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1. Introduction 

Let X and Y be two complex manifolds and form the two spaces HoI(X, Y) and 

Map(X, Y) of respectively holomorphic and continuous maps X---> Y, equipped with the 

compact-open topology. 

We will study the inclusion of Hol(X, Y) into Map(X, Y) in the case, where X is a 

Riemann surface and Y is a generalized flag manifold or a loop group. 

Let HoI*(X, Y) and Map*(X, Y) denote the spaces of based maps of degree n. In 

[14] G. Segal shows that the inclusion of HoI*(X, CI ~ )  into Map*(X, CP m) is a homology 

equivalence up to dimension (n -2g) (2m-1) ,  where g is the genus of X. Segal conjec- 

tured that a similar statement holds, if CI ~ is replaced by a flag manifold or a 

Grassmannian, and this was confirmed by M. A. Guest, [7], and F. C. Kirwan, [9]. 

If G is a compact Lie group, the loop group f i g  has many properties similar to a 

Grassmannian, see [12]. So it is natural to try to extend Segal's result to the inclusion of 

HoI*(X, f iG) into Map*(X, fiG), and this is indeed the purpose of this work. 

Let ~,(XxCPt,XVCP l, Gc) be the space of based isomorphism classes of holo- 

morphic Gc-bundles over X x C P  l, trivial over the axis XVCP ~ and with characteristic 

class n. In [1] M. F. Atiyah describes how there is an imbedding of HoI*(X, fiG) into 

~ C P  1 , X V C P  l, Gc) .  

The main result (Theorem 7.8) is that 

lim H,(Wn(XX CP 1, XVCP ~, Gc)) = H.(Map~'(X, fiG)). 
n . . . .~  o0 

(t) Now at Mathematical Institute, Technical University of Denmark, Building 303, DK-2800 Lyngby, 
Denmark. 
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If X=CP l, then HoI*(CPI, f2G)~ , (CPixCpI ,cP1VCP1,  Gc) is a homotopy equiv- 

alence and as the methods work equally well for a generalized flag manifold, 

lim H,(HoI*(CP ~, Y)) = H,(Map~(CP n, Y)) 
n -...b o o  

with Y a generalized flag manifold or a loop group. The degree n might be a multi-index 

n=(nl . . . . .  n~) and then n---,oo means ni.--.--~oo for all i=1 ... .  , r. 

Segal's results on projective spaces are stronger. In particular, in each dimension 

q, the limit limn_,| Hq(HOl*(X, CPS)) is obtained after a finite number of steps. If this 

result on projective spaces could be proved in the framework of this paper, then the 

analogous result for loop groups would probably hold. 

There is one result in this direction. The induced map on Jr0 is an injection if 

X=CP ~. This gives yet an other proof of the connectivity of certain moduli spaces in 

algebraic geometry, see [3] and its references. 

On the other hand, the method of this paper has the virtue of treating the different 

target spaces at the same time. The papers [14], [7] and [9] start by proving the result 

for maps into CP 1, and then use induction to extend the result to the other target 

spaces. 

If D is the open unit disk in C, then the inclusion HoI(D, Y),--,Map(D, Y) is a 

homotopy equivalence. As a surface X can be made by gluing disks together, one could 

hope to prove that the inclusion HoI(X, Y)~Map(X, Y) is a homotopy equivalence by 

an induction argument. It would be easy, if the restriction map Hol(X, Y)~HoI(X', Y) 

was a fibration for a pair X' ~_X. Unfortunately this is not the case, so we have to be 

more clever. 

A based holomorphic map X ~ C P  l is uniquely determined by its zeros and poles 

and Segal uses this fact to replace the study of holomorphic maps with the study of 

configurations of zeros and poles. We will use that a based holomorphic map X---,CP 1 is 

uniquely determined by its principal parts, and replace the study of holomorphic maps 

with the study of configurations of principal parts. 

As the diffeomorphism group does not act on such configurations, we have to 

enlarge the space. The 'configuration' space we consider consists of pairs of a complex 

structure on the underlying real manifold M and a configuration of principal parts in 

this complex structure. Now the diffeomorphism group acts on the space, but it is no 

longer a true configuration space, since a global quantity, namely the complex struc- 

ture, is introduced. 

In Sections 2, 3 and 4 the necessary features of complex structures on two 
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dimensional manifolds, flag manifolds and loop groups are described. Most of the 

material is standard, cf., [6], [12] and [15], so there will be statements without proof or 

specific references. The main results are Lemma 2.8 and its generalizations Lemma 3.2 

and Lemma 4.2. 

In Section 5 we introduce the space d~(M, Y) of pairs (f, J), where J is a complex 

structure on M a n d f i s  a J-meromorphic map M--> Y. I f / )  is the closed unit disk, then 

we show that JR(/), Y) is weakly homotopy equivalent to Map(/), Y). 

In Section 6, a principal part of a holomorphic map into Y is defined and we define 

the space ~9(M, Y) of pairs (~, J), where J is a complex structure on M and ~ is a 

configuration of principal parts in this structure. There is a natural map 

M.(M, Y)--->~(M, Y), and if aM*O, then the map is surjective and a weak homotopy 

equivalence. The most important property of the space ~(M, Y) is that, under certain 

conditions on an inclusion MI___M2, the restriction map from ~(M2, Y) to ~(MI, Y) is a 

quasifibration. It enables us to get the desired result for a union M1UM2, if it is known 

for M l , M 2 and M 1 N M 2. 

This is used in Section 7, where the results are proved. Starting with the result for 

/), we follow the inductive methods of [10]. As long as M is not closed, the relevant 

restriction maps are quasifibrations, and ~((M, Y) is weak homotopy equivalent to 

Map(M, Y). When the manifolds is closed, it is necessary to introduce a stabilized 

space ~. 

By adding a principal part near infinity, we get a map ~--->~, which increases the 

degree and ~ is the telescope of the sequence ~--->~--->~---> ... .  Now the relevant 

restriction maps become homology fibrations and we can conclude that ~ and 

Map*(M, Y) have the same homology type. The next step is to show that if ~z is the 

space of configurations of principal parts in a fixed complex structure J, then the 

inclusion ~s'-->~ is a homotopy equivalence. Finally we show that ~J.n can be identified 

with ~n(XxCP~,XVCP 1, Gc), where X is M equipped with the complex structure J. 

2. Complex structures on two dimensional manifolds 

Let M be a compact, connected, oriented two dimensional C~ possibly with 

boundary and corners. Choose a volume form [2 and let F be the subbundle of 

End(TM) consisting of endomorphisms A with A 2= - I and f2(v, Av)>~O for all v E TM. 

As the dimension of M is two, the space ~(M) of complex structures on M is the space 

of smooth sections J in F, equipped with the C| The bundle F has contract- 

ible fibers, so ~(M) is contractible. If J E CO(M), then Ms denotes M equipped with the 
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complex structure J. As the complex structure can vary we will speak of J-holomorphic 

and J-harmonic functions, maps, forms etc. 

Let Diff(M) be the diffeomorphism group of M equipped with the C| 

then by the results of [4] and [5] we have 

LEMMA 2.1. I f  M & the sphere or the closed unit disk and Jo is the standard 
complex structure, then there exists a continuous map J~->~j from ~(M) to Diff(M), 

such that q~jo=id and ~j: Mj---~Mjo is holomorphic. 

The volume form f~ together with a complex structure J, determine a unique 

metric (-, .)j on M, and if J* is the adjoint of J, then - J *  is the Hodge star operator for 

(., -)j acting on one-forms. We also let - J *  denote the Hodge star operator acting on 

zero- and two-forms, i.e., J* f=- f f~  and J * f ~  =- f .  
The metric (., �9 )j on M induces a Hermitian metric on the bundle A"Mc of complex 

valued/-forms on M. We also denote this metric by (-, �9 )j, and in terms of J it can be 

expressed as ($, ~p)jf~=$A-J*lp. The space of smooth sections in AiMc is denoted 

f~iMc, and it has an inner product defined by 

(~, ~)j,o = fM(q), ~)j f2= fMq)A--J*~O. 

The complex structure J induces a splitting A~Mc=AL~ ~ ~M of the complex 

one-forms into (1,0)-forms and (0, 1)-forms, and a corresponding splitting of the exteri- 

or differential d=Oj+a,. The adjoint operators with respect to (- ,  ")J,0 have the 

following expression d~'=-J*dJ*,  a~'=-J*~Sjj* and 0~ '=-J*ajJ* .  

We inductively define Sobolev inner products on QiMc by 

and it is easily seen that J* is an isometry with respect to these inner products. The 

corresponding Sobolev norms are defined by II lljk=V  >jk, and for kEN we 

define an operator norm []-I1~.~ on End(fllMc) by 

]l~qlj, k = sup {llTallj. tl ][alla, t ~< 1 and t ~< k). 

If k = O, then we will omit it, i .e . ,  ( . , . )  j = ( . , - )  j. 0 and I I" 1[1 = l I" [IJ. 0. Let  a ,  fl E AIMc 
and J, J 'E  rg(M), then aAJ'*fl=ctA-J*J*J'*fl, so 

( a, fl) j, = - ( a, J*J'*fl) j (2.2) 
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and hence 

I(a, # )~ , -  (a,  ~l)~l = I<a, (i--i-J*J'*)~l),,I ~ Ilall., I I ( i+J*J ' * )# lb  

~< Ill +J*J'* l l~ Ilalb 11/711~ = I IJ*(J '* -J*) l lJ  Ilalh II#lb 

IIa*lb I IJ '*-J*IL,  Ilall., II~lll, = I I J ' * -J* lh  II~lb IItJII. 

especially I Ilall],-Ilall] I~<llJ'*-J*llJ Ilall]. This inequality generalizes by induction to 

LEMMA 2.3. I f  IIJ'*-J*llk<~l, then 

I 2 2 4k-I j , ,  j ,  ,c 2 Ilfl0,,k-llfllJ,  kl~< - J,k-~ J J,k, 
2 2 I Ilall~,,~-IlallJ, ~ I~  4~l lJ '*-J*lk  ~ Ilall~.~, 

all fE  ~~ c, 

all a E f~lM c. 

and 

We can now show 

PROPOSITION 2.4. Let f~,fE~~ and let J~,JE~(M). Suppose that SMf~Q = 

fMf~'2=O for all n E N, J~-->J and ~j f~-->~jf in the C| Then f~-->f in the C ~- 

topology. 

Proof. Let 2 be the first positive eigenvalue for the Laplacian Aj=d~d=2~aj 

acting on functions, then 

As gj--*gj, we only need to show that {{f~llJ, k is bounded. We may assume that 

II~-J*llj, k-l~l and then by Lemma 2.3 

II f . I IL ~ (1 +4 '<-') II f.ll~.. ~ ~ (l +4 ~-') 4(1+ ~-) I1~.. i,,llJ.,,<-, 

which is bounded, because gjf~--+gjf. [] 

The J-harmonic one-forms are characterized by being closed and orthogonal to the 

exact one-forms with respect to ( , ) j .  We fix a basis (al(J) . . . . .  a2g(J)) for the J- 
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harmonic one-forms by demanding that ~,%(J)=6~,j for i , j=l ,2 .... ,2g, where 

(cl, c2 ..... c2g) is a fixed canonical homology basis, see [6, p. 54]. 

PSOPOSITION 2.5. Let (aj(J) . . . . .  a2g(J)) be a basis for the J-harmonic one-forms as 
above. I f  J.---~J in the C| then a,(J,)~ai(J) in the C| for all 
i=1,2 .. . . .  2g. 

Proof. Let iE{1,2 . . . . .  2g} be given. To ease the notation put a.=a~(J.) 
and a=ai(J ). As a and a ,  represent the same cohomology class, a,=a+dO,, where d0,  

is uniquely determined by (dO,,dT~)j.=-(a,d~o)j, for all d~0. We shall show that 

d0,---,0. As J,--,J, Lemma 2.3 implies that it is enough to show that IId0.1b..k--'0 for all 

k. 

First consider the case k=0. We may assume that II~-J*llJ~<l, and then, using 

equation (2.2) and the fact that a-l_dO with respect to ( -, �9 )j, we get 

Ila0.1l~. = - < a ,  a0.)~.  = ( , ,  (l +s-*~) a 0 . ) ,  

Ilalb II1 +J*~lb IId0.1b ~ Ilalb II1 +J*~lb 211d0.1b, 

and hence IId0.lb ~.<211alb [[l+j*~ll, which tends to zero. 

If k>0, we put L,=... d~. dd~, (k terms). The adjoint with respect to ( , ) j .  is 

L*=dd~ d .... Similarly we put L=. . .  dyddy and L*=ddyd .... 

As IIdO.II~.,k=lldO.II~.,k_~+llZ.dO.II~, an induction argument gives that we only 

need to consider the last term. 

IlL. dO.II.~ = (dO., L~* L. dO.)j. = - (a, L* t .  dO.>j + (a, L*LdO.)s 

= (L.a,J*J'~L.dO.)I+(La, LdO.)j 

= ((L.-L) a, J*~ L. aO.) ,+  (La, (J*~ L.+L) dO.), 

~< II(Z-Z.) all. IIJ*~ t .  d0.1b+lltalb II(J*~ Zn+L) d0.IIs. 

As L , ~ L  and J*~---~- 1, we only need to show that IId0,lb.k is bounded, or by Lemma 

2.3 that IId0.11so, k is bounded. The case k=0 is already shown, and if k>0, then as above 

we only need to consider IIL.d0.1b.. We have 

IlL. dO.I[~. = <dO., Z* Z.dO.)~. = -(a ,  Z* Z.dO.)~. 

= - <L. a, t .  NO.)j. ~ IlL. alb. IlL. dO.Ib., 
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so if II~-J*llj~l, then IIZ~dq~lis~llZ~alls~llallj,,k~(l+4k)llal[j.k, and the proof is 

complete. [] 

We get a basis (wl(J), o)2(J ) . . . . .  Ogg(J)) for the J-holomorphic differentials by 

putting %(J)=a~(J)-iJ*aj(J) for j =  1,2 .....  g, see [6, Proposition III.2.7.]. Hence the 

holomorphic differentials depend continuously on the complex structure. Similarly we 

have 

PROPOSITION 2.6. The Weierstrass points depend continuously on the complex 
structure. 

Proof. It is a local question, so consider the Weierstrass points in some disk 

D'~_M. Choose, continuously depending on J, a J-holomorphic homeomorphism 

~s: D--->D'. Let (wl(J), w2(J) .....  we(J)) be a basis for the J-holomorphic differentials as 

above and define holomorphic functions fz:: D--->C by letting fj.idz=ep?(%(J)). These 

functions depend continuously on J as does the matrix 

[.,:J),  2<s) ..... ] = If: 'I 

\f(g,.;l) f~,~l) 

"'" f/,tg 

: 1 r 1)1 
�9 . .  . I J ,  g / 

Now we only have to observe that the J-Weierstrass points in D' is the image by ~ of 

the zeros of det[~ol(J), ~o2(J) . . . . .  ogg(J)], see [6]. [] 

With the same notation as above, assume that e j(0) is the same point p for all 

JE C~(M) and that p is a non-Weierstrass point in the complex structure J0. For J in a 

neighbourhood of J0, det[wl(J), ~o2(J) .....  o~g(J)]~0. So the inverse matrix 

[col(J ), w2(J ) . . . . .  wg(J)] (0) -l 

exists, and it depends continuously on J. If 

(~1(J), ~2(J) ..... ~g(J)) = (~01(J), o~2(J) ..... %(J)) [~o~(J), ~02(Y) ..... %(Y)] (0) -I, 

then (r ~2(J) ..... ~g(J)) is a basis for the J-holomorphic differentials adapted to the 

point p, and we have shown 

LEMMA 2.7. If p is a non Jo-Weierstrass point, then for J in a neighbourhood of Jo, 

we can find a basis, continuously dependent on J, for the J-holomorphic differentials 

adapted to the point p. 
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If U is a domain in C and f: U--->CP 1 is a meromorphic function with a finite number 

of poles, then we can write f=p/q+h,  where p and q are polynomials and h: U--->C is 

holomorphic. The following lemma is a generalization of this result. 

LEMMA 2.8. Let M be a closed surface and let D o, D I and D 2 be open disks in M 

such that 191 Iq/)2=~ and lgo~D 1. Put T=DI\IDo, let J be a complex structure on M and 

let QED2 be a non J-Weierstrass point. 

Any J-holomorphic function f: T---,C can be written uniquely as a sum f=Fi lr+ F2l T 

where FI: Dj---,C and F2:M\( / )0  U {Q})--->C are J-holomorphic functions such that i f  z 

is a J-parameter vanishing at Q, then F2(z)-E,ffi_~d~z with d0=0. 

Furthermore, i f  z depends continuously on J (which we may assume), then Fl and 

172 depend continuously on f and J in the compact-open topology, as long as Q is a non- 

Weierstrass point. 

Proof. Uniqueness is clear. To prove the existence, we first consider the case 

f(w)=E~ffi_NC, W', where w is a parameter on D~, vanishing at PEDo. There exists a 

meromorphic function F2 on M, which at P has the same principal part as f ,  has no 

E | poles outside {P, Q} and at Q has the expression F2(z)= nf-g d, z~. Indeed, a configura- 

tion of principal parts (a Mittag-Leffler distribution of meromorphic functions) comes 

from a globally defined meromorphic function if and only if the induced cohomology 

class in HI(M, r is zero. As we allow an extra pole of up to order g at Q, the induced 

class in H1(M, ~7(g.[Q])) must be zero, and by Serre duality, HI(M, r 

H~ r [Q]))=0 since Q is a non-Weierstrass point. We may of course assume 

that do=O. If we put Fl=f-F2lr  then F~ extends to a holomorphic function D~-->C. 

The next step is to show that F~ and Fz depend continuously on f and J. For that 

purpose we will determine the principal part of F2 at Q. 

Let c~ be a circle in T around P and let c2 be a circle in D2 around Q. Let 

(~, ~2 ... . .  ~g) be a basis for the J-holomorphic differentials adapted to the point Q, i.e., 
. . . .  1 d n and the ~j=(zJ-~+(order >-g))dz. The principal part of F2 at Q is g =z~=_e ~z,  

coefficients d-z, d-2 . . . . .  d_g can be determined by 

d-~ = f f '~k = f F2'k = + f~ F2~k = + f f~k �9 
J C2 2 I Cl 

If we choose z to depend continuously on J, then (~1, ~2 . . . . .  ~g) and the numbers 

d_ z, d_ 2 .. . . .  d_g depend continuously on J. Hence if we consider f '  as a function 

D2\{Q)-- ,C,  t h e n f '  depends continuously on J andf.  If/gl~_Dl and/)2~_D2 are closed 
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disks containing /50 and Q respectively in their interior, then we can extend 

flo~\Oo and f'[~2\~Q) to one smooth function G: M \ ( D o  U (Q})---~C such that G depends 

continuously on f and f '  and hence on f and J. 

We define a differential a on M by letting a = - a j G  outside/) 1 tJ/) 2 and zero on 

/51U/)2. Consider the equation ~ j u = a  on M. As 

(1) F 2 - G  is a solution on M \ ( / ) I  tJ/)2), 

(2) (F2-G)lr=F21r-f=Fllr  extends J-holomorphically to DI and 

(3) (F2--G)lo2\te)=F210,\{Q)--f' extends J-holomorphically to D2, 

there exists a solution with u(Q)=0. By Proposition 2.4 the solution depends continu- 

ously on J and a, and hence on J andf.  This implies that FI and F2 depend continously 

on f and J. 

By continuity the map f ~ ( F l ,  F2) extends to the space of all functions f. [] 

3. Flag manifolds 

Let k=(kl, k2 .. . . .  kr) be an ordered set of positive integers and put n=E ki. The (general- 

ized) f lag manifold Flk is the space of subspaces (El, E 2 ..... E,) of C n, such that 

dim(Ei)=kl + k2 + . . . + k ~ and EI ~_E2~_. . . ~_ Er=C n. 

A flag (EI,E2, . . . ,E )  in Fl k can be represented by a (nxn)-matrix (ao.) in Gin(C), 

such that Ei is the span of the first kl+k2+. . .+k i columns�9 A generic flag can uniquely 

be represented by an n x n-matrix of the form 

i/ A =  2,1 E2 
�9 �9 . g 

\A , , I  A , , - I  E r /  

where E~ is the identity (k~xk~)-matrix and Ai, j is an arbitrary (k~xkj)-matrix. The 

subspace of these flags is called the affine part  of Flk and is denoted (Flk)a. Further- 

more, such matrices form a subgroup N k of Gln(C), which acts on Flk from the left and 

acts transitively and freely on (Flk)a. 

The complement of (Flk)a is called the infinite part  and is denoted (Flk)| It is a 
r - !  subvariety of Flk given by the equation Ht= 1 det(a~i)i,j~kt+...+~t-O. 

Unless r=2 and we are considering a Grassmanian, (Flk) | is reducible with 

irreducible components Y1, Y2 ... . .  Yr-l, where Yt is given by the equation 

det(ao.)i,j~kl +~.. +k~ =0�9 

17-898283 Acta Mathematica 162. Iraprim~ le 25 mai 1989 



256 s. GRAVESEN 

If U is an open subset of a Riemann surface and f." U--*Flk is a holomorphic map 

withf(U) n (Flk)a#:~, then we can considerfas  a meromorphic map into (Flk)~. The set 

of poles isf-l((Flk)| which is a discrete subset of U. 

For l=1,2 . . . . .  r - 1  we put NI=(A[ i-j4:l=~Aij=O} and let err denote the 

projection Nk=NI~ . . . t~Nr_1- ,N  t. The composition in Nk is given by (AB)id= 
i--t Aid+ El=j+ 1 Ai, l Bt.j+Bi,j, and if A (~ Nt ~.. .~3N,, then 

~t(AB) = ~t~(BA) = ~I(A + B-I) = ~(A)+ ~t(B)-I. (3.1) 

On an open Riemann surface, any Mittag-Leffler distribution comes from a global- 

ly defined meromorphic function. If CP ~ is replaced by a flag manifold Flk this 

generalizes to: 

LEMMA 3.2. Let ~'1 be a compact surface with 8M4:0, and let 19z, 1)2 be disjoint 

closed disks in M=~'x ,  aM. Put ci=aDi and let JE ~ ( ~ .  If, for i=l,  2, fi:ff)i-->Flk is 
J-holomorphic with f,(ci)~_(Flk) a, then there exist J-holomorphic maps f: ~'l--->Flk and 

gi: Di--*Nk such that fi=giflBi and the poles o f f  is contained in Dl [JOE. 
Furthermore, for small variations of  J, the map f can be chosen such that it 

depends continuously on fl, f2 and J. 

Proof. First choose a closed surface A~t with M~_M and a continuous extension map 

cr Then any complex structure J on ~t can be considered as a complex 

structure on ,~. Next, choose a point Q in A~x,h~t, which is a non-Weierstrass point in 

the given complex structure. 

We can find open disks Di and D~, such that 19~_D i and f~l((Flk)| ~. Let 

Ti=Di\D ~ and consider f/It: as a map Ti--*Nk. If the composition in Nk was addition, 

then Lemma 2.8 would give the result. Instead an induction argument using (3.1) and 

lemma 2.8 works. [] 

Remark 3.3. If Mc:S  2, then we do not need the assumption OM4:~, i.e., the 

lemma holds for ~ t=S 2. 

4. Loop groups 

Let G be a compact connected Lie group with Lie algebra g and consider the space of 

based loops in G, i.e., the space of smooth maps ~,: S~-->G with y(1)= 1. It is an infinite 
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dimensional Lie group, and we let the loop group f~G be the identity component.(~) The 

Lie Algebra of f~G is fig,  i.e., the space of smooth maps y: $ 1 ~  with y(1)=0. 

The complexification of G is denoted Gc and has Lie algebra ~c = g| C. We let 

LGc denote the identity component of all loops in Gc. It too is an infinite dimensional 

Lie group, and we may consider f~G as a subgroup of LGc. Let L+Gc denote the 

subgroup of loops ~6LGc, which are the boundary value of a holomorphic map 

D---~Gc, where D is the open unit disk in C, and let L-Gc denote the subgroup of loops 

yELGc, which are the boundary value of a holomorphic map D| where 

D| The Lie groups LGc, L+Gc and L-G c have the Lie algebras Lg c, 

L+Gc and L-g  c. 

The multiplication map f~GxL§ is a diffeomorphism, see [12, chapter 8], 

so the loop group is also a homogeneous space of LGc. The description 

g2G~LGc/L+Gc makes f~G into a complex manifold, but not into a complex Lie group. 

The multiplication in f~G is not holomorphic, but left multiplication by a fixed element 

is holomorphic. 

If L~Gc= {y 6 L-Gc] y(~)= I }, then the multiplication map L~G c xL+Gc-->LGc is a 

diffeomorphism onto a dense open subset of LGc, see [12, chapter 8], so L-fG c can be 

considered as an open dense subset of g2G. Moreover, the inclusion L I G c ~ G  is 

holomorphic, and the multiplication in L~G c extends to a holomorphic left action of 

LIG c on fiG. The Lie algebra of L~G c is Logc={~,6L-gcl ?(~o)=0}, so f i g  is a 

complex manifold modeled on L o gc 

The loop group f~G can be considered as a kind of infinite dimensional Grassman- 

nian, see [12], and as such L-fG c is the affine part of f~G. The complement is called the 

infinite part and is denoted (fiG)| 

This is very similar to the situation in the preceding section. The loop group f G  

corresponds to the flag manifold Ftk, and L-fG c corresponds to the group Nk~--(Flk) a. 

There is one difference between the groups Ark and L?G c, namely the exponential map. 

It is an isomorphism in the case of Nk, but this may not be so in the case of L~G c. 

Hence as a complex manifold L~G c need not be a vector space, but it is contractible by 

the homomorphisms ~'~Y,, t 6 [0, 1], where y,(z)=~,(t-~z). 
We will need the description of elements in g~G as holomorphic bundles over CP t, 

see [12, section 8.10]. The idea is simple. A loop y 6 Q G  is used to glue the trivial Gc- 

bundle over/9 and/9| together and thus obtain a Gc-bundle over CP ~. To be precise, an 

(t) Normally all componen t s  are considered,  but  as we later will consider  based  maps  into ~ G ,  we will 
only need the  identity component .  
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element of f~G is the same as an isomorphism class of pairs (P, r), where P is a 

holomorphic principal Gc-bundle on CP 1 and r is a trivialization of P over / )~ ,  i.e., a 

smooth section of  PIp, which is holomorphic over D| The elements of L?Gcc_g2G 

correspond to pairs (P, r), where P is the trivial bundle, and the action of L~G c on g2G 

corresponds to the map (y, (P, r))~(P, yr). Holomorphic maps into t2G are described 

by 

PROPOSITION 4.1. I f  X is a complex manifold, then a holomorphic map from X to 

QG is the same thing as an isomorphism class o f  pairs (P, r), where P is a holomorphic 

principal Gc-bundle on X x C P  1 and r is a trivialization o f  P over X x l ~ .  

If  U is an open subset of a Riemann surface X and f:  U---~t2G is holomorphic with 

f (U)  n L~Gc4=~, then f can be considered as a meromorphic map into LIGc=(f2G) a. 

The set of poles isf-l((flG)|  which is a discrete subset of U. If  we use Proposition 4.1 

and iden t i fy fwi th  a pair (P, r), where P is a holomorphic Gc-bundle over U x C P  1, then 

a point a E U is a pole if and only if the line {a} x C P  1 is a jumping line, i.e., if and only 

if the bundle Pl(a)• is non-trivial. 

We end the chapter on loop groups with the equivalent of Lemma 3.2. 

LEr~MA 4.2. Let M be a compact surface with non-empty boundary, and let Dl, D2 

be disjoint closed disks in M=Jfr aM. Put ci=aDi and let JECr If, for  i=1,2 ,  

fi: 19i---~t)G is J-holomorphic with f,(ci)c_L~G c, then there exist J-holomorphic maps 

f: )(/1---~t)G and gi: l~i"~Li Gc such that f i=gi f  l3 ' and the set o f  poles o f f  is contained in 

DI UD2. 
Furthermore, for  small variations o f  f l , f2  and J, the map f can be chosen such that 

it depends continuously on f l ,  f2 and J. 

Proof. The two maps 3~:/)l--~flG and f2:/)2---,f~G correspond to two pairs (Pi, ri), 

where Pi is a J-holomorphic Gc-bundle ove r / ) i xCP  ! and r; is a trivialization of  P~ over 

/)ix/)| The bundle Pi is trivial outside the jumping l inesf-l((QG)|  CP 1, so by gluing 

PI tJP2 to the trivial bundle over (h4xCPI) \{ jumping  lines}, we get a J-holomorphic 

Gc-bundle P over M x C P  I. 

As 0M:#~, there exists a trivialization r of  P over Mx/) |  The pair (P, z) corre- 

sponds to a J-holomorphic map f :  KI--,t2G, and the difference between the trivializa- 

tions zl~,• and r,. is a J-holomorphic map g~:/),.x/)|  We can choose r such that 

g,(x, oo)=1 for all xE19 i, so giis a J-holomorphic map s The maps f ,  gl and g2 

have all the required properties, but we still have to show that this process can be made 

continuously. 
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Let yo=(f~ ~ jo) be given. Put U=DI UD2 and choose an open subset V___h]t, such 

that U U V=3~t and f0 (#  N/)i) ~- (flG)a for i= l, 2. Finally, choose a neighbourhood W of 

y0 in the space of triples ( ~ , ~ , J )  with ~EMap(/)i, QG) and JEqg(3~t) such that 

f/(l?N/)i)~_(f2G)a and j~ is J-holomorphic. 

The evaluation map F: Wx (]--.ff~G, given by F(ft,f2, J, x)=fi(x) if x E19i, defines a 

pair (Pv, rv), where Pu is a Gc-bundle over W x U x C P  1, and re is a trivialization 

of Pu over WxOx/)o~. The bundle Pu is J-holomorphic, when restricted to 

{(fl,f2,J)}•215 1, and the trivialization ru is J-holomorphic, when restricted to 

{(fl,f2, J)} x Ux D~. Furthermore, Pu  can be trivialized over Wx (O N #)  x CP l, and the 

trivialization can be chosen such that it is J-holomorphic, when restricted to 

{(fl,f2,J)}• V)• 1. 

By gluing Pv  to the trivial bundle over W •  ~, we get a Gc-bundle P over 

Wx3~txCP l, which is J-holomorphic, when restricted to {(f~,f2,J)}xMxCP l and is 

trivial over W x # •  ~. We only need to find a trivialization r of P over Wx~tx/) |  

which is J-holomorphic, when restricted to {(fl,f2,J)} xMxD| and is equal to rv on 
wxOx{oo). 

If x6  ON#,  then F(y,x)E(f2G)a~--LIGc, and the transition function from the 

trivialization over Wx t.)• to the trivilization over Wx#•174 is exactly FIw• 
considered as a map Wx(t_)N #)x/)~--~G c. 

Let t:h4t-.[0, 1] be a smooth map, such that t(hY/\U)=0 and t(O",xV)=l. We 

define ~Pv:WX#-.L-~G c by letting ~pv(y,x)(z)=l if xrr~x,U and ~pv(y,x)(z)= 
F(y, x)(t(x)z) if x 6 ON I2, and ~Pu: W• (_I--~L-(G c by V/u= 1 on t.)"x, V and ,pu=F-l~v on 
One?. 

The map ~Pv defines an isomorphism of the trivial bundle over Wx l?x/)| and ~Pu 

defines an isomorphism of the trivial bundle over Wx 6'x/)| As ~pu=F,Pv, when 

restricted to Wx(UN #)x/) |  we get a trivialization $ of P over Wxh]tx/9| The 

trivialization $ is holomorphic when restricted to {(fl,f2, J)} x M• { oo }, and is equal to 

ru, when restricted to Wx U• {Qo}. 

For any map ~p: W• the product ~p$ is a new trivialization of P over 

Wxh~tx/)| We want to find a ~p, such that ~$  is J-holomorphic, when restricted to 

{(fl,fE,J)}xMxDo~. As P is J~ trivial over {yo}xMxDoo, we can find 

*p: .~I---~L~G c, such that ~p~b is J~ when restricted to {Y0} xMxDoo. To ease 

notation, we assume that $ is already J~ when restricted to {Y0} xMxD~o. 
This corresponds to assuming that ~Pu and ~Pv are J~ when restricted to 

respectively {Y0} x UxD| and {Y0} x V•174 
We shall find a map ~p: Wx~,I-oL~G c such tat ~P~Pu and ~P~Pv are J-holomorphic 
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when restricted to respectively {(fl,f2, J)} x U and {(fl,f2, J)} x V. Let ~21(M, L o gc) be 

the space of one-forms on/kit with values in Log o and define h: W---)g21(h4, Log c) by 

~-(aWv) ~7) onU 
h(f'f2'J)= L-(~sNv)Wv' on v. 

This is well-defined, because the difference between ~Pt: and v/v is J-holomorphic. 

Our task is to find ~, such that ~ -~a j~=h .  It we put 

flo, ~(W• A~, L o gc) = ((f~,f2, J, h) E Wx ff2~(Al, L o ~c)t h E s 1 (A7/, Lo tic)}, 

then (y, h(y)) E Qo, l (w>(]~  ' Lo gc) all y E W, and as $ is J~ when restricted 

to {yo}xMxD| we have h(y0)=0. Now consider the map 

H: Wx C| L~ G c) ~ ~o, I(WX ~l, Lo ~c) 

(f,,A,J, 

We shall show that H has a right inverse, and to do that we use the Nash-Moser 

inverse function theorem, see [8]. The first step is to find the differential of H. 

The tangent space at (y,W) of WxC| is TyWXC| Logc), and 

the tangent space at (y,h) of fl~ is TyWx~2~ Logc). Let 

y=(fl,f2,J) E W, A E C~(I(/I, Logc) and B=(B~,B 2, K) E TyW, where Bj = T~ Map(/)j, ff2G) 
and KE T~ fig(M). Then 

By [8, III, Theorem 1.1.3] it is enough to show that DH has a smooth tame family of 

right inverses. So we shall be able to solve the equation 

gjA = V2h~O-~-i K du2 ~O -' (4.3) 
2 

where h E Q~' ~(~/, Lgge), such that the solution A is a smooth tame function of J, ~0, K 
and h. 

If a M = ~  and the righthand side of (4.3) lies in the images of g~ then this is 

possible, see [8, II, Theorem 3.3.3]. We have O M ~ ,  so we will close M and extend 

our data in a suitable way. 

Let M be a closed surface containing M. By [13] there exists a smooth tame map 
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(J, ~p, K, h)~(?, ~, K, ti) which extends the data from kit to )14. Next we modify/~ to/~ 

such that R=~oi~o-l-(i/2)Rd(o ~- l  lies in the images of aj. 

The image of ~j is the forms aEf~~ Loflc) such that j '~aAw=0 for all J- 

holomorphic forms to. In w 2 we constructed a basis (wl(?) . . . . .  O~g(J)) for the J-holomor- 

phic differentials and by examining the proof of Proposition 2.5 we see that the map 

J~oj ( J )  is smooth and tame. 

Choose forms f l  . . . . .  fg E f~o, 1 kit such that fj]~=0 and the matrix 

/ P X 

(ai,j(J))i,j=l 

where ~'~ is the projection onto f2 ~ lh;/, is regular for J=J0. Then the same is true for J 

in a neighbourhood of J0 and by making W smaller we may assume that it is true for all 

J. Let (bi,.i(J))i,j= , ..... g be the inverse matrix and put fi(J)=E]=lbi,j(.J)x~ Then 

.[~fi(J)AoJj(J)=fi, j, and if we put 

then R lies in the images of aj. As mentioned above, ~j now has a smooth tame family 

of right inverses. As the restriction from M to M obviously is smooth and tame, the 

differential DH has a smooth tame family of right inverses, and the proof is complete. 
[] 

5. Spaces of holomorphic maps 

In the following Y denotes either a flag manifold Flk or a loop group f~G. It is a complex 

manifold and even a complex projective variety. We let Y~ denote the affine part of Y 

and let Y~= Y \ Y a  denote the infinite part of Y. The affine part is isomorphic to a 

contractible complex Lie group N, and the composition N• extends to a holo- 

morphic left action N x  Y--o Y of N on Y. The infinite part is the union Yoo= I"1 t.J.., t.J Yr of 

finitely many irreducible algebraic varieties YI .... .  Yr. 
If X is a Riemann surface and f: X--o Y is a holomorphic map, which does not map 

into Y~, then the set of poles,f-l(Y~), is a discrete subset of X. To each point a EX and 

i=1 ... . .  r the ith order o rd ; , a fo f f a t  a is defined as the order of contact between f(U) 

and Yi at f(a),  where U is a neighbourhood of a, such that f - l (Y~)n  U~_{a}. The 

total order, ordff, of f a t  a is of the sum the ith orders, and a is a pole if and only 

if ordff>O. The ith degree of f is degif=Eaordi, f f ,  and the total degree is 
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degf=deglf+. . .  +deg , f=  E a ordafi If X is closed, the degrees are finite, and the r-tuple 

(deglf, .... deg,f)  determines which component of Map(X, Y), f l i e s  in. 

Let 37/ be a compact two-dimensional manifold, possibly with boundary and 

comers, and put M=hTI\OM. Equip the space Map(M, Y) of continuous maps from M 

to Y with the compact-open topology. 

I f f E  Hob(M, Y)= {fE Map(M, Y)I f is J-holomorphic} and f (M)  n Ya*r then we 

ca l l fa  J-meromorphic map and we have the concepts of poles, orders and degrees off.  

We let d~n(M) be the space of pairs ( f , J )  in Map(M, Y)x~g(37/) such that f i s  J- 

meromorphic with degf=n,  and if M' is any subset of M, then we let d~n(34, M') be the 

space of pairs (f, J)  in d~n(M) such that the poles of f is outside M'. We put 
d~(3~t, M')= O~=0 d~k(3~t, M')  and d~(h~t, M')=lim~_,| d~n(h~t, M'). 

If the complex structure i s  fixed, then we have the spaces d~j,,(M,M') and 

2,tj,<~(M,M') consisting of J-meromorphic maps with the right degree. We put 
d~j(M, ' " M )=hmn_,| dlj, ~(M, M') and if M ' = 9 ,  then we omit it, i.e., ~(M)=d~(M, 9) ,  
etc. 

The restriction of the projection Map(M, Y)x ~(M)---,Map(M, Y) to .a(M) fits into 
the commutative diagram 

~j(M) , r 

l 1 
Hob(M, Y) ) Map(M, Y) 

In this section we consider the case M=/5={zEC[ Izl-<l} and show that the maps in the 

diagram are homotopy equivalences. 

LEMMA 5.1. Let Jo be any complex structure on 1). There exists a map e/ from 

d~(15) to ~jo(D), such that ~p(f, J0)=f, and the map .,r162 given by 

(f, J)~-~(e/(f, J), J) is a homeomorphism. 

Proof. Let ~j: Dj--,DJo be the map from Lemma 2.1 and define ~p by 

~(f ,  J )=fo  ~-~l. [] 

LEMMA 5.2. The inclusion Hob(D, Y),--,Map(D, Y) is a homotopy equivalence. 

Proof. Let J0 be the standard complex structure on D and let ~:/gjo---,/) J be a 
holomorphic homeomorphism with ~(0)=0. Define for tE[0,1], ~pt:/5--->/) by 

lpt(z)=~(t~)-l(z)). Then ~t is J-holomorphic for all tE [0, 1], ~00=0 and ~pl=id. We define 
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a homotopy inverse F: Map(D, Y)--->Holj(D, Y) to the inclusion by F(f)(z)=f(0), and 

only have to observe that F is homotopic to the identity on both Hob(M, Y) and 

Map(D, Y) by the homotopy ( t , f )~ fo  ~t. 

LEMMA 5.3. The map Mj(D)---~Holj(D, Y)\Holj(D, Y| is a homotopy 
equivalence. 

Proof. Let ~Pt:/)---~/) be the map defined in the proof above. We define a homotopy 

inverse to the map in the Lemma by f~fo~pl/2. [] 

Let ~ob(/),  Y) be the space o f f E  Map(/), Y) such that f lo  is J-holomorphic and 

f(/)) is contained in a chart, and let n be the Lie algebra of N. Then we have 

LEMMA 5.4. ~OIj(/), Y) is a complex manifold modelled on Holj(/), rt). 

LEMMA 5.5. The inclusion Hob(D, Y) \Hob(D,  Y| Y) is a homotopy 
equivalence. 

Proof. Choose a metric on Y and a k>0, such that any subset of Y with diameter 

less than k is contained in a chart. Let ~Pt be the J-holomorphic map defined in the proof 

of Lemma 5.2. For fEHob(D,  Y), we let t(f) be the maximal tE[0,1/2] such that 

diam(fo ~pt(/)))<.k. The number t(f) depends continuously on f,  so we can define a map 

from Hob(D, Y) to H"olj(/), Y) by t~(f )=fo  ~r)t(f). This is a homotopy inverse to the 

restriction r: ~ j ( / ) ,  Y)--->Holj(D, Y), because 

rodp(f)=fo~tcf)~fo~l= f and dpor(f)=fo~t~f)~fo~l= f 

by obvious homotopies. 

Moreover, the subspaces Holj(D, Y)\Hob(D, Y| and HoI,(D, Y| are preserved 

by the homotopies. So it is enough to show that the inclusion 

~'olj(/), Y)\Holj( / ) ,  Y| H"olj(/), Y) 

is a homotopy equivalence. 

This is the case because H"~'la(/), Y) is a manifold and ~"ola(/), Y)N Hob(/), Y| has 

infinite codimension in the sense of the following lemma. [] 

LEMMA 5.6. I f  fE H"O1j(/), Y) n HOIj(/), Y~), then there exist a neighbourhood W of 

0 in Holj(/), C) and an imbedding i: W,--~"olj(/), Y), such that 

(1) i-l(Hob(/), Y| and 

(2) every smooth curve y in Hob(/), Y| with y(O)=f has 7'(O)r di(To WN,{O)). 



264 J. GRAVESEN 

Proof. We can c o n s i d e r f a s  a map/)---~n and as Y| has complex codimension one 

in Y, there exists a g E Holj(/3, rt), such that g(0) is not tangent to Y= at f(0) (n is a 

vector space so it makes sense to consider g(0) as a tangentvector at any point). We can 

choose an e>0, such that for a zED with ]z[<e, g(z) is not tangent to Y= at f(z). 

If  W is a sufficiently small neighbourhood of 0 in Hob(/),  C), then we have an 

imbedding i: W~"ool,(/), Y): h~f+hg.  We see that dio(h)=hg, and if h(z)g(z) is tangent 

to Y| at a point f(z) with Izl<e, then we must have h(z)=0, ff  7 is a smooth curve in 

Hob(/), Y=) with 7(0)=fand y ' (0)=hg for a h E Hob(/),  C), then h(z)g(z) is tangent to Y| 

at f(z) for all z. Hence h(z)=0 for all z with Iz]<e, and as h is holomorphic, h is 

identically zero. 

So condition (2) of the lemma is satisfied and if W is sufficiently small, condition 

(1) is satisfied too. [] 

We finally state 

LEMMA 5.7. Let D be the closed unit disk in C and let J be any complex structure 

on 19. Then the maps in the commutative diagram 

~tj(D) , ~ ( O )  

I 1 
Hob(D, Y) , Map(D, Y) 

are homotopy equivalences. 

Proof. The two horizontal maps are homotopy equivalences by Lemma 5.1 and 

Lemma 5.2, and the lefthand vertical map is a homotopy equivalence by Lemma 5.3 

and Lemma 5.5. But then the last map is a homotopy equivalence too. [] 

6. Spaces of principal parts 

Let  J be a complex structure on At and let ~) and Mj denote the sheaves of respectively 

J-holomorphic and J-meromorphic maps into N. I.e., for an open subset U~_M, we let 

~Tj(U)=Holj(U, N) and d/ j (U)=Holj(U,  Y) \Hob(U,  Y~). 
The action of N on Y induces an action of t~j(U) on Mj(U), which clearly preserves 

poles and their orders. So we can define the quotient sheaf ~ j=Mj /6 j  called the sheaf 

of  J-principal parts. A configuration o f  J-principal parts is a global section of ~j.  
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As noted above, a pole, the order of a point and the degree of a configuration of 

principal parts are well defined concepts. We are only interested in finite configura- 

tions, so we let ~s(M) be the set of global section ~ of ~ with deg~<oo. We 

furthermore let ~ ,  ~n(M) and ~j, ,(M) denote the set of ~ E ~j(M) with respectively 

deg~<n and deg~=n. 

I f M '  and M both are subsets of a surface M, then we let ~s(M, M') be the space of 

~E ~j(M) with ~[MnM,=0 and similar for ~j,~,(M, M') and ~j,,(M, M'). 

Finally the complex structure varies, and we get the space ~(M) consisting of pairs 

(~,J) where JE~()I~) and ~E~j(M),  and the spaces ~ , ( M ) ,  ~,(h,1), ~(M,M'),  

~ , ( M ,  M')  and ~,(M, M')  whose definition should be obvious. 

Let M0k]r, M') be the quotient of the free Abelian monoid, generated by points of 

~ ' , , M '  by the relation, which identifies points on aM with zero, see [14, p. 45], and 

define the pole map ~(hTl, M')--~MO(-I, M ') by (~, J)~--~ E ~  M ord~ ~- a. 

A J-holomorphic map f.'M---~ Y with f(M)N Ya~:~ and degf<o~ defines a configura- 

tion If]  of J-principal parts with deg~[f]=degof all a f iM,  i.e., we have a map 

d~(/~, M')---~(~r M'): (f, J ) ~ ( [ f ] ,  J) ,  which preserves the degree. 

LEMMA 6.1. Let f,f'Ed/ls(M), then [ f ] = [ f ' ]  ff and only if there exists a J- 
holomorphic map g: M-*N, such that f '=gf .  

Proof. The 'if' part is clear, so assume [ f ] = [ f ' ] .  Let al .... .  a,  be the poles o f f  and 

f '  and put V = M \ { a l  . . . . .  a,}. There exist neighbourhoods Ui of ai and J-holomorphic 

maps gi: Ui--*N, such thatf'lvi=giflts~ for all i= 1 .....  n. On V we can consider f a n d  f '  

as maps into N. So on Vn U/we must have , -1 gilvnuTf Ivnvflvn., and hence g:M---~N 
can be defined by g(x)=gi(x) i fxE  U,. and g(x)=f'(x)f-l(x) i fxE  V. [] 

The Lemma says that the fiber at ( [ f ] ) , J )  of the map d/t(M)~9(~z/) is ~71(M). 

In the case of Y= QG, Proposition 4.1 implies that ~:(M) is the set of holomorphic 

Gc-bundles on Mj• 1 with only finitely many jumping lines. 

Before we equip ~(M) with a topology, we will study the action of 6j(M) on 

d/AM) a little closer. 

LEMMA 6.2. Holj(M, N) acts freely on d/tj(M). 

Proof. Let g ~ Hols(M, N) andfE  ~/s(M) and assume that gf=f. As N acts freely on 

Yo, g(x)=l for xEf-l(ya), but f-l(Y~) is dense in M, and thus g= l .  [] 
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LEMMA 6.3. Let Uc_M, let al . . . . .  CtmEU~aU and put V=UN,(al . . . . .  am}. Let 
J~E ~(]~1) and let gn be a map U---~N, such that gn is Jn-holomorphic. I f  Jn--->JE qg(l(l) 
and gn{v-->g, where g: V--->N is J-holomorphic, then g extends to a J-holomorphic map 

g: U +N, and gn--->g. 

Proof. Let a E  UN, V and choose a disk Da in (V",,aU)U {a} around a. Choose, 

continuously depending on J ' E  qg(M), a J ' -holomorphic homeomorphism S j,: Da--->D, 
such that q~j,(a)=0. Let  c = { z E C  I Izl=3Z}. We can imbed N as a closed subset of a 

complex topological vector space E. In the case of  a loop group, E is not a Banach 

space, but there do exist norms II" lira on E, and a sequence in E converges if and only if 
k it converges in all these norms. If  x E D ~ \  {a}, then g(x)= Ek=_| a k ~y(x) with 

1 f~ g~ dzEE. 
ak ~ ~ zk+ 1 

As gn-->g and $-1__~$-~ uniformly on c, we have an=0 if n<0.  Thus g extends to a J- J .  J 

holomorphic map g: VU {a}--,N. Let K=q~j-l({z E C I Iz[~<~}). It is a compact neighbour- 

hood of a, and dist($j(K), c)=~, hence dist($] (K), c)>41, if n is sufficiently large. For 

such an n, an xoEK and a norm II'll as above 

Ilgn(x~176 = z-C jo(xo) 2,7ri J~ z -~ j (x  o) 

~< 2:tlf~ I (Z-~J(x~176176176176176 (Z-dPy(Xo)) dz 

3 I(llgn o ep~(z)-g o  S (z)ll +ll jo(x0)- j(x0)ll lie ~  Y'(z)tl) dz, 

As g~oep~l(z)-->go~-fl(z) uniformly on c, ~j  --->~j uniformly on K and IIgo S'(z)ll is 
bounded on c, we have IIg~-gll--'0 uniformly on K. Hence g~-->g uniformly on compact 

subsets of VU {a}. Finally induction on the number of points in U \ V  finishes the 

proof. [] 

LEMMA 6.4. Let Jn be a sequence of complex structures on ~1, let gn E ~?j(M) and 
let f~ E ~ j  (M). I f  J~-->J E qg(l~l), f~-->fE JRj(M) and g~f~-->fE ~tj(M), then there exists a 
gE ~j(M), such that g~--->g and f=gf. 

Proof. Put V=f-I(Y~) flf-t(y~). Then M \ V  is finite, we can consider f l y  and l i r a s  

maps into N. Define g: V--~N by g=fIvfIv 1. Let  K be a compact subset of V. As Y~ is 
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open and f(K)~_Ya, we have that f~(K)~_Ya~N if n is sufficiently large. Then 

g~]x=g~]Kf,,[Kfnl~L-~f[xf[~----glK. By Lemma 6.3, g extends to a J-holomorphic map 

g: M---~N and g,---~g, which in turn implies that g,f~---~gf, and thus f=gf .  [] 

COROLLARY 6.5. (Tj(M) acts properly on gleAM). 

There is obviously the following generalization of Lemma 3.2 and Lemma 4.2. 

LEMMA 6.6. Let 1(/1 be a two-dimensional compact connected manifold with non- 

empty boundary and let 191 ..... Dn be disjoint closed disks in M. Suppose we have J- 

holomorphic maps fi: Di --> Y with fi(ODi)~_ Ya, then there exist J-holomorphic maps 

f'. 1r Y and gi: 19i--~N such that f i=gif]o, and the poles o f f  is contained in DI O .... U D~. 

Furthermore, for small variations o f  f l  . . . . .  f~ and J, the choices can be made, such 

that f and gi .....  g~ depend continuously on fl  . . . . .  fn and J. 

COROLLARY 6.7. I f  l~ is a compact connected surface with 8M~-0, then the map 

M(Jr is surjective, and as sets ~j(M)=~j(M)RTj(M). 

We are now ready to define the topology on ~()14) in the case, where M has a 

boundary. For a compact subset K of M, we let d/(K) denote the space of pairs 

(f, J)E Map(K, Y)x cr where fex tends  to an element of d~j(U) for some neighbour- 

hood U of K. We define an equivalence relation ~ on ~(K)  by letting (f~, Jl)~(f2, J2), if 

Jl=J2 and there exist a neighbourhood U of K and a map gEHoljz(U, N), such that 

f~=g[xf2. Equip d~(K)/~ with the quotient topology. Put the weakest topology on 

~n(M) ,  which makes the restriction map 8~,,(#l)~./l,l(K)/~ continuous for all com- 

pact subsets K of M. Finally let ~(M)=lim,_.| ~ ( M ) .  If 0M4:r then the maps 

M(AI)--->~(M) and ~(~t)---~M(A~t) are continuous. 

If/)1 ..... /)k are disjoint disks in M, and, for i= 1 ..... k, fi: Di---> Y is a J-holomorphic 

map with f,(D/) n Y~*O and degfi<oo, then we get a configuration of J-principal parts in 

M denoted [f~] U... 0 [fk], and no matter what the boundary of M is, every configuration 

of J-principal parts is of this form. 

Equip/5 with the standard complex structure and let Hn denote the space of J- 

holomorphic maps f:/)---> Y such that degf[D=n. Choose, for i= 1 ..... k and JE qg(/~), J- 

holomorphic imbeddings Su:/)-->M which depend continuously on J, such that 

S/j(/)) n r if i*j. If n=nl+...+nk, then there is a map 

H., x... xH,,x ~(M)-~ ~(M) 
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defined by 

( f ,  . . . . .  u . . . u  

Two sets of maps (fl . . . . .  J~) and (f{ .....  f;,) give the same configuration if and only if 

there for each i=1 ..... k exists a map giEHol(f),N), such that fi'=gifi . If we put 

H~/~ =H~/Hol(/), N),  then Lemma 6.6 implies 

LEMMA 6.8. I f  SM~-fD, then the map above induces a local homeomorphism 

(H~l~)x. . .  x (H , /~ )x  ~(M) ~ ~'~(.~), 

and every element o f  ~(1(/1) has a neighbourhood, which is the image o f  such a 

homeomorphism. 

In particular, the transition functions between spaces of the form 

(H.,I~) x... x (H,,I~) x ~(M) 

are homeomorphism. This is even the case if a M = a ,  because we can always remove a 

disk from M without disturbing a given configuration of principal parts. So if a M = a ,  

the topology on ~(M) can be defined by declaring the inclusions 

(H,,/~)x... x (H~,/~) x CO(M) ~ ~(M) 

to be local homeomorphisms. The subspace ~ ( M )  is then open and closed in ~(M), 

and we still have 

LEMMA 6.9. The maps ~/(/~t)--->~(/k]t)---~r are continuous. 

Let H~=(f~Hnl  f( /))  is contained in a chart}. Then H~ is an open subset of 

H'~(/), Y) and hence a complex manifold modelled on Hol(/), n), see Lemma 5.4. The 

following result is obvious. 

LEMMA 6.10. The restriction o f  the action F:Hol(19, N)xISIn--'>Hn to F-I(ISIn) is 

holomorphic. 

As a corollary we have 

LEMMA 6.1 1. H~/~ is a manifold, and the projection I51n--->Igln/~ has local sections. 
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Proof. ~o1(/9, Y) acts freely and properly on H, ,  and a neighbourhood of the 

identity acts smoothly on H, .  [] 

In Lemma 6.8 we may clearly replace/4 ,  with Hn, i.e., we have 

LEMMA 6.12. The maps 

x... x(Hn/- )x  ---, 

are local homeomorphisms and cover ~,(1(/I). 

As the fiber of  ./,t(AT/)-~9(A] r) is iTs(M), which is contractible, it is not surprising 

that the map is a weak homotopy equivalence, but before we can prove it, we need to 

show that it is a quasifibration. 

LEMMA 6.13. I f  a M . ~ ,  then the map at: ~t,(h~t)---~n(h~t) is a quasifibration over 

any open subset o f  ~n(Kt). 

Proof. By [2, Satz 2.2], it is enough to show that at is a quasifibration over 

arbitrarily small open subsets. Locally we have a commutative diagram 

x, .x re(M) , 

, 

As there are local sections of ISIn--.I:I,/~, there are local sections of at. Let  

a: W---~,(~;/) be a section of  ~r over an open subset W=~,(,'(/I). We only need to show 

that atl_,(w):er-~(W)--.W is a quasifibration. Let  W be the set of triples 

(g ,~ , J )EMap(M,N)xW such that g is J-holomorphic, and consider the map 

(g, ~, J)~--~go(~, J) from I~ to at-l(W). It is a homeomorphism, so we only have to show 

that the projection I0--~W is a quasifibration. This is trivial, as a contraction of N 

induces a fiber preserving deforrnation of  I~ onto {0} x W. [] 

We can now show 

LEMMA 6.14. I f  OM*f~, then the map at: ~(lfI)---~091) is a quasifibration. 

Proof. As ~(h~t)=lim,~| ~,(h~t) ,  it is by [2, Satz 2.15] enough to show that az is a 

quasifibration, when restricted to ~ , ( / 9 / ) .  This we do by induction on n. Assume that 
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the restriction to ~<n_l(M) is a quasifibration. Choose a neighbourhood B(e) of OM in 

M, homeomorphic to 0M• e) and let W be the set of pairs (~, J )E ~_<~(h~t) with 

deg ~lu...B~)~<n-I. Then W is a neighbourhood of ~ _ ~ ( h 4 )  in ~<~(hT/), and it is enough 

to show that :t is a quasifibration, when restricted to :t-~(W), ~( /~t )  and 

~t~(Ait) n:t-~(W) respectively. By Lemma 6.13, the last two restrictions are quasifibra- 

tions, so we need only consider ~zl _~w): :t-I(W)-~W. As the fibers of : t  are contractible, 

it is by [2, Hilfsatz 2.10] enough to find a deformation ~0t: W-->W, t~ [0, 1], such that 

(1) ~P0=id, 
(2) ~/,~(~<~_~(/~))~_~<_~_~(M) for all t, 

(3) ~PI(W)= ~<,_~(/~t) and 

(4) ~/'t lifts to a deformation of ~t-~(W). 
Choose a vector field on M, such that the corresponding flow Ct preserves KI\B(e)  and 

has q~l(~r)_~(h;/)\B(e). We put ~,((f, J ) )= ( fo  ~t, q~,(J)). This defines a deformation ~t 

of :t-t(W), which clearly descends to the wanted deformation ~t of W. [] 

We have already noted that the fibers of d/(M)---,3D(M) are contractible, so we get 

LEMMA 6.15. I f  OMega, then the map .gt(l(,l)-~O('l) is a weak homotopy equiv- 

alence. 

Two configurations ~ and ~2 of J-principal parts without common poles give rise to 

a new configuration ~1 tJ ~2 of J-principal parts called the union or the sum of ~! and ~2. 

LEMMA 6.16. Addition o f  principal parts is a continuous map: 

{((~1,J),(~2, J))E 3a(?,7/) x ~(~r) I pole ~ flpole ~2 = ~} --" ~(AT/). 

Proof. Let ((~ln, Jn), (~z~, Jn))--->((~l, J), (~z, J)) be a convergent sequence in the 

space above. Let a I . . . . .  akl be the poles of ~l and let ctk~+m .. . . .  a / b e  the poles of ~z. 

Choose disjoint closed disks/) l  . . . . .  /)k in M, with aiEDi all i=1 . . . . .  k. Let, f o r j = l , 2 ,  

~jn be the part of ~j~, which lies in DIU...tJDk. Then (~j~,J~)---~(~j,J) and, for n 

sufficiently large, deg ~jn=deg ~j=n~. We obviously have that (~ln U ~2~, Jn)-'>(~i tJ ~z, J) ,  

and if K is any compact subset of M, then if n is large. Hence 

(~1~ u ~2n, J~)-'(~l tJ ~2, J). [] 

LEMMA 6.17. The fiber o f  the pole map ~I(/Q)---~I(M), restricted to configura- 

tions with one simple pole, has r connected components, one for each irreducible 

component Yi o f  Y| Y~ tJ ... tJ Yr 
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Proof. Let aEM=M1(M) be given. Choose for JE  ~(/~t), a J-holomorphic imbed- 

ding ~bj:/)--->M, such that q~j(0)=a and ~j  depends continuously on J. The fiber over a 

of the pole map is homeomorphic to 

{ ( [ f l , J )  E (/-~'!/~) x ~(.~t) I f(0) E Y| 

As ~(M) is contractible, it is enough to consider the space 

( [ f ]  E H,/~I f(0) E Y| 

Let [ f ]  be an element of this space. Thenf(D)n Y| (f(0)}, and the order of contact is 

one. Thus f(0) is a simple point of Y| and as the sets Yi n Yj consist of singular points 

for i=l=j, the fiber has at least r connected components. 

On the other hand, the set of singular points in Y| is a proper subvariety of Y| and 

has at least complex codimension one. Hence the set Y~ of points in Y,., which are 

simple in Y| is connected. Around each point y E Y~, exist local coordinates (u, v) on Y, 

such that Yi is given by the equation u=0. In these coordinates, f is given by a 

pair of maps f(z)=(u(z), v(z)) with u(z)= E n~ 1 u, z ~, U l:~=0. We put ft(z)=(ut(z), vt(z)) with 

ut(z)=zE~l u~(tz) ~-1 and vt(z)=v(tz). This gives us a curve ft from f=f l  to f0. The map ft 

has only one simple pole at 0 for all t, andfo(z)=(UlZ, v(0)). By covering a curve in Y~ 

from f0(0)=(0, v(0)) to a base point Yi ~ Y~ with a finite number of local coordinates, J~ 

can be deformed such that the newJ~ has f0(0)=Yi and in local coordinates f0(z)= (ulz, 0). 

Finally we just have to deform u~ into a base point. [] 

Higher order poles can be split continuously in the following sense. 

LEMMA 6.18. Given a J-principal part ~ at a E M  and a neighbourhood U o f  a. 

Then ~ can be deformed continuously into a configuration o f  principal parts in U, all 

with simple poles. 

Proof. We use induction on the order orda ~ of the principal part. If ord~ ~= 1, there 

is nothing to show. So we need only to show that we continuously can split a principal 

part of order m~>2 into a configuration of two or more principal parts in U, which then 

necessarily have strictly lower orders. 

We may assume that U=D, a=0  and f." D---> Y is a representative for ~, which maps 

D into a chart. If f(0) E Y| is a simple point, then there exist local coordinates (u, v) on 

Y, such that Y| is given by the equation u=0. The map f is given by a pair of maps 

f(z)=(u(z), v(z)). Put vt=v and ut(z)=tz+u(z). Then ft(z)=(ut(z), vt(z)) defines a curve ft 

starting at f=fo. For t:l:0, ft has a simple pole at 0 and hence some other pole in the 

18-898283 Acta Mathematica 162. Imprim6 le 25 mai 1989 
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vicinity of 0. If f(0) is a singular point on Y| then it is obviously enough to find a curve 

ft wi th~=f ,  such that ft(0) is a simple point on Y| for t=#0. Let u be a local coordinate 

on Y around f(0), such that f is given by f(z)=u(z), with u(0)=0. The singular points 

have at least complex codimension one in Y| so there exists a curve ti(t) such that 

~(0)=0, which corresponds to the singular point f(0), and ~(t) corresponds to simple 

point on Y| for t*0.  We define the curve ft byft(z)=fKt)+u(z). [] 

Remark 6.19. If Y| is irreducible, then the last two results show that the space 

~(M) is connected. 

If/fit, is another compact surface and h,]t'___h4, then the restriction from ~r to 2fit' is 

a continuous map r:~(h~r)---~(~r') and the fiber r-l(~',J ') is homeomorphic to 

{(~,J)E~(hT/,M')I J]M,=J'} by the map (~,J)~--~(~U~',J). We will show that r is a 

quasifibration under certain conditions. 

We say that ,~]r'_~h~t is nicely imbedded, if aM'  n M only has finitely many connect- 

ed components 01 .. . . .  0k, and the closure ai of each of these has the topology of a line, 

intersects aM transversally and has a neighbourhood B,(e) in h~ homeomorphic to 

~i• e), such that B,(e) I]Bj(e)=(~, if i*j. We put B(e)=Bl(e) U... U Bk(e). Then B(e) is a 

neighbourhood of 0M' n M homeomorphic to 0M' N M x  ( -e ,  e). 

LEMMA 6.20. Let Kt'~.~I be nicely imbedded and let r: ~9(KI)-->~(,~I') be the 
restriction map. I f  W~_~,(~('I') is open, then rlr_~(w): r-l(W)--~W is a quasifibration. 

Proof. It is enough to show that r has the following weak form of the homotopy 

lifting property: 

Let P be compact, and let h:P--~r-l(W) and/- t :Px[0,  1]-->W be maps, such that 

l:I(x, t)=roh(x) for all x E P  and tE[0, I/2]. Then there exists a lift of H, i.e., a map 

H:Px[0 ,  1]---,r-l(w), such that roH=I:I and H(x, 0)=h(x) for all x. 

Let h and /~ be as above. We can write /t(x, t)=(~'(x, t),J'(x,t)), and then 

h(x)=(~'(x, 0)U ~(x), J(x)), where the poles of ~(x) are contained in M'x,M'. It is tempt- 

ing to put H(x, t)=(~'(x, t)O ~(x), an extension of J '(x, t)), but ~(x) need to be holomor- 

phic with respect to the extension of J'(x, t). Let us for the moment assume that the 

poles of ~(x) are contained in an open set V with I?N~t '=~.  Then we can choose the 

extension J(x, t) of J '(x, t) such that J(x, t)l~,=J(x)le and all is well. The strategy is now 

first (while t goes from 0 to 1/2) to push ~(x) away from OM' and then use the 

construction above. The details are as follows. 

Choose an open set U, such that the poles of ~'(x, t) are contained in U for all 
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(x, t ) f iPx[0 ,1  ], and O~_M'. Choose for each x E P  a vector field v(x) on M which is 

J(x)-holomorphic in a neighbourhood B(e) of a M '  nM, with B(e)N O = ~ .  Let  t~dp(x, t) 

be the flow restricted to M \ M ' ,  and put  V = M \ B ( e ) U M ' .  We can choose v(x) such 

that $ is continuous in (x, t ) ,M\M'=_$(x ,  1)(V) for all x E P  and such that $(x, t) is 

J(x)-holomorphic in a neighbourhood of  a M '  n M, see Figure 6. I. 

As $(x, t) is J(x)-holomorphic near a M '  NM, we can choose a continuous map 

J: P x  [0, I]---~ c~(.~;/), such that 

(I) J(x, t)]M,=J'(x, t), for all tfi [0, 1], 

(2) J(x, t)l~. ~,=q~(x, 2t)(J(x))l~rxM,, for t E [0, 1/2] and 

(3) J(x, t)le=q~(x, I) (J(x))l~, for tE [1/2, 1]. 

As the poles of  ~(x)oep(x, 1) lie in V we can regard ~(x)o~O(x, I) as a configuration of  

J(x,t)-principal parts for tE[1/2,1].  Hence  it is possible to define the homotopy  

H: P •  [0, 1]---,r-l(W) by  

H(x, t) = [ ( ~' (x, t) U ~(x) o q~(x, 2t), J(x, t ) ), for 0 ~< t ~< 1/2 
[(~'(x,t)U~(x)oqb(x, 1),J(x,t)), for 1/2~<t~< 1. 

Obviously roH=I21 and H(x, 0)=h(x) all x. [] 

We can now show 

PROPOSITION 6.21. Let ~1' ~1(/1 be nicely imbedded and assume that every compo- 

nent o f  aM' intersects aM. Then the restriction map r: ~ ( M ) - - - ~ ( M ' )  is a quasifibra- 

tion. 

Proof. As ~0~r')=lim,__,| ~ , ( M ' ) ,  it is enough to show that r is a quasifibration 

over ~ n ( M ' ) ,  which we do by induction on n. By Lemma 6.20, r is a quasifibration 

over ~<0(M')=~0(M') ,  so the start of  the induction is secured. Assume that r is a 

quasifibration over  ~b~n_l(~'~')o 
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Let B'(e) be a neighbourhood of aM'  in ~t ' ,  homeomorphic to 0M' x[0, e), and let 

W be the set of pairs (~, J )E  ~<n(/~t') with ~[M,\B(E)<~n - 1. It is a neighbourhood of 

~_ l (b~t ' )  in ~ ( / ~ t ' ) ,  and by Lemma 6.20, r is a quasifibration over ~(/~]t') and 

WN ~(/~t').  Thus, it is enough to show that r is a quasifibration over W, see [2, Satz 

2.2]. 

As in [2] and [I0] we only have to contract W onto ~n_~(/~t') and show that the 

contraction lifts to a deformation of r - l (w),  which is a weak homotopy equivalence on 

the fibers. Choose a vector field on ~t, such that the induced flow $, satisfies 

(1) $,(M')~_M' for all t, 

(2) r  for all t and 

(3) dp~(M')~M' \B ' (e ) .  

See Figure 6.2. 

We define deformations dt of W and Dt of r - l (w)  by 

dt(~' , J ' )  = (~' o dpt , dpt(J')) and Dt(~, J)  = (~ o dp,, dpt(J)). 

As  roDt=dtor ,  dt(~n_l(hT/'))~_~n_l(/~t') and d l ( W ) ~ n _ l ( ~ l ' ) ,  we only have to 

show that D11 _,((e, j,)): r-l(~' ,J ') . -~r-I(dl(~' ,J '))  is a weak homotopy equivalence, see 

[2, Satz 2.10]. The fiber r - l (~ ' ,J  ') is homeomorphic to the space F0 of pairs 

(~,J)E ~(~t, M')  with J[M,=J' and r- l (dI(~ ' ,J ' ) ) is  homeomorphic to the space F~ of 

pairs (~, J )E  ~(M, M')  with JIM,=~(J ' ) .  If we consider D~ as a map Fo--->Fl, then 

Dl(~,J)=((~U~)o~l,  ~l(J)), where ~ is a (possibly empty) configuration of principal 

parts in B'(t) t iM',  which by the flow ~t is moved to M \ M ' .  The configuration ~or is 

pushed away from OM', and it is possible to move ~ along aM'  to aM. Hence D~ is 

homotopy equivalent to the map D: Fo---~FI, given by D(~,J)=(~o ~l, ~l(J)) �9 We want 

to find a homotopy inverse/):  Fl-->Fo. 

We cannot use D -~ as it would move principal parts in M \ M '  into M' .  Instead we 

will first move the principal parts away from aM' ,  and then use D -~, but this process 
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must not change the complex structure in h4'. There are no principal parts in h4' so we 

need only worry about the complex structure in a neighbourhood of aM'  f~M. So we 

will move the principal parts by a flow which is holomorphic in a neighbourhood of 

OM' nM. 
Let B(e) be a neighbourhood of aM'  n M in M, which is homeomorphic to 

aM' NMx(-e ,  e) and let s~p(t,  s) be the flow of a vector field on M, such that 

(1) ~p(t, s) depends continuously on (t, s), 

(2) ~p(t, s) is $,(J')-holomorphic on B(e) n 291' for all (t, s), 

(3) M\(B(e) U M')~p(t, s) (M\(B(e) U M')) for all (t, s), 

(4) M \ M ' ~ p ( t ,  1)(M\(B(e)U M')) for all t, 

(5) there exists an n E N such that 

(i) tpl/,(MX,,M ')~_~p(t, s) o ~l/.(M',xM') for all (t, s), 

(ii) r 1 ) ( M \ M ' )  for all t. 

If n = l ,  then we could move the principal parts away from aM' by ~0, and then use 

to move them back and at the same time change the complex structure on/14', from 

~l(J') to J ' ,  i.e., use D -l. For an arbitrarily n we do the same, but in several steps. The 

details are as follows. Put 

and define for a JE cr with Jla,=$1(J') ,  a complex structure h(J) on lfir by 

h(J)lM,=J' and h(J)l~e,,u,=O(J ). Now 15: Fl--*Fo is defined by/5(5, J)=(~o0,  h(J)). 
We shall show that D o / )  and /}oD are homotopic to the identity. First we 

consider/}oD and define Or: Kt---~)(I for k/n<~t<~(k+l)/n by 

Or= $ta, o*p(n~nk, nt-k)o$~1o ~p( -n-k+ 1 , 1 ) o . . . o $ ~ o  ~p(1, 1,. 

For a JE ~(/~) with Jla,=J', we define h,(J)E ~(/~r) by ht(J)=J' on M'  and 

ht(J)=Ot(J) on 2~7/%,M'. Finally Ht: Fo---~F o is defined by Ht($, J)=(~o Or, ht(J)). Clearly 
H0=id and HI=/}oD. 

The proof that Do / )  is homotopic to the identity is similar. [] 

7. The results 

In this section we will show the topology of the space of holomorphic maps resembles 

the topology of the space of continuous maps. First a non-closed surface is considered. 
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PROPOS~TmN 7.1. Let 1(,1 be a compact surface, and assume that every component 

o f  l(/l has non empty boundary. Then the map dt0~t)--~Map(M, Y) is a weak homotopy 

equivalence. 

Proof. The surface M can be made by gluing disks together, and we use induction 

on the number of disks. The start of the induction is secured by Lemma 5.7. So assume 

h;/=M~ U.~t2, and that the proposition is true for ,~t~, ~fit 2 and )fitl n.~E. We may assume 

that the inclusions .~t~ NhT/2~t ~ and M 2 ~ t  satify the conditions of Proposition 6.21. 

Consider the diagram 

~9(M) --~ ~(/14~) ~ (M)  ~ ~(/17/i) Map(M, Y) --> Map(M l, Y) 

9~(/14 2) --~ g~(M~ n ME) ~/(/~E) ""> ~(/1~ n M2) Map(ME, Y) ~ Map(M~ n M E, Y) 

where the maps in the squares are restrictions. The maps between the squares are weak 
homotopy equivalences, except possibly, the map d4~(/kt)-+Map(M, Y). The right-hand 

square is homotopy cartesian, and if the middle square is weak homotopy cartesian, the 

proof is complete. The left-hand square is weak homotopy cartesian, because the 

vertical maps are quasifibrations, but then the middle square is weak homotopy 

cartesian too. [] 

It is unfortunately impossible to apply the proof of Proposition 7.1 in the case, 

where a M = a ,  because the relevant restrictions are not quasifibrations. Indeed, in the 

proof of Proposition 6.21, it was crucial to be able to push a configuration ~ to the 

boundary aM. In order to overcome this difficulty, a new stabilized space is intro- 

duced. 

Let M be a closed surface. Choose open subsets M l, M2~_M, such that )ktl and M2 

are manifolds with boundaries, and )141 and M \ M 2  are closed disks with M\M2~_M I. 

Then M = M  10 M 2, and M 1 N M 2 is an annulus, see Figure 7. I. 

Choose a sequence of disks D~,D 2 .... in M~ such that 19k§ k all k, and 

/)| = t3D k is a disk with aM 2 n D| Choose for all k, a point a k E Dk\/)k§ l, such that 

{aklkEN } nM2=~, see Figure 7.2. 

Now choose continuously depending on J E cr a J-holomorphic imbedding 

$jk:D--->Dk\(f)k+l U/kt2), such that q~jk(0)=ak . I f  Y1 ..... Yr are the irreducible compo- 

nents of Y| then for each i= 1 .. . . .  r, we choose a holomorphic map fi: D ~  Y, such that 

0 is the only pole and ordj, 0~i=6 U. We define a J-principal part ~Jk at a k, with ordj ~jk=6 U 

where k=-i (modr), by ~jk=[~OSj-kl]. Define imbeddings ~(M, E)k)~(M, / )k+l)  by 
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\ 

Fig. 7.1 

(~, J)~--~(~ U ~jl~t k, J)  and ~(M 1,1)k)~(Ml, 15k+ l) by (~, J)~-*(~ 0 to, k, J),  and form the 

telescopes ~(M,/)~) of the sequence ~ ( M , / ) l ) ~ ( M , / ) 2 ) ~ . . .  and ~(h41,/)oo) of the 

sequence ~9(/~ l , / ) l )~9(~ t l , / )2 )~  .... then we have 

PROPOSITION 7.2. There is a homology cartesian commutative diagram: 

~(M,/)~) �9 > ~(h~t l,/9| 

~-'f/2,/),~) ~ ~M1 n M2,/~). 

Proof. If we let a homology fibration be as in [11], then it is enough to show that 

the restriction maps r are homology fibrations. Let h~t' denote either M or ~tj and put 

~t~=M2Nh~t'. Let (~0,J0) belong to ~(/r174 let fll . . . . .  fl~ be the poles of ~0 

and let vl .. . . .  Vk be their orders. Let B(e) be a neighbourhood of ~M~ in M, which 

is homeomorphic to aM~•  and choose e>0 such that ai, flj~B(2e) and 

Fig. 7.2 
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_t _ k  _L_L_ t 

~ ' ~  

Fig. 7.3 

e OM2 

D| fl (M2\B(2e))ar see Figure 7.3. Choose for i= 1 . . . . .  k an open disk Ui around fli, 
such that (li~_M~\(B(Ee) U19| and (lift ~ .=~ if i*j. 
The set 

( (~ ,y )~  - ,  - ~(M2,D| deg ~Ju~ = vi and pole(~)= U l U ... U U k UB(e)} 

is a neighbourhood of (t0, J0) in ~9(h7/',/)| So by Lemma 6.12, (~0, J0) has a neighbour- 

hood homeomorphic to 

pole(~])=_ B(e)}. 

As H~I~ is a manifold (~0,J0) has a neighbourhood W in ~(M~,/9| homeo- 

morphic to B~•215 where Bi is an open contractible subset of I:1,,/~, and 

B =  {(~, Y) 6 ~(M~, O| pole(O_=B(e)}. From the diagram 

r-I(W) ~ > Btx . . . xBkxr- l (B)  

~ "I,-'(v.,) i idx~,-i(s) 
W > B]x...xBkxB, 

it is seen that we only have to show that B is contractible, and that the inclusions of the 

fibers of r in r-l(B) are homology equivalences. 

Choose a vector field on M, which vanishes outside B(2e), is tangent to aDi for all 

i, is transversal to aM~ and points into M~, see Figure 7.3. 

Let  St be the flow on M, induced by this vector field. We may assume that 

(1) St=id outside B(2e) for all t, 

(2) S,(Dk)=Dk for all t, 
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(3) dpt(MiOB(e))~M~UB(e) for all t, and 

(4) r UB(r))~_M~\B(e). 
The flow q~t induces a deformation ht of B, given by ht(~,J)=(~or As 

h~(B)-~(J~l~), B is contractible. Let (~',J')~B. We shall show that the inclusion 

r-~(~',J'),-->r-~(B) is a homology equivalence. Define a deformation Ht of r-~(B) by 

Ht(~,J, s)=(~oet,  ~Pt(J), s). Then H~(r-l(B)) is the space of triples (~,J, s)fi ~(M',/) |  

with po le (~ )~M\  M2UB(e ). Let F~ be the space of triples (~,J,s)~ H~(r-~(B))with 
Jl~=q~d~(J'), and consider the diagram 

r- l (~, , j  ,) ----> r-l(B) 

F~ -'-> Ht(r-~(B)). 

We will show that the two vertical maps and the lower horizontal map are homology 

equivalences, and hence that the top horizontal map is a homology equivalence. 

First consider H1:r-I(B)--->HI(r-I(B)). If i:Hl(r-t(B))--~r-l(B) is the inclusion, 

then io Hl=Hl~Ho=id, and as Ht(Hl(r-l(B)))~_Hl(r-l(B)) for all t, we also have H 1 o i= 

Hdzl,r_,(B))--HOIH,~_r_,~n))=id. Next consider the inclusion FI~H~(r-I(B)). Choose a defor- 

mation Ot of ~(M') such that 

(1) D0=id, 

(2) Dt(J)IMN(MzUB(~))=JIM~.(Mzu~(E)) for all J, 

(3) D,(J)l~a~=ep~lM~(J') if Jba~=J' for all t, and 

(4) D,(J)l,a~--e~,l~,~(J') for all J. 

Define a deformation /gt of HI(r-I(B)) by f)t(~, J, s)=(~5, Dr(J), s). This deformation 

contracts Hl(r-l(B)) onto Fl, hence the inclusion Fl,-,Hl(r-l(B)) is a homotopy equiv- 

alence. 

Only the map H1: r-l(~ ', J')--*Ft remains. Let F0 the space of triples (~, J, t) E 

~(/~',/)| with p o l e ( ~ ) ~ M \ M  2 and Jl~t~=J'. This space is homeomorphic to r-l(~ ', J ' )  

by the map Fo-->r-l(~ ', J ' ) ,  which maps (~, J, t) to (~ tJ ~', J, t). By this identification, Hi 
corresponds to the map H: Fo--->F1 by 

(~, J ,  t) ~-~ (~ o q~ t U ~' O tPl, ~ l(J) ,  t). 

By Lemma 6.18 and Lemma 6.17, we can split ~'o ~ into simple principal parts, 

move these principal parts along q~-~(0M2) to the points ak, and finally deform them into 

the standard form ~u. 
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The spaces F0 and FI are the telescopes of the sequences F~-)F2--)... and 

Fll-->F~-->... respectively, where F~0 is the space of pairs (~,J)E~)(/~t',/)n) with 

pole(~)___M\/kt2 and JIM~=J' and F~ is the space of pairs (~,J)E ~(/~t',/5n) with 

pole(~)_~M\ M 2 IJB(e) and Jl~g=q)l(J')l~t~. We define H: F'go--,F ~ by 

B(~, J)  = (~o~1, ~l(J)). 

It is enough to show that /~ is a homotopy equivalence, and this can be proved by the 

same method as in the proof of Proposition 6.21. [] 

We can now show that ~(M,/5| and Map(M,/5| Y, Ya), which is the space of 

maps f." M--)Y withf(/5| Ya, have the same homology type. Let HI be the homotopy 

theoretical fiber product of ~(/kt I ,/5| and ~(/~t 2,/5| let//2 be the homotopy theoreti- 

cal fiber product of ~(/~t 1,/11) and ~(/~t2,/51) and let H3 be the homotopy theoretical 

fiber product of Map(M 1 ,/50,; Y, Ya) and Map(/17/2,/5=; Y, Y~) 

The inclusion Map(M, f)| Y, Ya)~H3 is a homotopy equivalence, and by Proposi- 

tion 7.2, the inclusion ~(M,/5~)~H) is a homology equivalence. All in all we have 

THEOREM 7.3. In the commutative diagram 

~(M,/5| < v~(M,/5~) , Map(M,/)| Y, Y#) 

H 1 < H 2 :> H 3 , 

the bottom horizontal maps are weak homotopy equivalences, the left-hand vertical 
map is a homology equivalence and the right-hand vertical map is a homotopy 
equivalence. 

Proof. We only have to show that 

~t(.~/l,/51)-->~(M1,/5| and A((iVII,/51)--> Map(MI,/5| Y, Y a) 

are equivalences, but this is trivial, as all three spaces are contractible. [] 

The same conclusion holds, if the complex structure is fixed, but before we can 

show that, some terminology is needed. 

Imbed M in R 3, and choose a tubular neighbourhood U of M. The imbedding and U 

can be chosen, such that any subset of M with diameter less than I0, is contained in a 

disk in M and has its convex hull contained in U. Let al .... .  an E M be points with 
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weights v~ ..... v,. If diam({a~ ... . .  an})~<10, then the ordinary center of mass lies in U 

and can be projected down to a point on M, which we will call the center o f  mass, and 

which depends continuously on the configuration (a~ l .... .  a~") of points in M. 

Choose a point x= tiM, and put M ' = M \ { x |  Blow the metric up at x=, such that 

any subset M'  with diameter less than 10 is contained in a disk in M' ,  and any 

configuration of points in M",,{x} with diameter less than 10 has a well defined center 

of mass. 

Let r ~ R+ and ~ ~ M~(M').  If diam(~)~<r �9 4 deg~-n, then ~ is called r-small. 

LEMMA 7.4. I f  ~ and ~2 are r-small and ~l ['1~2=t=(~, then ~ U~ 2 is r-small. 

Proof. If ~1C2~2 or ~2~_~1 there is nothing to show, so we may 

deg(~ 1 U ~z)~max{deg ~ ,  deg ~2} + 1. Then 

diam(~l IJ ~2) ~< diam ~1+ diam ~2 ~ r. 4aeg~2-" +r �9 4 aeR~2-" 

~< 2r. 4 max{deg ~1, deg ~2}-n ~ r .  4 deg(~l tJ ~2)-n 

assume that 

i.e., ~1 tJ ~2 is r-small. [] 

Two configurations ~1 and ~2 are called r-independent, if any r-small subconfigura- 

tion of ~1 U ~2 is contained in either ~1 or ~2. 

LEMMA 7.5. I f  ~ is not r-small, then we can write ~=~1U~2 with ~1n~2=(~ and 

~1, ~2 ~162 such that any proper 2r-small subconfiguration is contained in either ~1 or ~2. 

Remark. Then the configuration ~l and ~2 are r-independent, but they need not be 

2r-independent, because ~ may be 2r-small. 

Proof. Choose x, yE~, such that dist(x,y)=diam~>~r aeg~+". Let ~i be a maximal 

2r-small proper subconfiguration of ~ containing x, and let ~2=~\~1. Then diam,1< 
2r'4 deg~-l-n, and hence 

dist(y, ~) I> dist(x, y ) -d iam ~x > r - 4deg~+n- -2 r  �9 4 deg~- l -n  = 2r. 4 deg$- I -n .  

Assume ~'___~ is 2r-small, ~ ' n ~ l * ~  and ~ ' N ~ 2 ~ .  We shall show that ~'=~. As 

~' n ~1.O, Lemma 7.4 implies that ~' O ~1 is 2r-small, and as ~ is maximal, we must have 

~' O ~l =~. Especially y E ~', and hence 

diam ~' ~> dist(y, ~1) > 2r. 4 d*gr 
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As ~' is 2r-small, we have d e g ~ ' > d e g ~ - I  and thus ~'=~. [] 

We can now show 

LEMMA 7.6. Let M be a closed surface with base point x| and let J be any complex 

structure on M. Then the inclusion ~ ( M ,  {x |  {x| is a homotopy equiv- 

alence. 

Proof. It is clearly enough to show that the inclusion of ~j,n(M, {x**}) into 

~ ( M ,  {x| is a homotopy equivalence for all n. 

We want to define a map ~<.~(M, {x| {x| of the form 

(~, J, J')~(v/(~, J, J ' ) ,J ' ) ,  which preserves degree and satisfies 

(1) ~p(~,J,J)=~ and 

(2) ~P(~t U ~2, J, J ' )  = ~P(~I, J, J ' )  U lp(~2, J, J ' )  if pole(~t) and pole(~2) are 2-independ- 

ent, considered as elements of M<.~(M'), where (2) only is needed for an induction 

argument. The map ~p turns J-principal parts into J'-principal parts. We define ~p 

inductively, but first we choose a vector field v on M, which only vanishes at x| 

If (~, J, J ' )  E ~I(M, {x| • rg(M) and a E M' ,  then we let Da be the disk in M with 

center a and radius one. Let S j, j: D~,--}D~ be the unique holomorphic homeomor- 

phism such that Sj , . j (a)=a and ddpj,.,(v(a))=c, v(a) with c>0. Define ~p by ~p(~, J, J ' ) =  

o $. As $ depends continuously on a, J and J ' ,  the map ~ depends continuously on 

(~,J) and J ' .  Condition (2) is empty in this case, and as $=id,  if J = J ' ,  condition (1) is 

satisfied. 

Assume ~p is defined on ~<(t_t)(M, {x| Ca(M) with 2<.k<-n, and put 

~ =  {(~,J)E ~<_t(M, {x| pole(~) is 1-small =~ deg~ ~<k-1} 

= ~<~k_l)(M, {x| U {(~, J)  E ~k(M, {x| diam pole(O > 4k-n}. 

If deg~=k, and diam pole(O>4 k-n, then we write ~=~l U~2 according to Lemma 7.5. 
Define ~fi on # x  Ca(M) by 

f~p(~,J,J'), if d egas<k - I ,  
q~(~' J '  J ') = l~p(~t, J, J ' )  U ~0(~ z, J, J '), if deg ~ = k. 

As ~0 satisfies condition (2), ~ is well-defined, and clearly ~ is continuous and satisfies 

condition (1) and (2). 



ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS 283 

We now let 

~ =  {(~,J)~ ~<~(M, {x| I pole(O is 2-small ~ degas<k- I}  

= ~r {x| U {(~, J) ~ ~k(M, {x| diam pole(~) > 2.4 ~-~} ~_ ~. 

If deg ~=k, and diam pole(0~<2.4 k-n, i.e., if ~ * ~,  then we let a be the center of mass of 

pole(~) and put D~={xEM[ dist(x, a)<5).  As D~ is a disk in M containing pole(~), we 

can define Sj,,]: D~,--~D~ as above. Choose a homotopy 

H: Cr ~(M)x[0, 1] ~ Cr 

such that H(J, J ' ,  0)=J, H(J, J', 1)=J'  and H(J, J, t)=J. Put t(~)=4 ~-k. diam pole(~)- 1 

and define ~p on ~<k(M, {x~)) by 

J, J ' ) ,  
~(~, J, J') = ~(~, J, H(J, J', t(~))) o dpj,,mj, j, ' ,~)), 

if j ) e  
if deg ~ = k and 0 ~< t(~) ~< 1, 

if deg ~ = k and t(~) ~< 0. 

It is easily checked that ~p is well-defined, continuous and satisfies condition (1) and 

condition (2). 

We can now define a homotopy inverse 0: ~n(M, {x| ~j,(M, {x| to the inclu- 

sion ~ ( ~ ,  J ') ,  by 0(~, J)=~0(~, J, J ') .  [] 

Put ~J*(M)=~(M, {x| and ~(M)=~j(M,  {x~}). Let D' be any disk in M contain- 

ing x| By choosing a vector field, which pushes principal parts away from x| we see 

that the inclusion ~(M,19')~9*(M) is a homotopy equivalence. We put 

~o( M,/)| = Tel(~o(M,/)1) '--} ~o( M,/)2) '--} ...) ~- ~(M,/)| 

If x= E D=, then by the remarks above and Lemma 7.6: 

H,(~o(M./)| = l i m  H , ( ~ ( M . / ) . + ~ ) )  = l i m  H,(~(M)) 

= l i m  H,(~..(M)). 

for all JE Cr Similarly we let Mapff(M, Y) be the space of maps f: M-+Y, such that 

f(x| EN~Ya and deglf=. . .=degkf=0 and let MaP0(M,/)| Y, Ya) be the space of 
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maps f: M---)Y, such that f(/)| Ya and deglf=.. .  =degkf=0. As Map~(M, Y) is homo- 

topy equivalent to MaP0(M, C)~; Y, Ya), we have 

H,(Map~(M, Y)) = H,(9~(M,/)| = lim H , ( ~  z.(M)), 
n - . . )  ~ 

for all JE  qg(M). 

Fix J E qg(M), let X denote the Riemann surface Mj and put ~ ( X )  = ~ ,  n(M). If G is 

a compact Lie group, then we let ?/'n(XxCPI,XVCpI,Gc) denote the space of based 

isomorphism classes of holomorphic Gc-bundles over X x C P  ~, trivial over XVCP 1, 

based at (x| oo) and with characteristic class n, see [1]. 

PROVOSlTION 7.7. I f  Y=g2G, then 

~ ( x )  = ~'n(xxcPZ,X v cv  ~, Gc). 

Proof. If X'=X',,,{x| then a configuration of principal parts in X without a pole 

at x| can be represented by a holomorphic map f: X'--.V~G, which by Proposition 4.5 is 

the same as an isomorphism class of a pair (P', r), where P '  is a holomorphic Gc-bundle 

on X ' x C P  1, and r is a trivialization of P'  over X'•174 The different choices o f f  

correspond to different trivializations r, but they all agree on X'  x (oo }, i.e., a configura- 

tion of principal parts gives a pair (P', r'), where r' is a trivialization of P '  over 

X'x(oo}. We can find a neighbourhood U of x~, such that P'  is trivial over 

(X' N U)xCP  1 and v' determines the trivialization uniquely. By gluing P'  to the trivial 

bundle over U x C P  ~, we get a bundle P over X x C P  ~, and r' extends uniquely to a 

trivialization over XVCPk Thus we obtain an element of ~ Gc). 

Assume on the other hand that we have a bundle P over X x C P  t, which is trivial 

over XVCP ~. Then the restriction to X'xL)| is trivial, and by extending the trivializa- 

tion over X ' x  {o0} to X '  x/5| the transition functions to sets of the form Ux/ ) ,  give us 

a holomorphic map f." X'---)ff~G. Different choices of the trivialization correspond to a 

multiplication of f with a map g: X'---)L~G c, i.e., we get a well-defined configuration of 

principal parts in X'  and hence an element of ~*(X). [] 

From [1] we have that ~n(CPl xCP t, CPIVCP I, G c) and Hol*(CP 1, fiG) are diffeo- 

morphic, and by Remark 3.3, ~*(CpI)=HoI*(CP ~, Y), if Y is a generalized flag mani- 

fold. All in all we have 

THEOREM 7.8. Let X be Riemann surface and Y a generalized flag manifold or a 

loop group. I f  X=CP l, then 
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H,(Map~(CP ~, Y)) = lira H,(HoI*(CP l, Y)), 
n ---~ oo 

and if Y=~G, then 

H,(Mapff(X, QG)) = lim H,(Wn(Xx CP 1, X V CP ~, Gc)). 

The connected components of Map*(CP l, Y) are the spaces Map~,(CP 1, Y) of based 

maps C P I ~  Y with multidegree k E Z r. By Lemma 5.7 and Lemma 6.18, the connected 

components of Hol*(CP l, Y ) ~ * ( C P  1) are the spaces 

HoI~(CP 1 , Y) = Hol*(CP 1, Y) N Map~(CP l , Y), 

with k=(kl . . . . .  kr) and ki>~O for i= I  . . . . .  r. Hence we have 

THEOREM 7.9. I f  Y is a generalized flag manifold or a loop group, then the 

inclusion HoI*(CP 1, Y)~-~Map*(CP l, Y) induces an injection 

~r0(Hol*(CP l, Y) ~ ~t0(Map*(CP l , Y)). 

Acknowledgement. I am indebted to M. F. Atiyah and G. Segal for proposing the 

problem and giving me many helpful suggestions. 
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