex domains with real analytic boundaries contained in C a. Let F denote 

the open subset o/ bD 1 consisting o/ strictly pseudoconvex boundary points. Then / extends 

holomorphicaUy past F and is unbranched on F. Hence, / maps F into the set o/ strictly pseudo- 

convex boundary points o/D~. 

We shall now prove that  Theorem 2 implies 

COROLLARY 2. There does not exist a proper holomorphic mapping o /a  smooth bounded 

domain with real analytic boundary which is strictly pseudoconvex onto such a domain which is 

weakly pseudoconvex. 

Proo] o/Corollary 2. Let  us assume tha t  Theorem 2 is true, and suppose t ha t / :  DI-~ D 2 

is a proper mapping which violates the s tatement  of Corollary 2. Let (xk} be a sequence of 

points in D x such tha t  {/(xk) ) converges to a weakly pseudoconvex boundary point w 0 of 

D~. By passing to a subsequence, if necessary, we may  assume tha t  {xk) converges to a 

point xoEbD 1. Then ] maps x 0 to w0, and this contradicts Theorem 2. 
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The following lemma is crucial to the proofs of all of the results above. 

L]~MMA 1. I / D  is a smooth bounded domain with real analytic boundary, and h is a 

/unction on D which extends to be holomorphic in a neighborhood o /D ,  then there is a/unction 

E C~(D) such that h =Pq) on D. (Here, P is the Bergman projection associated to D.) 

We shall also require a lemma which is proved in [2] and [3]. The proof of this lemma 

is so short and simple tha t  we include it in section 6. 

LEMMA 2. Suppose that/:  DI-~D 2 is a proper holomorphic mapping between bounded 

domains contained in C n. Let Pi denote the Bergman projection associated to D~, i = 1, 2, and 

let u = Det [/'J. Then 
P~(u. (q~o/)) = u. ((P2q))o/) 

/or all q~ EL~(D~). 

The proof of Lemma 1 will contain a proof of 

C o20LLARY 3. A smooth bounded domain with real analytic boundary satis]ies condition 

Q i / a n d  only i / the  Bergman pro~ection associated to D is globally real analytic hypoelliptic. 

We will prove the theorems, assuming the t ruth of the lemmas, in section 5, and we 

will prove the lemmas in section 6. 

4. S o m e  remarks  

(A) Theorem 1 is well known in the case tha t  both D 1 and D 2 are strictly pseudoconvex 

domains with real analytic boundaries (Burns and Shnider [4]). 
k n (B) Let { ~}~=1 be a set of positive integers with at  least one k~ greater than one. The 

weakly pseudoconvex real analytic "ellipsoid" {z e Cn: ~ 1  I z~ ]2k~ < l} satisfies condition Q 

because it is a complete Reinhardt  domain. Hence, if D 1 is one of these ellipsoids and D 2 

is a smooth bounded pseudoeonvex domain with real analytic boundary and / is a proper 

mapping of D 1 onto D2, then / extends to be holomorphic in a neighborhood of D r This is 

an example of a situation in which mappings extend in the absence of any suitable reflec- 

tion principle. 

(C) Derridj and Tartakoff [5] state sufficient conditions for the ~-Neumann problem 

associated to a weakly pseudoconvex domain with real analytic boundary to satisfy global 

real analytic hypoellipticity. See also [17]. 

(D) I t  should be mentioned that  the techniques of this paper can be generalized in a 

straightforward way to obtain analogous results for domains which are relatively compact 

inside Stein manifolds (see, for example, Diederich and Fornaess [7]). 
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(E) Let B(R) denote the ball of radius R in C n, and let P denote the Bergman projec- 

tion associated to B(1). I t  is a simple exercise in the use of power series to prove that  a 

holomorphie function h on B(1) extends to be holomorphie on B(R) for R > 1 if and only 

if there is a function ~0 EL~(B(1)) supported on B(1/R) such that  h = P ~  on B(1). Corollary 3 

yields ~ similar result for an arbitrary strictly pseudoconvex domain D with real analytic 

boundary, iNamely, a holomorphic function on D extends to be holomorphic in a neighbor- 

hood o f / )  if and only if it is the Bcrgman projection of a function in Cg~ 

(F) I t  will become apparent during the course of the proofs of Theorems 1 and 2 that  

the following theorem is true. 

T ~ E o R E M 3. Suppose that D 1 and D~ are smooth bounded pseudoconvex domains con- 

tained in C n and that D e has a real analytic boundary. Let F denote the set o/boundary points 

o / D  1 which satis/y local condition Q. I / / :  Dv-> D 2 is a proper holomorphic mapping, then / 

extends holomorphicatly pa~t F. 

(G) Combining techniques used in [2] with techniques of the present work, we are 

able to prove the following theorem of dubious merit: 

Suppose t h a t / :  Dv+D2 is a proper holomorphic mapping of a pseudoconvex domain 

D 1 with real analytic boundary onto a domain D 2 which satisfies condition Q. I t  is well 

known that  / is a branched cover of some finite order m. Let F 1, F 2, ..., F m denote the m 

local inverses of / which are defined locally on D 2 minus the image of the branch locus of / .  

If  h is a function which is holomorphic in a neighborhood of D 1, then ~ Uk(ho Fk) extends 

F '  to be holomorphic in a neighborhood of De, where U k = Det [ k]. 

5. Proofs ot the theOrems 

We now prove the theorems, assuming the t ruth of the lemmas. 

Proo/ o/ Theorem 1. Let us denote the Bergman projection associated to D~ by Pt, 

i = l, 2. For each monomial z ~, we choose a function ~a E C~(De) such that  P2~a =z~. The 

existence of such functions is guaranteed by Lemma 1. The transformation rule for the 

Bergman projections stated in Lemma 2 yields that  u./a =u .  ((PeqJa)o/) =Pl(u'(~ao/)) .  The 

function u. ( ~ o / )  is in C~(D1) because / is proper. From this, we can conclude that  u . /a  

extends to be holomorphic in a neighborhood of D 1 because D1 satisfies condition Q. 

Repeat the argument above using a function of 0 E C~(De) such that  Peel0= 1 to conclude 

that  u extends to be holomorphic in a neighborhood of D 1. 

To finish the proof, we must show that u divides u./~ as a holomorphie function at 

boundary points where u vanishes. Suppose that  zEbD1 is a point where u vanishes. Let 

8 -  812901 Acta mathematica 147. Imprirn6 le 11 Decembr6 1981 
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/k denote the kth component of ]. The ring O~ of g e m s  of holomorphic functions at  z is a 

unique factorization domain. We now factor the functions u and u./~ which have just been 

shown to belong to Oz. Suppose tha t  u =!qlo~ and u'/~=lq qj where the p / s  and q/s  are 

powers of irreducible elements of Oz. The fact tha t  u. /~ is an element of O~ for each positive 

integer m implies tha t  (1-Ipi) ~-1 divides (1-[ qj) ~ for each m. This is only possible if I-[ qJ 

divides l-[ P~, i.e., if fk= ( [ I  qj)/([IPd is actually holomorphic in a neighborhood of z. 

Hence, we have shown tha t  / extends holomorphieally to a neighborhood of D~. 

Proof o/Theorem 2. The local real analytic hypoellipticity of the ~-Neumann problem 

at  strictly pseudoeonvex points of bounded pseudoeonvex domains with real analytic 

boundaries (TrOves [16], Tartakoff  [15]) implies tha t  local condition Q holds at  all points 

in F. The same procedure used in the proof of Theorem 1 can be applied to yield tha t  / 

extends holomorphieally past  F. The only thing remaining to be proved is the fact tha t  / 

is unbranched on F, i.e., tha t  u ~ 0  on F. 

A smooth real valued function r on C ~ is called a defining function for a domain D if 

D={r<O}, bD={r=O}, and dr~O on bD. Similarly, r is called a local defining function 

for an open subset A of bD if r is smooth near A and if these conditions are met  locally on A. 

We shall now employ an argument  due to Fornaess [9], used originally in the bi- 

holomorphic mapping case. Diederich and Fornaess [8] prove tha t  if D is a smooth bounded 

pseudoconvex domain, then there is a defining function r for D such tha t  - ( - r )  2Is is 

strictly plurisubharmonic on D. Let  r 2 be such a defining function for D 2. We wish to prove 

tha t  r2o / is a local defining function for F. To do this, we need only show tha t  d(r~o/)=#O 

on F. Since - ( - r ~ o / )  2/3 is a plurisubharmonie function on D 1, we m a y  apply the classical 

Hopf 's  lemma to conclude tha t  - (reo/)~/a< -Cd(z) where d(z) is equal to the euclidean 

distance of z to bD 1 and C is a constant independent of z. Hence (r2o/)(z)>~Cd(z) 3/2. At 

points near P, this can only be true if d(r2o/) ~ 0 on F. 

We must  now prove tha t  / is unbranched on F. To do this, we use an argument due to 

Kerzman, Kohn, and Nirenberg [10]. For t >0,  define ~ = e x p  (try)- 1. The function Qo/ is  

a local defining function for F. Furthermore,  for a fixed z6F ,  t can be chosen to be suf- 

ficiently large so tha t  ~o / i s  strictly plurisubharmonie near z (see, for example [10]). Hence 

Det  [ ~-2(~~ = IDet [/']l s Det [ ~2~ o/] 

must  be strictly positive on F near z. We conclude tha t  Det  [/'] = u  does not vanish on F 

and tha t  / is unbranched on F. Hence, ] maps F into the set of strictly pseudoconvcx 

boundary points of D~. This completes the proof of Theorem 2, 
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6. Proofs of the lemmas 

Proof o/Lemma 1. Suppose that  h is a function in C~(/)) which extends to a neighbor- 

hood o f / 9  in such a way that  h is real analytic in a neighborhood of bD. Let v be the solu- 

tion to the Cauchy problem: 
A v = h  nearbD 

with 

~v 
v = ~ = O  onbD.  

Here, ~v/~ is the normal derivative of v on bD. The Cauchy-Kowalewski theorem guaran- 

tees that  there is an open set U containing bD such that  v satisfies the Cauchy problem in 

U and is real analytic there. Let y~ be a function in C~(U) which is equal to one in a neigh- 

borhood of bD. Now, a simple integration by parts reveals that  A(~0v) is a function which 

is orthogonal to holomorphic functions on D. Define ~ = h -  A(y~v). Notice that  ~ is a func- 

tion in C~(D) such that  Ph=P(h-A(~fv)) =Pq% In  the event that  h extends to be a holo- 

morphic function on a neighborhood o f / ) ,  then h =Ph =Pcf, and the proof of Lemma 1 is 

complete. Note that  we have also proved Corollary 3. 

Proo/of Lemma 2. A classical theorem due to R. Remmert states that  f is a branched 

cover of some finite order m and that  the set V={wED2: w=f(z); u(z)=0} is a complex 

analytic variety in D e. Let F1, F e ..... Fm denote the m inverses to / which are defined 

locally on D e -  V and let Uk = Det [F~]. We shall employ the following well known version 

of Riemann's removable singularity theorem: if D is a bounded domain contained in (~n 

and X is a complex analytic variety contained in D, then every function which is holo- 

morphic on D - X  and in L2(D) is actually holomorphic on all of D. For a simple proof of 

this theorem, see [3]. 

The Jacobian determinant of / viewed as a mapping on R 2 ~  C ~ is equal to l ul 2. 

Hence, [[u. (qJO/)[[L~(D,)=mi[[Cf[[L~(D~) and the terms in the transformation formula are well 

defined. The equation 
P~(u. (q~,,/) ) = ~.  ((Re ~ )o/)  (6.1) 

is certainly true when ~0 is in H(D~). We shall now complete the proof of Lemma 2 by 

showing that  (6.1) holds whenever ~0 is in a certain dense subset of H(D~) • Let ~ be equal 

to the linear span of (~y)/az~: ~vEC~(D~-V): i = 1  ..... n~. We claim that  ~ is a dense sub- 

space of H(D2) • Indeed, if v EH(D2) • is orthogonal to ~,  then v is a distributional solution 

to ~v=0 on D 2 - V. Hence v is a function in L2(D2) which is holomorphic o n  D e -  V and 

is therefore in H(D~) by the removable singularity theorem. Hence, v = 0. Now if ~0 = ~v/~z~ 
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for ~ E C~(D 2 - V), then  P., ~ = 0 because ~y~/~z i is orthogonal  to holomorphic functions.  

Fur thermore ,  for h EH(D1) , we see t ha t  

/ ozi 

via in tegra t ion  by  parts.  Hence P l ( u .  (~0o/)) = 0 = u ' ( ( P  2 ~0)o/) whenever  ~ e ~ and  the proof 

of the t rans format ion  rule is finished. 
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