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1. Introduct ion 

The global asymptotic stability of the rest point for nonlinear equations has been treated 

by Levin and Nohel, Salvadori, Thurston and Wong, Artstein and Infante, and Ballieu 

and Peiffer. These studies have been generalized to scalar variational problems in [8] 

and to variational systems in [9]. Here we shall unify and further extend this work, by 

obtaining necessary and sufficient conditions for the asymptotic stability of solutions of 

quasi-variational systems in terms of the damping functions of the systems treated. 

Throughout the paper we thus consider vector unknowns u: J--*R N, where J is a 

half open interval of the form [R, cx~). The typical system which we shall study then has 

the form 

(Vs u, u ' ) ) ' -V~E( t ,  u, u') = Q(t, u, u'), (1.1) 

where s u,p)=G(u,p)-F(t ,  u) and where 

G:RN• F:JxRN---~R, Q:JxRNxRN-- -~R N 

are given continuously differentiable functions. The most important of the conditions 

which will be imposed on (1.1) are that 

G(u,.) is strictly convex in RN; G(u,O) = O, VG(u,0) = 0, (1.2) 

(V=f( t ,u) ,  u) > 0 for u # 0; F(t,O) = 0, (1.3) 

(Q(t, u,p),p) <. O. (1.4) 

Here ( ., .  ) denotes the inner product in R N and 

(o (o o) 
V ~ -  O p l ' " "  V u ~ -  ~ I ' " "  OUN " 
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The function F represents a restoring potential, this being analytically described by 

(1.3), while Q represents a general nonlinear damping, expressed by (1.4). In Section 2 

we shall give a complete set of hypotheses, while explicit examples are given at the end 

of the introduction and also in references [4] and [9]. 

Since VG(u, 0)--V~G(u, O)=V~F(t, O)=Q(t, u, 0)=0 it is clear that  the rest state 

u - 0  is a solution of (1.1). We shall say that  the rest state is a global attractor for the 

system if any bounded solution u, defined on some interval J ,  has the property 

u(t),  u'(t) o as o0. 

This concept of asymptotic stability is defined with respect to bounded solutions rather 

than with respect to all solutions. The motivation for this point of view is that  the 

concepts of boundedness and of stability are essentially different and accordingly should 

be treated separately (for the boundedness of solutions see [2], [3], [10] and [13]). 

Our approach depends on the construction of an appropriate Liapunov function for 

the system (1.1), based on the general theory of variational identities introduced in [7]. 

In general (1.1) involves coupling of the second derivatives in each equation of the system. 

This makes the determination of an appropriate Liapunov function far from transparent 

and causes additional problems when G is not suitably smooth or presents other singu- 

larities. By introducing a Liapunov function directly in terms of a variational identity, 

these difficulties are avoided. 

To present our results, we consider first the important special case of (1.1) given by 

u"+A(t,u,u')u'+f(u) =0,  (1.5) 

for which the conclusions can be stated in simple form. Here A is a continuous N x N 

damping matrix for which there exist non-negative measurable functions a, 5: J---~R such 

that  

(A(t, u, p)p, p) >i Pos. Const. [A(t, u, p)p[. [p[ (1.6) 

and 

a(t)[p[ ~ [A(t, u,p)p[ <~ 5(t)[p[ (1.7) 

hold for all tEJ and u, pER N. Furthermore f is a continuous gradient of a scalar 

potential F,  with 

(f(u), u) > 0 for u ~t 0. 

The system (1.5) is naturally identified with (1.1) by the choice s u,p)= ~[p[~-F(u) 
and Q(t, u,p)=-A(t ,  u,p)p. The scalar case of (1.5) was the main object of the studies 

[1], [2], [5], [12] and [13]. 
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Levin and Nohel have shown for the linear scalar case of (1.5), i.e. when A=a( t )  and 

f ( u ) = u ,  that  if a(t) is small, or more precisely if it is in L I ( J ) ,  then there exist solutions 

which are oscillatory and moreover do not tend to a limit as t--*c~. On the other hand, 

Ballieu and Peiffer have shown that  when a(t) is sufficiently large then again there exist 

solutions which do not tend to zero as t-*c<) (Artstein and Infante have given a specific 

example of this behavior). 

The delicacy of the problem is evident from these results: both for small a, due to 

resonant behavior, and for large a, due to overdamping, the rest state loses asymptotic 

stability. Moreover the question of asymptotic stability is separate from the question of 

oscillation of solutions, as is clear from the example of Bessel's equation 

~u '  +u  = O, Ult.~ 

for which the rest state is a global at tractor  for all ~>0 ,  but  whose solutions are oscilla- 

tory when ~ <  1 and monotone when f~>~l. Reflecting this situation, and as a corollary 

of our general results for the system (1.1), the following conclusions hold for the system 

(1.5). 

THEOREM A. (i) Suppose a6 is bounded on J. I f  a is continuous and of bounded 

variation, or if log a is uniformly Lipschitz continuous, then a sufficient condition for 

the rest state of (1.5) to be a global attractor is that 

while a necessary condition is that 

a ~ L l ( j ) ,  

~ L 1 (J).  

(ii) Suppose 1/a6 is bounded on J. I f  1/6 is continuous and of bounded variation, 

or if 1/6 is absolutely continuous and 1(1/6)rl ~Const .  X/~/6, then a sufficient condition 

for the rest state to be a global attractor is that 

1 
~ i l ( g ) ,  

while a necessary condition is that 

1 ~ LI ( J ) .  
(T 

When a, 6 fail to satisfy the hypotheses of Theorem A, for example when the product  

a6 is at the same time neither bounded from zero nor bounded above, the situation is 

more delicate. In this case we have the following more general conditions for the stability 

of solutions of (1.5). 
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THEOREM B. The rest state of (1.5) is a global attractor if one of the following 

conditions (a), (b), (c) is satisfied. 

(a) There exist positive numbers c and ~1 such that 

ta( t)  ) c, ~(s)s '7-2 as <. C o ~ t .  t '7. 

(b) There exists a non-negative continuous function k=k(t )  of bounded variation on 

J such that 

k ~ L l ( J ) ,  k(t) <~ Const. a(t) in J, (1.8) 

and either 

(i) 6 k e L ~ ( J )  or (ii) 6k 2eLl(J) .  

(c) There exists a non-negative bounded absolutely continuous function k=k(  t ) satis- 

fying (1.8) and (i) or (ii), such that 

Ik'l ~< Const. V~a a.e. in J. 

Sufficiency for the first part of Theorem A follows from (b) and (c) with k=a, and for 

the second part from (b) and (c) with k=l/~f. Necessity for the first part of Theorem A 

comes from Corollary 1 of Section 5, and for the second part from Theorem D below. 

Part (a) of Theorem B is the case # =  1 of Corollary 5 in Section 4. Parts (b) and 

(c) are Corollary 1 in Section 4, with #=1  and with the respective decompositions d--S, 

e=O for (i) and d=O, e=~f for (ii). Case (b) then corresponds to the application of 

Theorem 4.1, and (c) to the application of Theorem 4.2 with the parameter values m=2,  

v = l ,  A=�89 

Theorems A and B are new in both the scalar and vector case of (1.5). When (1.5) is 

scalar, several subcases of Theorems A and B are already known: in particular, Smith [12] 

obtained, in the linear case, the first part of Theorem A when or=6 and a is decreasing; 

Artstein and Infante found (a) when a( t )=Constant and ~?=2; and Ballieu and Peiffer 

obtained (b) in the following special cases: when a( t )=Constant and ~fkeLCC(J), and 

when ~f(t)=Constant and k is decreasing. Finally, Saivadori obtained asymptotic stability 

for the vector system (1.5) when a and a are bounded both from zero and above, a special 

case of (a). 

From Section 5 we also obtain 

THEOREM C. Let 5ELI(J) .  Then there are no solutions of (1.5) except u=O which 

approach a limit in R N as t---*oo. 

Theorem C is complemented by the following result (cf. [10], Section 4). 
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1.5) when A=ta( logt )~I .  The  rest  s ta te  is a 
global a t t rac tor  if and only if (a,/~) is in the  shaded  region. 

T H E O R E M  D. Let 1/aELI(J) .  Then every bounded solution of (1.5) approaches a 

limit as t-*co, and the set of attainable limits is dense in R N. 

The matr ix A=t~( log t)aI serves as an example to illustrate these results. For this 

case the rest state of (1.5) is a global at tractor  if and only if either I c~l < 1; or c~ = 1, fl ~< 1; 

or ~ = - 1 ,  f l~>-l .  When c~=l and f~>l or when c~>l each solution of (1.5) approaches a 

limit, and the set of attainable limits is R N. On the other hand, if ~ = - 1  and f l < - i  or 

if c~< - 1  no solution of (1.5), with the exception of u=0 ,  can approach a limit as t ~ c o .  

See Figure 1. 

A direct generalization of condition (1.7), for which results similar to Theorems A-D 

also hold is 

a(t)lpl" <<. IA(t, u,p)pl ~< 5(t)lpl" (1.9) 

where #>0 ,  see particularly the corollaries in Section 4. 

For the general system (1.1) our results are entirely analogous to those stated above 

for (1.5). These further results, which are the main purpose of the paper, are contained 

in the theorems of Sections 3 and 4, m a series of corollaries to these theorems, and in 

Section 5. 

That  a set of corollaries is needed for an adequate statement of the conclusions is 

due, we believe, to the fact that  no single useful condition can encompass the general 

theory of asymptotic stability. On the other hand, the corollaries present a unified theory 

of asymptotic stability, based on a single proof technique. 

There are a number of situations which can be represented by the system (1.1). 

19-935202 Acta Mathematica 170. Imprim~ Ie 30 juin 1993 
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When G(p)=lplm/m, m> 1, the corresponding system is 

lu'lm-4[lu'125ij+(m-2)u~u~]uy+fi(t,u)=Qi(t,u,u'), f = V F ,  (1.10) 

where 5ij denotes the Kronecker symbol and the repeated index j is to be summed from 

1 to N; note that when rn~2 this system is singular at points where u'=0. A similar 

G g example is (P)=~i=l IPilm/rn, m> 1, the related system then being 

t m - 2  tt lull ~,~ +fi(t ,u)=Qi(t,u,u') .  (1.11) 

The second derivatives are uncoupled here, but again when m~2  the system is singular 

if at least one u~=O. If m=2 both (1.10) and (1.11) reduce to the important form 

u"+f(t ,u)=Q(t ,u,u ') .  

When G(p)= 1~/~--~ 2 -1,  that is, when G is the mean curvature operator, the system 

(1.1) becomes 

(1+lu']2)-3/2[(1+lu'12)bij ' ' " t u u ' -u ju j ]u j+f i ( ,  )=Qi(t, ,u).  (1.12) 

The system (1.1) also arises as the radial version of the partial differential system 

in R '~ 

divVG(Du)+f(t ,u)=O, t=lx[, 

where Du denotes the Jacobian matrix (OujOxj), i=l , . . . ,N,  j = l , . . . , n  and where 

G(Du) has the special form G'(IVul[, .-., IVuNI). To place this in the context of (1.1) we 

take G(p)=G([pl [, ..., IPN ]) and Q = - ( n -  1)VG/t. 
The general system (1.1) may be considered as the motion equation for a holonomic 

dynamical system with N degrees of freedom, whose Lagrangian s is defined by an 

action energy T=G(u,p) and a potential U=F(t, u), and whose dynamics are governed 

by a general nonlinear damping term Q=Q(t,u,p). Here the variables ui represent 

appropriate Lagrangian coordinates. 

A final example worth noting arises from the Euler-Lagrange system for extremals 

of the variational integral 

f jg(t)s u')dt, U~ 

where s has the form given earlier and g: J--+R is continuously differentiable, positive 

and non-decreasing. Extremals for this functional satisfy (1.1) with 

9'(t) Q(t,u,p)= VG(u,p). 
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Here the condition (Q,p)<~0 is a consequence of the fact that  g(t)>0, g'(t)>~0 together 

with (1.2), namely (VG(u, p), p)~>0. For further generalizations to variational problems 

we refer to the work of Leoni, Manfredini and Pucci [4]. 

It is also possible to treat the non-homogeneous analogue of (1.1), namely 

(VG(u, u' )+/( t ,  = Q(t, u, u')+e(t), 

and the corresponding analogue of (1.5), 

u" + A(t, u, u')u' + f(u) = e(t). 

In the final section of the paper we show that  the same asymptotic stability results hold 

for these cases as for homogeneous systems, provided the non-homogeneous term can be 

decomposed in the form 

e(t) =el(t)+e2(t), 

where elELI(J) and e2 is of bounded variation on J with e2(t)--*O as t--*c~. 
The system (1.10) is further discussed at the end of Section 5. Various other ex- 

amples and applications which illustrate our results have been given in [1], [4], [5] and 

[9]. 
The following section contains preliminary material, including the statement of the 

important identity (2.8) for solutions of (1.1). In Sections 3 and 4 we present our main 

sufficiency results for global asymptotic stability. Section 3 covers functions G which 

are merely assumed to be strictly convex, while in Section 4 we allow G to have a 

more specialized structure, of the type possessed in particular by the systems (1.10)- 

(1.12). Section 5 contains necessary conditions for global asymptotic stability. Finally, 

Theorem 5.1 is a backward uniqueness result of interest in itself. 

2. P r e l i m i n a r i e s  

We consider vector solutions u-= (ul,..., UN) of the quasi-variational ordinary differential 

system 

(VG(u,u')) ' -V~G(u,u')+f(t ,u)=Q(t ,u,u ') ,  J=[R, cc), (2.1) 

where V denotes the gradient operator with respect to the variable p and 

f ( t ,u)=V~,f( t ,u) .  

It will be supposed throughout the paper that  

GEC I (RN x RN ;R) ,  F E C I ( J x R N ; R ) ,  Q E C ( J x R N x R N ; R N ) ,  
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and also, except in Section 5, that the following natural conditions hold: 

(H1) G(u,. ) is strictly convex in R N for all uER N, with G(u, O)=0 and VG(u, 0)=0. 

Finally, for every U>0  and P0 >0 there exists a non-negative constant such that 

(V~G(u,p),u)<.Const.(VG(u,p),p) for all [u[<.U and [P[>~P0. (2.2) 

(H2) F( t ,0)=0.  For all uo, U with 0<u0~<U there exist a constant g > 0  and a 

non-negative function C E LI ( j )  such that 

(f(t, u), u) ~ x when t E J and [u[ E [u0, V], (2.3) 

Ft(t, u) <. r when t E J (a.e) and luI ~< U. (2.4) 

(H3) (Q(t,u,p),p)<~O for all tEJ, uER Iv and p E R  N. 

A condition of the type (2.2) first appears in [4]; of course this condition automati- 

cally holds in the important case when G is independent of u. Moreover (2.2) is implied 

by the somewhat simpler condition (V~G(u, p), u)~< Const. G(u, p), since for any function 

satisfying (H1) one has O<~G(u,p)<~(~YG(u,p),p). A simple example of this type occurs 

when G(u,p)=g(u)G(u,p) with g(u)>0 in R g and G satisfying (Hi). 

Condition (2.3) implies that (f(t,u),u)>O and F(t,u)>O for tEJ and ur  If F 

does not depend on t, then (2.3) follows from the condition (f(u), u)>0 for ur  while 

(2.4) is irrelevant. Finally, when N = I  any continuous function f is of gradient type, 

with F(t, u)= fo f ( t  , s) ds. 
When f has the form f(t, u)=l(t)x(u) with l: J ~ R  + and X: RN--*RN, then (2.3) 

is equivalent to the simple condition 

l(t)/> Const. > 0 for t J, (X(u), u) > 0 for u # O. 

Property (2.4) then holds if and only if (l') + ELl(J) .  

In what follows, we consider (weak) solutions of (2.1) on J, namely vector functions 

u: J---*R N of class C 1, for which 

VG(u(t), u'(t) ) E CI( J; R N) (2.5) 

and which satisfy the system (2.1) in J. Conditions (2.3) and (H3) imply that f(t, 0)= 
Q(t, u, 0)=0. Moreover from (H1) it follows that VG(u, O)=V~G(u, 0)=0 so that u - 0  

is a solution of (2.1) on J. 

Let H(u,. ) be the Legendre transform of G(u,. ), namely 

H(u, p) = (VG(u, p), p ) -  G(u, p). (2.6) 
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If u=u(t) is a weak solution of (2.1) on J ,  then we have 

{H(u, u')+F(t, u)}' = (Q(t, u, u'), u')+Ft(t, u). (2.7) 

Under the minimal conditions which we are assuming here, namely that  G is of class C 1 

and is strictly convex in the variable p, this identity is proved in a recent paper of the 

authors, On the derivation of Hamilton's equations; see also [4]. (It is worth noting as 

well that  (2.7) is directly and easily verified for weak solutions u which are also assumed 

to be of class C2(J, RN); this additional degree of smoothness is not always satisfied 

however, e.g. when C(p)=lpJm/m, m>2.) 
In view of (2.5) and (2.7) the following identity holds for solutions of (2.1) and for 

any pair of scalar functions ~o,wECl(j; R),  

{w[H(u, u')+ F(t, u)l+~(VG(u, u'), u)}' 

= wFt (t, u)+w'[g(u, u')+ F(t, u ) ] -  ~(f(t, u), u) 
(2.8) 

+ ~[(VG(~, u'), u')+ (V~C(u, u'), ~)] + ~'(VG(u, u'), u) 
+w(Q(t ,  u, u'), u')+~(Q(t, u, u'), u). 

This formula was originally discovered as a special case of the main identity in [7], see 

particularly the remark on p. 685. Note that  (2.8) reduces to (2.7) when w=l and ~a=O. 
The identity (2.8) can also be usefully written in the notation of analytical dynamics, 

by putt ing 

v = V s  = V G  

and 

~t = (p, v ) -  t: = H+F,  

so that  v is the conjugate variable to p and 7-/is the Hamiltonian associated with the 

Lagrangian s Then it becomes 

{ ~ u + v ( u ,  v)y = o~'u- ~ +(vu, v ~ z ) +  @u)' ,  v ) + ( ~ u ' + ~ ,  Q). 

In the sequel we shall use the properties that  H(u,O)=O and H(u,p)>O for p~s 

The first follows from the condition G(u, O)=0 and the latter is a standard consequence 

of the strict convexity of G(u , . ) .  Moreover VG(u,p)#O for p # 0  since WG(u,O)=O. 
Another consequence of these facts is the following useful 

LEMMA 2.1. For every u, pER N we have 

IVG(u, p)l <~ H(u, p)+ml~_l G(u, v). (2.9) 
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Proof. Fix uER N. Obviously (2.9) is valid when p=0. Take p#0  so that 

VC(u,p) 
v :  [VC(u,p) l 

is well defined. Then from the convexity condition 

G(u,p)-G(u, v) <<. (VV(u,p) ,p-v)  

we immediately obtain, using (2.6), 

IVG(u,p)l = (VG(u,p), v) <. (VG(u,p),p)-G(u,p)+G(u, v) = H(u,p)+G(u, v), 

which yields (2.9). 

3. Sufficient condit ions  for stability, Par t  1 

The purpose of this section is to study the asymptotic stability of bounded solutions 

of (2.1). We shall always assume, without further mention, that (H1)-(H3) are valid. 

Moreover, for this section we suppose the additional hypotheses: 

(C1) For every U>0 there exist a measurable control set ICJ,  two non-negative 

measurable damping functions a, 5: I--*R, and two continuous increasing weight functions 
+ + 

r Q: R 0 --*1~ with r such that 

[(Q(t, u,p),p)[ >/a(t)r (3.1) 

for tEI, lul<<.U and pERN; and 

(Q(t, u,p), u) <~ 5(t)g(Ipl ) (3.2) 

for tEI, lul<~U and all sufficiently small pElrt N. 

(C2) For every U>0 there exists a positive constant 7~> 1 such that 

IQ(t,u,p)l.lpl <~Tl(Q(t,u,p),p)] for all t e I, lul <~ f and p e R  N. 

Although I, a, ~f and r 0, 7 may depend on U, for simplicity we do not specifically 

indicate this dependence. 

Conditions (C1) and (C2) are automatically satisfied, for example, by the damping 

function Q=-a(t)b([p[)p when a, 5>/0 and sb(s) is increasing. Note that (C2) also is 

satisfied automatically when N = 1 and indeed whenever - Q  and p have the same direc- 

tion, with 7=1. 
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THEOREM 3.1. Suppose that for every U>0 there is a continuous function k of 
bounded variation on J such that 

k ~ L l ( J ) ,  k ( t ) = 0  f o r t e J \ I  (3.3) 

and 
0 <. k(t) <~ Ha(t) for t �9 I (3.4) 

for some positive constant ~. Assume also that there exists M>O such that 

~(R , t )n lh(S)k(s )exp( -~ tk (r )dr )  ds<~ M for tC J. (3.5) 

Then the rest state is a global attractor for the system (2.1). 

Proof. We first give the proof when the BV function k is of class C 1 (J).  

Let u be a solution of (2.1) with lu(t)[<L on J for some L>0.  We take U=L and 

let r a, 5, etc., be the associated functions and constants in (H1)-(H3) and (C1)-(C2), 

and similarly let k be the associated function in the theorem. 

By (2.7) the expression 

g(u ,  u')+F(t,  u) - (q(s, u, u'), u') d s -  Ft (s, u) ds (3.6) 

is constant. Since the first three terms in (3.6) are non-negative, it follows from (2.4) 

that  

(Q(t, u(t), u'(t)), u'(t)) E L 1 (J). (3.7) 

Therefore also Ft(t, u(t))ELl(J) and in turn there exists a number l~>0 such that  

H(u ,u ' )+F( t ,u ) -* l  as t--,cc. (3.8) 

First assume l=O. Since H(u, p)> 0 for p~0 ,  and since (again by the strict convexity 

of the function G(u,. )) 

inf{g(u,p):  [u I <. L, [p[ ~> 1} > 0, 

it follows easily that  u'(t)--*O as t--,c~. Moreover by (2.3), see Lemma 2 of [9], there is 

a positive function WL defined on (0, L] such that  F(t,u)>~WL(tUl) for any t e J .  Hence 

also u(t)--~O as t--~c~, completing the proof when l=0.  

Now assume for contradiction that  1 > 0 in (3.8). The proof relies on the main identity 

(2.8) with the choice ~ = a J ,  where w is the positive non-decreasing function defined by 
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and a is a positive number which will be determined later. Then, recalling that f = V , F ,  

the identity (2.8) reduces to 

{O3[g(u, u')+ F(t, u)+ak(VG(u, u'), u)]}' 

= wF~ (t, u)+O3'[g(u, u')+F(t, u)-a(f( t ,  u), u)] 
(3.10) 

+~O3'[(va(~, u'), ~')+(v~a(~,, ~,'), ~)] +~J'(Va(u, ~'), ~) 
+o3( Q(t, u, u'), u') +aO3'( Q(t, u, u'), u), 

where 

J--ko3, o3"=(k2+k')o3. (3.11) 

By (3.8) the function H(u, u ~) is bounded on J. Hence by Lemma 2.1 also IVG(u, u~)l 
is bounded, say 

We take R1 so large that 

IVG(u,u')l <~C for tEJ. (3.12) 

H(u,u')+F(t,u)~ �88 on J1 and ~ r �88 (3.13) 

where J1 --- [R1, oo). 

Let R(t) denote the right hand side of the identity (3.10). Our purpose, and the 

principal effort in the proof, will be to obtain an appropriate estimate for R(t) when 

t E J1 and a is suitably small. 

First, since k(t)=k'(t)=O on g \ I  it follows from (3.10), (3.11), (2.4) and (H3) that 

:R(t)<.O3r t E J l \ I  (a.e.). (3.14) 

On the remaining set I'=InJ~ we partition R(t) in the form 

1 5 
-7~ = Ft+k(H + F)+ Z 7~, 
O3 

1 

where 

= ~(Q,~ ) -~k(f ,~)  

7~2 = ~(Q,u~)+ak{(Ve, u~)+(V~G,u)} 

u3 = ~(Q, u')+~k~(vv,  ~) 

n4 = ~(Q,u')+ak'(VG, u) 
1 t ~5 = ~(Q,u )+ak(Q,u), 
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the notation being obvious, and u, u' clearly standing for u(t), u'(t). The important 

term (Q, u r) lies behind the desired estimates; accordingly this term is partitioned into 

each of the expressions 7~t through 7~5. 

Again Ft~<r from (2.4), while from (3.8) 

[H+F-l[ =e(t)--*0 as t--~c~. (3.15) 

The remaining terms will be treated one-by-one. 

1. We assert that 7~1 <.-axk for some constant x>0 ,  provided that a is suitably 

small. To see this, first let p l > 0  be fixed so that H(u,p)<~�88 when [u[<.L and Ip[<.pl. 
Clearly this can be done since H is continuous and H(u, O)=0. Then by (3.13) we have 

F(t, u(t)) >1 �89 in I1 = {t 6 I ' :  [u'(t)[ < Pl}. 

On the other hand, by (2.4) and (3.13), 

/; F(t, u(t)) = F(R1, u(t))+ Ft(s, u(t)) ds 
1 

f? <. F(R~, u(t))+ r ds <~ F(R~, u(t))+ �88 
1 

for t 6 J1. Thus 

F(Rl,u(t)) >1 �88 in I1. 

Since F(RI,O)=O it follows that there exists a number u0>0 such that lu(t)J>~Uo for 

t611. Denote by x=x(uo,L)>O the constant given in (2.3) corresponding to uo and 

U=L, so that now 

(f(t, u(t)), u(t)) i> x > 0 for t 6 11. (3.16) 

Since (Q, u ' )~0  by (H3), this gives the required estimate when t611. 
In the remaining set I'\I1 we have lu'(t)l>pl. Hence by (3.1) and (3.4) 

u')] >/ar >1 ~r 5axk in I'\I1, I(Q, 

provided that 

a ~ 5-~gr (3.17) 

here r since r  and r is increasing. Since (f(t,u),u)>~O by (2.3), 

the required estimate is now valid for all t6I', provided of course (3.17) is satisfied. 

2. We claim that ~2 ~< ~akx on I',  provided a is suitably small. Indeed 

(VG, u')+(V~G,u) <~ I x  
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if lu'l is suitably small, say lu'l<~p2, since VG(u, 0)=VuG(u ,  0 )=0  and the solution is 

bounded. Hence in this case the claim holds. Otherwise, if lu'l>p2, then by (2.2) there 

is a constant b>0 such that 

(vv, ~')+(VuG, u) < (l+b).(Va, ~'). 

Moreover by (3.4) and (3.12) we have 

zc~r 
k(VG, u') <~ kClu' I <~ •Calu' I <~ r 

= c2~r  lu'l -< c~ I(Q, u')l 

by (3.1), where C2=Cons tan t>0 .  Hence if 

1 a ~< (3.18) 
5C2(1+b) 

then 7~2~0 when lu'l >P2, completing step 2. 

3. Again ~ 3  x-~ ~akx on I'.  This is treated exactly as in step 2, the only exception 

being that (3.18) is replaced by a corresponding bound 

1 
a ~< 5 ~''t~3 (3.19) 

where C3=flCLsupk/p3ib(p3) and p3 is an appropriate positive constant analogous to 

P2 in step 2. Here we use the.condition that k is bounded, since ~ 3  includes the factor 

k 2 rather than k. 

4. By (H3) and (3.12) obviously Tg4<~aCL]k' I in I ' .  

5. We claim that T~5<~es(~)a~k, where e5(a)--*0 as ~--*0. Let 

In this set, by (C2), 

/5 = {t e I ' :  lu'(t)] ~> Asa}, A5 = 5L~,sup k(t). 
tEJ  

1 Q ~l(Q,u')l 
ak(Q,u) <<.aLklQ I ~< ~-~] I.lu'J ~< 

so that  n 5 < 0  in /5 .  In I'\I5 we have lu'(t)l<A5a. Hence 

by (3.2), where e5(c~)--0(Asa). Thus the claim is proved for all teI'. 



P R E C I S E  D A M P I N G  C O N D I T I O N S  F O R  G L O B A L  A S Y M P T O T I C  S T A B I L I T Y  289 

Combining the previous estimates, including (3.14) and (3.15), now yields, for almost 

all teJa  and all a > 0  satisfying (3.17), (3.18) and (3.19) 

7~<.w{r (3.20) 

where we introduce the agreement $k=O on J \ I .  Recall that k=O on J \ I  by assumption 

(3.3)2. 
Now fix a > 0  so small that (3.17), (3.18) and (3.19) hold and also so that 

X 

~5(a) ~< 8M' (3.21) 

where M is the constant given in (3.5). Moreover take R2 ~>R1 such that 

r =~(t) <~ ~ag for all t >/R2 (3.22) 

and 

r ds <~ a-~, [k'(s)[ ds <. 
R2 2 

Condition (3.23)2 can be attained since keBV(J)  and so k'eLa(J). Then from (3.10), 

(3.20) and (3.22) we see that the function 

1 f ~  a C L f ~  (3.24) 
2 2 

/ 
is decreasing in J2 = [R2, c~). 

We claim that there exists a sequence (tn) with tn.Tc~ such that 

k(tn)VC(u(tn),u'(tn))-'*O as n--*oo. (3.25) 

By (3.12) and the boundedness of k, this follows immediately if either lim inft~oo k(t)=0 

or liminft-_.~ [VG(u(t),u'(t))]=O. But if neither of these occurs, then for some suffi- 

ciently large constant t there holds 

k(t)>~ko>0 and ]VC(u,u')l>~Co>O fort~>t. 

In turn, by (3.3)2 we must have ID[t ,  oo) and so using (3.4) and the strict convexity of 

G(u,. ), see (Hi), we have 

k0 a( t )~-~  and [u'(t)[>.po>O fort>~L 
P 
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Hence by (3.1) we obtain 

I(q, u')l/> ~r koPor > 0  in [{,oo), 
# 

which contradicts (3.7). 

Now, along the sequence (tn), by (3.5), (3.15), (3.21)-(3.24) there results 

} 
But then using (3.25) it follows that ~(tn)~> ~azw(tn)  for n sufficiently large. Hence 
�9 (t,~)--~co as n---*c~ by (3.9) and (3.3)1, which contradicts the fact that �9 is decreasing 

in J~. Therefore the case l~0  cannot occur in (3.8), and the proof is complete when 
keCl ( j ) .  

We now turn to the general case when k E BV(J). The proof is based on the following 

lemma, whose demonstration will be given in the Appendix. 

LEMMA A. Let k be a non-negative continuous function of bounded variation on J. 
Then for every constant 0 > 1 there exists a function k E C l( J) and an open set E C J such 
that 

{ k in J \ E  /E (i) Ok)k/> ; (ii) Var/c<OVark; (iii) k~<l. 
0 in E 

Now fix 0>1 and let k and E be as given in the lemma. We assert that k satisfies 
(3.3)-(3.5) with/9 replaced by #=0/9. Indeed by (i) it is clear that (3.3)2 is satisfied. 

Also (3.3)1 holds thanks to (i) and (iii). Similarly, in view of (i) and (iii), 

/ ;  5(s)k(s) exp ( -  ~ t  k ( r ) d r ) d s ~ O e / ;  6(s)k(s)exp(-  ~ k ( r ) d r ) d s ,  

and so (3.5) holds. This completes the proof. 

The condition that kEBV(J)  in Theorem 3.1 can be replaced by an interesting 

alternative hypothesis. 

THEOREM 3.2. Suppose that the control set I in (C1) is the entire interval J and 
that for every U>0 there is a bounded function k on J such that 

k ~ LI(j) ,  (3.3)' 

0 < k(t) <./ga(t) in J, logk E Lip(J), (3.4)' 
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for some constant ~>0. Assume also that (3.5) holds. Then the rest state is a global 
attractor for the system (2.1). 

Proof. Clearly keLip(J) ,  so keAC(J )  with Ik']~<Const. k a.e. in J. The previous 

proof now applies word-for-word, except for step 3. For this step, however, we have the 

alternative estimate 

ak'(VG, u) <. Coast. aklVG I a.e. in J1- 

Therefore, using the argument of steps 2 and 3, we easily derive that for c~ suitably small 

~a~< ~akx  a.e. in J1. 

In turn the second term in the first braces of (3.20) should be deleted, while at the same 

time an extra term ~ a x  should be inserted in the second braces. The corresponding 

function ~ again is decreasing in J2- The rest of the proof follows exactly as before. 

Theorem 3.1 has several interesting corollaries. Corresponding results can also be 

obtained from Theorem 3.2, but we leave their statement to the interested reader. 

COROLLARY 1. Suppose that the hypotheses of Theorem 3.1 are satisfied, except in 
place of (3.5) we assume that the function 5 allows a decomposition 5=d+e with 

d e L ~ ( I )  and ekeLl(I ) .  (3.5)' 

Then the rest state is a global attractor. 

Proof. Clearly 

/ ;  k(s) exp ( -  ~ t  k(r) dr) ds= l -exp  ( -  / ;  k(r) dr) <~1. 

Hence (3.5)' implies (3.5), with M=ltdllL~(i)+llekllLl(i), and Theorem 3.1 can be ap- 

plied. 

COROLLARY 2. Define ~(t)=a(t) for t e I  and ~(t)=0 for t e J \ I ,  for any a given 
in (C1). Assume also that for every U>0,  

heLl ( I ) ,  5eL~( I ) ,  ~ e C B V ( J ) .  

Then the rest state is a global attractor. 

Proof. Take k(t)=~(t). Then (3.3) and (3.4) hold (with ~=1),  while (3.5)' is satisfied 

with d--5, e=0. Thus Corollary 1 can be applied. 
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COROLLARY 3. Condition (3.5) in Theorem 3.1 can be replaced by 

l iminf f 5 ( s ) k ( s ) e x p ( - ~ t k ( r ) d r ) d s = M < o o ,  
t--*oo J(R,t)nI 

(3.5)" 

provided that k(t)--+O as t--~co. 

Proof. We choose the sequence (tn) in the proof of Theorem 3.1 so that  

~(R, t , )n lS(S)k(s)exp(-~s t"k(r)dr)  ds<~2M. 

Then (3.25) holds as before, by (3.12) and the assumption that  k(t)~O as t~co .  The 

rest of the proof is the same as that  in Theorem 3.1. 

COROLLARY 4. Suppose that the control set I in (C1) is the entire interval J, and 

that for every U > 0 there exist positive numbers c and ~ such that 

ta(t) >/c, l iminf "5(s) - -  = M '  < co. (3.26) 
t ---+c~ t" 8 

Then the rest state is a global attractor. 

Proof. Taking k(t)=y/t ,  and ~=y/c,  we immediately derive all the assumptions of 

Corollary 3, with M=Mq? in (3.5)". 

The case y = l  in Corollary 4 is particularly interesting. Moreover, the result of 

Corollary 4 is in a sense best possible. For example, (3.26)2 is satisfied when 5 is bounded 

but fails when 5(t)>~t ~ for some ~>0, while there exist equations with 5(t)~t ~ for which 

the rest state is not a global attractor (see [9], Section 5). 

Remarks. Condition (2.4) can be weakened to 

Ft(t, u) <~ r  u)}, I~1 < u. (3.27) 

Indeed if this condition holds, then by integration 

E log{1 + F ( t ,  u)} ~< r ds+log{l+F(R, u)} ~< Const. 

Hence l+F( t ,u)  is also bounded above for tEJ  and [ul<~U and we get Ft(t,u)<. 
Const .r  which is essentially condition (2.4). That  is (3.27) is in fact equivalent 

to (2.4). 
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The preliminary change of variable t~-*T=r(t)=f~q(s)ds,  with q>0 and with 

q~ L 1 ($), can occasionally be helpful in applications, particularly when properties (2.3), 

(2.4) are not satisfied. For example (see [2], p. 327) the system 

u" +q2(t)f(u) = Q(t, u, u') 

transforms to 
1 

ii+ f (u)  -- q2(t(T)) {Q(t(T), u, qit)--q'(t(T))it}. 

Various results which can be obtained in this connection will be treated in a paper to 

appear later. 

4. Suff ic ient  c o n d i t i o n s  for s tabi l i ty ,  Par t  2 

We suppose as before that  conditions (H1)-(H3) and (C2) are satisfied. However, in place 

of assumption (C1) we shall require the following more specific hypothesis in which the 

functions r • are assumed to be algebraic. 

(C1)' There exist exponents 0 < # ~< u such that  assumption (C1) is satisfied with the 

specific functions 

r  s~}, Q(s)=s  ~. (4.1) 

The first main result of the section is the following 

THEOREM 4.1. Suppose that for every U>0 there is a continuous function k of 

bounded variation on J such that 

k r LI(J) ,  

and for some ~ > 0  

k(t) = 0 for t 6 J \ I  (4.2) 

0 <~ k(t) <~/%~(t) for t 6 I. (4.3) 

Assume also that there exists M > 0  for which 

L (// ) 5 ( s ) k ~ + l ( s ) e x p -  k(r)dr d s ~ i  for t 6 J .  (4.4) 
,t)NI 

Then the rest state is a global attractor for the system (2.1). 

Proof. The first part of the proof is the same as in Theorem 3.1, while steps 1-4 are 

also essentially as before. 
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For step 5 the only change is in the estimate for the set I'\Ih. We assert that  on 

this set there holds 

ak(Q, u) <~ -all2L'y(Q, u')+ct1+~/2~k~+1. (4.5) 

Since this is obvious if u'=O, we may suppose u~r Then by Young's inequality 

c<k <~ o<1/2{141 + 141-"(a'/%)"+1 ) 

and so by (3.2) with Q(s)=s", see (C1)', 

ak( q, u) <~ a l/~ LIQ I �9 lu'l +a l+"/2 ~k ~+~. 

This gives the required result (4.5) in view of (C:) and (H3). To apply (3.2) the derivative 

lu'(t)l must be sufficiently small, but this is certainly true in I ' \ Is  provided c~ is small 

enough. 

In view of (4.5) we thus have 

7r <~ (~-c~12L"t)(Q,u')+a~+~'12<hk ~'+~ in I ' \ Ih .  

Taking a~< (hL~) -2 therefore gives 

91~5 ~ al+#Jl2~kl+~ in I'\I5. (4.6) 

Since we have already shown that  ~5~<0 in /5 ,  the estimate (4.6) then holds in all of I ~. 

The rest of the proof follows exactly that  for Theorem 3.1, except that  in (3.20) the 

term eh(a)cl~k should be replaced by cll+u/2~kl+U. Of course in the estimates for the 

corresponding function �9 we use (4.4) instead of (3.5). 

As in Section 3, the condition that  kEBV(J)  can be replaced by other hypotheses. 

It is clear, for example, that  we could suppose log kELip(J)  in parallel with the result of 

Theorem 3.2. Another alternative is given by the following theorem, in which we assume 

that: 

For every U>0  there exists a positive constant O = O ( U ) > 0  and an exponent m >  1 

such that  

]VG(u,p)] <. OIpl m-~ when lul ~< U and IPt ~< 1. (4.7) 

Remark. Obviously (4.7) holds when G(p)=iPimlm, with O=1.  It is also satisfied 

when G ( p ) = ~ - 1 ,  with O=1 and m=2. Another example, in which G depends 

explicitly on u, is G(u,p)=(l+]ula)ippIm where a>0 ,  m > l .  In general m can be 

thought of as being independent of U, as in the examples above. However, this is not 

strictly necessary, as the function G(u, p) = Ipl 2+ 1~12 shows. 
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THEOREM 4.2. Suppose that]or every U > 0  there is a bounded absolutely continuous 

function k on J such that (4.2)-(4.4) are satisfied. Assume also that 

Ikll ~ Ba~k  1-~ a.e. on I, (4.8) 

where B is a positive constant and 

m - 1  
)~___ ~ v + l  ' if v > m - 2  (4.9) 

( 1, if v < ~ m - 2  ( a n d m > 2 ) .  

Then the rest state is a global attractor for the system (2.1). 

Observe that  the two values of ), in (4.9) coincide when v = m - 2 .  In case v = m - 1  

we can write )~=l/q and I - ) ~ = l / m ,  so q is the Hhlder conjugate of m. Finally, the 

limiting case re -* l ,  A--*0 corresponds to the condition log kELip(J)  noted above. 

Proof of Theorem 4.2. The previous proof applies essentially word-for-word, except 

for step 4. Here, in I' we see by (4.8) that 

ak'  (VG, u) <~ a B L a ~ k l -  ~IVG I 

{o(k/ ) l - X l u ' l m - 1 ,  if lu'l < 1 (4.10) 
<. a B L a  131-~C, if lu'l >>. 1, 

by (4.7) and by (3.12), (4.3). We now proceed somewhat as in steps 2 and 3 of the proof 

of Theorem 3.1. First, if lu'(t)l/>l then from (H3), (3.1) and (4.1)1 we have (Q ,u~)~ -a .  

Thus by (4.10)2 if 
~),--1 

a <. 5 B C L '  

Second, if lu'(t)l<l but v<~m-2 (so that m > 2  and then ~4  4 0  at such values of t. 

A=I) ,  then by (4.10)1 

ak ' (VG,  u) <~ aBLOalu' l  m-1 <~ (~BLOalu'l V+l 

while by (H3), (3.1) and (4.1)1 once more, (Q,u')<.-alu'l "+1. Hence if 

<~ (hBOL) -1, 

then T~4 ~ 0 also for the second set of values of t. 

In the remaining case we have v > m - 2  and lu'(t)l< 1. Let 

I~ = {t �9 I ' :  h a ( k / a ) l - ~ a  <<. lu'(t)l ~-m+2, Ju'(t)j < 1} 

IP4 ' = {t �9 I ' :  lu'(t)l ~-m+2 < A4(k /a ) l -~a ,  lu'(t)l < 1}, 

20-935202 Acta Mathemafica 170. lmprim5 le 30 juin 1993 
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where A4=5BLO. In I~ it is easy to see that  7~4~<0, using the usual estimates for the 

term (Q, u'). On the other hand, in I~' we have 

I~'(t)l < [A4(kla)l-~c~] 1/("-m+2) (since v - m + 2  > 0). 

Consequently in this set, by (4.10)1 and (H3), 

7~4 ~ aBLOa~kl-~[A4(k/a)l-~a] ~' = Const. al+~'k,  

where A ' - - ( m - 1 ) / ( v - m +  2)= A/ (1 -  A)> 0. By choosing a sufficiently small we then get 

7~4 ~ ~axk  

as in steps 2 and 3. Hence in (3.20) the second term on the right side is dropped and 

another term ~ a x k  is added in the second braces. 

The rest of the proof is essentially the same as for Theorem 4.1. 

Remark. While Theorem 4.2 requires the full strength of assumption (C1)' as well 

as condition (4.7), the result of Theorem 4.1 actually uses only the second part of (C1)', 

i.e. the condition O(s)=s ~. 

The following corollaries are helpful in the application of Theorems 4.1 and 4.2 to 

specific systems. 

COROLLARY 1. Suppose that the hypotheses of Theorem 4.1 or of Theorem 4.2 are 

satisfied, except that in place of (4.4) we assume the function 5 has a decomposition 

5~d+e  with 

dk ~ � 9 1 7 6 1 7 6  and ek "+1 �9 LI(I) .  (4.4)' 

Then the rest state is a global attractor. 

Proof. It is easily seen, as in the proof of Corollary 1 of Theorem 3.1, that  (4.4)' 

implies (4.4). Hence Theorem 4.1 and Theorem 4.2 can be applied. 

COROLLARY 2. Define O(t)=a(t) for t � 9  and O(t)=O for t E J \ I ,  for any a given 

/n (C1) p. Assume also that for every U > 0  

c r ~ L l ( I ) ,  5a 'CL~ ~ e C B V ( J ) .  

Then the rest state is a global attractor. 

Proof. Take k=d  and apply Corollary 1 in the case of Theorem 4.1. 
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COROLLARY 3. Assume I = J  and that for every U>0 

a ~ L l ( j ) ,  5a"ELC~(J),  l o g a E L i p ( J ) .  

Then the rest state is a global attractor. 

Proof. Take k = a  and apply Corollary 1 in the case of Theorem 4.2. (Note that  a is 

Lipschitz continuous, and so also absolutely continuous as is required for Theorem 4.2.) 

COROLLARY 4. Assume I = J .  Suppose for every U>0 that ~ admits the decompo- 

sition 5=d+e, with d>0,  and 

1 
-~ ~ L1/"(J) ,  

Suppose also that 

or that (4.7) holds and 

d -1/~ E AC(J),  

1 -t- ~-~ E/c~(g) ,  ~ E i x ( j ) .  

d -1/" E CBV(J) (4.11) 

I Const. (d-1/")l- '~a "~. (4.12) 

Then the rest state is a global attractor. 

Proof. Take k=d  -1/~ so that  (4.2)-(4.4) ~ are satisfied and k is bounded. If (4.11) 

holds, then we apply Corollary 1 in the case of Theorem 4.1. If (4.12) holds then (4.8) 

is satisfied and Corollary 1 in the case of Theorem 4.2 can be applied. 

Suppose I = J  and that for every U>0 there exist positive numbers COROLLARY 5. 

c and ~ such that 

s ta(t)~>c, l iminf s ~ ds < 

Then the rest state is a global attractor. 

The proof is parallel to that  of Corollaries 3 and 4 in Section 3. Just as for Corollary 4 

in Section 3, the second condition of Corollary 5 is in a sense best possible. That  is, it is 

satisfied when 

~i(t) ~ Const. t ~' 

but fails when 5(t)~>Const. t ~+~ for some e>0,  while there are equations with 5(t)~> 

Const. t ~+~ for which the rest state is not stable. 

Remarks. The last condition in Corollary 5 is obviously satisfied if 5(t) / t  ~+1 E L 1 (J). 

Similarly the last condition in Corollary 4 of Section 3 holds if ~f(t) / tELl(J) .  
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For the system (1.5), the last condition of Corollary 5 becomes, since #=1,  

liminf f l  ( ~ "~(s) ~ 
t-~oo JR ~ t /  --ff <~"  

Taking y=2  yields 

lira inf 6(s) ds < oo. (4.13) 

For the scalar case of (1.5), and under the assumption a(t)~>Constant>0, condition 

(4.13) is essentially due to Artstein and Infante [1]. 

There are several special cases of Corollaries 2-4 which are of interest, e.g. when 

6~<Const. a and when # = m - 1 .  We leave these to the reader. 

5. Necessary conditions for stability 

In this section we shall obtain several necessary conditions for global asymptotic stability 

of the rest state u_=0 for the system (2.1). 

We shall not require the full strength of the hypotheses (H1)-(H3). In fact, only the 

following standing assumptions will be made, beyond the basic continuity and smoothness 

conditions stated at the outset of Section 2, 

G(u, O) = O, F(t, O) = O. 

Recall finally that H(u, p)=(VG(u, p), p)-G(u,p) ,  so in particular H(u, O)=0 for all u. 

THEOREM 5.1. Let u be a solution of (2.1) on J such that 

- - , o  a n d  0 a s  t --* oo .  

Suppose that for every t E J and for all u and p sufficiently small, 

where 

H(u,p)>O, pr (5.1/ 

F(t,u)>/O, O~Ft( t ,u )~r  with CELl ( j ) ,  (5.2) 

0 <. -(Q(t,  u,p),p) <~ 6(t)g(u,p), (5.3) 

6eLl (J ) .  (5.4) 

Then u=O in J. 

Proof. Take RI>~R such that lu(t)[ and [u'(t)[ are small enough in Jl=[Rt,oo) to 

allow the appfication of (5.1)-(5.3) along the solution. 
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By (2.7) the expression 

H(u,u')+F(t ,u)-  (O(s,u,u'),u')ds- Ft(s,u)ds (5.5) 
1 1 

is constant. Since the first three terms are non-negative by (5.1), (5.2)x and (5.3)1, from 

(5.2)2 it follows that 

(O(t,u,u'),u') e LI( j1)  

and so 

H(u,u')+F(t,u)=l- (Q(s,u,u'),u')ds- Ft(s,u)ds (5.6) 

for some 1. 

We claim that F(t,u(t))--*O as t--*oo. Indeed by (5.2)2 we obtain 

// F(t,u(t))<<.F(r,u(t))+ ~(s)ds, Rl<~r<~t. 

Since u(t)~O, this gives by (5.2)t and the fact that  F(t, 0)=0  

O~limsupF(t,u(t))<~ r 
t---* ~ 

The claim is proved by letting r---~o~. 

Now let t ~  in (5 .6) to  obtain l=0.  Hence in turn, because of (5.3) and (5.2)2 

f f H(u,u')+F(t,u)=- (Q(s,u,u'),u')ds- Ft(s,u)ds 
(5.7) 

<~ s)H(u, u') ds = X(t). 

Since H(u,u')--*O as t ~ o o  and since $ELI(J), it is clear that  X(t)--*O as t~or By 

(5.7) and (5.2)1 

x '  = - ~ / >  -~x ,  

so that  for any t E J1 and r > t  

X(t) <~ X(r) exp r/r ~(s) ds. 
J t  

Letting r--,oo and using (5.4) again, we obtain X(t)<~O for all tEdt. 
By (5.1), (5.2)1 and (5.7 7 it follows that H(u(t),u'(t))=O on dl. Hence u'(t)-~O on 

J1 by (5.1), and so u(t)=_O on J1 since u(t)--~O as t--.c~. In particular u(R1)=u'(R1)=O. 
By repetition of the previous argument one finds that the subset of J where u=O is both 

open and closed in J and so is all of J .  This completes the proof. 
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COROLLARY 1. Suppose that (5.1)-(5.3) hold. Then a necessary condition for the 
rest state to be a global attractor for (2.1) is that 

~ L 1 (J).  

In fact if 6ELl(J) then by Theorem 5.1 there are no solutions whatsoever, except 

the trivial one u-=0, which approach zero together with their derivatives at infinity. 

Remarks. To prove Corollary 1 it would in fact be enough to find just one solution 

(or one bounded solution) which does not tend to zero as t---*cx~. Hence Theorem 5.1 is 

actually a much stronger result than simply that  the rest state is not a global attractor. 

The hypotheses (5.1) and (5.3) of Theorem 5.1 hold for the function G(p)=lp[m/m, 
m > l ,  and for Q satisfying (H3) and (3.2) of (C1)' in the stronger form 

IQ(t, u,p) l ~ 6(t).lpl" for t E J ,  lul ~< u and IP] ~< q, (3.2)' 

w i t h / ~ > m - 1 .  Indeed H(p)=(m-1)lplm/m, giving (5.1), while also for re J, Jul<~U and 

Ipl <. q<. l 

-(Q,P)<~IQ['[PI~<61P[ l+u~<6g, with $ =  m6 
m - l "  

Hence (5.3) holds and 66Ll(J) if and only if 66L1(j). The simplest example of this 

behavior is the system (1.5) discussed in the introduction. 

The same ideas apply to the mean curvature operator G(p)= ~ -  1. Here 

H(p)=l-1/V/-~lpl  2, giving (5.1) immediately. Moreover for Q satisfying (H3) and 

(3.2)' with #=1 ,  we have -(Q,p)<~46H when Ipl<~q<~l. Here it is essential to restrict to 

small p to obtain the validity of (5.3). Clearly a wide class of functions G and Q can be 

treated in the same way. 

Finally (5.2) is a consequence of (H2) if we add the assumption Ft(t,u)>~O. Of 

course, if F is independent of t, only (5.2)1 is required. 

As a special example, consider the strongly nonlinear systems (1.10) and (1.11) in 

the introduction, with F=F(u), (f(u), u)>0,  and 

(r(t) = t ~ (log t) f~, 6(t) = Pos. Const. a(t),  (5.8) 

in (C1)'; of course here we replace (3.2) by (3.2)'. If a < 0  then from Corollary 2 of 

Section 4 we see that  the rest state is a global attractor if 

a > - I  or a = - l ,  /3/>-1.  (5.9) 



PRECISE DAMPING CONDITIONS FOR GLOBAL ASYMPTOTIC STABILITY 301 

On the other hand, by Corollary 1 of Theorem 5.1, condition (5.9) is also necessary for 

the rest state to be a global attractor provided # ~ m - 1 .  It is doubtful that  (5.9) is a 

necessary condition when # < m - 1 .  

Next suppose a > 0 ,  but that  otherwise (C1)' holds with the conditions given above. 

Then by Corollary 4 of Section 4 (with d=~, e=O and (4.11) holding) the rest state is a 

global attractor if 

a < #  or a = # , / ~ < # .  

This condition is also necessary, as shown in [10, Theorem 4.4]; that  is, if 1/~EL1/~(J) 
then the rest state cannot be a global attractor. Finally, it is easy to check that  when 

a- -0  the rest state is always a global attractor. 

When N = I  the condition u'(t)--~O as t-*co in Theorem 5.1 can be omitted and 

the proof simplified. For this improvement we require the further structural condition 

that  H(0,p) be strictly increasing for p>0  and strictly decreasing for p<0.  (This is a 

consequence of the strict convexity of G(0, p).) 

THEOREM 5.1'. Assume N=I .  Let the hypotheses of Theorem 5.1 hold, with the 
exception that the condition u'(t)--*O as t-*co is omitted. Then u=-O in J. 

Proof. The argument is the same as before, except that  now we obtain l=0  in a 

different way and without using the limit assumption on u'. 

Suppose then that  N = I .  In the same way as before F(t, u(t))--*O as t-*co. Then 

by (5.6) it follows that  H(u(t), u'(t))--~l as t-*co. Since H(O,p) is strictly increasing for 

p>0  and strictly decreasing for p<0,  it is clear that  

u'(t)--~p~ (possibly infinite) as t - * c o  

(note that  for any to ~ R the values of u' for t ~ to form an interval of R).  This is obviously 

impossible when u(t)--*O unless p~  =0. Thus l--O and the previous proof applies without 

further changes. 

A result corresponding to Theorem 5.U can also be proved for vector solutions. We 

indicate how this can be accomplished for the system 

u"+f(u)=Q(t ,u,u ') ,  

when F and Q satisfy the conditions (5.2)-(5.4) and Q obeys (C2). Thus suppose that  

u(t)--*O as t-*co. By Theorem 5.1 it is enough to prove that  also u'(t)--*O as t-*co 

since (5.1) obviously holds. From (2.7) and (5.3) we obtain {H(u')+F(u)}'•O so that  

H(u')--�89 If l=0  we are done, so suppose that  l>0. Then 

u'(t)-u'(r) = ~ t  Q(s, u, u') ds-~rt f(u) ds. 
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As in the first part of the proof of Theorem 5.1, (Q,u')ELX(J). But by (C2), for t 

sufficiently large, 

IQl.lu'l ~2/l(O,u,)l" IQ[ ~< ~ ~< 

Hence also Q(t,u,u~)ELl(j). On the other hand I (u( t ) ) - , f (0)=0 as t - . c o ,  because 

u(t)-+O. Consequently, for tE(r, r + l ]  and r--~co we have 

u'(t)-u'(r)--* 0. 

Then from the relation lu'I2--*2l#0 there results 

r+l I f r + l  lu(r+l)-u(r)l= f u'(t)dt >1 lu'(r)l lu'(t)-u'(r)ldt>~ �89 --j?, Jr 

for r large, which contradicts the fact that u(t)--*O as t-,co. 
The same idea can be extended to strictly convex action energies G(p), for which 

H(p)-*co as ]Pl--*co. Indeed from H(u')-*l it is clear that  ]u'(t)i~>Const.>0 for large 

t (when l>0).  Thus QELI(J) as above, and in turn VG(u'(t))-VG(u'(r))-*O. Since 

u ~ is bounded by the assumption on H,  it now follows that u~(t)-u~(r)--*O, and the 

contradiction is obtained as before. 

6. The non-homogeneous  case  

In this section we consider the non-homogeneous analogue of the system (2.1), namely 

(VG(u,u')) '-V~G(u,u')+f(t,u)=Q(t,u,u')+e(t),  J = [R, co). (6.1) 

Under the conditions (a) or (b) in the following lemma, we shall show that the asymptotic 

stability of the rest state u--0 for (6.1) is essentially the same as for the system (2.1). 

LEMMA. Suppose F(t,u)>~O in J x R  N, that (2.4) and (5.3)1 hold, and that either 
(a) e'ELI(J), e(t)-~O as t-*co, 

or 
(b) eELI(j) and Ipl~<Const. {l+H(u,p)} for u, pER N. 

Then the quantity H(u,u')+F(t,u) tends to a non-negative limit as t-+co along any 
bounded solution of (6.1). 

Proof. From (6.1) we obtain, corresponding to (2.7) for the system (2.1), 

{ H(u, u')+ F(t, u) }' = ( Q(t, u, u'), u')+ Ft(t, u)+ (e, u'). 
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In case (a) we write 

(e, u')= (e, u)'-(e' ,  u). 

Then by (2.4), (5.3)1 and the fact that  lu[<.L, say, we have 

{ H(u, u')+ F(t, u) + ~ r  ds-(e, u)+ L ~o~ ,e'(s)[ ds} ' ~ 0 

and the result follows at once. In case (b) 

{H(u, u')+f(t ,  u)}' ~< ~b(t)+Const. le(t)[{l+H(u, u')}. 

Thus by Gronwall's inequality and the fact that  F(t,u)>~O, we find that H(u,u') is 

bounded. In turn 

{H(u, u')+F(t, u)}' ~< r  le(t)[ 

and again the conclusion follows. 

We can now give the main result of the section. 

THEOREM 6.1. Let the hypotheses of Theorems 3.1, 3.2, 4.1, or 4.2 hold, and sup- 
pose also that e satisfies either condition (a) or condition (b) of the lemma. 

Then the rest state is a global attractor for the system (6.1). 

Proof. We show that the proofs of Theorems 3.1, 3.2, 4.1, and 4.2 are essentially 

unchanged if either (a) or (b) holds. 

Consider first case (a). We use the variational identity for (6.1) corresponding to the 

identity (3.10) for the problem (2.1). The new identity in fact differs from (3.10) only by 

the addition, to the left hand side of (3.10), of the term -(e,u)w and, to the right hand 

side, of the quantity 

( ~ -  1)(e, u )wI -  (e', u)w, 

see [7]. Clearly 

u) 'l < Const. lel ', 

and since e(t)--~O as t-~co one has 

O/M i I( -l)(e,u)JI 

for large t. Similarly 

I(e',u)~l <~Lle'[w, l e ' [ c L l ( J ) ,  

and this term can be treated almost exactly the same as the term Const. [k'lw in step 4 

of Theorem 3.1. 

21-935202  Acta Mathematica 170. Imprimd lc 30 juin 1993 
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Next if (b) holds we write the additional term on the left hand side of the identity, 

namely {-(e ,  u)w}', in the form 

-(e,  (e', 

These terms cancel several of the additional terms on the right hand side, leaving only 

the following additional terms on the right: 

~(e, u)w'+(e,  u')w. 

Since u and u' are bounded in case (b)--recall that  Ipl~<Const. { l+g(u ,p ) }  and that ,  

by the lemma, H(u, u') is bounded--and since 

w' = kw <~ Const. w, 

the additional terms axe bounded by 

Const. lelw. 

Using the fact that  e~=L:, this term can also be treated as in step 4 of Theorem 3.1. This 

completes the proof. 

Remarks. The condition IPl ~< Const. {1 +g(u ,  p)} in case (b) is satisfied when G(p)= 
Iptm/m, m> 1, and in particular for the system (1.5). In the scalar case, Levin and Nohel 

had found the condition eGLI(j) ,  e(t)-+O as t--~oo, whereas here for case (b) only 

e~_L:(J) is needed. 

It is, finally, worth noting that  hypothesis (b) can be generalized without difficulty 

to the case when the non-homogeneous terra e in (6.1) depends not only on t but also on 

u and p, provided we assume that  

le(t, u,p) I <<. r  u ) + l  (6.2) 
Ipl+l 

where r E L:  (J).  

Appendix 

We prove the lemma used in the proof of Theorem 3.1, 

Proof of Lemma A. If k > 0 in J we take E =  o ,  and define k to be a continuous 

piecewise linear function with vertices on the graph of the function �89 such that  

k<k<Ok ,  t6_J. 
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(For this construction it is necessary that  k be continuous; in particular on any compact 

set k then has a positive lower bound and the graphs of k, �89 (0+ 1)k and Ok are separated 

by a positive distance.) 

Rounding the corners of the graph of k (say with small circular arcs) then produces 

the desired function k, since clearly 

Var k ~< Var k ~< Var ( �89 < 0 Var k. (A1) 

When the set C of zeros of k is non-empty, the construction is slightly more delicate. 

Clearly C is closed since k is continuous. Hence J\C is a relatively open set, O, and we 

can write 

o=ub, 

where Ij, j=l,  2, ..., are disjoint open intervals in J ,  with It=[R,a) if k (R)>0.  

Let J1, J2, ... be a sequence of disjoint intervals such that [Jn[=l and J=UJ,~. It 

is not difficult to see that  there exists a subsequence of intervals I~ drawn from (Ij) such 

that 

(1) only a finite number of intervals I~ intersect any jn, 

(2) YJ,~\o' k<~2-(n+l), where o '=UI  ~. 
To define E, we first choose a closed subinterval Gi in each interval I~, with the 

property that 

f s  k~<2 -(i+t),  Si=I~\Gi, i = 1 , 2 , . . . ,  
i 

and put E = I n t  J\UGi (here E is open, since U Gi is certainly closed; if It=[R,a) we 

take I~=I1 and G1 in the form JR, b), b<a). Clearly 

E=(CUO"US)\{R}, w h e r e O " = O \ O ' a n d S = U S i .  

Since fo,, k<~�89 by (2), it follows that 

f 
and (iii) is verified. 

Next, define k to be a continuous piecewise linear function on J ,  all of whose vertices 

lie in or=u I~, such that: 

In G~, the vertices of k lie on the graph of �89 and k<k<Ok (recall that 

k > 0  on the closed set Gi), 

has exactly one vertex (ci, 0) in each Si, i=l, 2, ..., and O<~k<Ok in Si. 
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Clearly 0 ~ ~r ~< Ok in E.  Finally, we obtain fr by rounding the corners k as before (obvious- 

ly k has at most a finite number of corners in any bounded interval of J) .  Conditions (i) 

and (ii) now follow as in the first part of the proof. 
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