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1. Introduction

In the theory of functions of one complex variable, the proof of the theorem which
states that a proper holomorphic mapping between domains with real analytic boundaries
extends holomorphically past the boundary consists of two relatively simple steps: first
prove that such mappings extend continuously to the boundary; then apply the classical
Schwarz reflection principle. Attempts to generalize these techniques to mappings in
several complex variables have not been entirely successful. The principle reasons for this
are: (1) there is not a satisfactory reflection principle for weakly pseudoconvex hyper-
surfaces in C", and (2) proper maps in C* may branch at boundary points. In this paper,
we attempt to expose the connection between the problem of extending proper holomorphic
mappings and the real analytic hypoellipticity of the 6-Neumann problem. To be precise,
we prove that if D, and D, are bounded domains with real analytic boundaries, and if the
¢-Neumann problem for D, is globally real analytic hypoelliptic, then any proper holo-
morphic mapping f of D, onto D, extends holomorphically to a neighborhood of 51 This
result allows us to prove that there can be no proper holomorphic mapping of a bounded
domain with real analytic boundary which is strictly pseudoconvex onto such a domain
which is weakly pseudoconvex. When our techniques are localized, we are able to prove
that if f: D,~ D, is a proper holomorphic mapping between bounded pseudoconvex domains
with real analytic boundaries, then f maps the set 1" of strictly pseudoconvex boundary
points of D, into the set of strictly pseudoconvex boundary points of D,. Furthermore, f
extends holomorphically past 1" and is unbranched on T'.

It should be pointed out that the general problem of proving the global analytic

hypoellipticity of the -Neumann problem in a weakly pseudoconvex domain with real
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analytic boundary is currently a leading open question in the theory of functions of several
complex variables. Hence, it might appear that our main theorem is not entirely worthwhile.
However, there are many known examples of weakly pseudoconvex domains for which
global analytic hypoellipticity is known to hold. Furthermore, if a counterexample to the
problem of extending. holomorphic mappings between real analytic domains could be
found, our theorem would yield a counterexample to the problem of analytic hypoellipticity

of the 8-Neumann problem.

2. The Bergman projection

The Bergman projection P associated to a bounded domain D contained in €" is the
orthogonal projection of L2( D) onto its closed subspace H(D) consisting of L? holomorphic
functions. The 8-Neumann problem and the Bergman projection for a smooth bounded
pseudoconvex domain D are fundamentally related via Kohn’s formula: P =1 —*No. Here,
N is the 6-Neumann operator mapping L3 1(D) to L§ 1(D) and &* is the adjoint of 0 (see
Kohn [11]). The operator &* is defined via &* (3 v;dZ,)= — ov,/0z,.

If D has a real analytic boundary, we say that N is globally real analytic hypoelliptic
if whenever « is a &-closed (0, 1)-form whose coefficients extend to be real analytic in a
neighborhood of 5D, then Na is a (0, 1)-form whose coefficients also extend to be real
analytic in a neighborhood of bD. Kohn’s formula reveals that whenever N is globally
analytic hypoelliptic, then P is also. It is this property of P which is crucial to our arguments
in this paper. We shall see momentarily that global analytic hypoellipticity of the Bergman
projection associated to a domain with real analytic boundary is equivalent to the ap-

parently weaker condition,

Condition Q. A bounded domain D will be said to satisfy condition Q if Py extends
holomorphically to a neighborhood of D whenever ¢ € C3(D).

For convenience, we also define

Local condition Q. If z is a boundary point of a domain D, we say that D satisfies
condition Q at z if Pp extends to be holomorphic in a neighborhood of z whenever ¢ € 03°(D).

Smooth bounded strictly pseudoconvex domains with real analytic boundaries satisfy
condition Q because the -Neumann problem is globally real analytic hypoelliptic for such
domains (Tartakoff [13], Komatsu [12], Derridj and Tartakoff [5]). Furthermore, a domain
D satisfies condition Q whenever the Bergman kernel function K(z, w) associated to it
satisfies the condition that for each compact subset & of D, there is an open set &, con-
taining D such that K(z, w) extends holomorphically to G as a function of z for each w € K.

Hence, for example, bounded complete Reinhardt domains satisfy condition Q.
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The 3-Neumann problem is locally real analytic hypoelliptic at strictly pseudoconvex
boundary points of pseudoconvex domains with real analytic boundaries (Tréves {16],
Tartakoff [15]). Hence, pseudoconvex domains with real analytic boundaries satisfy local
condition Q at their strictly pseudoconvex boundary points.

With these preliminaries behind us, we can now state our principal results.

3. Results
Our main result is

TrEOREM 1. Suppose that Dy and D, are smooth bounded domains contained in C",
that Dy satisfies condition Q, and that D, has a real analytic boundary. If f is a proper holo-

morphic mapping of D, onto D,, then f extends to be holomorphic in a neighborhood of 5;

Remarks made in section 2, together with Theorem 1, yield

CoroLLARY 1. If D, and D, are smooth bounded pseudoconvexr domains contained in
C" with real analytic boundaries, and if the 8- Newmann problem for D, is globally real analytic
hypoelliptic, then a proper holomorphic mapping f of D, onto D, extends to be holomorphic in
a neighborhood of fl

When the techniques used in the proof of Theorem 1 are localized, we obtain

THEOREM 2. Suppose that f: D;~ D, is a proper holomorphic mapping between smooth
bounded pseudoconvexr domains with real analytic boundaries contained in C*. Let T denote
the open subset of bD, consisting of strictly pseudoconvex boundary points. Then | extends
holomorphically past I" and is unbranched on . Hence, f maps I into the set of sirictly pseudo-

convex boundary points of D,.

We shall now prove that Theorem 2 implies

CorOLLARY 2. There does not exist a proper holomorphic mapping of a smooth bounded
domain with real analytic boundary which is strictly pseudoconvex onto such a domain which is

weakly pseudoconvex.

Proof of Corollary 2. Let us assume that Theorem 2 is true, and suppose that f: D, D,
is a proper mapping which violates the statement of Corollary 2. Let {z;} be a sequence of
points in D; such that {f(x,)} converges to a weakly pseudoconvex boundary point w, of
D,. By passing to a subsequence, if necessary, we may assume that {z;} converges to a

point 2,€b.D,. Then f maps x, to w,, and this contradicts Theorem 2.
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The following lemma is crucial to the proofs of all of the results above.

Lemwma 1. If D is a smooth bounded domain with real analytic boundary, and k is a
function on D which extends to be holomorphic in a neighborhood of D, then there is a function
@ €C(D) such that h=Pg on D. (Here, P is the Bergman projection associated to D.)

We shall also require a lemma which is proved in [2} and [3]. The proof of this lemma

is so short and simple that we include it in section 6.

Levma 2. Suppose that f: D,— D, is a proper holomorphic mapping between bounded
domains contained in C*. Let P; denote the Bergman projection associated to D, i=1, 2, and

let w=Det [f']. Then
Py(u- (pof)) =u-((Pyp)of)
for all p ELX D,).

The proof of Lemma 1 will contain a proof of

COROLLARY 3. A smooth bounded domain with real analytic boundary satisfies condition

Q if and only if the Bergman projection associated to D is globally real analytic hypoelliptic,

We will prove the theorems, assuming the truth of the lemmas, in section 5, and we

will prove the lemmas in section 6.

4. Seme remarks

(A) Theorem 1 is well known in the case that both D, and D, are strictly pseudoconvex
domains with real analytic boundaries (Burns and Shnider [4]).

(B) Let {k;}i_1 be a set of positive integers with at least one k; greater than one. The
weakly pseudoconvex real analytic “ellipsoid” {z€C™ >71|2;| i <1} satisfies condition Q
because it is a complete Reinhardt domain. Hence, if D, is one of these ellipsoids and D,
is a smooth bounded pseudoconvex domain with real analytic boundary and f is a proper
mapping of D; onto D,, then f extends to be holomorphic in a neighborhood of f):—l This is
an example of a situation in which mappings extend in the absence of any suitable reflec-
tion principle.

(C) Derridj and Tartakoff [5] state sufficient conditions for the 6-Neumann problem
associated to a weakly pseudoconvex domain with real analytic boundary to satisfy global
real analytic hypoellipticity. See also [17].

(D) It should be mentioned that the technigues of this paper can be generalized in a
straightforward way to obtain analogous results for domains which are relatively compacf

inside Stein manifolds (see, for example, Diederich and Fornaess [7]).
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(E) Let B(R) denote the ball of radius R in C*, and let P denote the Bergman projec-
tion associated to B(1). It is a simple exercise in the use of power series to prove that a
holomorphic function % on B(l) extends to be holomorphic on B(R) for BR>1 if and only
if there is a function ¢ € L*(B(1)) supported on B(1/R) such that h =Py on B(1). Corollary 3
yields a similar result for an arbitrary strietly pseudoconvex domain D with real analytic
boundary. Namely, a holomorphie function on D extends to be holomorphic in a neighbor-
hood of D if and only if it is the Bergman projection of a function in CF(D).

(F) It will become apparent during the course of the proofs of Theorems 1 and 2 that

the following theorem is true.

THEOREM 3. Suppose that D, and D, are smooth bounded pseudoconvex domains con-
tained in C* and that D, has a real analytic boundary. Let T" denote the set of boundary points
of D, which satisfy local condition Q. If f: D~ D, is a proper holomorphic mapping, then f
extends holomorphically past T'.

(G) Combining techniques used in [2] with techniques of the present work, we are
able to prove the following theorem of dubious merit:

Suppose that f: D,— D, is a proper holomorphic mapping of a pseudoconvex domain
D, with real analytic boundary onto a domain D, which satisfies condition Q. It is well
known that f is a branched cover of some finite order m. Let F,, F,, ..., F, denote the m
local inverses of f which are defined locally on D, minus the image of the branch locus of f.
If k is a function which is holomorphic in a neighborhood of 171, then > U,(ho F;) extends
to be holomorphic in a neighborhood of ]72, where U, = Det [F}].

5. Proofs of the theorems

We now prove the theorems, assuming the truth of the lemmas.

Proof of Theorem 1. Let us denote the Bergman projection associated to D; by P,
t=1, 2. For each monomial 2%, we choose a function ¢, € CF(D,) such that P,p,=z* The
existence of such functions is guaranteed by Lemma 1. The transformation rule for the
Bergman projections stated in Lemma 2 yields that w-fe=u- ((Pypy)of) =Py (u-(psof)). The
function u-(p,0f) is in CF(D,) because f is proper. From this, we can conclude that u-f*
extends to be holomorphic in & neighborhood of D; because D, satisfies condition Q.
Repeat the argument above using a function ¢,€CF(D,) such that Py@,=1 to conclude
that » extends to be holomorphic in a neighborhood of 171

To finish the proof, we must show that « divides »-f* as a holomorphic function at

boundary points where u vanishes. Suppose that 2€bD, is a point where u vanishes. Leb
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f« denote the kth component of f. The ring O, of germs of holomorphic functions at z is a

unique factorization domain. We now factor the functions » and % f,, which have just been

shown to belong to (,. Suppose that u=]] p, and u-f;,=]] ¢; where the p,’s and ¢,’s are

powers of irreducible elements of 0,. The fact that «-f7 is an element of O, for each positive

integer m implies that ([]p,)" " divides ([]g,)™ for each m. This is only possible if [ ¢;

divides [ | p,, i.e., if f=([Tq;)/(I ] »;) is actually holomorphic in a neighborhood of z.
Hence, we have shown that f extends holomorphically to a neighborhood of I);

Proof of Theorem 2. The local real analytic hypoellipticity of the 6-Neumann problem
at strictly pseudoconvex points of bounded pseudoconvex domains with real analytic
boundaries (Tréves [16], Tartakoff [15]) implies that local condition Q holds at all points
in I". The same procedure used in the proof of Theorem 1 can be applied to yield that f
extends holomorphically past I. The only thing remaining to be proved is the fact that f
is unbranched on I, i.e., that «u==0 on T".

A smooth real valued function 7 on C* is called a defining function for a domain D if
D={r<0}, bD={r=0}, and dr==0 on bD. Similarly, r is called a local defining function
for an open subset A of b.D if r is smooth near A and if these conditions are met locally on A.

We shall now employ an argument due to Fornaess [9], used originally in the bi-
holomorphic mapping case. Diederich and Fornaess [8] prove that if D is a smooth bounded
pseudoconvex domain, then there is a defining function » for D such that —(—7)¥3 is
strictly plurisubharmonic on D. Let r, be such a defining function for D,. We wish to prove
that ryof is a local defining function for I'. To do this, we need only show that d(r,of)==0
on I'. Since —(—7,0f)?3 is a plurisubharmonic function on D,, we may apply the classical
Hopf’s lemma to conclude that — (r,0f)23< —Cd(2) where d(z) is equal to the euclidean
distance of z to bD; and C is a constant independent of z. Hence (ryof)(2) = Cd(2)¥2 At
points near T", this can only be true if d(ryof)==0 on I'.

We must now prove that f is unbranched on I'. To do this, we use an argument due to
Kerzman, Kohn, and Nirenberg [10]. For ¢>0, define g =exp (fr,) — 1. The function gof is
a local defining function for I'. Furthermore, for a fixed z€[", ¢ can be chosen to be suf-

ficiently large so that pof is strictly plurisubharmonic near z (see, for example [10}). Hence

Det [QKQ&D] = | Det [f']|* Det [~829 o ]

0z, 0%; ow; ow;

must be strictly positive on [" near z. We conclude that Det [f] =u does not vanish on I’
and that f is unbranched on I'. Hence, f maps I" into the set of strictly pseudoconvex

boundary points of D,. This completes the proof of Theorem 2.
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6. Proofs of the lemmas

Proof of Lemma 1. Suppose that % is a function in 0®(D) which extends to a neighbor-
hood of D in such a way that % is real analytic in a neighborhood of 4 D. Let v be the solu-

tion to the Cauchy problem:
Av=h near bD

with

Here, ov/oy is the normal derivative of v on bD. The Cauchy—Kowalewski theorem guaran-
tees that there is an open set U containing b.D such that v satisfies the Cauchy problem in
U and is real analytic there. Let 1 be a function in OF(U) which is equal to one in a neigh-
borhood of b.D. Now, a simple integration by parts reveals that A(yv) is a function which
is orthogonal to holomorphic functions on D. Define ¢ =k —~ A(yw). Notice that ¢ is a func-
tion in CF(D) such that Ph=P(h—A(yv)) =Pgp. In the event that h extends to be a holo-
morphie function on a neighborhood of D, then h=Ph=Pg, and the proof of Lemma 1 is
complete. Note that we have also proved Corollary 3.

Proof of Lemma 2. A classical theorem due to R. Remmert states that f is a branched
cover of some finite order m and that the set V ={w€ Dy w=f(2); u(2) =0} is a complex
analytic variety in D,. Let F,, F,, ..., F,, denote the m inverses to f which are defined
locally on D,~ V and let U, =Det [ F}]. We shall employ the following well known version
of Riemann’s removable singularity theorem: if D is a bounded domain contained in C”
and X is a complex analytic variety contained in D, then every function which is holo-
morphic on D —X and in L*(D) is actually holomorphic on all of D. For a simple proof of
this theorem, see [3].

The Jacobian determinant of f viewed as a mapping on R*~C" is equal to |u/|2
Hence, ||u-(pof)| zemy=m||¢| 120, and the terms in the transformation formula are well

defined. The equation
Py(u-(pof)) = u-((Pyp)of) (6.1)

is certainly true when @ is in H(D,). We shall now complete the proof of Lemma 2 by
showing that (6.1) holds whenever @ is in a certain dense subset of H(D,)*. Let Q be equal
to the linear span of {9y/0z; p€CP(D,—V):i=1, ..., n}. We claim that Q is a dense sub-
space of H(D,)". Indeed, if v € H(D,)" is orthogonal to Q, then v is a distributional solution
to dv=0 on D,— V. Hence v is a function in L*(D,) which is holomorphic on D,—V and

is therefore in H(D,) by the removable singularity theorem. Hence, »=0. Now if ¢ =8yp/oz;
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for p€CT(D,—V), then P, =0 because dy/dz; is orthogonal to holomorphic functions.
Furthermore, for k€ H(D,), we see that

L hu-(pof)= L (él Uk‘(ﬁ°Fk))g=

13

via integration by parts. Hence P;(u-(pof))=0=u-((P,¢p)of) whenever ¢ €  and the proof
of the transformation rule is finished.
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